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1 Introduction

The Davey-Stewartson(DS) systems originated from fluid mechanics was first
proposed by Davey and Stewartson [2] in the context of water waves in 1974,
which describe the dynamic evolution process of wave packet in finite depth
water, and waves travel in the main direction under the forces of gravity and
surface tension. The DS systems have extensive applications in fluid mechan-
ics [3,4], nonlinear optics [5,6], ferromagnetism [7], plasma physics [8]. In di-
mensionless form, they are generally read as the following systems for the
amplitude u(t;x1, x2) and the mean velocity potential v(t;x1, x2):{

iut + λux1x1
+ µux2x2

= µ1|u|2u+ µ2uvx1
,

νvx1x1 + vx2x2 = µ3∂x1

(
|u|2
)
,

(1)

where λ, µ, ν, µ1, µ2, µ3 are real constants and λ > 0, µ2µ3 > 0. These sys-
tems can be classified as elliptic-elliptic, elliptic-hyperbolic (DS-I), hyperbolic-
elliptic (DS-II), hyperbolic-hyperbolic according to the signs of µ, ν: (+,+),
(+,−), (−,+), (−,−). The Cauchy problems for the DS systems are widely
studied. By using the functional analytic method, Ghidaglia and Saut [9]
proved the existence, uniqueness and continuous dependence with initial value
in H1 for the elliptic-elliptic, DS-I and DS-II cases.

The DS systems in elliptic-elliptic case is a special case of nonlinear Schrödinger
equations:

iut +∆u = ±R2
1(|u|2)u,

where R1 = ∂x1 |∇|−1 is the Riesz transformation. There are a large amount of
works investigated this model and we only mention a few of them. The Cauchy
problem for DS system in this case was studied by Gan and Zhang [10] who
gave a sharp threshold for global existence and blowup of the solution. Wang
and Guo [11] considered the scattering for a generalized DS systems. Lu and
Wu [12] used a variational approach to give a dichotomy of the blow-up and
the scattering for the generalized DS system.

The DS systems in elliptic-hyperbolic case, usually named by DS-I, is also
extensively studied. In particular, Linares and Ponce [13] established the local
well-posedness of small initial value problems for the DS-I and the hyperbolic-
hyperbolic cases. Tsutsumi [14] obtained the Lp-decay estimates of solutions of
the DS-I case for 2 < p <∞. Then, Hayashi and Saut [15] used the dispersive
method to establish the local well-posedness and the global existence of the
DS-I and the hyperbolic-hyperbolic cases for general large initial values.

The analytical work on the DS systems in hyperbolic-elliptic case, which
was named by DS-II, is much limited. Ozawa [16] obtained the exact blow-up
solution of the DS-II system. An important progress was made recently by
Nachman, Regev and Tataru [1], who proved the global well-posedness and
scattering for the defocusing DS-II system in L2 by applying a Plancherel
theorem.

Extensive numerical methods have been proposed for nonlinear Schrödinger
equation and Korteweg-de Vries equation, including finite difference methods
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[17–19], finite element methods [20–22], splitting methods [23,24], spectral
methods [25–27], discontinuous Galerkin methods [28,29], exponential inte-
grators [30,31], low-regularity integrators [32–38], etc. For the DS systems,
White and Weideman [39,40] presented the numerical study of dromions for
the DS-I and the DS-II by the split-step Fourier method. Besse, Mauser and
Stimming [41] showed numerical results for the various blow-up phenomena
of E-E and for the exact soliton type solutions of DS-II by the time splitting
spectral method. Klein and Stoilov [42] discussed spectral algorithms for the
numerical scattering for the defocusing DS-II with initial data having the com-
pact support on a disk. However, all of these methods require high smoothness
of the initial data.

In practical applications, due to randomness, noise and measurement, the
initial data usually can’t meet the requirements of the high smoothness. The
convergence of a certain order can be achieved by imposing sufficient additional
regularity, when the solution of the equation is not smooth enough. More
precisely, to get

‖un − u(tn)‖Hγ ≤ Cτα,

where un is the numerical solution and u(tn) is the exact solution, τ denotes
the time step, γ describes roughness of the solution, and α denotes the or-
der of convergence, the initial value u0 = u(0,x) should belong to some Hγ+s

space, where the index s denotes the order of spatial derivatives of the solution
that has been lost in the numerical implementation. For the cubic nonlinear
Schrödinger equation, several studies of numerical algorithms with rough ini-
tial data have been carried out. Lubich [43] showed first-order convergence
in Hγ for initial value in Hγ+2 by Strange splitting method. Ostermann and
Schratz [44] proved first-order convergence in Hγ for initial value in Hγ+1

with γ > d
2 by introducing the low regularity exponential-type integrators.

Wu and Yao [45] presented a Fourier integrator, which shows the first-order
convergence in Hγ for initial value in Hγ for γ > 3

2 in one dimension without
any derivative loss. Ostermann, Wu and Yao [46] proposed a new exponential-
type integrator on the torus Td, which proves the second-order convergence in
Hγ(Td) for initial data in Hγ+2(Td) for any γ > d

2 .
Recently, Ning and Wang [47] proposed a numerical integrator for elliptic-

elliptic DS system and proved that the algorithm can achieve first-order con-
vergence in Hγ(Td) for rough initial data in Hγ+1(Td) with r > d

2 .
In this paper, we focus on the DS-II system with the rough initial data on

a torus:{
iut + ux1x1

− ux2x2
= µ1|u|2u+ µ2uvx1

, t > 0,x = (x1, x2) ∈ T2,

vx1x1
+ vx2x2

= ∂x1

(
|u|2
)
,

(2)

where µ1 > 0, µ2 > 0, T = (0, 2π). Here u = u(t,x) : R+ × T2 −→ C is the
(complex) amplitude of the wave and v is the (real) velocity potential of the
wave movement, and u0(x) = u(0,x) ∈ Hγ(T2) with some 0 ≤ γ < ∞ is a
given initial data.
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Compared to the elliptic-elliptic DS system, the structure of the DS-II
system is more complicated. The phase functions of the two systems are com-
pletely different, since the principal operator of (2) is not elliptic which makes
the resonant set much larger.

The corresponding phase of the nonlinearity term in equation(2) is

ξ2 − η2 + (ξ21 − η21)− (ξ22 − η22)− (ξ23 − η23),

where ξ = ξ1 + ξ2 + ξ3, η = η1 + η2 + η3. This phase function cannot be dealt
with in the same way as the elliptic-elliptic case. In previous work[47], it was
treated in a certain manner that resulted in the principal part being reduced
to ξ21 − η21 . However, this approach does not lead to the development of an
efficient algorithm. Hence, the method proposed for the elliptic-elliptic case
[47] is not directly applicable to the DS-II system. In order to address this
issue, we utilize the characteristic transformation to simplified the operator
∂x1x1

− ∂x2x2
to ∂x1x2

. Then the phase function reduces to

ξη + ξ1η1 − ξ2η2 − ξ3η3.

We can further simplify the above function by the following approximation

ξη + ξ1η1 − ξ2η2 − ξ3η3 = 2ξ1η1 +O(
∑
j 6=k

ξjηk).

See Section 2.2 below. This allows us to construct a class of low-regularity algo-
rithm below which only requires the boundedness of one additional derivative
of the solution with rough initial data to get the first-order convergence.

Theorem 1 Let un and vn be the numerical solution of the DS system (2)
obtained from the schemes (28) and (29) up to some fixed time T > 0. Under
the assume u0(x) ∈ Hγ+1(T2) for some γ > 1, there exist constants τ0 > 0
and C > 0, such that for any 0 < τ ≤ τ0, we have

‖u(tn)− un‖Hγ ≤ Cτ, ‖v(tn)− vn‖Hγ+1 ≤ Cτ, n = 0, 1, . . . ,
T

τ
, (3)

where the constants τ0 and C depend only on T and sup
0≤t≤T

‖u(t)‖Hγ+1 .

This paper is organized as follows. The detailed numerical integrator is intro-
duced in section 2. The first-order convergence analysis are given in section 3.
The numerical experiments are presented to validate the numerical scheme in
section 4, and concluding remarks are made in section 5.

2 Construction of the scheme

In this section, we shall firstly present some useful definitions and properties,
and then derive our numerical scheme.
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2.1 Definitions and Properties.

We use A . B or B & A to denote A ≤ CB for some large absolute constant
C > 0, and we denote A ∼ B for A . B . A.

For k := (k1, k2) ∈ Z2,x := (x1, x2) ∈ T2, we denote

k · x = k1x1 + k2x2, |k|2 = |k1|2 + |k2|2.

The Fourier transform of a function f on T2 is defined by

f̂k =
1

(2π)
2

∫
T2

e−ik·xf (x) dx.

For f ∈ L2(T2), we denote its Fourier expansion by

f (x) =
∑
k∈Z2

f̂ke
ik·x. (4)

Let Hs(T2) be the classic Sobolev space of Hs functions defined on the
2-dimensional torus T2. Its norm ‖ · ‖Hs is defined by

‖f‖2Hs(T2) = ‖Jsf‖2L2(T2) =
∑
k∈Z2

(1 + |k|)2s
∣∣∣f̂k∣∣∣2 , (5)

where the operator Js is defined by

Js = (1−∆)
s
2 , s ∈ R.

Furthermore, we define the operator (−∆)
−1

for some function f(x) as

̂(−∆)−1f =

{
|k|−2f̂k, if k 6= 0,
0, if k = 0,

(6)

and define the operator ∂x1x2 as

∂̂x1x2f = −k1k2f̂k, k = (k1, k2). (7)

Throughout the paper, we will exploit the well known bilinear estimate

‖fg‖Hs . ‖f‖Hs‖g‖Hs ,

which hold for γ > d
2 . Moreover, we will make frequent use of the isometric

property of the free Schrödinger group ei∂xyt∥∥ei∂xytf∥∥
Hs

= ‖f‖Hs ,

for all f ∈ Hγ and t ∈ R.
In addition, we need the following operator ω:

ω(z) =

{
ez − 1

z
, z 6= 0,

1, z = 0.
(8)
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2.2 Construction of the numerical integrator

For simplicity of notations, in the following we shall omit the spatial variable x
of the involved time-space dependent functions, e.g. u(t) = u(t,x). In addition,
we denote τ > 0 as the time step and tn = nτ as the time grids.

For the DS-II system{
iut + ux1x1

− ux2x2
= µ1|u|2u+ µ2uvx1

,

vx1x1
+ vx2x2

= ∂x1

(
|u|2
)
,

where µ1, µ2 are real constants, and µ1 > 0, µ2 > 0.
By introducing the following variable substitution

ξ1 =
1

2
(x1 + x2),

ξ2 =
1

2
(x1 − x2),

that is {
u(x1, x2) = φ(ξ1, ξ2),

v(x1, x2) = ψ(ξ1, ξ2),
(9)

we can obtain the equation of φ and ψiφt + φξ1ξ2 = µ1|φ|2φ+
1

2
µ2φ (ψξ1 + ψξ2) ,

ψξ1ξ1 + ψξ2ξ2 = (∂ξ1 + ∂ξ2)
(
|φ|2

)
.

(10)

We can reduce the equation (10) as follows{
iφt + ∂ξ1ξ2φ− φE(|φ|2) = 0,

ψ = −(−∆)−1(∂ξ1 + ∂ξ2)(|φ|2),
(11)

where the operator E is defined by

Ef = (µ̃1 + µ2
∂ξ1ξ2
∆

)f, µ̃1 = µ1 +
1

2
µ2. (12)

Using the Duhamel’s formula, we have

φ(t) = ei∂ξ1ξ2 tφ0(x)− i
∫ t

0

ei∂ξ1ξ2 (t−s)[φ(s)E(|φ(s)|2)]ds.

We introduce the twisted variable

ϕ(t) = e−i∂ξ1ξ2 tφ(t). (13)

Note that the twisted variable ϕ(t) satisfies

∂tϕ(t) = −ie−i∂ξ1ξ2 t[ei∂ξ1ξ2 tϕ(t) · E(
∣∣ei∂ξ1ξ2 tϕ(t)

∣∣2)], (14)
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with the mild solution given by

ϕ(tn+1) = ϕ(tn)−i
∫ τ

0

e−i∂ξ1ξ2 (tn+s)
[
ei∂ξ1ξ2 (tn+s)ϕ(tn + s) · E(

∣∣∣ei∂ξ1ξ2 (tn+s)ϕ(tn + s)
∣∣∣2)

]
ds.

(15)
Since we only need first order convergent scheme, we can simplify the above
scheme using ϕ(tn + s) ≈ ϕ(tn), and get

ϕ(tn+1) = ϕ(tn)− Φn(ϕ(tn))−Rn1 , (16)

where

Φn(ϕ(tn)) = i

∫ τ

0

e−i∂ξ1ξ2 (tn+s)
[
ei∂ξ1ξ2 (tn+s)ϕ(tn) · E(

∣∣∣ei∂ξ1ξ2 (tn+s)ϕ(tn)
∣∣∣2)

]
ds,

and

Rn1 = i

∫ τ

0

e−i∂ξ1ξ2 (tn+s)
[
ei∂ξ1ξ2 (tn+s)ϕ(tn + s) · E(

∣∣∣ei∂ξ1ξ2 (tn+s)ϕ(tn + s)
∣∣∣2)

−ei∂ξ1ξ2 (tn+s)ϕ(tn) · E(
∣∣∣ei∂ξ1ξ2 (tn+s)ϕ(tn)

∣∣∣2)

]
ds. (17)

Here, Rn1 can be treated as a high-order term without additional regularity
assumption. Next, using Fourier expansion, we get

Φn(ϕ(tn)) = i
∑
Ω∈Z2

∑
j,k,l∈Z2

Ω=j+k+l

[
µ̃1 + µ2

(j1 + k1)(j2 + k2)

|j + k|2

]
ˆ̄ϕjϕ̂kϕ̂le

iΩ·ξ ·
∫ τ

0

ei(Ω1Ω2+j1j2−k1k2−l1l2)sds,

(18)

where we set ˆ̄ϕj = ˆ̄ϕj(tn), ϕ̂k = ϕ̂k(tn), ϕ̂l = ϕ̂l(tn) for short. And we denote
α = Ω1Ω2 + j1j2 − k1k2 − l1l2 and β = j1(k2 + l2) + k1(j2 + l2) + l1(j2 + k2).
Then, we have

α = 2j1j2 + β.

For the integration in (18), it cannot be transformed into the physical space
directly. Inspired by [44], we only choose the dominant quadratic term 2j1j2,
so that the integration can be carried out fully in Fourier space as∫ τ

0

e2ij1j2sds = τω(2iτj1j2). (19)

Hence, Φn(ϕ(tn)) can be written as

Φn(ϕ(tn)) = i
∑
Ω∈Z2

∑
j,k,l∈Z2

Ω=j+k+l

eitnα
[
µ̃1 + µ2

(j1 + k1)(j2 + k2)

|j + k|2

]
ˆ̄ϕjϕ̂kϕ̂l · eiΩ·ξτω(2iτj1j2) +Rn2

= iτe−i∂ξ1ξ2 tn
[
ei∂ξ1ξ2 tnϕ(tn) · E

(
ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕ(tn) · ei∂ξ1ξ2 tnϕ(tn)

)]
+Rn2 ,
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where

Rn2 = i
∑
Ω∈Z2

∑
j,k,l∈Z2

Ω=j+k+l

eitnα
[
µ̃1 + µ2

(j1 + k1)(j2 + k2)

|j + k|2

]
ˆ̄ϕjϕ̂kϕ̂le

iΩ·ξ ·
∫ τ

0

e2isj1j2(eisβ − 1)ds.

(20)

Here, Rn2 can also be treated as a high-order term, however, one loss of spatial
derivative comes when we drop this term.

For convenience, let’s denote

Ψn(f) = iτe−i∂ξ1ξ2 tn
[
ei∂ξ1ξ2 tnf · E

(
ω (−2i∂ξ1ξ2τ) ei∂ξ1ξ2 tnf · ei∂ξ1ξ2 tnf

)]
.

(21)
Then, we have

Φn(ϕ(tn)) = Ψn (ϕ (tn)) +Rn2 . (22)

So far, we can obtain the representation of the exact solution ϕ (tn+1)

ϕ (tn+1) = ϕ (tn)− Ψn (ϕ (tn))−Rn1 −Rn2 . (23)

By dropping high order terms, we would get

ϕ (tn+1) ≈ ϕ (tn)− Ψn (ϕ (tn)) . (24)

Hence we finish the construction of the first order numerical integrator of ϕ

ϕn+1 = ϕn−iτe−i∂ξ1ξ2 tn
[
ei∂ξ1ξ2 tnϕn · E

(
ω (−2i∂ξ1ξ2τ) ei∂ξ1ξ2 tnϕn · ei∂ξ1ξ2 tnϕn

)]
, n ≥ 0,

(25)
where ϕ0 = ϕ(0, ξ1, ξ2) = φ(0, ξ1, ξ2) = u(0, x1, x2). By reversing the twisted
variable (13) in (25), we deduce the scheme of the first order low-regularity
integrator for solving the DS system (11): denote φn = φn(ξ) as the numerical
solution, for n = 1, 2, 3, ...,¡¡

φn = ei∂ξ1ξ2τφn−1−iτei∂ξ1ξ2τ
[
φn−1 · E

(
ω (−2i∂ξ1ξ2τ)φn−1 · φn−1

)]
, n = 1, 2, 3, ... ,

(26)
with ω in (8) and E in (12). Based on the DS system (11), we can write the
numerical solution of ψ: denote ψn = ψn(ξ) as the numerical solution, for
n = 1, 2, 3, ...,

ψn = −(−∆)−1(∂ξ1 + ∂ξ2)(|φn|2), n = 1, 2, 3, ... . (27)

In order to obtain an approximation to the original solution u(tn) of the DS-
II equation (2), we then substitute the variable back again by setting un(x) =
φn(ξ). This yields the following integrator for the DS-II equation (2):

un = ei(∂
2
x1
−∂2

x2
)τun−1−iτei(∂

2
x1
−∂2

x2
)τ
[
un−1 · Ê

(
ω
(
−2i(∂2x1

− ∂2x2
)τ
)
un−1 · un−1

)]
,

(28)

where n = {1, 2, 3, ...} and Êf = (µ1 + 1
2µ2 + µ2

∂2
x1
−∂2

x2

∆ )f .
Based on the DS system (2), we can write the numerical solution of v:

vn = −(−∆)−1∂x1
(|un|2), n = 1, 2, 3, ... . (29)
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3 The first-order convergence analysis

In this section, we will provide the rigorous proof of the convergence result.
Because of the variable substitution (9), the conclusions about the equation
(2) and (10) are the same, so we are going to prove φ. Since the twisted variable
in (13) is isometric in the Sobolev space Hγ , that is

‖φ(tn)− φn‖Hγ = ‖ei∂ξ1ξ2 tϕ(tn)− ei∂ξ1ξ2 tϕn‖Hγ = ‖ϕ(tn)− ϕn‖Hγ ,

we will prove the first-order convergence theorem for the mild solution ϕn and
ϕ(tn).

Recall the exact solution in Section 2

ϕ(tn+1) = ϕ(tn)− Ψn(ϕ(tn))−Rn1 −Rn2 ,

and numerial solution
ϕn+1 = ϕn − Ψn(ϕn).

The error of the two solutions is

ϕ(tn+1)− ϕn+1 = Ln + Sn, (30)

where
Ln = −(Rn1 +Rn2 ),

and
Sn = ϕ(tn)− Ψn(ϕ(tn))− ϕn + Ψn(ϕn).

Then, we will analyze the local error and the stability of the numerical prop-
agator in the following.

3.1 Local error estimation

Firstly, we give the following residual estimate, and then present local error
estimate.

Lemma 1 Let γ > 1. Assume that φ0 ∈ Hγ+1, then there exist constants
τ0 > 0 and C > 0, such that for any 0 < τ ≤ τ0, the following estimate hold:

‖Rn1‖Hγ + ‖Rn2‖Hγ ≤ Cτ
2, (31)

where τ0 and C depend only on T and sup
0≤t≤T

‖ϕ(t)‖Hγ+1 .

Proof Recall the definition of Rn1 in (17)

Rn1 = i

∫ τ

0

e−i∂ξ1ξ2 (tn+s)
[
ei∂ξ1ξ2 (tn+s)ϕ(tn + s) · E

(∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn + s)
∣∣∣2)

− ei∂ξ1ξ2 (tn+s)ϕ (tn) · E
(∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn)

∣∣∣2)]ds,
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we have

‖Rn1‖Hγ ≤
∫ τ

0

∥∥∥∥ei∂ξ1ξ2 (tn+s)ϕ(tn + s) · E
(∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn + s)

∣∣∣2)
−ei∂ξ1ξ2 (tn+s)ϕ (tn) · E

(∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn)
∣∣∣2)∥∥∥∥

Hγ
ds.

≤
∫ τ

0

∥∥∥∥ei∂ξ1ξ2 (tn+s) (ϕ(tn + s)− ϕ(tn)) · E
(∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn + s)

∣∣∣2)∥∥∥∥
Hγ

ds

+

∫ τ

0

∥∥∥∥ei∂ξ1ξ2 (tn+s)ϕ (tn) ·
[
E

(∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn + s)
∣∣∣2)− E (∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn)

∣∣∣2)]∥∥∥∥
Hγ

ds.

Since ‖Ef‖Hγ . ‖f‖Hγ , together with bilinear estimate and isometric prop-
erty, we have

‖Rn1‖Hγ ≤
∫ τ

0

‖ϕ (tn + s)− ϕ (tn)‖Hγ · ‖ϕ (tn + s)‖2Hγ ds

+

∫ τ

0

‖ϕ (tn)‖Hγ
∥∥∥∥∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn + s)

∣∣∣2 − ∣∣∣ei∂ξ1ξ2 (tn+s)ϕ (tn)
∣∣∣2∥∥∥∥

Hγ
ds

≤
∫ τ

0

‖ϕ(tn + s)− ϕ (tn)‖Hγ · ‖ϕ (tn + s)‖2Hγ ds

+

∫ τ

0

‖ϕ (tn)‖Hγ · (‖ϕ (tn + s)‖Hγ + ‖ϕ (tn)‖Hγ ) ‖ϕ (tn + s)− ϕ (tn)‖Hγ ds.

(32)

By (14), we can get

‖ϕ(tn + s)− ϕ (tn)‖Hγ ≤
∫ s

0

‖∂tϕ(tn + t)‖Hγ dt

≤
∫ s

0

∥∥∥∥ei∂ξ1ξ2 (tn+t)ϕ (tn + t) · E
(∣∣∣ei∂ξ1ξ2 (tn+t)ϕ (tn + t)

∣∣∣2)∥∥∥∥
Hγ

dt

≤
∫ s

0

‖ϕ (tn + t)‖Hγ
∥∥∥∥∣∣∣ei∂ξ1ξ2 (tn+t)ϕ (tn + t)

∣∣∣2∥∥∥∥
Hγ

dt

≤ Cs sup
0≤t≤s

‖ϕ (tn + t)‖3Hγ . (33)

Inserting (33) into (32), it follows that

‖Rn1‖Hγ ≤ Cτ
2 sup
0≤t≤T

‖ϕ(t)‖5Hγ . (34)

Next, we consider Rn2 . Recall the definition of Rn2

Rn2 = i
∑
Ω∈Z2

∑
j,k,l∈Z2

Ω=j+k+l

eitnα
[
µ̃1 + µ2

(j1 + k1)(j2 + k2)

|j + k|2

]
ˆ̄ϕjϕ̂kϕ̂le

iΩ·ξ ·
∫ τ

0

e2isj1j2(eisβ − 1)ds.
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Hence, we have

‖Rn2‖
2
Hγ =

∑
Ω∈Z2

(1 + |Ω|)2γ |R̂n2 (Ω)|2

=
∑
Ω∈Z2

(1 + |Ω|)2γ
∣∣∣ ∑
j,k,l∈Z2

Ω=j+k+l

eiαtn
[
µ̃1 + µ2

(j1 + k1)(j2 + k2)

|j + k|2

]

· ˆ̄ϕ (tn, j) ϕ̂ (tn,k) ϕ̂ (tn, l)

∫ τ

0

e2ij1j2s(eisβ − 1)ds
∣∣∣2. (35)

Since µ̃1 ∈ R, µ2 ∈ R, then we know that∣∣∣∣µ̃1 + µ2
(j1 + k1)(j2 + k2)

|j + k|2

∣∣∣∣ ≤ |µ̃1|+ |µ2| ≤ C,

and ∣∣eiβs − 1
∣∣ . |sβ| .

Hence, we have

‖Rn2‖2Hγ ≤ C
∑
Ω∈Z2

(1 + |Ω|)2γ
∣∣∣∣ ∑
j,k,l∈Z2

Ω=j+k+l

ˆ̄ϕjϕ̂kϕ̂l

∫ τ

0

sβds

∣∣∣∣2.
Recall that β = j1(k2 + l2) + k1(j2 + l2) + l1(j2 + k2), then we have

|β| ≤ |j|(|k|+ |l|) + |k|(|j|+ |l|) + |l|(|j|+ |k|)
≤ 2(|j||k|+ |j||l|+ |k||l|)
≤ C(1 + |j|)(1 + |k|)(1 + |l|).

Furthermore, we obtain

‖Rn2‖2Hγ ≤ Cτ4
∑
Ω∈Z2

(1 + |Ω|)2γ
∣∣∣∣ ∑
j,k,l∈Z2

Ω=j+k+l

(1 + |j|)(1 + |k|)(1 + |l|)| ˆ̄ϕj ||ϕ̂k||ϕ̂l|
∣∣∣∣2

≤ Cτ4 sup
0≤t≤T

‖ϕ(t)‖6Hγ+1 . (36)

By (34) and (36), we can get

‖Rn1‖Hγ + ‖Rn2‖Hγ ≤ Cτ
2,

where C depends on sup
0≤t≤T

‖ϕ(t)‖Hγ+1 . This finishes the proof of the lemma.

By Lemma 1, we will show the local error Ln and have following lemma.
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Lemma 2 (Local error) Let γ > 1. Assume that φ0 ∈ Hγ+1, then there
exist constants τ0 > 0 and C > 0, such that for any 0 < τ ≤ τ0, the following
inequality holds

‖Ln‖Hγ ≤ Cτ
2, (37)

where τ0 and C depend only on T and sup
0≤t≤T

‖ϕ(t)‖Hγ+1 .

Proof Based on the definition of Ln, we have

‖Ln‖Hγ ≤ ‖Rn1‖Hγ + ‖Rn2‖Hγ .

Using Lemma 1, we have

‖Rn1‖Hγ ≤ Cτ
2, ‖Rn2‖Hγ ≤ Cτ2,

then we get

‖Ln‖Hγ ≤ Cτ2,

where C depends on sup
0≤t≤T

‖ϕ(t)‖Hγ+1 . This finishes the proof of lemma.

3.2 Stability analysis

For the numerical propagator ϕn defined in (25), we have the following stability
result.

Lemma 3 (Stability) Let γ > 1. Assume that φ0 ∈ Hγ+1, then there exist
constants τ0 > 0 and C > 0, such that for any 0 < τ ≤ τ0, the following
inequality holds

‖Sn‖Hγ ≤ (1 + Cτ) ‖ϕ (tn)− ϕn‖Hγ + Cτ ‖ϕ (tn)− ϕn‖3Hγ , (38)

where τ0 and C depend only on T and sup
0≤t≤T

‖ϕ(t)‖Hγ .

Proof According to the definition of Sn, we have

‖Sn‖Hγ = ‖ϕ(tn)− Ψn(ϕ(tn))− ϕn + Ψn(ϕn)‖Hγ
≤ ‖ϕ(tn)− ϕn‖Hγ + ‖Ψn(ϕ(tn))− Ψn(ϕn)‖Hγ . (39)

Recall that

Ψn(f) = iτe−i∂ξ1ξ2 tn
[
ei∂ξ1ξ2 tnf · E

(
ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnf · ei∂ξ1ξ2 tnf

)]
.
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Then, we have

‖Ψn(ϕ(tn))− Ψn(ϕn)‖Hγ ≤τ
∥∥∥ei∂ξ1ξ2 tnϕ(tn) · E

(
ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕ(tn) · ei∂ξ1ξ2 tnϕ(tn)

)
− ei∂ξ1ξ2 tnϕn · E

(
ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕn · ei∂ξ1ξ2 tnϕn

)∥∥∥
Hγ

≤τ‖ϕ(tn)− ϕn‖Hγ ·
∥∥E (ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕ(tn) · ei∂ξ1ξ2 tnϕ(tn)

)∥∥
Hγ

+ τ‖ϕn‖Hγ ·
∥∥∥E[ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕ(tn) · ei∂ξ1ξ2 tnϕ(tn)

− ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕn · ei∂ξ1ξ2 tnϕn
]∥∥∥
Hγ
.

Recall that ω, we have

|ω(z)| ≤ 1, ∀z = ib, b ∈ R.

Therefore, we obtain

‖ω(−2i∂ξ1ξ2τ)f‖Hγ ≤ C‖f‖Hγ . (40)

Then we can get

‖Ψn(ϕ(tn))− Ψn(ϕn)‖Hγ (41)

≤Cτ‖ϕ(tn)− ϕn‖Hγ · ‖ϕ(tn)‖2Hγ

+ Cτ‖ϕn‖Hγ ·
∥∥(ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕ(tn)− ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕn

)
· ei∂ξ1ξ2 tnϕ(tn)

+ ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕn ·
(
ei∂ξ1ξ2 tnϕ(tn)− ei∂ξ1ξ2 tnϕn

) ∥∥
Hγ

≤Cτ‖ϕ(tn)− ϕn‖Hγ‖ϕ(tn)‖2Hγ

+ Cτ‖ϕn‖Hγ ·
[∥∥ω(−2i∂ξ1ξ2τ)

(
ei∂ξ1ξ2 tnϕ(tn)− ei∂ξ1ξ2 tnϕn

)∥∥
Hγ

∥∥ei∂ξ1ξ2 tnϕ(tn)
∥∥
Hγ

+
∥∥ω(−2i∂ξ1ξ2τ)ei∂ξ1ξ2 tnϕn

∥∥∥
Hγ

∥∥ei∂ξ1ξ2 tn(ϕ(tn)− ϕn)
∥∥
Hγ

]
≤Cτ‖ϕ(tn)− ϕn‖Hγ‖ϕ(tn)‖2Hγ

+ Cτ‖ϕn‖Hγ
[
‖ϕ(tn)− ϕn‖Hγ‖ϕ(tn)‖Hγ + ‖ϕn‖Hγ‖ϕ(tn)− ϕn‖Hγ

]
.

(42)

Using ‖ϕn‖Hγ ≤ ‖ϕ(tn)− ϕn‖Hγ + ‖ϕ(tn)‖Hγ , we get

‖Ψn(ϕ(tn))− Ψn(ϕn)‖Hγ
≤Cτ‖ϕ(tn)− ϕn‖Hγ‖ϕ(tn)‖2Hγ + Cτ(‖ϕ(tn)− ϕn‖Hγ + ‖ϕ(tn)‖Hγ )

·
[
‖ϕ(tn)− ϕn‖Hγ‖ϕ(tn)‖Hγ + (‖ϕ(tn)− ϕn‖Hγ + ‖ϕ(tn)‖Hγ ) · ‖ϕ(tn)− ϕn‖Hγ

]
≤Cτ‖ϕ(tn)− ϕn‖Hγ‖ϕ(tn)‖2Hγ + Cτ

(
3‖ϕ(tn)− ϕn‖2Hγ‖ϕ(tn)‖Hγ

+ 2‖ϕ(tn)− ϕn‖Hγ‖ϕ(tn)‖2Hγ + ‖ϕ(tn)− ϕn‖3Hγ
)
.
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Since the quadratic term can be controlled by the first term and third term,
we can obtain

‖Ψn(ϕ(tn))− Ψn(ϕn)‖Hγ ≤ Cτ‖ϕ(tn)− ϕn‖Hγ + Cτ‖ϕ(tn)− ϕn‖3Hγ ,
(43)

where C depends on sup
0≤t≤T

‖ϕ(t)‖Hγ .

Using (39) and (43), we have

‖Sn‖Hγ ≤ (1 + Cτ)‖ϕ(tn)− ϕn‖Hγ + Cτ‖ϕ(tn)− ϕn‖3Hγ ,

this proves this lemma.

Finally, we give a proof of the first-order convergence theorem.

3.3 The proof of theorem 1

Together with the local error estimate and the stability result, we give the
proof of Theorem 1. From Lemma 2 and 3, we have∥∥ϕ(tn+1)− ϕn+1

∥∥
Hγ
≤ Cτ2+(1 + Cτ) ‖ϕ(tn)− ϕn‖Hγ+Cτ ‖ϕ(tn)− ϕn‖3Hγ ,

(44)
where n = 0, 1, 2, . . . , Tτ − 1, C depends only on T and sup

0≤t≤T
‖ϕ(t)‖Hγ+1 .

Followed by the argument in [38], we can get

‖ϕ (tn)− ϕn‖Hγ+1 ≤ Cτ, (45)

where C depends on T and sup
0≤t≤T

‖φ(t)‖Hγ+1 .

To prove it, we claim that there exists some τ0 > 0 (to be determined)
such that for any τ ∈ (0, τ0] and any n = 0, 1, . . . , Tτ ,

‖ϕ(tn)− ϕn‖Hγ ≤ Cτ
2

n∑
j=0

(1 + 2Cτ)j . (46)

It trivially holds for n = 0. Now we assume that

‖ϕ(tn)− ϕn‖Hγ ≤ Cτ
2

n∑
j=0

(1 + 2Cτ)j , for any 0 ≤ n ≤ n0. (47)

From (47), we have

‖ϕ(tn)− ϕn‖Hγ ≤ C1τ, (48)

where C1 = 2e2CT , for any 0 ≤ n ≤ n0. Then by (44), we get

∥∥ϕ(tn0+1)− ϕn0+1
∥∥
Hγ
≤Cτ2 +

(
1 + Cτ + CC2

1τ
3
)
· Cτ2

n0∑
j=0

(1 + 2Cτ)j .
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Now we can choose τ0 > 0 such that

CC2
1τ

2
0 ≤ C,

then for any τ ∈ (0, τ0], it follows

∥∥ϕ(tn0+1)− ϕn0+1
∥∥
Hγ
≤Cτ2 + (1 + 2Cτ) · Cτ2

n0∑
j=0

(1 + 2Cτ)j

=Cτ2 + Cτ2
n0∑
j=0

(1 + 2Cτ)j+1 < Cτ2
n0+1∑
j=0

(1 + 2Cτ)j .

This finishes the induction and proves (46), which gives (45).
From (13), together with isometric property, we get

‖φ (tn)− φn‖Hγ = ‖ϕ (tn)− ϕn‖Hγ ≤ Cτ. (49)

From the DS system (11), we have ψ = − (−∆)
−1

(∂ξ1 + ∂ξ2)
(
|φ|2

)
, then

we get

‖ψ (tn)− ψn‖Hγ+1 =
∥∥∥−(−∆)−1(∂ξ1 + ∂ξ2)

(
|φ (tn)|2 − |φn|2

)∥∥∥
Hγ+1

≤ C
∥∥∥|φ (tn)|2 − |φn|2

∥∥∥
Hγ

≤ C ‖φ (tn)− φn‖Hγ ‖φ (tn) + φn‖Hγ
≤ C ‖φ (tn)− φn‖Hγ (‖φ (tn)− φn‖Hγ + 2 ‖φ(tn)‖Hγ ) .

This together with (49), we have that

‖ψ (tn)− ψn‖Hγ+1 ≤ Cτ.

This finishes the proof of the first-order convergence theorem.

4 Numerical Experiments

In this section, we present the numerical experiments of the scheme (26) to
justify the convergence theorem, including experimental parameter settings
and experimental results. We consider the 2-dimension case, i.e. d = 2. Since
ψn is calculated via equation (27), which won’t lose any regularity and kept
first order convergence (see Theorem 1), we only need to test φn in this section.

To get an initial data with the desired regularity, we construct φ0(x) by
the following strategy [44]. Choose N ≥ 0 as an even integer and discrete the
spatial domain T2 with grid points xj,k,l = (2jπ

N , 2kπN ) for j, k = 0, . . . , N − 1
and l = 1, 2. Take a uniformly distributed random array rand(N,N) ∈ [0, 1]N ,
and an N ×N × 2 array U whose elements are defined as

Uj,k,l = rand(N,N) + i rand(N,N), (j, k = 0, . . . , N − 1, l = 1, 2).
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In our numerical experiments, we set

φ0(x) :=
|∂x,N |−γU

‖|∂x,N |−γU‖L∞
, x ∈ T2, (50)

where the pseudo-differential operator |∂x,N |−γ for γ ≥ 0 reads as follows:

(|∂x,N |−γ)k =

{
|k|−γ , k 6= 0,
0, k = 0,

for Fourier modes k = (k1, k2), and kl = −N/2, . . . , N/2−1 for l = 1, 2. Thus,
we get φ0 ∈ Hγ(T2) for any γ ≥ 0.

We implement the spatial discretizations of the numerical methods within
discussions by the Fourier pseudo-spectral method with a large number of
grid points N = 26, N = 27, N = 28 in the torus domain T2. Since the
scheme (26) requires γ > 1 and a derivative be added to the initial value, we
consider γ = 2 and γ = 3 in this experiment. For initial data in Hγ+1, we shall
present the relative error φn − φref in the L2 and Hγ norm at the final time
tn = T = 2.0, where the “exact” solution is obtained numerically by scheme
(26) with τ = 10−4. The results are shown below.
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Fig. 1: Convergence of the scheme: relative error ‖φn−φref‖L2/‖φref‖L2 (left) and ‖φn−
φref‖H2/‖φref‖H2 (right) at tn = T = 2.0 with initial condition γ = 2.
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Fig. 2: Convergence of the scheme: relative error ‖φn−φref‖L2/‖φref‖L2 (left) and ‖φn−
φref‖H3/‖φref‖H3 (right) at tn = T = 2.0 with initial condition γ = 3.

The Figure 1 shows the first-order accuracy in L2-norm and H2-norm with
data in H3 space, and the Figure 2 shows the first-order accuracy in L2-norm
and H3-norm with data in H4 space. This verifies the conclusion of Theorem
1.

5 Conclusion

In this work, we have numerically studied the DS-II system on a torus un-
der rough initial data. By some rigorous tools from harmonic analysis, we
established the sharp convergence theorem of a low-regularity integrator. The
theoretical result and experimental result show that the presented integrator
can reach first-order accuracy in space Hγ with rough initial data from space
Hγ+1 for any γ > 1.
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