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Abstract

The field of mediation analysis commonly explores the pathways that connect envi-
ronmental exposures with health outcomes. With the development of data collection
techniques, greater efforts have been dedicated to addressing high-dimensional me-
diators. In this paper, we present an efficient approach to identify significant medi-
ators while controlling the false discovery rate (FDR). We propose a three-step pro-
cedure that incorporates independent screening, variable selection together with re-
titted partial regression, and divide-aggregate composite-null test (DACT). The sim-
ulation includes a comparative analysis of our proposed method in comparison to
eight competing approaches, demonstrating that our procedure has significant ad-
vantages over other methods. The proposed procedure is applied to investigate the
mediation mechanisms of DNA methylation in the relationship between smoking
and lung function. Three specific methylation sites (cg26331243, ¢g19862839, and
cg12616487) are identified as potential epigenetic markers involved in mediating this
relationship. Our proposed method is available with the R package HIMA at https:
//cran.r-project.org/web/packages/HIMA/.
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1 Introduction

The method of mediation analysis is a modern statistical approach that investigates
the underlying mechanism by which an exposure influences an outcome. It has been
widely applied in many fields, including genome-wide association studies (Tam et al.,
2019), epidemiological investigations (Stringhini et al., 2017), and socioeconomic research
(Baron and Kenny, 1986). In the past few years, substantial research efforts have been
devoted for mediation analysis. For example, Coffman (2011) proposed to adjust con-
founders between the mediator and the outcomes by calculating propensity score; Tchet-
gen and Shpitser (2012) established a general semiparametric framework for the natural
direct and indirect causal effects; Lindquist (2012) extended structural equation models to
the functional data analysis; Zhang and Wang (2013) compared four mediation analysis
approaches when dealing with the missing data; Boca et al. (2014) developed a permu-
tation approach to test multiple mediators; Shen et al. (2014) studied the topic on quan-
tile mediation effects; Frolich and Huber (2014) investigated the non-parametric identi-
fication of causal direct and indirect effects of a binary treatment based on instrumental
variables; Zheng and Zhou (2015) proposed a new model to handle both multilevel in-
tervention and multicomponent mediators; VanderWeele and Tchetgen (2017) provided a
weighting approach to direct and indirect effects based on combining the results of two
marginal structural models, etc.

The aforementioned studies primarily focused on single or multiple, yet low-dimensional
mediators. However, with the advancement of large-scale data collection techniques,
considerable attention has been devoted to high-dimensional mediation analysis. For
instance, Huang and Pan (2016) presented a hypothesis test for mediation effects of high-
dimensional continuous mediators; the three-step procedure named HIMA, proposed by
Zhang (2016), is designed to address the challenges posed by high-dimensional medi-
ators; Wang et al. (2019) designed a rigorous Sparse Microbial Causal Mediation Model
(SparseMCMM) for the high dimensional and compositional microbiome data in a typical
three-factor causal study; Zhou et al. (2019) developed methods for both incomplete me-

diation, where a direct effect may exist, and complete mediation, where the direct effect



is known to be absent; Fasanelli ef al. (2019) considered latent variables in the model for
high-dimensional mediation analysis; Zhang et al. (2021a) and Zhang et al. (2021b) studied
mediator selection procedures for compositional microbiome data. Yu et al. (2021) pro-
posed a high-dimensional mediation analysis procedure which accommodating the po-
tential confounders by using the propensity score. The HDMT method proposed by Dai
et al. (2020) utilized a mixture distribution of three sub-null hypotheses and employed
the joint significance (JS) approach to address the issue of conservativeness in JS; Zhang
et al. (2021c) introduced a method for high-dimensional survival mediation analysis; the
DACT method proposed by Liu et al. (2022) involves the computation of a weighted
summation of p-values under three sub-null hypotheses. Perera et al. (2022) introduced
HIMAZ2 by replacing minimax concave penalty (MCP) with de-biased Lasso. Zhang et al.
(2024) studied the topic on high-dimensional quantile mediation analysis. Two review
papers on high-dimensional mediation analysis were presented by Zeng et al. (2021) and
Zhang et al. (2022).

Mediation analysis has emerged as a prevalent approach for elucidating the causal
pathways linking an independent variable to a dependent variable through intermediate
variables. Motivated by the ongoing Coronary Artery Risk Development in Young Adults
(CARDIA) Study, which will be described in Section 4, our research aims to investigate
the mechanistic role of DNA methylations in mediating the pathways between smoking
and lung function. The calculation of p-values for high-dimensional mediators is widely
acknowledged as challenging. To be specific, the p-values and estimates for the excluded
mediators remain unknown due to the common utilization of variable screening or se-
lection methods to reduce mediator dimensionality. To address this gap, we propose an
efficient approach for computing p-values across all mediators with refitted partial regres-
sion. Then, we employ the DACT method to perform multiple testing on all mediators
under FDR control.

The remainder of this paper is organized as follows. In Section 2, we introduce a
three-step testing procedure for assessing high-dimensional mediation effects in linear
regression models. In Section 3, the performance of our method is compared with eight

different methods through numerical simulations. In Section 4, we apply our new pro-



cedure to investigate the mediating role of DNA methylation relating smoking and lung

function. In Section 5, a brief conclusion is provided.

2 Statistical Methods

Mediation analysis investigates the intermediate mechanism through which an expo-
sure exerts its influence the outcome. The diagram in Figure 1 depicts a classical me-
diation model that illustrates the interrelationships among an independent variable (X),

multiple mediators (M, - - -, M,), and an outcome variable (Y).

Figure 1. The scenario of a high-dimensional mediation model with omitted covariates.

We adopted the counterfactual framework for the vector of potential mediators M (z)

(M, (x), My(x),- -+, My(z))" under exposure level z, and Y (x,m) the potential outcome
under exposure level z and mediators level m, to express the mediation analysis:
Y(r,m)=c+yX +m'B+Z'n+e,
Mi=ci+a; X +Z'¢+e, i=1,--,p,

where X is the exposure, v is the direct effect of exposure on the outcome; 8 = (51, -- , 5,)’

is the regression parameter vector relating the mediators to the outcome, o = (a1, - -+ , o)’
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is the parameter vector relating the exposure to mediator, 7 and ¢; are corresponding re-
gression coefficients for covariates Z = (Z;,---,Z,)’; c and ¢;’s are intercepts, € and e;’s
are mean-zero error terms.

A few causal assumptions that are needed for the identification of natural direct effect
(NDE) and natural indirect effects (NIE) are listed below (Mathew et al., 2019; Tsai et al.,
2018):

Al. Stable unit treatment value assumption (SUTVA) for both the mediators and the
outcome. This assumption indicates that there is neither multiple versions of exposures
nor interference between individuals, which implies that M (z) and Y (x, m) are well de-
fined.

A2. Consistency for the mediators and the outcome. That is, there are no measurement
errors in the mediators and thus the observed variables satisfy M = M(X) and Y =
Y (X, M).

A3. Sequential ignorability: This assumption contains 4 parts:

(A3.1) X L Y(xz,m)|Z, i.e., no unmeasured confounding between exposure and the
potential outcome;

(A3.2) M 1L Y(z,m)|X, Z, i.e., no unmeasured confounding between mediators and
the potential outcome;

(A3.3) X L M(z)|Z, i.e., no unmeasured confounding between exposure and the
potential mediators;

(A3.4) M(z*) L Y(x,m)|Z, i.e., no exposure-induced confounding between medi-
ators and the potential outcome. In other words, the potential mediators under any in-
tervention level m are independent of potential outcomes under any intervention x and
mediator level 2* given covariate Z.

A4. No direct causal relationship between mediators. We do not allow one mediator
to be the cause of another, but we do allow them to have shared common causes.

The direct effectis NDE = E[Y (1, M(0))—Y (0, M(0))] = v under assumption A1— A3,
and the indirect effectis N/FE = E[Y (1, M(1))—Y (1, M(0))] = zp: a;3;. What’s more, NI E
can be decomposed into the summary of indirect effects ’througl1 each mediator M; under

the additional assumption A4, i.e. NIE; = «;[3;.



We adopted the structural equation model (Zhang et al., 2016) to assess the mediation

effects of high-dimensional mediators:

Y=c+1X +MB+7Zn+e, (2.1)

Mi:Ci+aiX+Z/Ci+ei7 7’:17 » Ps (22)

where the dimension of potential mediators (p) significantly exceeds the sample size (n).
The index set of significant mediators is denoted as 2 = {i : a;3; # 0,i =1,--- ,p}.

In what follows, we are interested in the multiple testing problem:
HOZaZBZ:()HHhozZ@#O, 1=1,---,p. (23)

The proposed method can be described as a three-step approach: First, we utilize the sure
independence screening (SIS; Fan and Lv, 2008) method in conjunction with the minimax
concave penalty (MCP; Zhang, 2010) to effectively reduce the dimensionality of media-
tors. Second, the p-values for all mediators are obtained using the refitted partial regres-
sion method (Hao and Zhang, 2017). Finally, we perform multiple tests with FDR control
for mediation effects using the DACT test. In Figure 2, we present a diagram for our
three-step method. Details of the proposed procedure are given as follows.

Step 1: The mediators are initially screened using the following p marginal models,
Y =c+vX +B8M,+Z"n+e¢ fori=1,---,p. (2.4)

Let ; = {i : M, is among the top d = [n/3] largest effects |BZ| ,i=1,---,p}, where B; is
the ordinary least square (OLS) estimator of 3; based on model (2.4). The MCP-estimators

BMCEF are obtained by minimizing the criterion

n 2
Q(BayiT.h) = (Yj —c—X; =Y BiMy— Z] n> +> " pean(B),

j=1 e (IS
where the sub-vector Bq, represents the subset of elements from vector 3 that correspond

to indices in set §2;; the MCP function p, 5 (-) is

|2 2h

penlB) = 7 [m



p-dimensional potential mediators
M17M27"' 7Mp

SIS for p mediators

= {the top d = [n/3] mediatiors

with largest | 3] }

MCP-based estimators

QQ = {Z’BZ]V[CP 7é O,Z € Ql}

the refitted partial regression

d'hﬁia Pampﬂi

Hyi: ;i =0,i=1,...,p

DACT

Figure 2. A diagram of multiple testing for high-dimensional mediators.



Here 7 > 0 is the regularization parameter, and the concavity of MCP is determined by
h > 0. From the view of practial application, 3M°" can be obtained using the R package
ncvreg. Denote the selected index as Q0 = {i : SMCP £ 0,i € ;).

Step 2: By the refitted partial regression method of Hao and Zhang (2017), we can
derive the OLS estimators for (3;’s:

e For i € ,, the OLS estimator /3; and its standard error (SE) 65, can be obtained by
the sub-model Y = ¢+ X + M{, Bo, + Z"n +e.

e Fori ¢ Q,, the B, and 64, are obtained by the sub-model Y = c+~vX —|—M£2U (i) Ba,ugiy+
Z'n+e

The corresponding p-values for all mediators can be derived as follows:

Po, = 2{1 = ®(|8:|/35)}, fori=1,--,p, (2.5)
where O(-) is the cumulative distribution function of N (0, 1). Similarly, we have

P,, =2{1 — ®(|&i|/6q,)}, fori=1,--- p. (2.6)

Here ¢; is the OLS estimator of «; and its SE is 7, .
Step 3: We address the issue of multiple testing in (2.3) by the DACT method (Liu

et al., 2022). The test statistics are given as
Ppacri = o1 Pa, + @10Ps, + WooPig;, fori=1,---p,

where Pjg; = max(P,,, Ps,), P3, and P,, are defined in (2.5) and (2.6), respectively; wo; , w1g
and wy, are three weights, which can be obtained based on the empirical characteristic
function and Fourier analysis (Liu et al., 2022). Let p; = ®'(1 — Ppacr,:), where the
function () is the inverse of the cumulative distribution function (CDF) for a standard

normal distribution. Denote
FDR(pi) = ﬁOFO(pi)/F(pi), fori=1,---,p,

where 7, denotes the proportion of null mediation effects (e.g. Hy;), 150(-) is the empirical
CDF of p; under null mediation hypothesis, and 15() is the empirical CDF of p; under
nonnull hypothesis. To control FDR under level §, the index set of significant mediators

is given by Qpacr = {i: F/D\R(pi) <8i=1,---,p}
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3 Simulation Study

The performance of our method (denoted as “eHIMA”) is evaluated through simula-
tions in this section. We consider four scenarios for generating the random samples based
on models (2.1) and (2.2):

e Case 1: We generate the exposure X from N(0,2). The covariate Z = (Z;, Z,)', where
Zy and Z, are independently generated from N (2, 1). The intercept term ¢; in model (2.2)
is set as 0.5 and € in model (2.1) is generated from N(0,1). We set ( = (0.5,0.5), v = 0.5
and n = (0.3,0.3)". The true regression coefficients are 3; = 0.2, 5, = 0.3, 33 = 0.25, 54 =
0.2,085 = 0.35,8s = 0.1,8; = 0.25,8s = 0.1,y = 0.2, = 0.2 and g; = 0 for others;
a; = 02,3 = 0.15,a5 = 0.3,a7 = 0.15,a9 = 0.2,a120 = 0.25, 014 = 0.3 and o; = 0
for others. ie., Q = {1,3,5,7,9}. The error terms ¢;’s follow N(0,X.), where ¥, is a
matrix with @e)i,j = 0.85 fori,j = 1,3,5,7,9; (Ee)i’j = 0.65 for i,7 = 2,4,6,8,10 and
(3)i; = 0.5l for others.

e Case 2: We set X, = (0.8‘i*j |)i7j, and other settings are the same as Case 1.

e Case 3: The exposure X follows a mixture normal distribution 0.5N(—1,1)+0.5N(1,0.5).
The error terms e;’s follow N(0,3,.), where ¥, is a matrix with (Ee)m. = 0.65 for i,j =
1,2,--+,20 and (X.);; = 0.3/ for others, the rest settings are the same as Case 1.

e Case 4: The error terms ¢;’s follow N(0,3,.), where ¥, is a matrix (3,) i; = 0.65 for
i,j=1,2,---,20and (X.);; = 0.5/"=71 for others. The rest settings are the same as Case 3.

To further investigate the impact of correlations among mediators, we manipulate the
covariance matrix of error terms e;’s from Case 1 to Case 2. Additionally, the exposures
in Cases 3 and 4 exhibit greater complexity compared to those in Cases 1 and 2. The
comparison is conducted with two alternative methods, namely Sobel’s test (referred to
as “"Sobel”) and joint significant test (referred to as ”JS”), in place of the DACT test in Step
3. The Sobel’s test statistic is defined as

T o ;3
Sobel,i — — )
252 ~2 52
\/Piog, taiog

To control the FDR, we adopt the B-H method (Benjamini and Hochberg, 1995). The

fori=1,---,p.

asymptotic distribution of T'su,; is assumed to follow a standard normal distribution.



Table 1: The simulation results with Case 1 and Case 2 (p = 5000).

Case 1 Case 2
Methods Modelsize FDR  Power Modelsize FDR  Power
n =500 eHIMA 4.061 0.0350 0.7744 4.342 0.0342 0.8442
Sobel 1.844 <107* 0.3689 2.442 0.0100 0.4876
JS 2411 <107* 0.4822 3.282 0.0067 0.6524
HIMA 2.417 0.0390 0.4567 1.810 0.1150 0.3080
HIMA2 3.467 0.0106  0.6833 4.052 0.0095 0.8016
MedFix 3.510 0.0352  0.6680 2.862 0.0421 0.5404
BSLMM 3.270 <107 0.6540 3.130 0.0141 0.6144
HDMA 4.190 0.0619 0.7720 4.670 0.0938 0.8320
MT_Comp 6.428 0.2178 0.9822 5.942 0.1695 0.9660
n =600 eHIMA 4.494 0.0379 0.8556 4.810 0.0397 0.9072
Sobel 2.206 0.0019  0.4400 4.020 0.0013  0.8030
JS 2.767 0.0019 0.5522 4.290 0.0013  0.8570
HIMA 2.600 0.0434 0.4889 2.495 0.0568  0.4630
HIMA2 3.783 0.0178  0.7400 4.460 0.0082  0.8830
MedFix 3.880 0.0234 0.7302 4.030 0.0092  0.7980
BSLMM 3.242 0.0045 0.6440 3.570 0.0020 0.7120
HDMA 4.440 0.0694 0.8140 5.050 0.0642  0.9340
MT_Comp 6.656 0.2308 0.9933 6.495 0.2230  0.9860

1“eHIMA” denotes our proposed method; others are eight competing approaches.
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Consequently the p-values can be calculated as Psoperi = 2{1 — ®(|T'soperi|)} for each i =
1,---,p. We sort those p-values as Pé})%)el < Péi)bel < e < Pg;%,el. Under the FDR level 4,
we define the threshold ¢ as

i )
q:max{i:PéO)belSi—, 1=1,--- ,p}.
p

The index set of significant mediators is denoted as Qb = {i © Psoperi < Pé‘f)%,el,z‘ =

1,---,p}. Moreover, The p-value for the JS test is defined as
Pjs; = max(P,,, Ps,), fori=1,---p, (3.7)

where P3, and P, are defined in (2.5) and (2.6), respectively. Following the B-H method,
the p-values are ordered as P}E) < P}? <-ee < Py;) . Under the FDR level ¢, the threshold

q is set as

i )
q:max{z':Pﬁs)gz'—}.
p

The index set of significant mediators is denoted as Qg = {z : Prgi < P}‘D } In addition
to the Sobel and JS methods, we also compare eHIMA with HIMA (Zhang et al., 2016),
HIMAZ? (Perera et al., 2022), MedFix (Zhang, 2022), BSLMM (Song et al., 2020), HDMA
(Gao et al., 2019) and MT_Comp (Huang, 2019).

In Tables 1-4, we present the model size (MS) of the selected model, which represents
the averaged cardinality of the estimated index of significant mediators; the FDR and
Power of tests with a significance level of 0.05 are also provided. The results are based
on 500 repetitions, with sample sizes of n=500 and 600 respectively. The dimensions of
the mediators are set as p=5000 and 8000 respectively. The results presented in Tables
1-4 indicate that Sobel, JS, and BSLMM exhibit a significantly conservative behavior with
low statistical power compared to the other six methods. The tendency of all methods
is to select a model smaller than the true model with |Q2] = 5, except for HDMA and
MT_Comp. The FDRs of HDMA and MT_Comp exceed the predetermined significance
level, resulting in a substantial number of false positive mediators. The proposed eHIMA
method demonstrates superior performance in terms of FDR and Power in the simulated

settings as a whole.
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Table 2: The simulation results with Case 1 and Case 2 (p = 8000).

Case 1 Case 2
Methods Modelsize FDR  Power Modelsize FDR  Power
n =500 eHIMA 4.081 0.0309 0.7838 4.465 0.0256 0.8640
Sobel 1.769 <10™* 0.3538 3.215 0.0017  0.6420
JS 2.344 0.0021 0.4675 3.755 0.0058 0.7470
HIMA 2.425 0.0422  0.4575 1.965 0.0825 0.3580
HIMA2 3.531 0.0119  0.6963 4.285 0.0128 0.8430
MedFix 3.421 0.0380 0.6480 2.802 0.0478  0.5340
BSLMM 3.634 <107 0.7263 3.230 0.0095 0.6380
HDMA 4.220 0.0784  0.7560 4.590 0.0847  0.8260
MT_Comp 6.556 0.2283  0.9838 6.280 0.2050 0.9740
n=600 eHIMA 4536  0.0402 0.8629 4862  0.0265 0.9434
Sobel 2.186 <107* 04371 4.190 <107* 0.8382
JS 2.636 <107* 0.5271 4.490 <107* 0.8980
HIMA 2.636 0.0480 0.4929 2.661 0.1017 0.4780
HIMA2 3.771 0.0121  0.7429 4.710 0.0140 0.9240
MedFix 3.850 0.0283  0.7400 4.102 0.0173  0.8064
BSLMM 3.704 0.0025 0.7375 3.790 0.0020 0.7562
HDMA 4.788 0.0943  0.8450 5.290 0.0869 0.9480
MT_Comp 6.629 0.2306  0.9900 6.540 0.2243  0.9964

1“eHIMA” denotes our proposed method; others are eight competing approaches.
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Table 3: The simulation results with Case 3 and Case 4 (p = 5000)T.

Case 3 Case 4
Methods Modelsize FDR  Power Modelsize FDR  Power
n =500 eHIMA 4.606 0.0485 0.8660 4.612 0.0567 0.8572
Sobel 1.222 0.0020 0.2436 1.258 0.0055 0.2488
JS 2.652 0.0036  0.5280 2.638 0.0060 0.5232
HIMA 3.468 0.0374  0.6632 3.476 0.0429 0.6604
HIMA2 4.364 0.0312  0.8396 4.352 0.0342 0.8336
MedFix 4.358 0.0328 0.8364 4472 0.0460 0.8440
BSLMM 2.696 0.0269 0.5224 2.602 0.0275 0.5024
HDMA 5.166 0.1267 0.8848 5.142 0.1197  0.8880
MT_Comp 5.686 0.1570  0.9372 5.684 0.1588 0.9352
n =600 eHIMA 4.922 0.0422 0.9382 4.890 0.0471 0.9224
Sobel 1.607 0.0010 0.3210 1.654 0.0025 0.3296
JS 3.370 0.0009 0.6732 3.286 0.0026  0.6552
HIMA 3.999 0.0359 0.7670 4.084 0.0346 0.7828
HIMA2 4.749 0.0223  0.9244 4.668 0.0218 0.9088
MedFix 4.808 0.0288 0.9248 4.760 0.0311 09144
BSLMM 3.149 0.0112 0.6218 3.154 0.0128 0.6216
HDMA 5.426 0.1034  0.9580 5.436 0.1103  0.9460
MT_Comp 5.969 0.1631 0.9796 5.950 0.1606  0.9788

1“eHIMA” denotes our proposed method; others are eight competing approaches.
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Table 4: The simulation results with Case 3 and Case 4 (p = 8000)T.

Case 3 Case 4
Methods Modelsize FDR  Power Modelsize FDR  Power
n =500 eHIMA 4.435 0.0423 0.8580 4.525 0.0495 0.8640
Sobel 1.215 <10™* 0.2430 1.185 <107* 0.2370
JS 2.615 0.0025 0.522 2.700 0.0025 0.5390
HIMA 3.540 0.0458 0.6680 3.765 0.0419 0.7160
HIMA2 4415 0.0364 0.8410 4.470 0.0277  0.8500
MedFix 4.495 0.0326  0.8360 4.555 0.0334 0.8450
BSLMM 2.700 0.0444 0.5100 2.715 0.0793  0.5010
HDMA 5.170 0.1118 0.8950 5.070 0.1005 0.8980
MT_Comp 5.6800 0.1681  0.924 5.710 0.1626  0.9380
n =600 eHIMA 4.894 0.0427 0.9276 4.965 0.0513 0.9328
Sobel 1.548 <107 0.3096 1.539 0.0012  0.3070
JS 3.338 0.0009 0.6668 3.242 0.0026  0.6460
HIMA 3.916 0.0339  0.7540 4.022 0.0283 0.7764
HIMA2 4.712 0.0276  0.9108 4.728 0.0239 09178
MedFix 4.700 0.0303  0.9052 4.761 0.0300 0.9162
BSLMM 3.146 0.0235 0.6112 3.265 0.0338  0.628
HDMA 5.380 0.1057 0.9484 5.393 0.0968 0.9562
MT_Comp 6.024 0.1767  0.9720 5.943 0.1599 0.9768

1“eHIMA” denotes our proposed method; others are eight competing approaches.
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4 Real data example

In this section, we apply the proposed methodology to the CARDIA Study, a longi-
tudinal cohort study that investigates the development and determinants of clinical and
subclinical cardiovascular disease as well as their risk factors (Friedman et al., 1988). Sim-
ilar to Perera et al. (2022), we focused on 1042 individuals from the CARDIA participants
at Year 15 with 850,000 DNA methylation (DNAm) markers (p = 850,000). The FEV1
(forced expiratory volume in 1 s) measured at Year 20 is considered as the lung function
outcome. The number of cigarette packs/year in Year 10 is the exposure variable. The
analysis adjusts for age, height, weight, study center, gender, and race in (2.1) and (2.2)
as confounders. Additionally, the proportions of CD4+T lymphocytes, CD8+T lympho-
cytes, B lymphocytes, natural killer cells, monocytes, and granulocytes are also adjusted
to confounders. The mediation pathway was built in sequence: smoking at Year 10 —
High dimensional DNAm markers at Year 15 — lung function at Year 20. More details of
the data can be found in Perera et al. (2022). For analysis, the exposure, DNAmM markers
and continuous confounders are standardized with mean zero and variance one.

Based on the simulations, we mainly use six methods (eHIMA, Sobel, JS, HIMA,
HIMA2, MedFix, BSLMM) to select active DNA methylation (DNAm) markers that me-
diate the relation between smoking and lung function. Based on FDR < 0.05, HIMA
identifies c¢g26331243 only, HIMA?2 identifies 2 CpGs: ¢g26331243 and cg19862839 and
our eHIMA method identifies an extra cg12616487 over HIMAZ2's results. Other methods
fail to select any significant mediators. The summary results on selected mediators ob-
tained by the eHIMA method are presented in Table 5. The results of HIMA and HIMA?2,
which can be found in Perera et al. (2022), have been excluded.

The CpG cg26331243 is situated within the genomic region of gene CCDC33, which ex-
hibits differential expression in response to tobacco smoke exposure (Gower et al., 2011).
Additionally, CCDC33 has been associated with susceptibility to lung function disorders
(Lees et al., 2019). The role of cg26331243 in regulating the expression of CCDC33, which
mediates the pathway from smoking to lung function, is plausible (Perera et al., 2022).

The CpG cg19862839 is located in the body region of gene TBX4, which has been associ-

15



Table 5: Summary results of selected CpG with eHIMA method'.

A

CpGs Chromosome Gene &;(SE) Bi(SE)
€g26331243 chrl5 CCDC33 -0.081(0.016) 0.008 (0.019)
g19862839 chr17 TBX4 -0.082(0.024) -0.017 (0.018)

cg12616487 chrll EML3/AHNAK -0.128(0.028) 0.024 (0.018)

t ”SE” is the standard error.

ated with a wide range of lung disorders (Haarman et al., 2020). Additionally, mutations
in TBX4 may increase susceptibility to cigarette smoking (Maurac et al., 2019). We hy-
pothesize that cg19862839 may be involved in the regulation of TBX4 expression, thereby
serving as a mediator linking smoking and lung function (Perera et al., 2022).

The CpG cg12616487 is located in the body region of the EML3/AHNAK gene, which
has been demonstrated to exhibit colocalization with AHNAK expression and lung func-
tion (Jamieson et al., 2020). The genes cg12616487, which have been previously implicated
in an EWAS of maternal smoking (Burgess and Thompson, 2015), were found to have an
effect on lung function. Therefore, we postulate that cg12616487 serves as a mediator in

the intricate interplay between smoking and lung function.

5 Concluding Remarks

In this paper, we have proposed a three-step method for conducting high-dimensional
mediation analysis. We used the sure independence screening and minmax concave
penalty techniques to effectively reduce the dimensionality of potential mediators. To per-
form multiple testing, we utilized the oracle p-value approach. Furthermore, we applied
the DACT to identify significant mediators. The simulation results clearly demonstrate
the superiority of our method in terms of FDR, Power, and accuracy in identifying me-
diators compared to eight other approaches including Sobel, ]S, HIMA, HIMA2, MedFix,
BSLMM, HDMA and MT_Comp. Subsequently, we applied our proposed procedure to a

real dataset investigating the impact of DNA methylation on smoking and lung function.
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The future research will focus on two topics. First, we have considered mean regres-
sion models for the mediators and outcomes in our analysis. As highlighted by the re-
viewer, it would be intriguing to explore the impact of low or high DNA methylation
levels. One potential approach is to employ the framework of quantile mediation analy-
sis (Shen et al., 2014; Bind et al.,2017; Zhang et al., 2024), which falls beyond the scope of
this paper and necessitates further investigation. Second, the expansion of our method to
encompass other data types, including binary outcomes and longitudinal data, is highly

desirable.
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