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YONGKE QU (Luoyang) and WEIDONG GAO (Tianjin)

Abstract. Let G be a multiplicatively written finite group. The critical number cr(G)
of G is the smallest integer ¢ such that for every subset S of G \ {1} with |S| > ¢ the
following holds: every element of G can be written as a non-empty product of distinct
elements from S. We prove that cr(G) < |G|/p+ p — 2 for all finite non-abelian groups G
with |G| # 6, where p is the smallest prime divisor of |G|. Moreover, equality holds if and
only if G has a subgroup of index p.

1. Introduction and main results. Let G be a multiplicatively writ-
ten finite group (not necessarily commutative). For any two subsets X, Y of
G, we define their product set as

XY ={zy:zeXandyeY}.

Of course, we use the abbreviations Xg = {zg : * € X} and gY = {gy :
y € Y} when dealing with a single element g. For any subset S of G, we
define the inverse set as

St={gt:ge8S}.

Let S be a subset of G with |S| = ¢, and Sy = SN H for any subgroup H
of G. Write

7(S) ={g-q) -+ gr) : T a permutation of [1,{]} C G
to denote the set of products of S. Furthermore, for every integer n € [1, /],
define
ms)= |J =),
TCS,|T|=n
and set
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The critical number cr(G) of G is the smallest integer ¢ such that II(.S)
= G for every subset S of G\ {1} with |S| > t.

The problem of determining cr(G) was first proposed and studied by
Erdds and Heilbronn [4] for G = C), where p is a prime. They proved that
cr(Cp) < 3(6p)'/2. Since then, there has been a lot of research on the critical
number cr(G) (see [II, 2, B, 6 [7, 10, 14, 15]). In 2009, Freeze, the second
author and Geroldinger [5] settled the last case and determined the precise
value of cr(G) for all finite abelian groups. Meanwhile, there has been a lot of
related research on the complete and incomplete sets with large cardinality
(see [8| 1] 19]).

However, the research on cr(G) has never been restricted to the abelian
setting alone. In 1973, Diderrich and Mann [3] proved that |G|/2 < cr(G) <
|G|/2 + 1 for every finite group which has a subgroup of index 2. Let p be
the smallest prime divisor of |G|. In 1995, the second author [6] proved that
cr(G) = |G|/p + p — 2 for the following groups G with p > 149 and |G| >
120p?: (i) finite nilpotent groups; (ii) finite groups which have a subgroup
with index p and any other prime divisor of |G| (if exists) is > 6p. In 2012,
Wang and Zhuang [21] proved that cr(G) = |G|/p+p—2 for finite non-abelian
groups of order |G| = pg > 10, where p, g are distinct primes. In 2014, Wang
and the first author [20] proved that cr(G) = |G|/p + p — 2 for all finite
nilpotent groups of odd order with at least three prime divisors and for all
finite groups with |G| > 6 which have a subgroup of index 2. In this paper,
we extend the proof given by the second author and Hamidoune [7] to prove
a tight upper bound for the critical number of non-abelian groups. The main
result is as follows.

THEOREM 1.1. Let G be a finite non-abelian group with |G| # 6 and let
p be the smallest prime divisor of |G|. Then

er(@) < |Gl/p+p—2.
Moreover, equality holds if and only if G has a subgroup of index p.

2. Preliminaries

LEMMA 2.1 (JI2, Theorem 1.1|). Let G be a finite group. Let X and Y
be subsets of G such that XY # G. Then | X| +|Y| < |G|.

LEMMA 2.2 (|16, Lemma 4]). Suppose A and B are finite subsets of an
arbitrary group and 1 € ANB. If ab=1 (for a € A, b € B) has no solution
except a = b =1, then |AB| > |A| + |B| — 1.

Let G be a finite group, B C G and = € G. As usual, we write Ag(z) =
|Bx \ B|. We need the following result, which is an improvement of a result
of Olson [I5, Lemma 3.1].
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LEMMA 2.3 (J20, Lemma 2.3|). Let G be a finite group and let T be a
generating subset of G such that 1 ¢ T. Let B be a subset of G such that
|B| < |G|/2. Then there is an x € T' such that

Ap(z) > min{(|B| +1)/2,(|TUT | +2)/4}.

With the following property (see [20]) which was implicit in [I4] already,
Lemma can be applied to estimate the cardinality of IT(.S) effectively.

Let S be a subset of a finite group G such that 1 ¢ S. Then for every
y € S, we have Ap(y) = [II*(S)y \ IT*(S)| < [II*(S)y \ IT*(S\ {y})y| =
[IT* (S)\IT*(S\{y})| = [IT*(S)|—[1I*(S\{y})|, where B = IT*(S). Therefore,

(2.1) [T (S) = [T (S\ {y})] + As(y)-

Let X be a subset of G with cardinality k. Let (z;)¥_; be an ordering
of X. For 0 < i < k,set X; = {z; : 1 < j < i} and B, = II"(X;).
The ordering (:Ui)le will be called a resolving sequence of X if for all i,
AB, (x;) = max {Apg,(z;) : 1 < j <i}. We claim that every non-empty subset
X with | X| = k admits a resolving sequence. Let g € X be such that Ap(g) =
max{Ag(x) : z € X}, where B = IT*(X). Then we have an ordering of X
with zj = g. Similarly, we can find an z; such that Ag, (x;) = max {Ap, () :
x € X;}, where X; = X \ {zj11,...,z} fori =k — 1,k —2,...,1. Finally,
(z;)%_, is a resolving sequence of X.

The critical index of a resolving sequence is the maximal integer ¢ such
that X; 1 generates a proper subgroup of G. Clearly, the critical index of
every resolving sequence of any non-empty subset X is > 1.

Let (a:i)le be a resolving sequence of X. Define X;, B; and Ap,(x;) as
above. We shall write \; = Ap,(x;). By induction we have, using , for
all 1 <j <k,

(2.2) [IT*(X)| = M+ -+ + Aj + | Bj_1].
If 1 ¢ X and |Bj| < |G|/2, then we can apply Lemma to estimate A;

for j > t, where t is the critical index of (z;)¥_,, and thus a lower bound of
[ (X)[ and [IT(X)].

3. Proof of the main result. We begin by collecting some known
results on the critical number and on finite groups, which will be used later.

LEMMA 3.1. Let G be a finite group with |G| > 3 and let p be the smallest
prime divisor of |G|.

(i) If G is of even order and has a subgroup of index 2, then cr(G) =
|G|/241 for G = Cy, Co®Cy, Cg, S3, Cs or Ca®Cy, and cr(G) = |G|/2

otherwise.
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(ii) If G is a nilpotent group and |G|/p is a composite number with p > 3,
then cr(G) = |G|/p+p — 2.

(i) If G is of order pq for primes p and q, then cr(G) < p+q—1. Moreover,
if G is non-abelian and |G| = pq # 6, then cr(G) = q+p — 2.

Proof. (i) See [20, Theorem 1.3] and [5, Theorem 1.2(2,3)].
(ii) See |20, Theorem 1.2].
(iii) See |21, Theorem 1.2] and [5, Theorem 1.2(2,3)]. =

LEMMA 3.2. Let G be a finite group and let H be a subgroup of G.

(i) Suppose |G| = p" for some prime p. Then G is nilpotent and has a
subgroup of index p.
(i) If |G| = 2n with n odd, then G has a subgroup of index 2.
(iii) If the index |G : H| is the smallest prime divisor of |G|, then H is a
normal subgroup of G.
(iv) If ged(|G|, ©(|G])) = 1, where ¢ is the Euler function, then G is cyclic.
(v) Suppose |G| = p*q, where p,q are distinct primes. If p Z +1 (mod q)
and ¢ # 1 (mod p), then G is abelian.
(vi) If H is normal and G/H has a subgroup of index 2, then G has a
subgroup of index 2.
(vii) Suppose |G| = 4p with p a prime. If G has no subgroup of index 2, then
p =3 and G = Ay, the alternating group of degree 4.

Proof. (i) See [18, p. 88, Corollary 1.6].

(ii) See [18, p. 309, Exercise 10(i)].

(iii) See |18, p. 34, Exercise 3(b)].

(iv) See [22 p. 125, Theorem 6.8] or [I8, p. 113, Exercise §].

(v) By the Sylow Theorem (see [22, p. 55, The Third Sylow Theorem|]
and [I8], p. 95, Theorem 2.2|), we see that both the Sylow p-subgroup S, and
the Sylow g-subgroup S, of G are normal. Since both S, and S, are abelian,
G is abelian.

(vi) This result follows from the Generalized Correspondence Theorem
(see [18, p. 40, Theorem 5.5]).

(vii) By (i), p # 2. If p > 5, then by the Sylow Theorem we deduce that
the Sylow p-subgroup ), is normal. Since |G/S,| = 4, G/S), has a subgroup
of index 2. By (vi), G has a subgroup of index 2, a contradiction. Therefore,
p = 3 and thus |G| = 12. By the classification of groups of order 12, we have
G= Ay n

LEMMA 3.3. Let G be a finite group and let H be a normal subgroup
of G of prime index q. If S is a subset of G such that II(Syg) = H and
IS\ H| >q—1, then II(S) =G.
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Proof. Let ai,...,as—1 be distinct elements from S\ H. We denote by
a; the image of a; in G/H under the canonical homomorphism. By the
Cauchy-Davenport Theorem (see [12, Corollary 1.2.3], [I3, Theorem 2.2]),

{1,@1} e {1,5Lq_1} = G/H

It follows that I1({a1,...,aq—1})H = G. Since II(Sy) = H, we have II(S) D
H({al, oo ,aq_l})H(SH) =G. n

LEMMA 3.4. Let G be a non-abelian group of order n = p{'pg? - ... por,
where 5 < p1 < py < -+- < pr and oy > 1 fori € [L,r]. If r > 2 and
a1+ ag+ -+ a, >3, then n(p3 — p) > 6pips.

Proof. If ay + ag + -+ + . > 4, then n > pips. Note that py — p; > 2.
We have n(p3 — p?) > 2pipa(p2 + p1) > (2p1)p3p3 > 6pips. Next, assume

ol +ag+ -+ o = 3.

If pop — p1 > 4, then py > p; +4 > 9. Now we have n(p3 — p?) >
n(p3 — (p2 — 4)?) = n(8pz — 16) > 6nps > 6p?p3 and we are done. So, we
may assume that

p2 = p1+ 2.
CASE 1: n = pypaps. If p3 > %pl, then
p3 p2 —1 76
n(p3 — p3) = pspap1 (03 — (p2 — 2)%) = 429?193171 > dpips - = 6pip;

and we are done. So, we may assume that

7
p3 < Zpl-

Then ged(n, p(n)) = 1. By Lemma [3.2)(iv), G is cyclic, a contradiction.

CASE 2: n = p2py orn = p1p3. Since py = p1+2 and p; > 5, we see that
p1 # £1 (mod py) and ps # +1 (mod p;). By Lemma 3.2v), G is abelian,

a contradiction. m
By |20, Lemma 2.4], we have the following.

LEMMA 3.5. Let G be a finite group of odd order. Let S be a subset of G
such that SN S™1 = 0. Then [IT*(S)| > 2|S)|.

We now show the upper bound of the critical number for groups of odd
order which has at least three prime divisors.

LEMMA 3.6. Let G be a finite group and p > 3 be the smallest prime
divisor of |G|. If |G|/p is a composite number, then cr(G) < |G|/p+p — 2.
Moreover, equality holds if and only if G has a subgroup of index p.

Proof. Set |G| = n. By Lemma [3.1fii), we may assume that G is not

nilpotent. So, by Lemma (i), n is not a power of one prime and thus
n > p?q, where ¢ is the second smallest prime divisor of n. If |G| = 45,
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then by Lemma (V), G is abelian, yielding a contradiction. Therefore, we
may assume that n > 63. Let X be a subset of G\ {1} with k£ = | X| and
XNX~!=0. We claim the following:

Cram. If k= (n/p+p—4)/2 and |ITI*(X)| < (n—1)/2, then G has a
subgroup H of index p. Moreover,

[ Xu| = n/(pp) +9' -1,
where p' is the smallest prime divisor of |H|.

Proof of Claim. Note that G is of odd order and XNX 1 = ). If (X) # G,
then [(X)| > 2|X|+ 1 > n/p. Thus, (X) is a subgroup of index p. Let
H = (X). Since n > 63, we have | Xy| = |X| =k = (n/p+p—4)/2 >
n/(3p) +3 =1=n/(pp') +p" — 1.

Next we assume that (X) = G. Let (z;)%_, be a resolving sequence for X
with critical index t. As before (2.2)), denote X; = {z; : 1 < j < i}, B; =
IT*(X;) and \; = A, (7;) = max {Ag,(z;) : 1 < j <i}. Since X N Xt =0,
by Lemma [2.3] we have

Xi> (i+140(7))/2
for all i > ¢, where 6(m) = 0 if m is odd and §(m) = 1 otherwise.
Since |II*(X)| < (n —1)/2, by we have

3.1) (n—1)/2> |IT"(X)| > (k+s+3)(k—s+1)/4—1/2+|Bs_1|

for all s > t. By Lemma we deduce that |B;_i| > 2(¢t — 1). Obviously
|Bi| = |Bi—1|+|Bi—12¢| = 2|Bi—1] > 4(t—1). By (3.1)), applied with s = ¢+1,
we have

(3.2) dt—4+ (k+t+4)(k—1t)/4—n/2<0.

Set F(t,n) =4t —4+ (k+t+4)(k —t)/4 —n/2 = n?/(16p?) — 3n/8 +
p?/16 — t2/4 + 3t — 5. Let us show that ¢t > 6. Since G is non-abelian, we
have t > 2. Since 8Fg§’") =3—1/2 >0 when 2 <t <5, we have F(t,n) >
F(2,n). Similarly, since F'(2,n) is an increasing function of n on the interval
[p?q, 00), we obtain F(2,n) > F(2,63) = 632/144 — 189/8 +9/16 > 0. Thus
F(t,n) > F(2,n) > 0, a contradiction to (3.2). Therefore, ¢t > 6.

Let

m= max{n/p2 +p,(n/qg—1)/2+2}.

We next show that t > m. Assume to the contrary that ¢ < m — 1. Then
F(t,n) > 0, yielding a contradiction to (3.2)). Set G(n) = F(m — 1,n).

CASE 1: m = n/p? + p. Since n/p? + p — 1 > 6 (we recall that n > 63),
we have F(t,n) > F(m —1,n) = G(n) for 6 <t <m — 1. Thus, by (3.2),

G(n) < F(t,n) <0.
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Note that G(n) = 7n/(2p*) + Tp/2 + n?/(16p*) — 3n/8 — n/2p — 3p*/16 —
n?/(4p*)—33/4. Observe that G (n) = 7/(2p?)+n/(8p%)—1/(2p) —n/(2p*) —
3/8 > 0. In particular, G(n) is an increasing function. Since n > p2q >
p?(p+2), we have = (p* —2p® —23p? +80p—36) = G(p?(p+2)) < G(n) < 0.
On the other hand, it is easy to prove that p* — 2p3 — 23p? + 80p — 36 > 0
for all p > 3, a contradiction.

CASE 2: m = (n/q—1)/2+2. Then (n/q—1)/2+2 > n/p?+p and thus
p > 5. Since n > p?>q and p > 5, we have (n/q —1)/2+1 > 6. As in Case 1,
by (3.2),
G(n) <0.

Note that G(n) = n?(¢> — p?)/(16p*¢®) + p?/16 + 11n/(8q) — 3n/8 — 57/16.
By Lemma [3.4] G(n) > p?/16 +11n/(8¢q) — 57/16 > 0, a contradiction. This
proves that

t>m =max{n/p* +p,(n/qg—1)/2+2}.

Let H be the proper subgroup generated by X;_1. Noting that X N X!
= 0, we have (|H| —1)/2 >t — 1. Thus |H| > 2t — 1 > max {n/p?,n/q}.
Therefore, H is a subgroup of index p. Moreover, | Xgy| >t —1>n/(pp') +
p’ — 1. This completes the proof of the Claim. m

Now, we prove that cr(G) < n/p+ p — 2. Let S be a subset of G \ {1}
with |S| =n/p+p—2. Let X C Sand Y = S\ X be such that | X| = |Y],
XNXt=YnYy!=0and |[II(X)| < |I(Y)|. If [II(X)| > n/2, then the
result follows from Lemma 211

Assume that |IT(X)| < n/2. Since n is odd, we have |II(X)| < (n—1)/2.
Let X’ be a subset of X with |X'| = (n/p+p —4)/2. If |[II(X')| < |[I1(X)|,
then [II*(X')| < [H(X)| < (n—1)/2. If |II(X")| = |II(X)]|, then II(X') =
II(X). Suppose {g} = X \ X" and K = (g). Then II(X')g C II(X) and
|[II(X")g| = [H(X")| = |II(X)]. Thus [I(X")g = [I(X) = II(X’). Moreover,
II(X"K =II(X').Sinceg € Kand g € II(X),wehave 1l € K C II(X)K =
II(X"K = II(X') and thus [IT*(X")| = [II(X")| = |[IT(X)] < (n—1)/2. In
both cases, we have |IT*(X")| < (n—1)/2. Note that X' N X’~! = (). By the
Claim, there exists a subgroup H of G of index p such that |Sg| > | X}, | >
n/(pp') +p' — 1, where p’ is the smallest prime divisor of n/p.

Since p is the smallest prime divisor of |G|, by Lemma [3.2{iii) we find
that H is a normal subgroup of order n/p of G. Note that n/p is a composite
number. If n/p is the product of two primes, then by Lemma[3.1](iii), cr(H) <
|H|/p'+p" —1. If n/p is the product of more than two primes, then |H|/p’
n/pp’ is a composite number. By the induction hypothesis, we have cr(H)
|H|/p' + p — 2. In both cases, we conclude that cr(H) < |H|/p'+p — 1
n/(pp’) + p' — 1 < |Sg|. Thus II(Sy) = H. Clearly, |S\ Sg| > p—1. By
Lemma [3.3] II(S) = G. Therefore, cr(G) <n/p+p — 2.

Al
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Next, assume that G does not have any subgroup of index p. We show
that cr(G) < n/p+p—3. Let S be a subset of G\ {1} with |S| =n/p+p—3.
Let X € Sand Y = S\ X be such that |X| = (n/p+p—4)/2 =|Y|-1,
XX =YY = 0 and [IT(X)| < [T(Y)]| (as |T(Y)| > [TV {y})
for each y € Y). If |[II*(X)| < (n — 1)/2, then by the Claim, there exists
a subgroup of index p, a contradiction. Thus, [IT*(X)| > (n + 1)/2 and
[II(Y)| > (n+1)/2. By Lemma 2.1} II(S) D II*(X)II(Y) = G. Therefore,
cr(G) <n/p+p-—3.

Finally, we show that if G has a subgroup H of index p, then cr(G) =
n/p + p — 2. Since cr(G) < n/p + p — 2, it suffices to construct a sub-
set S of G\ {1} with |S| = n/p + p — 3 such that II(S) # G. Let S =
(H\{1})US’, where S’ is a subset of aH for some a ¢ H with |S"| =p — 2.
By Lemma [3.2{iii), H is a normal subgroup of G. Then I1(S)N(a?~*H) = (.
Thus II(S) # G.

Next, we consider the groups of even order, and begin with the critical
number cr(G) of non-abelian groups G of order 12.

LEMMA 3.7. Let G be a finite non-abelian group of order 12. Then cr(G)
< |G|/2 = 6. Moreover, equality holds if and only if G has a subgroup of
mdex 2.

Proof. By Lemma[3.1](i), if G has a subgroup of index 2, then cr(G) = 6.
Now, assume that G does not have any subgroup of index 2. It suffices to
prove that cr(G) < 5. By Lemma [3.2|vii), we have G = Ay, the alternating
group of degree 4. Let H be the normal subgroup of order 4. Then H &
Co® Cy and gH = Hg for any g € G. Let H, = aH and A C H, for some
a € G\ H. We have the following observations:

(i) If |A| =2, then |II2(A)| =2 and |AURA U Ah| > 3 for h € H \ {1}.
(ii) If |A| = 3, then II3(A) = H.
(iii) If |A| = 3, then IT5(A) = a®H.
Since G has no subgroup of index 2, we infer that every proper subgroup
of G has order in {2,3,4} and every non-zero element in G has order in

{2,3,4}. Tt follows that every element in G \ H has order 3. Therefore, for
any g € G\ H and any h € H \ {1} we have (g,h) = G and

(3.3) gh # hg.
Let
H = {1, h1, ha, hs}.

From (3.3) we have ah;a™! # h; for each i = 1,2,3 and @ € G \ H. This
implies that, by renumbering if necessary,

(3.4) ahia™t = hy, ahea '=hs and ahsza”' = h.
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To prove observation (i), let A = {az,ay} with distinct z,y € H =
Cy ® Cy. We need to prove (ax)(ay) # (ay)(az). Assume to the contrary
that (ax)(ay) = (ay)(az); then ray = yaxr and y~'za = axy~! follows.
Note that z = z~! and y = y~!; we obtain (yx)a = a(xy), but yz = 2y # 1,
which contradicts (3.3). This proves [IIo(A)| = 2. If |JAU hAU Ah| < 2 for
some h € H \ {1}, then A = hA = Ah. Thus h(ax) = ay = (ax)h, contrary
to (3.3). This proves observation (i).

To prove observation (ii), let A = {ax, ay, az} with distinct z,y,z € H.
We have the following four possibilities: {z,y, z} = {h1, ho, hs}, {z,y, 2z} =
{h1,ho,1}, {z,y,2z} = {h1,1,hs} and {z,y,2z} = {1, ho, hs}. If {z,y,2} =
{h1,hy, h3}, then from we obtain (ahs)(ahy)(ahy) = hia®hiahy =
hia3(a='hia)hy = hihzho = 1. This proves that 1 € I13(A). Again from
" we obtain (ahg)(ahl)(ahg) = h3a2h1Gh3 = h3h3h3 = h3. Similarly,
(ahs)(ahg)(ahy) = hy and (ahy)(ahs)(ahy) = he. Therefore, I13(A) = H.
If {z,y,2} = {1, he,hs}, then similar to the above, from we obtain
(ahz)a(ahy) = 1,(ahi)a(ahs) = hohs = hy, (ahs)a(ahy) = hihy = hs and
(ahg)a(ahy) = hshy = hy. Therefore, IT5(A) = H. If {z,y,z} = {h1, ho, 1}
or {z,y,z} = {h1,1, hs}, then in a similar way to the above we can prove
that IT3(A) = H. This proves observation (ii).

To prove observation (iii), let A = {az, ay, az} with distinct x,y,z € H.
Again we have the four possibilities as above. If {x,y,z} = {h1, ho, h3},
then from we obtain (ahi)(ah2) = a?(a"'hia)hy = a*hghy = a®hy,
(ah1)(ah3) = a?hghs = a2, (ah2)(ahs) = a*he and (ahs)(ahi) = a®hs.
Hence, II5(A) = a?H. If {x,y,2} = {1, ha, h3}, then similar to the above,
from (3.4) we obtain (ahsz)(ah2) = a2, a(ahy) = a%ha, a(ahs) = ahs,
(aho)a = a®hy. Therefore, IT5(A) = a>H. If {z,y, 2} = {h1, h2, 1} or {z,y, 2}
= {h1,1,h3}, then in a similar way to the above we can prove that ITo(A)
= a?H. This proves observation (iii).

Let S be a subset of G \ {1} with |S| = |G|/2 — 1 = 5. It suffices to
prove that IT1(S) = G. Recall that Sy = SN H. Denote S, = SN H, and
S,z = SN H,2. We have

(3.5) |SH |+ |Sal + [Saz] = |S| = 5.
Without loss of generality, we assume that
(3.6) |Sal > |Sqzl-

CASE 1: |S,| = 3 or 4. By observations (ii) and (iii), we have IT(S) D
II3(S,) D H and I1(S) D IM3(S,) D a*H. If |S,2| > 1, then II(S) D
I15(S,)S,2 D aH. Now suppose that |S 2| = 0. If |S,| = 3, then by we
have |Sg| = 2. Thus II(S) D IT*(Sy)S, D aH. If |S,| = 4, then S, = aH.
Therefore,

(S) > HUd’HUaH = G,
and I1(S) = G follows.
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CASE 2: |S,| =2. By and we derive that 1 < |Sy| < 3.

If |Sp|=3, then II(Sy)=H and |S\ Sy|=2. By Lemmal[3.3 II(S)=

If [Sg| = 2, then |S,2| = 1. Clearly, IT*(Sy) = H. Then II(S)
IT*(Sg)Se D aH, II(S) D II*(Sg)SaS.2 D H and II(S) D II*(SH)S,2
a’H. Therefore, I1(S) D aH U H Ua?H = G, and I1(S) = G follows.

If |Sg| = 1, then [S,2| = 2. Let Sy = {h}. By observation (i), we have
’HQ(S@)UhHQ(Sa)UHQ(Sa)h’ > 3 and ‘H2<5a2)UhHQ(SaQ)UHQ(SQQ)h‘ > 3.
By Lemma [2.1] I1(S) D (II2(Sa) U hil5(Sa) U I12(Sa)h)S,2 D aH, II(S) D
(HQ(SCLQ) UhHQ(SCLQ) UHQ(Saz)h)Sa > a?H and H(S) D) (HQ(SQ) UhHQ(Sa)
U IT5(Sq)h)I12(S,2) D H. Therefore, IT1(S) D aH Ua’?H UH = G, and
I1(S) = G follows.

CASE 3: |Sg| = 1. Since |Su| < 3, by (3.5) and (3.6) we derive that
|Su| = 3 and |S,2| = 1. Clearly, II(Sg) = H. Since |S \ S| = 2, by
Lemma [3.3| we find that II1(S) =G. =

By [9, Proposition 5.3.2|, we have the following lemma.

LEMMA 3.8. Let S be a subset of a finite abelian group G with 1 ¢ II(S).
If |S| > 2, then |IT*(S)| > |S| + 2. If |S| > 4, then |IT*(S)| > 2|S| + 1.

LEMMA 3.9. Let S be a subset of a finite non-abelian group G. If 1 ¢
II(S), G=(S) and |S| < |G|/2 — 2, then |IT*(S)| > 2|S|+ 1.

Proof. We proceed by induction on k = |S|. Note that G = (S) is non-
abelian. If k = 2, then [IT*(S5)| = 5 = 2|S| + 1. Assume that the result is
true for k£ > 2. We next prove the result is also true for k£ + 1.

If (S'\ {g}) is abelian for some g € S, then by Lemma [3.8 [IT*(S \ {g})|
> |S\ {g}| +2 =k +2. Since G is non-abelian, we deduce that |II*(S)| >
I (S\ {gh)| > 200k +2) > 2|8] + 1.

Now assume that (S\{g}) is non-abelian for every g € S. If (S\{g}) # G
for some g € S, then |[IT*(S)| > 2|17*(S \ {¢})|. Since (S \ {g}) is non-
abelian, there exist g1,92 € S\ {g} such that gi1g2 # g2g1. Since 1 ¢ II(5),
we conclude that ab = 1 has no solution except a = 1 and b = 1, where
a € II"(S\ {9,91,92}) and b € II*"({g1,92}) = {1,901, 92,9192, 9291} By

Lemma [2.2]
I (S\A{g})| = [II"(S\ {g, 91, 92 }) 1T ({91, 92})|
> [IT*(S\ {g,91,92})| + [IT*({g1,92})| — 1
> [S\{g, 91,92} + 1+ [IT*({g1,92})| — 1
=k—14+5-1=k+3.
Therefore, |IT(S)| > 2/IT*(S\ {g})] > 2(k +3) > 2(k + 1) + 1 = 2| S| + 1.

Suppose (S'\ {g}) = G for every g € S. Clearly, |S\ {g}| < |G|/2 — 2.
By the induction hypothesis, we have [IT*(S\ {g})| > 2|S\{g}|+1 =2k +1.

G.
D
2
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Let B = II*(S). Then |B| > k+2. If | B| > |G|—2, then clearly |B| > 2|S|+1.
If |B| < |G|/2, then by Lemma applied with B and 7" = S, there is a
g € S such that Ag(g) > min {(|B|+1)/2, (|]SUS™!+2)/4}. Since |S| = k+1,
we have

Ap(g) > [min {(k +3)/2, (k+3)/4}] > 2.

Therefore, |IT*(S)| > [II*(S\ {g9})| + AB(9) > 2k +1+2=2|S|+ 1.

Now, assume that |G|/2 < |B| < |G| — 3. Then 3 < |G\ B| < |G]/2.
By Lemma applied with G\ B and T = S, there is a g € S such that
Aa\s(g) = min {(|G\ B|+1)/2,(|SU S~ +2)/4}. Thus

Aovs(9) > Tmin {(3+ 1)/2, (k+3)/4}] = 2.
Since A5 (9) = |(G\B)g\(G\B)| = |(G\ Bg)NB| = | B\ By| = | Bg\ B|

A5 (g), we have [IT*(S)| > |IT*(S\ {g}) + As(g) = [T (S\{g})| + A5 (9) >
2%+1+2=2S+1. u

LEMMA 3.10. Let G be a finite non-abelian group of order n > 24 with
4|n and let S C G\ {1} be a subset with |S| = n/2 —1. Let X C S be
a subset with |X| = n/4 — 1 such that |II*(X)| is minimal and let Y =
S\ X. Suppose (X) = (Y) = G. If either |II*(X)| > (15n — 7)/32 or
[IT*(X \ {z0})| > (6n —5)/16 for some xy € X, then II(S) = G.

Proof. If |IT*(X)| > n/2 4 1, then |IT*(Y)| > |IT*(X)| > n/2 + 1. Thus
[II(Y)| > n/2. Therefore, [II*(X)| + |II(Y)| > n. By Lemma 2.1} II(S) D
II*(X)II(Y) = G. Next assume that [IT*(X)| < n/2. We first prove the
following

CLAIM. We have 1 € II(S).

Proof of Claim. Let (xl)?:/ 11171 be a resolving sequence of X. As before
[2-2), denote X; = {z; : 1 < j < i <n/d—1}, B; = II*(X;) and \; =
AB,(x;) = max{Ap,(x;) : 1 < j <i < n/4—1}. Assume to the contrary
that 1 ¢ I1(S). Then 1 ¢ II(X) and 1 ¢ II(X \ {x,/4—1}). By Lemma
|[IT*(X)| > n/2—1. Let H = (X\{zy,/4_1}); then |[H| > n/4—1. Since n > 24,
we conclude that [H| € {n,n/2,n/3,n/4} and |X,, /4_o| =n/4—2 > 4. Next
we show that |B,/4_s| > n/2 — 3. If H is abelian, then by Lemma
(X \ {2p/a-1})] 2 21X\ {201} +1=1n/2 -3

Assume that H is non-abelian. Note that n > 24. If |H| = n/4, then
by [I7, Theorem 1.1], we have |X,,/4_o| =n/4—-2>n/8 = |H|/2+2~-2>
|H|/q+q—2 > d(H), where d(H) is the small Davenport constant of H, and
q is the smallest prime divisor of |H|. Therefore, 1 € I1(X,,/4_2), yielding a
contradiction.

Similarly, if |H| = n/3 and n > 24, then |X,, 4 o| > [H|/2 > d(H).
Then 1 € II(X,,/4_5), yielding a contradiction. If [H| = n/3 and n = 24,
then |H| = 8 and [Xy| > |X,,/4—o| = 4 = |H|/2. By Lemma (i), H has
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a subgroup of index 2. Since H is non-abelian, by Lemma (1) we have
| Xy ja—2| =4 =cr(H). Thus 1 € I1(X,,/4_9) = H, yielding a contradiction.

If [H] € {n/2,n}, then | X,, 4 o| < |H|/2—2. By Lemma |Bpa—2| 2
n/2 — 3. Therefore, in each case we have |B,,/4_s| > n/2 — 3. Let

A = min {(|[IT*(X)| +1)/2,(]SU S| +2)/4}.

Then A > (n + 2)/8. By Lemma [2.3] applied with B = IT*(X) and T = 5,
there is a g € X UY such that A\j-(xy(g9) = A\ If g € X, then A,y >
A > (n+2)/8. Thus [II"(X)| > |B,/a—2| + A\nja—1 > n/2, a contradiction.
Therefore, g € Y. Clearly, [IT*(X U{g})| > |II*(X)| + A. Since |Y' \ {g}| =
nf4—1, we have [T(Y \ {gh)| > [IT*(Y'\ {g})| - 1> |[IT*(X)| — 1. Thus

(X U{gh)|+ [HT(Y \{g})| = 2[II"(X)[ + A =1
>2(n/2— 1)+ (n+2)/8—1>n=|G|

By Lemma [2.1] II(S) > II*(X U {g})II(Y \ {g}) = G, a contradiction to
1 ¢ II(S). This completes the proof of the Claim. =

We now show that if [IT*(X)| > (15n — 7)/32, then I1(S) = G. Let
N = min {(|IT*(X)| +1)/2, Y UY | +2)/4}.

Then X > (n+8)/16. By Lemma [2.3] applied with B = IT*(X) and T =Y,
there exists a y € Y such that A\jg«(x)(y) > N. Clearly, [II*(X U {y})| >
|[IT*(X)| + X. Since |Y \ {y}| =n/4 — 1, we have [IT*(Y \ {y})| > [IT*(X)|.
Thus [II*(X U{y})| + |[II*(Y \ {y})| > 2|I*(X)| + X' > |G|. By the Claim,
1 € II(S). Therefore, II(S) = IT*(S) = I*(X U{y}IT*(Y \ {y}) = G by
Lemma 2.1]

Finally, we will show that if [II*(X)| < (15n — 7)/32 and [B,,/4—o| >
(6n—>5)/16, then II(S) = G. By Lemma, we have A, /41 > (n+4)/16 and
thus [I1*(X)| > | By, js—2| + Apja—1 = (Tn —1)/16. As before, by Lemma
applied with B = IT*(X) and T" = S, there is a ¢ € X UY such that
Am+(x)(g) > A\ If g € X, then A y_y > A > (n+2)/8. Thus [IT*(X)| >
|Bpja—2|+Apja—1 = (6n—5)/16+(n+2)/8 > (15n—7)/32, a contradiction.
Therefore, g € Y. As above, |II*( X U{g})|+[IT*(Y \{g})| > 2/IT*(X)|+X >
2(7n — 1)/16 + (n + 2)/8 > n = |G|. By Lemma [2.1] II(S) = II*(S) =
IT(X U {ghIT* (Y \ {g}) = G.

LEMMA 3.11. Let G be a finite non-abelian group of even order n # 6.

Then cr(G) < n/2. Moreover, equality holds if and only if G has a subgroup
of index 2.

Proof. By Lemma [3.1(i), if G has a subgroup of index 2, then cr(G) =
n/2. It suffices to prove that if G does not have any subgroup of index 2, then
cr(G) < n/2—1. Now, assume that G does not have any subgroup of index 2.

By Lemma [3.2{ii), 4|n. Moreover, by Lemma [3.2(i,vii), n ¢ {16,20}. By
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Lemma [3.7, we may assume that n > 12 and thus n > 24. Let S be a subset
of G\ {1} with cardinality |S| = n/2 — 1. It suffices to show that II(S) = G.
Let X C S with |X| = n/4 — 1 be a subset such that |II*(X)| is minimal
and let Y =5\ X.

CASE 1: (X) # G or (Y) # G. Assume that (X) # G. Let H = (X).
Since |X| = n/4 — 1, we have |H| > n/4. Thus, |H| = n/4 or n/3. Since G
does not have any subgroup of index 2, if |[H| = n/4, then by Lemma[3.2|vi),
H is not normal. Moreover, Core(H) # H and G/Core(H) is isomorphic to
a subgroup of Sy, where Core(H) is the core of H and Sy is the symmet-
ric group of degree 4. By Lemma [3.2|vi), G/Core(H) contains no subgroup
of index 2. Since 4||G/Core(H)|, we conclude that G/Core(H) = A4. By
Lemma cr(G/Core(H)) < 5. Let ¢ : G — G/Core(H) be the natural
epimorphism. Since [|S|/|Core(H)||] > 6, we conclude that ¢(S \ Core(H))
contains a subset X of G/Core(H) with |X| > 5. Thus ¢(I1(S\ Core(H))) =
II(p(S \ Core(H))) D II(X) = G/Core(H). Note that X = H \ {1}.
Then Core(H) = Xcoo(mry U {1} = I (Xoore(rr)) = " (Score(rr))- Therefore,
11(8) > IT* (e T1(5 \ Core(H)) = G,

If |H| = n/3 and H is not normal, then Core(H) # H and G/Core(H )
is isomorphic to a subgroup of S3, where Ss is the symmetric group of de-
gree 3. Since 3| |G /Core(H)|, we conclude that G/Core(H) has a subgroup
of index 2. By Lemma [3.2](vi), G has a subgroup of index 2, a contradiction.

Now assume that |H| = n/3 and H is normal. Note that |H| =n/3 > 8
and 2| |H|. If H has a subgroup of index 2, then by Lemma [3.1](i) we have
cr(H) < |H|/2+ 1. If H does not have any subgroup of index 2, then H is
non-abelian. Since |H| # 6, by the induction hypothesis we have cr(H) <
|H|/2 — 1. In both cases, cr(H) < |H|/2+1=n/6+1<n/4—-1=|X|.
Thus I1(Sy) D II(X) = H. Moreover, |S\ Sg| > |S| — |H|+1 > 2. By
Lemma 3.3 II(S) = G.

If (Y) # G, then as above, we conclude that |(Y)| =n/3 and I1(S) = G.

CASE 2: (X) = G and (Y) = G. Let (wi)?ﬁ_l be a resolving sequence
for X with critical index ¢ and H = (X;_1). As before (2.2), denote X; =
{z;:1<j<i<n/4-1}, B; = II*(X;) and \; = A, (2;) = max {Ap,(z;) :
1 <j<i<mn/4-1}. By Lemma if [II*(X)| > (15n — 7)/32 or
| By ja—2| > (6n — 3)/16, then I1(S) = G. Next, we assume that

[T*(X)| < (15n —7)/32 and  |B,,/4_s| < (6n — 5)/16.

SUBCASE 2.1: t > n/5. Since H is a proper subgroup of G, we have
|H| >t > n/5. Note that G has no subgroups of index 2. Thus |H| = n/4
or n/3.

If |H| = n/4, then H is not normal. Since n > 24, by Lemma [3.2)(vii),
we know that H is not of prime order. Suppose H is of even order. If H has
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a subgroup of index 2, then by Lemma [3.1|1), cr(H) < |H|/2 + 1. If H does
not have any subgroup of index 2, then H is non-abelian. By the induction
hypothesis, cr(H) < |H|/2. Now, suppose H is of odd order. If |H| has at
least three prime divisors, then by Lemmal[3.6] cr(H) < |H|/q+q—2 < |H|/2,
where ¢ is the smallest prime divisor of |H|. If |H| has two prime divisors,
then by Lemma [3.1fiii), cr(H) < |H|/qg+ ¢ —1 < |H|/2+ 1. In all cases,
cr(H) < |H|/24+1=n/84+1< |n/5] <t—1. Thus I1(X;_1) = H. Therefore,

[(X)| = [HI(X)| = [[I(Xy)| = 2[1T(X¢-1)| = n/2,

a contradiction.

If |H| = n/3, then as in Case 1, H is normal. Note that H is of even
order and |H| > 8. If |[H| = 8, then |G| = 24. Since G does not contain any
subgroup of index 2, we conclude that every subgroup of order 4 is not normal
and thus is not a characteristic subgroup of H. By the subgroup structure
of groups of order 8, we deduce that only Cj and Qg have no characteristic
subgroup of order 4 and hence either H = C or H = Qg. By Lemma (i),
cr(H) = |H|/2. Now suppose that |[H| > 8. If H has a subgroup of index 2,
then by Lemma [3.1[i), cr(H) = |H|/2. If H does not have any subgroup
of index 2, then H is non-abelian. By the induction hypothesis, we have
cr(H) < |H|/2 — 1. In each case, we have cr(H) < |H|/2=n/6 < |n/5] <
t — 1. Thus II(Xy—1) = H. Therefore, |[[I*(X)| > |II(X)| > [II(Xy)| >
2|I1(X;—1)| > 2n/3 > n/2, a contradiction.

SUBCASE 2.2:t < n/5. We will compute the cardinality of B,,/;_5, which
will lead to a contradiction with |B,,/4_s| < (6n —5)/16, and complete the
proof. Note that [IT*(X)| < (15n — 7)/32 and (X) = G. By Lemma 2.3
Ai > (i+ 2+ p(i))/4 for all i > ¢, where pu(i) = a for i = 2 — a mod 4 and
a € 10,3]. By (2.2)), for all n/4 —2 > s > t, we have
(3.7)  (6n—5)/16 > |By /42| > (n/4+5+5)(n/4—5—1)/8—1/2+4|Bs_1].

Note that |B;| > ¢ + 1 for ¢ > 1. Therefore, |B| = |Bi—1| + |Bi—17t| =
2|B;—1| > 2t. By (3.7), applied with s = ¢ + 1, we have
(3.8) % + (n/Ad+1t+6)(n/d—t—2)/8—1/2 — (6n—5)/16 < 0.

Set F(t,n) =2t+(n/4+t+6)(n/4—t—2)/8—3/16 — 3n/8. Notice that
% = 1—t/4. Since G is non-abelian, we have t > 2. Thus 2 <t < n/5.
Therefore, F(t,n) > min{F(2,n), F(n/5n)}. Let

Gi(n) = F(2,n) = (n/4+8)(n/4—4)/8 +61/16 — 3n/8,

Gao(n) = F(n/5,n) =2n/5+ (9n/20 4+ 6)(n/20 — 2)/8 — 3/16 — 3n/8.

If n > 36, then G (n) = (n/2+4)/32—3/8 > 0 and G4(n) = 9n/1600 —
1/20 > 0. Therefore,

Gi(n) > G1(36) = (9 +8)(9 — 4)/8 + 61/16 — 27/2 > 0,
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and
Ga(n) > G2(36) =72/5+ (81/5+6)(9/5—2)/8 —3/16 — 27/2 > 0.

Thus F(t,n) > 0, a contradiction to (3.8).

Now assume that 24 < n < 35. Since 4|n and G does not contain any
subgroup of index 2, by Lemma [3.2|vii, i), we conclude that n ¢ {28,32}.
Then n =24, 2 <t <4 and |By| <8.

SUBSUBCASE 2.2.1: t = 4. If |Bs| > 5, then |B4| > 2|Bs| > 10, a
contradiction.

Note that By = II*({z1,x2,23}) D {1l,x1,22,23}. If |Bs| < 4, then
| B3| = 4 and thus Bs = {1, x1,x2,x3}. We now show that Bj is a subgroup
of order 4. If x1x9 = 1, then x123 = 371 = 2 and zox3 = r329 = x1. Thus
22 = 23 = x3 and 23 = 1. Therefore, B3 = Cy. Similarly, if 223 = 1 or
xows = 1, then Bs = Cj. Suppose that x;z; # 1 for distinct 4,5 € [1,3].
Then x1x2 = wox1 = x3, T1x3 = x3T1 = T9 and Tox3 = X3To = T7.
Thus z? = 22 = x% = 1. Therefore, By = Cs ® Cs. So, G has a subgroup
M = B3 of order 4. If M is normal, then |G/M| = 6. Therefore, G/M has
a subgroup of index 2 and so does G, a contradiction. So M is not normal.
Note that (M,z4) = G. Then x4 ¢ Ng(M). Therefore, z4Max;' # M and
|IL‘4M{L‘ZI N M| < 2. Thus |zgM N Mxy| < 2. Since By D M UxgM U Muzy,
we have |By| > 2|M| + 2 > 10, a contradiction.

SUBSUBCASE 2.2.2: ¢ = 3. If |By| > 4, then |B3| > 2|B| > 8. Since
A1 > 2, we have |By| > |Bs| + 2 > 10, a contradiction.

If |By| < 3, then |By| = 3 and 21 = x, . Let M = (). Then |M| =
3,4,6, or 8. Now we show that M is not normal. Assume to the contrary
that M is normal. If |M| € {3,4,6}, then G/M has a subgroup of index 2.
By Lemma [3.2vi), G has a subgroup of index 2, a contradiction. If [M| =8,
then M has a characteristic subgroup Mj of order 4 since M is cyclic, whence
M is a normal subgroup of G. Since G/M; has a subgroup of index 2, we
deduce that G has a subgroup of index 2, a contradiction. Therefore, M
is not normal in each case. Note that (M, z3) = G and M is cyclic. As in
Subsubcase 2.2.1, we have

|x332x§1 N B2| =1 and |$3BQ N ng3| = 1.
As above, |Bs| > 2|B2| 4+ 2 > 8 and |By| > |Bs| + 2 > 10, a contradiction.
SUBSUBCASE 2.2.3: t = 2. Since (x1,z2) = G is not abelian, we have

x1x2 # wox1, whence |Ba| = |{1,x1, z2,x122, x221}| = 5. Since Az > 2 and
A1 > 2, we have |By| > |Ba| +2 42 > 9, a contradiction. =

Proof of Theorem[I1 If G is of odd order, then the result follows from
Lemmas and [B.1f(iii). If G is of even order, then the result follows from

Lemma B.11] =
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