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Abstract—Fetal Heart Rate (FHR) signal is widely used in 

doppler fetal heart monitors. However, incomplete FHR signals 

reduce the effectiveness of fetal heart rate monitoring. Filling 

missing data is a key technique to improve FHR quality, but 

existing filling algorithms lack consideration the correlation of 

FHR signals. Therefore, we focus on two correlations related to 

FHR, and propose a filling algorithm called Diffusion model for 

Missing Data Imputation in FHR (DMDI-FHR). Firstly, we 

construct the Dual-dimensional Sample Construction (DDSC) 

method that finds two FHR signals with maximizing the difference 

to form correlations between them. Secondly, the Multi-period 

Decomposition (MPD) method is introduced to obtain the internal 

correlation of FHR signal. Finally, DMDI-FHR algorithm controls 

the filling process based on the diffusion model. Experimental 

results demonstrate the performance of DMDI-FHR algorithm, 

which provides an effective way to improve the quality of FHR 

signal. 

 
Index Terms—Consumer electronic, fetal heart rate, missing data，

deep learning, diffusion model 

 

I. INTRODUCTION 

EDICAL monitors are common consumer electronic 

devices [1]. They have been widely used in recent 

years because of the advantages of non-invasive, 

real-time and low cost [2]. These devices are mainly used to 

collect different types of medical data [3]. In gynecology, 

doppler monitors can record Fetal Heart Rate (FHR) signals to 

reflect the state of fetus in utero [4]. With the development of 

computer technology, many hospitals and scholars try to 

analysis FHR signals and output auxiliary diagnosis results of 

fetal state in doppler fetal heart monitors.  

For example, Dash et al. [5] proposed a novel FHR signal 

classification algorithm based on generative models and 

Bayesian theory, which incorporates an expert system and SVM 

to build the classifier. Fuentealba et al. [6] found that time and 

frequency variations in FHR signals are related to fetal status and 
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proposed a new method. The new method extracts time and 

frequency domains, which decomposes the FHR signal into 

several parts and computes the Time-Varying Autoregressive 

spectrum. Alsaggaf et al. [7] combines three existing algorithms 

in an organized way to increase accuracy in detecting fetal 

hypoxia.  

Most smart electronic devices need continuous data [8]. 

However, missing data may occur in fetal monitoring. Missing 

data can reduce the variability of FHR signal, which may impact 

the performance of FHR classification algorithms. 

Thus, continuous FHR signal is a prerequisite for fetal 

auxiliary diagnosis. Some scholars have done some studies on 

filling in FHR signals. Przybyła et al. [9] propose an embedded 

space to rebuild the missing parts of FHR. In rebuilding process, 

they calculate the missing data through K-Nearest Neighbor 

(KNN). Feng et al. [10] attempted to rebuild the missing data in 

FHR signals based on Gaussian process (GP). 

Recent years, scholars have proposed more filling algorithms. 

In 2013, Oikonomou et al. [11] presented an algorithm to rebuild 

the FHR missing with two steps. In first step, compute an 

estimate of missing data by empirical dictionary. These 

computed values are updated in the second step. Repeat these two 

steps to get the best filling results. In 2017, Frigo et al. [12] 

reduced the computational requirements of FHR missing data 

filling by quantitatively comparing five regression techniques to 

enable online operation at 4 Hz. In 2017, Feng et al. [13] observed 

some hidden connections between FHR and uterine signals. They 

combined FHR and uterine signals to fill missing part by GP. In 

2021, Wang et al. [14] proposed the Optimal Transport Based on 

KNN (KOT) algorithm combining optimal decision trees and 

KNN, which assumes that FHR signals of the same type have the 

same distribution. In 2021, Quirk et al. [15] found that FHR 

signals are correlated in time and space and proposed a Bayesian 

based on GP algorithm. In 2023, Shapira et al. [16] observed a 

positive effect of baseline on filling FHR missing data. They 
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proposed automatic regression two-sided modified asymmetric 

least squares method as a baseline calculation algorithm. In 2023, 

Zhang et al. [17] found the length of missing values is strongly 

related to the difficulty of rebuilding FHR values. 

However, these studies have two problems. 

● Deep learning algorithms are good at mining 

correlations in multi-dimensional data. But most FHR 

studies are based on single dimension signals. 

● These studies disregard the multiple hidden periods 

within FHR signal. 

To solve the above two problems, we build a missing data 

filling algorithm with dimension construction and period 

segmentation. Dual-dimensional Sample Construction (DDSC) 

and Multi-period decomposition (MPD) methods are combined 

to realize the dimension augmentation and decompose periods of 

FHR signals. Specifically, DDSC selects two FHR signals with 

the maximum difference to create a new sample. MPD 

decomposes the distributions within FHR signals. Diffusion 

model for Missing Data Imputation in FHR (DMDI-FHR) can 

achieve data filling. The main contributions of this paper can be 

summarized as follows: 

● We propose a sample construction method DDSC to 

search for two FHR signals with the largest difference 

to form dual-dimensional samples, which expands the 

correlation between FHR signals. 

● We propose an MPD method to decompose the FHR 

signal into multiple periods and discuss the value of 

period diversity to missing data filling task. 

● We construct an FHR missing data filling algorithm 

DMDI-FHR, which based on DDSC, MPD and 

diffusion model. The DMDI-FHR algorithm achieves 

good performance on filling task. 

II. RELATED WORK 

Continuous signals are the basis of deep learning studies. 

Missing data is a prevalent problem in time series. We 

summarize the studies on filling missing data for time series. 

A. Statistics-based algorithm 

Statistics-based algorithms utilize statistical measures to fill 

missing data. Based on statistical elements, Autoregressive 

Integrated Moving Average (ARIMA) model was introduced 

[18]. ARIMA combines trend, seasonal, and periodic information 

in time series with statistical tools [19-20]. However, ARIMA-

based methods only consider common characteristics of samples, 

while ignoring unique attributes of each sample.  

B. Machine learning-based algorithm 

Machine learning-based algorithms can fit original 

distribution of dataset. For each missing data, these algorithms 

generate a corresponding filling value. 

For instance, Mir et al. [21] proposed an Imputation by 

Feature Importance (IBFI) algorithm for reconstructing missing 

data. IBFI classifies three missing categories to calculate missing 

data. Zheng et al. [22] proposed a KNN-based method that 

combines multidimensional temporal and spatial information to 

capture short-term fluctuations and fit long-term trends. Li et al. 

[23] developed a matrix containing long-term and short-term 

correlations of signals. This matrix reduces interpolation errors in 

both random and continuous missing data cases. 

Machine learning-based algorithms require manual 

construction of feature engineering. However, it is challenging to 

construct feature engineering in large amounts of data. 

C. Deep learning-based algorithm 

Deep learning has ability to independently extract high-

dimensional information in missing data filling tasks. 

Neural network-based algorithms: Che et al. [24] 

introduced a novel algorithm GRU-D. GRU-D incorporates two 

types of missing patterns (masking and time intervals) to improve 

filling results. Li et al. [25] discovered that different missing 

patterns exhibit temporal and spatial correlations. Based on this 

observation, they proposed a spatiotemporal filling algorithm 

named LSTM-AEs. The experimental results demonstrate that 

LSTM-AEs performs well for filling missing data in 

spatiotemporal scenarios. Ma et al. [26] viewed the nonlinear 

dependence of time series as a challenge, and they propose a new 

loss function to analyze historical states of nonlinear dependence. 

The new loss function enables filling algorithm to boost quality 

of univariate and multivariable filled data.  Ma et al. [27] believed 

that reducing interpolation value errors is crucial, as downstream 

deep learning tasks can amplify these errors. To address this 

concern, they classify time series while filling missing values. 

GAN-based algorithms: Guo et al. [28] focused on multi-

variate time series, they incorporate multi-channel convolutions 

into GANs to generate high-precision data distributions. Oh et al. 

[29] identified that neural networks still have limitations when 

filling complex multivariate time series. They use GANs and 

bidirectional recursive mechanism to fit potential distribution 

through a new attention layer. The new layer can capture the 

weighted correlation of the entire series to improve the accuracy 

of downstream tasks. Tang et al. [30] introduced adversarial 

strategy to address the disregarding global temporal dynamics in 

filling missing data. The adversarial strategy to improve the 

global temporal distributions to fit overall distribution of data. 

In summary, deep learning-based algorithms employ the 

strong fitting ability to fill missing data directly. Neural network-

based algorithms tend to improve recurrent networks, such as 

RNNs. However, the performance of recurrent network still 

needs to be improved in modeling long time series. GAN-based 

algorithms exhibit good performance for various missing lengths, 

while training is unstable. 

III. METHOD AND MATERIAL 

The DMDI-FHR algorithm focuses on the correlation within 
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and between FHR signals. The architecture of DMDI-FHR is 

presented in Fig. 1. First, DDSC method selects two FHR signals 

with maximum differences from the same label dataset, creating a 

new dual-dimensional sample. Next, the MPD method decompose 

the most different parts in dual-dimensional sample, which 

considers the influence of multiple distributions within FHR signal. 

Finally, we introduce diffusion model to FHR missing data filling 

tasks. 

 
Fig. 1. The architecture of DMDI-FHR algorithm. 

A. Dual-dimensional Sample Construction 

One challenge of FHR missing data filling is ignoring the 

correlation between FHR signals. To tackle this challenge, we 

try to construct dual-dimensional samples by adding two FHR 

signals together. In this section, we propose a DDSC method to 

select an additional FHR signal as an extra dimension to an 

existing FHR signal. 

Deep learning-based algorithms can achieve classification 

results by identifying commonalities in data [31]. In other 

words, the data with the same label exists differences. The 

distribution of data with same label is not uniform. This can also 

be explained from the signal perspective: abnormal FHR 

signals can be considered abnormal from multiple perspectives. 

There are some differences between the two FHR signals. 

Therefore, it is necessary to calculate the difference between 

two FHR signals with the same label. 

The amplitude shift, stretch, and linear drift are the factors 

that affect in calculating the similarity of FHR signals. These 

factors make it challenging to determine the relative 

displacement of two FHR signals. 

Therefore, we propose DDSC method based on Dynamic 

Time Warping (DTW). In DDSC, FHR signals with the same 

label are adjusted in time domain through non-linear timing 

alignment to calculate their similarity, as shown in Fig. 2. 

 
Fig. 2. DDSC technology roadmap. 

The DDSC method is suitable for comparing the similarity of 

long distance and multi-period time series. Assuming that the 

number of FHR signals with the same label is N and their length 

(including missing part) is L, they can be expressed as: 

1 2
{ , , , }

N

missing
FHR FHR FHR FHR= L             (1) 

We randomly select an FHR signal from same label dataset, 

denoted as FHR-B. Next, we use DTW to measure its similarity 

to other signals, denoted as FHR-C. Then, we select an FHR 

signal with the greatest dissimilarity from FHR-C as the new 

dimension of FHR-B. The detailed steps are as follows: 

Step 1: First, we delete missing parts of FHR signals to obtain 

FHRdelete_missing: 

1 2

_
{ , , , }

N

delete missing
FHR F F F= L                   (2) 

Step 2: We select an FHR signal as the base signal from 

FHRdelete_missing. This can be expressed mathematically as: 

1

2

1 1 1

1 2

2 2 2
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_

1 2 N

L

Li

delete missing

N N N
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f f f

f f f
F FHR

f f f

 
 
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  =  
 
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 

L

L

M M O M

L

         (3) 

Fi can be denoted as FHR-B: 

1 2
( , , ) -

i

i i i i

L
F f f f FHR B= →L              (4) 

where f represents the discrete signal inside the FHR, i∈

{1,2,3…,N},Li∈{1,2,3…,L}. 

FHR-C is a set of N-1 FHR signals. Selecting a candidate 

FHR signal Fj in FHR-C, assuming its length is Lj, where Lj is 

a variable and have different values in different FHR signals. 
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This can be expressed as: 

1 2 1 1
- =( , , , , , , )

i i N
FHR C F F F F F

− +L L          (5) 

, (1, 2, , 1, 1, , )
j

F FHR C j i i N  − = − +L L L     (6) 

1 2
( , , , ), (1,2, , 1, 1, , )

j

j j j j

L
F f f f j i i N= = − +L L L L (7) 

Then, d(Fi,Fj) represents the distance between Fi and Fj. The 

distance calculation as follows: 

 
2

( , ) ( , )
i j i j

d F F F F=                         (8) 

Finally, we define the distance between any two points in the 

two FHR signals as a path denoted as W, which has K elements. 

wk indicates alignment relationship between two FHR signals at 

the k-th path point. 

1 2
, ,..., , max( , ) 1

K
W w w w i j K i j=   + −      (9) 

The similarity of these two FHR signals is as follows: 

                
,

1

min( / )
K

i j

k

k

DTW w K
=

=                (10) 

Step 3: Repeat the step1 and step2 to calculate DTW values 

of all FHR signals in FHR-C and Fi: 
,1 , 1 , 1 ,

( , , , , , )i

i i i i i i N

F
DTW DTW DTW DTW DTW

− +
= L L (11) 

Selecting the FHR signal 
i

add
F corresponding to the 

maximum value in the Eq. (11) as the new dimension of Fi: 

( ),=i

i i

addF
DDSC F F                      (12) 

Step 4: Repeat step1 to step3 for all FHR signals with the 

same label, and finally form N two-dimensional samples. 

B. Multi-period Decomposition 

Most FHR missing data filling studies select the single 

sample as the smallest unit. However, these studies neglect the 

periodicity of single FHR signal. For instance, acceleration and 

deceleration are periodic features within the FHR signal. 

Periodicity in time series have impact on downstream tasks [32]. 

Specifically, multiple periods in training data increases data 

variability, which may make it more difficult to fit the data 

distribution. Nevertheless, the periodicity also has a positive 

effect to enhance the diversity of generated data. Thus, the key 

to exploiting the internal periodicity is to separate these periods. 

However, an inescapable problem is that many periods in data 

cannot be accurately marked.  

Periods refer to the different distribution within signals. 

Previous studies have attempted to uncover the hidden 

properties of signals through statistical tools. These studies aim 

to represent the all signals using a single tool. However, these 

tools overlook the multiple distributions within a signal. These 

multiple distributions can significantly affect the accuracy of 

statistical results. Therefore, we propose MPD method. This 

method adopts the concept of approximating the internal period 

using internal signal differences [33] and further extends this 

concept to decompose dual-dimensional samples.  

The number of periods and boundaries of each period are 

typically not labeled in FHR signals, which makes it a bivariate 

problem. We link the period distribution to the length of 

training data. Consequently, the bivariate problem (period and 

bound) become a univariate problem (period) by fixing length 

of training data. Multiple periods in a signal are equivalent to 

multiple distributions within signal. Thus, separating the 

periodicity requires maximizing the difference within the 

signals. We need to decompose the FHR into S parts with the 

largest difference.  

The difference between two distributions can be measured 

using Relative Entropy (RE). Based on the principle of 

maximum entropy, we can identify the S least similar parts in 

the FHR signal. 

 
Fig. 3. MPD technology roadmap. 

In addition, we consider the least similar parts in dual-

dimensional FHR samples, with the aim of maximizing the 

differentiation of the dual-dimensional FHR sample. The 

corresponding mathematical expression is shown as follows:  

 
0

FHR-B FHR-A
0

1

1
max ( , ) ( , )

2S S
s S

d d
S 

 

  +       (13) 

where d represents a distance metric, S represents number of 

periods, while S0 is a hyperparameter that prevents excessive 

splitting (prevent insufficient training data). In this paper, we 

use RE divergence as distance metric d(·,·). If algorithm can 

learn the distribution from cases with maximum differences, it 

will have better filling ability. 

C. Diffusion Model Primary Network 

Compared with other time series signals, FHR signals have 

more complex physiological characteristics and interference 

information. Diffusion model have powerful data generation 

capabilities and can be used for various generation-related tasks. 

By adding noise and then denoising, diffusion model can avoid 

the influence of noise on the original data. This feature of the 

diffusion model can be used to fill FHR missing data. 

1) Diffusion process 

The diffusion process refers to gradually adding noise to x0 
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until it reaches xT.The initial signal x0~q(x) is gradually added 

to q(x1:T|x0) , where in x1,…,xT are same scale as x0.The entire 

diffusion process is calculated based on Markov chain. As time 

t increases, xt becomes an independent Gaussian distribution. 

The standard deviation of noise is determined by xt and time t. 

                1 1( | ) ( ; 1 , )t t t t t tq x x N x x I − −= −  (14) 

                        1: 0 1

1

( | ) ( | )
T

T t t

t

q x x q x x −

=

=     (15) 

where βt and 11 t tx −− are the standard deviation and mean of 

noise. βtI is the variance, where 1t t = −  and 
1

T

t ii
 

=
=  . 

Based on Markov process, the data distribution at any given 

time can be obtained gradually through recursion. 

                     0 0( | ) ( ; , (1 ) )t t t tq x x N x x I = −  (16) 

where q(xt|x0) represents the data distribution at any given time, 

which can be determined based on initial 
0x  and standard 

deviation of noise βt. 

2) Reverse process 

The reverse process is the inverse of diffusion process. It 

refers to the process of recovering the original data distribution 

x0 from the Gaussian noise xT. This process requires building a 

deep learning network to estimate the distribution, as shown in 

Eqs. (17) and (18). 

                       0: 1

1

( ) ( ) ( | )
T

T T t t

t

p x p x p x x  −

−

=   (17) 

               1 1( | ) ( ; ( , ), ( , ))t t t t tp x x N x x t x t  
− −=   (18) 

where 
0:( )Tp x  is the reverse distribution, and 

1( | )t tp x x −
 

needs to be obtained through deep learning network training. 

The conditional probability 
1 0( | , )t tq x x x−

 in diffusion process 

can be obtained using the Bayesian process: 

                     
1 0 1 0( | , ) ( ; ( , ), )t t t t tq x x x N x x x I − −=  (19) 

From Eq. (20), it can be inferred that given xt and x0, the data 

distribution at time 
1tx −
 can be calculated. 

0

1
( 1 z )t t t

t

x x 


= − −  (20) 

According to the above deduction, for 
1 0( | , )t tq x x x−

 to 

guide 
1( | )t tp x x −

 in training, it is necessary to determine the 

objective function 
0log ( )p x


− , as shown in Eq. (21). 

            
0

2

, , 0( ) : [ ( 1 , )]simple t x t tL E x t      = − + −P P  (21) 

where   is an unknown random variable and   is the specific 

objective form of defined network. 

3) Network in diffusion model 

To enhance FHR filling ability, we improve the deep learning 

network to recover more realistic distribution of FHR signals. 

 
 Fig. 4. Network of diffusion model. 

The structure of network is shown in Fig. 4. The structure 

consists of two parts, the depth block and the channel block. It 

is driven by depth blocks based on residual structure and 

convolution and channel blocks in series. The depth block 

acquires high-dimensional features of network through multiple 

convolutional layers. Depth blocks prevent features from losing 

control by virtue of residual structure. Firstly, the input signal 

is passed through a depth block, features of different scales are 

extracted under convolution structure, and features of different 

convolution scales are aggregated through residual structure. 

Depth blocks are followed by connected channel blocks. The 

concatenation of multiple channel blocks continuously deepens 

features extracted by diffusion model. 

 
Fig. 5. FHR missing data filling process. 

As shown in Fig. 5, the diffusion process of FHR signals refers 

to the process of gradually adding noise to FHR signals to an 

independent Gaussian distribution. The added noise with preset 

mean value and the train data has the same scale. The reverse 

process reconstructs FHR signals from Gaussian noise under the 

condition of noise. 
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IV. EXPERIMENTS 

A. Dataset and experiments settings 

The CTU-UHB dataset used in this study is from Physionet, an 

internationally authoritative open database of physiological 

signals. This dataset was collected by the Obstetrics Research 

Team at Brno University Hospital in Czech [34]. The dataset 

comprises 552 FHR records. The batch size, initial learning rate, 

and epochs for the experiment were set to 16, 1e-5, and 20, 

respectively. 

This section aims to assess the performance of DMDI-FHR in 

FHR missing data filling. First, the role of the DDSC and MPD 

was verified by ablation experiments. Following this, we verify 

the effect of DMDI-FHR algorithm on different missing rates. We 

also assess the impact of data filling on data augmentation.  

B. Algorithm verification experiment 

To confirm the effectiveness of the MPD method in processing 

FHR signals, we design an experiment that compared the quality 

of filled data at different decomposition scales by RE and MSE 

(Mean Squared Error). The results are presented in Fig. 6. 

 

Fig. 6. Comparison of filling quality at different periods. 

Two conclusions can be drawn from Fig. 6. Firstly, MPD 

method can affect the effect of data padding. DMDI-FHR has 

different filling ability under different periods. The maximum 

difference of MSE is 4.54 times. This verifies that MPD method 

can directly affect the quality of imputation of FHR data. 

Second, there is an effective synergistic relationship between 

data filling quality and periodic separation. The extreme values 

of the MSE in Fig. 6 are synergistic with those of the RE curve, 

reaching their extreme values at number of periods of 10. 

In addition, we examined the impact of the DDSC and MPD 

methods on the data filling effect in DMDI-FHR. To this end, 

we conducted ablation experiments with the gap length of 60, 

and Table I presents the data filling capability of different 

combinations within DMDI-FHR via MSE and MAE (Mean 

Absolute Error). 

TABLE I 

ABLATION EXPERIMENT OF DDSC AND MPD 

DDSC MPD MSE MAE 

√  5.466 4.558 

 √ 2.459 1.763 

√ √ 0.237 0.393 

By adding the DDSC and MPD methods, the quality of FHR 

missing data filling can be improved to different degrees, with 

MSE and MAE reduced to 0.237 and 0.393. DDSC has a less 

impact on improving FHR data filling quality. The MSE and 

MAE indicators using DDSC alone were 3.007 and 2.795 

higher than those using MPD alone, respectively. The reason 

for this is that the new dimensions of the dual-dimensional FHR 

sample come from data with the same label, and their variability 

is less than the variability within the FHR signal. In other words, 

MPD method can effectively decompose the multi distributions 

in FHR signal. In general, DDSC and MPD methods have 

positive effects on DMDI-FHR algorithm. 

C. Data filling performance comparison experiment. 

In Fig. 7, we compare the performance of DMDI-FHR at 

missing rates from 0.1 to 0.7 using CRPS (Continuous Ranked 

Probability Score) indicator. 

 

Fig. 7. Experiment with different missing rates. 

DMDI-FHR algorithm has good filling ability for different 

missing rates. Fig. 7 shows that DMDI-FHR algorithm reaches 

a minimum CRPS when the missing rate is 0.1, creating the 

most similar distribution. It is worth noting that 0.1 is a low 

missing rate. The filling ability of DMDI-FHR algorithm at 

higher missing rate can better reflect its performance. As shown 

in Fig. 7, DMDI-FHR algorithm can still perform valid data 

filling at missing rates are 0.5 and 0.6. Compared to the mean 

value (solid green line), the DMDI-FHR algorithm increases 
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CRPS by only 0.011 and 0.070 at missing rates are 0.5 and 0.6. 

Thus, DMDI-FHR algorithm has good filling ability when the 

missing rate is 0.1 to 0.6. The CRPS indicator increase rapidly 

when the missing rate is 0.7, which indicated that excessive 

missing rate is still an important factor affecting the filling 

effect. 

In order to analyze the usability of DMDI-FHR algorithm 

more objectively, we add the more typical FHR classification 

research in recent years for comparative test. The experimental 

results are shown in Table II. 

TABLE II 

COMPARISON OF PREVIOUS WORKS 

Author Algorithm MSE 

Frigo,2017,[13] On-Line Regression  26.729 

Feng, 2017,[14] GP, without UA 1.357 

Wang,2021,[15] KOT (gap length:30) 0.476 

Quirk, 2021,[16] Bayesian based on GP 0.360 

Xiang,2022,[35] alternative 

interpolation  

18.429 

DMDI-FHR,2023 DMDI-FHR (gap 

length:20) 

0.206 

Table II shows a comparison between DMDI-FHR and 

related FHR filling studies. Each value represents the best 

performance achieved by the corresponding algorithm. As 

shown in Table III, the missing data filling accuracy of DMDI-

FHR is higher than other five algorithms. Only KOT, Bayesian 

based on GP and DMDI-FHR algorithm achieve better filling 

accuracy. However, it is worth noting that KOT involves 

feature engineering. KOT improves the quality of filling data 

by manually improved KNN. Bayesian based on GP improves 

the filling accuracy by controlling Bayesian processes. On-Line 

Regression algorithm fills FHR missing data through regression 

algorithms, but its performance is worse than machine learning 

and deep learning algorithms. The results show that DMDI-

FHR is effective with FHR missing data filling. 

D. FHR usability experiment 

Most downstream tasks require data augmentation due to the 

class imbalance of CTU-UHB dataset. Some data augmentation 

studies focus on fitting the entire FHR signals, while 

disregarding the impact of filling quality to data augmentation. 

We consider the impact of filling quality on data augmentation. 

Consequently, we used measures such as SSD (Sum of Squared 

Deviations) and PRD (Percentage Relative Difference) to 

assess the quality of Synthetic Minority Over-sampling 

Technique (SMOTE) [36] after DMDI-FHR application. Given 

the significant variance in the absolute values of these 

indicators, we present comparison results in percentages, with 

the actual values provided for reference. 

 
Fig. 8. The effect of data filling on data augmentation. 

Fig. 8 demonstrates that SSD, MAD, and PRD indicators are 

significantly reduced after applying DMDI-FHR, thereby 

verifying the effectiveness of FHR data filling using DMDI-

FHR. Specifically, each value improves when DMDI-FHR is 

added during the data augmentation, indicating an improvement 

in the quality of generated data. About SSD, the score decreases 

from 20.375 to 16.267, representing a decrease of 20.2%. The 

PRD decreased from 48.866 to 39.955, indicating a decrease of 

18.2%. Overall, DMDI-FHR exhibited improved results across 

all indicators, further demonstrating the impact of data filling 

on data augmentation. 

V. CONCLUSION 

To support the development of consumer FHR monitoring 

electronics, we developed a new FHR missing data filling 

algorithm DMDI-FHR to improve data quality for fetal status 

assisted diagnosis. This algorithm combines two FHR signals 

as a new sample to achieve accurate feature extraction between 

dual-dimensions. Additionally, MPD method performs blind 

period decomposition of the FHR signal to enhance the 

independence of training data. After that, the missing part of 

FHR signal is generated from the noise by diffusion model 

network. Experimental results show that DMDI-FHR algorithm 

has a good effect in filling FHR missing data. In the future, it 

will be interesting to extend our work to real-time missing data 

filling. 
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