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Abstract

The field of mediation analysis commonly explores the pathways that connect envi-

ronmental exposures with health outcomes. With the development of data collection

techniques, greater efforts have been dedicated to addressing high-dimensional me-

diators. In this paper, we present an efficient approach to identify significant medi-

ators while controlling the false discovery rate (FDR). We propose a three-step pro-

cedure that incorporates independent screening, variable selection together with re-

fitted partial regression, and divide-aggregate composite-null test (DACT). The sim-

ulation includes a comparative analysis of our proposed method in comparison to

eight competing approaches, demonstrating that our procedure has significant ad-

vantages over other methods. The proposed procedure is applied to investigate the

mediation mechanisms of DNA methylation in the relationship between smoking

and lung function. Three specific methylation sites (cg26331243, cg19862839, and

cg12616487) are identified as potential epigenetic markers involved in mediating this

relationship. Our proposed method is available with the R package HIMA at https:

//cran.r-project.org/web/packages/HIMA/.

Keywords: High-dimentional mediation analysis, FDR control, Multiple testing,

Variable selection.
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1 Introduction

The method of mediation analysis is a modern statistical approach that investigates

the underlying mechanism by which an exposure influences an outcome. It has been

widely applied in many fields, including genome-wide association studies (Tam et al.,

2019), epidemiological investigations (Stringhini et al., 2017), and socioeconomic research

(Baron and Kenny, 1986). In the past few years, substantial research efforts have been

devoted for mediation analysis. For example, Coffman (2011) proposed to adjust con-

founders between the mediator and the outcomes by calculating propensity score; Tchet-

gen and Shpitser (2012) established a general semiparametric framework for the natural

direct and indirect causal effects; Lindquist (2012) extended structural equation models to

the functional data analysis; Zhang and Wang (2013) compared four mediation analysis

approaches when dealing with the missing data; Boca et al. (2014) developed a permu-

tation approach to test multiple mediators; Shen et al. (2014) studied the topic on quan-

tile mediation effects; Frölich and Huber (2014) investigated the non-parametric identi-

fication of causal direct and indirect effects of a binary treatment based on instrumental

variables; Zheng and Zhou (2015) proposed a new model to handle both multilevel in-

tervention and multicomponent mediators; VanderWeele and Tchetgen (2017) provided a

weighting approach to direct and indirect effects based on combining the results of two

marginal structural models, etc.

The aforementioned studies primarily focused on single or multiple, yet low-dimensional

mediators. However, with the advancement of large-scale data collection techniques,

considerable attention has been devoted to high-dimensional mediation analysis. For

instance, Huang and Pan (2016) presented a hypothesis test for mediation effects of high-

dimensional continuous mediators; the three-step procedure named HIMA, proposed by

Zhang (2016), is designed to address the challenges posed by high-dimensional medi-

ators; Wang et al. (2019) designed a rigorous Sparse Microbial Causal Mediation Model

(SparseMCMM) for the high dimensional and compositional microbiome data in a typical

three-factor causal study; Zhou et al. (2019) developed methods for both incomplete me-

diation, where a direct effect may exist, and complete mediation, where the direct effect
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is known to be absent; Fasanelli et al. (2019) considered latent variables in the model for

high-dimensional mediation analysis; Zhang et al. (2021a) and Zhang et al. (2021b) studied

mediator selection procedures for compositional microbiome data. Yu et al. (2021) pro-

posed a high-dimensional mediation analysis procedure which accommodating the po-

tential confounders by using the propensity score. The HDMT method proposed by Dai

et al. (2020) utilized a mixture distribution of three sub-null hypotheses and employed

the joint significance (JS) approach to address the issue of conservativeness in JS; Zhang

et al. (2021c) introduced a method for high-dimensional survival mediation analysis; the

DACT method proposed by Liu et al. (2022) involves the computation of a weighted

summation of p-values under three sub-null hypotheses. Perera et al. (2022) introduced

HIMA2 by replacing minimax concave penalty (MCP) with de-biased Lasso. Zhang et al.

(2024) studied the topic on high-dimensional quantile mediation analysis. Two review

papers on high-dimensional mediation analysis were presented by Zeng et al. (2021) and

Zhang et al. (2022).

Mediation analysis has emerged as a prevalent approach for elucidating the causal

pathways linking an independent variable to a dependent variable through intermediate

variables. Motivated by the ongoing Coronary Artery Risk Development in Young Adults

(CARDIA) Study, which will be described in Section 4, our research aims to investigate

the mechanistic role of DNA methylations in mediating the pathways between smoking

and lung function. The calculation of p-values for high-dimensional mediators is widely

acknowledged as challenging. To be specific, the p-values and estimates for the excluded

mediators remain unknown due to the common utilization of variable screening or se-

lection methods to reduce mediator dimensionality. To address this gap, we propose an

efficient approach for computing p-values across all mediators with refitted partial regres-

sion. Then, we employ the DACT method to perform multiple testing on all mediators

under FDR control.

The remainder of this paper is organized as follows. In Section 2, we introduce a

three-step testing procedure for assessing high-dimensional mediation effects in linear

regression models. In Section 3, the performance of our method is compared with eight

different methods through numerical simulations. In Section 4, we apply our new pro-
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cedure to investigate the mediating role of DNA methylation relating smoking and lung

function. In Section 5, a brief conclusion is provided.

2 Statistical Methods

Mediation analysis investigates the intermediate mechanism through which an expo-

sure exerts its influence the outcome. The diagram in Figure 1 depicts a classical me-

diation model that illustrates the interrelationships among an independent variable (X),

multiple mediators (M1, · · · , Mp), and an outcome variable (Y).

X

M1

M2

Mp−1

Mp

Y

α1

α2

αp−1

αp

γ

β1

β2

βp−1

βp

Figure 1. The scenario of a high-dimensional mediation model with omitted covariates.

We adopted the counterfactual framework for the vector of potential mediators M(x) =

(M1(x),M2(x), · · · ,Mp(x))
′ under exposure level x, and Y (x,m) the potential outcome

under exposure level x and mediators level m, to express the mediation analysis:

Y (x,m) = c+ γX +m′β + Z′η + ϵ,

Mi = ci + αiX + Z′ζi + ei, i = 1, · · · , p,

where X is the exposure, γ is the direct effect of exposure on the outcome; β = (β1, · · · , βp)
′

is the regression parameter vector relating the mediators to the outcome, α = (α1, · · · , αp)
′
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is the parameter vector relating the exposure to mediator, η and ζi are corresponding re-

gression coefficients for covariates Z = (Z1, · · · , Zq)
′; c and ci’s are intercepts, ϵ and ei’s

are mean-zero error terms.

A few causal assumptions that are needed for the identification of natural direct effect

(NDE) and natural indirect effects (NIE) are listed below (Mathew et al., 2019; Tsai et al.,

2018):

A1. Stable unit treatment value assumption (SUTVA) for both the mediators and the

outcome. This assumption indicates that there is neither multiple versions of exposures

nor interference between individuals, which implies that M (x) and Y (x,m) are well de-

fined.

A2. Consistency for the mediators and the outcome. That is, there are no measurement

errors in the mediators and thus the observed variables satisfy M = M(X) and Y =

Y (X,M ).

A3. Sequential ignorability: This assumption contains 4 parts:

(A3.1) X ⊥ Y (x,m)|Z, i.e., no unmeasured confounding between exposure and the

potential outcome;

(A3.2) M ⊥ Y (x,m)|X,Z, i.e., no unmeasured confounding between mediators and

the potential outcome;

(A3.3) X ⊥ M (x)|Z, i.e., no unmeasured confounding between exposure and the

potential mediators;

(A3.4) M (x∗) ⊥ Y (x,m)|Z, i.e., no exposure-induced confounding between medi-

ators and the potential outcome. In other words, the potential mediators under any in-

tervention level m are independent of potential outcomes under any intervention x and

mediator level x∗ given covariate Z.

A4. No direct causal relationship between mediators. We do not allow one mediator

to be the cause of another, but we do allow them to have shared common causes.

The direct effect is NDE = E[Y (1,M(0))−Y (0,M(0))] = γ under assumption A1−A3,

and the indirect effect is NIE = E[Y (1,M(1))−Y (1,M(0))] =
p∑

i=1

αiβi. What’s more, NIE

can be decomposed into the summary of indirect effects through each mediator Mi under

the additional assumption A4, i.e. NIEi = αiβi.
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We adopted the structural equation model (Zhang et al., 2016) to assess the mediation

effects of high-dimensional mediators:

Y = c+ γX +M′β + Z′η + ϵ, (2.1)

Mi = ci + αiX + Z′ζi + ei, i = 1, · · · , p, (2.2)

where the dimension of potential mediators (p) significantly exceeds the sample size (n).

The index set of significant mediators is denoted as Ω = {i : αiβi ̸= 0, i = 1, · · · , p}.

In what follows, we are interested in the multiple testing problem:

H0i : αiβi = 0 ↔ H1i : αiβi ̸= 0, i = 1, · · · , p. (2.3)

The proposed method can be described as a three-step approach: First, we utilize the sure

independence screening (SIS; Fan and Lv, 2008) method in conjunction with the minimax

concave penalty (MCP; Zhang, 2010) to effectively reduce the dimensionality of media-

tors. Second, the p-values for all mediators are obtained using the refitted partial regres-

sion method (Hao and Zhang, 2017). Finally, we perform multiple tests with FDR control

for mediation effects using the DACT test. In Figure 2, we present a diagram for our

three-step method. Details of the proposed procedure are given as follows.

Step 1: The mediators are initially screened using the following p marginal models,

Y = c+ γX + βiMi + ZTη + ϵ, for i = 1, · · · , p. (2.4)

Let Ω1 = {i : Mi is among the top d = [n/3] largest effects |β̃i| , i = 1, · · · , p}, where β̃i is

the ordinary least square (OLS) estimator of βi based on model (2.4). The MCP-estimators

β̂MCP
i are obtained by minimizing the criterion

Q(βΩ1 ; τ, h) =
n∑

j=1

(
Yj − c− γXj −

∑
i∈Ω1

βiMji −ZT
j η

)2

+
∑
i∈Ω1

pτ,h(βi),

where the sub-vector βΩ1 represents the subset of elements from vector β that correspond

to indices in set Ω1; the MCP function pτ,h(·) is

pτ,h(βi) = τ

[
|βi| −

|βi|2

2τh

]
I{0 ≤|βi| < τh}+ τ 2h

2
I{|βi| ≥ τh}.
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p-dimensional potential mediators

M1,M2, · · · ,Mp

Ω1= {the top d = [n/3] mediatiors

with largest |β̃i| }

Ω2 = {i; β̂MCP
i ̸= 0, i ∈ Ω1}

α̂i, β̂i, Pαi
, Pβi

H0i : αiβi = 0, i = 1, ..., p

DACT

SIS for p mediators

MCP-based estimators

the refitted partial regression

Figure 2. A diagram of multiple testing for high-dimensional mediators.
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Here τ > 0 is the regularization parameter, and the concavity of MCP is determined by

h > 0. From the view of practial application, β̂MCP
i can be obtained using the R package

ncvreg. Denote the selected index as Ω2 = {i : β̂MCP
i ̸= 0, i ∈ Ω1}.

Step 2: By the refitted partial regression method of Hao and Zhang (2017), we can

derive the OLS estimators for βi’s:

• For i ∈ Ω2, the OLS estimator β̂i and its standard error (SE) σ̂βi
can be obtained by

the sub-model Y = c+ γX +MT
Ω2
βΩ2 + ZTη + ϵ.

• For i /∈ Ω2, the β̂i and σ̂βi
are obtained by the sub-model Y = c+γX+MT

Ω2∪{i}βΩ2∪{i}+

ZTη + ϵ.

The corresponding p-values for all mediators can be derived as follows:

Pβi
= 2{1− Φ(|β̂i|/σ̂βi

)}, for i = 1, · · · , p, (2.5)

where Φ(·) is the cumulative distribution function of N(0, 1). Similarly, we have

Pαi
= 2{1− Φ(|α̂i|/σ̂αi

)}, for i = 1, · · · , p. (2.6)

Here α̂i is the OLS estimator of αi and its SE is σ̂αi
.

Step 3: We address the issue of multiple testing in (2.3) by the DACT method (Liu

et al., 2022). The test statistics are given as

PDACT,i = ω̂01Pαi
+ ω̂10Pβi

+ ω̂00P
2
JS,i, for i = 1, · · · , p,

where PJS,i = max(Pαi
, Pβi

), Pβi
and Pαi

are defined in (2.5) and (2.6), respectively; ω̂01, ω̂10

and ω̂00 are three weights, which can be obtained based on the empirical characteristic

function and Fourier analysis (Liu et al., 2022). Let ρi = Φ−1(1 − PDACT,i), where the

function Φ−1(·) is the inverse of the cumulative distribution function (CDF) for a standard

normal distribution. Denote

F̂DR(ρi) = π̂0F̂0(ρi)/F̂ (ρi), for i = 1, · · · , p,

where π̂0 denotes the proportion of null mediation effects (e.g. H0i), F̂0(·) is the empirical

CDF of ρi under null mediation hypothesis, and F̂ (·) is the empirical CDF of ρi under

nonnull hypothesis. To control FDR under level δ, the index set of significant mediators

is given by Ω̂DACT = {i : F̂DR(ρi) ≤ δ, i = 1, · · · , p}.
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3 Simulation Study

The performance of our method (denoted as “eHIMA”) is evaluated through simula-

tions in this section. We consider four scenarios for generating the random samples based

on models (2.1) and (2.2):

• Case 1: We generate the exposure X from N(0, 2). The covariate Z = (Z1, Z2)
′, where

Z1 and Z2 are independently generated from N(2, 1). The intercept term ci in model (2.2)

is set as 0.5 and ϵ in model (2.1) is generated from N(0, 1). We set ζ = (0.5, 0.5)′, γ = 0.5

and η = (0.3, 0.3)′. The true regression coefficients are β1 = 0.2, β2 = 0.3, β3 = 0.25, β4 =

0.2, β5 = 0.35, β6 = 0.1, β7 = 0.25, β8 = 0.1, β9 = 0.2, β10 = 0.2 and βi = 0 for others;

α1 = 0.2, α3 = 0.15, α5 = 0.3, α7 = 0.15, α9 = 0.2, α12 = 0.25, α14 = 0.3 and αi = 0

for others. i.e., Ω = {1, 3, 5, 7, 9}. The error terms ei’s follow N(0,Σe), where Σe is a

matrix with (Σe)i,j = 0.85 for i, j = 1, 3, 5, 7, 9; (Σe)i,j = 0.65 for i, j = 2, 4, 6, 8, 10 and

(Σe)i,j = 0.5|i−j| for others.

• Case 2: We set Σe =
(
0.8|i−j|)

i,j
, and other settings are the same as Case 1.

• Case 3: The exposure X follows a mixture normal distribution 0.5N(−1, 1)+0.5N(1, 0.5).

The error terms ei’s follow N(0,Σe), where Σe is a matrix with (Σe)i,j = 0.65 for i, j =

1, 2, · · · , 20 and (Σe)i,j = 0.3|i−j| for others, the rest settings are the same as Case 1.

• Case 4: The error terms ei’s follow N(0,Σe), where Σe is a matrix (Σe)i,j = 0.65 for

i, j = 1, 2, · · · , 20 and (Σe)i,j = 0.5|i−j| for others. The rest settings are the same as Case 3.

To further investigate the impact of correlations among mediators, we manipulate the

covariance matrix of error terms ei’s from Case 1 to Case 2. Additionally, the exposures

in Cases 3 and 4 exhibit greater complexity compared to those in Cases 1 and 2. The

comparison is conducted with two alternative methods, namely Sobel’s test (referred to

as ”Sobel”) and joint significant test (referred to as ”JS”), in place of the DACT test in Step

3. The Sobel’s test statistic is defined as

TSobel,i =
α̂iβ̂i√

β̂2
i σ̂

2
αi
+ α̂2

i σ̂
2
βi

, for i = 1, · · · , p.

To control the FDR, we adopt the B-H method (Benjamini and Hochberg, 1995). The

asymptotic distribution of TSobel,i is assumed to follow a standard normal distribution.
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Table 1: The simulation results with Case 1 and Case 2 (p = 5000).

Case 1 Case 2

Methods Model size FDR Power Model size FDR Power

n = 500 eHIMA 4.061 0.0350 0.7744 4.342 0.0342 0.8442

Sobel 1.844 < 10−4 0.3689 2.442 0.0100 0.4876

JS 2.411 < 10−4 0.4822 3.282 0.0067 0.6524

HIMA 2.417 0.0390 0.4567 1.810 0.1150 0.3080

HIMA2 3.467 0.0106 0.6833 4.052 0.0095 0.8016

MedFix 3.510 0.0352 0.6680 2.862 0.0421 0.5404

BSLMM 3.270 < 10−4 0.6540 3.130 0.0141 0.6144

HDMA 4.190 0.0619 0.7720 4.670 0.0938 0.8320

MT Comp 6.428 0.2178 0.9822 5.942 0.1695 0.9660

n = 600 eHIMA 4.494 0.0379 0.8556 4.810 0.0397 0.9072

Sobel 2.206 0.0019 0.4400 4.020 0.0013 0.8030

JS 2.767 0.0019 0.5522 4.290 0.0013 0.8570

HIMA 2.600 0.0434 0.4889 2.495 0.0568 0.4630

HIMA2 3.783 0.0178 0.7400 4.460 0.0082 0.8830

MedFix 3.880 0.0234 0.7302 4.030 0.0092 0.7980

BSLMM 3.242 0.0045 0.6440 3.570 0.0020 0.7120

HDMA 4.440 0.0694 0.8140 5.050 0.0642 0.9340

MT Comp 6.656 0.2308 0.9933 6.495 0.2230 0.9860
†“eHIMA” denotes our proposed method; others are eight competing approaches.
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Consequently the p-values can be calculated as PSobel,i = 2{1 − Φ(|TSobel,i|)} for each i =

1, · · · , p. We sort those p-values as P
(1)
Sobel < P

(2)
Sobel < · · · < P

(p)
Sobel. Under the FDR level δ,

we define the threshold q as

q = max

{
i : P

(i)
Sobel ≤ i

δ

p
, i = 1, · · · , p

}
.

The index set of significant mediators is denoted as Ω̂sobel = {i : PSobel,i ≤ P
(q)
Sobel, i =

1, · · · , p}. Moreover, The p-value for the JS test is defined as

PJS,i = max(Pαi
, Pβi

), for i = 1, · · · , p, (3.7)

where Pβi
and Pαi

are defined in (2.5) and (2.6), respectively. Following the B-H method,

the p-values are ordered as P (1)
JS < P

(2)
JS < · · · < P

(p)
JS . Under the FDR level δ, the threshold

q̃ is set as

q̃ = max

{
i : P

(i)
JS ≤ i

δ

p

}
.

The index set of significant mediators is denoted as Ω̂JS =
{
i : PJS,i ≤ P

(q̃)
JS

}
. In addition

to the Sobel and JS methods, we also compare eHIMA with HIMA (Zhang et al., 2016),

HIMA2 (Perera et al., 2022), MedFix (Zhang, 2022), BSLMM (Song et al., 2020), HDMA

(Gao et al., 2019) and MT Comp (Huang, 2019).

In Tables 1-4, we present the model size (MS) of the selected model, which represents

the averaged cardinality of the estimated index of significant mediators; the FDR and

Power of tests with a significance level of 0.05 are also provided. The results are based

on 500 repetitions, with sample sizes of n=500 and 600 respectively. The dimensions of

the mediators are set as p=5000 and 8000 respectively. The results presented in Tables

1-4 indicate that Sobel, JS, and BSLMM exhibit a significantly conservative behavior with

low statistical power compared to the other six methods. The tendency of all methods

is to select a model smaller than the true model with |Ω| = 5, except for HDMA and

MT Comp. The FDRs of HDMA and MT Comp exceed the predetermined significance

level, resulting in a substantial number of false positive mediators. The proposed eHIMA

method demonstrates superior performance in terms of FDR and Power in the simulated

settings as a whole.
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Table 2: The simulation results with Case 1 and Case 2 (p = 8000).

Case 1 Case 2

Methods Model size FDR Power Model size FDR Power

n = 500 eHIMA 4.081 0.0309 0.7838 4.465 0.0256 0.8640

Sobel 1.769 < 10−4 0.3538 3.215 0.0017 0.6420

JS 2.344 0.0021 0.4675 3.755 0.0058 0.7470

HIMA 2.425 0.0422 0.4575 1.965 0.0825 0.3580

HIMA2 3.531 0.0119 0.6963 4.285 0.0128 0.8430

MedFix 3.421 0.0380 0.6480 2.802 0.0478 0.5340

BSLMM 3.634 < 10−4 0.7263 3.230 0.0095 0.6380

HDMA 4.220 0.0784 0.7560 4.590 0.0847 0.8260

MT Comp 6.556 0.2283 0.9838 6.280 0.2050 0.9740

n = 600 eHIMA 4.536 0.0402 0.8629 4.862 0.0265 0.9434

Sobel 2.186 < 10−4 0.4371 4.190 < 10−4 0.8382

JS 2.636 < 10−4 0.5271 4.490 < 10−4 0.8980

HIMA 2.636 0.0480 0.4929 2.661 0.1017 0.4780

HIMA2 3.771 0.0121 0.7429 4.710 0.0140 0.9240

MedFix 3.850 0.0283 0.7400 4.102 0.0173 0.8064

BSLMM 3.704 0.0025 0.7375 3.790 0.0020 0.7562

HDMA 4.788 0.0943 0.8450 5.290 0.0869 0.9480

MT Comp 6.629 0.2306 0.9900 6.540 0.2243 0.9964
†“eHIMA” denotes our proposed method; others are eight competing approaches.
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Table 3: The simulation results with Case 3 and Case 4 (p = 5000)†.

Case 3 Case 4

Methods Model size FDR Power Model size FDR Power

n = 500 eHIMA 4.606 0.0485 0.8660 4.612 0.0567 0.8572

Sobel 1.222 0.0020 0.2436 1.258 0.0055 0.2488

JS 2.652 0.0036 0.5280 2.638 0.0060 0.5232

HIMA 3.468 0.0374 0.6632 3.476 0.0429 0.6604

HIMA2 4.364 0.0312 0.8396 4.352 0.0342 0.8336

MedFix 4.358 0.0328 0.8364 4.472 0.0460 0.8440

BSLMM 2.696 0.0269 0.5224 2.602 0.0275 0.5024

HDMA 5.166 0.1267 0.8848 5.142 0.1197 0.8880

MT Comp 5.686 0.1570 0.9372 5.684 0.1588 0.9352

n = 600 eHIMA 4.922 0.0422 0.9382 4.890 0.0471 0.9224

Sobel 1.607 0.0010 0.3210 1.654 0.0025 0.3296

JS 3.370 0.0009 0.6732 3.286 0.0026 0.6552

HIMA 3.999 0.0359 0.7670 4.084 0.0346 0.7828

HIMA2 4.749 0.0223 0.9244 4.668 0.0218 0.9088

MedFix 4.808 0.0288 0.9248 4.760 0.0311 0.9144

BSLMM 3.149 0.0112 0.6218 3.154 0.0128 0.6216

HDMA 5.426 0.1034 0.9580 5.436 0.1103 0.9460

MT Comp 5.969 0.1631 0.9796 5.950 0.1606 0.9788
†“eHIMA” denotes our proposed method; others are eight competing approaches.
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Table 4: The simulation results with Case 3 and Case 4 (p = 8000)†.

Case 3 Case 4

Methods Model size FDR Power Model size FDR Power

n = 500 eHIMA 4.435 0.0423 0.8580 4.525 0.0495 0.8640

Sobel 1.215 < 10−4 0.2430 1.185 < 10−4 0.2370

JS 2.615 0.0025 0.522 2.700 0.0025 0.5390

HIMA 3.540 0.0458 0.6680 3.765 0.0419 0.7160

HIMA2 4.415 0.0364 0.8410 4.470 0.0277 0.8500

MedFix 4.495 0.0326 0.8360 4.555 0.0334 0.8450

BSLMM 2.700 0.0444 0.5100 2.715 0.0793 0.5010

HDMA 5.170 0.1118 0.8950 5.070 0.1005 0.8980

MT Comp 5.6800 0.1681 0.924 5.710 0.1626 0.9380

n = 600 eHIMA 4.894 0.0427 0.9276 4.965 0.0513 0.9328

Sobel 1.548 < 10−4 0.3096 1.539 0.0012 0.3070

JS 3.338 0.0009 0.6668 3.242 0.0026 0.6460

HIMA 3.916 0.0339 0.7540 4.022 0.0283 0.7764

HIMA2 4.712 0.0276 0.9108 4.728 0.0239 0.9178

MedFix 4.700 0.0303 0.9052 4.761 0.0300 0.9162

BSLMM 3.146 0.0235 0.6112 3.265 0.0338 0.628

HDMA 5.380 0.1057 0.9484 5.393 0.0968 0.9562

MT Comp 6.024 0.1767 0.9720 5.943 0.1599 0.9768
†“eHIMA” denotes our proposed method; others are eight competing approaches.
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4 Real data example

In this section, we apply the proposed methodology to the CARDIA Study, a longi-

tudinal cohort study that investigates the development and determinants of clinical and

subclinical cardiovascular disease as well as their risk factors (Friedman et al., 1988). Sim-

ilar to Perera et al. (2022), we focused on 1042 individuals from the CARDIA participants

at Year 15 with 850,000 DNA methylation (DNAm) markers (p = 850, 000). The FEV1

(forced expiratory volume in 1 s) measured at Year 20 is considered as the lung function

outcome. The number of cigarette packs/year in Year 10 is the exposure variable. The

analysis adjusts for age, height, weight, study center, gender, and race in (2.1) and (2.2)

as confounders. Additionally, the proportions of CD4+T lymphocytes, CD8+T lympho-

cytes, B lymphocytes, natural killer cells, monocytes, and granulocytes are also adjusted

to confounders. The mediation pathway was built in sequence: smoking at Year 10 →

High dimensional DNAm markers at Year 15 → lung function at Year 20. More details of

the data can be found in Perera et al. (2022). For analysis, the exposure, DNAm markers

and continuous confounders are standardized with mean zero and variance one.

Based on the simulations, we mainly use six methods (eHIMA, Sobel, JS, HIMA,

HIMA2, MedFix, BSLMM) to select active DNA methylation (DNAm) markers that me-

diate the relation between smoking and lung function. Based on FDR < 0.05, HIMA

identifies cg26331243 only, HIMA2 identifies 2 CpGs: cg26331243 and cg19862839 and

our eHIMA method identifies an extra cg12616487 over HIMA2’s results. Other methods

fail to select any significant mediators. The summary results on selected mediators ob-

tained by the eHIMA method are presented in Table 5. The results of HIMA and HIMA2,

which can be found in Perera et al. (2022), have been excluded.

The CpG cg26331243 is situated within the genomic region of gene CCDC33, which ex-

hibits differential expression in response to tobacco smoke exposure (Gower et al., 2011).

Additionally, CCDC33 has been associated with susceptibility to lung function disorders

(Lees et al., 2019). The role of cg26331243 in regulating the expression of CCDC33, which

mediates the pathway from smoking to lung function, is plausible (Perera et al., 2022).

The CpG cg19862839 is located in the body region of gene TBX4, which has been associ-
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Table 5: Summary results of selected CpG with eHIMA method†.

CpGs Chromosome Gene α̂i(SE) β̂i(SE)

cg26331243 chr15 CCDC33 -0.081(0.016) 0.008 (0.019)

cg19862839 chr17 TBX4 -0.082(0.024) -0.017 (0.018)

cg12616487 chr11 EML3/AHNAK -0.128(0.028) 0.024 (0.018)

† ”SE” is the standard error.

ated with a wide range of lung disorders (Haarman et al., 2020). Additionally, mutations

in TBX4 may increase susceptibility to cigarette smoking (Maurac et al., 2019). We hy-

pothesize that cg19862839 may be involved in the regulation of TBX4 expression, thereby

serving as a mediator linking smoking and lung function (Perera et al., 2022).

The CpG cg12616487 is located in the body region of the EML3/AHNAK gene, which

has been demonstrated to exhibit colocalization with AHNAK expression and lung func-

tion (Jamieson et al., 2020). The genes cg12616487, which have been previously implicated

in an EWAS of maternal smoking (Burgess and Thompson, 2015), were found to have an

effect on lung function. Therefore, we postulate that cg12616487 serves as a mediator in

the intricate interplay between smoking and lung function.

5 Concluding Remarks

In this paper, we have proposed a three-step method for conducting high-dimensional

mediation analysis. We used the sure independence screening and minmax concave

penalty techniques to effectively reduce the dimensionality of potential mediators. To per-

form multiple testing, we utilized the oracle p-value approach. Furthermore, we applied

the DACT to identify significant mediators. The simulation results clearly demonstrate

the superiority of our method in terms of FDR, Power, and accuracy in identifying me-

diators compared to eight other approaches including Sobel, JS, HIMA, HIMA2, MedFix,

BSLMM, HDMA and MT Comp. Subsequently, we applied our proposed procedure to a

real dataset investigating the impact of DNA methylation on smoking and lung function.
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The future research will focus on two topics. First, we have considered mean regres-

sion models for the mediators and outcomes in our analysis. As highlighted by the re-

viewer, it would be intriguing to explore the impact of low or high DNA methylation

levels. One potential approach is to employ the framework of quantile mediation analy-

sis (Shen et al., 2014; Bind et al.,2017; Zhang et al., 2024), which falls beyond the scope of

this paper and necessitates further investigation. Second, the expansion of our method to

encompass other data types, including binary outcomes and longitudinal data, is highly

desirable.

Acknowledgements

The authors would like to thank the Editor, the Associate Editor and two reviewers

for their constructive and insightful comments that greatly improved the manuscript.

References

Baron, R. M. and Kenny, D. A. (1986). The moderator-mediator variable distinction in so-

cial psychological research: conceptual, strategic, and statistical considerations. Journal

of personality and social psychology 51 6, 1173–82.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the royal statistical society series

b-methodological 57, 289–300.

Bind, M.-A., VanderWeele, T. J., Schwartz, J. D., and Coull, B. A. (2017). Quantile causal

mediation analysis allowing longitudinal data. Statistics in Medicine 36, 4182–4195.

Boca, S. M., Sinha, R., Cross, A. J., Moore, S. C., and Sampson, J. N. (2014). Testing multiple

biological mediators simultaneously. Bioinformatics 30 2, 214–20.

Burgess, S. and Thompson, S. G. (2015). Multivariable mendelian randomization: The use

17



of pleiotropic genetic variants to estimate causal effects. American Journal of Epidemiology

181, 251 – 260.

Coffman, D. L. (2011). Estimating causal effects in mediation analysis using propensity

scores. Structural Equation Modeling: A Multidisciplinary Journal 18, 357 – 369.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature

space. Journal of the Royal Statistical Society Series B 70, 849–911.

Fasanelli, F., Giraudo, M. T., Ricceri, F., Valeri, L., and Zugna, D. (2019). Marginal time-

dependent causal effects in mediation analysis with survival data. American journal of

epidemiology 188 5, 967–974.

Friedman, G. D., Cutter, G., Donahue, R. P., Hughes, G. H., Hulley, S. B., Jacobs, D. R., Liu,

K., and Savage, P. J. (1988). Cardia: study design, recruitment, and some characteristics

of the examined subjects. Journal of clinical epidemiology 41 11, 1105–16.
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