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Filling of Fetal Heart Rate Signal: Diffusion model
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Abstract—Fetal Heart Rate (FHR) signal is widely used in
doppler fetal heart monitors. However, incomplete FHR signals
reduce the effectiveness of fetal heart rate monitoring. Filling
missing data is a key technique to improve FHR quality, but
existing filling algorithms lack consideration the correlation of
FHR signals. Therefore, we focus on two correlations related to
FHR, and propose a filling algorithm called Diffusion model for
Missing Data Imputation in FHR (DMDI-FHR). Firstly, we
construct the Dual-dimensional Sample Construction (DDSC)
method that finds two FHR signals with maximizing the difference
to form correlations between them. Secondly, the Multi-period
Decomposition (MPD) method is introduced to obtain the internal
correlation of FHR signal. Finally, DMDI-FHR algorithm controls
the filling process based on the diffusion model. Experimental
results demonstrate the performance of DMDI-FHR algorithm,
which provides an effective way to improve the quality of FHR
signal.

Index Terms—Consumer electronic, fetal heart rate, missing data,
deep learning, diffusion model

|. INTRODUCTION

EDICAL monitors are common consumer electronic

devices [1]. They have been widely used in recent

years because of the advantages of non-invasive,
real-time and low cost [2]. These devices are mainly used to
collect different types of medical data [3]. In gynecology,
doppler monitors can record Fetal Heart Rate (FHR) signals to
reflect the state of fetus in utero [4]. With the development of
computer technology, many hospitals and scholars try to
analysis FHR signals and output auxiliary diagnosis results of
fetal state in doppler fetal heart monitors.

For example, Dash et al. [5] proposed a novel FHR signal
classification algorithm based on generative models and
Bayesian theory, which incorporates an expert system and SVM
to build the classifier. Fuentealba et al. [6] found that time and
frequency variations in FHR signals are related to fetal status and
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proposed a new method. The new method extracts time and
frequency domains, which decomposes the FHR signal into
several parts and computes the Time-Varying Autoregressive
spectrum. Alsaggaf et al. [7] combines three existing algorithms
in an organized way to increase accuracy in detecting fetal
hypoxia.

Most smart electronic devices need continuous data [8].
However, missing data may occur in fetal monitoring. Missing
data can reduce the variability of FHR signal, which may impact
the performance of FHR classification algorithms.

Thus, continuous FHR signal is a prerequisite for fetal
auxiliary diagnosis. Some scholars have done some studies on
filling in FHR signals. Przybyta et al. [9] propose an embedded
space to rebuild the missing parts of FHR. In rebuilding process,
they calculate the missing data through K-Nearest Neighbor
(KNN). Feng et al. [10] attempted to rebuild the missing data in
FHR signals based on Gaussian process (GP).

Recent years, scholars have proposed more filling algorithms.
In 2013, Oikonomou et al. [11] presented an algorithm to rebuild
the FHR missing with two steps. In first step, compute an
estimate of missing data by empirical dictionary. These
computed values are updated in the second step. Repeat these two
steps to get the best filling results. In 2017, Frigo et al. [12]
reduced the computational requirements of FHR missing data
filling by quantitatively comparing five regression technigues to
enable online operation at4 Hz. In 2017, Feng et al. [13] observed
some hidden connections between FHR and uterine signals. They
combined FHR and uterine signals to fill missing part by GP. In
2021, Wang et al. [14] proposed the Optimal Transport Based on
KNN (KOT) algorithm combining optimal decision trees and
KNN, which assumes that FHR signals of the same type have the
same distribution. In 2021, Quirk et al. [15] found that FHR
signals are correlated in time and space and proposed a Bayesian
based on GP algorithm. In 2023, Shapira et al. [16] observed a
positive effect of baseline on filling FHR missing data. They
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proposed automatic regression two-sided modified asymmetric
least squares method as a baseline calculation algorithm. In 2023,
Zhang et al. [17] found the length of missing values is strongly
related to the difficulty of rebuilding FHR values.

However, these studies have two problems.

e Deep learning algorithms are good at mining
correlations in multi-dimensional data. But most FHR
studies are based on single dimension signals.

e These studies disregard the multiple hidden periods
within FHR signal.

To solve the above two problems, we build a missing data
filling algorithm with dimension construction and period
segmentation. Dual-dimensional Sample Construction (DDSC)
and Multi-period decomposition (MPD) methods are combined
to realize the dimension augmentation and decompose periods of
FHR signals. Specifically, DDSC selects two FHR signals with
the maximum difference to create a new sample. MPD
decomposes the distributions within FHR signals. Diffusion
model for Missing Data Imputation in FHR (DMDI-FHR) can
achieve data filling. The main contributions of this paper can be
summarized as follows:

e We propose a sample construction method DDSC to
search for two FHR signals with the largest difference
to form dual-dimensional samples, which expands the
correlation between FHR signals.

e We propose an MPD method to decompose the FHR
signal into multiple periods and discuss the value of
period diversity to missing data filling task.

e We construct an FHR missing data filling algorithm
DMDI-FHR, which based on DDSC, MPD and
diffusion model. The DMDI-FHR algorithm achieves
good performance on filling task.

Il. RELATED WORK

Continuous signals are the basis of deep learning studies.
Missing data is a prevalent problem in time series. We
summarize the studies on filling missing data for time series.

A. Statistics-based algorithm

Statistics-based algorithms utilize statistical measures to fill
missing data. Based on statistical elements, Autoregressive
Integrated Moving Average (ARIMA) model was introduced
[18]. ARIMA combines trend, seasonal, and periodic information
in time series with statistical tools [19-20]. However, ARIMA-
based methods only consider common characteristics of samples,
while ignoring unique attributes of each sample.

B. Machine learning-based algorithm

Machine learning-based algorithms can fit original
distribution of dataset. For each missing data, these algorithms
generate a corresponding filling value.

For instance, Mir et al. [21] proposed an Imputation by
Feature Importance (IBFI) algorithm for reconstructing missing

data. IBFI classifies three missing categories to calculate missing
data. Zheng et al. [22] proposed a KNN-based method that
combines multidimensional temporal and spatial information to
capture short-term fluctuations and fit long-term trends. Li et al.
[23] developed a matrix containing long-term and short-term
correlations of signals. This matrix reduces interpolation errors in
both random and continuous missing data cases.

Machine learning-based algorithms require manual
construction of feature engineering. However, it is challenging to
construct feature engineering in large amounts of data.

C. Deep learning-based algorithm

Deep learning has ability to independently extract high-
dimensional information in missing data filling tasks.

Neural network-based algorithms: Che et al. [24]
introduced a novel algorithm GRU-D. GRU-D incorporates two
types of missing patterns (masking and time intervals) to improve
filling results. Li et al. [25] discovered that different missing
patterns exhibit temporal and spatial correlations. Based on this
observation, they proposed a spatiotemporal filling algorithm
named LSTM-AEs. The experimental results demonstrate that
LSTM-AEs performs well for filling missing data in
spatiotemporal scenarios. Ma et al. [26] viewed the nonlinear
dependence of time series as a challenge, and they propose a new
loss function to analyze historical states of nonlinear dependence.
The new loss function enables filling algorithm to boost quality
of univariate and multivariable filled data. Maetal. [27] believed
that reducing interpolation value errors is crucial, as downstream
deep learning tasks can amplify these errors. To address this
concern, they classify time series while filling missing values.

GAN-based algorithms: Guo et al. [28] focused on multi-
variate time series, they incorporate multi-channel convolutions
into GANSs to generate high-precision data distributions. Oh et al.
[29] identified that neural networks still have limitations when
filling complex multivariate time series. They use GANs and
bidirectional recursive mechanism to fit potential distribution
through a new attention layer. The new layer can capture the
weighted correlation of the entire series to improve the accuracy
of downstream tasks. Tang et al. [30] introduced adversarial
strategy to address the disregarding global temporal dynamics in
filling missing data. The adversarial strategy to improve the
global temporal distributions to fit overall distribution of data.

In summary, deep learning-based algorithms employ the
strong fitting ability to fill missing data directly. Neural network-
based algorithms tend to improve recurrent networks, such as
RNNs. However, the performance of recurrent network still
needs to be improved in modeling long time series. GAN-based
algorithms exhibit good performance for various missing lengths,
while training is unstable.

I11. METHOD AND MATERIAL
The DMDI-FHR algorithm focuses on the correlation within
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and between FHR signals. The architecture of DMDI-FHR is
presented in Fig. 1. First, DDSC method selects two FHR signals
with maximum differences from the same label dataset, creating a
new dual-dimensional sample. Next, the MPD method decompose
the most different parts in dual-dimensional sample, which

considers the influence of multiple distributions within FHR signal.

Finally, we introduce diffusion model to FHR missing data filling
tasks.
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Fig. 1. The architecture of DMDI-FHR algorithm.

A. Dual-dimensional Sample Construction

One challenge of FHR missing data filling is ignoring the
correlation between FHR signals. To tackle this challenge, we
try to construct dual-dimensional samples by adding two FHR
signals together. In this section, we propose a DDSC method to
select an additional FHR signal as an extra dimension to an
existing FHR signal.

Deep learning-based algorithms can achieve classification
results by identifying commonalities in data [31]. In other
words, the data with the same label exists differences. The
distribution of data with same label is not uniform. This can also
be explained from the signal perspective: abnormal FHR
signals can be considered abnormal from multiple perspectives.
There are some differences between the two FHR signals.
Therefore, it is necessary to calculate the difference between
two FHR signals with the same label.

The amplitude shift, stretch, and linear drift are the factors
that affect in calculating the similarity of FHR signals. These
factors make it challenging to determine the relative

displacement of two FHR signals.

Therefore, we propose DDSC method based on Dynamic
Time Warping (DTW). In DDSC, FHR signals with the same
label are adjusted in time domain through non-linear timing
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Fig. 2. DDSC technology roadmap.

The DDSC method is suitable for comparing the similarity of
long distance and multi-period time series. Assuming that the
number of FHR signals with the same label is N and their length
(including missing part) is L, they can be expressed as:

FHR _ ={FHR',FHR®,---,FHR"} (1)

missing

We randomly select an FHR signal from same label dataset,
denoted as FHR-B. Next, we use DTW to measure its similarity
to other signals, denoted as FHR-C. Then, we select an FHR
signal with the greatest dissimilarity from FHR-C as the new
dimension of FHR-B. The detailed steps are as follows:

Step 1: First, we delete missing parts of FHR signals to obtain
FHRGelete_missing:

FHR

delete _ missing

={F',F*--- F'} )

Step 2: We select an FHR signal as the base signal from
FHRgelete_missing- This can be expressed mathematically as:

il . le1
: f2 f2 ... f2
VFI € I:HRdeIetefmissing =9. ' . ? . . B (3)
le sz fL':
Fican be denoted as FHR-B:
F'=(f,f,,-f') > FHR-B 4)

where f represents the discrete signal inside the FHR, i€
{1,2,3...N}Lie{1,2,3....L}.

FHR-C is a set of N-1 FHR signals. Selecting a candidate
FHR signal F! in FHR-C, assuming its length is L;, where L; is
a variable and have different values in different FHR signals.
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This can be expressed as:
FHR-C=(F',F%-,F™" F™ . FY) (5
VF'eFHR-C,j=(12,-,i-Li+L-,--N) (6)
F=(f ) i) i=@2 - i-Li+L-,--N) (7)

LI A
Then, d(F',F) represents the distance between F' and F. The
distance calculation as follows:

d(F',F)=(F' Fiy? (8)

Finally, we define the distance between any two points in the

two FHR signals as a path denoted as W, which has K elements.

wy indicates alignment relationship between two FHR signals at
the k-th path point.

W =w,w,,...w,,max(i, ) K <i+j-1 (9

The similarity of these two FHR signals is as follows:

K
DTW " = min( /ZWk /1K)
k=1

Step 3: Repeat the stepl and step2 to calculate DTW values
of all FHR signals in FHR-C and F':

DTW,, = (DTW",-.., DTW""*, DTW""*,..., DTW"") (11)

(10)

Selecting the FHR signal Fidd corresponding to the

al
maximum value in the Eq. (11) as the new dimension of F':

DDSC_, = (F',F,,) (12)

Step 4: Repeat stepl to step3 for all FHR signals with the
same label, and finally form N two-dimensional samples.

B. Multi-period Decomposition

Most FHR missing data filling studies select the single
sample as the smallest unit. However, these studies neglect the
periodicity of single FHR signal. For instance, acceleration and
deceleration are periodic features within the FHR signal.

Periodicity in time series have impact on downstream tasks [32].

Specifically, multiple periods in training data increases data
variability, which may make it more difficult to fit the data
distribution. Nevertheless, the periodicity also has a positive
effect to enhance the diversity of generated data. Thus, the key
to exploiting the internal periodicity is to separate these periods.
However, an inescapable problem is that many periods in data
cannot be accurately marked.

Periods refer to the different distribution within signals.
Previous studies have attempted to uncover the hidden
properties of signals through statistical tools. These studies aim
to represent the all signals using a single tool. However, these
tools overlook the multiple distributions within a signal. These
multiple distributions can significantly affect the accuracy of
statistical results. Therefore, we propose MPD method. This
method adopts the concept of approximating the internal period
using internal signal differences [33] and further extends this

concept to decompose dual-dimensional samples.

The number of periods and boundaries of each period are
typically not labeled in FHR signals, which makes it a bivariate
problem. We link the period distribution to the length of
training data. Consequently, the bivariate problem (period and
bound) become a univariate problem (period) by fixing length
of training data. Multiple periods in a signal are equivalent to
multiple distributions within signal. Thus, separating the
periodicity requires maximizing the difference within the
signals. We need to decompose the FHR into S parts with the
largest difference.

The difference between two distributions can be measured
using Relative Entropy (RE). Based on the principle of
maximum entropy, we can identify the S least similar parts in

FHR-B

FHR-A

Result of DDSC

Fig. 3. MPD technology roadmap.

In addition, we consider the least similar parts in dual-
dimensional FHR samples, with the aim of maximizing the
differentiation of the dual-dimensional FHR sample. The
corresponding mathematical expression is shown as follows:

OQE)S(O %x;s dFHR-B (': ) + dFHR-A (', )
where d represents a distance metric, S represents number of
periods, while Sp is a hyperparameter that prevents excessive
splitting (prevent insufficient training data). In this paper, we
use RE divergence as distance metric d( 5 5. If algorithm can
learn the distribution from cases with maximum differences, it
will have better filling ability.

(13)

C. Diffusion Model Primary Network

Compared with other time series signals, FHR signals have
more complex physiological characteristics and interference
information. Diffusion model have powerful data generation
capabilities and can be used for various generation-related tasks.
By adding noise and then denoising, diffusion model can avoid
the influence of noise on the original data. This feature of the
diffusion model can be used to fill FHR missing data.

1)  Diffusion process

The diffusion process refers to gradually adding noise to xo
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until it reaches xr.The initial signal xo~q(x) is gradually added
to q(xw:7|Xo) , where in Xy,...,.xT are same scale as Xo.The entire
diffusion process is calculated based on Markov chain. As time
t increases, x: becomes an independent Gaussian distribution.
The standard deviation of noise is determined by x; and time t.

A(x [ %) = N(Xiy1- B X 1. A1) (14)
(% Ixo)—lf[q(xt | %) (15)

where 4 and \/1— B, %, are the standard deviation and mean of

noise. /4l is the variance, where o, =1— 4, and o, =[] & .

Based on Markov process, the data distribution at any given
time can be obtained gradually through recursion.

A0% 1 %) = N e g, -a)1) (16)
where q(x|xo) represents the data distribution at any given time,
which can be determined based on initial x, and standard

deviation of noise .

2)  Reverse process

The reverse process is the inverse of diffusion process. It
refers to the process of recovering the original data distribution
Xo from the Gaussian noise xt. This process requires building a
deep learning network to estimate the distribution, as shown in
Egs. (17) and (18).

pa(XO:T) = p(XT )H Ps (Xt—l | Xt) (17)
Py (Xt 1%) = N Xy 115 (%, 1), ) (%,1)) (18)

where p,(X,;) is the reverse distribution, and p,(x._, | X)
needs to be obtained through deep learning network training.
The conditional probability q(x._, | X,X,) in diffusion process
can be obtained using the Bayesian process:
A% 1% %) = N (X3 445 (% %), A1) (19)
From Eqg. (20), it can be inferred that given x; and xo, the data
distribution at time x_, can be calculated.

1

X :ﬁ(xt

According to the above deduction, for q(x_,|%,,X,) to

~\1-a,z,) (20)

guide p,(x_, | ) in training, it is necessary to determine the
objective function —log, (x,) . as shown in Eq. (21).

Lo (©) = Evy, Dl & =, (o o + Ll are t 1)) (21)
where & is an unknown random variable and ¢, is the specific
objective form of defined network.

3)  Network in diffusion model

To enhance FHR filling ability, we improve the deep learning
network to recover more realistic distribution of FHR signals.

channel block 3
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i
! i
{ i
{ i
i input H - I ! == output |
! i
! i
\

_____

residual Y
structure g’

Fig. 4. Network of diffusion model.

The structure of network is shown in Fig. 4. The structure
consists of two parts, the depth block and the channel block. It
is driven by depth blocks based on residual structure and
convolution and channel blocks in series. The depth block
acquires high-dimensional features of network through multiple
convolutional layers. Depth blocks prevent features from losing
control by virtue of residual structure. Firstly, the input signal
is passed through a depth block, features of different scales are
extracted under convolution structure, and features of different
convolution scales are aggregated through residual structure.
Depth blocks are followed by connected channel blocks. The
concatenation of multiple channel blocks continuously deepens
features extracted by diffusion model.
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Fig. 5. FHR missing data filling process.

As shown in Fig. 5, the diffusion process of FHR signals refers
to the process of gradually adding noise to FHR signals to an
independent Gaussian distribution. The added noise with preset
mean value and the train data has the same scale. The reverse
process reconstructs FHR signals from Gaussian noise under the
condition of noise.
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IV. EXPERIMENTS

A. Dataset and experiments settings

The CTU-UHB dataset used in this study is from Physionet, an
internationally authoritative open database of physiological
signals. This dataset was collected by the Obstetrics Research
Team at Brno University Hospital in Czech [34]. The dataset
comprises 552 FHR records. The batch size, initial learning rate,
and epochs for the experiment were set to 16, 1le-5, and 20,
respectively.

This section aims to assess the performance of DMDI-FHR in
FHR missing data filling. First, the role of the DDSC and MPD
was verified by ablation experiments. Following this, we verify
the effect of DMDI-FHR algorithm on different missing rates. We
also assess the impact of data filling on data augmentation.

B. Algorithm verification experiment

To confirm the effectiveness of the MPD method in processing
FHR signals, we design an experiment that compared the quality
of filled data at different decomposition scales by RE and MSE
(Mean Squared Error). The results are presented in Fig. 6.

1.2
—®—MSE
—d—RE

1.0

0.8

0.6 -

value

0.4

0.0

T T T T
2 4 6 8 10 12

Number of periods
Fig. 6. Comparison of filling quality at different periods.

Two conclusions can be drawn from Fig. 6. Firstly, MPD
method can affect the effect of data padding. DMDI-FHR has
different filling ability under different periods. The maximum
difference of MSE is 4.54 times. This verifies that MPD method
can directly affect the quality of imputation of FHR data.
Second, there is an effective synergistic relationship between
data filling quality and periodic separation. The extreme values
of the MSE in Fig. 6 are synergistic with those of the RE curve,
reaching their extreme values at number of periods of 10.

In addition, we examined the impact of the DDSC and MPD
methods on the data filling effect in DMDI-FHR. To this end,
we conducted ablation experiments with the gap length of 60,
and Table | presents the data filling capability of different

combinations within DMDI-FHR via MSE and MAE (Mean
Absolute Error).

TABLE |
ABLATION EXPERIMENT OF DDSC AND MPD
DDSC MPD MSE MAE
N 5.466 4558

v 2.459 1.763

v v 0.237 0.393

By adding the DDSC and MPD methods, the quality of FHR
missing data filling can be improved to different degrees, with
MSE and MAE reduced to 0.237 and 0.393. DDSC has a less
impact on improving FHR data filling quality. The MSE and
MAE indicators using DDSC alone were 3.007 and 2.795
higher than those using MPD alone, respectively. The reason
for this is that the new dimensions of the dual-dimensional FHR
sample come from data with the same label, and their variability
is less than the variability within the FHR signal. In other words,
MPD method can effectively decompose the multi distributions
in FHR signal. In general, DDSC and MPD methods have
positive effects on DMDI-FHR algorithm.

C. Data filling performance comparison experiment.

In Fig. 7, we compare the performance of DMDI-FHR at
missing rates from 0.1 to 0.7 using CRPS (Continuous Ranked
Probability Score) indicator.
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Fig. 7. Experiment with different missing rates.

DMDI-FHR algorithm has good filling ability for different
missing rates. Fig. 7 shows that DMDI-FHR algorithm reaches
a minimum CRPS when the missing rate is 0.1, creating the
most similar distribution. It is worth noting that 0.1 is a low
missing rate. The filling ability of DMDI-FHR algorithm at
higher missing rate can better reflect its performance. As shown
in Fig. 7, DMDI-FHR algorithm can still perform valid data
filling at missing rates are 0.5 and 0.6. Compared to the mean
value (solid green line), the DMDI-FHR algorithm increases
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CRPS by only 0.011 and 0.070 at missing rates are 0.5 and 0.6.
Thus, DMDI-FHR algorithm has good filling ability when the
missing rate is 0.1 to 0.6. The CRPS indicator increase rapidly
when the missing rate is 0.7, which indicated that excessive
missing rate is still an important factor affecting the filling
effect.

In order to analyze the usability of DMDI-FHR algorithm
more objectively, we add the more typical FHR classification
research in recent years for comparative test. The experimental
results are shown in Table II.

TABLE Il
COMPARISON OF PREVIOUS WORKS
Author Algorithm MSE
Frigo,2017,[13] On-Line Regression 26.729
Feng, 2017,[14] GP, without UA 1.357
Wang,2021,[15] KOT (gap length:30) 0.476
Quirk, 2021,[16]  Bayesian based on GP 0.360
Xiang,2022,[35] alternative 18.429
interpolation
DMDI-FHR,2023 DMDI-FHR (gap 0.206

length:20)

Table II shows a comparison between DMDI-FHR and
related FHR filling studies. Each value represents the best
performance achieved by the corresponding algorithm. As
shown in Table 111, the missing data filling accuracy of DMDI-
FHR is higher than other five algorithms. Only KOT, Bayesian
based on GP and DMDI-FHR algorithm achieve better filling
accuracy. However, it is worth noting that KOT involves
feature engineering. KOT improves the quality of filling data

by manually improved KNN. Bayesian based on GP improves
the filling accuracy by controlling Bayesian processes. On-Line
Regression algorithm fills FHR missing data through regression
algorithms, but its performance is worse than machine learning
and deep learning algorithms. The results show that DMDI-
FHR is effective with FHR missing data filling.

D. FHR usability experiment

Most downstream tasks require data augmentation due to the
class imbalance of CTU-UHB dataset. Some data augmentation
studies focus on fitting the entire FHR signals, while
disregarding the impact of filling quality to data augmentation.
We consider the impact of filling quality on data augmentation.
Consequently, we used measures such as SSD (Sum of Squared
Deviations) and PRD (Percentage Relative Difference) to
assess the quality of Synthetic Minority Over-sampling
Technique (SMOTE) [36] after DMDI-FHR application. Given
the significant variance in the absolute values of these
indicators, we present comparison results in percentages, with
the actual values provided for reference.

[ without DMDI-FHR
[ DMDI-FHR

20375 48.866

100%—

39.955

percentage
o«
2
o~
1

60%

SSD ' PRD
evaluation indicator
Fig. 8. The effect of data filling on data augmentation.

Fig. 8 demonstrates that SSD, MAD, and PRD indicators are
significantly reduced after applying DMDI-FHR, thereby
verifying the effectiveness of FHR data filling using DMDI-
FHR. Specifically, each value improves when DMDI-FHR is
added during the data augmentation, indicating an improvement
in the quality of generated data. About SSD, the score decreases
from 20.375 to 16.267, representing a decrease of 20.2%. The
PRD decreased from 48.866 to 39.955, indicating a decrease of
18.2%. Overall, DMDI-FHR exhibited improved results across
all indicators, further demonstrating the impact of data filling
on data augmentation.

V. CONCLUSION

To support the development of consumer FHR monitoring
electronics, we developed a new FHR missing data filling
algorithm DMDI-FHR to improve data quality for fetal status
assisted diagnosis. This algorithm combines two FHR signals
as a new sample to achieve accurate feature extraction between
dual-dimensions. Additionally, MPD method performs blind
period decomposition of the FHR signal to enhance the
independence of training data. After that, the missing part of
FHR signal is generated from the noise by diffusion model
network. Experimental results show that DMDI-FHR algorithm
has a good effect in filling FHR missing data. In the future, it
will be interesting to extend our work to real-time missing data
filling.
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