Crank-Nicolson schemes for sub-diffusion equations with
nonsingular and singular source terms in time

Han Zhou* Wenyi Tian"

Abstract

In this work, two Crank-Nicolson schemes without corrections are developed for sub-diffusion
equations. First, we propose a Crank-Nicolson scheme without correction for problems with regular-
ity assumptions only on the source term. Second, since the existing Crank-Nicolson schemes have a
severe reduction of convergence order for solving sub-diffusion equations with singular source terms
in time, we then extend our scheme and propose a new Crank-Nicolson scheme for problems with
singular source terms in time. Second-order error estimates for both the two Crank-Nicolson schemes
are rigorously established by a Laplace transform technique, which are verified by some numerical
examples.
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1 Introduction

We consider the following sub-diffusion equation with a singular source term in time and nonsmooth

initial data,
“Dfu(x,t) + Au(x,t) = f(z,t),  (2,1) € Qx (0,T],

u(z,t) =0, (x,t) € 09 x (0,71, (1.1)
u(z,0) = u’(z), x € Q.
The operator A denotes a self-adjoint positive definite second-order elliptic partial differential operator

in a bounded domain 2 C R? with boundary 92, d = 1, 2, and the initial value u°(z) belongs to L?(2).
The notation “Dfu(z, t) with 0 < a < 1 defined by

“Diulet) = gy [ (= 0.0

refers to the a-th order left Caputo derivative of function u(x,t) with respect to variable ¢, where I'(-)
o

denotes the Gamma function given by I'(s) = t5~Le~tdt for s with real part R(s) > 0.

The sub-diffusion equation (1.1) was formu(iated in [23] and then widely used to simulate anoma-
lous diffusion phenomena in physics recently [20], where the mean squared displacement of particle
motion grows by sublinear rate in time. Compared to the normal diffusion equations, the solutions of
sub-diffusion equation (1.1) and some other time-fractional evolution problems usually exhibit weakly
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singular property near the origin even if the given data are sufficiently smooth with respect to time
[2, 16, 21, 22, 25].

To solve this type of problems numerically, some efficient finite difference methods were developed,
such as piecewise polynomial interpolation [6, 11, 17, 25, 29, 31] and convolution quadrature (CQ)
[4,7,12,13,15,19, 27,28, 30, 32]. Among the different discretization schemes in the literature, the CQ
technique proposed in the pioneering work [18] by Lubich is flexible for designing high-order numerical
schemes for approximating time-fractional evolution problems [12]. Due to the weakly singular property
of the solutions near the origin, the direct application of CQ will lead to an order reduction to only first
order in time, while the optimal convergence order can be preserved by a correction approach in [4, 12].
This idea also was utilized in designing Crank-Nicolson CQ schemes for the sub-diffusion problem
(1.1) in [13, 27] to preserve the optimal second-order convergence rate, and for a variant time fractional
problem in [8]. The Crank-Nicolson CQ scheme developed in [13] needs corrections at two starting time
steps. Furthermore, [27] designed an alternative Crank-Nicolson CQ scheme with only single-step initial
correction.

For the source term in the sub-diffusion problem (1.1) owning sufficient regularity in time, the
schemes based on CQ can achieve optimal convergence order by some proper corrections. However,
it was mentioned in [32] that correction approaches in the literatures are not applicable to problem (1.1)
with source terms being singular at ¢ = 0 since f(0) tends to infinity, such as f(x,t) = t#g(x) with
—1 < @ < 0. Thus the existing time-stepping schemes, including the Crank-Nicolson CQ schemes
in [13, 27], lost their optimal accuracy and have severe reduction of convergence order far below one,
and such performance was observed in the numerical results by the BDF1- and BDF2-CQs in [32] and
numerical examples in this paper. Overall, singular source terms in problem (1.1) bring new difficulties
both in designing efficient time-stepping schemes and analyzing error bounds. In [32], two new time-
stepping schemes based on BDF1 and BDF2 were proposed for (1.1) with a class of source terms mildly
singular in time, which can restore the optimal first and second convergence order, respectively, even
for singular source term f(z,t) = tfg(x) with —1 < p < 0. Additionally, [32] also proposed a new
analysis technique based on the Laplace transform instead of generating function of the source term to
establish error estimates of the proposed schemes. Later in [3, 24], the error estimates of the schemes
based on BDF2 and higher-order BDF-CQs were analyzed by the discrete Laplace transform technique
for (1.1) with some singular source terms.

In this work, we concentrate on designing novel Crank-Nicolson schemes for the sub-diffusion prob-
lem (1.1) with both nonsingular and singular source terms and analyzing their error estimates by de-
veloping the Laplace transform technique mentioned in [32]. As mentioned above, the existing Crank-
Nicolson schemes [13, 27] both require corrections at starting time steps. Then our first objective is to
design a novel Crank-Nicolson scheme without corrections for the sub-diffusion problem (1.1), which
can also keep the optimal second-order convergence rate for source terms with low regularity. The sec-
ond objective of this work is to develop a second-order Crank-Nicolson scheme for the problem (1.1)
with singular source terms, such as f(z,t) = t*g(z,t) with —1 < p < 0. As stated in Theorem 2.1,
the solution of (1.1) owns lower time regularity and becomes even singular for singular source terms,
then correction approaches proposed in literatures are invalid and it will bring the serve order reduction
of the known Crank-Nicolson schemes. So the problem comes from the low regularity and singularity
of the solution and source term. To achieve our goals, we consider governing equations (3.4), (4.2) and
(3.1) of the time integrals of the solution and/or source term of the original problem, and develop two
novel Crank-Nicolson schemes based on them. In (3.4) and (4.2), the solutions and/or source terms have
much better regularity than the original ones, which greatly helps our proposed schemes achieve optimal
convergence order.

The rest of this paper is organized as follows. In Section 2, we present some preliminary results on



the sub-diffusion problem (1.1) with singular source terms with respect to time. In Section 3, a novel
fractional Crank-Nicolson scheme (CN-I) without correction is proposed for the sub-diffusion problem
(1.1), and second-order error estimates are analyzed for nonsingular source terms. In Section 4, we
further design another fractional Crank-Nicolson scheme (CN-II) for singular source terms. The optimal
second-order convergence rate is also rigorously established. In Section 5, some numerical results are
illustrated to show the effectiveness of the proposed Crank-Nicolson schemes and verify the theoretical
convergence results.

2 Preliminary

The well-posedness and regularity of problem (1.1) have been well established in [1, 22] for f(x,t) €
LP(0,T; L?(2)) with p > 1. For the case that f(x,t) belongs to the space L'(0,T; L?(£2)) and owns
lower regularity at ¢t = 0, the existence, uniqueness and regularity of the solution of (1.1) were discussed
in [32] as well. The result is stated in the following theorem. For convenience of notation, (-, -) denotes
the inner product in L2(€2), and || - || denotes the corresponding norm throughout this paper.

Theorem 2.1 ([32]). Let u(z) = 0 and f(z,t) in (1.1) satisfy Assumption 1 (in Section 4.2). Then the
problem (1.1) has a unique solution u € C((0,T); L*(S2)), which satisfies

lu@)|| < ct*™#, pu> -1, t>0. (2.1

For homogenous case of (1.1) with u" € L2(Q), the corresponding result can be referred to [22]. In
such case, there exists a unique weak solution u € C([0,7T7]; L*(Q2)) to problem (1.1) such that

< c||u?].
nax, Ju()|] < cllu”||

By Laplace transform approach, the solution of (1.1) can be represented as

1 .
u(t) = — / et (s* + A)_l(so‘_luo + f(s))ds, (2.2)
211 T
or .
u(t) = E(t)u’ + / E(t —s)f(s)ds (2.3)
with operators £(-) and E(-) on L?(12) defined by
1 -1 _a-1 1 / st -1
— = 4
=5 /F (s*+ A) " s ds, E(t) 2t ) e (s + A)"ds, (2.4)
where
T={o+iy:0c>0,ycR} 2.5)

Itis known in [19, 26] that the resolvent of the symmetric elliptic operator A obeys the following estimate
I(s+A)7Y < Mls|™", Vse (2.6)
for some 0 € (7/2, ), where ¥y is a sector of the complex plane C and given by
Yo ={z € C\ {0} : |argz| < 6}. .7

Therefore by the resolvent estimate (2.6) and Cauchy’s theorem, I" in (2.2) and (2.4) can be replaced by
I'% U S. defined as
TusS. = {pet?: p>c}Ufee®: -0 < <0}, (2.8)



which is the boundary of the domain
S5 ={z€C:|z| > cand |arg 2| < }. (2.9)
The semidiscrete problem by finite element method for (1.1) is to find up () € X}, satisfying

(“Dfun(t), 0) + A(un(t), @) = (f(t),9), Yo € Xy,

2.10
up (0) = Ppu®, 10

where X; C H&(Q) is a continuous piecewise linear finite element space on a regular triangulation
mesh 7}, of the domain 2, h = maxye;, diam(7') is the maximal diameter. A(-,-) denotes the bilinear
form associated with the elliptic operator A. The L?-projection operator Py, : L?(Q) — X}, in (2.10) is
defined by

(Ph@7¢> - (8071/})7 vd} € Xh-

Furthermore, the semidiscrete scheme (2.10) can be rewritten in the form of
CDtauh(t) + Ahuh(t) = fh(t), Vi> 0, and uh(O) = Phuo (2.11)
with f, = Py, f, where the operator Ay, : X;, — X}, is defined by

(App, ) = A(p, ), Y p,1p € Xp,. (2.12)

Similarly, the semidiscrete solution of (2.11) for ¢ > 0 can be represented by

w0 =55 [ e AT un(0) + o) @13
or .
un(t) = Bu(t)un(0) + /0 En(t — ) fu(s)ds, (2.14)

where Ej,(-) and Ej,(-) are operators on X}, given by

_ 1
Ep(t) = — / s (5™ + Ap) " tds, (2.15)
271 reus.
1
Ep(t) = — / eSt (s + Ap) " ds. (2.16)
271 reus.

The error estimates for the semidiscrete Galerkin finite element scheme (2.11) have been well estab-
lished in [9, 10, 14, 32]. Moreover, the error analysis on the lumped mass finite element scheme has been
discussed in [9, 10, 32] as well.

3 Crank-Nicolson scheme for nonsingular source terms

In this section, we propose a novel fully discrete Crank-Nicolson scheme without corrections for solving
(1.1) and establish the temporal error estimates. The discussion is based on the spatial semidiscrete
scheme (2.11) by the Galerkin finite element method.



3.1 Crank-Nicolson scheme I

We first reformulate the semidiscrete scheme (2.11) by introducing two functions Uy, (t) and Fj,(t), which
are defined by fg up(£)d¢ and fg fn(€)d, respectively. If uy, and f;, are in L*(0, T'; X},), then Uy, (t)
and F},(t) belong to the space C([0, T]; X},) and satisfy

DiU(t) = up(t), Un(0) =0 (3.1)

and
DiFp(t) = fu(t),  Fn(0)=0 (3.2)
for a.e. t > 0, where D; := 0/0t. Next, substituting (3.1) and (3.2) into (2.11) yields

DED,UL(t) + ApDiUy(t) = DiFi(t). (3.3)

Moreover, integrating (3.3) from 0 to ¢ and using the semigroup property of fractional integrals, we
obtain

“D{UL(t) + ApUn(t) = Fi(t) + D - 0 3.4

it Un(t) + ApUn(t) = Fi(t) + tmuh()- (3.4

Therefore, (3.4) together with (3.1) and (3.2), can be recognized as an equivalent form of (2.11). In what
follows, a novel fractional Crank-Nicolson scheme will be proposed based on the equivalent form.
Let the notation D¢ denote the Griinwald-Letnikov difference operator defined by

oo
DoUL(t) =77 o;Un(t — j7), (3.5)
j=0
where {0, j > 0} are coefficients of a generating function such that
IR o 1
s Zajz =wi(2)Y, with wi(z) = ;(1 —2), (3.6)
§=0

and 1
o

oy, j2>1. 3.7)
J

0'0:1, O‘j:(l—

The equation (3.4) is approximated at t — 57 by fractional Crank-Nicolson approach [5, 13], that is for
DiUL(0) =0, i =0,1,2,

DU (t) = “D{Un(t = 57) + O(?)

= (

1= 5) “DPULL) + 5 ODiUA(E = 7) + O().

Then we define the functions Uy, (t) and iy, (t) as the solutions to the following difference equations

D20 + (1= 5) AU (1) + G AWTA(E = 7) = (1= S)Fu(t) + SFu(t = 7)

«a 2—« a T 2—«
H= DD ) + 50 (ST S, 6
p(t) = D-Up(t) := %(gﬁh(t) —205(t — 7) + %Uh(t - 27)) (3.9)

for ¢t > 0, and as zero for ¢ < 0. Here D, denotes the second-order BDF operator.
Given a uniform partition of the interval [0, 77,

O=th<ti < --- <ty <ty=T.



The step size of the uniform mesh is denoted by 7 = T'/N and t,, = n7 for 0 < n < N. Then choosing
t=t,forn=1,---, N in (3.8) and (3.9), we propose a fractional Crank-Nicolson scheme for solving
(1.1) as follows

(

n
7S o0 4 (1 - %)Ahﬁg + %Ahﬁ,’;—l —(1- %)Fg + %Fg—l

j=0
o {2« o 2 (CN-I)
1-5 D’T Y *DTin ,
+(1-3) F(B—a)uh(0)+ 5 P(3_a)uh(0)
~n_l §Nn_ rrm—1 1~n—2
i =~ (S0 = 2007+ 50872,

with U} = 0, where @} := iy, (t,), U} := Up(t,) and F' := Fy,(t,).

3.2 Solution representations

By taking Laplace transform on (3.1) and (3.4), the semidiscrete solution uy(t) in (2.11) can also be
rewritten as

1 st .17
up(t) = 3 /rgusa e** sUp(s)ds, (3.10)
where Fg U S; is defined by (2.8) and
2 (. -1/ a—2 -1z
Un(s) = (s* + Ap) " (s*un(0) + s fu(s)). (3.11)

The discrete operator A, defined by (2.12) also satisfies the resolvent estimate ||(s* + Ap) 71| < c|s| ™
for s € T% U S.. Then it follows from (3.11) that

1O < elsl (1) + [s1 L fa()]])- (3.12)

It is indicated in [32] that @, () in (3.9) is continuous for ¢ > 0, and can be represented by

1 —
ap(t) = 3 /1“ eStwa (e Up(s)ds, (3.13)
where I' is given by (2.5) and
3 1
wo(z) =771 (5 —2z+4 522) (3.14)

Moreover, with U, (t) = 0 for t < 0, we have from (3.5) that the Laplace transform of DU}, (t) equals
to

— = ° t+oo ~ =
DaUy(s) =1 ¢ Z oj / e StUL(t — §7)dt = wi (e 75T)*Up(s).
j=0 70
Then it follows from (3.8) that
Un(s) = (w(e™T)* + Ah)_l (silfh(s) + wa(e757) s Bup(0)), (3.15)
where 1
—Z
w(z) = ) 3.16
(2) T(l—%—F%Z)l/O‘ ( )
In addition, (3.13) can also be rewritten as
t
n(t) = B (0w () + | Ei(t - OO, G.17)
0



where E7 (-) and EJ (-) are operators on X}, given by

_ 1 "

Ej(t) = 3 Fes o(e )2 (w(e ™ M)> + Ap) "5 3ds, (3.18)
1
BR (1) = 5 /F e (e~ ) w(e™) + Ap) s~ ds. (3.19)

From Lemmas B.3 in [32], wa(e™*7) in (3.14) satisfies the following preliminary lemma for the error
analysis of the fractional Crank-Nicolson scheme (CN-I).

Lemma 3.1. If s € C and |st| < r for finite r > 0, then
lwa(e™57)| < Cls| and |s° — wa(e™*T)P| < C72|s|PH2 (3.20)
hold for 0 < B < 1, where C' denotes a generic constant dependent on the radius r.

In addition, the term w(e™*7) in (3.16) satisfies the following two preliminary lemmas, which are
obtained from the results of Lemmas 3.3 and 3.4 in [13].

Lemma 3.2. Let a € (0,1) and ¢ € (an/2,7) be fixed. Then there exists a 9 > 0 (independent of T)
such that for § € (0,680] and 0 € (/2,7 /24 &), we have w(e™*T)* € Ly, for any s € L, 5\ {0} U{z €
20\ Seso |Sz] <m/7}

Proof. By [13, Lemma 3.3], it holds that w(e™*7)* € X, for any s € FgT USs U iﬂ/Q\{O} and any

6 € (m/2,0], where I‘gﬁ and Ss are similarly given by (3.26) and (2.8), respectively. From the definition
of Eg as in (2.9), it has the following relationship

S M0} U {2z € S\Seyo 1 182l </r} = ) {T9,US5US, 0\ {0}},
0c(r/2,0)

which directly implies the result. O

Lemma 3.3. Let « € (0,1). There exists a constant 61 > 0, for 6 € (0,61] and 0 € (7/2,7/2 + 1], we
have for any s € {z € %3\ Sespt |Sz| <w/r}and 0 < B <1 that

Cols| < Jw(e™T)| < C|s| and |s” —w(e™T)P| < Or?|s|P+2.

Proof. The result of Lemma 3.4 in [13] shows that Co[s| < |w(e™*")| < C1|s| and |87 —w(e™)8| <
C72|5/72 forany s € TY U S5 and any f € (7/2, 6]. Then the result is easily obtained by using

{z € Eg\iﬂ/g Sz < w/T) = U {FgT U S5}
0e(r/2,0)

By (3.15) and Lemma 3.2, we further have that
1T(s)] < clw(e™* )™ (IsI ™ | fu()| + lwale™™T)] - [s[**[[u]]) (3.21)

holds for any s € 3§ \ £,/ with [3z] < 7/7 or s € 2.2\{0}.



Lemma 3.4. Let ,(t) be the solution to the difference equations (3.8)-(3.9) with u°(z) € L*(Q) and
fn(t) = thgn(x), p > —1, gn(z) = Prg(x) and g(x) € L*(Q). Then (3.13) becomes

1 =
dn(t) = —— / e usn (=) T (5)ds
27T'L N4 -,—USE
= 1 . = (3.22)
+ p_z_: 37 /Fg T T2/ o (e75TVT, (s + 2pm /7)ds
p#0
fort € (0,T], where ﬁh(s), ng,, and S: are given by (3.15), (3.26) and (2.8), respectively.
Proof. The solution 4y (t) to (3.9) can be reformulated from (3.13) as follows
1 o+iL . —
up(t) = 1l — s UL (s)d 3.23
n(t) = Mmoo /HL e wnle T )Un(s)ds, (3-23)

where 0 = ¢t~ whent > 7 and 0 = 7! when 0 < ¢ < 7. Then for any L > 0 and fixed 7 > 0, there
exists N € N* such that (2N + 1) w/7 < L < (2N + 3)7/7, and the integral in (3.23) can be divided
into three parts

o+iL — o+iL o+i(2N+1)Z o—i(2N+1)Z —
/ eStwa (e T)Up(s)ds = (/ +/ +/ )eStwg(efsT)Uh(s)ds.

—iL o+i(2N+1)Z —i(2N+1)Z —iL
(3.24)
In addition, together with f5,(¢) = t*gp(z) and (3.21), we get
1 fa ()| < els| ™ gl < els|™* gl
(3.25)

1Tn ()] < elwle™N) 7 (Is| 2 llgll + lwz(e™)] - |s]* 2 (|lu°]]).
For the first integral in (3.24), it follows from (3.25) that
o+iL —
1/ o (e~ )T (5)ds|
o+i(2N+1)7 /7

o+i(2N+3)7/T
< 0/ ) e llwa (e (e (IsI ™ llgll + lwa(e™T)] - [s]*7||u°[]) |ds]
o+i(2N+1)w /T

IN

(2N+3)7/T . _ l—a —p—2 N 2—a, ,a—3|,,0
/ e (0 +y—2Nm/m)' =y 2|lg| + (o +y — 2N7/r)> "3 u]]) dy
(2N+1)w /T

°|

< ol Oy
= "\@2N 4+ 1)#+2 " (2N +1)3-

Then the above bound tends to zero when L — 400 (N — +00). The similar result can also be derived
for the third integral in (3.24).
For the estimate on the second integral in (3.24), we first introduce some integral curves as follows

FgT = {per? . ¢ < p <7/(rsinh)}, (3.26)
't ={¢+i2N + 1)n/7: n/Tcotf < & <o}, (3.27)
I ={¢—i2N+1)n/7: n/Tcoth <& <o} (3.28)



AsU, 1 (s) in (3.15) is analytic in the sector Xy, then using the Cauchy’s theorem and the periodic property
of exponential function we obtain that

o+i2N+1)7/7 —
/ etwa(e ) Up(s)ds
o—i(2N+1)7/T

:/ eStwg(eST)Uh(s)ds—i—/ e*twa (e Uy,(s)ds
r-ur+

T8 US. (3.29)
N —
+ > / 2P/ T o (675U (s + i2pm /7)ds.
Y
p#0

The first term on the right hand side of (3.29) can be estimated as follows

—

| e*'wy(e”T)Un(s)ds|
r-ur+

< C</ |€st"w2(e—(s+i2]\_/7r/~r)7)"w(e—(s+i2N7r/T)T)‘—a‘s‘—u—2HgH‘dS’
-
+ / et wp (e~ (HNT/TIT 2] (e~ (H2NT/TIT) = 10813 0
r—
+ / e fewp (e~ TENT/TIT) |up (e (2N T/TIT) [0 72 g s
T+
+ / ’est"w2(67(57i2]§fﬂ/7)7)‘2’0‘)(67(571'2]\7#/7)7)’fa . ‘S‘af?)HuO’Hds‘)
r+
e e+ /m) N + /7] g dg

/T cot 0

e f T e )2 4 D] ) de

/T cot 0

a—+p 0
col Ty
(2N + 1)r+2 " (2N + 1)3—@

which tends to zero for L — 400 (N — +00). Therefore, the result (3.22) is obtained from (3.23) and

(3.29). O

3.3 Error estimates for nonsingular source terms

In this subsection, we establish the temporal discrete error estimates of scheme (CN-I) by means of
Laplace transform for the case of nonsingular source terms in time.

Lemma 3.5. Let Ej,(-) and E,Z() be given by (2.15) and (3.18), respectively. Then there holds

[(En(t) — Ef () Ppul| < er?t 2|, Vit e (0,T). (3.30)



Proof. Let f,(t) = 0, it follows from (3.10), (3.13) and Lemma 3.4 that

(En(t) — E7(t)) Pyu®

1 + . ]. t _ A
- = s d L s . ST d
2t Jrones e* sUp(s)ds + 2i Jro s, e** (s — wa(e 7)) Up(s)ds

! ewy(e5) <(7h(s) - [}\h(s)>ds

2mi ¢ US. (3.31)

R . =
=Y g [ (e )T s+ d2mp ) ds
- ™ Jro
p=—00 0,7
p#0

=1+ 1+ I3+ Iy,

where Uh(s) and Uh(s) are given respectively by (3.11) and (3.15) with fh(s) = 0. By (3.12), the
estimation of the first item /7 in (3.31) is as follows

T sin @

+00
Bl < ella®) [l sl < el [ el
TAIe e
+oo

<er?ull [ e 0pdp < ert 2l

T sin 0

Lete =t !whent > rande = 7 ' when 0 < ¢t < 7, then ¢ < ¢t~ L. It follows from Lemma 3.1 and
(3.12) that

\mu<wwww/ €] s]lds]
¢ us.

< 2|l (/TW‘]" eptcosepdp+/0 eetcos§€2d§> (3.32)
€ -6
< et ).
Since the following estimate
s+ AR) " = (wle™ )+ A) |
< (@(e™)* + An) " lllwe™) — s (s + An) " | (3.33)

< er?fsPlw(e™ )|

holds by using Lemmas 3.2 and 3.3 for s enclosed by curves I‘gﬁ, S(s) = £m/7 and T, it arrives at

1(s® 4+ Ap) s — (w(e™* )™ + Ap) ™ wale™T)|
<I(s® + An) (s — wale M|+ 1((8* + An)7E = (w(e™ ) + Ap) T wa(e )| (3:34)

< er? (s + [slw(e ™) |7 |wa(e ™))

With (3.11), (3.15), (3.34), Lemmas 3.1 and 3.3, it yields the estimate of I3 in (3.31) as follows
13]] < CTQHuOH/ e [|wa(e™* M) (s>~ + |w(e ™) |wa(e™*)[s[*) |s]*?|ds]
¢ USe
< C7'2||’LL0” (/”Tng eptcosépdp+/0 6stcos€62d§> (3.35)
€ —0
< c7’2t_2||u0||.

10



In addition, from the inequality for any v > —1
+o0
1

+o00o 1
dpri<a+ / p v 2dp <1+ [t (3.36)
p=1

it follows that the fourth item I in (3.31) satisfies

+0o0
Ha]| < ef|u]] Z/G e [|wz(e™*T)|w(e ™) s + i2pm /7% %|ds]
p:]. FOT

“+o0o Lg
T sin
< CTSiaH’U,OH E :pa?)/ ept cos9p27adp
p=1 0

400 =
< 67,2”“0‘21)043/ eptcosapdp
p=1 0

< er?t 72|,

where p?=* < pr®!is applied as 0 < a < 1 and p € (0, —i-7). Therefore, the result (3.30) is
obtained. U

Note that the solution @} of (CN-I) satisfies @ = 1up(t,) with () given by (3.13) or (3.17).
Then the result in Lemma 3.5 directly implies the error estimate of scheme (CN-I) for solving (1.1) of
homogenous case. The result is stated in the following theorem.

Theorem 3.1. Assume u®(z) € L*(Q) and f(x,t) = 0. Let up(t) and ! be the solutions of (2.11) and
(CN-I), respectively. Then we have

Jun (tn) — gl < e, 2|[u°. (3.37)

Next we consider the error estimate for the inhomogeneous case. The Taylor expansion of f,(¢) is
of the form
Fn(®) = n(0) + ¢ £(0) + % fi(2), (3.38)

where “x” represents the convolution operation. Thus, we need to obtain the following estimate for the
case t*gp,(z) at first. The proof is analogous to that of Lemma 3.5.

Lemma 3.6. Let fi,(t) = thgy(z) with p > 0, gp,(v) = Prg(x) and g(x) € L*(Q). The operators Ej(-)
and EJ (-) are given by (2.16) and (3.19), respectively. Then we obtain

[(En(t) — EL(t) = fr(t)|| < er®tT#2|lg|l, Ve (0,T). (3.39)
Proof. With u°(x) = 0 and fh(s) =T (14 p)s™#Lg(x), it follows from (3.11), (3.15) and (3.33) that
1A (s) = Tn(s)]| < er?lwle™™ )]s gl

Then we have from (3.10), (3.12), Lemma 3.3 and Lemma 3.4 that

10 = BL®) « ol e [ eI ITnllas

€ e,T

+c/ e[| — wa(e™* )| Un(s)|l|ds]
o uS.

+ C/r e llwa (e[| Un(s) = Un(s)|l]ds|

E,T

11



n Z / s+127fp/7 HwQ(efsTMHﬁh(S + Z>27"'p/7')|||d‘9|
o0

2 oo Opt 1
<erlgl [ eteperd

T sin 6

T5ind 0
+ CT2||g|| (/ epcos@tpl—a—udp+ /0€€tCOS§62_a_Md£
e _

= Tein0
+ C7'2||g|| Zp—u—2/ eptc050p1—o<—udp
p=1 0

< er?t T2 g,

where p! =% < cp! =@ H7r~His applied as 4 > 0 and p € (0 The result (3.39) is obtained. O

) 'rsm9)

Theorem 3.2. Assume u°(z) € L?(2), f € WL°(0,T; L*(Q2)) and fo ) F7(¢)]|d¢ < oo. Let
uy, and uy be the solutions of (2.11) and the scheme (CN-I), respectzvely. Then for1 < n < N, it holds
that

tn
[un(tn) —apll < 672(t52||u0|| + L)+ 7L 0] +/0 (tn —C)a_lllf”(C)HdC)' (3.40)

Proof. 1t follows from (2.14), (3.17) and (3.38) that

lan(t) — g1l < | (Bn(ta) — Ef () Paa®ll + | (Ea() = EF(8)) * 1) () f2 (0)]
+II((En(t) — ER (1) *t) (tn) f4.(0 )H (3.41)
+ ([ ((Br(t) = ER () * t = fr (1)) (t) -
Then (3.40) can be derived from (3.41) by Lemmas 3.5 and 3.6. O

In the following, the error estimates of scheme (CN-I) for the source terms in the forms of f(z,t) =
t* % g(x,t) with p > —1 and f(z,t) = tFg(x,t) with > 0 are established in Theorems 3.3 and 3.4,
respectively. The proofs are based on Lemmas 3.5 and 3.6.

Theorem 3.3 (Source terms f = t# x g(t)). Assume that u’(z) € L*(Q), and f(t) = t" * g(t) with
p > —1 satisfying g € WH°(0,T; L*(Q)) and fot(t — ¢)min(atm0)| g7 (¢) " be
the solutions of (2.11) and the scheme (CN-I), respectively. Then for 1 <n < N, it holds that

tn
lun(tn) =g || < er® (tflluollﬂiﬂ‘_llg(())!+t§i+“|!g'(0)|+/0 (tn*C)O‘*“Hg”(C)H)dC)' (3.42)

Proof. In view of g € Wh*°(0,T; L?(2)) and ¢” € L'(0,T; L?(Q2)), we have the Taylor expansion of
g(t) as follows

g(t) = g(0) +tg'(0) +t x g"(t). (3.43)
By the identity t# x t = m ff;j =k frn(t) = t" * gp(t) can be reformulated as
) = g0 ) g, G4
T N [ M VR (R R |

Then together with Lemmas 3.5 and 3.6, the result (3.42) can be derived by the similar argument as in
(3.41). O
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Theorem 3.4 (Source terms f = t#g(t)). Assume that u’(x) € L*(Q), and f(z,t) = t'g(x,t) with
> 0 satisfy g € Wh2(0,T; LA(), [5lg"(Q)l|d¢ < oo and [ (t — )*~1¢H|g"(¢)||A¢ < oo. Let
up, and uy, be the solutions of (2.11) and (CN-I), respectively. Then for 1 < n < N, it holds that

fun(ta) — T < er (1210] + 559 (O)]| + £ g/ O)]
tn tn (3.45)
e [T @tac+ [t = 07 ¢lg Ol

Proof. For the case u = 0, the result (3.45) can be directly derived from Theorem 3.2. We next consider
the case ;1 > 0. The Taylor expansion of g in (3.43) yields that

Su(t) = t"gr(0) 4+ t**1 g, (0) + t#(t x gy (1)). (3.46)

Let g (t) = t"(t = g}.(t)), then g, (0) = 0 and ¢}, (t) = pt* 1 (t = g}/ (t)) + t*(1 * g} (t)) by the argument
in [3]. Furthermore, ¢; (0) = 0 since ||q;, (¢)|| < (e + 1)t*(1 = || g/ (¢)||), and

g (1) = p(p = D=2 (85 gp/ (1)) + 28"~ (1 gji (1)) + g5 (1),

which satisfies
lgn (@) < et (1 llgh () + t*lgh@)])- (3.47)

Then it implies from Lemma 3.6 that

I((En(t) = E5(2)) * an(t)) (tn)
= [((En(t) — BR(8))  t % a4 () (tn)|

t'll
< or? /0 (tn — O Vg (O)llAC

(3.48)
tn tn tn
< er?( / (b — Q)7 ¢ / lg"(2)lldz + / (tn = O ¢llg"(©)l1c)
0 0 0
tn tn
< er? (1! / lg” ()¢ + / (tn = 0“1 ¢ 9" () llAC )
0 0
Then the result (3.45) is derived from (3.46), (3.47), (3.48), Lemmas 3.5 and 3.6. O

Remark 1. The result in Theorem 3.2 reveals that the Crank-Nicolson scheme (CN-1) achieves second-
order accuracy for problem (1.1) with certain smooth source terms, which is consistent with the results of
Crank-Nicolson schemes in [13, Theorem 3.8 and Theorem 3.13] and [27, Theorem 2]. However, those
error estimates in [13, 27] are invalid for some source terms with lower regularity such as f(x,t) =
thg(z) with i € (0,1). For u®(x) = 0 and f(x,t) = t'g(x) with u > 0, the result in Lemma 3.6 or
Theorem 3.4 shows the optimal second-order error estimate as follows

up (tn) — @) < ctoTr—272, (3.49)

Remark 2. For singular source terms f(x,t) = t*g(z) with p € (—1,0), the Crank-Nicolson scheme
(CN-D) can not preserve the optimal second-order accuracy. By the similar approach for Lemma 3.6, we
can obtain that the error estimate of the scheme (CN-1) is

Jun(tn) — ap|| < cto—2r>t (3.50)

for the case u’(x) = 0 and f(x,t) = thg(x) with u € (—1,0).
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4 Crank-Nicolson scheme for singular source terms

In this section, we consider designing an alternative Crank-Nicolson scheme with the optimal second-
order accuracy for solving (1.1) with singular source terms, such as f(z,t) = t*g(x,t) with u € (—1,0).
To recover the optimal second-order rate of convergence of Crank-Nicolson method, we need to introduce
a function F},(t) satisfying

DyFp(t) = Fy(t), Fi(0)=0 (4.1)

with Fj,(t) given by (3.2). Replacing Fj,(t) in (3.4) by Dch(t), then we obtain an equivalent form of
(3.4) as follows

22—«

Cra =
DU + AU = D F +D
FUn(t) + ApUn(t) 1 (t) TB = a)

up(0), Up(0) =0. 4.2)
Next we will design a new Crank-Nicolson scheme used for numerically solving (4.2) and (3.1).

4.1 Crank-Nicolson scheme I1

We also denote Uy, (t) and iy, (t) as approximations to Uy, (t) and uy,(t) solving (4.2) and (3.1), which
satisfy the difference equations

DU (t) + (1 — %)Ahﬁh(t) + %Ahﬁh(t -7)=(1- %)Dfﬁh(t) + %Dfﬁh(t - )

L_9p P o+ S DT 43
+ ( —5) Tmuh( )+§ Tmuh( ); (4.3)
in(t) = Dy O (t) = %(gffh(t) 20— ) + %Uh@ ~or) .4)

for t > 0, and prescribe U (t) = 0, Gx(t) = 0 for t < 0, where D, denotes the second-order BDF
operator and D¢ the Griinwald-Letnikov difference operator (3.5).

Taking t = t, = nT, n = 1,2,--- N with 7 = T//N in (4.3) and (4.4), we establish a new fully
discrete Crank-Nicolson scheme of the form

n
N o Ur T+ (1 %)Ahﬁ;} + %Ahﬁ;;—l =(1- %)DTF[; + %DTF,’]‘l
§=0

a! 2= (CN-ID)

E)DTF(3 —a)

Brn ormet l-
@ = 7 (508 — 207~ + 50072)

o 29
1-— 0) + =D, —2=L_4,(0),

with UY) = 0, where @} := iy, (tn), Ul := Up(t,) and F' := Fy,(t,,) with F(-) satisfying (4.1).
Taking the Laplace transform on (4.3), we obtain

a(s) = wa(e™ ) (w(e )" + Ah)_l (sfth(s) + 5 Bup(0)). 4.5)
This implies from (4.4) that
int) = —— / e uso (=) T (5)ds. .6)
211 T
An alternative expression of up,(t) is
t ~
i (0) = B (0) + [ Bt = Ofu(Oc @)
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where w(+) and wo(+) are given by (3.16) and (3.14), the operator E7 (¢) is given by (3.18), and E‘g() is
an operator on X, given by

- 1
Ej(t) = 5 A etwa (e (w(e )™ + Ap) " ts2ds. (4.8)

4.2 Error estimates for singular source terms

In this subsection, we first consider the error estimates for the singular source terms satisfying the fol-
lowing conditions in Assumption 1 as discussed in [32], and then extend the result to singular source
terms in the form of f(x,t) = tF'g(z,t) with g > —1.

Assumption 1. The singular source term f(x,t) in (1.1) is assumed to be in L*(0,T; L?>(Q)) such that
its Laplace transform with respect to time t is analytic within the domain 35 in (2.9) for § € (7/2, )
and small € > 0, and || f(s)| < c|s|~#" holds for some i > —1.

As mentioned in [32], the singular source term f(x,t) = t"g(x) with —1 < p < O and g(x) € L?(2)
satisfies the conditions in Assumption 1.

Remark 3. For the homogenous problem (1.1) with f(x,t) = 0, the Crank-Nicolson schemes (CN-I)
and (CN-II) are the same. Thus the error estimate of the scheme (CN-II) for the homogenous case is the
same as Theorem 3.1.

The error estimate of the new Crank-Nicolson scheme (CN-II) for the inhomogeneous case is estab-
lished in the following theorem, which restores the optimal second-order accuracy for singular source
terms satisfying Assumption 1.

Theorem 4.1. Let u®(x) = 0 and f(x,t) in (1.1) satisfy Assumption 1 (with i > —1). If uj, and @} are
solutions to (2.11) and (CN-II), respectively, then it holds that

up(tn) —ap|| < ctot# 272 n=1,2,--- N. (4.9)

Proof. By the similar argument in Lemma 3.4, it follows from (2.14) and (4.6) that

1 N
tn) — U = =— *tn sUp(s)d
up(tn) — ap 57 Fg\FgTe sUp(s)ds
1

- st 3 . —sT\FT
277 o Tusse (sUh(s) wa(e )Uh(s)) ds

oo _ (4.10)
- Z 2/ eSnwy (e *T)U (s + i27mp/7)ds

p=—00 ﬂ-l Fg,‘r

p#0

=11 + 115+ I1s5.
With (4.5) and Assumption 1 on f(¢), it yields

1T < cleale™ ) w(e™T)| s 2. (4.11)

Then we have from (4.11), Lemmas 3.1 and 3.3 that

oo
1L < 07_2 eptn cos 6 fa7u+1d < Ctoz+uf27_2.
|15]| < o p< et

T sin 6
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From (3.12), (4.5), (4.11), (3.34) and Lemma 3.1, it follows that

50 (s) — wa(e ) Tn(s)]
< N1 (s — wae™ ) Un(s)|| + llwz(e™>7) (Un(s) — Un(s))l

(
< (15— wale ) On(s) | + lwale ™M™ + An) s = (wle™) + An) " wale™ )| Fu(s)
< er? ([s] 7 o+ Jwa(e NI + [sPllw(e™ )| wale ™) )s[77)

< c7'2|s|1 a=k,

This gives
H11ﬂ|5;CT2j/ et || s 10 K] ds| < etoth-272, “.12)
0

Furthermore, by Lemmas 3.1, 3.2 and 3.3, we get

o
[1Is]] < CZ/G |e5tnl|s|27%|s 4 i27p /7| 7*73|ds|
=T

+oo
< CT3+MZp_M 3/731119 eptnCObe 9 adp (413)
0

p=1
< ety

where p?=% < cpl =@ #77#~Lis applied as u > —1 and p € (0 This completes the proof. [

7T$n0)

Using similar analysis techniques for Lemma 3.6 and Theorem 4.1, we can easily derive the following
error bound.

Lemma 4.1. Let f,(x,t) = thg,(z) with i > —1, gp(x) = Pyg(z) and g(z) € L*(Q). The operators
Ey(-) and Eg() are given by (2.16) and (4.8), respectively. Then we have

[(En — E}) * fa@®)|| < er?t“T# 2| g,  Vte (0,T). (4.14)

Next, we establish the error estimate of scheme (CN-II) for singular source terms f(z,t) = tFg(x,t)
with —1 < p < 0, where g(t) has the Taylor expansion g(t) = g(0) + t¢’(0) + t % g”(t). The result is
stated in the following theorem, the proof of which is based on Lemma 4.1 and some techniques used in
[3, Lemma 5.5].

Theorem 4.2. Let u’(x) = 0 and f(x,t) = t“g(x t) with —1 < p < 0, where g € WH>°(0, T'; L*(Q)),
fg(t — ) 1¢H|¢"(¢)||d¢ < oo and fo ||g (O)|ld¢ < oo. If up, and @' are the solutions to (2.11)
and (CN-II), respectively, then we have that the error bound

lun(tn) — ]| < er? (tT“’QHg(O)II +ta g (0)]]

tn w1l ftn (4.15)
+ [Nttt ol g [T e 19 olac)
holds for 1 < n < N.
Proof. Tt follows from g(t) = ¢g(0) + t¢’(0) + ¢ * ¢” (t) that
Fult) = Pgu(t) = 1 0) + ¥ g4(0) + 14 (1 g} (1)), @.16)
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The error estimates for the first two terms in the right hand side of (4.16) can be directly obtained from
Theorem 4.1. For the third term, let g (t) = t*(t = g, (t)) with g5 (0) = 0, then it has

qn(t) = tqp,(0) +t * qj, (t), 4.17)
@ (t) = pt" = (= gy (1) + t* (1% gy (1)), (4.18)
@) = p(p — D2t gpl(8)) + 2ut” (1 gl (£) + th gy (t), (4.19)

which implies that

t t
lh ()]l < (u + 1)t / IOl < (u+ 1) / FlAOIAC, —1<p<0. (420

Then ¢;,(0) = 0. We derive from (4.17) and Lemma 4.1 that

IH((En () = EF (£)+an (1)) () | = I1((En(8) — EF (£)) #txg5,(1)) (ta)] < 072/0 (=0 M)l

In addition, it follows that

tn

tn p—1 < p—1
/ (tn — O Y1 (L% g(O)dC < ¢ / (tn — O 1¢"5" / 2" gl (=) | dzd(
0 0 0

p—1 tn _
< 2t / T g (2) |
0

and

t t
a—1 Wil o a=1 g M
‘ /0 Hlgh()lld¢ < /0 (t — O LeHlg" Q)1 dc.

The similar estimate holds for the term 4~ 2(t % gy (t)) in (4.19). Thus, the result (4.15) is obtained from
Lemma 4.1 and the above discussions. ]

S Numerical examples

In this section, we present some numerical examples to verify the theoretical convergence results of
the proposed Crank-Nicolson schemes (CN-I) and (CN-II) for solving the sub-diffusion problem (1.1)
with both nonsingular and singular source terms. Since the exact solutions in the following numerical
examples are unknown, we utilize the formula log, (|leX || /[l€2V|) to verify the convergence rates of the

- N
schemes, where e,]:[ = uflv —uh/

% and ﬁflv refers to the numerical solutions at time 7" by the fully discrete
schemes with the time step size 7 = T'/N and spatial mesh size h. For one dimensional case, the spatial
interval = (0, 1) is equally divided into subintervals with a mesh size h = 1/128 for the finite element
discretization. The domain © = (0,1)? in two dimensional case is uniformly partitioned into triangles

with the mesh size h = 1/128.

Example 5.1. Consider the sub-diffusion problem (1.1) with T = 1, initial value u°(z) = 0 and the
Sfollowing data:

@) Q= (0,1)and f(z,t) = (1 +t*)z" 1 with0 < pu < 1;

(b) Q= (0,1)% and f(z,t) = (1 + t“)x[

indicator function over [+, 3] x [%,2].

%](l') where 0 < i < 1 and X1 31,1 3)() is the

2Ix(% 171X1307

(=
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Table 1: Errors and convergence rates by schemes CN-JLZ [13], CN-WWY [27] and scheme (CN-I) for
case (a) of Example 5.1.
scheme @ 0 N =80 160 320 640 rate

CN-JLZ 02 0.1 6.1084E-06  2.9368E-06  1.3913E-06  6.5432E-07 1.07
0.5 5.0993E-07 2.2208E-07  8.8577E-08  3.3787E-08  1.31

05 0.1 1.1141E-05 5.4485E-06  2.6029E-06  1.2294E-06  1.06

0.5 6.1043E-07  3.3293E-07 1.4585E-07 5.8467E-08  1.13

0.8 0.1 8.5079E-06 4.3208E-06  2.1011E-06  1.0013E-06  1.03

0.5 1.2196E-07  1.2085E-07  8.2079E-08  3.8663E-08  0.55

CN-WWY 02 0.1 6.1591E-06 2.9489E-06  1.3942E-06  6.5505E-07  1.08
0.5 5.6062E-07  2.3419E-07  9.1538E-08  3.4519E-08  1.34

05 0.1 1.1445E-05  5.5212E-06  2.6206E-06  1.2338E-06  1.07

0.5 9.1447E-07 4.0557E-07  1.6360E-07  6.2855E-08  1.29

0.8 0.1 9.0587E-06 4.4519E-06 2.1331E-06  1.0092E-06  1.06

0.5 4.2889E-07 2.5195E-07  1.1405E-07  4.6557E-08  1.07

CN-I 02 0.1 2.2824E-06 5.5842E-07  1.3804E-07  3.4301E-08  2.02
0.5 4.6121E-06 1.1336E-06  2.8101E-07  6.9956E-08  2.01

05 0.1 3.6320E-06 8.8802E-07  2.1938E-07  5.4478E-08  2.02

0.5 5.6160E-06  1.3795E-06  3.4186E-07  8.5088E-08  2.01

0.8 0.1 4.4374E-06 1.0837E-06 2.6755E-07 6.6422E-08  2.02

0.5 6.6373E-06 1.6290E-06  4.0349E-07  1.0040E-07  2.02

Table 2: Errors and convergence rates by schemes CN-JLZ [13], CN-WWY [27] and scheme (CN-I) for
case (b) of Example 5.1.
scheme @ I N =80 160 320 640 rate

CN-JLZ 02 0.1 4.6760E-09 2.2521E-09 1.0678E-09  5.0244E-10  1.07
0.5 3.7747E-10  1.6711E-10  6.7183E-11  2.5742E-11  1.29

05 0.1 7.4765E-09 3.6628E-09  1.7513E-09  8.2752E-10  1.06

0.5 3.7941E-10  2.1640E-10  9.6281E-11  3.8891E-11 1.10

0.8 0.1 4.5037E-09 2.2486E-09  1.0849E-09  5.1499E-10 1.04

0.5 3.4909E-11  8.5516E-11  4.7854E-11  2.1245E-11  0.24

CN-WWY 02 0.1 4.7159E-09 22616E-09 1.0702E-09 5.0301E-10  1.08
0.5 4.1742E-10  1.7665E-10  6.9515E-11  2.6318E-11 1.33

05 0.1 7.6834E-09 3.7122E-09  1.7634E-09  8.3050E-10  1.07

0.5 5.8638E-10  2.6583E-10  1.0836E-10  4.1876E-11  1.27

0.8 0.1 4.7534E-09 2.3083E-09  1.0995E-09  5.1860E-10  1.07

0.5 2.8458E-10 1.4517E-10 6.2437E-11  2.4850E-11  1.17

CN-I 02 0.1 23703E-08 5.8007E-09  1.4349E-09  3.5684E-10  2.02
0.5 6.3948E-08  1.5721E-08  3.8977E-09  9.7040E-10  2.01

0.5 0.1 2.4555E-08 6.0088E-09  1.4863E-09  3.6958E-10 2.02

0.5 6.4642E-08  1.5891E-08  3.9397E-09  9.8086E-10  2.01

0.8 0.1 2.4435E-08 5.9793E-09 1.4790E-09 3.6777E-10  2.02

0.5 6.4887E-08 1.5951E-08  3.9546E-09  9.8455E-10 2.01

In Tables 1 and 2, the numerical results by the Crank-Nicolson schemes CN-JLZ [13], CN-WWY
[27] and our proposed Crank-Nicolson scheme (CN-I) are compared for 1D and 2D cases in Example 5.1
with low regular source terms, where o = 0.2,0.5,0.8 and 1 = 0.1,0.5. It indicates that the schemes
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CN-JLZ [13] and CN-WWY [27] lose the optimal second order convergence rate. However, our scheme
(CN-I) remains to keep the optimal second order convergence rate, which confirms the theoretical error
estimate. In addition, our second Crank-Nicolson scheme (CN-II) also converges with second order for
both cases in Example 5.1, the numerical results are omitted as much more results by (CN-II) are reported
in the following examples with singular source terms.

Example 5.2. Consider the one dimensional problem (1.1) with T = 1, Q = (0, 1) and the following
data:

(@) u’(x) = 0 and f(x,t) = X[o ;](t)t#x_% with —1 < p < 0, where X, 1](15) is the indicator
72 72
function over the time interval |0, %],

(b) uo(z) = X[%%](x) and f(z,t) = 0, where X[ %}(1:) is the indicator function over %, 3.

1
40

Table 3: Errors and convergence rates by scheme (CN-II) for case (a) of Example 5.2.
@ L N =80 160 320 640 rate

0.1 -0.1 1.2641E-06  3.0073E-07  7.3295E-08  1.8097E-08  2.04
-0.5  2.3004E-06  5.4868E-07  1.3389E-07  3.3082E-08  2.04
-0.9  8.9980E-06  2.1628E-06  5.2914E-07  1.3058E-07  2.04
05 -0.1 9.2521E-06  2.1959E-06  5.3439E-07  1.3179E-07 2.04
-0.5  1.6394E-05  3.9009E-06  9.5050E-07  2.3453E-07 2.04
-0.9  59161E-05 1.4191E-05 3.4686E-06  8.5625E-07  2.04
09 -0.1 27447E-05 6.4460E-06  1.5586E-06  3.8305E-07  2.05
-0.5  4.4356E-05  1.0443E-05  2.5283E-06  6.2172E-07  2.05
-0.9  1.1618E-04  2.7613E-05  6.7135E-06  1.6533E-06  2.04

Table 4: Errors and convergence rates by scheme (CN-II) for case (b) of Example 5.2.
o N =80 160 320 640 rate
0.1 1.7805E-06 4.3515E-07 1.0755E-07 2.6729E-08 2.02

0.5 8.7487E-06 2.1285E-06 5.2484E-07 1.3030E-07 2.02
0.9 8.4638E-06 2.0436E-06 5.0143E-07 1.2410E-07 2.03

The errors and convergence rates obtained by the Crank-Nicolson scheme (CN-II) for case (a) of
Example 5.2 are shown in Table 3 with « = 0.1,0.5,0.9 and . = —0.1, —0.5, —0.9. It is observed that
our proposed Crank-Nicolson scheme (CN-II) converges with rate O(72), which is consistent with our
theoretical result and shows the effectiveness of the scheme (CN-II) for solving the problem (1.1) with
singular and nonsmooth source terms. For case (b) of Example 5.2, the numerical results computed by
the scheme (CN-II) are presented with o = 0.1,0.5,0.9 in Table 4, which also verify the theoretical
convergence result.

Example 5.3. Let T = 1 and Q = (0,1)2.  Consider the two dimensional problem (1.1) with the
following data:

(@) u(z) = 0 and f(z,t) = tux[iélx[ié](x‘)’ where —1 < p < 0 and X[L 3)x13 (z) is the
indicator function over the space domain [%,3] x [1,3].

(b) uO(z) = X[L 3)x[ (@) and f(xz,t) = 0.

13
14
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Table 5: Errors and convergence rates by the scheme (CN-II) for case (a) of Example 5.3.

o 7 N =80 160 320 640 rate
0.1 -02 1.2359E-07 3.0169E-08  7.4522E-09  1.8523E-09 2.02
-0.5  3.8953E-07 9.4784E-08  2.3376E-08  5.8035E-09  2.02

-0.8  7.5442E-07  1.8299E-07  4.5055E-08  1.1175E-08  2.03

05 -02 1.2319E-07 3.0073E-08  7.4287E-09  1.8459E-09  2.02
-0.5  3.9145E-07 9.5251E-08  2.3490E-08  5.8335E-09  2.02

-0.8  7.6555E-07  1.8568E-07  4.5715E-08  1.1338E-08  2.03

09 -02 1.2516E-07 3.0553E-08  7.5471E-09  1.8756E-09  2.02
-0.5  3.9560E-07  9.6359E-08  2.3763E-08  5.9006E-09  2.02

-0.8  7.6580E-07  1.8696E-07  4.6031E-08  1.1419E-08  2.02

Table 6: Errors and convergence rates by the scheme (CN-II) for case (b) of Example 5.3.
o N =80 160 320 640 rate

0.1 5.2753E-08 1.2891E-08 3.1861E-09 7.9177E-10 2.02
0.5 2.2085E-07 5.3739E-08 1.3253E-08 3.2906E-09 2.02
0.9 9.8069E-08 2.3563E-08 5.7979E-09 1.4379E-09 2.03

In Tables 5 and 6, the numerical results obtained by the Crank-Nicolson scheme (CN-II) for two
dimensional sub-diffusion problems (1.1) in Example 5.3 are shown, respectively. As the similar effi-
cient performances for one dimensional problem in Example 5.2, the proposed Crank-Nicolson scheme
(CN-II) also performs effectively and converges numerically with the optimal second order for the two
dimensional sub-diffusion problem (1.1) with singular source term.

6 Conclusions

In this paper, we develop two novel fractional Crank-Nicolson schemes without corrections for solving
the sub-diffusion problem (1.1) with nonsingular and singular source terms in time. We first propose a
novel Crank-Nicolson scheme without corrections for the problem with regular source terms. Moreover,
for problems with singular source terms, another fractional Crank-Nicolson scheme is designed and
discussed in details. The error estimates of the two schemes are rigorously analyzed by the Laplace
transform technique, and proved to be convergent with the optimal second-order for both nonsingular
and singular source terms. The theoretical results are verified in the numerical examples.

Data Availability Enquiries about data availability should be directed to the authors.
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