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Let S be a sequence over a finite abelian group G and vg(S)
be the times that g ∈ G occurs in S. A sequence S over G is 
called weak-regular if vg(S) ≤ ord(g) for every g ∈ G. Denote 
by N(G) the smallest integer t such that every weak-regular 
sequence S over G of length |S| ≥ t has a nonempty zero-
sum subsequence T of S satisfying vg(T ) = vg(S) for some 
g | S. N(G) has been formulated by Gao et al. very recently 
to study zero-sum problems in a unify way and determined 
only for cyclic groups of prime-power order and some other 
very special groups. As for general cyclic groups G = Cn, they 
gave that

2n− �3
√
n� + 1 ≤ N(G) ≤ 2n− �2

√
n + 1� + 1.

In this paper, we first study the max gap of the unit group 
of the residue class ring and give an upper bound of it. Then 
we prove that there is always an integer a ∈ [n 1

2 , n 1
2 + n

1
4 ]

such that gcd(a, n) = 1 for n ≥ 2227. Finally, we improve the 
result of Gao et al. by showing that

2n− �2
√
n + 1� ≤ N(G) ≤ 2n− �2

√
n + 1� + 1

for any cyclic group G = Cn with n ≥ 3, in which for 
each equality, there are infinitely many n making it hold. 
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And a computing result prefigures that N(G) has not been 
determined only for very few cyclic groups G.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

The zero-sum theory on abelian groups can be traced back to 1960’s and has been 
developed rapidly in recent several decades. Many invariants have been formulated in the 
zero-sum theory, such as the Erdős-Ginzburg-Ziv constant s(G), the Davenport constant 
D(G), the Olson constant Ol(G) and so on. For more information on the development of 
the zero-sum theory we refer to [1,5,6].

In order to describe zero-sum invariants uniformly, in 2021 [2], Gao et al. provided a 
unified way to formulate zero-sum invariants, which is more general than the definition 
in 2018 [4]. To understand zero-sum invariants better, they introduced the concepts of 
the weak-regular sequence over G and the constant N(G) of G. A sequence S over G
is called weak-regular if vg(S) ≤ ord(g) for every g ∈ G. N(G) is the smallest integer 
t such that every weak-regular sequence S over G of length |S| ≥ t has a nonempty 
zero-sum subsequence T of S satisfying vg(T ) = vg(S) for some g | S or, equivalently, 
supp(ST−1) �= supp(S). They also pointed it out that N(G) ≤ 1 + ol(G)(exp(G) − 1).

One year later, Gao et al. [3] made some further study on N(G) for the cyclic groups 
and the elementary abelian groups. They proved that 2n − Bn+1 + 1 ≤ N(G) ≤ 2n −
An+1 + 1 for a cyclic group G = Cn with n ≥ 3, where �2√n� = An ≤ Bn ≤ �3√n�. 
More detail of An and Bn will be introduced and discussed in Section 4. Obviously, if 
An+1 = Bn+1, then N(Cn) = 2n − �2

√
n + 1� + 1.

In this paper, we start with an elementary question in Elementary Number Theory. 
Some usual notations in Number Theory will be explained at the end of this section 
intensively.

In Section 2, we introduce a combinatorics constant MG(n), which we call the max 
gap of the unit group of the residue class ring modulo n, and find it no greater than 
2ω(n)−1pω(n) for any integer n ≥ 2. In plain language, for an integer n ≥ 2 and any 
2ω(n)−1pω(n) consecutive integers, there is always one of them relatively prime to n. The 
method is also elementary and the successive sweep principle plays an important role. 
Although this upper bound is too large for n with a large ω(n) and is reached only if n
is a power of a prime number, it is enough for what we need next.

In Section 3, we focus on the interval [n 1
2 , n

1
2 + n

1
4 ]. With the help of a personal 

computer and the explicit estimate of pk and ϑ(pk) (see Lemma 3.1) obtained by Massias 
and Robin, we compare MG(n) with 

⌊
n

1
4
⌋

for n with a large ω(n). Together with more 
careful analysis for n with a small ω(n), we prove that for any integer n ≥ 2227, there is 
always an integer a ∈ [n 1

2 , n
1
2 + n

1
4 ] such that gcd(a, n) = 1.



200 X. Jiang, W. Yang / Journal of Number Theory 260 (2024) 198–211
In Section 4, we turn back to the zero-sum theory mentioned above. Using the above 
result, we prove that An ≤ Bn ≤ An +1 for n ≥ 2. Moreover, for each equality, there are 
infinitely many n making it hold. Therefore, we give a very sharp bound of the constant 
N(G) and state it as below.

Theorem 1.1. For any cyclic group G = Cn with n ≥ 3,

2n− �2
√
n + 1� ≤ N(G) ≤ 2n− �2

√
n + 1� + 1.

Moreover, for each equality, there are infinitely many n making it hold.

In the final section, as a concluding remark, we give the computing result of Bn+1 −
An+1 for 2 ≤ n ≤ 108 and four more classes of n such that Bn+1 > An+1. This result 
tells us that Bn+1 = An+1 for the overwhelming majority of positive integers n. Thus, 
N(Cn) = 2n − �2

√
n + 1� + 1 for these n. The remaining n that N(Cn) have not been 

determined should be of density 0.
At the end of this section, we list some notations used in this paper.
Let Z denote the set of integers and N := Z≥1 denote the set of positive integers.
Let pn be the n-th prime number. That is, p1 = 2, p2 = 3 and so on. We set p0 := 1

in this paper.
For a real number x, we set 	x
 := max{n ∈ Z | n ≤ x} and �x� := min{n ∈ Z | n ≥

x}.
In the symbol 

∑
or 

∏
, the variable is limited to positive integers. If the variable is 

p, then it is limited to prime numbers.
Let ω(n) :=

∑
p|n 1 be the number of different prime divisors of n and ω(1) := 0.

Let ϕ(n) be the Euler phi function.
Let rad(n) :=

∏
p|n p be the product of all different prime divisors of n and rad(1) := 1.

Let ϑ(x) :=
∑

p≤x ln p be the well-known Chebyshev function.
For a positive integer n and a set X of integers, let X(n) := {x ∈ X | n divides x}

and X [n] := {x ∈ X | gcd(x, n) = 1}.
For any prime p and any integer n, let vp(n) stand for the p-adic valuation of n, i.e., 

vp(n) is the biggest nonnegative integer r with pr dividing n.

2. The gap of the unit group of the residue class ring

In this and the next section, we use the notations

X(n) := {x ∈ X | n divides x}

and

X [n] := {x ∈ X | gcd(x, n) = 1}
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for a positive integer n and a set X of integers.
For an integer n ≥ 2, let Z/nZ be the residue class ring modulo n and let η : Z →

Z/nZ be the canonical epimorphism. Then (Z/nZ)× is the unit group of Z/nZ and 
η−1((Z/nZ)×) = {x ∈ Z | gcd(x, n) = 1} = Z[n] ⊂ Z.

The set Z[n] has the same order “<” of Z. Two different integers x, y ∈ Z[n] are called 
adjacent in Z[n] if there is no element of Z[n] between x and y. And the gap of adjacent 
x, y in Z[n] is defined by |x − y|. The concepts of “adjacent” and “gap” here can be 
kept by the function η. That is, two residue classes x + nZ and y + nZ in (Z/nZ)× are 
adjacent if and only if there are a ∈ x + nZ and b ∈ y + nZ such that a, b are adjacent 
in Z[n]. And the gap of adjacent x +nZ and y + nZ in (Z/nZ)× can be taken by |a − b|
except for n = 3 or 6. It is easy to check that the concepts of “adjacent” and “gap” are 
well defined here, if we accept that 1 +6Z and 5 +6Z have two gaps 2 and 4, and 1 +3Z
and 2 + 3Z have two gaps 1 and 2.

Let GAP(Z[n]) := {|x −y| | x, y are adjacent in Z[n]} be the set of all the gaps over Z[n]

and GAP((Z/nZ)×) := {|x −y| | x, y are adjacent in Z[n] and respectively in two adjacent 
reduced residue classes modulo n} be the set of all the gaps over (Z/nZ)×. Obviously, 
GAP(Z[n]) = GAP((Z/nZ)×) for n ≥ 2 and so we do not distinguish GAP(Z[n]) and 
GAP((Z/nZ)×) for convenience. Since Z[n] is of period n, GAP(Z[n]) is a finite set of 
positive integers.

The minimum of GAP(Z[n]) is trivial. It is 1 for odd n since rad(n) +1, rad(n) +2 ∈ Z[n]. 
And it is 2 for even n since Z[n] only contains odd integers and n − 1, n + 1 ∈ Z[n].

The maximum of GAP(Z[n]) is an interesting and valuable research object, which will 
be discussed in this and the next section. Here we give an equivalent definition of it in 
a simple description.

Definition 2.1. Let MG(n) be the smallest integer l such that, for any l consecutive 
integers, there is always one of them relatively prime to n.

In the next part of this section, we give a unified upper bound of MG(n), which is 
stated as below.

Theorem 2.2. For any integer n ≥ 2,

MG(n) ≤ 2ω(n)−1pω(n).

To prove it, we need some auxiliary lemmas.

Lemma 2.3. Let X = {a + kb}lk=1 be a finite arithmetic progression with integers a, b. If 
an integer n ≥ 2 and gcd(n, b) = 1, then |X [n]| > ϕ(n)

n l − 2ω(n) + 1.

Proof. If an integer d ≥ 2 and gcd(d, b) = 1, then any d consecutive terms in X constitute 
a complete set of residues modulo d. Therefore,
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|X|
d

− 1 <
⌊ |X|

d

⌋
≤ |X(d)| ≤

⌈ |X|
d

⌉
<

|X|
d

+ 1

and so

(−1)ω(d) |X|
d

− 1 < (−1)ω(d)|X(d)| < (−1)ω(d) |X|
d

+ 1.

By the successive sweep principle,
∣∣X [n]∣∣ =

∣∣∣X \
⋃

p|rad(n)

X(p)

∣∣∣
=

∑
d|rad(n)

(−1)ω(d)|X(d)|

> |X| +
∑

d|rad(n)
d>1

(
(−1)ω(d) |X|

d
− 1

)

= |X|
∏

p|rad(n)

(1 − 1
p
) −

∑
d|rad(n)
d>1

1

= |X|ϕ(n)
n

− 2ω(n) + 1.

Lemma 2.3 is proved. �
Lemma 2.4. Let rad(n) =

∏ω(n)
k=1 qk with prime numbers q1 < ... < qω(n) and 1 ≤ ω(n) ≤

4.

(1). If ω(n) = 1, then MG(n) = 2.
(2). If ω(n) = 2, then MG(n) ≤ MG(6) = 4 = 2p1.
(3). If ω(n) = 3, then MG(n) ≤ MG(30) = 6 = 2p2.
(4). If ω(n) = 4, then MG(n) ≤ MG(210) = 10 = 2p3.

Proof. (1). If ω(n) = 1, then n is a power of a prime number. It is easy to see MG(n) = 2
by the Definition 2.1.

(2). If ω(n) = 2, then rad(n) = q1q2 and let X be a set of 4 consecutive integers.
If q1 ≥ 3, then

∣∣X [n]∣∣ ≥ |X| − |X(q1)| − |X(q2)| ≥ |X| −
⌈ |X|
q1

⌉
−

⌈ |X|
q2

⌉
≥ |X| −

⌈ |X|
3

⌉
−

⌈ |X|
5

⌉
= 1.

If q1 = 2, then let Y ⊂ X be the set of the |X|
2 = 2 consecutive odd integers in X. 

Since q2 ≥ 3, we have

∣∣X [n]∣∣ ≥ ∣∣Y [n]∣∣ =
∣∣Y [q2]

∣∣ ≥ |Y | − |Y(q2)| ≥ |Y | −
⌈ |Y |⌉ ≥ |Y | −

⌈ |Y |⌉ = 1.

q2 3
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In both cases, we get 
∣∣X [n]

∣∣ > 0 and so MG(n) ≤ 4 for ω(n) = 2.
Moreover, gcd(x, 6) �= 1 for x ∈ {2, 3, 4}. So MG(6) = 4.
(3). If ω(n) = 3, then rad(n) = q1q2q3 and let X be a set of 6 consecutive integers.
If q1 ≥ 3, then

∣∣X [n]∣∣ ≥ |X| −
⌈ |X|
q1

⌉
−

⌈ |X|
q2

⌉
−

⌈ |X|
q3

⌉
≥ |X| −

⌈ |X|
3

⌉
−

⌈ |X|
5

⌉
−
⌈ |X|

7

⌉
= 1.

If q1 = 2, then let Y ⊂ X be the set of the |X|
2 = 3 consecutive odd integers in X. 

Since q2 ≥ 3 and q3 ≥ 5, we have

∣∣X [n]∣∣ ≥ ∣∣Y [q2q3]
∣∣ ≥ |Y | −

⌈ |Y |
q2

⌉
−
⌈ |Y |
q3

⌉
≥ |Y | −

⌈ |Y |
3

⌉
−
⌈ |Y |

5

⌉
= 1.

In both cases, we get 
∣∣X [n]

∣∣ > 0 and so MG(n) ≤ 6 for ω(n) = 3.
Moreover, gcd(x, 30) �= 1 for x ∈ {2, 3, 4, 5, 6}. So MG(30) = 6.
(4). If ω(n) = 4, then rad(n) = q1q2q3q4 and let X be a set of 10 consecutive integers.
If q1 ≥ 3, then

∣∣X [n]∣∣ ≥ |X|−
⌈ |X|
q1

⌉
−
⌈ |X|
q2

⌉
−
⌈ |X|
q3

⌉
−
⌈ |X|
q4

⌉
≥|X|−

⌈ |X|
3

⌉
−
⌈ |X|

5

⌉
−
⌈ |X|

7

⌉
−
⌈ |X|

11

⌉
= 1.

If q1 = 2, then let Y ⊂ X be the set of the |X|
2 = 5 consecutive odd integers in X. 

Since q2 ≥ 3, q3 ≥ 5 and q4 ≥ 7, we have

∣∣X [n]∣∣ ≥ ∣∣Y [q2q3q4]
∣∣ ≥ |Y | −

⌈ |Y |
q2

⌉
−
⌈ |Y |
q3

⌉
−
⌈ |Y |
q4

⌉
≥ |Y | −

⌈ |Y |
3

⌉
−
⌈ |Y |

5

⌉
−
⌈ |Y |

7

⌉
= 1.

In both cases, we get 
∣∣X [n]

∣∣ > 0 and so MG(n) ≤ 10 for ω(n) = 4.
Moreover, gcd(x, 210) �= 1 for x ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. So MG(210) = 10.
Hence Lemma 2.4 is proved completely. �
Set p0 := 1. Lemma 2.4 seems to tell us that for a certain ω(n), MG(n) is no greater 

than 2pω(n)−1 and reaches the maximum when rad(n) =
∏ω(n)

k=1 pk. Unfortunately, we 
are unable to prove or disprove these two conjectures. Here, we just give a unified upper 
bound of MG(n) as an auxiliary tool and prove it now.

Proof of Theorem 2.2. When 1 ≤ ω(n) ≤ 4, we have MG(n) ≤ 2ω(n)−1pω(n) by 
Lemma 2.4.

When ω(n) ≥ 5, let X be a set of 2ω(n)−1pω(n) consecutive integers. From Lemma 2.3, 
one derives that

∣∣X [n]∣∣ > |X|ϕ(n) − 2ω(n) + 1

n
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= 2ω(n)−1pω(n)
∏
p|n

(1 − 1
p
) − 2ω(n) + 1

> 2ω(n)
(pω(n)

2
∏
p|n

(1 − 1
p
) − 1

)

≥ 2ω(n)
(pω(n)

2

ω(n)∏
k=1

(1 − 1
pk

) − 1
)

= 2ω(n)
(1

2

ω(n)∏
k=2

pk − 1
pk−1

− 1
)

≥ 2ω(n)
(1

2

5∏
k=2

pk − 1
pk−1

− 1
)

= 2ω(n)
(1

2 · 16
7 − 1

)
> 0

as desired since pk − 1 ≥ pk−1 for k ≥ 2.
This completes the proof of Theorem 2.2. �

3. The reduced residue system modulo n and the interval [n 1

2 , n
1

2 + n
1

4 ]

In this section, we focus on the interval [n 1
2 , n

1
2 + n

1
4 ] and search whether Z[n] ∩

[n 1
2 , n

1
2 +n

1
4 ] �= ∅. To begin with, we introduce a remarkable result of the distribution of 

primes and compare the upper bound of MG(n) in Theorem 2.2 with the length of this 
interval.

Lemma 3.1.

(1). [7] If k ≥ 6, then pk ≤ k(ln k + ln ln k) < 2k ln k.
(2). [8] If k ≥ 13, then ϑ(pk) ≥ k ln k.

Lemma 3.2. If ω(n) ≥ 26, then n
1
4 ≥ 2ω(n)−1pω(n).

Proof. When lnω(n) > 8 or, equivalently, ω(n) ≥ 2981, Lemma 3.1 infers that

n
1
4 ≥

( ω(n)∏
k=1

pk

) 1
4 = e

1
4ϑ(pω(n)) ≥ e

1
4ω(n) lnω(n) > e2ω(n)

and

2ω(n)−1pω(n) < 2ω(n)−1 · 2ω(n) lnω(n) < 2ω(n) · 2ω(n).

Therefore, n 1
4 > 2ω(n)−1pω(n) in this situation.
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When 26 ≤ ω(n) ≤ 2980, we still have n
1
4 ≥

(∏ω(n)
k=1 pk

) 1
4 and just need to check

1
4

ω(n)∑
k=1

ln pk ≥ (ω(n) − 1) ln 2 + ln pω(n).

With the help of a personal computer, we check them all in a fraction of a second.
So Lemma 3.2 is proved. �
Theorem 2.2 tells us that MG(n) ≤ 2ω(n)−1pω(n). Together with Lemma 3.2, it implies 

that MG(n) ≤
⌊
n

1
4
⌋

if ω(n) ≥ 26. On the other hand, Lemma 2.4 gives a sharp upper 
bound of MG(n) for 1 ≤ ω(n) ≤ 4. So next, we continue the work of Lemma 2.4 to find 
an upper bound of MG(n) for 5 ≤ ω(n) ≤ 25 but not necessarily sharp. And here, we 
point out that the method below in the proof of Lemma 3.3 (1) and (3) also gives a 
better upper bound of MG(n) than Lemma 2.4 when 1 ≤ ω(n) ≤ 4. We make a table 
to give a convenient view. It will take some time to check every equation by taking the 
corresponding value.

Lemma 3.3. Let rad(n) =
∏ω(n)

k=1 qk with prime numbers q1 < ... < qω(n) and 5 ≤ ω(n) ≤
25.

(1). If q1 ≥ 5, then MG(n) has an upper bound given in the second line of Table 1 for 
each corresponding ω(n).

(2). If q1 = 3, then MG(n) has an upper bound given in the third line of Table 1 for each 
corresponding ω(n).

(3). If q1 = 2 and q2 ≥ 5, then MG(n) has an upper bound given in the fourth line of 
Table 1 for each corresponding ω(n).

(4). If q1 = 2 and q2 = 3, then MG(n) has an upper bound given in the fifth line of 
Table 1 for each corresponding ω(n).

Proof. Let X be a set of consecutive integers of number |X|.
(1). If q1 ≥ 5, then

∣∣X [n]∣∣ ≥ |X| −
∑
p|n

⌈ |X|
p

⌉
≥ |X| −

ω(n)∑
k=1

⌈ |X|
pk+2

⌉
.

The right part is only depended on |X| and ω(n). By |X| taking the value in the second 
line of Table 1 for the corresponding ω(n), the right part above is greater than 0.

(2). If q1 = 3, then let n = 3v3(n)n3 with rad(n3) =
∏ω(n)

k=2 qk and Y3 ⊂ X be the 
longer one of the sets {x ∈ X | x ≡ i (mod 3)} for i = 1 or 2. So

|Y3| =
⌈ |X| − 1⌉
3
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Table 1
An upper bound of MG(n) under the different conditions.

ω(n) 1 2 3 4 5 6 7 8 9 10 11 12 13
q1 ≥ 5 2 3 4 5 7 9 10 13 17 19 25 28 33
q1 = 3 2 4 6 10 14 20 26 29 38 50 56 74 83
q1 = 2, q2 ≥ 5 4 6 8 10 14 18 20 26 34 38 50 56
q1 = 2, q2 = 3 4 6 10 23 29 41 53 59 77 101 113 149

�n
1
4 � 1 1 2 3 6 13 26 55 122 283 669 1650 4176

ω(n) 14 15 16 17 18 19 20
q1 ≥ 5 49 55 73 82 102 109 140
q1 = 3 98 146 164 218 245 305 326
q1 = 2, q2 ≥ 5 66 98 110 146 164 204 218
q1 = 2, q2 = 3 167 197 293 329 437 491 611

�n
1
4 � 10694 28002 75555 209402 585212 1674296 4860120

ω(n) 21 22 23 24 25
q1 ≥ 5 182 230 340 468 979
q1 = 3 419 545 689 1019 1403
q1 = 2, q2 ≥ 5 280 364 460 680 936
q1 = 2, q2 = 3 653 839 1091 1379 2039

�n
1
4 � 14206194 42353033 127836257 392646335 1232237672

and

∣∣X [n]∣∣ ≥ ∣∣Y [n3]
3

∣∣ ≥ |Y3| −
∑
p|n3

⌈ |Y3|
p

⌉
≥ |Y3| −

ω(n)∑
k=2

⌈ |Y3|
pk+1

⌉
.

By |X| taking the value in the third line of Table 1 for the corresponding ω(n), the right 
part above is greater than 0.

(3). If q1 = 2 and q2 ≥ 5, then let n = 2v2(n)n2 with rad(n2) =
∏ω(n)

k=2 qk and Y2 ⊂ X

be the set of all the odd integers in X. So

|Y2| =
⌈ |X| − 1

2

⌉
and

∣∣X [n]∣∣ ≥ ∣∣Y [n2]
2

∣∣ ≥ |Y2| −
∑
p|n2

⌈ |Y2|
p

⌉
≥ |Y2| −

ω(n)∑
k=2

⌈ |Y2|
pk+1

⌉
.

By |X| taking the value in the fourth line of Table 1 for the corresponding ω(n), the 
right part above is greater than 0.

(4). If q1 = 2 and q2 = 3, then let n = 2v2(n)3v3(n)n6 with rad(n6) =
∏ω(n)

k=3 qk and 
Y6 ⊂ X be the longer one of the sets {x ∈ X | x ≡ i (mod 6)} for i = 1 or 5. So

|Y6| =
⌈ |X| − 4⌉
6
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and

∣∣X [n]∣∣ ≥ ∣∣Y [n6]
6

∣∣ ≥ |Y6| −
∑
p|n6

⌈ |Y6|
p

⌉
≥ |Y6| −

ω(n)∑
k=3

⌈ |Y6|
pk

⌉
.

By |X| taking the value in the fifth line of Table 1 for the corresponding ω(n), the right 
part above is greater than 0.

We complete the proof of Lemma 3.3. �
In the last line of Table 1, we add the lower bound of 	n 1

4 
, which is from n
1
4 ≥(∏ω(n)

k=1 pk

) 1
4 for a given ω(n). From Table 1, Lemma 3.2 and Theorem 2.2, we can 

immediately get the below result.

Lemma 3.4.

(1). If ω(n) ≥ 8, then MG(n) ≤
⌊
n

1
4
⌋
.

(2). If ω(n) ≤ 7, then MG(n) ≤ 41.

Now, we can confirm the question mentioned at the beginning of this section.

Theorem 3.5. For any integer n ≥ 2227, there is always an integer a ∈ [n 1
2 , n

1
2 + n

1
4 ]

such that gcd(a, n) = 1.

Proof. If n ≥ 414 = 2825761, then 
⌊
n

1
4
⌋
≥ 41. By Lemma 3.4, whatever ω(n) ≥ 8 or 

ω(n) ≤ 7, it holds that MG(n) ≤
⌊
n

1
4
⌋
. Note that the interval [n 1

2 , n
1
2 + n

1
4 ] contains 

at least 
⌊
n

1
4
⌋

consecutive integers. By the definition of MG(n), we know that there is 
always an integer a ∈ [n 1

2 , n
1
2 + n

1
4 ] such that gcd(a, n) = 1.

If 2227 ≤ n ≤ 2825760, then with the help of a personal computer and within 2300
seconds, we check that there is always an integer a ∈ [n 1

2 , n
1
2 +n

1
4 ] such that gcd(a, n) =

1.
Actually, all the integers n ≥ 6 for which the result does not hold make up the 

set {6, 10, 20, 28, 42, 54, 60, 66, 88, 130, 156, 170, 174, 204, 342, 414, 460, 540, 570, 930, 966,
1110, 1974, 2226}. It is of 24 integers and the maximum one is 2226.

This completes the proof of Theorem 3.5. �
4. The sharp bound of the zero-sum constant N(G)

Let’s turn back to the zero-sum theory mentioned in the introduction.
For n ≥ 2, let

An := min{a + b | ab ≥ n and a, b ∈ N}
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and

Bn := min{a + b | ab ≥ n, gcd(a, n− 1) = 1 and a, b ∈ N}.

In [2] and [3], Gao et al. proved that �2√n� = An ≤ Bn ≤ �3√n� for n ≥ 2. And they 
found infinitely many n such that Bn = An + 1.

Lemma 4.1. [3] Let n = (3m)2 − 3 with m being a positive odd integer. Then Bn+1 =
�2
√
n + 1� + 1 and N(Cn) = 2n −Bn+1 + 1 = 2n − �2

√
n + 1�.

Here, with the help of Theorem 3.5, we can give a very sharp bound of Bn.

Lemma 4.2. For n ≥ 2,

�2
√
n� ≤ Bn ≤ �2

√
n� + 1.

Moreover, for each equality, there are infinitely many n making it hold.

Proof. In [3], Gao et al. has checked this result for 2 ≤ n ≤ 3001. And Lemma 4.1 implies 
that there are infinitely many n such that Bn = �2√n� + 1.

If n − 1 is a square number, then let n − 1 = m2 with a positive integer m. Since

2m < 2
√
n = 2

√
m2 + 1 < 2m + 1

for m ≥ 1, it is easy to see that Bn = 2m + 1 = �2√n�. So there are infinitely many n
such that Bn = �2√n�.

Next, we assume that n > 3001 and n − 1 is not a square number. We are just going 
to prove Bn ≤ �2√n� + 1.

Since n − 1 > 3000 > 2227, Theorem 3.5 tells us that there is an integer t ∈ [(n −
1) 1

2 , (n −1) 1
2 +(n −1) 1

4 ] such that gcd(t, n −1) = 1. On the other hand, since n −1 is not 
a square number by the assumption, there is no integer in the interval [(n − 1) 1

2 , n
1
2 ). It 

follows that

n
1
2 ≤ t < n

1
2 + n

1
4 .

Now we can give an upper bound of Bn.

Bn = min{a + b | b ≥ n

a
, gcd(a, n− 1) = 1 and a, b ∈ N}

= min{a +
⌈n
a

⌉
| 1 ≤ a ≤ n− 1, gcd(a, n− 1) = 1 and a ∈ N}

≤
⌈
t + n

t

⌉
≤

⌈
n

1
2 + n

1
4 + n

1 1

⌉

n 2 + n 4



X. Jiang, W. Yang / Journal of Number Theory 260 (2024) 198–211 209
=
⌈
n

1
2

(
1 + n− 1

4 + 1
1 + n− 1

4

)⌉

≤
⌈
n

1
2

(
1 + n− 1

4 + 1 − n− 1
4 + n− 1

2

)⌉
=

⌈
2n 1

2 + 1
⌉
,

where the fourth inequality is due to the fact that the function x + n
x increases as x

increases in the interval [
√
n, +∞) and the last second inequality holds since (1 +x)(1 −

x + x2) = 1 + x3 > 1 for x > 0.
Lemma 4.2 is proved. �

Lemma 4.3. [3] For any cyclic group G = Cn with n ≥ 3,

2n−Bn+1 + 1 ≤ N(G) ≤ 2n−An+1 + 1.

Theorem 1.1 immediately follows from Lemma 4.1, Lemma 4.2 and Lemma 4.3.

5. A concluding remark

Lemma 4.1 gives an infinite class of n such that Bn+1−An+1 = 1, which is the integer 
sequence {6(6t2−6t +1)}+∞

t=1 . Gao et al. in [3] checked that all the integers 2 ≤ n ≤ 3000
such that Bn+1 > An+1 are of the form 6(6t2 − 6t + 1).

Now, by the monotonicity of the function x + n+1
x and setting 

√
n + 1 as the starting 

point, we can search faster than them with a personal computer. Within 50786 seconds 
(about 14 hours), we have checked it for 2 ≤ n ≤ 108 and find more n such that 
Bn+1 > An+1.

Lemma 5.1. For integer 2 ≤ n ≤ 108,

Bn+1 −An+1 =
{

1, if n ∈ {6(6t2 − 6t + 1)}+∞
t=1 ∪M ;

0, others,

where M={1722630, 2009280, 4804800, 16341780, 17201730, 45866730, 47299980, 90297480,
92304030}. Clearly, {6(6t2 − 6t + 1)}+∞

t=1 ∩M = ∅.

From the set M , we find four more classes of n such that Bn+1 = An+1 + 1. Here we 
summarize all the classes that we have got up to now.

Lemma 5.2. Bn+1 −An+1 = 1 if n belongs to one of the below sets.

(1). T1 := {6(6t2 − 6t + 1)}+∞
t=1 .

(2). T2 := {2730(2730t2 − 2835t + 736)}+∞
t=1 .

(3). T3 := {2730(2730t2 − 2625t + 631)}+∞
t=1 .
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(4). T4 := {30030(30030t2 + 4384t + 160)}+∞
t=0 .

(5). T5 := {30030(30030t2 − 4384t + 160)}+∞
t=1 .

Proof. Let

An+1 :={(a, b) | ab ≥ n + 1, a + b = �2
√
n + 1�, a, b ∈ N, a ≥ b}

={(a,
⌈n + 1

a

⌉
) | a +

⌈n + 1
a

⌉
= �2

√
n + 1�, a ∈ N, a ≥

√
n + 1}.

(1). See Proposition 5.2 in [3].
(2). If n = 2730(2730t2 − 2835t + 736) for t ≥ 1, then let n = d(d − 1) − 26 with 

d = 1365(2t − 1) − 52 and so

(d− 1)2 < n + 1 < d(d− 1),

which implies �
√
n + 1� = d and An+1 = �2

√
n + 1� = 2d −1 = 2730(2t −1) −105. Since 

(d + 5) + �n+1
d+5 � = 2d > 2d − 1, we have

An+1 = {(d, d− 1), (d + 1, d− 2), (d + 2, d− 3), (d + 3, d− 4), (d + 4, d− 5)}.

It is easy to check that every integer in the interval [d − 5, d + 4] = [1365(2t − 1) −
57, 1365(2t − 1) − 48] is not relatively prime to n since 2730 = 2 · 3 · 5 · 7 · 13. It follows 
from the definition of Bn that Bn+1 > An+1. Then by Lemma 4.2, Bn+1 = An+1 + 1.

(3). If n = 2730(2730t2 − 2625t + 631) for t ≥ 1, then let n = d(d − 1) − 26 with 
d = 1365(2t − 1) + 53. By a similar proof as the previous one, Bn+1 = An+1 + 1.

(4). If n = 30030(30030t2 + 4384t + 160) for t ≥ 0, then let n = d2 − 64 with 
d = 30030t + 2192 and so

(d− 1)2 < n + 1 < d2,

which implies �
√
n + 1� = d and An+1 = �2

√
n + 1� = 2d = 60060t + 4384. Since 

(d + 8) + �n+1
d+8 � = 2d + 1 > 2d, we have

An+1 = {(d, d), (d + 1, d− 1), (d + 2, d− 2), (d + 3, d− 3),

(d + 4, d− 4), (d + 5, d− 5), (d + 6, d− 6), (d + 7, d− 7)}.

It is easy to check that every integer in the interval [d −7, d +7] = [30030t +2185, 30030t +
2199] is not relatively prime to n since 30030 = 2 · 3 · 5 · 7 · 11 · 13. It follows from the 
definition of Bn that Bn+1 > An+1. Then by Lemma 4.2, Bn+1 = An+1 + 1.

(5). If n = 30030(30030t2 − 4384t + 160) for t ≥ 1, then let n = d2 − 64 with 
d = 30030t − 2192. Similarly, Bn+1 = An+1 + 1.

This completes the proof. �
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Clearly, 1722630, 16341780, 45866730, 90297480 ∈ T2, 2009280, 17201730, 47299980,
92304030 ∈ T3, 4804800 ∈ T4 and minT5 = 774954180 > 108. T1 can be written as 
{(6t −3)2−3}+∞

t=1 . T2 and T3 can be combined into {2730(1 +105(2t −1)(13t − 13±1
2 ))}+∞

t=1 . 
And T4 and T5 can be combined into {(30030t ± 2192)2 − 64}+∞

t=0 too.
We conjecture that there are more classes of n such that Bn+1 = An+1 + 1. But to 

find them is beyond our computing power at present. To determine the explicit value of 
Bn for all integer n is still an open problem with an elementary description and very 
important for the zero-sum constant N(G).
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