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Abstract

In this work, two Crank-Nicolson schemes without corrections are developed for sub-diffusion
equations. First, we propose a Crank-Nicolson scheme without correction for problems with regular-
ity assumptions only on the source term. Second, since the existing Crank-Nicolson schemes have a
severe reduction of convergence order for solving sub-diffusion equations with singular source terms
in time, we then extend our scheme and propose a new Crank-Nicolson scheme for problems with
singular source terms in time. Second-order error estimates for both the two Crank-Nicolson schemes
are rigorously established by a Laplace transform technique, which are verified by some numerical
examples.
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1 Introduction

We consider the following sub-diffusion equation with a singular source term in time and nonsmooth
initial data, 

CDα
t u(x, t) +Au(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

The operator A denotes a self-adjoint positive definite second-order elliptic partial differential operator
in a bounded domain Ω ⊂ Rd with boundary ∂Ω, d = 1, 2, and the initial value u0(x) belongs to L2(Ω).
The notation CDα

t u(x, t) with 0 < α < 1 defined by

CDα
t u(x, t) =

1

Γ(1− α)

∫ t

0
(t− ζ)−αu′(x, ζ)dζ

refers to the α-th order left Caputo derivative of function u(x, t) with respect to variable t, where Γ(·)

denotes the Gamma function given by Γ(s) =

∫ ∞
0

ts−1e−tdt for s with real part <(s) > 0.

The sub-diffusion equation (1.1) was formulated in [23] and then widely used to simulate anoma-
lous diffusion phenomena in physics recently [20], where the mean squared displacement of particle
motion grows by sublinear rate in time. Compared to the normal diffusion equations, the solutions of
sub-diffusion equation (1.1) and some other time-fractional evolution problems usually exhibit weakly
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singular property near the origin even if the given data are sufficiently smooth with respect to time
[2, 16, 21, 22, 25].

To solve this type of problems numerically, some efficient finite difference methods were developed,
such as piecewise polynomial interpolation [6, 11, 17, 25, 29, 31] and convolution quadrature (CQ)
[4, 7, 12, 13, 15, 19, 27, 28, 30, 32]. Among the different discretization schemes in the literature, the CQ
technique proposed in the pioneering work [18] by Lubich is flexible for designing high-order numerical
schemes for approximating time-fractional evolution problems [12]. Due to the weakly singular property
of the solutions near the origin, the direct application of CQ will lead to an order reduction to only first
order in time, while the optimal convergence order can be preserved by a correction approach in [4, 12].
This idea also was utilized in designing Crank-Nicolson CQ schemes for the sub-diffusion problem
(1.1) in [13, 27] to preserve the optimal second-order convergence rate, and for a variant time fractional
problem in [8]. The Crank-Nicolson CQ scheme developed in [13] needs corrections at two starting time
steps. Furthermore, [27] designed an alternative Crank-Nicolson CQ scheme with only single-step initial
correction.

For the source term in the sub-diffusion problem (1.1) owning sufficient regularity in time, the
schemes based on CQ can achieve optimal convergence order by some proper corrections. However,
it was mentioned in [32] that correction approaches in the literatures are not applicable to problem (1.1)
with source terms being singular at t = 0 since f(0) tends to infinity, such as f(x, t) = tµg(x) with
−1 < µ < 0. Thus the existing time-stepping schemes, including the Crank-Nicolson CQ schemes
in [13, 27], lost their optimal accuracy and have severe reduction of convergence order far below one,
and such performance was observed in the numerical results by the BDF1- and BDF2-CQs in [32] and
numerical examples in this paper. Overall, singular source terms in problem (1.1) bring new difficulties
both in designing efficient time-stepping schemes and analyzing error bounds. In [32], two new time-
stepping schemes based on BDF1 and BDF2 were proposed for (1.1) with a class of source terms mildly
singular in time, which can restore the optimal first and second convergence order, respectively, even
for singular source term f(x, t) = tµg(x) with −1 < µ < 0. Additionally, [32] also proposed a new
analysis technique based on the Laplace transform instead of generating function of the source term to
establish error estimates of the proposed schemes. Later in [3, 24], the error estimates of the schemes
based on BDF2 and higher-order BDF-CQs were analyzed by the discrete Laplace transform technique
for (1.1) with some singular source terms.

In this work, we concentrate on designing novel Crank-Nicolson schemes for the sub-diffusion prob-
lem (1.1) with both nonsingular and singular source terms and analyzing their error estimates by de-
veloping the Laplace transform technique mentioned in [32]. As mentioned above, the existing Crank-
Nicolson schemes [13, 27] both require corrections at starting time steps. Then our first objective is to
design a novel Crank-Nicolson scheme without corrections for the sub-diffusion problem (1.1), which
can also keep the optimal second-order convergence rate for source terms with low regularity. The sec-
ond objective of this work is to develop a second-order Crank-Nicolson scheme for the problem (1.1)
with singular source terms, such as f(x, t) = tµg(x, t) with −1 < µ < 0. As stated in Theorem 2.1,
the solution of (1.1) owns lower time regularity and becomes even singular for singular source terms,
then correction approaches proposed in literatures are invalid and it will bring the serve order reduction
of the known Crank-Nicolson schemes. So the problem comes from the low regularity and singularity
of the solution and source term. To achieve our goals, we consider governing equations (3.4), (4.2) and
(3.1) of the time integrals of the solution and/or source term of the original problem, and develop two
novel Crank-Nicolson schemes based on them. In (3.4) and (4.2), the solutions and/or source terms have
much better regularity than the original ones, which greatly helps our proposed schemes achieve optimal
convergence order.

The rest of this paper is organized as follows. In Section 2, we present some preliminary results on
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the sub-diffusion problem (1.1) with singular source terms with respect to time. In Section 3, a novel
fractional Crank-Nicolson scheme (CN-I) without correction is proposed for the sub-diffusion problem
(1.1), and second-order error estimates are analyzed for nonsingular source terms. In Section 4, we
further design another fractional Crank-Nicolson scheme (CN-II) for singular source terms. The optimal
second-order convergence rate is also rigorously established. In Section 5, some numerical results are
illustrated to show the effectiveness of the proposed Crank-Nicolson schemes and verify the theoretical
convergence results.

2 Preliminary

The well-posedness and regularity of problem (1.1) have been well established in [1, 22] for f(x, t) ∈
Lp(0, T ;L2(Ω)) with p > 1. For the case that f(x, t) belongs to the space L1(0, T ;L2(Ω)) and owns
lower regularity at t = 0 , the existence, uniqueness and regularity of the solution of (1.1) were discussed
in [32] as well. The result is stated in the following theorem. For convenience of notation, (·, ·) denotes
the inner product in L2(Ω), and ‖ · ‖ denotes the corresponding norm throughout this paper.

Theorem 2.1 ([32]). Let u0(x) ≡ 0 and f(x, t) in (1.1) satisfy Assumption 1 (in Section 4.2). Then the
problem (1.1) has a unique solution u ∈ C((0, T ];L2(Ω)), which satisfies

‖u(t)‖ ≤ ctα+µ, µ > −1, t > 0. (2.1)

For homogenous case of (1.1) with u0 ∈ L2(Ω), the corresponding result can be referred to [22]. In
such case, there exists a unique weak solution u ∈ C([0, T ];L2(Ω)) to problem (1.1) such that

max
0≤t≤T

‖u(t)‖ ≤ c‖u0‖.

By Laplace transform approach, the solution of (1.1) can be represented as

u(t) =
1

2πi

∫
Γ
est(sα +A)−1

(
sα−1u0 + f̂(s)

)
ds, (2.2)

or

u(t) = Ē(t)u0 +

∫ t

0
E(t− s)f(s)ds (2.3)

with operators Ē(·) and E(·) on L2(Ω) defined by

Ē(t) =
1

2πi

∫
Γ
est(sα +A)−1sα−1ds, E(t) =

1

2πi

∫
Γ
est(sα +A)−1ds, (2.4)

where
Γ = {σ + iy : σ > 0, y ∈ R}. (2.5)

It is known in [19, 26] that the resolvent of the symmetric elliptic operatorA obeys the following estimate

‖(s+A)−1‖ ≤M |s|−1, ∀ s ∈ Σθ (2.6)

for some θ ∈ (π/2, π), where Σθ is a sector of the complex plane C and given by

Σθ =
{
z ∈ C \ {0} : |argz| < θ

}
. (2.7)

Therefore by the resolvent estimate (2.6) and Cauchy’s theorem, Γ in (2.2) and (2.4) can be replaced by
Γθε ∪ Sε defined as

Γθε ∪ Sε = {ρe±iθ : ρ ≥ ε} ∪ {εeiξ : −θ ≤ ξ ≤ θ}, (2.8)
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which is the boundary of the domain

Σε
θ =

{
z ∈ C : |z| ≥ ε and |arg z| < θ

}
. (2.9)

The semidiscrete problem by finite element method for (1.1) is to find uh(t) ∈ Xh satisfying(
CDα

t uh(t), ϕ
)

+A
(
uh(t), ϕ

)
=
(
f(t), ϕ

)
, ∀ ϕ ∈ Xh,

uh(0) = Phu
0,

(2.10)

where Xh ⊂ H1
0 (Ω) is a continuous piecewise linear finite element space on a regular triangulation

mesh Th of the domain Ω, h = maxT∈Th diam(T ) is the maximal diameter. A(·, ·) denotes the bilinear
form associated with the elliptic operator A. The L2-projection operator Ph : L2(Ω) → Xh in (2.10) is
defined by

(Phϕ,ψ) = (ϕ,ψ), ∀ ψ ∈ Xh.

Furthermore, the semidiscrete scheme (2.10) can be rewritten in the form of

CDα
t uh(t) +Ahuh(t) = fh(t), ∀ t > 0, and uh(0) = Phu

0 (2.11)

with fh = Phf , where the operator Ah : Xh → Xh is defined by

(Ahϕ,ψ) = A(ϕ,ψ), ∀ ϕ,ψ ∈ Xh. (2.12)

Similarly, the semidiscrete solution of (2.11) for t > 0 can be represented by

uh(t) =
1

2πi

∫
Γθε∪Sε

est(sα +Ah)−1
(
sα−1uh(0) + f̂h(s)

)
ds, (2.13)

or

uh(t) = Ēh(t)uh(0) +

∫ t

0
Eh(t− s)fh(s)ds, (2.14)

where Ēh(·) and Eh(·) are operators on Xh given by

Ēh(t) =
1

2πi

∫
Γθε∪Sε

estsα−1(sα +Ah)−1ds, (2.15)

Eh(t) =
1

2πi

∫
Γθε∪Sε

est(sα +Ah)−1ds. (2.16)

The error estimates for the semidiscrete Galerkin finite element scheme (2.11) have been well estab-
lished in [9, 10, 14, 32]. Moreover, the error analysis on the lumped mass finite element scheme has been
discussed in [9, 10, 32] as well.

3 Crank-Nicolson scheme for nonsingular source terms

In this section, we propose a novel fully discrete Crank-Nicolson scheme without corrections for solving
(1.1) and establish the temporal error estimates. The discussion is based on the spatial semidiscrete
scheme (2.11) by the Galerkin finite element method.
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3.1 Crank-Nicolson scheme I

We first reformulate the semidiscrete scheme (2.11) by introducing two functionsUh(t) and Fh(t), which
are defined by

∫ t
0 uh(ξ)dξ and

∫ t
0 fh(ξ)dξ, respectively. If uh and fh are in L1(0, T ;Xh), then Uh(t)

and Fh(t) belong to the space C([0, T ];Xh) and satisfy

DtUh(t) = uh(t), Uh(0) = 0 (3.1)

and
DtFh(t) = fh(t), Fh(0) = 0 (3.2)

for a.e. t > 0, where Dt := ∂/∂t. Next, substituting (3.1) and (3.2) into (2.11) yields

CDα
t DtUh(t) +AhDtUh(t) = DtFh(t). (3.3)

Moreover, integrating (3.3) from 0 to t and using the semigroup property of fractional integrals, we
obtain

CDα
t Uh(t) +AhUh(t) = Fh(t) +Dt

t2−α

Γ(3− α)
uh(0). (3.4)

Therefore, (3.4) together with (3.1) and (3.2), can be recognized as an equivalent form of (2.11). In what
follows, a novel fractional Crank-Nicolson scheme will be proposed based on the equivalent form.

Let the notation Dα
τ denote the Grünwald-Letnikov difference operator defined by

Dα
τ Ũh(t) = τ−α

∞∑
j=0

σjŨh(t− jτ), (3.5)

where {σj , j ≥ 0} are coefficients of a generating function such that

1

τα

∞∑
j=0

σjz
j = ω1(z)α, with ω1(z) =

1

τ
(1− z), (3.6)

and
σ0 = 1, σj =

(
1− α+ 1

j

)
σj−1, j ≥ 1. (3.7)

The equation (3.4) is approximated at t − α
2 τ by fractional Crank-Nicolson approach [5, 13], that is for

Di
tUh(0) = 0, i = 0, 1, 2,

Dα
τ Uh(t) = CDα

t Uh(t− α

2
τ) +O(τ2)

= (1− α

2
) CDα

t Uh(t) +
α

2
CDα

t Uh(t− τ) +O(τ2).

Then we define the functions Ũh(t) and ũh(t) as the solutions to the following difference equations

Dα
τ Ũh(t) + (1− α

2
)AhŨh(t) +

α

2
AhŨh(t− τ) = (1− α

2
)Fh(t) +

α

2
Fh(t− τ)

+ (1− α

2
)Dτ

t2−α

Γ(3− α)
uh(0) +

α

2
Dτ

(t− τ)2−α

Γ(3− α)
uh(0), (3.8)

ũh(t) = Dτ Ũh(t) :=
1

τ

(3

2
Ũh(t)− 2Ũh(t− τ) +

1

2
Ũh(t− 2τ)

)
(3.9)

for t > 0, and as zero for t ≤ 0. Here Dτ denotes the second-order BDF operator.
Given a uniform partition of the interval [0, T ],

0 = t0 < t1 < · · · < tN−1 < tN = T.
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The step size of the uniform mesh is denoted by τ = T/N and tn = nτ for 0 ≤ n ≤ N . Then choosing
t = tn for n = 1, · · · , N in (3.8) and (3.9), we propose a fractional Crank-Nicolson scheme for solving
(1.1) as follows

τ−α
n∑
j=0

σjŨ
n−j
h + (1− α

2
)AhŨ

n
h +

α

2
AhŨ

n−1
h = (1− α

2
)Fnh +

α

2
Fn−1
h

+ (1− α

2
)Dτ

t2−αn

Γ(3− α)
uh(0) +

α

2
Dτ

t2−αn−1

Γ(3− α)
uh(0),

ũnh =
1

τ

(3

2
Ũnh − 2Ũn−1

h +
1

2
Ũn−2
h

)
,

(CN-I)

with Ũ0
h = 0, where ũnh := ũh(tn), Ũnh := Ũh(tn) and Fnh := Fh(tn).

3.2 Solution representations

By taking Laplace transform on (3.1) and (3.4), the semidiscrete solution uh(t) in (2.11) can also be
rewritten as

uh(t) =
1

2πi

∫
Γθε∪Sε

estsÛh(s)ds, (3.10)

where Γθε ∪ Sε is defined by (2.8) and

Ûh(s) = (sα +Ah)−1
(
sα−2uh(0) + s−1f̂h(s)

)
. (3.11)

The discrete operator Ah defined by (2.12) also satisfies the resolvent estimate ‖(sα +Ah)−1‖ ≤ c|s|−α

for s ∈ Γθε ∪ Sε. Then it follows from (3.11) that

‖Ûh(s)‖ ≤ c|s|−α(|s|α−2‖u0‖+ |s|−1‖f̂h(s)‖
)
. (3.12)

It is indicated in [32] that ũh(t) in (3.9) is continuous for t > 0, and can be represented by

ũh(t) =
1

2πi

∫
Γ
estω2(e−sτ )̂̃Uh(s)ds, (3.13)

where Γ is given by (2.5) and

ω2(z) = τ−1
(3

2
− 2z +

1

2
z2
)
. (3.14)

Moreover, with Ũh(t) = 0 for t ≤ 0, we have from (3.5) that the Laplace transform of Dα
τ Ũh(t) equals

to

D̂α
τ Ũh(s) = τ−α

∞∑
j=0

σj

∫ +∞

0
e−stŨh(t− jτ)dt = ω1(e−sτ )α̂̃Uh(s).

Then it follows from (3.8) that

̂̃Uh(s) =
(
ω(e−sτ )α +Ah

)−1(
s−1f̂h(s) + ω2(e−sτ )sα−3uh(0)

)
, (3.15)

where
ω(z) =

1− z
τ(1− α

2 + α
2 z)

1/α
. (3.16)

In addition, (3.13) can also be rewritten as

ũh(t) = Ēτh(t)uh(0) +

∫ t

0
Eτh(t− ζ)fh(ζ)dζ, (3.17)
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where Ēτh(·) and Eτh(·) are operators on Xh given by

Ēτh(t) =
1

2πi

∫
Γ
estω2(e−sτ )2(ω(e−sτ )α +Ah)−1sα−3ds, (3.18)

Eτh(t) =
1

2πi

∫
Γ
estω2(e−sτ )(ω(e−sτ )α +Ah)−1s−1ds. (3.19)

From Lemmas B.3 in [32], ω2(e−sτ ) in (3.14) satisfies the following preliminary lemma for the error
analysis of the fractional Crank-Nicolson scheme (CN-I).

Lemma 3.1. If s ∈ C and |sτ | ≤ r for finite r > 0, then

|ω2(e−sτ )| ≤ C|s| and |sβ − ω2(e−sτ )β| ≤ Cτ2|s|β+2 (3.20)

hold for 0 < β ≤ 1, where C denotes a generic constant dependent on the radius r.

In addition, the term ω(e−sτ ) in (3.16) satisfies the following two preliminary lemmas, which are
obtained from the results of Lemmas 3.3 and 3.4 in [13].

Lemma 3.2. Let α ∈ (0, 1) and φ ∈ (απ/2, π) be fixed. Then there exists a δ0 > 0 (independent of τ )
such that for δ ∈ (0, δ0] and θ ∈ (π/2, π/2 + δ0], we have ω(e−sτ )α ∈ Σφ for any s ∈ Σ̄π/2\{0}∪{z ∈
Σδ
θ \ Σ̄π/2 : |=z| ≤ π/τ}.

Proof. By [13, Lemma 3.3], it holds that ω(e−sτ )α ∈ Σφ for any s ∈ Γθ̄δ,τ ∪ Sδ ∪ Σ̄π/2\{0} and any

θ̄ ∈ (π/2, θ], where Γθ̄δ,τ and Sδ are similarly given by (3.26) and (2.8), respectively. From the definition
of Σδ

θ as in (2.9), it has the following relationship

Σ̄π/2\{0} ∪
{
z ∈ Σδ

θ\Σ̄π/2 : |=z| ≤ π/τ
}

=
⋃

θ̄∈(π/2,θ)

{
Γθ̄δ,τ ∪ Sδ ∪ Σ̄π/2\{0}

}
,

which directly implies the result.

Lemma 3.3. Let α ∈ (0, 1). There exists a constant δ1 > 0, for δ ∈ (0, δ1] and θ ∈ (π/2, π/2 + δ1], we
have for any s ∈ {z ∈ Σδ

θ \ Σ̄π/2 : |=z| ≤ π/τ} and 0 < β ≤ 1 that

C0|s| ≤ |ω(e−sτ )| ≤ C1|s| and |sβ − ω(e−sτ )β| ≤ Cτ2|s|β+2.

Proof. The result of Lemma 3.4 in [13] shows that C0|s| ≤ |ω(e−sτ )| ≤ C1|s| and |sβ − ω(e−sτ )β| ≤
Cτ2|s|β+2 for any s ∈ Γθ̄δ,τ ∪ Sδ and any θ̄ ∈ (π/2, θ]. Then the result is easily obtained by using{

z ∈ Σδ
θ\Σ̄π/2 : |=z| ≤ π/τ

}
=

⋃
θ̄∈(π/2,θ)

{
Γθ̄δ,τ ∪ Sδ

}
.

By (3.15) and Lemma 3.2, we further have that

‖̂̃Uh(s)‖ ≤ c|ω(e−sτ )|−α
(
|s|−1‖f̂h(s)‖+ |ω2(e−sτ )| · |s|α−3‖u0‖

)
(3.21)

holds for any s ∈ Σδ
θ \ Σ̄π/2 with |=z| ≤ π/τ or s ∈ Σ̄π/2\{0}.
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Lemma 3.4. Let ũh(t) be the solution to the difference equations (3.8)-(3.9) with u0(x) ∈ L2(Ω) and
fh(t) = tµgh(x), µ > −1, gh(x) = Phg(x) and g(x) ∈ L2(Ω). Then (3.13) becomes

ũh(t) =
1

2πi

∫
Γθε,τ∪Sε

estω2(e−sτ )̂̃Uh(s)ds

+
+∞∑
p=−∞
p 6=0

1

2πi

∫
Γθ0,τ

e(s+i2pπ/τ)tω2(e−sτ )̂̃Uh(s+ i2pπ/τ)ds
(3.22)

for t ∈ (0, T ], where ̂̃Uh(s), Γθε,τ and Sε are given by (3.15), (3.26) and (2.8), respectively.

Proof. The solution ũh(t) to (3.9) can be reformulated from (3.13) as follows

ũh(t) = lim
L→+∞

1

2πi

∫ σ+iL

σ−iL
estω2(e−sτ )̂̃Uh(s)ds, (3.23)

where σ = t−1 when t ≥ τ and σ = τ−1 when 0 < t ≤ τ . Then for any L > 0 and fixed τ > 0, there
exists N̄ ∈ N+ such that

(
2N̄ + 1

)
π/τ ≤ L ≤ (2N̄ + 3)π/τ , and the integral in (3.23) can be divided

into three parts∫ σ+iL

σ−iL
estω2(e−sτ )̂̃Uh(s)ds =

(∫ σ+iL

σ+i(2N̄+1) π
τ

+

∫ σ+i(2N̄+1) π
τ

σ−i(2N̄+1) π
τ

+

∫ σ−i(2N̄+1) π
τ

σ−iL

)
estω2(e−sτ )̂̃Uh(s)ds.

(3.24)

In addition, together with fh(t) = tµgh(x) and (3.21), we get

‖f̂h(s)‖ ≤ c|s|−µ−1‖gh‖ ≤ c|s|−µ−1‖g‖,

‖̂̃Uh(s)‖ ≤ c|ω(e−sτ )|−α
(
|s|−µ−2‖g‖+ |ω2(e−sτ )| · |s|α−3‖u0‖

)
.

(3.25)

For the first integral in (3.24), it follows from (3.25) that

‖
∫ σ+iL

σ+i(2N̄+1)π/τ
estω2(e−sτ )̂̃Uh(s)ds‖

≤ c
∫ σ+i(2N̄+3)π/τ

σ+i(2N̄+1)π/τ
|est||ω2(e−sτ )||ω(e−sτ )|−α

(
|s|−µ−2‖g‖+ |ω2(e−sτ )| · |s|α−3‖u0‖

)
|ds|

≤ c
∫ (2N̄+3)π/τ

(2N̄+1)π/τ
eσt
(
(σ + y − 2N̄π/τ)1−αy−µ−2‖g‖+ (σ + y − 2N̄π/τ)2−αyα−3‖u0‖

)
dy

≤ c
( τα+µ‖g‖

(2N̄ + 1)µ+2
+

‖u0‖
(2N̄ + 1)3−α

)
eσt.

Then the above bound tends to zero when L→ +∞ (N̄ → +∞). The similar result can also be derived
for the third integral in (3.24).

For the estimate on the second integral in (3.24), we first introduce some integral curves as follows

Γθε,τ = {ρe±iθ : ε ≤ ρ ≤ π/(τ sin θ)}, (3.26)

Γ+ = {ξ + i(2N̄ + 1)π/τ : π/τ cot θ ≤ ξ ≤ σ}, (3.27)

Γ− = {ξ − i(2N̄ + 1)π/τ : π/τ cot θ ≤ ξ ≤ σ}. (3.28)
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As ̂̃Uh(s) in (3.15) is analytic in the sector Σθ, then using the Cauchy’s theorem and the periodic property
of exponential function we obtain that∫ σ+i(2N̄+1)π/τ

σ−i(2N̄+1)π/τ
estω2(e−sτ )̂̃Uh(s)ds

=

∫
Γ−∪Γ+

estω2(e−sτ )̂̃Uh(s)ds+

∫
Γθε,τ∪Sε

estω2(e−sτ )̂̃Uh(s)ds

+
N̄∑

p=−N̄
p 6=0

∫
Γθ0,τ

e(s+i2pπ/τ)tω2(e−sτ )̂̃Uh(s+ i2pπ/τ)ds.

(3.29)

The first term on the right hand side of (3.29) can be estimated as follows

‖
∫

Γ−∪Γ+

estω2(e−sτ )̂̃Uh(s)ds‖

≤ c
(∫

Γ−
|est||ω2(e−(s+i2N̄π/τ)τ )||ω(e−(s+i2N̄π/τ)τ )|−α|s|−µ−2‖g‖|ds|

+

∫
Γ−
|est||ω2(e−(s+i2N̄π/τ)τ )|2|ω(e−(s+i2N̄π/τ)τ )|−α · |s|α−3‖u0‖|ds|

+

∫
Γ+

|est||ω2(e−(s−i2N̄π/τ)τ )||ω(e−(s−i2N̄π/τ)τ )|−α|s|−µ−2‖g‖|ds|

+

∫
Γ+

|est||ω2(e−(s−i2N̄π/τ)τ )|2|ω(e−(s−i2N̄π/τ)τ )|−α · |s|α−3‖u0‖|ds|
)

≤ c
∫ σ

π/τ cot θ
ext(|ξ|+ π/τ)1−α|(2N̄ + 1)π/τ |−µ−2‖g‖dξ

+ c

∫ σ

π/τ cot θ
ext(|ξ|+ π/τ)2−α|(2N̄ + 1)π/τ |α−3‖u0‖dξ

≤ c
( τα+µ‖g‖

(2N̄ + 1)µ+2
+

‖u0‖
(2N̄ + 1)3−α

)
eσt,

which tends to zero for L → +∞ (N̄ → +∞). Therefore, the result (3.22) is obtained from (3.23) and
(3.29).

3.3 Error estimates for nonsingular source terms

In this subsection, we establish the temporal discrete error estimates of scheme (CN-I) by means of
Laplace transform for the case of nonsingular source terms in time.

Lemma 3.5. Let Ēh(·) and Ēτh(·) be given by (2.15) and (3.18), respectively. Then there holds

‖(Ēh(t)− Ēτh(t))Phu
0‖ ≤ cτ2t−2‖u0‖, ∀ t ∈ (0, T ]. (3.30)
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Proof. Let fh(t) ≡ 0, it follows from (3.10), (3.13) and Lemma 3.4 that

(Ēh(t)− Ēτh(t))Phu
0

=
1

2πi

∫
Γθε\Γθε,τ

estsÛh(s)ds+
1

2πi

∫
Γθε,τ∪Sε

est
(
s− ω2(e−sτ )

)
Ûh(s)ds

+
1

2πi

∫
Γθε,τ∪Sε

estω2(e−sτ )
(
Ûh(s)− ̂̃Uh(s)

)
ds

−
+∞∑
p=−∞
p 6=0

1

2πi

∫
Γθ0,τ

e(s+i2πp/τ)tω2(e−sτ )̂̃Uh(s+ i2πp/τ)ds

= I1 + I2 + I3 + I4,

(3.31)

where Ûh(s) and ̂̃Uh(s) are given respectively by (3.11) and (3.15) with f̂h(s) ≡ 0. By (3.12), the
estimation of the first item I1 in (3.31) is as follows

‖I1‖ ≤ c‖u0‖
∫

Γθε\Γθε,τ
|est||s|−1|ds| ≤ c‖u0‖

∫ +∞

π
τ sin θ

eρt cos θρ−1dρ

≤ cτ2‖u0‖
∫ +∞

π
τ sin θ

eρt cos θρdρ ≤ cτ2t−2‖u0‖.

Let ε = t−1 when t ≥ τ and ε = τ−1 when 0 < t ≤ τ , then ε ≤ t−1. It follows from Lemma 3.1 and
(3.12) that

‖I2‖ ≤ cτ2‖u0‖
∫

Γθε,τ∪Sε
|est||s||ds|

≤ cτ2‖u0‖

(∫ π
τ sin θ

ε
eρt cos θρdρ+

∫ θ

−θ
eεt cos ξε2dξ

)
≤ cτ2t−2‖u0‖.

(3.32)

Since the following estimate

‖(sα +Ah)−1 −
(
ω(e−sτ )α +Ah

)−1 ‖

≤ ‖
(
ω(e−sτ )α +Ah

)−1 ‖‖ω(e−sτ )α − sα‖‖ (sα +Ah)−1 ‖
≤ cτ2|s|2|ω(e−sτ )|−α

(3.33)

holds by using Lemmas 3.2 and 3.3 for s enclosed by curves Γθ0,τ , =(s) = ±π/τ and Γ, it arrives at

‖(sα +Ah)−1s−
(
ω(e−sτ )α +Ah

)−1
ω2(e−sτ )‖

≤ ‖(sα +Ah)−1(s− ω2(e−sτ ))‖+ ‖
(
(sα +Ah)−1 −

(
ω(e−sτ )α +Ah

)−1 )
ω2(e−sτ )‖

≤ cτ2(|s|3−α + |s|2|ω(e−sτ )|−α|ω2(e−sτ )|).

(3.34)

With (3.11), (3.15), (3.34), Lemmas 3.1 and 3.3, it yields the estimate of I3 in (3.31) as follows

‖I3‖ ≤ cτ2‖u0‖
∫

Γθε,τ∪Sε
|est||ω2(e−sτ )|

(
|s|3−α + |ω(e−sτ )|−α|ω2(e−sτ )||s|2

)
|s|α−3|ds|

≤ cτ2‖u0‖

(∫ π
τ sin θ

ε
eρt cos θρdρ+

∫ θ

−θ
eεt cos ξε2dξ

)
≤ cτ2t−2‖u0‖.

(3.35)
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In addition, from the inequality for any ν > −1

+∞∑
p=1

p−ν−2 ≤ 1 +

∫ +∞

1
p−ν−2dp ≤ 1 +

1

1 + ν
, (3.36)

it follows that the fourth item I4 in (3.31) satisfies

‖I4‖ ≤ c‖u0‖
+∞∑
p=1

∫
Γθ0,τ

|est||ω2(e−sτ )|2|ω(e−sτ )|−α|s+ i2pπ/τ |α−3|ds|

≤ cτ3−α‖u0‖
+∞∑
p=1

pα−3

∫ π
τ sin θ

0
eρt cos θρ2−αdρ

≤ cτ2‖u0‖
+∞∑
p=1

pα−3

∫ π
τ sin θ

0
eρt cos θρdρ

≤ cτ2t−2‖u0‖,

where ρ2−α ≤ ρτα−1 is applied as 0 < α ≤ 1 and ρ ∈ (0, π
τ sin θ ). Therefore, the result (3.30) is

obtained.

Note that the solution ũnh of (CN-I) satisfies ũnh = ũh(tn) with ũh(t) given by (3.13) or (3.17).
Then the result in Lemma 3.5 directly implies the error estimate of scheme (CN-I) for solving (1.1) of
homogenous case. The result is stated in the following theorem.

Theorem 3.1. Assume u0(x) ∈ L2(Ω) and f(x, t) ≡ 0. Let uh(t) and ũnh be the solutions of (2.11) and
(CN-I), respectively. Then we have

‖uh(tn)− ũnh‖ ≤ cτ2t−2
n ‖u0‖. (3.37)

Next we consider the error estimate for the inhomogeneous case. The Taylor expansion of fh(t) is
of the form

fh(t) = fh(0) + tf ′h(0) + t ∗ f ′′h (t), (3.38)

where “∗” represents the convolution operation. Thus, we need to obtain the following estimate for the
case tµgh(x) at first. The proof is analogous to that of Lemma 3.5.

Lemma 3.6. Let fh(t) = tµgh(x) with µ ≥ 0, gh(x) = Phg(x) and g(x) ∈ L2(Ω). The operators Eh(·)
and Eτh(·) are given by (2.16) and (3.19), respectively. Then we obtain

‖
(
Eh(t)− Eτh(t)

)
∗ fh(t)‖ ≤ cτ2tα+µ−2‖g‖, ∀ t ∈ (0, T ]. (3.39)

Proof. With u0(x) ≡ 0 and f̂h(s) = Γ(1 + µ)s−µ−1gh(x), it follows from (3.11), (3.15) and (3.33) that

‖Ûh(s)− ̂̃Uh(s)‖ ≤ cτ2|ω(e−sτ )|−α|s|−µ‖g‖.

Then we have from (3.10), (3.12), Lemma 3.3 and Lemma 3.4 that

‖
(
Eh(t)− Eτh(t)

)
∗ fh(t)‖ ≤ c

∫
Γθε\Γθε,τ

|est||s|‖Ûh(s)‖|ds|

+ c

∫
Γθε,τ∪Sε

|est||s− ω2(e−sτ )|‖Ûh(s)‖|ds|

+ c

∫
Γθε,τ∪Sε

|est||ω2(e−sτ )|‖Ûh(s)− ̂̃Uh(s)‖|ds|
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+
+∞∑
p=−∞
p 6=0

c

∫
Γθ0,τ

|e(s+i2πp/τ)t||ω2(e−sτ )|‖̂̃Uh(s+ i2πp/τ)‖|ds|

≤ cτ2‖g‖
∫ +∞

π
τ sin θ

ecos θρtρ1−α−µdρ

+ cτ2‖g‖

(∫ π
τ sin θ

ε
eρ cos θtρ1−α−µdρ+

∫ θ

−θ
eεt cos ξε2−α−µdξ

)

+ cτ2‖g‖
+∞∑
p=1

p−µ−2

∫ π
τ sin θ

0
eρt cos θρ1−α−µdρ

≤ cτ2tα+µ−2‖g‖,

where ρ1−α ≤ cρ1−α−µτ−µ is applied as µ ≥ 0 and ρ ∈ (0, π
τ sin θ ). The result (3.39) is obtained.

Theorem 3.2. Assume u0(x) ∈ L2(Ω), f ∈W 1,∞(0, T ;L2(Ω)) and
∫ t

0 (t− ζ)α−1‖f ′′(ζ)‖dζ <∞. Let
uh and ũnh be the solutions of (2.11) and the scheme (CN-I), respectively. Then for 1 ≤ n ≤ N , it holds
that

‖uh(tn)− ũnh‖ ≤ cτ2
(
t−2
n ‖u0‖+ tα−2

n ‖f(0)‖+ tα−1
n ‖f ′(0)‖+

∫ tn

0
(tn − ζ)α−1‖f ′′(ζ)‖dζ

)
. (3.40)

Proof. It follows from (2.14), (3.17) and (3.38) that

‖uh(tn)− ũnh‖ ≤ ‖
(
Ēh(tn)− Ēτh(tn)

)
Phu

0‖+ ‖
(
(Eh(t)− Eτh(t)) ∗ 1

)
(tn)fh(0)‖

+ ‖
(
(Eh(t)− Eτh(t)) ∗ t

)
(tn)f ′h(0)‖

+ ‖
(
(Eh(t)− Eτh(t)) ∗ t ∗ f ′′h (t)

)
(tn)‖.

(3.41)

Then (3.40) can be derived from (3.41) by Lemmas 3.5 and 3.6.

In the following, the error estimates of scheme (CN-I) for the source terms in the forms of f(x, t) =

tµ ∗ g(x, t) with µ > −1 and f(x, t) = tµg(x, t) with µ > 0 are established in Theorems 3.3 and 3.4,
respectively. The proofs are based on Lemmas 3.5 and 3.6.

Theorem 3.3 (Source terms f = tµ ∗ g(t)). Assume that u0(x) ∈ L2(Ω), and f(t) = tµ ∗ g(t) with
µ > −1 satisfying g ∈ W 1,∞(0, T ;L2(Ω)) and

∫ t
0 (t− ζ)min(α+µ,0)‖g′′(ζ)‖dζ <∞. Let uh and ũnh be

the solutions of (2.11) and the scheme (CN-I), respectively. Then for 1 ≤ n ≤ N , it holds that

‖uh(tn)−ũnh‖ ≤ cτ2
(
t−2
n ‖u0‖+tα+µ−1

n ‖g(0)‖+tα+µ
n ‖g′(0)‖+

∫ tn

0
(tn−ζ)α+µ‖g′′(ζ)‖

)
dζ
)
. (3.42)

Proof. In view of g ∈ W 1,∞(0, T ;L2(Ω)) and g′′ ∈ L1(0, T ;L2(Ω)), we have the Taylor expansion of
g(t) as follows

g(t) = g(0) + tg′(0) + t ∗ g′′(t). (3.43)

By the identity tµ ∗ t = tµ+2

(µ+1)(µ+2) , fh(t) = tµ ∗ gh(t) can be reformulated as

fh(t) =
tµ+1

µ+ 1
gh(0) +

tµ+2

(µ+ 1)(µ+ 2)
g′h(0) +

1

(µ+ 1)(µ+ 2)
tµ+2 ∗ g′′h(t). (3.44)

Then together with Lemmas 3.5 and 3.6, the result (3.42) can be derived by the similar argument as in
(3.41).
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Theorem 3.4 (Source terms f = tµg(t)). Assume that u0(x) ∈ L2(Ω), and f(x, t) = tµg(x, t) with
µ ≥ 0 satisfy g ∈ W 1,∞(0, T ;L2(Ω)),

∫ t
0 ‖g

′′(ζ)‖dζ < ∞ and
∫ t

0 (t − ζ)α−1ζµ‖g′′(ζ)‖dζ < ∞. Let
uh and ũnh be the solutions of (2.11) and (CN-I), respectively. Then for 1 ≤ n ≤ N , it holds that

‖uh(tn)− ũnh‖ ≤ cτ2
(
t−2
n ‖u0‖+ tα+µ−2

n ‖g(0)‖+ tα+µ−1
n ‖g′(0)‖

+ tα+µ−1
n

∫ tn

0
‖g′′(ζ)‖dζ +

∫ tn

0
(tn − ζ)α−1ζµ‖g′′(ζ)‖dζ

)
.

(3.45)

Proof. For the case µ = 0, the result (3.45) can be directly derived from Theorem 3.2. We next consider
the case µ > 0. The Taylor expansion of g in (3.43) yields that

fh(t) = tµgh(0) + tµ+1g′h(0) + tµ(t ∗ g′′h(t)). (3.46)

Let qh(t) = tµ(t ∗ g′′h(t)), then qh(0) = 0 and q′h(t) = µtµ−1(t ∗ g′′h(t)) + tµ(1 ∗ g′′h(t)) by the argument
in [3]. Furthermore, q′h(0) = 0 since ‖q′h(t)‖ ≤ (µ+ 1)tµ(1 ∗ ‖g′′h(t)‖), and

q′′h(t) = µ(µ− 1)tµ−2(t ∗ g′′h(t)) + 2µtµ−1(1 ∗ g′′h(t)) + tµg′′h(t),

which satisfies
‖q′′h(t)‖ ≤ c

(
tµ−1(1 ∗ ‖g′′h(ζ)‖) + tµ‖g′′h(t)‖

)
. (3.47)

Then it implies from Lemma 3.6 that

‖
(
(Eh(t)− Eτh(t)) ∗ qh(t)

)
(tn)‖

= ‖
(
(Eh(t)− Eτh(t)) ∗ t ∗ q′′h(t)

)
(tn)‖

≤ cτ2

∫ tn

0
(tn − ζ)α−1‖q′′h(ζ)‖dζ

≤ cτ2
(∫ tn

0
(tn − ζ)α−1ζµ−1dζ

∫ tn

0
‖g′′(z)‖dz +

∫ tn

0
(tn − ζ)α−1ζµ‖g′′(ζ)‖dζ

)
≤ cτ2

(
tα+µ−1
n

∫ tn

0
‖g′′(ζ)‖dζ +

∫ tn

0
(tn − ζ)α−1ζµ‖g′′(ζ)‖dζ

)
.

(3.48)

Then the result (3.45) is derived from (3.46), (3.47), (3.48), Lemmas 3.5 and 3.6.

Remark 1. The result in Theorem 3.2 reveals that the Crank-Nicolson scheme (CN-I) achieves second-
order accuracy for problem (1.1) with certain smooth source terms, which is consistent with the results of
Crank-Nicolson schemes in [13, Theorem 3.8 and Theorem 3.13] and [27, Theorem 2]. However, those
error estimates in [13, 27] are invalid for some source terms with lower regularity such as f(x, t) =

tµg(x) with µ ∈ (0, 1). For u0(x) ≡ 0 and f(x, t) = tµg(x) with µ ≥ 0, the result in Lemma 3.6 or
Theorem 3.4 shows the optimal second-order error estimate as follows

‖uh(tn)− ũnh‖ ≤ ctα+µ−2
n τ2. (3.49)

Remark 2. For singular source terms f(x, t) = tµg(x) with µ ∈ (−1, 0), the Crank-Nicolson scheme
(CN-I) can not preserve the optimal second-order accuracy. By the similar approach for Lemma 3.6, we
can obtain that the error estimate of the scheme (CN-I) is

‖uh(tn)− ũnh‖ ≤ ctα−2
n τ2+µ (3.50)

for the case u0(x) ≡ 0 and f(x, t) = tµg(x) with µ ∈ (−1, 0).
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4 Crank-Nicolson scheme for singular source terms

In this section, we consider designing an alternative Crank-Nicolson scheme with the optimal second-
order accuracy for solving (1.1) with singular source terms, such as f(x, t) = tµg(x, t) with µ ∈ (−1, 0).
To recover the optimal second-order rate of convergence of Crank-Nicolson method, we need to introduce
a function F̃h(t) satisfying

DtF̃h(t) = Fh(t), F̃h(0) = 0 (4.1)

with Fh(t) given by (3.2). Replacing Fh(t) in (3.4) by DtF̃h(t), then we obtain an equivalent form of
(3.4) as follows

CDα
t Uh(t) +AhUh(t) = DtF̃h(t) +Dt

t2−α

Γ(3− α)
uh(0), Uh(0) = 0. (4.2)

Next we will design a new Crank-Nicolson scheme used for numerically solving (4.2) and (3.1).

4.1 Crank-Nicolson scheme II

We also denote Ũh(t) and ũh(t) as approximations to Uh(t) and uh(t) solving (4.2) and (3.1), which
satisfy the difference equations

Dα
τ Ũh(t) + (1− α

2
)AhŨh(t) +

α

2
AhŨh(t− τ) = (1− α

2
)Dτ F̃h(t) +

α

2
Dτ F̃h(t− τ)

+ (1− α

2
)Dτ

t2−α

Γ(3− α)
uh(0) +

α

2
Dτ

(t− τ)2−α

Γ(3− α)
uh(0), (4.3)

ũh(t) = Dτ Ũh(t) =
1

τ

(3

2
Ũh(t)− 2Ũh(t− τ) +

1

2
Ũh(t− 2τ)

)
(4.4)

for t > 0, and prescribe Ũh(t) = 0, ũh(t) = 0 for t ≤ 0, where Dτ denotes the second-order BDF
operator and Dα

τ the Grünwald-Letnikov difference operator (3.5).
Taking t = tn = nτ, n = 1, 2, · · · , N with τ = T/N in (4.3) and (4.4), we establish a new fully

discrete Crank-Nicolson scheme of the form

τ−α
n∑
j=0

σjŨ
n−j
h + (1− α

2
)AhŨ

n
h +

α

2
AhŨ

n−1
h = (1− α

2
)Dτ F̃

n
h +

α

2
Dτ F̃

n−1
h

+ (1− α

2
)Dτ

t2−αn

Γ(3− α)
uh(0) +

α

2
Dτ

t2−αn−1

Γ(3− α)
uh(0),

ũnh = τ−1
(3

2
Ũnh − 2Ũn−1

h +
1

2
Ũn−2
h

)
(CN-II)

with Ũ0
h = 0, where ũnh := ũh(tn), Ũnh := Ũh(tn) and F̃nh := F̃h(tn) with F̃h(·) satisfying (4.1).

Taking the Laplace transform on (4.3), we obtain

̂̃Uh(s) = ω2(e−sτ )
(
ω(e−sτ )α +Ah

)−1(
s−2f̂h(s) + sα−3uh(0)

)
. (4.5)

This implies from (4.4) that

ũh(t) =
1

2πi

∫
Γ
estω2(e−sτ )̂̃Uh(s)ds. (4.6)

An alternative expression of ũh(t) is

ũh(t) = Ēτh(t)uh(0) +

∫ t

0
Ẽτh(t− ζ)fh(ζ)dζ, (4.7)
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where ω(·) and ω2(·) are given by (3.16) and (3.14), the operator Ēτh(t) is given by (3.18), and Ẽτh(·) is
an operator on Xh given by

Ẽτh(t) =
1

2πi

∫
Γ
estω2(e−sτ )2(ω(e−sτ )α +Ah)−1s−2ds. (4.8)

4.2 Error estimates for singular source terms

In this subsection, we first consider the error estimates for the singular source terms satisfying the fol-
lowing conditions in Assumption 1 as discussed in [32], and then extend the result to singular source
terms in the form of f(x, t) = tµg(x, t) with µ > −1.

Assumption 1. The singular source term f(x, t) in (1.1) is assumed to be in L1(0, T ;L2(Ω)) such that
its Laplace transform with respect to time t is analytic within the domain Σε

θ in (2.9) for θ ∈ (π/2, π)

and small ε > 0, and ‖f̂(s)‖ ≤ c|s|−µ−1 holds for some µ > −1.

As mentioned in [32], the singular source term f(x, t) = tµg(x) with−1 < µ < 0 and g(x) ∈ L2(Ω)

satisfies the conditions in Assumption 1.

Remark 3. For the homogenous problem (1.1) with f(x, t) ≡ 0, the Crank-Nicolson schemes (CN-I)
and (CN-II) are the same. Thus the error estimate of the scheme (CN-II) for the homogenous case is the
same as Theorem 3.1.

The error estimate of the new Crank-Nicolson scheme (CN-II) for the inhomogeneous case is estab-
lished in the following theorem, which restores the optimal second-order accuracy for singular source
terms satisfying Assumption 1.

Theorem 4.1. Let u0(x) ≡ 0 and f(x, t) in (1.1) satisfy Assumption 1 (with µ > −1). If uh and ũnh are
solutions to (2.11) and (CN-II), respectively, then it holds that

‖uh(tn)− ũnh‖ ≤ ctα+µ−2
n τ2, n = 1, 2, · · · , N. (4.9)

Proof. By the similar argument in Lemma 3.4, it follows from (2.14) and (4.6) that

uh(tn)− ũnh =
1

2πi

∫
Γθε\Γθε,τ

estnsÛh(s)ds

+
1

2πi

∫
Γθε,τ∪Sε

estn
(
sÛh(s)− ω2(e−sτ )̂̃Uh(s)

)
ds

−
+∞∑
p=−∞
p 6=0

1

2πi

∫
Γθ0,τ

estnω2(e−sτ )̂̃Uh(s+ i2πp/τ)ds

:= II1 + II2 + II3.

(4.10)

With (4.5) and Assumption 1 on f(t), it yields

‖̂̃Uh(s)‖ ≤ c|ω2(e−sτ )||ω(e−sτ )|−α|s|−µ−3. (4.11)

Then we have from (4.11), Lemmas 3.1 and 3.3 that

‖II1‖ ≤ cτ2

∫ ∞
π

τ sin θ

eρtn cos θρ−α−µ+1dρ ≤ ctα+µ−2
n τ2.
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From (3.12), (4.5), (4.11), (3.34) and Lemma 3.1, it follows that

‖sÛh(s)− ω2(e−sτ )̂̃Uh(s)‖

≤ ‖
(
s− ω2(e−sτ )

)
Ûh(s)‖+ ‖ω2(e−sτ )

(
Ûh(s)− ̂̃Uh(s)

)
‖

≤ ‖
(
s− ω2(e−sτ )

)
Ûh(s)‖+ |ω2(e−sτ )|‖(sα +Ah)−1s−

(
ω(e−sτ )α +Ah

)−1
ω2(e−sτ )‖‖ ˆ̃Fh(s)‖

≤ cτ2
(
|s|1−α−µ + |ω2(e−sτ )|(|s|3−α + |s|2||ω(e−sτ )|−α|ω2(e−sτ )|)|s|−µ−3

)
≤ cτ2|s|1−α−µ.

This gives

‖II2‖ ≤ cτ2

∫
Γθε,τ∪Sε

|estn ||s|1−α−µ|ds| ≤ ctα+µ−2
n τ2. (4.12)

Furthermore, by Lemmas 3.1, 3.2 and 3.3, we get

‖II3‖ ≤ c
∞∑
p=1

∫
Γθ0,τ

|estn||s|2−α|s+ i2πp/τ |−µ−3|ds|

≤ cτ3+µ
+∞∑
p=1

p−µ−3

∫ π
τ sin θ

0
eρtn cos θρ2−αdρ

≤ ctα+µ−2
n τ2,

(4.13)

where ρ2−α ≤ cρ1−α−µτ−µ−1 is applied as µ > −1 and ρ ∈ (0, π
τ sin θ ). This completes the proof.

Using similar analysis techniques for Lemma 3.6 and Theorem 4.1, we can easily derive the following
error bound.

Lemma 4.1. Let fh(x, t) = tµgh(x) with µ > −1, gh(x) = Phg(x) and g(x) ∈ L2(Ω). The operators
Eh(·) and Ẽτh(·) are given by (2.16) and (4.8), respectively. Then we have

‖
(
Eh − Ẽτh

)
∗ fh(t)‖ ≤ cτ2tα+µ−2‖g‖, ∀ t ∈ (0, T ]. (4.14)

Next, we establish the error estimate of scheme (CN-II) for singular source terms f(x, t) = tµg(x, t)

with −1 < µ < 0, where g(t) has the Taylor expansion g(t) = g(0) + tg′(0) + t ∗ g′′(t). The result is
stated in the following theorem, the proof of which is based on Lemma 4.1 and some techniques used in
[3, Lemma 5.5].

Theorem 4.2. Let u0(x) ≡ 0 and f(x, t) = tµg(x, t) with−1 < µ < 0, where g ∈W 1,∞(0, T ;L2(Ω)),∫ t
0 (t − ζ)α−1ζµ‖g′′(ζ)‖dζ < ∞ and

∫ t
0 ζ

µ−1
2 ‖g′′(ζ)‖dζ < ∞. If uh and ũnh are the solutions to (2.11)

and (CN-II), respectively, then we have that the error bound

‖uh(tn)− ũnh‖ ≤ cτ2
(
tα+µ−2
n ‖g(0)‖+ tα+µ−1

n ‖g′(0)‖

+

∫ tn

0
(tn − ζ)α−1ζµ‖g′′(ζ)‖dζ + t

α+µ−1
2

n

∫ tn

0
ζ
µ−1
2 ‖g′′(ζ)‖dζ

) (4.15)

holds for 1 ≤ n ≤ N .

Proof. It follows from g(t) = g(0) + tg′(0) + t ∗ g′′(t) that

fh(t) = tµgh(t) = tµgh(0) + tµ+1g′h(0) + tµ(t ∗ g′′h(t)). (4.16)
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The error estimates for the first two terms in the right hand side of (4.16) can be directly obtained from
Theorem 4.1. For the third term, let qh(t) = tµ(t ∗ g′′h(t)) with qh(0) = 0, then it has

qh(t) = tq′h(0) + t ∗ q′′h(t), (4.17)

q′h(t) = µtµ−1(t ∗ g′′h(t)) + tµ(1 ∗ g′′h(t)), (4.18)

q′′h(t) = µ(µ− 1)tµ−2(t ∗ g′′h(t)) + 2µtµ−1(1 ∗ g′′h(t)) + tµg′′h(t), (4.19)

which implies that

‖q′h(t)‖ ≤ (µ+ 1)tµ
∫ t

0
‖g′′h(ζ)‖dζ ≤ (µ+ 1)

∫ t

0
ζµ‖g′′h(ζ)‖dζ, −1 < µ < 0. (4.20)

Then q′h(0) = 0. We derive from (4.17) and Lemma 4.1 that

‖
(
(Ẽh(t)−Ẽτh(t))∗qh(t)

)
(tn)‖ = ‖

(
(Ẽh(t)−Ẽτh(t))∗t∗q′′h(t)

)
(tn)‖ ≤ cτ2

∫ tn

0
(tn−ζ)α−1‖q′′h(ζ)‖dζ.

In addition, it follows that∫ tn

0
(tn − ζ)α−1‖ζµ−1(1 ∗ g′′h(ζ))‖dζ ≤ c

∫ tn

0
(tn − ζ)α−1ζ

µ−1
2

∫ ζ

0
z
µ−1
2 ‖g′′h(z)‖dzdζ

≤ ctα+µ−1
2

n

∫ tn

0
z
µ−1
2 ‖g′′(z)‖dz

and

tα−1

∫ t

0
ζµ‖g′′h(ζ)‖dζ ≤

∫ t

0
(t− ζ)α−1ζµ‖g′′(ζ)‖dζ.

The similar estimate holds for the term tµ−2(t ∗ g′′h(t)) in (4.19). Thus, the result (4.15) is obtained from
Lemma 4.1 and the above discussions.

5 Numerical examples

In this section, we present some numerical examples to verify the theoretical convergence results of
the proposed Crank-Nicolson schemes (CN-I) and (CN-II) for solving the sub-diffusion problem (1.1)
with both nonsingular and singular source terms. Since the exact solutions in the following numerical
examples are unknown, we utilize the formula log2(‖eNh ‖/‖e2N

h ‖) to verify the convergence rates of the
schemes, where eNh := ũNh −ũ

N/2
h and ũNh refers to the numerical solutions at time T by the fully discrete

schemes with the time step size τ = T/N and spatial mesh size h. For one dimensional case, the spatial
interval Ω = (0, 1) is equally divided into subintervals with a mesh size h = 1/128 for the finite element
discretization. The domain Ω = (0, 1)2 in two dimensional case is uniformly partitioned into triangles
with the mesh size h = 1/128.

Example 5.1. Consider the sub-diffusion problem (1.1) with T = 1, initial value u0(x) ≡ 0 and the
following data:

(a) Ω = (0, 1) and f(x, t) = (1 + tµ)x−
1
4 with 0 < µ < 1;

(b) Ω = (0, 1)2 and f(x, t) = (1 + tµ)χ[ 1
4
, 3
4

]×[ 1
4
, 3
4

](x), where 0 < µ < 1 and χ[ 1
4
, 3
4

]×[ 1
4
, 3
4

](x) is the

indicator function over [1
4 ,

3
4 ]× [1

4 ,
3
4 ].
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Table 1: Errors and convergence rates by schemes CN-JLZ [13], CN-WWY [27] and scheme (CN-I) for
case (a) of Example 5.1.

scheme α µ N =80 160 320 640 rate

CN-JLZ 0.2 0.1 6.1084E-06 2.9368E-06 1.3913E-06 6.5432E-07 1.07
0.5 5.0993E-07 2.2208E-07 8.8577E-08 3.3787E-08 1.31

0.5 0.1 1.1141E-05 5.4485E-06 2.6029E-06 1.2294E-06 1.06
0.5 6.1043E-07 3.3293E-07 1.4585E-07 5.8467E-08 1.13

0.8 0.1 8.5079E-06 4.3208E-06 2.1011E-06 1.0013E-06 1.03
0.5 1.2196E-07 1.2085E-07 8.2079E-08 3.8663E-08 0.55

CN-WWY 0.2 0.1 6.1591E-06 2.9489E-06 1.3942E-06 6.5505E-07 1.08
0.5 5.6062E-07 2.3419E-07 9.1538E-08 3.4519E-08 1.34

0.5 0.1 1.1445E-05 5.5212E-06 2.6206E-06 1.2338E-06 1.07
0.5 9.1447E-07 4.0557E-07 1.6360E-07 6.2855E-08 1.29

0.8 0.1 9.0587E-06 4.4519E-06 2.1331E-06 1.0092E-06 1.06
0.5 4.2889E-07 2.5195E-07 1.1405E-07 4.6557E-08 1.07

CN-I 0.2 0.1 2.2824E-06 5.5842E-07 1.3804E-07 3.4301E-08 2.02
0.5 4.6121E-06 1.1336E-06 2.8101E-07 6.9956E-08 2.01

0.5 0.1 3.6320E-06 8.8802E-07 2.1938E-07 5.4478E-08 2.02
0.5 5.6160E-06 1.3795E-06 3.4186E-07 8.5088E-08 2.01

0.8 0.1 4.4374E-06 1.0837E-06 2.6755E-07 6.6422E-08 2.02
0.5 6.6373E-06 1.6290E-06 4.0349E-07 1.0040E-07 2.02

Table 2: Errors and convergence rates by schemes CN-JLZ [13], CN-WWY [27] and scheme (CN-I) for
case (b) of Example 5.1.

scheme α µ N =80 160 320 640 rate

CN-JLZ 0.2 0.1 4.6760E-09 2.2521E-09 1.0678E-09 5.0244E-10 1.07
0.5 3.7747E-10 1.6711E-10 6.7183E-11 2.5742E-11 1.29

0.5 0.1 7.4765E-09 3.6628E-09 1.7513E-09 8.2752E-10 1.06
0.5 3.7941E-10 2.1640E-10 9.6281E-11 3.8891E-11 1.10

0.8 0.1 4.5037E-09 2.2486E-09 1.0849E-09 5.1499E-10 1.04
0.5 3.4909E-11 8.5516E-11 4.7854E-11 2.1245E-11 0.24

CN-WWY 0.2 0.1 4.7159E-09 2.2616E-09 1.0702E-09 5.0301E-10 1.08
0.5 4.1742E-10 1.7665E-10 6.9515E-11 2.6318E-11 1.33

0.5 0.1 7.6834E-09 3.7122E-09 1.7634E-09 8.3050E-10 1.07
0.5 5.8638E-10 2.6583E-10 1.0836E-10 4.1876E-11 1.27

0.8 0.1 4.7534E-09 2.3083E-09 1.0995E-09 5.1860E-10 1.07
0.5 2.8458E-10 1.4517E-10 6.2437E-11 2.4850E-11 1.17

CN-I 0.2 0.1 2.3703E-08 5.8007E-09 1.4349E-09 3.5684E-10 2.02
0.5 6.3948E-08 1.5721E-08 3.8977E-09 9.7040E-10 2.01

0.5 0.1 2.4555E-08 6.0088E-09 1.4863E-09 3.6958E-10 2.02
0.5 6.4642E-08 1.5891E-08 3.9397E-09 9.8086E-10 2.01

0.8 0.1 2.4435E-08 5.9793E-09 1.4790E-09 3.6777E-10 2.02
0.5 6.4887E-08 1.5951E-08 3.9546E-09 9.8455E-10 2.01

In Tables 1 and 2, the numerical results by the Crank-Nicolson schemes CN-JLZ [13], CN-WWY
[27] and our proposed Crank-Nicolson scheme (CN-I) are compared for 1D and 2D cases in Example 5.1
with low regular source terms, where α = 0.2, 0.5, 0.8 and µ = 0.1, 0.5. It indicates that the schemes
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CN-JLZ [13] and CN-WWY [27] lose the optimal second order convergence rate. However, our scheme
(CN-I) remains to keep the optimal second order convergence rate, which confirms the theoretical error
estimate. In addition, our second Crank-Nicolson scheme (CN-II) also converges with second order for
both cases in Example 5.1, the numerical results are omitted as much more results by (CN-II) are reported
in the following examples with singular source terms.

Example 5.2. Consider the one dimensional problem (1.1) with T = 1, Ω = (0, 1) and the following
data:

(a) u0(x) ≡ 0 and f(x, t) = χ[0, 1
2

](t)t
µx−

1
4 with −1 < µ < 0, where χ[0, 1

2
](t) is the indicator

function over the time interval [0, 1
2 ];

(b) u0(x) = χ[ 1
4
, 3
4

](x) and f(x, t) ≡ 0, where χ[ 1
4
, 3
4

](x) is the indicator function over [1
4 ,

3
4 ].

Table 3: Errors and convergence rates by scheme (CN-II) for case (a) of Example 5.2.

α µ N =80 160 320 640 rate

0.1 -0.1 1.2641E-06 3.0073E-07 7.3295E-08 1.8097E-08 2.04
-0.5 2.3004E-06 5.4868E-07 1.3389E-07 3.3082E-08 2.04
-0.9 8.9980E-06 2.1628E-06 5.2914E-07 1.3058E-07 2.04

0.5 -0.1 9.2521E-06 2.1959E-06 5.3439E-07 1.3179E-07 2.04
-0.5 1.6394E-05 3.9009E-06 9.5050E-07 2.3453E-07 2.04
-0.9 5.9161E-05 1.4191E-05 3.4686E-06 8.5625E-07 2.04

0.9 -0.1 2.7447E-05 6.4460E-06 1.5586E-06 3.8305E-07 2.05
-0.5 4.4356E-05 1.0443E-05 2.5283E-06 6.2172E-07 2.05
-0.9 1.1618E-04 2.7613E-05 6.7135E-06 1.6533E-06 2.04

Table 4: Errors and convergence rates by scheme (CN-II) for case (b) of Example 5.2.

α N =80 160 320 640 rate

0.1 1.7805E-06 4.3515E-07 1.0755E-07 2.6729E-08 2.02
0.5 8.7487E-06 2.1285E-06 5.2484E-07 1.3030E-07 2.02
0.9 8.4638E-06 2.0436E-06 5.0143E-07 1.2410E-07 2.03

The errors and convergence rates obtained by the Crank-Nicolson scheme (CN-II) for case (a) of
Example 5.2 are shown in Table 3 with α = 0.1, 0.5, 0.9 and µ = −0.1,−0.5,−0.9. It is observed that
our proposed Crank-Nicolson scheme (CN-II) converges with rate O(τ2), which is consistent with our
theoretical result and shows the effectiveness of the scheme (CN-II) for solving the problem (1.1) with
singular and nonsmooth source terms. For case (b) of Example 5.2, the numerical results computed by
the scheme (CN-II) are presented with α = 0.1, 0.5, 0.9 in Table 4, which also verify the theoretical
convergence result.

Example 5.3. Let T = 1 and Ω = (0, 1)2. Consider the two dimensional problem (1.1) with the
following data:

(a) u0(x) ≡ 0 and f(x, t) = tµχ[ 1
4
, 3
4

]×[ 1
4
, 3
4

](x), where −1 < µ < 0 and χ[ 1
4
, 3
4

]×[ 1
4
, 3
4

](x) is the

indicator function over the space domain [1
4 ,

3
4 ]× [1

4 ,
3
4 ].

(b) u0(x) = χ[ 1
4
, 3
4

]×[ 1
4
, 3
4

](x) and f(x, t) ≡ 0.
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Table 5: Errors and convergence rates by the scheme (CN-II) for case (a) of Example 5.3.

α µ N =80 160 320 640 rate

0.1 -0.2 1.2359E-07 3.0169E-08 7.4522E-09 1.8523E-09 2.02
-0.5 3.8953E-07 9.4784E-08 2.3376E-08 5.8035E-09 2.02
-0.8 7.5442E-07 1.8299E-07 4.5055E-08 1.1175E-08 2.03

0.5 -0.2 1.2319E-07 3.0073E-08 7.4287E-09 1.8459E-09 2.02
-0.5 3.9145E-07 9.5251E-08 2.3490E-08 5.8335E-09 2.02
-0.8 7.6555E-07 1.8568E-07 4.5715E-08 1.1338E-08 2.03

0.9 -0.2 1.2516E-07 3.0553E-08 7.5471E-09 1.8756E-09 2.02
-0.5 3.9560E-07 9.6359E-08 2.3763E-08 5.9006E-09 2.02
-0.8 7.6580E-07 1.8696E-07 4.6031E-08 1.1419E-08 2.02

Table 6: Errors and convergence rates by the scheme (CN-II) for case (b) of Example 5.3.

α N =80 160 320 640 rate

0.1 5.2753E-08 1.2891E-08 3.1861E-09 7.9177E-10 2.02
0.5 2.2085E-07 5.3739E-08 1.3253E-08 3.2906E-09 2.02
0.9 9.8069E-08 2.3563E-08 5.7979E-09 1.4379E-09 2.03

In Tables 5 and 6, the numerical results obtained by the Crank-Nicolson scheme (CN-II) for two
dimensional sub-diffusion problems (1.1) in Example 5.3 are shown, respectively. As the similar effi-
cient performances for one dimensional problem in Example 5.2, the proposed Crank-Nicolson scheme
(CN-II) also performs effectively and converges numerically with the optimal second order for the two
dimensional sub-diffusion problem (1.1) with singular source term.

6 Conclusions

In this paper, we develop two novel fractional Crank-Nicolson schemes without corrections for solving
the sub-diffusion problem (1.1) with nonsingular and singular source terms in time. We first propose a
novel Crank-Nicolson scheme without corrections for the problem with regular source terms. Moreover,
for problems with singular source terms, another fractional Crank-Nicolson scheme is designed and
discussed in details. The error estimates of the two schemes are rigorously analyzed by the Laplace
transform technique, and proved to be convergent with the optimal second-order for both nonsingular
and singular source terms. The theoretical results are verified in the numerical examples.
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