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1 Introduction

The Davey-Stewartson(DS) systems originated from fluid mechanics was first
proposed by Davey and Stewartson [2] in the context of water waves in 1974,
which describe the dynamic evolution process of wave packet in finite depth
water, and waves travel in the main direction under the forces of gravity and
surface tension. The DS systems have extensive applications in fluid mechan-
ics [3,4], nonlinear optics [5,6], ferromagnetism [7], plasma physics [8]. In di-
mensionless form, they are generally read as the following systems for the
amplitude wu(t; 1, 22) and the mean velocity potential v(¢; z1, 22):

{iUt " )\uIlIl + fUgya, = Ml‘u|2u + H2UUg, (1)

Vg 24 + Vrozs = /1‘38961 (|u|2) )

where A\, u, v, 1, p2, w3 are real constants and A > 0, uops > 0. These sys-
tems can be classified as elliptic-elliptic, elliptic-hyperbolic (DS-T), hyperbolic-
elliptic (DS-II), hyperbolic-hyperbolic according to the signs of p,v: (+,4),
(+,-), (—+), (—,—). The Cauchy problems for the DS systems are widely
studied. By using the functional analytic method, Ghidaglia and Saut [9]
proved the existence, uniqueness and continuous dependence with initial value
in H! for the elliptic-elliptic, DS-I and DS-II cases.
The DS systems in elliptic-elliptic case is a special case of nonlinear Schrodinger

equations:

iug + Au = +R3 (Jul*)u,

where Ry = 9,,|V| ™! is the Riesz transformation. There are a large amount of
works investigated this model and we only mention a few of them. The Cauchy
problem for DS system in this case was studied by Gan and Zhang [10] who
gave a sharp threshold for global existence and blowup of the solution. Wang
and Guo [11] considered the scattering for a generalized DS systems. Lu and
Wu [12] used a variational approach to give a dichotomy of the blow-up and
the scattering for the generalized DS system.

The DS systems in elliptic-hyperbolic case, usually named by DS-I, is also
extensively studied. In particular, Linares and Ponce [13] established the local
well-posedness of small initial value problems for the DS-I and the hyperbolic-
hyperbolic cases. Tsutsumi [14] obtained the LP-decay estimates of solutions of
the DS-I case for 2 < p < co. Then, Hayashi and Saut [15] used the dispersive
method to establish the local well-posedness and the global existence of the
DS-I and the hyperbolic-hyperbolic cases for general large initial values.

The analytical work on the DS systems in hyperbolic-elliptic case, which
was named by DS-II, is much limited. Ozawa [16] obtained the exact blow-up
solution of the DS-II system. An important progress was made recently by
Nachman, Regev and Tataru [1], who proved the global well-posedness and
scattering for the defocusing DS-II system in L? by applying a Plancherel
theorem.

Extensive numerical methods have been proposed for nonlinear Schrédinger
equation and Korteweg-de Vries equation, including finite difference methods
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[17-19], finite element methods [20-22], splitting methods [23,24], spectral
methods [25-27], discontinuous Galerkin methods [28,29], exponential inte-
grators [30,31], low-regularity integrators [32-38], etc. For the DS systems,
White and Weideman [39,40] presented the numerical study of dromions for
the DS-I and the DS-II by the split-step Fourier method. Besse, Mauser and
Stimming [41] showed numerical results for the various blow-up phenomena
of E-E and for the exact soliton type solutions of DS-II by the time splitting
spectral method. Klein and Stoilov [42] discussed spectral algorithms for the
numerical scattering for the defocusing DS-II with initial data having the com-
pact support on a disk. However, all of these methods require high smoothness
of the initial data.

In practical applications, due to randomness, noise and measurement, the
initial data usually can’t meet the requirements of the high smoothness. The
convergence of a certain order can be achieved by imposing sufficient additional
regularity, when the solution of the equation is not smooth enough. More
precisely, to get

[ = u(tn)|ar < CT7,

where u” is the numerical solution and wu(t,) is the exact solution, 7 denotes
the time step, v describes roughness of the solution, and « denotes the or-
der of convergence, the initial value ug = u(0, x) should belong to some HY**
space, where the index s denotes the order of spatial derivatives of the solution
that has been lost in the numerical implementation. For the cubic nonlinear
Schrodinger equation, several studies of numerical algorithms with rough ini-
tial data have been carried out. Lubich [43] showed first-order convergence
in H” for initial value in H"*? by Strange splitting method. Ostermann and
Schratz [44] proved first-order convergence in H” for initial value in HY*!
with v > % by introducing the low regularity exponential-type integrators.
Wu and Yao [45] presented a Fourier integrator, which shows the first-order
convergence in H? for initial value in H” for v > % in one dimension without
any derivative loss. Ostermann, Wu and Yao [46] proposed a new exponential-
type integrator on the torus T%, which proves the second-order convergence in
HY(T4) for initial data in HY*2(T9) for any v > %.

Recently, Ning and Wang [47] proposed a numerical integrator for elliptic-
elliptic DS system and proved that the algorithm can achieve first-order con-
vergence in HY(T?) for rough initial data in H7+*(T¢) with r > 4.

In this paper, we focus on the DS-II system with the rough initial data on
a torus:

(2)

. 2 2
{lut F Ugyzy — Upogzy, = H1|U]U + pouvy,, t>0,x=(x1,22) € T,

Uﬁflﬁfl + Uﬁf2332 = 8581 (|U,‘2) )

where p1 > 0, g > 0, T = (0,27). Here u = u(t,z) : R* x T> — C is the
(complex) amplitude of the wave and v is the (real) velocity potential of the
wave movement, and ug(x) = u(0,z) € H(T?) with some 0 < v < oo is a
given initial data.
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Compared to the elliptic-elliptic DS system, the structure of the DS-II
system is more complicated. The phase functions of the two systems are com-
pletely different, since the principal operator of (2) is not elliptic which makes
the resonant set much larger.

The corresponding phase of the nonlinearity term in equation(2) is

E—n*+ (& —n)— (& —m)— (& —n3),

where € = & + &5 + €3, = 1m1 + 12 + n3. This phase function cannot be dealt
with in the same way as the elliptic-elliptic case. In previous work[47], it was
treated in a certain manner that resulted in the principal part being reduced
to &2 — n?. However, this approach does not lead to the development of an
efficient algorithm. Hence, the method proposed for the elliptic-elliptic case
[47] is not directly applicable to the DS-IT system. In order to address this
issue, we utilize the characteristic transformation to simplified the operator
Ozyz; — Oxgzy t0 Ozyx,. Then the phase function reduces to

En+&1m — §amz — E3m3.

We can further simplify the above function by the following approximation

&0+ &m — &z — &z = 26m + O &)
J#k
See Section 2.2 below. This allows us to construct a class of low-regularity algo-

rithm below which only requires the boundedness of one additional derivative
of the solution with rough initial data to get the first-order convergence.

Theorem 1 Let u™ and v™ be the numerical solution of the DS system (2)
obtained from the schemes (28) and (29) up to some fixed time T > 0. Under
the assume ug(x) € HYL(T?) for some v > 1, there exist constants 79 > 0
and C > 0, such that for any 0 < 7 < 19, we have

T
lultn) = w"llmr < O, lo(ta) = 0"l <C7, n=0,1,..., -, (3)

where the constants 79 and C' depend only on T and sup ||u(t)|| gr+1.
0<t<T

This paper is organized as follows. The detailed numerical integrator is intro-
duced in section 2. The first-order convergence analysis are given in section 3.
The numerical experiments are presented to validate the numerical scheme in
section 4, and concluding remarks are made in section 5.

2 Construction of the scheme

In this section, we shall firstly present some useful definitions and properties,
and then derive our numerical scheme.
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2.1 Definitions and Properties.

We use A < B or B 2 A to denote A < CB for some large absolute constant
C >0, and we denote A ~ B for A < B < A.
For k := (k1,ke) € Z?, @ := (x1,22) € T?, we denote

k- -x=kixi+ koxo, |k7|2= |k1|2+|k2|2.

The Fourier transform of a function f on T2 is defined by

fk = (271r)2 /11‘2 e ke (x) de.

For f € L?(T?), we denote its Fourier expansion by

fl@)="" fue™® (4)

kez?
Let H*(T?) be the classic Sobolev space of H* functions defined on the
2-dimensional torus T2. Its norm || - ||+ is defined by

2

fi| (5)

1 e rzy = 197 F ey = > (L4 KD

kez?

where the operator J? is defined by
J=(1-24)2, scR.
Furthermore, we define the operator (—A)™" for some function f(x) as

— -2 7 :

and define the operator 0y, ,, as
8a71;v2f = _klefka k= (kl’kQ)' (7)
Throughout the paper, we will exploit the well known bilinear estimate

1fgllers < 1 fllers

which hold for v > %. Moreover, we will make frequent use of the isometric
property of the free Schrédinger group e*d=v?

€= f || e = 1F 112+

g”HSa

for all f € HY and t € R.
In addition, we need the following operator w:

e —1
w(z)z{ . 270 (8)
1, z=0.
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2.2 Construction of the numerical integrator

For simplicity of notations, in the following we shall omit the spatial variable x
of the involved time-space dependent functions, e.g. u(t) = u(t, ). In addition,
we denote 7 > 0 as the time step and ¢,, = n7 as the time grids.

For the DS-II system

. 2
{Zut + Upyzy, — Uzgay, = Ml|u| U+ [2UVg,

v:l)l:El +vil?2132 = 81’1 (|u|2) ’

where p1, po are real constants, and g > 0, pe > 0.
By introducing the following variable substitution

&1 = %(xl + 2),
& = %(1?1 — T9),

that is

U(‘rlvx?) = w(flvéé)a

we can obtain the equation of ¢ and 1

{U(ml,xz) = ¢(&1,62),

1
it + dgre, = M1‘¢|2¢ + 5:“2(25 (’(/}51 + wﬁz) )
Verey + Ve = (O, + 0g,) (|¢|2) :
We can reduce the equation (10) as follows
{M)t + 06,60 — 0E(|9%) =0,
= —(=A)"" (0 + 0¢,)(¢]%),

where the operator E is defined by

(10)

(11)

. 0O¢, . 1
Ef = (i + HQ%)JC’ 1 = p1+ St (12)

Using the Duhamel’s formula, we have

t
o(t) = ePsatin(x) — i / P (=) 6 (5) B(|o(s) ) ds.
0
We introduce the twisted variable
p(t) = e Paele(t). (13)
Note that the twisted variable (t) satisfies
|2

dpp(t) = —ie Paeat[ei%etp(t) . E(|ei3£1£2t<p(t)

), (14)
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with the mild solution given by

T ) . ) 2
o(tns1) = @(tn)—i/ o~ i0c, €5 (tn+s) [eza&gz(tﬁs)(p(tn + ) B(|eiPaetnto) o, 4+ 5)‘ )] ds.
0

(15)
Since we only need first order convergent scheme, we can simplify the above
scheme using ¢(t, + s) = ¢(ty), and get

Ptnt1) = ¢(tn) — D" (p(tn)) = RT, (16)

where

T ) ) 2
@n((p(tn)) = ’L/ 67185162 (tnts) |:613§1§2 (t"+s)§0(tn) . E( ezaiﬁz (thFS)(p(tn)‘ ):l dS,
0

and

. 2
eae(tnts) o 4 )

n= z/ e 10165 (tnts) [eiaéléz(t"“)gp(tn +3s)- E( )
0

—ePaelint)o(t,) - B

. 2
R (t"'+s)(p(tn)‘ )] ds. (17)

Here, R} can be treated as a high-order term without additional regularity
assumption. Next, using Fourier expansion, we get

. L . L R . T o
QS”(W(tn)) — Z Z |:[1,1 + 1o (]1 + 1)(]2 + 2)] @j@k@lelﬂ.g . / 62(01QQ+J1J27k1k27l112)SdS’
0

j + k|
N€2? jklez? 3 |
Q2=j+k+1

(18)

where we set géj = cﬁj (tn), o1 = Qr(tn), &1 = @i1(ty) for short. And we denote
= 2102 + jij2 — kike — lilz and 8 = ji (ko +12) + k1(j2 + l2) + 11 (j2 + k2).
Then, we have

o = 2j1j2 =+ ﬁ

For the integration in (18), it cannot be transformed into the physical space
directly. Inspired by [44], we only choose the dominant quadratic term 2j; jo,
so that the integration can be carried out fully in Fourier space as

/ 2191928 g = 10(2iTj1 j2). 9)
0

Hence, @"(p(t,)) can be written as

. ; . 1+ k)(Je+ k)| - L L . L
Vet =i Y S e [ B oo i) + Ry
N€2? jk,lez? |J + ‘
Q=jrk+l

= ifre*ia&ﬁzt" |:ei8~’3152t"¢(tn) B (w(72i8£1£27—)ei85152t" @(tn) . eiaﬁﬁzt" sp(tn)>] + Rg,
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where

. ] k1)(7 k . . T
g — § : 2 : eltne [ﬂl + o (.71 + '1)(.72;' 2):| @j@k@lel‘q'g / estth(elsﬁ _ 1)d5_
2€2? jk,lez? “7 + kl 0
Q2= k41

(20)

Here, RY can also be treated as a high-order term, however, one loss of spatial
derivative comes when we drop this term.
For convenience, let’s denote

I (f) = ire Paetin [eiaslsﬁnf .E (w (—2i0,¢,7) e 0162t f . 10ereatn )}

Then, we have
D" (p(tn)) = 9" (¢ (tn)) + R3. (22)
So far, we can obtain the representation of the exact solution ¢ (t,,41)
@ (tnt1) = @ (ta) =" (¢ (tn)) — RT — R3. (23)
By dropping high order terms, we would get
@ (tng1) = @ (tn) =" (¢ (tn)) - (24)

Hence we finish the construction of the first order numerical integrator of ¢

(p"+1 — (pn_iTefiahfzt" [eiaéﬁzt"@n . FE (w (—Qiaglng)m . ei3§1§2t"<pn>:| ;M Z 07
(25)

where 0 = ¢(0,£1,&) = ¢(0,&1,&) = u(0, 21, 22). By reversing the twisted

variable (13) in (25), we deduce the scheme of the first order low-regularity

integrator for solving the DS system (11): denote ¢™ = ¢™(€) as the numerical

solution, for n =1,2,3,...,jj

P = e PaeaT gl _jreidaeT {qﬁ"_l -FE (w (—2i0g,e,7) P71 - ¢"_1)} , n=1,23,..,
(26)
with w in (8) and E in (12). Based on the DS system (11), we can write the

numerical solution of ¢: denote ¥ = ™ (£) as the numerical solution, for
n=1,23,..,

Y= —(=A)" 0 + 0e)(10"), n=1,2,3,... (27)

In order to obtain an approximation to the original solution wu(t,,) of the DS-
IT equation (2), we then substitute the variable back again by setting u"(x) =
@™ (€). This yields the following integrator for the DS-II equation (2):

ut = 0%, )Tyl (02, 0L )T [u"‘l - E (w (—21’(851 - 6%2)7) un—1. u"_lﬂ ,
(28)
- 1 02 92
where n = {1,2,3,...} and Ef = (u1 + su2 + po—275"2)f.
Based on the DS system (2), we can write the numerical solution of v:

V= —(=A) 10, (Ju"?), n=1,2,3,... (29)
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3 The first-order convergence analysis

In this section, we will provide the rigorous proof of the convergence result.
Because of the variable substitution (9), the conclusions about the equation
(2) and (10) are the same, so we are going to prove ¢. Since the twisted variable
in (13) is isometric in the Sobolev space H7, that is

19(tn) = &" [l = llere2bp(tn) — €152 0" |11 = [lip(tn) — @™ |1,

we will prove the first-order convergence theorem for the mild solution ¢™ and

P(tn).
Recall the exact solution in Section 2

Pltnt1) = @(tn) = " (p(tn)) = RY = Ry,

and numerial solution
et =" — W (™).

The error of the two solutions is
Ptns1) — "t = L7+ 8, (30)

where
L" = —(RY +R3),

and
S" = @(tn) =W (o(tn)) — " + " (¢").

Then, we will analyze the local error and the stability of the numerical prop-
agator in the following.

3.1 Local error estimation

Firstly, we give the following residual estimate, and then present local error
estimate.

Lemma 1 Let v > 1. Assume that ¢g € HY*L, then there exwist constants
70 > 0 and C > 0, such that for any 0 < 1 < 19, the following estimate hold:

IR g + RS N o < O, (31)

where 7o and C depend only on T and sup |o(t)]| gr+1-
0<t<T
Proof Recall the definition of R} in (17)

? _ / efiaglﬁz (tn+s) |:ei3€1§2 (tn+s)4p(tn + S) -FE (
0

. 2
elaglgz(thrs)@ (tn + S)’ )

_ 6185152 (tn+S)SD (tn) . E (
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we have

)
IR < /
0

< / 101 65 (tnts) (p(tn +5) —@(tn)) - E <
0
. 2
+/ ¢0e1ea(tn9) 5 (1) {E ( 06162 (tat) (1 s)( ) —E <
0

Since |Ef|| g+ S || fIlg~» together with bilinear estimate and isometric prop-
erty, we have

eaetnt) ot 4 5). E (

. 2
ePrer (o) (¢, 4 s>‘ )

2
)H dS
HY

. 2
i)
H~

esalnt) g (1)

ePaelnt)op (1,,)

M=

IR}y < / 10 (b + ) — 0 ()l s - 10 (b + |3 dis
+ / o ()l

< / [9(tn + ) — @ (ta) a1 - 19 (tn + 5)| % ds

61‘851&2(tn+s)sp<tn+s) _ ewglarz(mﬁs)@(tn)

ds

‘2
H~

:

+ /OT 1 Ea)ll gz - (e (En + $) v + 1@ E)ll ) 19 (4 8) = @ (En) | 11+ s
(32)

By (14), we can get

ot +8) — @ () 12 < / 180t + )7, d

S
</
0

elaettty(t 4 1) F (

2
eia&lgz“””)w(tnﬁ)‘ )H «

H~

s . 2
< [ ot + 0l | [0t + )|

0 I
< Cs sup o (tn + )5 - (33)

0<t<s
Inserting (33) into (32), it follows that
IRl < C7% sup_[lo(t)ll3- (34)
0<t<T

Next, we consider R5. Recall the definition of R%

. 1 k 1 k R . T .
g = E § eztna |:ﬂ1 + pio (]1 + '1)(]22“‘ 2):| @j@k@leln.g / 6215]1_]2 (elsﬁ _ l)ds
2€2? j k,lez? “7 + kl 0
N2=j5+k+1
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Hence, we have

1RSI = Y (1+12)* [R5 (£2))°

€72
(1o ~ ] +k ] +k
=2 (1+\9|)27‘ et [ul + |'1l(222 2)}
Qe72 Gk IET? J
N=j+k+l
L ) 2
. (,B(tnaj) Qﬁ (tn,k) @ (tn7l)/ eQ'L]lJzS(ezsﬂ _ 1)d8‘ (35)
0

Since ji1 € R, p2 € R, then we know that

(J1 + k1) (j2 + k2)
J + Kk[?

fi1 + p2 <]+ [p2| < C,

and
|65 1) < |sB).

Hence, we have

T 2
n 2 A A oA
1RSI <€ 30 (@) | X gaewin | spds
€72 j.k,lez? 0
2=j+k+l

Recall that 8 = jqi (k2 + l2) + k1(J2 + 12) + 11 (j2 + k2), then we have

B < 13 |(1K[ + [2)) + [K[(13] + [2]) + [2](|5] + [F[)
< 2(|[[Fl + [7]12] + [K[[2])
SO+ 13D+ [RNA + [2).

Furthermore, we obtain

2
n 2 . a ~ ~
IREIF < C7* Y~ L+ 12D™ | DY (U + 1D+ kD + )&kl
=J+
<Ot sup (1)1 (36)
0<t<T

By (34) and (36), we can get
||R5L||Hw + IIRSIIHW < CTQ,

where C' depends on  sup ||¢(¢)||g++1. This finishes the proof of the lemma.
0<t<T

By Lemma 1, we will show the local error £™ and have following lemma.
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Lemma 2 (Local error) Let v > 1. Assume that ¢ € HYTL, then there
exist constants 9 > 0 and C > 0, such that for any 0 < 7 < 79, the following
inequality holds

1£% |7 < CT2, (37)

where 9 and C depend only on T and sup |o(t)| gr+1-

0<t<T
Proof Based on the definition of L™, we have

1L [+ < IRY L + 1R || 1+
Using Lemma 1, we have
IRl < C7%, IR |1 < CT2,

then we get

1Lz < CT2,

where C' depends on  sup ||¢(t)|| g++:. This finishes the proof of lemma.
0<t<T

3.2 Stability analysis

For the numerical propagator ¢™ defined in (25), we have the following stability
result.

Lemma 3 (Stability) Let v > 1. Assume that ¢o € H'TL, then there exist
constants 19 > 0 and C' > 0, such that for any 0 < 7 < 19, the following
inequality holds

18 1+ < (L4 CT) @ (tn) = "l + CT 0 (8) = " I3, (38)

where 19 and C depend only on T and sup ||¢(t)||m~-
0<t<T

Proof According to the definition of 8™, we have

18 [+ = llp(tn) =" (p(tn)) — " + ¥ (") ||
< lp(tn) = "l + 19" (0 (tn)) — " (") 17 - (39)

Recall that

U (f) = ite”Paetn |:ei8§152t"f . E (w(722‘8£1£27')ei85152t"f . 98 62tn >] .
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Then, we have

12" (p(tn)) = 2" (")l <7

_ ei65152tn "B W(—2i8§1§27>6i65152t"@n . ei8§1§2tn¢n)

eiahﬁzt”(p(tn) FE (w(—2i851€27)6i8£152t"’(p(tn) . €i3§1£2tn(p(tn))

¥ HH’Y

<7llp(ta) = " i+ - | B (w(=2i0g,e,m) 150 o(tn) - %62 (t) ) ||,
+ 7"l - |[Blw(=2i0c 6 T)e P (t) - e P16t o)

— W(—Zia&& T)m . eiailﬁztn (Pn]

‘Hw'
Recall that w, we have
lw(z)] <1,Vz=1ib, beR.

Therefore, we obtain

lw(=2i0g,6,7) fll v < Clf ][ 77 (40)

Then we can get

19" (o(tn)) — ¥ (") 1~ (41)
<C7lle(tn) — ¢" 1~ - le(ta) 1 Fn
+ C7ll" | v - H (w(*%aglgﬂ')eiafls?t"so(tn) _ w(72i8£1£27_)6i8£152tn90’ﬂ) . 6i8£152t"<p(tn)
+ w(—2i6§152T)m' (ei‘95152t"<p(tn) - ei‘c"\flﬁzt"go")
<O7lle(tn) = "l lle(tn) 13
+ C7||™ || 1 - U|w(—2i6§1527) (eiaﬁlﬁzt"go(tn) - 6ia€152t”“pn) HHw’|ei85152t"g0(tn)HH7

L llePast (ota) — o) 1.

"=

+ ||w(—2i8§1§27')ei65152t" om
<Cllo(tn) — "l llo(tn) |74

+ CTle" v [lp(tn) = @" iz o) 10 + o™ v p(tn) = 9" 12+
(12)

Using (o™ [+ < llo(tn) — ™[l + lp(tn) |2, we get
[ (o (tn)) = ¥ (") -
<Crlle(tn) = "l llo(t)lE + CT(lle(tn) — ¢l + llo(tn)llz-)
leltn) ="l lloCtn)lla + (letn) = @™ lmr + lleEn)lar) - lle(tn) — @™ |

<C7lle(tn) = " lmrllota)llFr + C(3lle(tn) — "7 o (ta)lla
+2llp(tn) = "l o)z + leltn) = ¢ l13m)-
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Since the quadratic term can be controlled by the first term and third term,
we can obtain

12" (p(tn)) = ™ (")~ < CTll(tn) = "l + Crllep(tn) — "Il )
43
where C depends on sup |o(t)||g~-
0<t<T

Using (39) and (43), we have
IS™ I+ < (1 + CT)lle(tn) = "l + CTllo(tn) — @[l
this proves this lemma.

Finally, we give a proof of the first-order convergence theorem.

3.3 The proof of theorem 1

Together with the local error estimate and the stability result, we give the
proof of Theorem 1. From Lemma 2 and 3, we have

le(tns1) = "l < CTPH(1+C7) 0(tn) = "l +CT llltn) = " I3 5
(44)
where n.=0,1,2,...,Z — 1, C depends only on T and sup |[|(t)| g+1.
0<t<T

Followed by the argument in [38], we can get
o (tn) = ¢" [l grir < CT, (45)
where C' depends on T" and  sup ||¢p(¢)|| grv+1.
0<t<T

To prove it, we claim that there exists some 75 > 0 (to be determined)
such that for any 7 € (0,70] and any n =0,1,..., L

lp(tn) = "l g2 < CT>Y (14207 (46)
§=0
It trivially holds for n = 0. Now we assume that
lo(tn) — ¢ [l < CT>> (1+2CT), forany 0 <n<ng.  (47)
§=0
From (47), we have
||90(tn) - QDnHHV < ClT? (48)
where 7 = 2e2¢7T for any 0 < n < ng. Then by (44), we get

no
lo(tngs1) — <p"°+1HHW <Cr*+ (1+Cr+CC3r%) - C7? Z(l +207)7.
=0
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Now we can choose 19 > 0 such that
00127'3 <C,

then for any 7 € (0, 9], it follows

|le(tne+1) — @"OHHHW <O7* 4 (14 207) - CO7? Z(l +2CT7)’

j=0
no ) no+1 )

=Cr?+Cry (1+207) T < Cr® Y (1+2C7).
j=0 j=0

This finishes the induction and proves (46), which gives (45).
From (13), together with isometric property, we get

16 (tn) = 0" gr = lle (tn) = " gn < CT. (49)

From the DS system (11), we have v = — (—A) ™" (9, + de,) (\¢|2), then
we get

0 (ta) = "l res = ||~ (= 2) 7 (B, + &) (10 () — 16" )
<o) ~ 1o,

<Ol (tn) ="l g+ 9 (tn) + 0" -
<Cllo(tn) = ¢" g (16 (En) = "l gv + 216(En)l ) -

This together with (49), we have that

Hw (tn) - wnHHerl < Cr.

This finishes the proof of the first-order convergence theorem.

H~Y+1

4 Numerical Experiments

In this section, we present the numerical experiments of the scheme (26) to
justify the convergence theorem, including experimental parameter settings
and experimental results. We consider the 2-dimension case, i.e. d = 2. Since
1™ is calculated via equation (27), which won’t lose any regularity and kept
first order convergence (see Theorem 1), we only need to test ¢™ in this section.

To get an initial data with the desired regularity, we construct ¢o(x) by
the following strategy [44]. Choose N > 0 as an even integer and discrete the
spatial domain T? with grid points z;5; = (%T”, %T’T) for j,k=0,...,N —1
and [ = 1,2. Take a uniformly distributed random array rand(N, N) € [0, 1]",
and an N x N x 2 array U whose elements are defined as

Uik, =rand(N,N) +irand(N,N), (j,k=0,....N—1,1=1,2).
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In our numerical experiments, we set

|am N|7WZ/{ 2
=_— T 50
QSO(ZC) |||am’N‘_’yu||Loo7 WAS ) ( )

where the pseudo-differential operator |0g |~ for v > 0 reads as follows:

—y, _ JIET R #O,
(|aw,N| )k: — {0, k= O7

for Fourier modes k = (k1,k2), and ky = —N/2,...,N/2—1 for | = 1,2. Thus,
we get ¢g € HY(T?) for any v > 0.

We implement the spatial discretizations of the numerical methods within
discussions by the Fourier pseudo-spectral method with a large number of
grid points N = 26, N = 27, N = 2% in the torus domain T2. Since the
scheme (26) requires v > 1 and a derivative be added to the initial value, we
consider v = 2 and v = 3 in this experiment. For initial data in H"*!, we shall
present the relative error ¢™ — ¢y in the L? and H” norm at the final time
t, =T = 2.0, where the “exact” solution is obtained numerically by scheme
(26) with 7 = 10~*. The results are shown below.

H° data H° data

Fig. 1: Convergence of the scheme: relative error ||¢"™ — ¢resllp2/||drefllr2 (left) and ||¢™ —
Orefllmz/Nldres|l g2 (right) at ¢, = T = 2.0 with initial condition y = 2.
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H* data H* data

Fig. 2: Convergence of the scheme: relative error ||¢™ — ¢ref|l 12/ ||presll 2 (left) and ||¢™ —
drefllgs /Il dresll g (right) at ¢, =T = 2.0 with initial condition v = 3.

The Figure 1 shows the first-order accuracy in L2-norm and H2-norm with
data in H? space, and the Figure 2 shows the first-order accuracy in L?-norm
and H3-norm with data in H* space. This verifies the conclusion of Theorem
1.

5 Conclusion

In this work, we have numerically studied the DS-II system on a torus un-
der rough initial data. By some rigorous tools from harmonic analysis, we
established the sharp convergence theorem of a low-regularity integrator. The
theoretical result and experimental result show that the presented integrator
can reach first-order accuracy in space HY with rough initial data from space
HY*! for any v > 1.
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