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Abstract—Heterogeneous graphs (HGs) with multiple entity
and relation types are common in real-world networks. Hetero-
geneous graph neural networks (HGNNs) have shown promise
for learning HG representations. However, most HGNNs are
designed for static HGs and are not compatible with hetero-
geneous temporal graphs (HTGs). A few existing works have
focused on HTG representation learning but they care more
about how to capture the dynamic evolutions and less about
their compatibility with those well-designed static HGNNs. They
also handle graph structure and temporal dependency learning
separately, ignoring that HTG evolutions are influenced by both
nodes and relationships. To address this, we propose HGN2T,
a simple and general framework that makes static HGNNs
compatible with HTGs. HGN2T is plug-and-play, enabling static
HGNNs to leverage their graph structure learning strengths.
To capture the relationship-influenced evolutions, we design a
special mechanism coupling both the HGNN and sequential
model. Finally, through joint optimization by both detection and
prediction tasks, the learned representations can fully capture
temporal dependencies from historical information. We conduct
several empirical evaluation tasks, and the results show our
HGN2T can adapt static HGNNs to HTGs and overperform
existing methods for HTGs.

Index Terms—Heterogeneous Temporal Graph, Graph Repre-
sentation Learning, Heterogeneous Graph Neural Network.

I. INTRODUCTION

GRAPH Neural Networks (GNNs) represent and learn
graph data combined with neural networks [1]–[4], has

driven advances in many domains such as social network
analysis [5]–[7], bioinformatics [8]–[11], and recommender
systems [12], [13]. However, real-world networks tend to be
Heterogeneous Graphs (HGs) that contain multiple types of
entities and relations [14]–[16]. To better capture the complex
structural and semantic information in HGs, Heterogeneous
Graph Neural Networks (HGNNs) have been proposed and
aroused extensive research enthusiasm [17]–[20].

In recent years, a large number of HGNNs designed for
different domains of HGs have been proposed and achieved
remarkable achievements [20]–[22]. Generally, the process
of HGNN representation learning can be generalized as (1)

H. Liu is with the School of Computer; P. Jiao and J. Zhang are with
the School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018,
China. Email: {huanliu, pjiao, mzgao, jilin.zhang}@hdu.edu.cn.

X. Guo is with the College of Intelligence and Computing, Tianjin Univer-
sity, Tianjin 300350, China. Email: guoxuan@tju.edu.cn.

H. Wu is with the Center for Applied Mathematics, Tianjin University,
Tianjin 300072, China. E-mail: whming@tju.edu.cn.

(Corresponding author: Pengfei Jiao and Jilin Zhang)

modeling different aspects and then (2) aggregating and up-
dating node representations. For example, R-GCN [23] takes
different types of neighbors as aspects and transforms them
separately using regularized weights. Furthermore, HAN [18]
treats different meta-paths as aspects and aggregates them by
the semantic-level attention mechanism. More details about
the HGNNs model are introduced in [16], [20]. Generally,
different aspects reflect different structural and semantic in-
formation. Therefore, to improve the performance of HGs in
different domains, the existing HGNN encoding architectures
are carefully designed with prior knowledge [24]–[26].

Although HGNNs in many domains have achieved excellent
performance in various downstream tasks, they focus only
on HGs containing static nodes and edges. However, real-
world networks are not only heterogeneous but also usually
exhibit dynamic evolution over time, such as entities and
relationships adding/disappearing [27], [28]. Therefore, such
networks, which are both heterogeneous and dynamic, are
more suitable to be modeled as Heterogeneous Temporal
Graphs (HTGs) [29]–[31]. When faced with HTGs, static
HGNNs cannot model temporal dependencies in dynamic
evolution and thus cannot be applied to tasks involving
temporal evolution, especially link prediction. To alleviate
this issue, a few studies on Heterogeneous Temporal Graph
Neural Networks (HTGNNs) are proposed [19], [27], [32],
[33]. HTGNN [27] uses hierarchical intra- and inter-relation
attention to deal with the complex topology of HTGs, and
an across-time attention to model temporal evolution. Sim-
ilarly, DyHATR [33] equips node- and edge-level attention
mechanisms to model heterogeneity and a temporal attentive
recurrent neural network to capture the temporal dependencies.

Despite the above methods having made some progress,
their intrinsic design leads to two drawbacks: (1) they fo-
cus more on the dynamic evolution of HTGs and less on
compatibility with those well-designed static HGNNs. As a
consequence, they cannot adequately capture effective infor-
mation, and a large number of research results of HGNNs in
the community are wasted. (2) The processes of HG modeling
and temporal evolution modeling are decoupled, which ignores
the influence of relationships with other nodes and results in
significant performance degradation.

In order to apply existing well-designed HGNNs to ubiq-
uitous HTGs and alleviate the above two drawbacks, we con-
sider: How do we design a framework that not only extends
existing well-designed HGNNs to be temporal but also
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improves the generalization of HTGNNs? However, design-
ing such a framework is not a trivial task. First, challenging
dynamic tasks, such as link prediction, need to capture useful
content from the large amount of historical dependencies in-
formation of HTGs. However, HGNNs cannot model temporal
information in HTGs, and thus cannot mine useful content
from historical information. Second, the historical information
existing in HTGs changes constantly as the topology evolves
over time, and static HGNNs need to update the historical
information according to those topological changes. Although
HGNNs have excellent heterogeneity modeling capabilities,
they are difficult to capture and update historical information
from the topology of multiple snapshots of HTGs.

In this paper, we propose a simple but Plug-and-Play
framework extending HGNNs on HTGs, named HGN2T. The
HGN2T framework mainly consists of two modules: His-
torical Feature Incorporation (HFI) and Topology Evolution
Update (TEU) modules. Specifically, HGN2T first integrates
the current node attributes and the historical features de-
rived from the previous timestamp snapshots through the
HFI module. Then, HGN2T performs heterogeneous message-
passing on the integrated node representation through HGNN
on the current topology structure to mine valuable information.
Please note that the HGNN can be flexibly replaced according
to HGs with different properties. After being well trained,
HGN2T will effectively combine historical features and cap-
ture the current HG topology to complete link detection, so
the representations are called detective embeddings. On the
other hand, to avoid the decoupling of the HG modeling and
temporal evolution modeling processes, HGN2T introduces
the neighbor structure into the update process of temporal
evolution modeling through the TEU module. Topology-aware
predictive node representations, i.e., predictive embeddings,
significantly outperform existing decoupled methods in link
prediction experiments. Finally, HGN2T jointly optimizes the
detection and prediction tasks to learn representations from
HTGs that fully capture rich structural information and tem-
poral dependencies.

To evaluate the proposed HGN2T framework, we extend
two classical HGNNs as examples and perform three types
of link prediction tasks on three real-world datasets. The
promising results and obvious performance improvements
demonstrate the effectiveness of the proposed framework.

In summary, we make the following contributions:

• We study the problem that HGNNs cannot handle with
HTGs and current HTGNNs are difficult to flexibly
combine with existing HGNNs to generalize to different
HTGs. There is an urgent need to extend the existing
well-designed HGNN to be temporal.

• We design a unified temporal HGNN framework,
HGN2T. Through the HFI and TEU modules, HGN2T
can easily extend existing HGNN to handle HTGs by
jointly optimizing the detection and prediction tasks.

• We exemplarily extend two classical HGNNs to be
temporal and conduct thorough experiments on three
real-world datasets to evaluate the effectiveness of our
framework and outperform state-of-the-art baselines.

The remainder of this article is organized as follows. First,
we introduce the related work of this paper in Section II.
Then, we provide the preliminary concepts for this article in
Section III. Then we introduced the HGN2T framework in
detail in Section IV, and conducted experimental evaluations
on the performance of the framework in Section V. Finally,
we summarize the article in Section VI.

II. RELATED WORK

A. Heterogeneous Graph Neural Networks

HGNNs aim to capture structural information and semantic
information in HGs through deep neural networks [34], [35].
According to the different properties of HGs, a large number
of well-designed HGNNs have been proposed [18], [36]–[38].

To model a knowledge graph with multiple relations, R-
GCN [23] is proposed to transform different types of neigh-
bors separately using regularized weight matrices. Further-
more, HAN [18] is used to model HGs that contain rich
semantic information in the meta-path graph. To be able to
take into account the features of those intermediate nodes,
MAGNN [39] generates node representations through intra-
and inter-metapath attention. For HGs that are difficult to
design meta-paths, HGT [21] incorporates nodes by learning
attention weights for each meta relation through node- and
edge-type dependent attention mechanisms.

The above well-designed HGNNs carefully explored the
characteristics of HGs and achieved remarkable achievements.
However, they do not consider temporal evolution and thus
cannot effectively model dynamic networks, which are ubiq-
uitous in the real world.

B. Dynamic Graph Neural Networks

Dynamic GNNs are designed to collaborate with GNN
and sequence models so can adapt and capture the topology
evolution of dynamic graphs [40]–[42].

For instance, VGRNN [41] combines GCN and RNN to
capture the dynamic topology and improve expression power
by modeling the uncertainty of hidden representations of
nodes. To cope with the drastically changing node sets,
EvolveGCN [43] is proposed to use RNN to model the
evolution characteristics of GCN parameters instead of node
features. Besides, to alleviate the long-term forgetting and poor
scalability of large-scale graphs due to the RNN mechanism
in the above methods, DySAT [42] jointly models structural
neighbors and temporal dynamics by a self-attention mech-
anism to capture the graph structure evolution. In addition,
ROLAND [44] and WinGNN [45] propose a dynamic GNN
training framework based on meta-learning. HGWaveNet [46]
proposes to model hierarchically structured dynamic graphs
through hyperbolic dilated causal convolution and hyperbolic
GRU and shows a relative improvement over SOTA methods.

The above model effectively models dynamic graphs with
different characteristics and achieves excellent results. How-
ever, the above homogeneous GNN models have limitations
and perform poorly when dealing with HTG containing com-
plex evolutionary characteristics.
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TABLE I: Notations and Explanations.

Notations Explanations
G A heterogeneous graph.
G A heterogeneous temporal graph.

V, E The set of nodes and edges.
A,R The set of node types and edge types.
Ri The relation set of node i.
N r

i The relation-r-based neighbors of node i.
X The raw node attribute matrix.

mi,r The massage vector of node i under relation r.
H̃,H The projected and historical node feature.
Z, Ẑ The detective and predictive node embedding.
St The hidden state matrix calculated from timestamp t.

W,b The trainable transformation matrix and bias vector.
ϕ(·), ψ(·) The node and edge type mapping function.
σ(·) The nonlinear activation function.
Φ(·) A heterogeneous graph neural network.

C. Heterogeneous Temporal Graph Neural Networks

Recently, a small number of HTGNNs have been proposed
to simultaneously capture temporal dependencies and semantic
heterogeneous structural [19], [27], [33], [47].

HTGNNs based on hierarchical attention mechanisms have
been widely proposed, such as HTGNN [27] models HG
through intra- and inter-relation hierarchical attention mech-
anisms and then aggregates the resulting node representations
by temporal attention mechanisms. Besides, HDGAN [47]
processes each snapshot through structural- and semantic-level
attention mechanisms, and then obtains historical influence
through time-level attention and applies it to the Hawkes
process. On the other hand, DyHATR [33] considers that
node embeddings at different times have different importance
and uses a hierarchical attention mechanism to model each
HG snapshot separately, and then the attention aggregates the
hidden states of the RNN to obtain node representations.

By modeling temporal dependencies, the above model
achieves significant performance improvements. However,
these methods cannot effectively integrate with existing
domain-oriented HGNNs, failing to generalize to diverse
HTGs in different scenarios. Furthermore, these models ignore
the influence of neighbor nodes in the network topology when
modeling temporal dependencies, i.e. the temporal neighbors
of the target node only have themselves in different snapshots.
Therefore, the heterogeneous topology and attribute informa-
tion of neighbors in historical snapshots will not be fully
captured, resulting in performance degradation.

III. PRELIMINARY

In this section, we define some of the concepts that will
be used in this paper and explain the formal representation,
and we will use these notations throughout the paper. The key
representations used in this paper and their explanations are
summarized in Table I.

A. Definitions

Definition III.1 (Heterogeneous Graph). A Heterogeneous
Graph is defined as a graph G = (V, E ,A,R, ϕ, ψ), where
V and E denote sets of nodes and edges, and it is associated
with a node type mapping function ϕ : V → A and an edge

type mapping function ψ : E → R, where A and R denote
sets of object and link types, and |A|+ |R| > 2.

Given a node i ∈ V , its relation set Ri is defined as the set
of edge types connected to node i, denoted as Ri = {ψ(i, j) |
(i, j) ∈ E}; its relation-r-based neighbors N r

i is defined as
the set of first-order neighbor nodes connected to it through
edge type r, denoted as N r

i = {j | (i, j) ∈ E , ψ(i, j) = r}.

Definition III.2 (Heterogeneous Temporal Graph). A Het-
erogeneous Temporal Graph is a list of observed heteroge-
neous snapshots G =

{
G1, G2, . . . , GT

}
ordered by times-

tamps, where T is the number of timestamps and Gt =
(Vt, Et,A,R, ϕ, ψ) represents the t-th snapshot. The node set
Vt and edge set Et differs between snapshots, representing
dynamic addition and removal of nodes and edges.

Definition III.3 (Heterogeneous Temporal Graph Repre-
sentation Learning). Given a heterogeneous temporal graph
G, the heterogeneous temporal graph representation learning
is to learn a non-linear mapping function that encodes node
i ∈ Vt into a d-dimensional node representation zti ∈ Rd

and d ≪ |Vt|. The node representations can capture both
spatial heterogeneity and temporal dependencies involved in
the heterogeneous temporal graph G.

Definition III.4 (Link Detection and Prediction). Given a
heterogeneous temporal graph G = {Gt}Tt=1 and the node
representations ZT learned from it, the link detection is the
problem of predicting the probability p = f(zti, z

t
j) of an edge

(i, j) ∈ Et between a node pair i and j at timestamp t ≤
T , which is also known as the interpolation or completion
problem, which belongs to the transductive learning setting.

Link prediction is the problem of predicting the probability
p = g(zTi , z

T
j ) that an edge (i, j) ∈ Eτ between a node

pair i and j at timestamp τ > T , which is also known as
the extrapolation problem, which belongs to the inductive
learning setting.

In this paper, the node embeddings used in the link detection
problem and the link prediction problem are named detective
embedding and predictive embedding, respectively.

B. Heterogeneous Graph Neural Networks

Unlike GNNs on homogeneous graphs, HGNNs need to
model different types of nodes and edges. Based on the exist-
ing studies of message-passing GNNs [48], [49], the forward
propagation of HGNNs can be summarized as two modules,
the message function and the update function. Formally, the
l-th layer of an HGNN is defined as:

m
(l)
i,r = MSGr

(
h
(l)
i ,
{
h
(l)
j ,∀j ∈ N r

i

})
, (1)

h
(l+1)
i = UPDATE

(
h
(l)
i ,
{
m

(l)
i,r,∀r ∈ Ri

})
, (2)

where m
(l)
i,r is the message vector of target node i under

relation type r. After obtaining message vectors of all relation
r ∈ Ri, HGNN aggregates and updates them to get the node
representations at l + 1-th layer by the update function. The
message function and the update function are defined and
implemented differently by the particular HGNN algorithms.
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Relational Graph Convolutional Networks (R-
GCN [23]). The message function of R-GCN uses
regularized weights to transform relation-r-based neighbor
nodes. Then, the update function sums the transferred target
node representations and message vectors and then inputs
them to a nonlinear activation function. Specifically, the
representation of node i is updated as follows:

m
(l)
i,r =

∑
j∈N r

i

1

ci,r
·W(l)

r · h(l)
j , (3)

h
(l+1)
i = σ

(
W

(l)
0 · h(l)

i +
∑
r∈Ri

m
(l)
i,r

)
, (4)

where W
(l)
r and W

(l)
0 are the transformation matrices of

relation-r-based neighbors and self-loops, respectively; ci,r is
a normalization constant; σ(·) is an element-wise activation
function like ReLU.

Hierarchical Attention Model (HA). HA is widely used
in many studies [18], [22], [27], [29], [33], which compute
node-level and edge-level attention weights and aggregate
neighbor nodes by different attention weights. Specifically, the
message and update function of HA is implemented as:

m
(l)
i,r = σ

∑
j∈N r

i

α
(l)
i,j ·W

(l)
r · h(l)

j

 , (5)

h
(l+1)
i =

∑
r∈Ri

β
(l)
i,r ·m

(l)
i,r , (6)

where α
(l)
i,j and β

(l)
i,r are node-level and edge-level attention

weights, respectively; σ(·) is an element-wise activation func-
tion like ReLU. The implementations of them may be trivially
different according to different attention mechanisms.

IV. HGN2T FRAMEWORK

A. Overview

The proposed HGN2T framework mainly consists of two
modules: Historical Feature Incorporation (HFI) and Topol-
ogy Evolution Update (TEU) modules. To enable HGNNs to
capture valuable parts from historical information, the HFI
module incorporates historical information into the encoding
process of HGNNs. The detective node embedding learned
by the HFI module is used to perform the link detection
task. Then, the TEU module updates the historical information
based on the topology. The updated historical information
contains the dynamic evolution dependencies up to the current
snapshot, and we use its transformed vector as predictive node
embedding to complete the link prediction task. Finally, by
jointly optimizing the link detection and prediction tasks, the
representations learned by the entire HGN2T framework can
fully capture temporal dependencies from historical informa-
tion. The overall structure of the proposed HGN2T framework
is shown in Fig. 1.

B. Historical Feature Incorporation

There are rich historical dependencies contained in HG
snapshots of HTGs. Therefore, we use HGNNs to incorporate

topological structures in each timestamp to capture useful
information from historical dependencies. The HFI module
mainly consists of three steps: raw feature projection, historical
feature combination, and detective embedding.

Raw Feature Projection. In a HG Gt, different types
of raw features xt may have different dimensions and are
distributed in different feature spaces. Therefore, we first trans-
form all types of node features into a common latent vector
space through raw feature projection. Specifically, for the raw
feature of node i of type ϕ(i) at timestamp t ∈ {1, 2, . . . , T},
we perform the following transformations:

h̃t
i = σ

(
Wϕ(i) · xt

i + bϕ(i)

)
, (7)

where xt
i ∈ Rd′

and h̃t
i ∈ Rd is the d′-dimensional raw feature

and d-dimensional projected feature of node i, respectively;
Wϕ(i) ∈ Rd×d′

and bϕ(i) ∈ Rd are a trainable transformation
and bias matrix for the type of node ϕ(i); σ (·) is a nonlinear
activation function, such as ReLU.

Historical Feature Combination. We combine the pro-
jected node features h̃t

i with the hidden state st−1
i containing

history dependencies through a combiner to obtain the input
features ht

i of the HGNNs. Specifically, we aggregate the
projected features h̃t

i and hidden states st−1
i as follows:

ht
i = COMB

(
h̃t
i, s

t−1
i

)
, (8)

where COMB is a binary combiner of projected vector and
hidden state, such as element-wise Hadamard product and
concatenation; st−1

i ∈ Rd is the d-dimensional hidden state
generated by the HG-RNN described in Section IV-C. At the
first snapshot or for the unobserved new nodes, we initialize
the hidden state as 0.

Detective Embedding. We use an HGNN to learn the de-
tective node embeddings Zt from features containing historical
information in each timestamp t ∈ [1, T ] to capture structural
information, which is crucial in detection tasks. Note that
we can flexibly replace suitable HGNNs for different HGs.
Specifically, given a HG snapshot Gt and a historical feature
representation Ht, the detective node embedding is calculated
as follows:

Zt = Φ
(
Gt,Ht

)
, (9)

where Φ (·) can be any well-designed HGNN defined in
Section III-B.

Through a single layer of HGNN, the information of the
first-order heterogeneous neighborhood in the current snapshot
can be aggregated. In order to obtain information on multi-
order neighborhoods, the number of layers of HGNN here
can be stacked, which we analyzed in Section V-E.

C. Topology Evolution Update

The temporal dependencies existing among snapshots of
HTGs are crucial for link prediction tasks. However, existing
research usually separates graph structure learning and tem-
poral dependencies modeling, i.e. the temporal neighbors are
only nodes themselves. Neglecting the relationship with other
nodes in the historical snapshot will be unable to directly carry
out message transmission and aggregation of heterogeneous
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Fig. 1: The overall architecture of the proposed HGN2T framework. The framework mainly includes two modules: Historical
Feature Incorporation (HFI) and Topology Evolution Update (TEU) modules. The HFI module equips an existing well-designed
HGNN to learn the relationship between historical features in St−1 and current snapshot graph Gt. Then, the TEU module
updates the topology-aware historical information based on the topology. The whole framework is jointly optimized by the
link detection and the link prediction tasks.

neighborhood nodes according to the topology, resulting in
insufficient capture of heterogeneous topology information and
temporal dependencies information.

To address this issue, we introduce heterogeneous network
topology into the process of modeling and updating the
temporal evolution by the TEU module. Specifically, we first
learn a hidden state St to preserve historical dependencies
up to timestamp t. Then, we adopt HGNNs to capture the
relationship effects on each HG snapshot to the recurrent
hidden state. Specifically, we implement two TEU methods,
HG-LSTM and HG-GRU.

HG Long-short-term Memory. Given a HG Gt with its
detective node embeddings Zt generated from Section IV-B
at each time step t ∈ {1, 2, . . . , T}, the update process of
HG-LSTM is as follows:

It = σ
(
ΦZI

(
Gt,Zt

)
+ΦSI

(
Gt,St−1

))
,

Ft = σ
(
ΦZF

(
Gt,Zt

)
+ΦSF

(
Gt,St−1

))
,

Ot = σ
(
ΦZO

(
Gt,Zt

)
+ΦSO

(
Gt,St−1

))
,

C̃t = tanh
(
ΦZC

(
Gt,Zt

)
+ΦSC

(
Gt,St−1

))
,

Ct = Ft ⊙Ct−1 + It ⊙ C̃t ,

St = Ot ⊙ tanh
(
Ct
)
,

(10)

where Φ□ denotes not shared HGNNs in different inputs and
gates; It, Ft and Ot are the input gate, forget gate and output
gate matrix; Ct and C̃t are the memory cells and candidate
memory cells matrix; St is the hidden state matrix.

HG Gated Recurrent Unit. Given Gt with its detective
node embeddings Zt at each time step t ∈ {1, 2, . . . , T}, HG-

GRU update the hidden state as follows:

Ut = σ
(
ΦZU

(
Gt,Zt

)
+ΦSU

(
Gt,St−1

))
,

Rt = σ
(
ΦZR

(
Gt,Zt

)
+ΦSR

(
Gt,St−1

))
,

S̃t = tanh
(
ΦUS

(
Gt,Ut

)
+ΦSS

(
Gt,Rt ⊙ St−1

))
,

St = Ut ⊙ St−1 +
(
1−Ut

)
⊙ S̃t ,

(11)

where Φ□ denotes unshared HGNNs; where Ut and Rt are
the update and reset gate matrix; σ (·) and ⊙ are an activation
function and an element-wise Hadamard product operator. All
HGNNs Φ□ in both Equation (10) and (11) can be replaced
according to different HTGs.

Similarly, the number of HGNN layers here can also be
stacked to capture the temporal dependencies and heteroge-
neous topology information of multi-order temporal neighbor-
hoods. We analyze and report the performance of our frame-
work with different stacked layers of HG-RNN in Section V-E.

Predective Embedding. After obtaining the updated hid-
den state St at each timestamp t ∈ {1, 2, . . . , T} via HG-
GNN, we transform it as the predictive node embedding ẑt+1

i

to perform prediction tasks in the next snapshot Gt+1:

ẑt+1
i = σ

(
Ws · sti + bs

)
, (12)

where Ws ∈ Rd×d and bs ∈ Rd are hidden state transforma-
tion and bias matrix; σ (·) is a nonlinear activation function
such as ReLU.

D. Objective Function

The purpose of the HGN2T framework is to extend the
HGNNs to be temporal so that detective and predictive node
embeddings can be learned from HTGs. To achieve this, we
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optimize the overall model by reconstructing the network
topologies in HTGs.

For both detective and predictive node embeddings, we
use a shared discriminator to calculate the probability of
edge presence. Specifically, for the embedding representation
(zi, zj) of a pair of nodes, we obtain the existence probability
of edges as follows:

P̂
(
(i, j) ∈ Et | zi, zj

)
= D (zi, zj) = σ (MLP (zi∥zj)) ,

(13)
where ∥ denotes the concatenation; MLP represents a two-
layer perceptron model; σ(·) is a nonlinear activation function
Sigmoid to calculate the probabilities.

For the detection task, to effectively capture the structural
information of the current snapshot, we reconstruct the current
network topology using detective node embedding at each
timestamp. Specifically, in the t-th snapshot we compute the
detective loss as follows:

Lt
det =

∑
i∈Vt

∑
j∈N t

i

{
− log

(
D(zti, z

t
j)
)

+Q · Evn∼P t
n(i)

log
(
D(zti, z

t
vn)
)}

, (14)

where P t
n(i) and Q are the negative sampling distribution and

the number of negative samples, respectively.
To make the extended HGNN model better capture the

temporal dependencies between snapshots, we also optimize
the link prediction task. Similarly, predictive loss is computed
here using predictive node embeddings as follows:

Lt
pre =

∑
i∈Vt

∑
j∈N t

i

{
− log

(
D(ẑti, ẑ

t
j)
)

+Q · Evn∼P t
n(i)

log
(
D(ẑti, ẑ

t
vn)
)}

, (15)

where P t
n(i) and Q are also the negative sampling distribution

and the number of negative samples, same as Equation (14).
By jointly optimizing the detection and prediction losses of

each snapshot in HTG, the model can effectively capture the
heterogeneous structure and temporal evolution information
in two adjacent snapshots. The overall objective function is
defined as follows:

L =

T∑
t=1

(
Lt

det + Lt
pre

)
+ λ · Lp , (16)

where Lp is the penalty term to prevent over-fitting, i.e. L2

regularization; λ is a hyper-parameter to the control penalty
function.

E. Complexity Analysis

For the Feature Projection module in each snapshot,
the computational complexity is O (|Vt|dd′), where |Vt| is
the node number for snapshot Gt, d and d′ are the di-
mensions of node representation and raw feature respec-
tively. For the TEU module, the computational complexity
is O (TP + |V|Td), where T is the snapshot numbers, P
depends on the HGNN module. The computational complexity
of the detective and predictive loss is O

( ¯|E|TQd), where
¯|E| is the average edge sets size of snapshots, Q is the

negative sample number. Overall, the complexity of HGN2T

is O
( ¯|V|Tdd′ + ¯|E|TQd+ TP

)
, where ¯|V| the average node

sets size of snapshots, which is computational highly efficient.

V. EXPERIMENTS

A. Datasets and Baselines

To evaluate the effectiveness of the proposed HGN2T frame-
work, we extend the two HGNNs introduced in Section III-B
and conduct experiments on three real-world datasets. The
statistics of the dataset are summarized in Table II.

TABLE II: The Statistics of the Datasets.

Dataset Avg. # Nodes Avg. # Edges # Snapshots

DBLP
Author (A): 8,470
Paper (P): 9,025
Venue (V): 1,074

A-P: 8,056
A-V: 8,056
P-V: 1,903

12

AMiner
Author (A): 8,882
Paper (P): 7,289
Venue (V): 1,970

A-P: 7,538
A-V: 7,538
P-V: 1,634

12

Yelp
Business (B): 771
User (U): 1,452

Star (S): 5

B-S: 1,080
B-U: 1,080
U-S: 1,080

9

• DBLP is a computer science bibliography. In this paper,
we construct 12 network snapshots that contain 8,470
authors, 9,025 papers, and 1,074 venues.

• AMiner is an academic search engine that helps us to
mine information from academic networks. We extract a
subset of AMiner which contains 12 network snapshots
with 8,882 authors, 7,289 papers, and 1,970 venues.

• Yelp records users rating on local business and social
relations. Here we extract a subset of Yelp that is divided
into 10 network snapshots by year and consists of 771
businesses, 1,452 users, and 5 stars.

To comprehensively evaluate the performance of our pro-
posed HTN2T framework, we compare static homogeneous
GNNs: VGAE [50], GATv2 [51]; dynamic homogeneous
GNNs EvolveGCN [43], VGRNN [41], DySAT [42] and
HGWaveNet [46]; static heterogeneous methods metap-
ath2vec [17], HGT [21], R-GCN [23] and Hierarchical
Attention (HA) mechanism [18], which is a hierarchical
attention structure widely used in HGNN; dynamic hetero-
geneous GNN HTGNN [27]. To verify the effectiveness
of the framework, we extend R-GCN and HA and imple-
ment HGN2TRGCN-LSTM, HGN2TRGCN-GRU, HGN2THA-LSTM
and HGN2THA-GRU according to different gate architectures.

B. Implementation Details

For the homogeneous graph methods (i.e., GATv2, HG-
WaveNet, etc.), we simply ignore the heterogeneity of nodes
and edges in the graph. For the static graph approaches (i.e.,
VGAE, GATv2, etc.), we analyze each snapshot separately,
to demonstrate the importance of timing dependencies. For
random walk-based methods metapath2vec we set the number
of walks per node to 40, the walk length to 60, and the window
size to 5. To better utilize the information of different types of
nodes, for DBLP and AMiner datasets, we set the meta-path
as {BSUSB, SUBUS, UBSBU}. For the Yelp dataset, we set
the meta-paths to {APVPA, PVAVP, VAPAV}. For HTGNN, we
set the time window to {3, 5, 7} and report the best results.
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TABLE III: AUC and AP Scores (Mean ± SD %) of the Link Detection Task.

Model DBLP AMiner Yelp Avg. RankAUC AP AUC AP AUC AP
VGAE 95.32 ± 2.07 95.00 ± 2.03 98.75 ± 1.65 98.89 ± 1.32 51.60 ± 0.70 52.26 ± 1.58 10.17
GATv2 92.86 ± 0.42 90.79 ± 0.90 94.71 ± 0.28 95.46 ± 0.30 63.09 ± 1.58 63.30 ± 1.98 10.83

EvolveGCN 82.49 ± 5.02 83.13 ± 3.92 80.42 ± 9.37 85.93 ± 6.55 52.45 ± 3.40 55.80 ± 2.89 12.67
VGRNN 63.13 ± 0.47 76.82 ± 0.32 70.76 ± 0.81 82.57 ± 0.52 48.91 ± 3.07 65.18 ± 1.97 13.67
DySAT 97.12 ± 0.58 96.66 ± 0.79 99.47 ± 0.16 99.41 ± 0.17 78.68 ± 1.17 71.48 ± 1.68 4.83

HGWaveNet 69.37 ± 2.52 74.17 ± 2.69 79.94 ± 3.51 83.30 ± 3.07 56.39 ± 1.43 57.18 ± 1.36 13.67
Mp2vec 78.97 ± 1.69 74.79 ± 2.29 85.15 ± 2.20 83.87 ± 2.96 71.22 ± 1.63 65.50 ± 1.39 11.33

HGT 92.88 ± 2.13 91.21 ± 2.93 95.77 ± 0.63 95.84 ± 0.80 64.26 ± 2.15 61.43 ± 1.90 10.33
RGCN 93.53 ± 1.93 93.23 ± 2.03 96.56 ± 1.59 97.14 ± 1.56 72.59 ± 0.99 71.93 ± 0.89 7.83

HA 97.95 ± 0.26 97.65 ± 0.40 99.36 ± 0.20 99.34 ± 0.22 68.42 ± 1.40 62.97 ± 1.74 6.17
HTGNN 97.60 ± 0.52 96.98 ± 0.46 99.58 ± 0.23 99.56 ± 0.20 72.47 ± 2.44 70.76 ± 3.39 4.50

HGN2TRGCN-LSTM 97.06 ± 0.25 95.91 ± 0.34 99.46 ± 0.10 99.44 ± 0.09 75.88 ± 1.75 77.15 ± 1.57 5.17
HGN2TRGCN-GRU 97.20 ± 0.19 96.07 ± 0.38 99.56 ± 0.05 99.57 ± 0.04 75.81 ± 4.18 73.26 ± 7.66 4.50
HGN2THA-LSTM 97.22 ± 0.23 96.52 ± 0.42 99.66 ± 0.05 99.60 ± 0.08 76.05 ± 1.89 73.64 ± 3.02 3.17
HGN2THA-GRU 98.03 ± 0.14 97.48 ± 0.19 99.67 ± 0.04 99.60 ± 0.05 81.41 ± 2.20 83.26 ± 2.96 1.17

TABLE IV: AUC and AP Scores (Mean ± SD %) of the Link Prediction Task.

Model DBLP AMiner Yelp Avg. RankAUC AP AUC AP AUC AP
VGAE 79.59 ± 3.09 84.14 ± 1.93 82.80 ± 3.43 87.75 ± 2.02 44.64 ± 3.20 47.25 ± 3.08 10.83
GATv2 81.15 ± 0.59 81.60 ± 0.82 86.11 ± 0.37 87.10 ± 0.28 55.89 ± 2.59 57.00 ± 1.46 10.17

EvolveGCN 70.50 ± 5.27 73.00 ± 4.90 75.86 ± 3.96 78.72 ± 3.96 58.58 ± 4.98 61.20 ± 5.21 12.17
VGRNN 68.65 ± 0.54 75.24 ± 0.50 73.23 ± 1.12 80.08 ± 0.83 85.72 ± 1.77 89.78 ± 1.74 9.17
DySAT 78.92 ± 1.32 81.06 ± 1.46 85.84 ± 1.27 87.62 ± 1.06 64.24 ± 2.02 60.91 ± 2.46 9.33

HGWaveNet 69.52 ± 2.96 73.46 ± 2.90 76.79 ± 3.33 80.31 ± 3.01 55.56 ± 1.53 56.03 ± 1.35 12.67
Mp2vec 74.23 ± 1.40 72.95 ± 1.95 80.12 ± 1.62 79.43 ± 1.95 70.05 ± 0.91 67.40 ± 0.89 10.17

HGT 69.24 ± 1.89 72.90 ± 1.89 67.64 ± 6.65 71.95 ± 5.93 61.95 ± 3.27 59.57 ± 3.28 13.67
RGCN 82.28 ± 3.79 84.18 ± 3.95 88.16 ± 1.55 89.66 ± 1.47 68.63 ± 4.53 67.30 ± 7.33 7.00

HA 86.77 ± 0.46 88.37 ± 0.32 89.88 ± 0.69 91.49 ± 0.58 62.21 ± 2.33 60.58 ± 2.20 7.00
HTGNN 84.73 ± 2.07 84.24 ± 2.40 90.61 ± 1.66 91.13 ± 1.79 63.91 ± 3.29 62.85 ± 2.11 6.67

HGN2TRGCN-LSTM 92.80 ± 0.36 92.51 ± 0.30 96.58 ± 0.51 96.55 ± 0.46 73.70 ± 1.91 75.60 ± 1.93 4.33
HGN2TRGCN-GRU 94.19 ± 0.19 94.17 ± 0.20 97.62 ± 0.11 97.65 ± 0.09 79.97 ± 3.46 79.65 ± 4.80 3.33
HGN2THA-LSTM 95.52 ± 0.25 94.86 ± 0.28 98.78 ± 0.07 98.50 ± 0.10 81.08 ± 0.80 80.88 ± 0.76 2.33
HGN2THA-GRU 96.30 ± 0.22 95.91 ± 0.30 98.98 ± 0.12 98.79 ± 0.16 87.01 ± 0.83 87.69 ± 0.89 1.17

In terms of other parameters, we follow the settings in their
original papers.

For the proposed HGN2T framework, we use Glorot initial-
ization [52] and optimize the model with Adam [53] optimizer
and ReduceLROnPlateau scheduler. We set the initial learning
rate of the Adam optimizer to 1e-2 and the regularization
parameter to 5e-4. The dropout of attention is set to 0.2.
We train all the models with 1, 000 epochs and use an early
stopping strategy with a patience tune from 5 to 50. We adopt
grid search in the embedding dimension from 4 to 64 and set
it to 32 for each of the aforementioned baseline methods to
allow a fair comparison. All models are randomly trained for 5
times, and the average results of test performance are reported.

We complete the experiment on the Ubuntu 20.04.3 LTS
operating system with Intel(R) Xeon(R) Silver 4210R CPU @
2.40GHz processor and NVIDIA GeForce RTX 3090 GPUs,
the CUDA version used 11.6, and the PyTorch version is
1.12.0. We implement the proposed HGN2T framework using
Deep Graph Library (DGL) 0.8.2.

C. Dynamic Link Detection

We conduct link detection experiments using the learned
detective node embeddings on the last 3 snapshots and report
their average results. For each time, we randomly removed
10% and sampled an equal number of negative edges as vali-

dation and test sets. We conducted five repeated experiments
and reported the mean and standard deviation in Table III.

From Table III, we can see that HGN2THA-GRU generally
outperforms all the other methods on all datasets. First,
heterogeneous GNN models, such as R-GCN and HA, gen-
erally achieve higher prediction accuracy than homogeneous
GNNs, such as GATv2 and HGWaveNet, which indicates
the heterogeneity of the modeling HTG has a noticeable
impact on predictive performance. The reason for the poor
prediction results of HGWaveNet may be that the data set
is mainly composed of heterogeneous triangles, which is in-
consistent with the hyperbolic manifold of negative curvature.
Second, compared with static models such as R-GCN and
VGAE, dynamic models such as VGRNN and HTGNN have
achieved better results, indicating that historical dependency
information is beneficial to modeling the current snapshot.
Third, compared with HTGNN, our framework achieves better
performance on the three datasets, which demonstrates that the
proposed TEU is more effective than modeling topology and
timing information separately. Finally, compared with R-GCN
and HA, our framework achieves significant performance im-
provement averages of 3.29% and 4.46%, which demonstrates
that the proposed framework can effectively integrate historical
information and improve the model’s ability to model the
heterogeneity of the current network.

In summary, the link detection task evaluates the model’s
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TABLE V: AUC and AP Scores (Mean ± SD %) of the New Link Prediction Task.

Model DBLP AMiner Yelp Avg. RankAUC AP AUC AP AUC AP
VGAE 54.22 ± 3.19 60.76 ± 1.88 61.83 ± 5.24 70.20 ± 3.57 43.81 ± 6.48 47.12 ± 4.61 11.67
GATv2 63.77 ± 0.59 61.39 ± 0.56 69.96 ± 0.44 69.98 ± 0.79 51.02 ± 2.94 52.23 ± 1.84 8.67

EvolveGCN 55.43 ± 1.83 55.86 ± 2.24 62.85 ± 3.00 64.22 ± 2.73 57.80 ± 5.16 62.15 ± 5.31 9.83
VGRNN 48.35 ± 0.69 52.38 ± 0.74 47.90 ± 1.63 54.52 ± 1.02 39.32 ± 0.49 52.06 ± 1.18 14.17
DySAT 57.87 ± 0.63 59.21 ± 0.93 63.52 ± 2.41 66.92 ± 1.58 49.92 ± 1.14 51.62 ± 1.59 11.17

HGWaveNet 50.90 ± 3.42 51.01 ± 2.59 58.48 ± 4.39 59.12 ± 3.34 37.90 ± 1.09 43.15 ± 0.61 14.50
Mp2vec 58.29 ± 0.50 57.70 ± 0.61 64.90 ± 2.05 64.80 ± 1.52 53.86 ± 0.62 55.81 ± 0.91 9.17

HGT 60.96 ± 2.69 62.18 ± 2.75 61.54 ± 2.80 64.41 ± 1.97 54.20 ± 0.75 53.88 ± 1.69 9.17
RGCN 59.73 ± 6.98 61.08 ± 7.46 69.03 ± 3.38 72.15 ± 3.48 51.16 ± 4.59 55.20 ± 5.91 8.33

HA 70.02 ± 0.45 69.03 ± 0.51 74.28 ± 0.84 75.64 ± 0.85 51.27 ± 1.44 52.14 ± 1.52 7.00
HTGNN 70.74 ± 2.22 68.31 ± 2.22 76.24 ± 1.93 74.71 ± 1.35 53.18 ± 3.99 54.23 ± 3.11 6.33

HGN2TRGCN-LSTM 83.83 ± 0.68 80.65 ± 0.57 91.26 ± 0.51 90.28 ± 0.56 65.15 ± 2.58 67.48 ± 2.66 4.00
HGN2TRGCN-GRU 86.07 ± 0.43 83.41 ± 0.52 92.95 ± 0.39 92.09 ± 0.41 66.27 ± 4.27 69.13 ± 3.83 3.00
HGN2THA-LSTM 89.56 ± 0.51 85.45 ± 0.69 96.77 ± 0.17 95.54 ± 0.24 71.12 ± 0.83 72.27 ± 0.58 2.00
HGN2THA-GRU 90.77 ± 0.41 87.37 ± 0.48 97.06 ± 0.35 95.98 ± 0.47 72.55 ± 0.76 75.30 ± 0.62 1.00
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Fig. 2: Analysis of the Number of Predicted Snapshots.

ability to model heterogeneous network structures by com-
pleting the current snapshot topology. The results show that
the proposed framework can effectively model network het-
erogeneity and improve modeling accuracy by incorporating
historical information.

D. Dynamic (New) Link Prediction

We conduct link prediction experiments using predictive
node embedding. To evaluate the framework’s prediction re-
sults for new edges, i.e., edges exist in GT+1 but not in GT ,
we also perform the new link prediction task. We conduct

experiments on the last 3 snapshots, and the dataset splitting
and performance metrics are the same as in Section V-C.
We randomly run 5 times and report the mean and standard
deviation in Table IV and Table V, respectively.

As can be seen from Table IV and Table V, HGN2THA-GRU
achieves the best results in almost all evaluation metrics.
First, the results for homogeneous GNNs, such as VGAE and
GATv2, are significantly worse than for heterogeneous GNNs
like R-GCN and HA, demonstrating that heterogeneity in
HTGs is very important for the embedding results. Second, the
obvious performance degradation between the link detection
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Fig. 3: Parameters Sensitive Analysis on DBLP Dataset.
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Fig. 4: Parameters Sensitive Analysis on AMiner Dataset.
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Fig. 5: Parameters Sensitive Analysis on Yelp Dataset.

and link prediction results of the static methods, such as VGAE
and R-GCN, shows that the temporal dependencies are crucial
for the link prediction tasks. Compared with the static HGNN
baseline models, the HTGNN model achieves competitive
results in the new link prediction task, which also proves
the importance of modeling temporal dependencies for HTG
representation learning. Third, comparing link prediction and
new link prediction tasks, the obvious performance difference
shows that modeling temporal history dependencies is impor-
tant for predicting whether future nodes will generate edges
or not. Finally, the obvious performance difference between
the R-GCN and HA models in the link detection task and the
link prediction task verifies that the HGN2T can effectively
improve the ability of the static HGNNs to model temporal
dependencies.

In summary, through the proposed framework HGN2T,
extended models have achieved better experimental results
than the baseline models in the link prediction task, and this
advantage is more obvious in new link prediction tasks. This
demonstrates the effectiveness of our framework in extending
the static HGNN to simultaneously model temporal dependen-
cies information and heterogeneous topological information.

E. Parameter Sensitivity
In this section, we performed a parameter sensitivity analy-

sis of the HGN2THA-GRU model. The results of three datasets
are shown in Fig. 3, Fig. 4, and Fig. 5.

• The number of predicted snapshots. We conduct
experiments with different prediction lengths from 2 to 6
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Fig. 6: Analysis of the Number of Network Layers.

to evaluate the performance. As shown in Fig. 2, although
the performance of most models gradually degrades
with the increase of the number of predicted snapshots,
HGN2T still achieves the best results. Compared with R-
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Fig. 7: Ablation study on Yelp Dataset.

GCN and HA models, the HGN2T framework achieves
more stable multi-snapshot prediction performance. This
shows that the HGN2T framework has stable performance
for both short-term and long-term prediction.

• The ratio of the training data r. We experiment by
adjusting the number of training edges from 40% to 80%
with a step size of 10% and report the three types of
link prediction results. We can see that the AUC score
gradually decreases with the reduction of the training
edges. Overall, the performance of HGN2T is relatively
stable across different training set sizes.

• The number of the embedding dimension d. We vary
the number of embedding dimensions as 4, 8, 16, 32 and
64. As shown in the results, the performance of the new
link prediction task has a significant drop only when the
node embedding dimension is extremely small (d = 4),
which shows that the HGN2T framework can efficiently
capture rich heterogeneity and temporal information.

• The number of the network layers. To verify the
impact of the number of network layers of HGNN in
HFI and TEU modules, we vary the number of layers
from 1 to 5 and reported the results of HGN2T on the
link detection and prediction task on the Yelp dataset.
As shown in Fig. 6, we can see that HGN2T works best
at layers 1-2, which shows that HGN2T can efficiently
capture the temporal structural and semantic information.

• The number of attention heads K. We vary the
number of attention heads as 1, 2, 4, 8 and 16 to evaluate
the performance of the HGN2THA-GRU. It can be seen that
the performance on all three tasks of HGN2THA-GRU does
not fluctuate significantly under different attention heads.
This shows that the HGN2T framework can achieve stable
performance with a small number of attention heads.

• The number of negative samples edges Q. We vary
the negative sample multiples by 3, 4, 5, 6 and 7. From
the results, we can see that this parameter has no signif-
icant effect, which shows that the HGN2T can be well-
optimized with a small number of negative samples.

F. Ablation Study

In the proposed framework HGN2T, we perform HTG
representation learning through two main steps: HFI and TEU.
To verify the effectiveness, we performed ablation experiments
for each part of the HGN2T.

(a) Positive Edges. (b) Negative Edges.

Mp2vec GATv2 EvolveGCN HGN2T

Fig. 8: Visualization of Link Detection on AMiner Dataset.

w/o His removes the combination of hidden state and only
uses the projected features as input to HGNNs. w/o TEU
replaces TEU module with a RNN model like GRU [54]
to update the historical information. w/o Det removes the
link detection loss to verify the effectiveness of Jointly Op-
timize. w/o Att removes the attention mechanisms denotes
HGN2TRGCN-GRU, which extends the R-GCN [23] to temporal
and keeps the rest unchanged. HGN2T denotes the extended
HGN2THA-GRU model. Fig. 7 illustrates the results of the AUC
and AP scores of the link detection and prediction experiments
with ablated models on Yelp datasets.

As shown in Fig. 7, ablation of each part results in varying
degrees of performance degradation. In the link detection task,
HGN2T w/o His has the most obvious performance drop may
be because the user’s historical scoring record in the Yelp
dataset has a great impact on the current moment. In link
prediction tasks, the performance degradation of w/o TEU
denotes that TEU can capture more structural and temporal
information. w/o Det leads to the most significant performance
degradation on both link detection and prediction tasks, which
demonstrates the effectiveness of Joint Optimization for the
framework. w/o Att yields performance degradation on all
three tasks demonstrating the effectiveness of the attention
mechanism. From the above analysis, it can be concluded
that each part of HGN2T plays an indispensable role in HTG
representation learning.

G. Visualization

To more intuitively observe the link detection and prediction
performance of the proposed HGN2T framework, we conduct
visualization experiments. We show the prediction results
of positive and negative edges in Fig. 8, respectively. Each
point represents the predicted probability of link detection
for the tested edge. The greater the node distance from the
center of the circle, the larger the predicted probability of the
corresponding test edge, and vice versa. The circular dashed
line in the figure indicates a predicted probability of 0.5. The
colors of the points represent the prediction results of different
methods. It can be clearly seen from Fig. 8 that, the points of
positive edges of the HGN2T are generally scattered around
the edge of the circle, while the points of negative edges
are concentrated in the center of the circle. The visualization
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results show that the proposed HGN2T framework has obvious
performance advantages for modeling HTGs.

In summary, the above empirical experimental results show
that two existing commonly used HGNNs extended by the
HGN2T framework have a stable and significant performance
improvement in processing HTGs and outperform the base-
line approach of spatio-temporal separation modeling, which
exemplifies the effectiveness of the proposed HGN2T to model
temporal and structural information in a coupled manner.

VI. CONCLUSION

In this paper, we propose a general framework that extends
existing Heterogeneous Graph Neural Networks (HGNNs) for
Heterogeneous Temporal Graph (HTG) representation learn-
ing, named HGN2T. Specifically, HGN2T includes two mod-
ules: historical feature incorporation and topology evolution
update, which are used to capture historical information and
update it respectively. We jointly optimize the link detection
and link prediction tasks to capture full temporal dependencies
from historical information. We conduct extensive link detec-
tion and prediction tasks on three real-world datasets, and our
proposed framework outperforms the state-of-the-art baselines,
which demonstrates its effectiveness.
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