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On additive bases of finite groups

by

Yongke Qu (Luoyang) and Weidong Gao (Tianjin)

Abstract. Let G be a multiplicatively written finite group. The critical number cr(G)
of G is the smallest integer t such that for every subset S of G \ {1} with |S| ≥ t the
following holds: every element of G can be written as a non-empty product of distinct
elements from S. We prove that cr(G) ≤ |G|/p+ p− 2 for all finite non-abelian groups G
with |G| 6= 6, where p is the smallest prime divisor of |G|. Moreover, equality holds if and
only if G has a subgroup of index p.

1. Introduction and main results. Let G be a multiplicatively writ-
ten finite group (not necessarily commutative). For any two subsets X,Y of
G, we define their product set as

XY = {xy : x ∈ X and y ∈ Y }.
Of course, we use the abbreviations Xg = {xg : x ∈ X} and gY = {gy :
y ∈ Y } when dealing with a single element g. For any subset S of G, we
define the inverse set as

S−1 = {g−1 : g ∈ S}.
Let S be a subset of G with |S| = `, and SH = S ∩H for any subgroup H
of G. Write

π(S) = {gτ(1) · . . . · gτ(`) : τ a permutation of [1, `]} ⊂ G
to denote the set of products of S. Furthermore, for every integer n ∈ [1, `],
define

Πn(S) =
⋃

T⊂S, |T |=n

π(T ),

and set
Π(S) =

⋃
1≤n≤`

Πn(S), Π∗(S) = Π(S) ∪ {1}.
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The critical number cr(G) of G is the smallest integer t such that Π(S)
= G for every subset S of G \ {1} with |S| ≥ t.

The problem of determining cr(G) was first proposed and studied by
Erdős and Heilbronn [4] for G = Cp, where p is a prime. They proved that
cr(Cp) ≤ 3(6p)1/2. Since then, there has been a lot of research on the critical
number cr(G) (see [1, 2, 3, 6, 7, 10, 14, 15]). In 2009, Freeze, the second
author and Geroldinger [5] settled the last case and determined the precise
value of cr(G) for all finite abelian groups. Meanwhile, there has been a lot of
related research on the complete and incomplete sets with large cardinality
(see [8, 11, 19]).

However, the research on cr(G) has never been restricted to the abelian
setting alone. In 1973, Diderrich and Mann [3] proved that |G|/2 ≤ cr(G) ≤
|G|/2 + 1 for every finite group which has a subgroup of index 2. Let p be
the smallest prime divisor of |G|. In 1995, the second author [6] proved that
cr(G) = |G|/p + p − 2 for the following groups G with p ≥ 149 and |G| ≥
120p2: (i) finite nilpotent groups; (ii) finite groups which have a subgroup
with index p and any other prime divisor of |G| (if exists) is > 6p. In 2012,
Wang and Zhuang [21] proved that cr(G) = |G|/p+p−2 for finite non-abelian
groups of order |G| = pq ≥ 10, where p, q are distinct primes. In 2014, Wang
and the first author [20] proved that cr(G) = |G|/p + p − 2 for all finite
nilpotent groups of odd order with at least three prime divisors and for all
finite groups with |G| > 6 which have a subgroup of index 2. In this paper,
we extend the proof given by the second author and Hamidoune [7] to prove
a tight upper bound for the critical number of non-abelian groups. The main
result is as follows.

Theorem 1.1. Let G be a finite non-abelian group with |G| 6= 6 and let
p be the smallest prime divisor of |G|. Then

cr(G) ≤ |G|/p+ p− 2.

Moreover, equality holds if and only if G has a subgroup of index p.

2. Preliminaries

Lemma 2.1 ([12, Theorem 1.1]). Let G be a finite group. Let X and Y
be subsets of G such that XY 6= G. Then |X|+ |Y | ≤ |G|.

Lemma 2.2 ([16, Lemma 4]). Suppose A and B are finite subsets of an
arbitrary group and 1 ∈ A ∩B. If ab = 1 (for a ∈ A, b ∈ B) has no solution
except a = b = 1, then |AB| ≥ |A|+ |B| − 1.

Let G be a finite group, B ⊂ G and x ∈ G. As usual, we write λB(x) =
|Bx \B|. We need the following result, which is an improvement of a result
of Olson [15, Lemma 3.1].
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Lemma 2.3 ([20, Lemma 2.3]). Let G be a finite group and let T be a
generating subset of G such that 1 /∈ T . Let B be a subset of G such that
|B| ≤ |G|/2. Then there is an x ∈ T such that

λB(x) ≥ min {(|B|+ 1)/2, (|T ∪ T−1|+ 2)/4}.

With the following property (see [20]) which was implicit in [14] already,
Lemma 2.3 can be applied to estimate the cardinality of Π(S) effectively.

Let S be a subset of a finite group G such that 1 /∈ S. Then for every
y ∈ S, we have λB(y) = |Π∗(S)y \ Π∗(S)| ≤ |Π∗(S)y \ Π∗(S \ {y})y| =
|Π∗(S)\Π∗(S\{y})| = |Π∗(S)|−|Π∗(S\{y})|, where B = Π∗(S). Therefore,

(2.1) |Π∗(S)| ≥ |Π∗(S \ {y})|+ λB(y).

Let X be a subset of G with cardinality k. Let (xi)
k
i=1 be an ordering

of X. For 0 ≤ i ≤ k, set Xi = {xj : 1 ≤ j ≤ i} and Bi = Π∗(Xi).
The ordering (xi)

k
i=1 will be called a resolving sequence of X if for all i,

λBi(xi) = max {λBi(xj) : 1 ≤ j ≤ i}. We claim that every non-empty subset
X with |X| = k admits a resolving sequence. Let g ∈ X be such that λB(g) =
max {λB(x) : x ∈ X}, where B = Π∗(X). Then we have an ordering of X
with xk = g. Similarly, we can find an xi such that λBi(xi) = max {λBi(x) :
x ∈ Xi}, where Xi = X \ {xi+1, . . . , xk} for i = k − 1, k − 2, . . . , 1. Finally,
(xi)

k
i=1 is a resolving sequence of X.
The critical index of a resolving sequence is the maximal integer t such

that Xt−1 generates a proper subgroup of G. Clearly, the critical index of
every resolving sequence of any non-empty subset X is ≥ 1.

Let (xi)
k
i=1 be a resolving sequence of X. Define Xi, Bi and λBi(xi) as

above. We shall write λi = λBi(xi). By induction we have, using (2.1), for
all 1 ≤ j ≤ k,

(2.2) |Π∗(X)| ≥ λk + · · ·+ λj + |Bj−1|.

If 1 /∈ X and |Bj | ≤ |G|/2, then we can apply Lemma 2.3 to estimate λj
for j ≥ t, where t is the critical index of (xi)

k
i=1, and thus a lower bound of

|Π∗(X)| and |Π(X)|.

3. Proof of the main result. We begin by collecting some known
results on the critical number and on finite groups, which will be used later.

Lemma 3.1. Let G be a finite group with |G| ≥ 3 and let p be the smallest
prime divisor of |G|.

(i) If G is of even order and has a subgroup of index 2, then cr(G) =
|G|/2+1 for G ∼= C4, C2⊗C2, C6, S3, C8 or C2⊗C4, and cr(G) = |G|/2
otherwise.
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(ii) If G is a nilpotent group and |G|/p is a composite number with p ≥ 3,
then cr(G) = |G|/p+ p− 2.

(iii) If G is of order pq for primes p and q, then cr(G) ≤ p+q−1. Moreover,
if G is non-abelian and |G| = pq 6= 6, then cr(G) = q + p− 2.

Proof. (i) See [20, Theorem 1.3] and [5, Theorem 1.2(2,3)].
(ii) See [20, Theorem 1.2].
(iii) See [21, Theorem 1.2] and [5, Theorem 1.2(2, 3)].

Lemma 3.2. Let G be a finite group and let H be a subgroup of G.

(i) Suppose |G| = pr for some prime p. Then G is nilpotent and has a
subgroup of index p.

(ii) If |G| = 2n with n odd, then G has a subgroup of index 2.
(iii) If the index |G : H| is the smallest prime divisor of |G|, then H is a

normal subgroup of G.
(iv) If gcd(|G|, ϕ(|G|)) = 1, where ϕ is the Euler function, then G is cyclic.
(v) Suppose |G| = p2q, where p, q are distinct primes. If p 6≡ ±1 (mod q)

and q 6≡ 1 (mod p), then G is abelian.
(vi) If H is normal and G/H has a subgroup of index 2, then G has a

subgroup of index 2.
(vii) Suppose |G| = 4p with p a prime. If G has no subgroup of index 2, then

p = 3 and G ∼= A4, the alternating group of degree 4.

Proof. (i) See [18, p. 88, Corollary 1.6].
(ii) See [18, p. 309, Exercise 10(i)].
(iii) See [18, p. 34, Exercise 3(b)].
(iv) See [22, p. 125, Theorem 6.8] or [18, p. 113, Exercise 8].
(v) By the Sylow Theorem (see [22, p. 55, The Third Sylow Theorem]

and [18, p. 95, Theorem 2.2]), we see that both the Sylow p-subgroup Sp and
the Sylow q-subgroup Sq of G are normal. Since both Sp and Sq are abelian,
G is abelian.

(vi) This result follows from the Generalized Correspondence Theorem
(see [18, p. 40, Theorem 5.5]).

(vii) By (i), p 6= 2. If p ≥ 5, then by the Sylow Theorem we deduce that
the Sylow p-subgroup Sp is normal. Since |G/Sp| = 4, G/Sp has a subgroup
of index 2. By (vi), G has a subgroup of index 2, a contradiction. Therefore,
p = 3 and thus |G| = 12. By the classification of groups of order 12, we have
G ∼= A4.

Lemma 3.3. Let G be a finite group and let H be a normal subgroup
of G of prime index q. If S is a subset of G such that Π(SH) = H and
|S \H| ≥ q − 1, then Π(S) = G.
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Proof. Let a1, . . . , aq−1 be distinct elements from S \ H. We denote by
āi the image of ai in G/H under the canonical homomorphism. By the
Cauchy–Davenport Theorem (see [12, Corollary 1.2.3], [13, Theorem 2.2]),

{1, ā1} · . . . · {1, āq−1} = G/H.

It follows thatΠ({a1, . . . , aq−1})H = G. SinceΠ(SH) = H, we haveΠ(S) ⊃
Π({a1, . . . , aq−1})Π(SH) = G.

Lemma 3.4. Let G be a non-abelian group of order n = pα1
1 pα2

2 · . . . · pαr
r ,

where 5 ≤ p1 < p2 < · · · < pr and αi ≥ 1 for i ∈ [1, r]. If r ≥ 2 and
α1 + α2 + · · ·+ αr ≥ 3, then n(p22 − p21) ≥ 6p21p

2
2.

Proof. If α1 + α2 + · · ·+ αr ≥ 4, then n ≥ p31p2. Note that p2 − p1 ≥ 2.
We have n(p22 − p21) ≥ 2p31p2(p2 + p1) > (2p1)p

2
1p

2
2 > 6p21p

2
2. Next, assume

α1 + α2 + · · ·+ αr = 3.

If p2 − p1 ≥ 4, then p2 ≥ p1 + 4 ≥ 9. Now we have n(p22 − p21) ≥
n(p22 − (p2 − 4)2) = n(8p2 − 16) > 6np2 ≥ 6p21p

2
2 and we are done. So, we

may assume that
p2 = p1 + 2.

Case 1: n = p1p2p3. If p3 ≥ 7
4p1, then

n(p22 − p21) = p3p2p1(p
2
2 − (p2 − 2)2) = 4p21p

2
2

p3
p1

p2 − 1

p2
≥ 4p21p

2
2

7

4

6

7
= 6p21p

2
2

and we are done. So, we may assume that

p3 <
7

4
p1.

Then gcd(n, ϕ(n)) = 1. By Lemma 3.2(iv), G is cyclic, a contradiction.

Case 2: n = p21p2 or n = p1p
2
2. Since p2 = p1+2 and p1 ≥ 5, we see that

p1 6≡ ±1 (mod p2) and p2 6≡ ±1 (mod p1). By Lemma 3.2(v), G is abelian,
a contradiction.

By [20, Lemma 2.4], we have the following.

Lemma 3.5. Let G be a finite group of odd order. Let S be a subset of G
such that S ∩ S−1 = ∅. Then |Π∗(S)| ≥ 2|S|.

We now show the upper bound of the critical number for groups of odd
order which has at least three prime divisors.

Lemma 3.6. Let G be a finite group and p ≥ 3 be the smallest prime
divisor of |G|. If |G|/p is a composite number, then cr(G) ≤ |G|/p + p − 2.
Moreover, equality holds if and only if G has a subgroup of index p.

Proof. Set |G| = n. By Lemma 3.1(ii), we may assume that G is not
nilpotent. So, by Lemma 3.2(i), n is not a power of one prime and thus
n ≥ p2q, where q is the second smallest prime divisor of n. If |G| = 45,
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then by Lemma 3.2(v), G is abelian, yielding a contradiction. Therefore, we
may assume that n ≥ 63. Let X be a subset of G \ {1} with k = |X| and
X ∩X−1 = ∅. We claim the following:

Claim. If k = (n/p+ p− 4)/2 and |Π∗(X)| ≤ (n− 1)/2, then G has a
subgroup H of index p. Moreover,

|XH | ≥ n/(pp′) + p′ − 1,

where p′ is the smallest prime divisor of |H|.

Proof of Claim. Note thatG is of odd order andX∩X−1 = ∅. If 〈X〉 6= G,
then |〈X〉| ≥ 2|X| + 1 ≥ n/p. Thus, 〈X〉 is a subgroup of index p. Let
H = 〈X〉. Since n ≥ 63, we have |XH | = |X| = k = (n/p + p − 4)/2 ≥
n/(3p) + 3− 1 ≥ n/(pp′) + p′ − 1.

Next we assume that 〈X〉 = G. Let (xi)
k
i=1 be a resolving sequence for X

with critical index t. As before (2.2), denote Xi = {xj : 1 ≤ j ≤ i}, Bi =
Π∗(Xi) and λi = λBi(xi) = max {λBi(xj) : 1 ≤ j ≤ i}. Since X ∩X−1 = ∅,
by Lemma 2.3 we have

λi ≥ (i+ 1 + δ(i))/2

for all i ≥ t, where δ(m) = 0 if m is odd and δ(m) = 1 otherwise.
Since |Π∗(X)| ≤ (n− 1)/2, by (2.2) we have

(3.1) (n− 1)/2 ≥ |Π∗(X)| ≥ (k + s+ 3)(k − s+ 1)/4− 1/2 + |Bs−1|

for all s ≥ t. By Lemma 3.5 we deduce that |Bt−1| ≥ 2(t − 1). Obviously
|Bt| = |Bt−1|+|Bt−1xt| = 2|Bt−1| ≥ 4(t−1). By (3.1), applied with s = t+1,
we have

(3.2) 4t− 4 + (k + t+ 4)(k − t)/4− n/2 ≤ 0.

Set F (t, n) = 4t− 4 + (k + t+ 4)(k − t)/4− n/2 = n2/(16p2)− 3n/8 +
p2/16 − t2/4 + 3t − 5. Let us show that t ≥ 6. Since G is non-abelian, we
have t ≥ 2. Since ∂F (t,n)

∂t = 3 − t/2 > 0 when 2 ≤ t ≤ 5, we have F (t, n) ≥
F (2, n). Similarly, since F (2, n) is an increasing function of n on the interval
[p2q,∞), we obtain F (2, n) ≥ F (2, 63) = 632/144− 189/8 + 9/16 > 0. Thus
F (t, n) ≥ F (2, n) > 0, a contradiction to (3.2). Therefore, t ≥ 6.

Let
m = max {n/p2 + p, (n/q − 1)/2 + 2}.

We next show that t ≥ m. Assume to the contrary that t ≤ m − 1. Then
F (t, n) > 0, yielding a contradiction to (3.2). Set G(n) = F (m− 1, n).

Case 1: m = n/p2 + p. Since n/p2 + p− 1 ≥ 6 (we recall that n ≥ 63),
we have F (t, n) ≥ F (m− 1, n) = G(n) for 6 ≤ t ≤ m− 1. Thus, by (3.2),

G(n) ≤ F (t, n) ≤ 0.
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Note that G(n) = 7n/(2p2) + 7p/2 + n2/(16p2) − 3n/8 − n/2p − 3p2/16 −
n2/(4p4)−33/4. Observe that G′(n) = 7/(2p2)+n/(8p2)−1/(2p)−n/(2p4)−
3/8 ≥ 0. In particular, G(n) is an increasing function. Since n ≥ p2q ≥
p2(p+2), we have 1

16(p4−2p3−23p2 +80p−36) = G(p2(p+2)) ≤ G(n) ≤ 0.
On the other hand, it is easy to prove that p4 − 2p3 − 23p2 + 80p − 36 > 0
for all p ≥ 3, a contradiction.

Case 2: m = (n/q−1)/2+2. Then (n/q−1)/2+2 ≥ n/p2 +p and thus
p ≥ 5. Since n ≥ p2q and p ≥ 5, we have (n/q − 1)/2 + 1 ≥ 6. As in Case 1,
by (3.2),

G(n) ≤ 0.

Note that G(n) = n2(q2 − p2)/(16p2q2) + p2/16 + 11n/(8q)− 3n/8− 57/16.
By Lemma 3.4, G(n) ≥ p2/16 + 11n/(8q)− 57/16 > 0, a contradiction. This
proves that

t ≥ m = max {n/p2 + p, (n/q − 1)/2 + 2}.

Let H be the proper subgroup generated by Xt−1. Noting that X ∩X−1
= ∅, we have (|H| − 1)/2 ≥ t − 1. Thus |H| ≥ 2t − 1 > max {n/p2, n/q}.
Therefore, H is a subgroup of index p. Moreover, |XH | ≥ t− 1 ≥ n/(pp′) +
p′ − 1. This completes the proof of the Claim.

Now, we prove that cr(G) ≤ n/p + p − 2. Let S be a subset of G \ {1}
with |S| = n/p+ p− 2. Let X ⊂ S and Y = S \X be such that |X| = |Y |,
X ∩X−1 = Y ∩ Y −1 = ∅ and |Π(X)| ≤ |Π(Y )|. If |Π(X)| > n/2, then the
result follows from Lemma 2.1.

Assume that |Π(X)| ≤ n/2. Since n is odd, we have |Π(X)| ≤ (n−1)/2.
Let X ′ be a subset of X with |X ′| = (n/p+ p− 4)/2. If |Π(X ′)| < |Π(X)|,
then |Π∗(X ′)| ≤ |Π(X)| ≤ (n − 1)/2. If |Π(X ′)| = |Π(X)|, then Π(X ′) =
Π(X). Suppose {g} = X \ X ′ and K = 〈g〉. Then Π(X ′)g ⊂ Π(X) and
|Π(X ′)g| = |Π(X ′)| = |Π(X)|. Thus Π(X ′)g = Π(X) = Π(X ′). Moreover,
Π(X ′)K = Π(X ′). Since g ∈ K and g ∈ Π(X), we have 1 ∈ K ⊂ Π(X)K =
Π(X ′)K = Π(X ′) and thus |Π∗(X ′)| = |Π(X ′)| = |Π(X)| ≤ (n − 1)/2. In
both cases, we have |Π∗(X ′)| ≤ (n− 1)/2. Note that X ′ ∩X ′−1 = ∅. By the
Claim, there exists a subgroup H of G of index p such that |SH | ≥ |X ′H | ≥
n/(pp′) + p′ − 1, where p′ is the smallest prime divisor of n/p.

Since p is the smallest prime divisor of |G|, by Lemma 3.2(iii) we find
that H is a normal subgroup of order n/p of G. Note that n/p is a composite
number. If n/p is the product of two primes, then by Lemma 3.1(iii), cr(H) ≤
|H|/p′+p′−1. If n/p is the product of more than two primes, then |H|/p′ =
n/pp′ is a composite number. By the induction hypothesis, we have cr(H) ≤
|H|/p′ + p − 2. In both cases, we conclude that cr(H) ≤ |H|/p′ + p′ − 1 =
n/(pp′) + p′ − 1 ≤ |SH |. Thus Π(SH) = H. Clearly, |S \ SH | ≥ p − 1. By
Lemma 3.3, Π(S) = G. Therefore, cr(G) ≤ n/p+ p− 2.
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Next, assume that G does not have any subgroup of index p. We show
that cr(G) ≤ n/p+p−3. Let S be a subset of G\{1} with |S| = n/p+p−3.
Let X ⊂ S and Y = S \X be such that |X| = (n/p + p − 4)/2 = |Y | − 1,
X ∩X−1 = Y ∩Y −1 = ∅ and |Π∗(X)| ≤ |Π(Y )| (as |Π(Y )| ≥ |Π∗(Y \ {y})|
for each y ∈ Y ). If |Π∗(X)| ≤ (n − 1)/2, then by the Claim, there exists
a subgroup of index p, a contradiction. Thus, |Π∗(X)| ≥ (n + 1)/2 and
|Π(Y )| ≥ (n + 1)/2. By Lemma 2.1, Π(S) ⊃ Π∗(X)Π(Y ) = G. Therefore,
cr(G) ≤ n/p+ p− 3.

Finally, we show that if G has a subgroup H of index p, then cr(G) =
n/p + p − 2. Since cr(G) ≤ n/p + p − 2, it suffices to construct a sub-
set S of G \ {1} with |S| = n/p + p − 3 such that Π(S) 6= G. Let S =
(H \ {1})∪ S′, where S′ is a subset of aH for some a /∈ H with |S′| = p− 2.
By Lemma 3.2(iii), H is a normal subgroup of G. Then Π(S)∩(ap−1H) = ∅.
Thus Π(S) 6= G.

Next, we consider the groups of even order, and begin with the critical
number cr(G) of non-abelian groups G of order 12.

Lemma 3.7. Let G be a finite non-abelian group of order 12. Then cr(G)
≤ |G|/2 = 6. Moreover, equality holds if and only if G has a subgroup of
index 2.

Proof. By Lemma 3.1(i), if G has a subgroup of index 2, then cr(G) = 6.
Now, assume that G does not have any subgroup of index 2. It suffices to
prove that cr(G) ≤ 5. By Lemma 3.2(vii), we have G ∼= A4, the alternating
group of degree 4. Let H be the normal subgroup of order 4. Then H ∼=
C2 ⊗ C2 and gH = Hg for any g ∈ G. Let Ha = aH and A ⊂ Ha for some
a ∈ G \H. We have the following observations:

(i) If |A| = 2, then |Π2(A)| = 2 and |A ∪ hA ∪Ah| ≥ 3 for h ∈ H \ {1}.
(ii) If |A| = 3, then Π3(A) = H.
(iii) If |A| = 3, then Π2(A) = a2H.

Since G has no subgroup of index 2, we infer that every proper subgroup
of G has order in {2, 3, 4} and every non-zero element in G has order in
{2, 3, 4}. It follows that every element in G \H has order 3. Therefore, for
any g ∈ G \H and any h ∈ H \ {1} we have 〈g, h〉 = G and

(3.3) gh 6= hg.

Let
H = {1, h1, h2, h3}.

From (3.3) we have ahia−1 6= hi for each i = 1, 2, 3 and a ∈ G \ H. This
implies that, by renumbering if necessary,

(3.4) ah1a
−1 = h2, ah2a

−1 = h3 and ah3a
−1 = h1.
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To prove observation (i), let A = {ax, ay} with distinct x, y ∈ H =
C2 ⊗ C2. We need to prove (ax)(ay) 6= (ay)(ax). Assume to the contrary
that (ax)(ay) = (ay)(ax); then xay = yax and y−1xa = axy−1 follows.
Note that x = x−1 and y = y−1; we obtain (yx)a = a(xy), but yx = xy 6= 1,
which contradicts (3.3). This proves |Π2(A)| = 2. If |A ∪ hA ∪ Ah| ≤ 2 for
some h ∈ H \ {1}, then A = hA = Ah. Thus h(ax) = ay = (ax)h, contrary
to (3.3). This proves observation (i).

To prove observation (ii), let A = {ax, ay, az} with distinct x, y, z ∈ H.
We have the following four possibilities: {x, y, z} = {h1, h2, h3}, {x, y, z} =
{h1, h2, 1}, {x, y, z} = {h1, 1, h3} and {x, y, z} = {1, h2, h3}. If {x, y, z} =
{h1, h2, h3}, then from (3.4) we obtain (ah3)(ah1)(ah2) = h1a

2h1ah2 =
h1a

3(a−1h1a)h2 = h1h3h2 = 1. This proves that 1 ∈ Π3(A). Again from
(3.4) we obtain (ah2)(ah1)(ah3) = h3a

2h1ah3 = h3h3h3 = h3. Similarly,
(ah3)(ah2)(ah1) = h1 and (ah1)(ah3)(ah2) = h2. Therefore, Π3(A) = H.
If {x, y, z} = {1, h2, h3}, then similar to the above, from (3.4) we obtain
(ah3)a(ah1) = 1, (ah1)a(ah3) = h2h3 = h1, (ah3)a(ah2) = h1h2 = h3 and
(ah2)a(ah1) = h3h1 = h2. Therefore, Π3(A) = H. If {x, y, z} = {h1, h2, 1}
or {x, y, z} = {h1, 1, h3}, then in a similar way to the above we can prove
that Π3(A) = H. This proves observation (ii).

To prove observation (iii), let A = {ax, ay, az} with distinct x, y, z ∈ H.
Again we have the four possibilities as above. If {x, y, z} = {h1, h2, h3},
then from (3.4) we obtain (ah1)(ah2) = a2(a−1h1a)h2 = a2h3h2 = a2h1,
(ah1)(ah3) = a2h3h3 = a2, (ah2)(ah3) = a2h2 and (ah3)(ah1) = a2h3.
Hence, Π2(A) = a2H. If {x, y, z} = {1, h2, h3}, then similar to the above,
from (3.4) we obtain (ah3)(ah2) = a2, a(ah2) = a2h2, a(ah3) = a2h3,
(ah2)a = a2h1. Therefore,Π2(A) = a2H. If {x, y, z} = {h1, h2, 1} or {x, y, z}
= {h1, 1, h3}, then in a similar way to the above we can prove that Π2(A)
= a2H. This proves observation (iii).

Let S be a subset of G \ {1} with |S| = |G|/2 − 1 = 5. It suffices to
prove that Π(S) = G. Recall that SH = S ∩ H. Denote Sa = S ∩ Ha and
Sa2 = S ∩Ha2 . We have
(3.5) |SH |+ |Sa|+ |Sa2 | = |S| = 5.

Without loss of generality, we assume that
(3.6) |Sa| ≥ |Sa2 |.

Case 1: |Sa| = 3 or 4. By observations (ii) and (iii), we have Π(S) ⊃
Π3(Sa) ⊃ H and Π(S) ⊃ Π2(Sa) ⊃ a2H. If |Sa2 | ≥ 1, then Π(S) ⊃
Π2(Sa)Sa2 ⊃ aH. Now suppose that |Sa2 | = 0. If |Sa| = 3, then by (3.5) we
have |SH | = 2. Thus Π(S) ⊃ Π∗(SH)Sa ⊃ aH. If |Sa| = 4, then Sa = aH.
Therefore,

Π(S) ⊃ H ∪ a2H ∪ aH = G,

and Π(S) = G follows.
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Case 2: |Sa| = 2. By (3.5) and (3.6) we derive that 1 ≤ |SH | ≤ 3.
If |SH |=3, then Π(SH)=H and |S \ SH |=2. By Lemma 3.3, Π(S)=G.
If |SH | = 2, then |Sa2 | = 1. Clearly, Π∗(SH) = H. Then Π(S) ⊃

Π∗(SH)Sa ⊃ aH, Π(S) ⊃ Π∗(SH)SaSa2 ⊃ H and Π(S) ⊃ Π∗(SH)Sa2 ⊃
a2H. Therefore, Π(S) ⊃ aH ∪H ∪ a2H = G, and Π(S) = G follows.

If |SH | = 1, then |Sa2 | = 2. Let SH = {h}. By observation (i), we have
|Π2(Sa)∪hΠ2(Sa)∪Π2(Sa)h| ≥ 3 and |Π2(Sa2)∪hΠ2(Sa2)∪Π2(Sa2)h| ≥ 3.
By Lemma 2.1, Π(S) ⊃ (Π2(Sa) ∪ hΠ2(Sa) ∪Π2(Sa)h)Sa2 ⊃ aH, Π(S) ⊃
(Π2(Sa2)∪hΠ2(Sa2)∪Π2(Sa2)h)Sa ⊃ a2H and Π(S) ⊃ (Π2(Sa)∪hΠ2(Sa)
∪ Π2(Sa)h)Π2(Sa2) ⊃ H. Therefore, Π(S) ⊃ aH ∪ a2H ∪ H = G, and
Π(S) = G follows.

Case 3: |Sa| = 1. Since |SH | ≤ 3, by (3.5) and (3.6) we derive that
|SH | = 3 and |Sa2 | = 1. Clearly, Π(SH) = H. Since |S \ SH | = 2, by
Lemma 3.3 we find that Π(S) = G.

By [9, Proposition 5.3.2], we have the following lemma.

Lemma 3.8. Let S be a subset of a finite abelian group G with 1 /∈ Π(S).
If |S| ≥ 2, then |Π∗(S)| ≥ |S|+ 2. If |S| ≥ 4, then |Π∗(S)| ≥ 2|S|+ 1.

Lemma 3.9. Let S be a subset of a finite non-abelian group G. If 1 /∈
Π(S), G = 〈S〉 and |S| ≤ |G|/2− 2, then |Π∗(S)| ≥ 2|S|+ 1.

Proof. We proceed by induction on k = |S|. Note that G = 〈S〉 is non-
abelian. If k = 2, then |Π∗(S)| = 5 = 2|S| + 1. Assume that the result is
true for k ≥ 2. We next prove the result is also true for k + 1.

If 〈S \ {g}〉 is abelian for some g ∈ S, then by Lemma 3.8, |Π∗(S \ {g})|
≥ |S \ {g}| + 2 = k + 2. Since G is non-abelian, we deduce that |Π∗(S)| ≥
2|Π∗(S \ {g})| ≥ 2(k + 2) ≥ 2|S|+ 1.

Now assume that 〈S\{g}〉 is non-abelian for every g ∈ S. If 〈S\{g}〉 6= G
for some g ∈ S, then |Π∗(S)| ≥ 2|Π∗(S \ {g})|. Since 〈S \ {g}〉 is non-
abelian, there exist g1, g2 ∈ S \ {g} such that g1g2 6= g2g1. Since 1 /∈ Π(S),
we conclude that ab = 1 has no solution except a = 1 and b = 1, where
a ∈ Π∗(S \ {g, g1, g2}) and b ∈ Π∗({g1, g2}) = {1, g1, g2, g1g2, g2g1}. By
Lemma 2.2,

|Π∗(S \ {g})| ≥ |Π∗(S \ {g, g1, g2})Π∗({g1, g2})|
≥ |Π∗(S \ {g, g1, g2})|+ |Π∗({g1, g2})| − 1

≥ |S \ {g, g1, g2}|+ 1 + |Π∗({g1, g2})| − 1

= k − 1 + 5− 1 = k + 3.

Therefore, |Π∗(S)| ≥ 2|Π∗(S \ {g})| ≥ 2(k + 3) ≥ 2(k + 1) + 1 = 2|S|+ 1.
Suppose 〈S \ {g}〉 = G for every g ∈ S. Clearly, |S \ {g}| ≤ |G|/2 − 2.

By the induction hypothesis, we have |Π∗(S \{g})| ≥ 2|S \{g}|+1 = 2k+1.
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Let B = Π∗(S). Then |B| ≥ k+2. If |B| ≥ |G|−2, then clearly |B| > 2|S|+1.
If |B| ≤ |G|/2, then by Lemma 2.3, applied with B and T = S, there is a
g ∈ S such that λB(g) ≥ min {(|B|+1)/2, (|S∪S−1|+2)/4}. Since |S| = k+1,
we have

λB(g) ≥ dmin {(k + 3)/2, (k + 3)/4}e ≥ 2.

Therefore, |Π∗(S)| ≥ |Π∗(S \ {g})|+ λB(g) ≥ 2k + 1 + 2 = 2|S|+ 1.
Now, assume that |G|/2 < |B| ≤ |G| − 3. Then 3 ≤ |G \ B| ≤ |G|/2.

By Lemma 2.3, applied with G \ B and T = S, there is a g ∈ S such that
λG\B(g) ≥ min {(|G \B|+ 1)/2, (|S ∪ S−1|+ 2)/4}. Thus

λG\B(g) ≥ dmin {(3 + 1)/2, (k + 3)/4}e = 2.

Since λG\B(g) = |(G\B)g\(G\B)| = |(G\Bg)∩B| = |B\Bg| = |Bg\B| =
λB(g), we have |Π∗(S)| ≥ |Π∗(S\{g})|+λB(g) = |Π∗(S\{g})|+λG\B(g) ≥
2k + 1 + 2 = 2|S|+ 1.

Lemma 3.10. Let G be a finite non-abelian group of order n ≥ 24 with
4 |n and let S ⊂ G \ {1} be a subset with |S| = n/2 − 1. Let X ⊂ S be
a subset with |X| = n/4 − 1 such that |Π∗(X)| is minimal and let Y =
S \ X. Suppose 〈X〉 = 〈Y 〉 = G. If either |Π∗(X)| ≥ (15n − 7)/32 or
|Π∗(X \ {x0})| ≥ (6n− 5)/16 for some x0 ∈ X, then Π(S) = G.

Proof. If |Π∗(X)| ≥ n/2 + 1, then |Π∗(Y )| ≥ |Π∗(X)| ≥ n/2 + 1. Thus
|Π(Y )| ≥ n/2. Therefore, |Π∗(X)| + |Π(Y )| > n. By Lemma 2.1, Π(S) ⊃
Π∗(X)Π(Y ) = G. Next assume that |Π∗(X)| ≤ n/2. We first prove the
following

Claim. We have 1 ∈ Π(S).

Proof of Claim. Let (xi)
n/4−1
i=1 be a resolving sequence of X. As before

(2.2), denote Xi = {xj : 1 ≤ j ≤ i ≤ n/4 − 1}, Bi = Π∗(Xi) and λi =
λBi(xi) = max {λBi(xj) : 1 ≤ j ≤ i ≤ n/4 − 1}. Assume to the contrary
that 1 /∈ Π(S). Then 1 /∈ Π(X) and 1 /∈ Π(X \ {xn/4−1}). By Lemma 3.9,
|Π∗(X)| ≥ n/2−1. LetH = 〈X\{xn/4−1}〉; then |H| ≥ n/4−1. Since n ≥ 24,
we conclude that |H| ∈ {n, n/2, n/3, n/4} and |Xn/4−2| = n/4−2 ≥ 4. Next
we show that |Bn/4−2| ≥ n/2 − 3. If H is abelian, then by Lemma 3.8,
|Π∗(X \ {xn/4−1})| ≥ 2|X \ {xn/4−1}|+ 1 = n/2− 3.

Assume that H is non-abelian. Note that n ≥ 24. If |H| = n/4, then
by [17, Theorem 1.1], we have |Xn/4−2| = n/4− 2 > n/8 = |H|/2 + 2− 2 ≥
|H|/q+q−2 ≥ d(H), where d(H) is the small Davenport constant of H, and
q is the smallest prime divisor of |H|. Therefore, 1 ∈ Π(Xn/4−2), yielding a
contradiction.

Similarly, if |H| = n/3 and n > 24, then |Xn/4−2| > |H|/2 ≥ d(H).
Then 1 ∈ Π(Xn/4−2), yielding a contradiction. If |H| = n/3 and n = 24,
then |H| = 8 and |XH | ≥ |Xn/4−2| = 4 = |H|/2. By Lemma 3.2(i), H has
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a subgroup of index 2. Since H is non-abelian, by Lemma 3.1(i) we have
|Xn/4−2| = 4 = cr(H). Thus 1 ∈ Π(Xn/4−2) = H, yielding a contradiction.

If |H| ∈ {n/2, n}, then |Xn/4−2| ≤ |H|/2− 2. By Lemma 3.9, |Bn/4−2| ≥
n/2− 3. Therefore, in each case we have |Bn/4−2| ≥ n/2− 3. Let

λ = min {(|Π∗(X)|+ 1)/2, (|S ∪ S−1|+ 2)/4}.
Then λ ≥ (n + 2)/8. By Lemma 2.3, applied with B = Π∗(X) and T = S,
there is a g ∈ X ∪ Y such that λΠ∗(X)(g) ≥ λ. If g ∈ X, then λn/4−1 ≥
λ ≥ (n + 2)/8. Thus |Π∗(X)| ≥ |Bn/4−2| + λn/4−1 > n/2, a contradiction.
Therefore, g ∈ Y . Clearly, |Π∗(X ∪ {g})| ≥ |Π∗(X)|+ λ. Since |Y \ {g}| =
n/4− 1, we have |Π(Y \ {g})| ≥ |Π∗(Y \ {g})| − 1 ≥ |Π∗(X)| − 1. Thus

|Π∗(X ∪ {g})|+ |Π(Y \ {g})| ≥ 2|Π∗(X)|+ λ− 1

≥ 2(n/2− 1) + (n+ 2)/8− 1 > n = |G|.
By Lemma 2.1, Π(S) ⊃ Π∗(X ∪ {g})Π(Y \ {g}) = G, a contradiction to
1 /∈ Π(S). This completes the proof of the Claim.

We now show that if |Π∗(X)| ≥ (15n− 7)/32, then Π(S) = G. Let

λ′ = min {(|Π∗(X)|+ 1)/2, (|Y ∪ Y −1|+ 2)/4}.
Then λ′ ≥ (n+ 8)/16. By Lemma 2.3, applied with B = Π∗(X) and T = Y ,
there exists a y ∈ Y such that λΠ∗(X)(y) ≥ λ′. Clearly, |Π∗(X ∪ {y})| ≥
|Π∗(X)|+ λ′. Since |Y \ {y}| = n/4− 1, we have |Π∗(Y \ {y})| ≥ |Π∗(X)|.
Thus |Π∗(X ∪ {y})|+ |Π∗(Y \ {y})| ≥ 2|Π∗(X)|+ λ′ > |G|. By the Claim,
1 ∈ Π(S). Therefore, Π(S) = Π∗(S) = Π∗(X ∪ {y})Π∗(Y \ {y}) = G by
Lemma 2.1.

Finally, we will show that if |Π∗(X)| < (15n − 7)/32 and |Bn/4−2| ≥
(6n−5)/16, thenΠ(S) = G. By Lemma 2.3, we have λn/4−1 ≥ (n+4)/16 and
thus |Π∗(X)| ≥ |Bn/4−2|+ λn/4−1 ≥ (7n− 1)/16. As before, by Lemma 2.3,
applied with B = Π∗(X) and T = S, there is a g ∈ X ∪ Y such that
λΠ∗(X)(g) ≥ λ. If g ∈ X, then λn/4−1 ≥ λ ≥ (n + 2)/8. Thus |Π∗(X)| ≥
|Bn/4−2|+λn/4−1 ≥ (6n−5)/16+(n+2)/8 ≥ (15n−7)/32, a contradiction.
Therefore, g ∈ Y . As above, |Π∗(X∪{g})|+ |Π∗(Y \{g})| ≥ 2|Π∗(X)|+λ ≥
2(7n − 1)/16 + (n + 2)/8 > n = |G|. By Lemma 2.1, Π(S) = Π∗(S) =
Π∗(X ∪ {g})Π∗(Y \ {g}) = G.

Lemma 3.11. Let G be a finite non-abelian group of even order n 6= 6.
Then cr(G) ≤ n/2. Moreover, equality holds if and only if G has a subgroup
of index 2.

Proof. By Lemma 3.1(i), if G has a subgroup of index 2, then cr(G) =
n/2. It suffices to prove that if G does not have any subgroup of index 2, then
cr(G) ≤ n/2−1. Now, assume that G does not have any subgroup of index 2.
By Lemma 3.2(ii), 4 |n. Moreover, by Lemma 3.2(i, vii), n /∈ {16, 20}. By
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Lemma 3.7, we may assume that n > 12 and thus n ≥ 24. Let S be a subset
of G \ {1} with cardinality |S| = n/2− 1. It suffices to show that Π(S) = G.
Let X ⊂ S with |X| = n/4 − 1 be a subset such that |Π∗(X)| is minimal
and let Y = S \X.

Case 1: 〈X〉 6= G or 〈Y 〉 6= G. Assume that 〈X〉 6= G. Let H = 〈X〉.
Since |X| = n/4 − 1, we have |H| ≥ n/4. Thus, |H| = n/4 or n/3. Since G
does not have any subgroup of index 2, if |H| = n/4, then by Lemma 3.2(vi),
H is not normal. Moreover, Core(H) 6= H and G/Core(H) is isomorphic to
a subgroup of S4, where Core(H) is the core of H and S4 is the symmet-
ric group of degree 4. By Lemma 3.2(vi), G/Core(H) contains no subgroup
of index 2. Since 4 | |G/Core(H)|, we conclude that G/Core(H) ∼= A4. By
Lemma 3.7, cr(G/Core(H)) ≤ 5. Let ϕ : G → G/Core(H) be the natural
epimorphism. Since d|S|/|Core(H)|e ≥ 6, we conclude that ϕ(S \ Core(H))
contains a subset X̄ of G/Core(H) with |X̄| ≥ 5. Thus ϕ(Π(S\Core(H))) =
Π(ϕ(S \ Core(H))) ⊃ Π(X̄) = G/Core(H). Note that X = H \ {1}.
Then Core(H) = XCore(H) ∪ {1} = Π∗(XCore(H)) = Π∗(SCore(H)). Therefore,
Π(S) ⊃ Π∗(SCore(H))Π(S \ Core(H)) = G.

If |H| = n/3 and H is not normal, then Core(H) 6= H and G/Core(H)
is isomorphic to a subgroup of S3, where S3 is the symmetric group of de-
gree 3. Since 3 | |G/Core(H)|, we conclude that G/Core(H) has a subgroup
of index 2. By Lemma 3.2(vi), G has a subgroup of index 2, a contradiction.

Now assume that |H| = n/3 and H is normal. Note that |H| = n/3 ≥ 8
and 2 | |H|. If H has a subgroup of index 2, then by Lemma 3.1(i) we have
cr(H) ≤ |H|/2 + 1. If H does not have any subgroup of index 2, then H is
non-abelian. Since |H| 6= 6, by the induction hypothesis we have cr(H) ≤
|H|/2 − 1. In both cases, cr(H) ≤ |H|/2 + 1 = n/6 + 1 ≤ n/4 − 1 = |X|.
Thus Π(SH) ⊃ Π(X) = H. Moreover, |S \ SH | ≥ |S| − |H| + 1 ≥ 2. By
Lemma 3.3, Π(S) = G.

If 〈Y 〉 6= G, then as above, we conclude that |〈Y 〉| = n/3 and Π(S) = G.

Case 2: 〈X〉 = G and 〈Y 〉 = G. Let (xi)
n/4−1
i=1 be a resolving sequence

for X with critical index t and H = 〈Xt−1〉. As before (2.2), denote Xi =
{xj : 1 ≤ j ≤ i ≤ n/4− 1}, Bi = Π∗(Xi) and λi = λBi(xi) = max {λBi(xj) :
1 ≤ j ≤ i ≤ n/4 − 1}. By Lemma 3.10, if |Π∗(X)| ≥ (15n − 7)/32 or
|Bn/4−2| ≥ (6n− 3)/16, then Π(S) = G. Next, we assume that

|Π∗(X)| < (15n− 7)/32 and |Bn/4−2| < (6n− 5)/16.

Subcase 2.1: t > n/5. Since H is a proper subgroup of G, we have
|H| ≥ t > n/5. Note that G has no subgroups of index 2. Thus |H| = n/4
or n/3.

If |H| = n/4, then H is not normal. Since n ≥ 24, by Lemma 3.2(vii),
we know that H is not of prime order. Suppose H is of even order. If H has
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a subgroup of index 2, then by Lemma 3.1(i), cr(H) ≤ |H|/2 + 1. If H does
not have any subgroup of index 2, then H is non-abelian. By the induction
hypothesis, cr(H) ≤ |H|/2. Now, suppose H is of odd order. If |H| has at
least three prime divisors, then by Lemma 3.6, cr(H) ≤ |H|/q+q−2 ≤ |H|/2,
where q is the smallest prime divisor of |H|. If |H| has two prime divisors,
then by Lemma 3.1(iii), cr(H) ≤ |H|/q + q − 1 ≤ |H|/2 + 1. In all cases,
cr(H) ≤ |H|/2+1 = n/8+1 ≤ bn/5c ≤ t−1. ThusΠ(Xt−1) = H. Therefore,

|Π∗(X)| ≥ |Π(X)| ≥ |Π(Xt)| ≥ 2|Π(Xt−1)| ≥ n/2,
a contradiction.

If |H| = n/3, then as in Case 1, H is normal. Note that H is of even
order and |H| ≥ 8. If |H| = 8, then |G| = 24. Since G does not contain any
subgroup of index 2, we conclude that every subgroup of order 4 is not normal
and thus is not a characteristic subgroup of H. By the subgroup structure
of groups of order 8, we deduce that only C3

2 and Q8 have no characteristic
subgroup of order 4 and hence either H ∼= C3

2 or H ∼= Q8. By Lemma 3.1(i),
cr(H) = |H|/2. Now suppose that |H| > 8. If H has a subgroup of index 2,
then by Lemma 3.1(i), cr(H) = |H|/2. If H does not have any subgroup
of index 2, then H is non-abelian. By the induction hypothesis, we have
cr(H) ≤ |H|/2 − 1. In each case, we have cr(H) ≤ |H|/2 = n/6 ≤ bn/5c ≤
t − 1. Thus Π(Xt−1) = H. Therefore, |Π∗(X)| ≥ |Π(X)| ≥ |Π(Xt)| ≥
2|Π(Xt−1)| ≥ 2n/3 > n/2, a contradiction.

Subcase 2.2: t ≤ n/5. We will compute the cardinality of Bn/4−2, which
will lead to a contradiction with |Bn/4−2| < (6n − 5)/16, and complete the
proof. Note that |Π∗(X)| < (15n − 7)/32 and 〈X〉 = G. By Lemma 2.3,
λi ≥ (i + 2 + µ(i))/4 for all i ≥ t, where µ(i) = a for i ≡ 2 − a mod 4 and
a ∈ [0, 3]. By (2.2), for all n/4− 2 ≥ s ≥ t, we have

(3.7) (6n−5)/16 > |Bn/4−2| ≥ (n/4+s+5)(n/4−s−1)/8−1/2+ |Bs−1|.
Note that |Bi| ≥ i + 1 for i ≥ 1. Therefore, |Bt| = |Bt−1| + |Bt−1xt| =

2|Bt−1| ≥ 2t. By (3.7), applied with s = t+ 1, we have

(3.8) 2t+ (n/4 + t+ 6)(n/4− t− 2)/8− 1/2− (6n− 5)/16 < 0.

Set F (t, n) = 2t+ (n/4 + t+ 6)(n/4− t−2)/8−3/16−3n/8. Notice that
∂F (t,n)
∂t = 1− t/4. Since G is non-abelian, we have t ≥ 2. Thus 2 ≤ t ≤ n/5.

Therefore, F (t, n) ≥ min {F (2, n), F (n/5, n)}. Let
G1(n) = F (2, n) = (n/4 + 8)(n/4− 4)/8 + 61/16− 3n/8,

G2(n) = F (n/5, n) = 2n/5 + (9n/20 + 6)(n/20− 2)/8− 3/16− 3n/8.

If n ≥ 36, then G′1(n) = (n/2 + 4)/32− 3/8 ≥ 0 and G′2(n) = 9n/1600−
1/20 ≥ 0. Therefore,

G1(n) ≥ G1(36) = (9 + 8)(9− 4)/8 + 61/16− 27/2 > 0,
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and

G2(n) ≥ G2(36) = 72/5 + (81/5 + 6)(9/5− 2)/8− 3/16− 27/2 > 0.

Thus F (t, n) > 0, a contradiction to (3.8).
Now assume that 24 ≤ n ≤ 35. Since 4 |n and G does not contain any

subgroup of index 2, by Lemma 3.2(vii, i), we conclude that n /∈ {28, 32}.
Then n = 24, 2 ≤ t ≤ 4 and |B4| ≤ 8.

Subsubcase 2.2.1: t = 4. If |B3| ≥ 5, then |B4| ≥ 2|B3| ≥ 10, a
contradiction.

Note that B3 = Π∗({x1, x2, x3}) ⊃ {1, x1, x2, x3}. If |B3| ≤ 4, then
|B3| = 4 and thus B3 = {1, x1, x2, x3}. We now show that B3 is a subgroup
of order 4. If x1x2 = 1, then x1x3 = x3x1 = x2 and x2x3 = x3x2 = x1. Thus
x21 = x22 = x3 and x23 = 1. Therefore, B3

∼= C4. Similarly, if x1x3 = 1 or
x2x3 = 1, then B3

∼= C4. Suppose that xixj 6= 1 for distinct i, j ∈ [1, 3].
Then x1x2 = x2x1 = x3, x1x3 = x3x1 = x2 and x2x3 = x3x2 = x1.
Thus x21 = x22 = x23 = 1. Therefore, B3

∼= C2 ⊗ C2. So, G has a subgroup
M = B3 of order 4. If M is normal, then |G/M | = 6. Therefore, G/M has
a subgroup of index 2 and so does G, a contradiction. So M is not normal.
Note that 〈M,x4〉 = G. Then x4 /∈ NG(M). Therefore, x4Mx−14 6= M and
|x4Mx−14 ∩M | ≤ 2. Thus |x4M ∩Mx4| ≤ 2. Since B4 ⊃ M ∪ x4M ∪Mx4,
we have |B4| ≥ 2|M |+ 2 ≥ 10, a contradiction.

Subsubcase 2.2.2: t = 3. If |B2| ≥ 4, then |B3| ≥ 2|B2| ≥ 8. Since
λ4 ≥ 2, we have |B4| ≥ |B3|+ 2 ≥ 10, a contradiction.

If |B2| ≤ 3, then |B2| = 3 and x1 = x−12 . Let M = 〈x1〉. Then |M | =
3, 4, 6, or 8. Now we show that M is not normal. Assume to the contrary
that M is normal. If |M | ∈ {3, 4, 6}, then G/M has a subgroup of index 2.
By Lemma 3.2(vi), G has a subgroup of index 2, a contradiction. If |M | = 8,
thenM has a characteristic subgroupM1 of order 4 sinceM is cyclic, whence
M1 is a normal subgroup of G. Since G/M1 has a subgroup of index 2, we
deduce that G has a subgroup of index 2, a contradiction. Therefore, M
is not normal in each case. Note that 〈M,x3〉 = G and M is cyclic. As in
Subsubcase 2.2.1, we have

|x3B2x
−1
3 ∩B2| = 1 and |x3B2 ∩B2x3| = 1.

As above, |B3| ≥ 2|B2|+ 2 ≥ 8 and |B4| ≥ |B3|+ 2 ≥ 10, a contradiction.

Subsubcase 2.2.3: t = 2. Since 〈x1, x2〉 = G is not abelian, we have
x1x2 6= x2x1, whence |B2| = |{1, x1, x2, x1x2, x2x1}| = 5. Since λ3 ≥ 2 and
λ4 ≥ 2, we have |B4| ≥ |B2|+ 2 + 2 ≥ 9, a contradiction.

Proof of Theorem 1.1. If G is of odd order, then the result follows from
Lemmas 3.6 and 3.1(iii). If G is of even order, then the result follows from
Lemma 3.11.
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