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Adversarial Training with Anti-adversaries
Xiaoling Zhou, Ou Wu, and Nan Yang

Abstract—Adversarial training is effective in improving the robustness of deep neural networks. However, existing studies still exhibit
significant drawbacks in terms of the robustness, generalization, and fairness of models. In this study, we validate the importance of
different perturbation directions (i.e., adversarial and anti-adversarial) and bounds from both theoretical and practical perspectives. The
influence of adversarial training on deep learning models in terms of fairness, robustness, and generalization is theoretically
investigated under a more general perturbation scope that different samples can have different perturbation directions and varied
perturbation bounds. Our theoretical explorations suggest that combining adversaries and anti-adversaries with varied bounds in
training can be more effective in achieving better fairness among classes and a better tradeoff among robustness, accuracy, and
fairness in some typical learning scenarios compared with standard adversarial training. Inspired by our theoretical findings, a more
general learning objective that combines adversaries and anti-adversaries with varied bounds on each training sample is presented. To
solve this objective, two adversarial training frameworks based on meta-learning and reinforcement learning are proposed, in which the
perturbation direction and bound for each sample are determined by its training characteristics. Furthermore, the role of the
combination strategy with varied bounds is explained from a regularization perspective. Extensive experiments under different learning
scenarios verify our theoretical findings and the effectiveness of the proposed methodology.

Index Terms—Adversarial training, anti-adversary, robustness, generalization, fairness.

✦

1 INTRODUCTION

IN addition to the standard generalization error (also
known as natural error), robust generalization error (also

known as robust error) has attracted great attention from
researchers in recent years. A deep neural network with
a low robust error can deal well with adversarial attacks.
Adversarial training is an effective technique to reduce
the robust errors of deep learning models [1], [2]. Given
a model f(·) and a sample x associated with a label y,
classical adversarial training methods [3], [4] first generate
an adversary (i.e., adversarial example) xadv for x with the
following optimization:

xadv = x+ arg max
∥δ∥≤ϵ

ℓ(f(x+ δ), y), (1)

where ℓ(·, ·) is a loss function, δ and ϵ are the perturba-
tion term and bound, respectively. Adversaries are then
leveraged as training data to learn a more robust model.
A number of variations for adversarial training have been
proposed in recent literature. Zhang et al. [5] decomposed
the robust error into natural and boundary errors. They de-
veloped a new method, TRADES, to obtain a better tradeoff
between standard generalization and robustness. Wang et
al. [6] proposed a misclassification-aware adversarial train-
ing method to focus on the misclassified examples.

Apart from the design of new methods, theoretical stud-
ies have been conducted to explore the effectiveness and
ineffectiveness of adversarial training [2]. Yang et al. [7]
concluded that existing adversarial training methods could
not achieve an ideal tradeoff between accuracy and robust-
ness due to the insufficient smoothness [8] and general-
ization properties of classifiers trained by these methods.
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Fig. 1. Examples of adversaries and anti-adversaries for samples in the
SVHN dataset. Adversarial perturbation makes samples harder, while
anti-adversarial perturbation makes samples easier.

They pointed out that customized optimization methods
or better network architectures should be proposed. The
unsatisfied tradeoff of adversarial training may lead to the
robust overfitting phenomenon [9]. Dong et al. [10] argued
that this phenomenon is due to memorization in adversarial
training. Xu et al. [11] revealed that adversarial training
introduces severe unfairness among different categories.
Thus, they further required the classifier to satisfy two
fairness constraints, and set a varied perturbation bound for
each class, resulting in better fairness. Different from these
studies, we conjectured that one possible reason leading to
the drawbacks of adversarial training is that not all training
samples should be perturbed equally, including both pertur-
bation directions and bounds. For instance, adversaries of
noisy samples may harm the model’s performance [12], and
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Fig. 2. Illustration for adversaries and anti-adversaries with varied
bounds in imbalance learning. Anti-adversaries (adversaries) are ob-
tained by perturbing the samples along the direction away from
(close to) the classifier. Samples in the head/tail category are anti-
adversarially/adversarially perturbed. Besides, boundary samples are
perturbed with small bounds. Thus, fairness between classes can be
improved, and a better tradeoff between the robustness and accuracy of
the model can be attained.

these samples should be perturbed in the anti-adversarial
direction to reduce their negative influence on model op-
timization. Zhu et al. [13] re-annotated pseudo labels for
possible noisy samples before generating adversaries for
them. The generated adversaries are actually perturbed anti-
adversarially in binary classification tasks. In this study,
samples with anti-adversarial perturbations are called anti-
adversaries1 (xat-adv):

xat-adv = x+ arg min
∥δ∥≤ϵ

ℓ(f(x+ δ), y). (2)

The examples of adversaries and anti-adversaries for three
instances in the SVHN [15] dataset are shown in Fig. 1,
in which adversarial (anti-adversarial) perturbation makes
samples harder (easier) than the original ones. In addition,
different samples are supposed to have varied perturbation
bounds. For instance, several previous studies [16], [17], [18]
have argued that samples close to the boundary should be
assigned with small bounds to avoid the model giving up
these samples.

This study conducts comprehensive theoretical analyses
of adversarial training with two different perturbation direc-
tions (adversarial and anti-adversarial) and varied bounds.
Several typical learning scenarios are considered, including
classes with different learning difficulties, imbalance learn-
ing, noisy label learning, and classes with skewed distribu-
tions. Our theoretical findings reveal that the perturbation
directions and bounds can remarkably influence the model
training. The combination of two perturbation directions
and varied bounds can improve fairness among classes and
achieve a better tradeoff among accuracy, robustness, and
fairness. We illustrate the imbalanced learning occasion in
Fig. 2, in which better fairness and tradeoff are attained
by combining adversaries and anti-adversaries in training
with varied perturbation bounds. Accordingly, a novel ob-
jective that combines adversaries and anti-adversaries with
varied perturbation bound for each sample is constructed
for adversarial training. In this objective, individual samples

1. The anti-adversary defined by Alfarra et al. [14] is differ-
ent from ours. Their perturbation term is obtained by optimizing
argminδℓ(f(x + δ), ŷ), where ŷ is the prediction of sample x. In
addition, they utilize anti-adversaries to deal with attacks, whereas we
aim to improve the robustness, accuracy, and fairness of models.

possess distinct perturbation strategies, incorporating both
directions and bounds. These strategies ought to undergo
dynamic optimization throughout the training process in-
stead of being manually specified.

Accordingly, two algorithms based on meta-learning and
reinforcement learning are further proposed to optimize the
objective, in which the perturbation directions and bounds
of samples are determined by their training characteris-
tics, such as training loss and margin. Then, the role of
the combination strategy with varied bounds is analyzed
from a regularization aspect, demonstrating that training
with anti-adversaries is a form of anti-regularization, whose
strength is controlled by the perturbation bound. Thus,
over-regularization caused by standard adversarial training
can be overcome and better fairness among classes can be
achieved. Extensive experiments are conducted under var-
ious learning scenarios, including standard learning, noisy
label learning, and imbalance learning, demonstrating that
the proposed Combining Adversaries and AnTi-adversaries
(CAAT) framework outperforms state-of-the-art adversarial
training methods. In addition, our experimental observa-
tions are in accordance with our theoretical findings.

The contributions of our study are as follows:

• To the best of our knowledge, this is the first work
that combines adversaries and anti-adversaries in
training with varied perturbation bounds. A com-
prehensive theoretical analysis is conducted for the
role of different perturbation directions and varied
bounds2 under four typical learning scenarios.

• A new objective is established for adversarial train-
ing by combining adversaries and anti-adversaries
with varied perturbation bounds. Meta-learning and
reinforcement learning are utilized to solve the opti-
mization. The perturbation direction and bound for
each sample are determined in accordance with its
learning characteristics, such as loss and margin.

• The role of the combination strategy with varied
bounds is explained from a regularization view, re-
vealing that training with anti-adversaries is a form
of anti-regularization, whose strength is controlled
by the perturbation bound. This learning strategy
facilitates preventing over-regularization and achiev-
ing better fairness among classes.

• Extensive experiments under different learning sce-
narios verify that the proposed CAAT can achieve
state-of-the-art performance in attaining the tradeoff
between robustness and accuracy and improving
fairness among classes.

2 RELATED WORK

Tradeoff and Fairness in Adversarial Training. Recent
studies on adversarial training focus on the tradeoff be-
tween accuracy and robustness. Efforts [5], [19], [20], [21]
have been made to reduce the natural errors of the adver-
sarially trained models, such as adversarial training with
semi/unsupervised learning and robust local feature [22].
Rice et al. [9] systematically investigated the role of various

2. In contrast, existing theoretical studies presume that the perturba-
tion directions and bounds are identical for all training samples.
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Fig. 3. (a) Variation of performance gaps between classes as ρ increases under adversarial training with varied bounds. (b) Scope of the
classification boundary under different manners, including natural training (red line), standard adversarial training (green line), TRADES, adversarial
training with different bounds, and adversarial training with different directions and bounds. The parameters are K=2, η=2, ϵ=0.2, and σ=1. The
bounds for class “+1” and “−1” are denoted as ρ+ × ϵ and ρ− × ϵ (−η/ϵ < ρ+, ρ− < η/ϵ), respectively. ρ+(ρ−) < 0 means that class “+1(−1)” is
anti-adversarially perturbed. The formulas of all boundaries are provided in the supplements (Eqs. (A.32)-(A.35)). (c) Logistic regression classifiers
(natural and robust) on simulated data in Eq. (3). (d) Logistic regression classifiers (natural and robust with different directions) on simulated data.

techniques used in deep learning for achieving a better
tradeoff, such as cutout, mixup, and early stopping, where
early stopping is found to be the most effective. This inves-
tigation was also confirmed by Pang et al. [23]. Unfairness
among classes is also a problem caused by adversarial
training. Xu et al. [11] trained a robust classifier to minimize
errors and stressed it to satisfy two fairness constraints. Sev-
eral studies [16], [17], [18] adaptively tune the perturbation
bound for each sample with the inspiration that samples
near the decision boundary should have small bounds.

Meta-learning. Meta-learning has aroused great interest
from researchers in recent years [24]. Existing meta-learning
methods can be divided into three categories, namely,
metric-based [25], [26], model-based [27], and optimizing-
based [28], [29] algorithms. The method we adopted that is
inspired by Model-Agnostic Meta-Learning [28] belongs to
the optimizing-based methods. The data-driven manner of
meta optimization is always utilized to learn the weights or
the parameters of deep neural networks [30], [31].

Reinforcement Learning. Reinforcement learning [32],
[33], [34] studies how natural and artificial systems learn
to predict consequences and optimize their behavior in
the environment from one state/situation to another. In
this subsection, we mainly retrospect the policy-based algo-
rithms [35], [36], which directly optimize the policy to obtain
the optimal strategy. The specific mechanism is to design an
objective function and utilize the gradient ascent to optimize
the parameters and maximize the expected return [36], [37].
This manner is also adopted by our algorithm.

3 THEORETICAL INVESTIGATION

This section conducts comprehensive theoretical analyses to
assess the influence of two different perturbation directions
and varied bounds on adversarial training in four typical
binary classification cases. All proofs are presented in the
supplementary material.

3.1 Notation

We denote the sample instance as x ∈ X and y ∈ Y as
the label, where X ⊆ Rd indicates the instance space, and
Y = {−1,+1} indicates the label space. The classification
model f maps the input data space X to the label space Y .
It can be parameterized by using linear classifiers or deep

neural networks. The overall natural error of f is denoted
as Rnat(f) := Pr(f(x) ̸= y). The overall robust error is
denoted as Rrob(f) := Pr(∃||δ|| ≤ ϵ, s.t.f (x+ δ) ̸= y).

3.2 Case I: Classes with Different Difficulties
In this case, the binary setting established by Xu et al. [11]
is followed. The data from each class follow a Gaussian
distribution D that is centered on θ and −θ, respectively. A
K-factor difference is found between two classes’ variances:
σ+1 : σ−1 = K : 1 and K > 1. Thus, the data follow

y
u.a.r∼ {−1,+1},θ = (η, . . . , η) ∈ Rd, η > 0,

x ∼
{

N
(
θ, σ2

+1I
)
, if y = +1,

N
(
−θ, σ2

−1I
)
, if y = −1.

(3)

Class “+1” is harder because the optimal linear classifier
under natural training will give a larger error to class
“+1” than to “−1”. Xu et al. [11] proved that adversarial
training with an equal bound would exacerbate the perfor-
mance gap (including natural and robust errors) between
classes and hurt the harder class. We prove that adversarial
training with unequal bounds on two classes can tune the
performance gap and the tradeoff between robustness and
accuracy. Let σ−1=σ. Theorem 1 calculates the errors of two
classes utilizing adversarial training with unequal bounds.

Theorem 1. For a data distribution D in Eq. (3), assume that the
perturbation bounds of class “−1” and class “+1” are ϵ and ρ×ϵ
(0 ≤ ϵ, ρϵ < η), respectively. The optimal robust linear classifier
frob which minimizes the average robust error is

frob = argmin
f

{Pr(∃∥δ∥ ≤ ϵ, s.t.f(x+ δ) ̸= y | y = −1)

+ Pr(∃∥δ∥ ≤ ρ×ϵ, s.t.f(x+ δ) ̸= y | y = +1)}.
(4)

It has natural errors for the two classes:

Rnat (frob,−1)

=Pr

{
N (0, 1) ≤ B −K ·

√
B2 + q(K)−

√
d

σ
ϵ

}
,

Rnat (frob,+1)

=Pr

{
N (0, 1) ≤ −K ·B +

√
B2 + q(K)−

√
dρ

Kσ
ϵ

}
,

(5)

where B = 2
K2−1

√
d(η− ϵ(ρ+1)

2 )

σ and q(K) = 2 logK
K2−1 . Addition-

ally, there is Rnat(fnat,+1) > Rnat(fnat,−1).
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Fig. 4. (a) Variation of performance gaps between classes as ρ increases under adversarial training with varied bounds on imbalanced data.(b):
Scope of the classification boundary under different manners on imbalanced data. The parameters are V = 2, η = 2, ϵ = 0.8, and σ = 1. The
formulas of all boundaries are provided in the supplementary material (Eqs. (A.71)-(A.74)). (c): Logistic regression classifiers (natural and robust)
on simulated data in Eq. (6). (d): Logistic regression classifiers (natural and robust with different directions). The imbalance factor V is set to 50.

The robust errors are shown in the supplements
(Eq. (A.9)). The natural and robust errors change with
different ρ values. A corollary depicting the variation of the
performance gap between classes under adversarial training
with unequal bounds is derived according to Theorem 1.

Corollary 1. The data and perturbations in Theorem 1 are
followed. When K< exp(d(η − ϵ)2/2σ2), the performance gaps
between classes (i.e., |Rnat(frob,+1) − Rnat(frob,−1)| and
|Rrob(frob,+1) − Rrob(frob,−1)|) decrease with the increase
in ρ and thus better fairness can be attained. During this process,
the scope of the decision boundary is dη.

From Corollary 1, better inter-class fairness can be at-
tained through adversarial training with varied bounds,
as shown in Fig. 3(a). From Fig. 3(c), the boundary shifts
towards the easy class (“−1”) when the hard class (“+1”)
has a larger adversarial bound than that of the easy one.
From Fig. 3(b), adversarial training with varied bounds
contributes to the larger scope (i.e., dη) of the boundary
compared with TRADES [5] and standard adversarial train-
ing. Thus, a better tradeoff among accuracy, robustness,
and fairness can be attained. Next, anti-adversaries are
considered, in which samples in class “−1” perform anti-
adversarial perturbation. Similar to Theorem 1, a theorem is
proposed to calculate the errors of classes when adversaries
and anti-adversaries are combined in training with varied
bounds, which is placed in the supplementary material
(Theorem A.2). A corollary can then be derived.

Corollary 2. For a data distribution D in Eq. (3), assume that
class “−1” is anti-adversarially perturbed with the bound ϵ, and
class “+1” is adversarially perturbed with the bound ρ×ϵ (0≤
ϵ, ρϵ < η). When K < exp(d(η − ϵ)2/2σ2), the performance
gaps between classes (i.e., |Rnat(frob,+1)−Rnat(frob,−1)| and
|Rrob(frob,+1)−Rrob(frob,−1)|) decrease with the increase
in ρ and thus better fairness can be attained. Additionally, the
boundary scope during this process is 2dη which contains that of
using only adversaries.

In accordance with Corollaries 1 and 2, adversarial train-
ing with unequal bounds and the combination strategy
with varied bounds can nearly attain the same performance.
Nevertheless, the integration of anti-adversaries contributes
to the largest scope (i.e., 2dη) of the classification bound-
ary, as shown in Fig. 3(b). Thus, it is more effective in
achieving a better tradeoff among accuracy, robustness, and

fairness theoretically. As shown in Figs. 3(c) and(d), the
combination strategy has a more pronounced effect under
the same bound (i.e., the same ρ) compared with using only
adversaries, indicating that it needs smaller bounds when
the same performance is achieved. Therefore, the combina-
tion strategy is more effective than using only adversarial
perturbation, indicating that anti-adversaries are valuable.

3.3 Case II: Classes with Imbalanced Proportions
In this case, the two variances in Eq. (3) are assumed to be
identical3, that is, σ+1 = σ−1 = σ. However, p(y = +1)
(p+) is no longer equal to p(y = −1) (p−). Without loss of
generality, let p+ : p− = 1 : V and V > 1. The data follow

Pr(y = +1) = p+,Pr(y = −1) = p−,

θ = (

dim=d︷ ︸︸ ︷
η, . . . , η),

x ∼
{

N
(
θ, σ2I

)
, if y = +1,

N
(
−θ, σ2I

)
, if y = −1.

(6)

Class “−1” is the majority category, and an optimal
linear classifier under natural training will give a smaller
error to class “−1” than to “+1”, as stated in Theorem 2.

Theorem 2. For a data distribution DV in Eq. (6) with the
imbalance factor V , the optimal linear classifier under natural
training fnat which minimizes the average natural error is

fnat = argmin
f

Pr(f(x) ̸= y). (7)

It has natural errors for the two classes:

Rnat (fnat,−1) = Pr

{
N (0, 1) ≤ −A− log V

2A

}
,

Rnat (fnat,+1) = Pr

{
N (0, 1) ≤ −A+

log V

2A

}
,

(8)

where A=
√
dη
σ . As a result, class “+1” has a larger natural error:

Rnat (fnat,−1) < Rnat (fnat,+1) . (9)

Theorem 2 demonstrates that class “+1” which has a
small prior probability is harder to be classified than the
dominant class (“−1”) under natural training. The class-
wise difference is due to the prior probability ratio V . If

3. The case with different variances can be explored similarly.
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the two classes’ prior probabilities are equal, i.e., V = 1, the
natural errors for the two classes are the same.

Then we prove that standard adversarial training will
exacerbate the class performance gap. Nevertheless, adver-
sarial training with unequal bounds on the two classes can
tune the performance gap and the tradeoff among robust-
ness, accuracy, and fairness. Theorem 3 calculates the errors
of two classes utilizing adversarial training with varied
perturbation bounds.

Theorem 3. For a data distribution DV defined in Eq. (6) with
the imbalance factor V , assume that the perturbation bounds of
classes “−1” and “+1” are ϵ and ρ × ϵ (0 ≤ ϵ, ρϵ < η), respec-
tively. The natural errors of the optimal robust linear classifier frob
for the two classes are

Rnat (frob,−1) = Pr

{
N (0, 1) ≤ −A− log V

2A
−

√
d

σ
ϵ

}
,

Rnat (frob,+1) = Pr

{
N (0, 1) ≤ −A+

log V

2A
−

√
dρ

σ
ϵ

}
,

(10)

where A =
√
d(η− ϵ(ρ+1)

2 )

σ .

The robust errors are presented in the supplements
(Eq. (A.48)). In accordance with Theorems 2 and 3, when
ρ in Eq. (10) equals 1, that is, utilizing standard adversarial
training, the performance gap will be enlarged, as shown in
Fig. 4(c). A corollary depicting the variation of the perfor-
mance gap between classes under adversarial training with
unequal bounds is then derived according to Theorem 3.

Corollary 3. The data and perturbations in Theorem 3 are
followed. When V < exp(d(η − ϵ)2/2σ2), the performance gaps
between classes (i.e., |Rnat(frob,+1) −Rnat(frob,−1)| and
|Rrob(frob,+1)−Rrob(frob,−1)|) decrease with the increase
in ρ and thus better fairness can be attained. During this process,
the scope of the decision boundary is dη.

As stated in Corollary 3, the performance gaps can be
decreased with different bounds, as shown in Fig. 4(a). In
addition, the boundary can be moved with different ρ values
within the scope (i.e., dη) that covers the boundaries of the
standard adversarial training and TRADES, as shown in
Fig. 4(b). From Fig. 4(c), adversarial training with varied
bounds can attain a better tradeoff between robustness and
accuracy as the obtained classifier is closer to the opti-
mal classifier which passes through point (0,0). Next, anti-
adversaries are considered, and a theorem calculating the
errors when adversaries and anti-adversaries are combined
in training with varied bounds is proposed, which is placed
in the supplementary material (Theorem A.5). Then, a corol-
lary regarding the combination strategy is derived.

Corollary 4. For a data distribution DV in Eq. (6), assume that
class “−1” is anti-adversarially perturbed with the perturbation
bound ϵ, and class “+1” is adversarially perturbed with the bound
ρ × ϵ (0 ≤ ϵ, ρϵ < η). When V < exp(d(η − ϵ)2/2σ2),
the performance gaps between classes (i.e., |Rnat(frob,+1)−
Rnat(frob,−1)| and |Rrob(frob,+1)−Rrob(frob,−1)|) de-
crease with the increase in ρ and thus better fairness can be
attained. Additionally, the boundary scope during this process is
2dη which contains that of using only adversaries.
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Fig. 5. (a): Scope of the classification boundary under different manners
on noisy data. The parameters are p = 0.2, η = 2, ϵ = 0.2, and
σ = 1. The bounds for samples in class “+1”, clean samples in class
“−1”, and noisy samples in class “−1” are denoted as ρ+ × ϵ, ρc

− × ϵ,
ρn
− × ϵ (−η/ϵ < ρ+, ρc

−, ρn
− < η/ϵ), respectively. The formulas of all

boundaries are provided in the supplementary material (Eqs. (A.113)-
(A.116)). (b): Logistic regression classifiers (natural and robust with
different directions) on simulated binary data in Eq. (11). Noisy samples
are anti-adversarially perturbed with the perturbation bound ρ × ϵ, and
clean samples are adversarially perturbed with the bound ϵ. The flipping
rate p is set to 0.2.

From Corollary 4, better fairness can be attained by the
combination strategy. As shown in Fig. 4(b), it can contribute
to the largest boundary scope, i.e., 2dη, compared with only
adversaries. From the example in Figs. 4(c) and (d), classi-
fication boundaries that are closer to the Bayesian optimal
classifier can be achieved through the combination strategy
with varied bounds compared with using only adversaries.
Thus, a superior tradeoff between accuracy and robustness
can be attained. The above example also demonstrates that
combining adversaries and anti-adversaries only requires a
smaller bound than using only adversaries when the same
performance is achieved. Therefore, the combination strat-
egy is more effective than only adversarial perturbations in
imbalance learning.

3.4 Case III: Classes with Noisy Labels
In this case, the two classes’ variances and prior probabilities
are assumed to be identical, that is, σ+1 = σ−1 and p+ = p−.
Without loss of generality, class “−1” is assumed to contain
flipped noisy labels. The data follow

ỹ
u.a.r∼ {−1,+1},

y =


+1 ỹ = +1,

+1 with a probability p and ỹ = −1,

−1 with a probability 1− p and ỹ = −1,

θ = (

dim=d︷ ︸︸ ︷
η, . . . , η),

x ∼
{

N
(
θ, σ2I

)
, if y = +1,

N
(
−θ, σ2I

)
, if y = −1,

(11)

where p (< 1) is the flipping rate for class “−1”. Intuitively,
class “−1” is harder than class “+1” as it contains noisy
labels. Theorem 4 demonstrates that the error of class “−1”
which contains label noise is larger than that of class “+1”
under natural training.

Theorem 4. For a data distribution DN in Eq. (11) with the
flipping rate p, the optimal linear classifier fnat under natural
training which minimizes the average natural error is

fnat = argmin
f

Pr(f(x) ̸= y). (12)
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It has natural errors for the two classes:

Rnat (fnat,−1) = Pr

N (0, 1) ≤ −A+
log

√
1+p
1−p

A

 ,

Rnat (fnat,+1) = Pr

N (0, 1) ≤ −A−
log

√
1+p
1−p

A

 ,

(13)

where A=
√
dη
σ . As a result, class “−1” has a larger natural error:

Rnat (fnat ,+1) < Rnat (fnat ,−1) . (14)

We then prove that standard adversarial training exacer-
bates the performance gap between classes. The theorem is
presented in the supplementary material (Theorem A.7). As
shown in Figs. 5(a) and (b), standard adversarial training
forces the classification boundary to move towards the
noisy class (“−1”). Subsequently, we theoretically verify that
adversarial training with unequal bounds for samples (0
for noisy samples and ϵ for clean ones) can decrease the
performance gap between classes and improve the tradeoff
between robustness and accuracy, compared with standard
adversarial training, as illustrated in Fig. 5(b). However,
the obtained classifier is still far from the optimal classifier
(passing through point (0,0)), indicating that the balancing
capability achieved by solely relying on adversaries is very
limited. Corresponding theorem depicting adversarial train-
ing with varied bounds is presented in the supplementary
material (Theorem A.8). Next, we prove that combining
adversaries and anti-adversaries in training can tune the
performance gap between classes and the tradeoff between
robustness and accuracy more efficiently. Theorem 5 calcu-
lates the errors of two classes when adversaries and anti-
adversaries are combined in training.

Theorem 5. For a data distribution DN in Eq. (11) with
the flipping rate p, assume that clean samples x ∈ Xc are
adversarially perturbed with the perturbation bound ϵ, and noisy
samples x ∈ Xn are anti-adversarially perturbed with the bound
ρ × ϵ (0 ≤ ϵ, ρϵ < η). The optimal robust linear classifier frob
which minimizes the average robust error is

frob =argmin
f

{Pr(∃∥δ∥ ≤ ϵ, s.t.f(x+ δ) ̸= y | x ∈ Xc)

+ Pr(∃∥δ∥ ≤ ρ×ϵ, s.t.f(x+ δ) ̸= y | x ∈ Xn)}.
(15)

It has natural errors for the two classes:

Rrob (fnat,−1)

=Pr

N (0, 1) ≤ −A+
log

√
1+p
1−p

A
− p(ρ− 1)

√
d

σ
ϵ−

√
dϵ

σ

 ,

Rrob (fnat,+1) = Pr

N (0, 1) ≤ −A−
log

√
1+p
1−p

A
−

√
dϵ

σ

 ,

(16)

where A =
√
d(η−ϵ− p(ρ−1)

2 ϵ)

σ .

According to Theorem 5, Corollary 5 can be deduced,
which portrays how the performance gaps change with the
increase in ρ under the combination strategy.

(a) (b)

+1

-1

+1

-1

Fig. 6. (a): The occasion when the skewed distribution of class “+1”
is far from the decision boundary (α > 0). The solid lines represent
the distributions of the training set, and the dashed lines represent the
perturbed distributions of the training set. The parameters are α = 3,
η = 1.2, and σ = 1. (b): The occasion when the skewed distribution of
class “+1” is close to the decision boundary (α < 0). The parameters
are α = −3, η = 2, and σ =1.

Corollary 5. The data and perturbations in Theorem 5 are fol-

lowed. When p< (e
d(η−ϵ)2

2σ2 − 1)/(e
d(η−ϵ)2

2σ2 + 1), the performance
gaps between classes (i.e., |Rnat(frob,+1)−Rnat(frob,−1)| and
|Rrob(frob,+1)−Rrob(frob,−1)|) decrease with the increase in
ρ and thus better fairness can be attained. During this process,
the scope of the decision boundary is 2dη.

From Corollary 5, the fairness between classes can be
tuned when adversaries and anti-adversaries are combined
in training. Fig. 5(a) illustrates the boundary scope in dif-
ferent manners, in which the combination strategy has the
largest scope (i.e., 2dη). From Fig. 5(b), combining adver-
saries and anti-adversaries with varied perturbation bounds
can make the classification boundary closer to the optimal
classifier compared with using only adversaries. Thus, a
better tradeoff among the robustness, accuracy, and fairness
of the model can be attained. Our analysis also reveals
that noisy samples should be perturbed anti-adversarially,
manifesting that anti-adversaries are meaningful.

3.5 Case IV: Classes with Skewed Distributions

In this case, the two classes’ variances and prior probabilities
are assumed to be identical, i.e., σ+1 = σ−1 = σ and p+ =
p−. Besides, there is no noisy sample in the two classes.
However, due to some reasons such as improper data pre-
processing or sampling, the data in a class follow a skewed
distribution. To simplify the problem, we consider that the
data are one-dimensional, i.e., d = 1, which are assumed to
be from two classes {−1,+1}. The data in class “−1” follow
a Gaussian distribution N (−θ, σ2), while the training data
of class “+1” follow a skewed distribution which is denoted
as SN (θ, σ2, α) [38], where α is the skew coefficient. The
distribution is reduced to the normal distribution when
α = 0. The probability density function of SN (θ, σ2, α) [38]
is f(x; θ, σ) = 2ϕ (x; θ, σ) Φ (α(x− θ)), where ϕ(x; θ, σ) =
1√
2π

e−
(x−θ)2

2σ2 and Φ(x; θ, σ) =
∫ x
−∞ ϕ(t; θ, σ)dt. Thus, the

data follow

y
u.a.r∼ {−1,+1}, θ = η,

x ∼
{

SN (θ, σ2, α) if y = +1,
N

(
−θ, σ2

)
if y = −1.

(17)

We consider two occasions, including α > 0 and α < 0.
Intuitively, under natural training, class “+1” is harder than
class “−1” when α > 0, and class “+1” is easier than class
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“−1” when α < 0. Then, we prove that when α < 0 (α > 0),
the error of class “+1” is smaller (larger) than that of class
“−1” under natural training, as shown in Theorem 6.

Theorem 6. For a data distribution Dα in Eq. (17), which is one-
dimensional with the skew coefficient α, assume that the optimal
linear classifier of the two classes is −η < x = x∗ < η. When
α < (>)0, then the optimal classification boundary x = x∗ <
(>)0 under natural training.

From Theorem 6, when α < (>)0, the error of the opti-
mal classifier for class “+1” is smaller (larger) than that for
class “−1” under natural training as the optimal classifier is
biased towards class “−1” (“+1”). The class-wise difference
is only due to the skew coefficient α. If α = 0, then the
errors of the two classes are the same. Next, we prove
that if α > (<)0, then the adversaries (anti-adversaries)
of samples in class “+1” can help tune the performance
gap between classes and the tradeoff among generalization,
robustness, and fairness. Corollary 6 manifests that when
α > 0, adversarial training with varied bounds can help
tune the performance gap between classes and the tradeoff
among generalization, robustness, and fairness.

Corollary 6. The data in Theorem 6 are followed, in which
α>0. Assume that the adversarial perturbation bounds for classes
“+1” and “−1” are ρ× ϵ and ϵ (0 ≤ ϵ, ρϵ < η), respectively.
The performance gaps between classes (i.e., |Rnat(frob,+1)−
Rnat(frob,−1)| and |Rrob(frob,+1)−Rrob(frob,−1)|) decrease
with the increase in ρ and thus better fairness can be attained.

From Corollary 6, performance gaps between classes can
be tuned using adversarial training with varied bounds.
Moreover, a larger scope of the decision boundary can be
achieved, encompassing that attained by standard adver-
sarial training. As shown in Fig. 6(a), the decision boundary
achieved through adversarial training with varied bounds
is more closely aligned with the optimal classifier when
compared to natural training. Corollary 7 indicates that
when α < 0, combing adversaries and anti-adversaries in
training can help attain a better tradeoff among generaliza-
tion, robustness, and fairness.

Corollary 7. The data in Theorem 6 are followed, in which α <
0. Assume that class “+1” is anti-adversarially perturbed with
the perturbation bound ρ × ϵ , and class “−1” is adversarially
perturbed with the bound ϵ (0 ≤ ϵ, ρϵ < η). The performance
gaps between classes (i.e., |Rnat(frob,+1)−Rnat(frob,−1)| and
|Rrob(frob,+1)−Rrob(frob,−1)|) decrease with the increase in
ρ and thus better fairness can be attained.

Accordingly, combining adversaries and anti-
adversaries in training effectively decreases the performance
gap between classes. Thus, the fairness can be improved.
Moreover, this combination strategy compels the decision
boundary to shift towards the optimal classification
boundary, as shown in Fig. 6(b). Therefore, a better tradeoff
among robustness, accuracy, and fairness can be attained.

3.6 Summarization

Our theoretical analyses comprehensively reveal that the
perturbation directions and bounds notably influence the
generalization, robustness, and fairness of the robust model

under four typical learning scenarios. The main findings are
summarized as follows: 1) Adversarial training with varied
bounds enhances fairness between classes and achieves a
better tradeoff among robustness, accuracy, and fairness,
compared with standard adversarial training, as demon-
strated in Corollaries 1, 3, and 6. 2) Combining adver-
saries and anti-adversaries in training with varied bounds
achieves a superior tradeoff among robustness, accuracy,
and fairness compared to using only adversaries, as man-
ifested by Corollaries 2, 4, 5, and 7. 3) The combination
strategy requires smaller perturbation bounds to achieve
the same performance compared to using only adversaries,
making it a more efficient approach. Existing studies ig-
nored the valuable anti-adversaries. Thus, a new optimized
objective that combines adversaries and anti-adversaries
with varied perturbation bounds is proposed.

4 METHODOLOGY

Illuminated by the theoretical findings, a new objective
function is first established, which combines adversaries
and anti-adversaries in training with a varied perturbation
bound for each sample. Meta-learning and reinforcement
learning are always utilized to select parameters in sample
weighting and perturbation [31], [36]. Accordingly, two
manners which are based on meta-learning and reinforce-
ment learning, respectively, are proposed to solve the opti-
mization. Their structures are shown in Fig. 7.

4.1 Proposed Objective Function
Inspired by our theoretical findings, the perturbation direc-
tions and bounds of samples are determined by the learning
characteristics of samples (ζ), such as learning difficulty,
imbalance ratio, noise degree, and skewness. Consequently,
our proposed objective function that combines adversaries
and anti-adversaries with varied bounds is formulated as

min
W

Ex[max
Ω

Es+∼p(s+|ζ,Ω)ℓ(fW (xadv), y)

+ min
Ω

Es−∼p(s−|ζ,Ω)ℓ(fW (xat-adv), y)].
(18)

The outermost optimization objective aims to minimize
the loss of the classifier. The inner optimization objectives
are designed to generate adversaries and anti-adversaries,
respectively maximizing and minimizing the sample losses.
s+ and s− refer to the perturbation strategies including
directions and bounds for the adversaries xadv and anti-
adversaries xat-adv, respectively. These perturbation strate-
gies are designed to be generated using a network param-
eterized by Ω, based on the training characteristics of sam-
ples ζ. f

W
is the classifier with the parameter W . The robust

error ℓ(f
W
(xadv), y) is then divided into the natural error

ℓ(f
W
(x), y) and the boundary error ℓ(f

W
(x), f

W
(xadv)) to

help achieve a better tradeoff between the accuracy and
robustness [5]. To improve the fairness among classes, we
further stress f to satisfy two fairness constraints following
the manner in [11]. Thus, our objective is

min
W

Ex{max
Ω

Es+∼p(s+|ζ,Ω)[ℓ(fW (x), y) + λℓ(fW (x), fW (xadv))]

+ min
Ω

Es−∼p(s−|ζ,Ω)ℓ(fW (xat-adv), y)},

s.t.
{

Rnat(fW
, c)−Rnat(fW

) ≤ τ1,∀c ∈ Y,
Rbdy(fW

, c)−Rbdy(fW
) ≤ τ2,∀c ∈ Y,

(19)
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Fig. 7. The overall structure of Meta-CAAT (a) and Reinforce-CAAT(b). In Meta-CAAT, the red and green lines represent the learning loops of the
classifier and the weighting network, respectively.

where Rbdy refers to the boundary error, denoted as
Rbdy(fW

) =Pr(∃xadv ∈ B(x, ϵ), f
W
(xadv) ̸= f

W
(x)). More-

over, Rnat(fW
, c) = Pr(f

W
(x) ̸= y | y = c) and

Rbdy(fW
, c)=Pr(∃xadv∈B(x, ϵ), f

W
(xadv) ̸=f

W
(x) |y= c).

λ>0 is a regularization parameter that adjusts the influence
of the natural and boundary errors; τ1 and τ2 are small and
positive predefined parameters. The approach for solving
the fairness constraints is the same as that of Xu et al. [11],
where a Lagrangian is formed. Setting appropriate perturba-
tion strategies for samples, including directions and bounds,
is essentially a hyperparameter selection problem. Due to
samples having their unique optimum values, conventional
methods like grid search are impractical in such cases.
Meta-learning and reinforcement learning have proven to
be effective for hyperparameter selection [31], [36]. Conse-
quently, we utilize these two methods to help optimize the
hyperparameters of perturbations.

4.2 Extraction of Training Characteristics (ζx)
Accordingly, six training characteristics of samples are ex-
tracted from the classifier and input into the strategy net-
work to generate the perturbation directions and bounds
for training samples, as shown in the extraction module in
Fig. 7. The six training characteristics are loss (ζx,1), margin
(ζx,2), the norm of loss gradient for the logit vector (ζx,3),
the information entropy of the softmax output (ζx,4), class
proportion (ζx,5), and the average loss of each class (ζx,6),
which are detailed below:

• Loss (ζx,1) is the most widely used factor to reflect
the training behavior of samples [31].

• Margin (ζx,2) refers to the distance from the sample
to the classification boundary [39], which is always
utilized to measure the learning difficulty of samples.
It is calculated by

ζx,2 = f
W
(x)yx − maxj ̸=yx(fW

(x)j), (20)

where f
W
(x) is the output of the softmax layer.

• The norm of loss gradient (ζx,3) is another com-
monly used characteristic [40]. As the cross-entropy
loss is adopted, it can be calculated by

ζx,3 = ||yx − f
W
(x)||2, (21)

where yx is the one-hot label vector of sample x.
• Information entropy (ζx,4) of f

W
(x) is used to mea-

sure the uncertainty of training samples [41]. Its
calculation is

ζx,4 = −
∑|Y|

j=1
f
W
(x)j log2(fW

(x)j), (22)

where Y refers to the label set.
• Class proportion (ζx,5) is commonly used to handle

imbalanced class distribution [42]. Its calculation is

ζx,5 = Nyx/N, (23)

where Nyx and N are the numbers of samples in
class yx and in the entire training set, respectively.

• Average loss of each category (ζx,6) is another class-
level factor indicating the average learning difficulty
of samples in each class. Its calculation is

ζx,6 = ℓ̄yx , (24)

where ℓ̄yx is the average loss of samples in class yx.

The above six characteristics will be input into the strategy
network to generate the perturbation strategies of samples.

4.3 Meta-learning-based Manner
To solve the objective in Eq. (19), we first propose a meta-
learning-based algorithm. In this manner, the strategy net-
work is a weighting network, which generates the weights
(αx and βx) of the losses for each sample’s adversary and
anti-adversary. The values of the weights (αx and βx) are
supposed to be selected in {0, 1} and their sum is 1. In this
way, a sample is either adversarially or anti-adversarially
perturbed. Thus, the objective is

min
W ,Ω

Ex{αx[ℓ(fW
(x), y) + λℓ (f

W
(x), f

W
(xadv))]

+ βxℓ (fW
(xat-adv), y)},

s.t.


[αx, βx] = fΩ(ζx),∀x ∈ X ,
Rnat(fW

, c)−Rnat(fW
) ≤ τ1,∀c ∈ Y,

Rbdy(fW
, c)−Rbdy(fW

) ≤ τ2,∀c ∈ Y,

(25)

where fΩ is a multilayer perception (MLP) network with a
hidden layer and a τ -softmax layer: Softmax((hω + b)/τ),
which can generate approximated one-hot vectors. As the
gradient cannot be backpropagated to the values of the
bound through the adversaries and anti-adversaries, we
adopted two varied perturbation bounds to generate the
bounds for samples, which are stated in the next subsection.

4.3.1 Perturbation Bound (ϵx)
The varied perturbation bound for each sample is calculated
in the following two manners. Following Xu et al. [11], the
class-wise perturbation bound named ReMargin, suitable
for imbalanced data, is utilized. In addition, we propose
a sample-wise bound to handle noise. It is inspired by
the intuition that noisy samples generally have a large
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Algorithm 1: Meta-CAAT
Input: Iteration T , step sizes η0, η1, and η2, batch size n,

meta batch size m, bound ϵ, #iterations K in inner
optimization, classifier network fW , weighting
network fΩ, Dtrain, Dmeta.

Output: Trained robust network fW .

1: Initialize networks fW and fΩ;
2: for t = 1 to T do
3: Sample n and m samples from Dtrain and Dmeta;
4: for i = 1 to n (in parallel) do
5: xadv

i =xi+0.001N (0,I) and xat-adv
i =xi+0.001N (0,I),

where N (0, I) is the Gaussian distribution;
6: Calculate the perturbation bound ϵi for sample xi;
7: for k = 1 to K do
8: xadv

i ←
ΠB(xi,ϵi)(η0 sign(∇xadv

i
ℓ(fW (xi),fW (xadv

i )))+xadv
i ),

where Π is the projection operator;
9: xat-adv

i ←
ΠB(xi,ϵi)(−η0 sign(∇xat-adv

i
ℓ(fW (xat-adv

i ), yi)) +

xat-adv
i );

10: end for
11: end for
12: Formulate Ŵ

(t)
(Ω) by Eq. (27);

13: Update Ω(t+1) by Eq. (28) and update W (t+1) by
Eq. (29);

14: end for

norm of loss gradient, and these samples should exhibit the
greatest degree of anti-adversarial perturbation. Thus, the
grad-based bound can be calculated as

ϵx = (αxgxadv
+ βxgxat-adv

+ ε)× ϵ, (26)

where gxadv
and gxat-adv

are the normalized
||∂ℓ(fW (x),f

W
(xadv))

∂xadv
||2 and ||∂ℓ(fW (xat-adv),y)

∂xat-adv
||2, respectively.

ϵ is a predefined bound, and ε is a hyperparameter that is
set to 0.9 in our experiments. This bound is also effective on
imbalanced data because samples in tail classes have large
norms of loss gradient, and they should do the greatest
degree of adversarial perturbation.

4.3.2 Training with Meta-learning

On the basis of the extracted training characteristics and
calculated bounds, an online meta-learning-based learn-
ing strategy is adopted to alternatively update W and Ω
using a single optimization loop, as shown in Fig. 7(a).
Assume that we have a small amount of unbiased meta data
Dmeta = {(xmeta

i , ymeta
i )}Mi=1, where M ≪ N . Even if meta

data are lacking, they can be compiled from the training data
Dtrain [43]. There are three main steps in this algorithm. We
ignore the regularization terms introduced by the fairness
constraints to facilitate writing. The supplementary material
provides the complete formulas (Eqs. (A.119)-(A.121)).

First, Ω is regarded as the to-be-updated parameter, and
the parameter W , which is a function of Ω, is formulated.
Stochastic gradient descent (SGD) is utilized to optimize
the training loss. Specifically, a batch of training samples
{(xi, yi)}ni=1 is selected in each iteration, where n is the

batch size. Then, the updating of W can be formulated as

Ŵ
(t)
(Ω) = W (t) − η1

1

n

∑n

i=1
∇

W
{αi[ℓ(fW

(xi), yi)+

λℓ(f
W
(xi), fW

(xadv
i ))] + βiℓ(fW

(xat-adv
i ), yi)}|

W (t)
,

(27)
where η1 is the step size. The parameter of the weighting
network Ω after receiving feedback from the classifier can
be updated on a batch of meta data as follows:

Ω(t+1) = Ω(t) − η2
1

m

∑m

i=1
∇Ω{αi[ℓ

meta(f
Ŵ (t)(Ω)

(xi), yi)

+ λℓmeta(f
Ŵ (t)(Ω)

(xi), f
Ŵ (t)(Ω)

(xadv
i ))] + βiℓ

meta(f
Ŵ (t)(Ω)

(xat-adv
i ), yi)}|Ω(t) ,

(28)
where m and η2 are the batch size of meta data and the step
size, respectively. The parameters of the classifier are finally
updated with the obtained weights by fixing the parameters
of the weighting network as Ω(t+1):

W (t+1) = W (t) − η1
1

n

∑n

i=1
∇

W
{αi[ℓ(fW

(xi), yi)+

λℓ(f
W
(xi), fW

(xadv
i ))] + βiℓ(fW

(xat-adv
i ), yi)}|

W (t)
.

(29)

Our Meta-CAAT algorithm is shown in Algorithm 1.

4.4 Reinforcement-learning-based Manner

As the perturbation bounds of samples can only be cal-
culated by predefined varied bounds in Meta-CAAT, we
further propose a reinforcement-learning-based algorithm,
in which both the perturbation direction and bound are
generated by a strategy network fΩ, as shown in Fig. 7(b).
As with Meta-CAAT, fΩ is an MLP with a hidden layer.
The strategy network captures the conditional distribution
p(s|ζ,Ω) of the given training characteristics ζ and Ω. The
parameters of the classifier and the strategy network are
updated iteratively. Omitting the fairness constraints, given
Ω, the subproblem of optimizing the classifier is defined as

min
W

Ex{Es+∼p(s+|ζ,Ω)[ℓ(fW (x), y) + λℓ(fW (x), fW (xadv))]

+ Es−∼p(s−|ζ,Ω)ℓ(fW (xat-adv), y)}.
(30)

We randomly sample a strategy from the conditional dis-
tribution p(s|ζ,Ω) which can be divided into p(s+|ζ,Ω)
and p(s−|ζ,Ω). After collecting the adversaries and anti-
adversaries for a batch of samples, we can update the
parameters of the classifier through gradient descent:

W(t+1) = W(t) − η1
1

n

n∑
i=1

∇Wℓ (f (x̃i) , yi) |W (t) , (31)

where x̃i is the perturbed sample of xi. When x̃i is the
adversary of sample xi, ℓ (f (x̃i) , yi) = ℓ(f (xi) , yi) +
λℓ(f

(
xadv
i

)
, f (xi)). When x̃i is the anti-adversary of xi,

ℓ (f (x̃i) , yi) = ℓ(f
(
xat-adv
i

)
, yi). n is the number of samples

in a mini-batch and η1 is the learning rate.
Given W , the subproblem of optimizing the strategy

network can be written as

max
Ω

ExEs+∼p(s+|ζ,Ω)[ℓ(fW (x), y) + λℓ(fW (x), fW (xadv))]

+ min
Ω

ExEs−∼p(s−|ζ,Ω)ℓ(fW (xat-adv), y).

(32)
As the gradient cannot be backpropagated to the attack
strategies through adversaries and anti-adversaries, we
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Algorithm 2: Reinforce-CAAT
Input: Iteration T , step sizes η1, and η2, batch size n,

interval K, classifier network fW , strategy network
fΩ, Dtrain.

Output: Trained robust network fW .

1: Initialize networks fW and fΩ;
2: for t = 1 to T do
3: Sample n samples from Dtrain;
4: Generate xadv and xat-adv for the n samples using the

strategies produced by fΩ;
5: Update W t+1 by Eq. (31);
6: if (t+ 1)%K = 0 then
7: Update Ωt+1 by Eq. (35);
8: end if
9: end for

compute the derivative of the objective defined in Eq. (32)
with respect to the parameters Ω using the REINFORCE
algorithm [37]. Denote ExEs+∼p(s+|ζ,Ω)[ℓ(fW (x), y) +
λℓ(fW (x), fW (xadv))] as J+(Ω). Its derivative is

∇ΩJ
+(Ω) = ∇ΩExEs+∼p(s+|ζ;Ω)L0(x)

= Ex

∫
s+

L0(x) · ∇Ωp(s
+ | ζ;Ω)ds+

= Ex

∫
s+

L0(x) · p(s+ | ζ;Ω)∇Ω log p(s+ | ζ;Ω)ds+

= ExEs+∼p(s+|ζ;Ω)[L0(x) · ∇Ω log p(s+ | ζ;Ω)],
(33)

where L0(x) = ℓ(fW (x), y) + λℓ(fW (x), fW (xadv)). In
the same way, denote ExEs−∼p(s−|ζ,Ω)ℓ(fW (xat-adv), y) as
J−(Ω). We obtain ∇ΩJ

−(Ω) = ExEs−∼p(s−|ζ;Ω)[L1(x) ·
∇Ω log p(s− | ζ;Ω)], where L1(x) = ℓ(fW (xat-adv), y).

Similar to solving Eq. (30), we sample the attack strate-
gies from the conditional distribution of strategy i.e.,
p(s|ζ,Ω), to generate adversaries and anti-adversaries. The
gradient with respect to the parameters can be approxi-
mately computed as follows:

∇ΩJ
+(Ω)−∇ΩJ

−(Ω) ≈ 1

n

n∑
i=1

L0(xi) · ∇Ω log p
Ω

(
s+i | ζi

)
− 1

n

n∑
i=1

L1(xi) · ∇Ω log p
Ω

(
s−i | ζi

)
.

(34)
Then, Ω can be updated using

Ω(t+1) = Ω(t) + η2[∇ΩJ
+(Ω)−∇ΩJ

−(Ω)]|Ω(t) , (35)

where η2 is the step size. We update Ω every K times of
updating W . The algorithm is presented in Algorithm 2.

4.5 Comparison of Two Manners
The advantages and disadvantages of the two algorithms
are compared. The superiority of Meta-CAAT is that it
can adjust the distribution information of the training set
as the information in an additional high-quality dataset is
utilized in each training epoch, which is beneficial for biased
datasets. However, the construction of the meta dataset is
sometimes challenging. In addition, the bounds of samples
can only be calculated by predefined varied bounds as
the gradient cannot be backpropagated to the perturbation
bound through adversaries and anti-adversaries. Therefore,
we further propose Reinforce-CAAT, in which both the

perturbation directions and bounds can be generated by the
strategy network. Furthermore, an additional meta dataset
is not necessary. However, the defect is that it cannot adjust
the distribution information of the training set.

5 EXPLANATION FROM A REGULARIZATION VIEW

We explain the role of the combination strategy with var-
ied bounds from the regularization aspect. An existing
study [44] has pointed out that adversarial training can be
viewed as a special regularization manner. The optimized
loss of adversarial training is

L̃(x, y) := 1

2
[L(x, y) + L(x+ δ, y)]. (36)

If the perturbation term δ is small enough, the above
objective can be approximated using the first-order Taylor
expansion, which becomes

L̃(x, y) ≈1

2
[L(x, y) + L(x, y) + δ · ∂xL(x, y)]

= L(x, y) + 1

2
δ · ∂xL(x, y).

(37)

The additional term introduced by sample perturbation is
1
2δ · ∂xL(x, y). For adversaries, we have

δ · ∂xL(x, y) = max
δ:∥δ∥p≤ϵ

[L(x+ δ, y)− L(x, y)]

≈ max
δ:∥δ∥p≤ϵ

[∂xL(x, y) · δ]

= ϵ ∥∂xL(x, y)∥q ,

(38)

where 1
p+

1
q =1. Incorporating Eq. (38) into Eq. (37), we yield

L̃(x, y) ≈ L(x, y) + ϵ

2
∥∂xL(x, y)∥q . (39)

Thus, adversarial training introduces a regularization term
for the loss gradient of features, whose strength is controlled
by the perturbation bound ϵ, helping the model to be insen-
sitive to the perturbations. Alternatively, the predicted labels
of samples in a small region (denoted as robust region)
around a sample xi are consistent with that of xi.

For anti-adversaries, we have

δ · ∂xL(x, y) = max
δ:∥δ∥p≤ϵ

[L(x, y)− L(x+ δ, y)]

≈ min
δ:∥δ∥p≤ϵ

[∂xL(x, y) · δ]

= −ϵ ∥∂xL(x, y)∥q .

(40)

Incorporating Eq. (40) into Eq. (37), we yield

L̃(x, y) ≈ L(x, y)− ϵ

2
∥∂xL(x, y)∥q . (41)

Thus, training with anti-adversaries is a form of anti-
regularization, which makes the model more sensitive to
the perturbation of a sample. Alternatively, the robust re-
gions of samples will be decreased compared with those
under natural training. Thus, anti-regularization improves
the accuracy of original samples. In our algorithm, both
the regularization direction and strength can be adjusted
adaptively, which is flexible.

Furthermore, we establish that distinct samples within
a dataset should possess different perturbation directions
and bounds. Let’s consider a training set, denoted as
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Fig. 8. (a): Illustration for noisy and boundary samples. (b): Illustration for
imbalanced class distribution. The blue and orange boxes manifest the
robust regions for samples in the blue and orange classes, respectively.
The green boxes represent the adjusted robust regions of the two cate-
gories when adversaries and anti-adversaries are combined in training.
The green line represents the new classification boundary using the
combination strategy. (c): The average margins of samples with different
perturbation bounds.

D = {(xi, yi)}|D|
i=1, in which the samples are drawn i.i.d

according to a distribution. The optimal model for D is
attained through adversarial training with a perturbation
bound of ϵ, whose objective can be expressed as follows:

L̃ ≈
∑|D|

i=1
[ℓ(xi, yi) +

ϵ

2
∥∂xi

ℓ(xi, yi)∥q]. (42)

Let f∗ be the optimal model obtained by minimizing L̃ in
Eq. (42). Assuming there is a biased dataset for a real-world
task comprises the following four types of data. First, there
are data points in D that undergo adversarial perturbation
with a bound of ϵ, constituting a ratio of p1. Second, there
are data points in D that undergo adversarial perturbation
with a bound of 2ϵ, comprising a ratio of p2. Third, there are
data points from D that remain unaltered, making up a ratio
of p3. Finally, there are data points in D that are subjected to
anti-adversarial perturbation with a bound of ϵ, accounting
for a ratio of p4 (p1 + p2 + p3 + p4 = 1). Additionally,
the perturbation bounds for samples with ratios of p1, p2,
p3, and p4, are denoted as ϵ1, ϵ2, ϵ3, and ϵ4, respectively.
These perturbation bounds can be positive (for adversarial
perturbation) or negative (for anti-adversarial perturbation).
Consequently, for the samples in the dataset with a ratio of
p1, their optimization objective can be expressed as follows:

L̃1 ≈ p1
∑|D|

i=1
[ℓ(xi, yi) + (

ϵ

2
+

ϵ1
2
) ∥∂xi

ℓ(xi, yi)∥q]. (43)

The training objectives for the remaining three parts can
be formulated in a similar manner. For the sake of sim-
plicity in notation, let us denote

∑|D|
i=1 ℓ(xi, yi) as R1 and∑|D|

i=1 ∥∂xi
ℓ(xi, yi)∥ as R2. To obtain the same optimal

model (f∗) obtained by Eq. (42), the following relationship
is supposed to be held:

p1R1 + (
ϵ

2
+

ϵ1
2
)p1R2 + p2R1 + (ϵ+

ϵ2
2
)p2R2 + p3R1

+
ϵ3
2
p3R2 + p4R1 + (

ϵ4
2

− ϵ

2
)p4R2 = R1 +

ϵ

2
R2.

(44)
A feasible solution ensuring the hold of Eq. (44) is

{ϵ1 = 0, ϵ2 = −ϵ, ϵ3 = ϵ, ϵ4 = 2ϵ}. This solution implies
that samples with a ratio of p1 should remain unperturbed,
samples with a ratio of p2 should undergo anti-adversarial
perturbation with a bound of ϵ, samples with a ratio of
p3 should be subjected to adversarial perturbation with a
bound of ϵ, and samples with a ratio of p4 should be ad-
versarially perturbed with a bound of 2ϵ. Hence, it becomes

evident that different samples necessitate distinct perturba-
tion directions and bounds. Our approach determines per-
turbation directions and bounds of samples through meta-
learning and reinforcement learning, guided by the training
characteristics of samples.

Through our analysis, the benefits of training with var-
ied bounds are summarized as follows. First, as bound-
ary samples are easy to over-regularize, they should be
perturbed with small bounds to avoid over-regularization.
Alternatively, enforcing large margins on those examples
will force the classifier to give up those examples, leading to
a distorted decision surface, as shown in Fig. 8(a). Fig. 8(c)
demonstrates that samples with smaller margins (boundary
samples) do have smaller bounds in real applications. This
experiment is conducted by Reinforce-CAAT on CIFAR10
using the PreAct-ResNet18 model. Second, the perturbation
bound for each sample controls its regularization strength.
It is natural that different samples should have diverse
regularization strengths according to their characteristics.
Consequently, better model performance can be attained
under adversarial training with varied bounds.

Furthermore, the benefits of combining adversaries with
anti-adversaries in training are as follows. First, noisy sam-
ples should perform anti-regularization as the expansion of
their robust region will lead to the false prediction of their
surrounding clean samples, as illustrated in Fig. 8(a). Sec-
ond, anti-regularization (i.e., training with anti-adversaries)
benefits fairness among classes. Standard adversarial train-
ing makes the classifier more inclined to the hard class,
making the classifier more sensitive (insensitive) to the per-
turbations of samples in the hard (easy) category. Therefore,
samples in the hard and easy categories should conduct
regularization and anti-regularization, respectively. Accord-
ingly, the robust regions for the samples in the hard and
easy classes will be increased and decreased, as illustrated
in Fig. 8(b). Thus, anti-regularization helps improve the fair-
ness among classes as the classification boundary is adjusted
to a proper position. Additionally, the combination strategy
enables the application of diverse regularization directions
and strengths tailored to individual samples, facilitating the
enhancement of model performance.

The limitations of the proposed anti-adversarial per-
turbation are also discussed here. Firstly, given that anti-
adversarial perturbations simplify samples, training ex-
clusively with anti-adversaries may not result in a well-
performing model in some learning scenarios. Therefore,
our method advocates for integrating adversaries with anti-
adversaries during training to effectively adjust the dif-
ficulty distribution of the training data. Second, apply-
ing anti-adversarial perturbations to samples may decrease
the model’s robustness against these samples. Therefore,
it should be determined whether to apply adversarial or
anti-adversarial perturbations to samples based on certain
criteria. For example, our method judges through a network
based on the training characteristics of samples.

6 EXPERIMENTS

Experiments are conducted to verify our theoretical findings
and the effectiveness of the proposed two algorithms (Meta-
CAAT and Reinforce-CAAT) in improving the accuracy,
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robustness, and fairness of models. Three typical learning
scenarios are considered, including training on standard
datasets, imbalance learning, and noisy label learning.

6.1 Experimental Settings
Three benchmark adversarial learning datasets, includ-
ing CIFAR10 [45], SVHN [15], and ImageNet [46], are
adopted. The noisy and imbalanced versions of the CI-
FAR data [31] are also considered. For CIFAR10 and
SVHN datasets, PreAct-ResNet18 [47] and Wide-ResNet28-
10 (WRN28-10) [48] are adopted as the backbone classifiers.
For ImageNet, the ResNet50 [47] model is utilized. Three
popular adversarial training algorithms, namely, PGD [3],
TRADES [5], and FRL [11], are compared. A debiasing
method [49] is also compared, which is to upweight the loss
of the category with the largest robust error in the training
data. The results of TRADES and FRL are calculated by
using the codes in their official repositories.

The training and testing configurations utilized by Xu
et al. [11] are followed. 300 samples in each category with
clean labels are selected as the meta dataset, helping us tune
the hyperparameters and train the strategy network. Adver-
sarial training is performed both on the PGD attack setting
ϵ = 8/255 with cross-entropy loss and on AutoAttack,
which combines two new versions of PGD with FAB and
Square Attack to form a parameter-free, computationally af-
fordable and user-independent ensemble of complementary
attacks. For the PGD attack, the number of iterations in an
adversarial attack is set to 10 and 100; the predefined bound
is set to 8/255 for our Meta-CAAT and FRL (ReMargin). As
for Reinforce-CAAT, the range of the perturbation bound is
set from 3 to 15. All the models are optimized using SGD
with the momentum 0.9 and a weight decay 5 × 10−4. For
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Fig. 9. (a): Ratio of adversaries in each class during training on CI-
FAR10. (b): Average loss of each class during training on CIFAR10.

Meta-CAAT, the values of λ is selected in {2/3, 1, 1.5, 6}. For
Reinforce-CAAT, the values of λ for CIFAR10 and SVHN are
0.005 and 0.1, respectively. During the evaluation, we report
each model’s average and worst-class natural, boundary,
and robust error rates. The calculation of the average and
worst-class natural and robust errors are as follows:

Rnat =
1

C

∑C

i=1

1

Bi

∑Bi

j=1
I(f(xj) ̸= yj), (45)

R̂nat = maxCi=1

1

Bi

∑Bi

j=1
I(f(xj) ̸= yj), (46)

Rrob =
1

C

C∑
i=1

1

Bi

Bi∑
j=1

I(∃ ∥δj∥ ≤ ϵ, f(xj + δj) ̸= yj), (47)

R̂nat = maxCi=1

1

Bi

Bi∑
j=1

I(∃ ∥δj∥ ≤ ϵ, f(xj+δj) ̸= yj), (48)

where I(·) is a sign function, C and Bi refer to the size
of the label set and the sample size of class i, respectively.

TABLE 1
Average and worst-class natural, boundary, and robust errors (%) for various algorithms on standard CIFAR10.

Method Avg. Nat. Worst Nat. Avg. Bdy. Worst Bdy. Avg. Rob. Worst Rob.

PGD Adv. Training 15.5 33.8 40.9 55.9 56.4 82.7
TRADES (1/λ = 1) 14.6 31.2 43.1 64.6 57.7 84.7
TRADES (1/λ = 6) 19.6 39.1 29.9 49.5 49.5 77.6
Baseline ReWeight 19.2 28.3 39.2 53.7 58.4 80.1
FRL (ReWeight) 16.0 22.5 41.6 54.2 57.6 73.3
FRL (ReMargin) 16.9 24.9 35.0 50.6 51.9 75.5
FRL (ReWeight+ReMargin) 17.0 26.8 35.7 44.5 52.7 69.5
Meta-CAAT (Grad-based) 14.6 23.6 14.4 23.3 29.0 48.1
Meta-CAAT (ReMargin) 13.9 24.3 15.4 24.9 29.3 44.4
Reinforce-CAAT 13.7 24.6 15.1 25.1 28.8 46.8

TABLE 2
Average and worst-class natural, boundary, and robust errors (%) for various algorithms on standard SVHN.

Method Avg. Nat. Worst Nat. Avg. Bdy. Worst Bdy. Avg. Rob. Worst Rob.

PGD Adv. Training 9.4 19.8 37.0 53.9 46.4 73.7
TRADES (1/λ = 1) 9.9 18.6 39.1 60.6 49.0 78.3
TRADES (1/λ = 6) 10.5 23.4 32.5 52.5 43.0 76.6
Baseline ReWeight 8.8 17.4 39.3 54.7 48.2 72.1
FRL (ReWeight) 7.9 13.3 38.2 56.4 46.1 69.7
FRL (ReMargin) 9.2 17.4 39.7 49.6 48.9 67.0
FRL (ReWeight+ReMargin) 7.7 12.8 36.2 51.2 43.9 64.0
Meta-CAAT (Grad-based) 6.3 9.8 27.2 35.4 33.5 43.2
Meta-CAAT (ReMargin) 6.6 10.8 24.7 32.3 31.3 43.9
Reinforce-CAAT 6.2 9.9 24.5 33.7 30.7 44.2
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TABLE 3
Robust accuracy for AutoAttack on standard CIFAR10.

Method AutoAttack
PGD Adv. Training 44.29
TRADES (1/λ = 1) 50.11
TRADES (1/λ = 6) 50.73
FRL (ReWeight) 51.34
FRL (ReMargin) 51.66
FRL (ReWeight+ReMargin) 52.43
Meta-CAAT (Grad-based) 60.45
Meta-CAAT (ReMargin) 60.76
Reinforce-CAAT 61.54

TABLE 4
Robust accuracy for AutoAttack on ImageNet.

Method AutoAttack
PGD Adv. Training 37.51
TRADES (1/λ = 1) 40.33
TRADES (1/λ = 6) 40.18
FRL (ReWeight) 43.05
FRL (ReMargin) 43.12
FRL (ReWeight+ReMargin) 43.21
Meta-CAAT (Grad-based) 49.87
Meta-CAAT (ReMargin) 49.21
Reinforce-CAAT 49.69

ϵ is the perturbation bound. R̂nat and Rnat refer to the
worst-class and average natural errors, respectively. R̂rob

and Rrob refer to the worst-class and average robust er-
rors, respectively. The average (worst-class) boundary er-
ror Rbdy (R̂bdy) equals the average (worst-class) robust
error minus the average (worst-class) natural error, i.e.,
Rbdy = Rrob −Rnat (R̂bdy = R̂rob − R̂nat).

6.2 Experiments on Standard Datasets
The average and worst-class natural and robust errors of
PreAct-ResNet18 on standard CIFAR10 and SVHN datasets

for PGD with step 10 are shown in Tables 1 and 2, while
those of Wide-ResNet28-10 (WRN28-10) and PGD with step
100 are presented in the supplementary material (Tables A-
1, A-2, and A-3). As our training and testing configurations
are the same as those in [11], the results of the competing
methods in the FRL [11] paper are directly presented.

From the results, Meta-CAAT with two types of bound
reduces the average natural and robust errors under differ-
ent degrees, manifesting that it obtains better accuracy and
robustness of the model. Compared with other methods,
Meta-CAAT decreases the average and worst robust error
rates by 21% and 25% on CIFAR10. It decreases the average
and worst robust error rates by 13% and 21% on SVHN.
In addition, Reinforce-CAAT achieves equivalent or even
better performance compared with Meta-CAAT on standard
datasets. It attains the lowest average natural and robust
errors on CIFAR10 and has the minimum average natural,
boundary, and robust errors on SVHN. Baseline ReWeight
only decreases the worst intraclass natural error but cannot
equalize boundary or robust errors. FRL [11] has limited
ability to reduce the worst-class boundary and robust errors,
leading to limited fairness among classes. Both algorithms
of CAAT more effectively decrease the worst intraclass
errors. Thus, it achieves better fairness among classes than
other methods. Although FRL (ReWeight) obtains the lowest
worst-class natural error, it has large average and worst ro-
bust errors, which is inferior to CAAT. Hard classes (classes
with large average losses) have higher ratios of adversaries
than easy ones during training, as illustrated in Figs. 9(a)
and (b), helping improve the model performance on hard
classes and enhance the fairness among classes. The same
conclusions are also obtained on the SVHN dataset.

The robust accuracy on standard CIFAR10 and ImageNet
datasets for AutoAttack are shown in Tables 3 and 4. From
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Fig. 10. (a): Ratio of adversaries for noisy and clean samples on CIFAR10 with 20% uniform noise during training. (b): Average adversarial and
anti-adversarial perturbation bounds for clean and noisy samples on CIFAR10 with 20% uniform noise during training. (c): Ratio of adversaries for
noisy and clean samples on CIFAR10 with 40% pair-flip noise during training. (d): Average adversarial and anti-adversarial perturbation bounds for
clean and noisy samples on CIFAR10 with 40% pair-flip noise during training.
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Fig. 11. (a) and (b): Natural and robust errors of four methods for each class on CIFAR10 with 20% pair-flip noise. (c) and (d): Natural and robust
errors of four methods for each class on CIFAR10 with 40% pair-flip noise.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2023 14

TABLE 5
Average and worst-class natural, boundary, and robust errors (%) for various algorithms on CIFAR10 with 20% pair-flip noise.

Method Avg. Nat. Worst Nat. Avg. Bdy. Worst Bdy. Avg. Rob. Worst Rob.

PGD Adv. Training 15.6 34.6 37.1 52.5 52.8 81.0
TRADES (1/λ = 1) 15.6 36.6 31.0 54.2 46.5 61.7
TRADES (1/λ = 6) 16.4 34.2 21.0 38.9 37.4 59.9
FRL (ReWeight) 15.3 31.6 36.0 50.7 51.4 61.4
FRL (ReMargin) 15.2 31.3 36.0 51.9 51.1 79.1
FRL (ReWeight+ReMargin) 15.7 31.7 34.3 48.2 50.0 59.1
Meta-CAAT (Grad-based) 14.6 25.2 13.9 24.5 28.5 45.4
Meta-CAAT (ReMargin) 14.7 30.6 14.7 24.0 29.4 52.3
Reinforce-CAAT 14.9 29.8 15.2 26.7 30.1 52.8

TABLE 6
Average and worst-class natural, boundary, and robust errors (%) for various algorithms on CIFAR10 with 40% uniform noise.

Method Avg. Nat. Worst Nat. Avg. Bdy. Worst Bdy. Avg. Rob. Worst Rob.

PGD Adv. Training 17.8 35.3 32.9 51.3 50.7 74.0
TRADES(1/λ = 1) 18.6 35.3 33.9 56.8 52.5 72.1
TRADES(1/λ = 6) 23.6 38.8 28.7 55.8 52.3 69.7
FRL(ReWeight) 15.5 29.5 34.8 49.7 50.3 75.5
FRL(ReMargin) 15.7 32.1 33.3 50.0 49.0 75.8
FRL(ReWeight+ReMargin) 15.9 29.9 33.2 50.4 49.1 72.9
Meta-CAAT (Grad-based) 13.6 28.6 19.3 31.3 32.9 57.9
Meta-CAAT (ReMargin) 14.1 28.9 19.8 31.8 33.9 60.4
Reinforce-CAAT 15.3 28.9 19.4 32.0 34.7 59.2

TABLE 7
Average and worst-class natural, boundary, and robust errors (%) on CIFAR10 with an imbalance factor of 10.

Method Avg. Nat. Worst Nat. Avg. Bdy. Worst Bdy. Avg. Rob. Worst Rob.

PGD Adv. Training 20.1 49.4 42.8 49.6 62.9 93.0
TRADES (1/λ = 1) 16.8 40.5 32.3 57.7 49.1 75.5
TRADES (1/λ = 6) 23.6 54.0 23.8 46.9 47.4 79.0
FRL (ReWeight) 16.9 35.5 38.1 49.1 55.0 72.0
FRL (ReMargin) 17.5 49.8 35.6 51.7 53.1 88.8
FRL (ReWeight+ReMargin) 17.2 39.6 35.1 51.2 52.3 72.2
Meta-CAAT (Grad-based) 15.8 34.3 14.2 24.3 30.0 58.6
Meta-CAAT (ReMargin) 16.2 34.2 13.7 23.2 29.9 57.4
Reinforce-CAAT 16.3 34.6 15.9 25.1 32.2 58.8

the results, Meta-CAAT with two types of bound increases
the robust accuracies under different degrees. Compared
with other methods, Meta-CAAT increases the robust ac-
curacy by 9% on CIFAR10. It increases the robust error
accuracy by 6% on ImageNet. In addition, Reinforce-CAAT
achieves equivalent or even better performance compared
with Meta-CAAT on these two datasets. It attains the highest
robust accuracy on CIFAR10 and has the second-best robust
accuracy on ImageNet.

6.3 Experiments of Noisy Classifications
Two types of corrupted labels, including uniform and pair-
flip noises, are adopted [31]. Uniform noise means that the
label of each sample is independently changed to a random
category, while flip noise means that the label of each sample
is independently flipped to two similar categories. In the
experiments, we randomly select two categories as similar
categories. The noise ratios are set to 20% and 40%. The
CIFAR10 dataset, which is popularly used for the evalu-
ation of noisy labels, is adopted. The results of PreAct-
ResNet18 [47] on CIFAR10 with 20% pair-flip and 40%

uniform noises for PGD with step 10 are reported in Tables 5
and 6, while others are presented in the supplementary
material (Tables A-4 and A-5). From the results, combin-
ing adversaries and anti-adversaries in training (i.e., Meta-
CAAT and Reinforce-CAAT) achieves the lowest average
and worst natural and robust errors, indicating that the
best generalization, robustness, and fairness are obtained
compared with other approaches. As Meta-CAAT utilizes
an additional clean dataset to optimize the parameters in
each epoch, its performance is generally better than that of
Reinforce-CAAT on noisy datasets.

As illustrated in Figs. 10(a) and (c), almost all noisy sam-
ples are anti-adversarially perturbed during training, which
is in accordance with our theoretical findings. The ratios
of adversaries for clean samples increase as training pro-
gresses, indicating that clean samples play an increasingly
important role during training. From Figs. 10(b) and (d),
the average anti-adversarial perturbation bound for noisy
samples is the largest, implying that noisy samples exhibit
the largest degree of anti-adversarial perturbation. Thus,
the negative influence of noisy samples can be deduced.
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TABLE 8
Average and worst-class natural, boundary, and robust errors (%) for various algorithms on CIFAR10 with an imbalance factor of 100.

Method Avg. Nat. Worst Nat. Avg. Bdy. Worst Bdy. Avg. Rob. Worst Rob.

PGD Adv. Training 24.5 74.8 38.0 47.5 62.5 96.2
TRADES(1/λ = 1) 30.8 68.3 29.9 64.2 60.7 83.8
TRADES(1/λ = 6) 39.2 83.2 16.7 34.3 55.9 86.1
FRL(ReWeight) 19.8 42.6 36.9 50.8 56.7 86.9
FRL(ReMargin) 23.2 69.6 34.2 43.8 57.4 94.3
FRL(ReWeight+ReMargin) 19.2 48.3 36.8 52.5 56.0 89.4
Meta-CAAT (Grad-based) 18.8 39.3 16.8 27.5 35.6 66.8
Meta-CAAT (ReMargin) 18.7 41.5 17.6 25.8 36.3 72.9
Reinforce-CAAT 19.1 41.2 17.5 27.6 36.6 71.5
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Fig. 12. (a) and (b): Natural and robust errors of four methods for each class on CIFAR10 with an imbalance factor of 10. (c) and (d): Natural and
robust errors of four methods for each class on CIFAR10 with an imbalance factor of 100.

In addition, the average adversarial perturbation bound
for clean samples is also large in training, manifesting
that clean samples are adversarially perturbed to a high
degree. Figs. 11(a)-(d) exhibit the natural and robust errors
of each class on CIFAR10 with 20% and 40% pair-flip noise.
Those with 20% and 40% uniform noise are shown in the
supplementary material (Fig. A-19). Our method decreases
the robust and natural errors of most categories. In addition,
the gaps between the largest and the smallest errors are
also narrowed, manifesting that the combination strategy
achieves the best fairness compared with other methods.

6.4 Experiments of Imbalanced Classifications

The long-tailed version of CIFAR10 compiled by Cui et
al. [42] is used. The values of the imbalance factor are set
to 10 and 100. The results of PreAct-ResNet18 [47] for PGD
with step 10 are presented in Tables 7 and 8. Combining
adversaries with anti-adversaries in training with varied
perturbation bounds achieves the minimum average and
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Fig. 13. (a): Ratio of adversaries in each class during training on CI-
FAR10 with an imbalance factor of 100. (b): Average bound of each
class during training on CIFAR10 with an imbalance factor of 100. “C1”
to “C10” is from the first head category to the last tail category.

worst-class natural and robust errors compared with other
algorithms. Compared with Reinforce-CAAT, Meta-CAAT
utilizes an additional balanced meta dataset to optimize
the parameters in each epoch, which obtains state-of-the-
art performance. As shown in Figs. 12(a)-(d), CAAT de-
creases the natural and robust errors for most classes and
achieves the smallest performance gap among different
classes. Figs. 13(a) and (b) illustrate the ratio of adversaries
and the average perturbation bound of each class during
the training process. The first head class with the largest
number of samples has the lowest ratio of adversaries, while
the tail classes have high proportions of adversaries, which
is in accordance with our theoretical analysis. In addition,
the head and tail categories have large average perturbation
bounds, indicating that the head classes exhibit a great
degree of anti-adversarial perturbation, and the tail classes
conduct a large extent of adversarial perturbation.

6.5 Ablation Studies
This section conducts ablation studies for our CAAT. All
experiments are conducted on PGD with step 10.
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Fig. 14. Average (a) and worst-class (b) natural, boundary, and robust
errors (%) for four variations of CAAT on standard CIFAR10.
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Fig. 15. Ablation studies for the six training characteristics of Meta-CAAT
(top) and Reinforce-CAAT (bottom) on standard CIFAR10.

First, to validate that both perturbation directions and
bounds are crucial, four variations of CAAT are considered,
including adversarial training with the same perturbation
direction and bound (Setting I), adversarial training with
the same perturbation direction and different bounds (Set-
ting II), adversarial training with different perturbation
directions (adversaries and anti-adversaries) and the same
bound (Setting III), and adversarial training with differ-
ent perturbation directions and bounds (Setting IV). Meta-
CAAT is adopted to realize the four variations. The PreAct-
ResNet18 model is utilized as the backbone classifier. The
results are presented in Figs. 14(a) and (b). Settings III and IV
achieve lower average and worst-class natural and robust
errors than Settings I and II. Thus, the combination strategy
is more effective than using only adversaries. Compared
with Setting III, Setting IV further decreases the average
natural error. In addition, the average boundary and robust
errors are reduced by Setting II compared with Setting I.
Therefore, the varied bound is more valid in some cases.

Second, we evaluate the necessity of six adopted training
characteristics, which include loss (ζx,1), margin (ζx,2), loss
gradient (ζx,3), information entropy (ζx,4), class proportion
(ζx,5), and the average loss for each class (ζx,6). The results
are depicted in Fig. 15, indicating that the exclusion of any
of these characteristics leads to a decrease in model perfor-
mance. Consequently, all these characteristics are deemed
both useful and necessary.

Third, we assess the necessity of employing meta- and
reinforcement learning in determining the perturbation di-
rections and bounds for samples within the context of
imbalance learning. In the absence of both meta- and re-
inforcement learning, samples in tail categories are ad-
versarially perturbed, while those in head categories are
anti-adversarially perturbed to enhance the model’s per-
formance on tail categories. The perturbation bound is set
at 8/255. The results are presented in Table 9. As evident,
the model’s performance is notably inferior when com-
pared to the utilization of meta-learning or reinforcement
learning. This indicates that employing meta-learning and
reinforcement learning to determine the perturbed direc-
tions and bounds of samples based on their diverse training
characteristics is a more reasonable approach compared to

TABLE 9
Average natural, boundary, and robust errors (%) on CIFAR10 with an

imbalance factor of 10.

Method Avg. Nat. Avg. Bdy. Avg. Rob.

Meta-CAAT (Grad-based) 15.8 14.2 30.0
Meta-CAAT (ReMargin) 16.2 13.7 29.9
Reinforce-CAAT 16.3 15.9 32.2
Without 20.5 20.1 40.6

determining them artificially.

7 CONCLUSIONS

This study theoretically investigates the role of adversar-
ial training with different directions (adversarial and anti-
adversarial) and bounds for the robust model. Four typical
learning occasions are considered, including classes with
different difficulties, imbalance learning, noisy label learn-
ing, and classes with skewed distributions. A series of the-
oretical findings are obtained, illuminating a new objective
that combines adversaries and anti-adversaries (CAAT) in
training with varied perturbation bounds. Consequently,
two novel adversarial training frameworks (Meta-CAAT
and Reinforce-CAAT), which are based on meta-learning
and reinforcement learning, respectively, are proposed to
solve the objective, in which the perturbation directions and
bounds are determined by the training characteristics of
samples. The role of the combination strategy with varied
bounds is further explained from a regularization aspect.
Extensive experiments verify the rationality of our theo-
retical findings and the effectiveness of the proposed ad-
versarial training frameworks in achieving better accuracy,
robustness, and fairness of the robust models compared
with other adversarial training methods.
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