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RIGIDITY OF THE DELAUNAY TRIANGULATIONS OF THE

PLANE

SONG DAI AND TIANQI WU

ABSTRACT. We proved a rigidity result for Delaunay triangulations of the
plane under Luo’s discrete conformal change, extending previous results on
hexagonal triangulations. Our result is a discrete analogue of the conformal
rigidity of the plane. We followed Zhengxu He’s analytical approach in his work
on the rigidity of disk patterns, and developed a discrete Schwarz lemma and a
discrete Liouville theorem. The main tools include conformal modulus, discrete
extremal length, and maximum principles in discrete conformal geometry.
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1. INTRODUCTION

HEHEHEEBEBEooeoeame

A fundamental property in conformal geometry is that a conformal embedding of
the plane R? to itself must be a similar transformation. In this paper we discretize
the plane by geodesic triangulations and prove a similar rigidity result under the
notion of discrete conformal change introduced by Luo [Luo04].

Let T = (V,E,F) be a topological triangulation of a surface with or without
boundary, where V is the set of vertices, F is the set of edges and F' is the set
of faces. Denote |T'| as the underlying space of the complex T. A PL (piecewise

linear) metric on T is a function, [ :

1

E — R, such that every triangle Aijk € F
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could form a Euclidean triangle under the length [. Luo [Luo04] introduced the
following notion of discrete conformality.

Definition 1.1 ([Luo04]). Two PL metrics I,I' on T = (V,E,F) are discretely
conformal if there exists a function u :V — R such that for any edge ij € E,

li; = e%(“i+“j)lij.
In this case, u is called a discrete conformal factor, and we denote l! = u x 1.

Given a PL metric [ on T, let Q;k denote the inner angle at the vertex ¢ in the
Euclidean triangle Aijk under the metric [. The PL metric [ is called

(a) uniformly nondegenerate if there exists a constant € > 0 such that 9§k >e€
for all Aijk in T, and

(b) Delaunay if ijl + fo < 7 for any pair of adjacent triangles Aijk; and
Aijky in T, and

(¢) uniformly Delaunay if there exists a constant € > 0 such that ijl + ijz <
m — € for any pair of adjacent triangles Aijk; and Aijks in T.

Remark 1.2. The Delaunay condition is equivalent to that for every pair of adja-
cent triangles Nijky, Nijke € F, if the FBuclidean quadrilateral (ik1jke) is isomet-
rically embedded in C, then ko ¢ int(D;jx, ), where int(D;jk, ) is the interior of the
circumscribed disk of Nijky.

A map ¢ : |T| — C is called a geodesic embedding if for every ij € E, ¢ maps
ij to a segment connecting ¢(i) and ¢(j), and ¢ maps |T| homeomorphically to
its image. If further ¢ is surjective, we call ¢ is a geodesic homeomorphism or a
geodesic triangulation. It is clear that a geodesic embedding ¢ gives a PL metric
I(¢), or | for short, by using the Euclidean distance. A geodesic embedding ¢ is
called (uniformly) Delaunay if I(¢) is (uniformly) Delaunay. The main result of the
paper is the following.

Theorem 1.3. Suppose ¢ : |T| — C is a geodesic homeomorphism and ¢' : |T| — C
is a geodesic embedding with the induced PL metric 1,1 respectively, such that

(a) I, are both uniformly nondegenerate,

(b) 1 is uniformly Delaunay and l' is Delaunay,

(c) 1 is discretely conformal to l', i.e., I = ux1 for some u € RV.
Then | and l" differ by a constant scaling, i.e., u is constant on V.

Wu-Gu-Sun [WGS15] first proved Theorem [1.3|for the special case where ¢(T') is
a regular hexagonal triangulation and ¢'(T') satisfies the uniformly acute condition,
i.e. all the inner angles are no more than 7 —e for some constant € > 0. Luo-Sun-Wu
[LSW22] and Dai-Ge-Ma [DGM22] generalized Wu-Gu-Sun’s result by allowing I’
to be only Delaunay rather than uniformly acute. All these works essentially rely on
the lattice structure of the regular hexagonal triangulation, and apparently cannot

be generalized to triangulations without translational invariance.

Remark 1.4. In [BPST5|, Bobenko-Pinkall-Springborn observed the relation be-
tween Luo’s discrete conformality and the hyperbolic polyhedra in H>. In fact the
rigidity problem in this paper corresponds to the Cauchy rigidity of certain hyperbolic
polyhedra and the Delaunay condition corresponds to the convexity of the hyperbolic
polyhedra.
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To prove Theorem [I.3] we follow the approach developed by Zhengxu He in his
state-of-the-art work on the rigidity of disk patterns [He99]. Theorem immedi-
ately follows from the following two propositions.

Proposition 1.5. Under the conditions of Theorem the discrete conformal
factor w is bounded on V. Furthermore, the condition (b) could be relazed to that
both 1,1 are just Delaunay.

Proposition 1.6. Under the conditions of Theorem[1.3, if the discrete conformal
factor u is bounded on V', then it is constant on V.

The proof of Proposition relies on a discrete Schwarz lemma, and estimating
conformal moduli for annuli. The proof of Proposition [1.6| is by constructing a
discretely conformal geometric flow from [ toward I’, keeping the surface flat. The
derivative of the conformal factor in this flow is known to be discrete harmonic,
and thus constant by a discrete Liouville theorem.

1.1. Notations and conventions. Given 0 < r <7/, denote D, = {z € C: |z]| <
r}and A,,» = {z € C:r < |z] <r'}. We also denote D = D; as the unit open
disk. Given a subset X of C, X¢ denotes the complement C\X and 90X denotes
the boundary of X in C and int(X) denotes the interior of X in C and

diam(X) = sup{|z — 2| : 2,2’ € X},

denotes the diameter of X. Given two subsets X,Y of C, the distance between
X,Y is denoted by

dX,)Y)=iif{|z—2'|:2€ X,z €Y}

Given ¢ € V, denote deg(i) as the number of neighbors of ¢ and N; as set of
neighbors of 4, i.e., N; = {j € V :ij € E}. Furthermore, we denote R; as the union
of the triangles in T' containing i. R; is always viewed as the underlying space of
the subcomplex generated by the triangles containing i. Such R; is called a I-ring
neighborhood of i if R; is homeomorphic to a closed disk with vertex ¢ mapped to
the center of the disk. Given a subset Vj of V', a vertex i € Vj C V is called an
inner point of Vg, if N; C Vy and R; is a 1-ring neighborhood of i. We denote
int(Vp) as the set of inner points of V;, and 0V = Vi — int(Vg). In particular, 9V
is the set of vertices of T' that are on the boundary of the surface |T|.

Given ! € R¥ and v € RY, if w * [ is a PL metric then

(a) 0% (u) = 0% (u,1) denotes the inner angle of Aijk at i under u * I, and
(b) K;(u) = K;(u,l) denotes the discrete curvature at 4 for ¢ € int(V)
Kiu)y=2r— Y 0i(u).
jk:NijkeF

1.2. Acknowledgement. The authors would like to thank Huabin Ge for the
encouragement. The first author is supported by NSF of China (No.11871283,
No0.11971244 and No.12071338). The second author is supported by NSF 1760471.

2. PREPARATIONS FOR THE PROOF

2.1. Hyperbolic discrete conformality. The notion of the hyperbolic discrete
conformality was first introduced by Bobenko-Pinkall-Springborn in [BPSI5]. A
piecewise hyperbolic (PH) metric on T is represented by a function i : B — R,
such that every Aijk € F could form a hyperbolic triangle under the length 1".
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Let ", 1" be two PH metrics on T. We say I" is hyperbolic discretely conformal to
IM if there exists a function u” : V' — R such that for any edge ij € E

U sy W
sinh - = ¢2 (' +45) ginh 2.,

In this case, u is called a hyperbolic discrete conformal factor and we denote I =
ul P

Denote D as the hyperbolic space, represented in the Poincaré disk model. A
map ¢" : |T| — D is called a hyperbolic geodesic embedding if for every ij € E, ¢"
maps ij to a hyperbolic geodesic segment connecting ¢” (i) and ¢"(j), and ¢" maps
|T'| homeomorphically to its image. It is clear that a hyperbolic geodesic embedding
#" gives a PH metric ["(¢"), or I for short, by using the hyperbolic distance. A
hyperbolic geodesic embedding ¢" is called Delaunay if for any pair of adjacent
triangles Aijk1, Aijko in T, ¢"(k2) ¢ int(Dyjk,) where Djjx, is the circumscribed
disk of ¢"(Aijk;). Notice that in the Poincaré disk model, a hyperbolic disk in I
is also a Euclidean disk in C.

Given i € int(V) and a Euclidean geodesic embedding ¢ : R; — D, we say that
¢ induces the hyperbolic geodesic embedding ¢" : R; — D if ¢(j) = ¢"(j) for all
j € {i} U N;. Such ¢" exists if I(¢) is non-degenerate and small, and ¢(R;) is away
from O0D.

Lemma 2.1. Let ¢ : R; — D be a (Euclidean) geodesic embedding where all the
inner angles in are at least € > 0. Suppose

(2.1) lij < (1 —|¢(i)|*)sine,  for every j € N;.

Then there exists a hyperbolic geodesic embedding ¢ : R; — D such that ¢ coin-
cides with ¢ on the set of vertices, i.e., ¢(j) = ¢"(j) for any j € N; U {i}.

Proof. Denote m = deg(i) and zp = ¢(i). Let z1, ..., 2z, be the points in ¢(N;) such
that 21 — 20, ..., zm — 20 are counterclockwise. Let exp,  be the exponential map
with respect to the hyperbolic metric at zo. Identifying 7%, D with C by translating
zo to the origin, denote v(z) = exp 'z € C for any z € D. Then we only need to
show the following claims.

(2.2) arg(v(zkﬂ)) € (0,7), k=1,---,m,
v(zk)
and
- ar v(zk+1)y _ T
(2.3) k; g ( o(a) ) =2,

where 2,411 = 2.
We first show the claim (2.2)). Fix k € {1,--- ,m}, denote

Z— 20
e @m),

P={zeC:arg(

and )
v(z
P,={zeD:arg(—=) € (0,7)}.
{ B(17%) € (0.7)
See Figure[T]for illustrations. Since ¢ is a geodesic embedding and 21 — 20, ..., Zm — 20
are counterclockwise, we have 2,1 € P. We need to show z;41 € Py. Let 5, be the

entire geodesic connecting zy and z; with respect to the hyperbolic metric. If v, is
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% %

(A) Case 1 (B) Case 2

FIGURE 1

a straight line, then 2z € P, = P and we are done. Otherwise, 7, is a Euclidean
circular arc and orthogonal to the boundary of the unit disk D. We denote z, and
R as the Euclidean center and the radius, respectively, or this circular arc. Then
R?41= |z < (20| + R)™.
So
1 —|20|® < 2R|2| < 2R.
Then by Equation (2.1

Z - 1-— 2) s
2022k _ |2k — 20] < ( |z0]%) sin e < sine.
2 2R 2R
So )
ZZOZ]Q+1Z}C >€e> 54202*216,
and

1
L202k412 ST —€< T — §Lzoz*zk.

Then from the knowledge of the plane geometry, we see zp € P,. We finish the

proof of claim (2.2]).
Next we show the claim (2.3]). We have

+ 2nm,

(2.4) arg (UQ()Z(Z:)I)) + arg (Z:(iklo) = arg (M)

for some integer n. From the knowledge of plane geometry, we have that

v(z
—I-arg( ( k+1) )
Zk — 20 Zk+1 — 20

v(zk) Tow
—= e (-, =)
arg(Zk — zo) ( 2 2)
Then together with the claim (2.2)), both the right hand side and the left hand side
of Equation 1' lies in (—3, <), so n = 0. Then we obtain

m

S arg (LAY N gy (L) o

k=1 v(zk) k=1 kT 20

We finish the proof. O
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Remark 2.2. One can show that such hyperbolic geodesic embedding ¢" exists, if
the Fuclidean geodesic embedding ¢ maps each triangle in R; to an acute triangle.

The discrete conformality and the hyperbolic discrete conformality are related
as follows.

Lemma 2.3. Let ¢, ¢ : |[T| — D be two geodesic embeddings with the induced PL
metrics 1,1 respectively. Suppose both ¢, ¢" induce hyperbolic geodesic embeddings
", " | T| — D with the mduced hyperbolic PH metrics I", 1" respectively. Then

I'=wuxlif and only if " = uP «" " where u and u" are related by
2
h _ — |z
U; = Uy + In 1_7‘2’”27

with z; = (1), z; = ¢'(i).
Proof. Denote dy, as the hyperbolic distance function on D. Then the lemma follows
from the formula
sinh dn (21, 22) _ |21 — 22| :
2 V(L= z1?)(@ — [22]?)
where 21,22 € D. See [And05]. O

Remark 2.4. In the smooth setting, Lemmal[2.3 is interpreted as follows. Let ) be
a domain in D and f be a smooth map from Q to D, w = f(z). Denote go = |dz|?
as the Euclidean metric on D and g_1 = = ‘ [(=FBE |dz| as the hyperbolic metric on
D. Suppose f is conformal with respect to go, i.e. f*go = e€*“gg for some smooth
function w = u(z). Then f is also conformal with respect to g—1. In fact

4 4
9 =g ldw]?) = ———=55¢>"dz?
(1 —w[?)? (L=1f(=)?)?
1—|z|? n
= () e = P T

2.2. Discrete Laplacian on graphs. Let G = (V,E) be a connected simple
graph, and p : E — [0,400) be a function on the set of edges. We call G, =
(V, E, u) a weighted graph, or an electrical network. The discrete Laplacian operator
A, RV = RY is defined as

(Apu)i = > pij(uj — ).
JHjeER

We say that u is harmonic at i € V', if (A,u); = 0. In this case we have the average

property
Z luu
> Hik 4
j:’L]GEk ikeE v

if p1j1 > 0 for all jk € E. So we have the maximum principle.
Lemma 2.5 (Maximum principle for discrete harmonic functions). If u;; > 0 for

all ij € E and Vy is a finite proper subset of V and w is harmonic at every point
in Vo, then u achieves its maximum and minimum on V — Vj.

We also have the following well-posedness result of the discrete Laplace equation
with Dirichlet boundary condition.
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Lemma 2.6. Suppose p;; > 0 for all ij € E and Vi is a finite proper subset of V'
and f is a given funciton on 'V —Vy. Then the following equation of u € RV

Ayu =0 1in Vp, u=f on (V-"1)
has a unique solution. Furthermore, the map (u, f) — u is smooth.

Lemma is well-known. Solving u € RV here is indeed solving a diagonal
dominant linear system.
Let T = (V, E, F) be a triangulation and ! be a PL metric. Recall that K;(u) =

2r— Y H;k is the curvature at ¢« € V under the metric u * [. The operator
jk:AiGRER

K, uw K(u), is smooth with respect to u. From the direct calculation or [Luo04],

one have

(2.5) dK; = — Z priz(duj — duy),
jujer
where
1
(2.6) pij = pij(u) = 5(00‘0 ijl (u) + cot Hsz (u))

for adjacent triangles Aijky, Nijko € F. It is not difficult to check that if u x [
is uniformly Delaunay then p;; > e for some constant € = ¢(7,1,u) > 0. From
Equation , we see that the linearization of —K is in fact a discrete Laplacian
operator with respect to G, = (V, E, ).

2.3. Maximum principles for discrete curvature. Maximum principle plays
a very important role in partial differential equations and geometric analysis. For
the discrete conformal geometry, the curvature K, which is clearly nonlinear as
an operator on the set of conformal factors, also satisfies the (strong) maximum
principle.

The following lemma is a corollary of Theorem 3.1 in [LSW22]. In [DGM22] there
is another proof of the maximum principle for a special case. Let T' = (V, E, F) be
a triangulated surface.

Lemma 2.7. Suppose i € V and R; is a 1-ring neighborhood. Let ¢,¢" : R; — C
be two Delaunay geodesic embeddings with induced PL metric 1,1' respectively. If
' =wuxl, then

u; < max uy, u; > min u;.
JEN; JEN;

Furthermore, if u; = maxwu; or u; = min u;, then u is a constant on {i} U N;.
JEN; JEN;
As a direct corollary, we have the following maximum principle.

Lemma 2.8. Let T = (V, E, F) be a triangulation of a compact surface with bound-
ary. Let ¢,¢" : |T| — C be two Delaunay geodesic embeddings with induced PL
metric 1,1 respectively. Suppose ¢ and ¢’ are discretely conformal, I = ux1. Then
maxu; = max uj, minu; = min u;.
jev jeav jev jeav

Furthermore, if max wu; = maxu; or min u; = minu;, then u is a constant
JEInt(V) jEV JEInt(V) JjEV
onV.

For the hyperbolic setting, we have the following modified version of the maxi-
mum principle.
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Lemma 2.9. Suppose i € V and R; is a 1-ring neighborhood. Let ¢",¢" : R; —
D be two Delaunay hyperbolic geodesic embeddings with induced PH metric *, 1"
respectively. Suppose ¢™ and ¢ are hyperbolic discretely conformal, 1" = uh «" [P,
Then ul' < 0 implies that

uf > min u?

JEN;
Proof. Since the hyperbolic discrete conformality and conformal factor are invariant
under the hyperbolic isometric group, we may assume ¢"(i) = 0, ¢" (i) = 0. Then
", o™ are induced by Euclidean geodesic embeddings ¢, ¢’ with PL metric 1,1’
respectively. Notice that the hyperbolic isometric group preserves circles, so I, 1’
are also Delaunay. From Lemma since I = u" " I, we have [ and I are also
discretely conformal. Specifically I’ = u * [ where
—u?—l 71_ ‘ch
- ‘Z_]|

In particular u; = u?. From the maximum principle Lemma there exists jo € IV;
such that u;, < u;. Suppose u' < 0. Then

1 (s tas
25| = Uiy = €20l < gy = |25,
Therefore
1— |z, 1— |2, |2
h Jo Jo h
wy = ui, +ln ——2—= <y, +Iln —— < u; = u).
O B
So

uf > min u?
JEN;

As a direct corollary, we have

Lemma 2.10. Let T = (V,E,F) be a triangulation of a compact surface with
boundary. Let ¢" ¢"' : |T| — D be two Delaunay hyperbolic geodesic embeddings
with induced PH metric 1", 1" respectively. Suppose ¢" and ¢ are hyperbolic dis-
cretely conformal, 1" = uh x" [". Then ul < 0 implies that
ul' > min u;-l .
jeov

Remark 2.11. In the smooth setting, the maximum principles above are interpreted
as follows. Let Q be a domain in C. Let f be a conformal map from Q0 to C with
respect to the Euclidean metric go = |dz|>. Suppose f*go = e*'go. From the
curvature formula, for g = g(2)|dz|?,

2
9(2)
we have Au = 0. So u satisfies the mazimum principle as in Lemma[2.8

On the other hand, let Q2 be a domain in D. Let f be a conformal map from Q

to D with respect to the hyperbolic metric g_1 = WMZP. Suppose f*g_1 =

K,=— 9.0z Ing(z),

h
e2"" g_1. From the curvature formula, we have

h
N, ul=e? —1

g—-1 )

where ANy, = (1—2]%)20,0:. So u" satisfies the mazimum principle as in Lemma

210
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2.4. Modulus of annuli. We briefly review the notion of conformal modulus.
The definitions and properties discussed here are mostly well-known. One may
refer [AhI10] and [LV73] for more comprehensive introductions.

A closed annulus is a subset of C that is homeomorphic to {z € C: 1 < |z| <
2}. An (open) annulus is the interior of a closed annulus. Given an annulus A,
denote I' = T'(A) as the set of smooth simple closed curves in A separating the
two boundary components of A. A real-valued Borel measurable function f on A
is called admissible if fv fds > 1 for all v € I'. Here ds denotes the element of arc

length. The (conformal) modulus of A is defined as
Mod(A) = inf{||f||3 : f is admissible},

where | f||3 denotes the integral of (f(2))? against the 2-dim Lebesgue measure on
A. From the definition it is straightforward to verify that Mod(A) is conformally
invariant. Furthermore, if f : A — A’ is a K-quasiconformal homeomorphism
between two annuli, then

1
e -Mod(A) < Mod(A4") < K - Mod(A).
Given 0 < r < 1/, denote A,,  as the annulus {z € C : r < |z| < 7'}. It is

well-known that ) ,
r
MOd(Ar77-/) = % In ?
Intuitively, the modulus measures the relative thickness of an annulus. If an an-

nulus A in C\{0} contains A, ,/, then it is “thicker” than A,,  and we have the

monotonicity
1

Mod(4) = Mod(Ay.1) = 5
Y3

On the other hand, we have that

!
r
In—.
r

Lemma 2.12. Suppose A C C\{0} is an annulus separating O from the infinity. If
Mod(A) > 100, then A D A, o, for somer > 0.

Proof. Deonte B as the bounded component of C — A, and r = max{|z| : z € B}
and 7 = min{|z| : z € (BUA)°}. If v/ > 2r we are done. So we may assume
r’ < 2r.

Then Dy, Ny # 0 for all v € T'(A). Let f be the function on A such that f(z) = +
on AN Ds,. and f(z) =0 on A\Ds,. If y € T and v C Ds3,,

1 1 1
/fds:s(’y)-f22-diam(B)-722r~7>1.
. r r r

If y eI and v € Ds,, then v is a connected curve connecting Do, and DS, and

1 1
/fds >d(Dayr,D5.) - —=1-—=1.
~ r r
So f is admissible and
1 3r)?
Mod(A4) < / f? = = -Area(AN Ds,) < W(rg) = 97 < 100.
A
This contradicts with our assumption. [

Remark 2.13. To some extend, Lemma[2.19 is a consequence of Teichmiiller’s
result on extremal annuli (see Theorem 4-7 in [ALIL0]). The constant 100 is chosen
for convenience and should not be optimal.
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2.5. Recurrence of electrical networks. Discrete harmonic functions are closely
related to the theory of electrical networks. Let G, = (V, E, i) be a weighted graph,
i.e. a graph G = (V,E) with a function ¢ : E — [0,00). A weighted graph G,
could be viewed as an electrical network, where u;; denotes the conductance of
the edge ij. Consider a function v : V' — R, which denotes the electric potentials
at the vertices. Then w is harmonic at ¢ if and only if the outward electric flux
at ¢ is 0. The theory of electrical networks is closely related to discrete extremal
length, originally introduced by Duffin [Duf62]. Here we briefly review the theory of
discrete extremal length, adapted to our setting. All the definitions and properties
here are well-known and one may read [He99)] for references.

Let V1, V5 be two nonempty disjoint subsets of V. Denote I'(Vy, V5) as the set
of the paths joining V; and Va. An edge metric is a function m : V' — [0,00). An

edge metric m is called I'(Vy, Va)-admissible if Y~ m(e) > 1 for every v € T'(V7, V3).
ecy
The conductance of T'(Vy, Vs) is defined as

Cond(V1, Va) = inf{z u(e)ym?(e) : m is T'(Vy, Va)-admissible. }.
eckE

The resistance of T'(Vy,V3) is defined as

1

ReS(Vh ‘/2) - COHd(Vl, V2) '

An electrical network G, is called connected if G}, = (V,E\ {e € E : u(e) = 0}) is
connected. Let Vj be a nonempty finite subset of vertices in G,. Then a connected
electric network G, is called recurrent if Res(Vp, 00) = 0o, and transient otherwise.
The recurrency of G, is independent of the choice of Vy. The following lemma is
well-known and shows that the recurrency implies a discrete Liouville property. See
Lemma 5.5 in [He99] for a proof.

Lemma 2.14. Suppose G, is recurrent and u is a bounded function on 'V, if u is
harmonic on every point of V', then u is constant.

To check that an electrical network G, is recurrent, one may study the vertex
extremal length of the graph G as follows.
Let G = (V,E) be a graph. A wvertex metric is a function n : V. — [0,00). A

vertex metric 7 is called I'(V4, V2)-admissible if Y n(v) > 1 for every v € I'(V4, V2).
vey

The vertex modulus of T'(Vy,V3) is defined as

Mod(Vi, Vo) = inf{ Y~ n*(v) : 1 is [(V4, Vo)-admissible.}.

veV
The vertex extremal length of T'(V1, V3) is defined as
1
VEL(V1,V3) = ——————.
(V1,V2) Mod(Vy, V)

Let Vi be a nonempty finite subset of vertices in a connected graph G. Then G
is called VEL-parabolic if VEL(Vp, 00) = oo, and VEL-hyperbolic otherwise. The
definition is independent of the choice of V.

The relation between the VEL-parabolicity and the recurrence is as follows.
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Lemma 2.15 (Lemma 5.4 in [He99]). Let C > 0 be a constant. Suppose that for
each vertex v, we have Y u(e) < C. Then for any mutually disjoint, nonempty

veEe

subsets Vi and Vo of V', we have
VEL(V1, V) < 2C - Res(Vy, Vo).

In particular, if G is VEL-parabolic and G, is connected, then G, is recurrent.

3. PROOF OF THE MAIN THEOREM

We will prove our main Theorem [I.3] by proving Propositions [I.5] and [[.6] We
will first derive needed estimates on uniformly nondegenerate triangulations in Sec-
tion 3.1. A discrete Schwarz lemma is developed in Section 3.2, for the proof of
Proposition [L.5]in Section 3.3. A discrete Liouville theorem is developed in Section
3.4, for the proof of Proposition [I.6]in Section 3.5.

3.1. Estimates on uniformly nondegenerate triangulations.

Lemma 3.1. Suppose ¢ : |T| — C is a geodesic embedding and all the inner angles
inl=1(¢) are at least . Then we have the following.
(a) For alli € V, deg(i) < 2%,
(b) For all Aijk € F,
. li 1
sine < — < ——.
lix, — sine

(¢) For all Aijk,

sine , 1
—12. <A Nij <
2 l’LJ — rea‘(¢( ,L-]k)) — 2Sin€
(d) There exists a constant 6 = d(e) > 0 such that for all Nijk € F with
i g,k € int(V),

2
2.

(Ui, 9(Aijk)) > 6 - diam(g(Aijk)),
where
Uijk = int(¢(R;)) U int(¢(R;)) U int(¢(Ry)).
(e) Suppose a € V and ¢(a) = 0. Assume r > 0 is such that
¢(Ra) € D C &(|T).

Denote Vi = {i € V : ¢(i) € D, } and T1 as the subcomplex generated by V1. Then
there exists a constant C' = C(€) > 0 such that D, ;o € ¢(|T1]).

Proof. (a) It is from
2 > Z e > Z e = deg(i) - €.
jkiNijkeF jkiANijkeF

(b) This is by the sine law.

(c) This estimate is straightforward from the area formula
1, sin ng .
2" singk, S
(d) We may normalize diam(¢(Aijk)) = 1 and ¢(i) = 0. By part (a), there

are finitely many possible combinatorial structures of the natural triangulation of
R; U R; U Ry. Fixing a combinatorial structure, d(Uf;;, ¢(Aijk)) is positive and

1 .
Area(p(Aijk)) = il”lm sin Q;k =
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continuously determined by ¢(a)’s for a € N; U N; U Ni. By the compactness
d(Uf;y,, 9(Aijk)) has a positive lower bound ¢ = §(e).

(e) Pick § as in part (d) and we claim that C' = 1+ 2/¢ is a desired constant.
Let us prove by contradiction and assume that there exists z € D, ;c\¢(|T1|). Then
there exists a triangle Aijk € F such that z € Aijk. Then Aijk is not a triangle
in 71 and we may assume ¢ ¢ Vi, so |¢(i)| > r. Since ¢p(R,) C D,, we have ai ¢ E.
So a # 1,4, k, then 0 = ¢(a) ¢ Ujji. Then

7/C >0 — 2| > d(Ujg, Aigk) > 6 - diam(Aijk)
> 5 |¢(i) — 2| >0 (r—r/C) = (r/C)-§(C —1)=2r/C

and we get a contradiction. O

3.2. A discrete Schwarz lemma. Recall that the Schwarz lemma says that any
holomorphic map f: D — D satisfies that |f'(0)] < 1if f(0) = 0. Here we prove a
discrete weaker version of the Schwarz lemma. Let T be a triangulated surface.

Proposition 3.2. Suppose ¢, ¢" are geodesic embeddings of |T| into C with induced
PL metrics,l'. Assume bothl,l" satisfy the uniformly nondegenerate condition with
constant € > 0 and the Delaunay condition. If r,v’ > 0 and Ty is a finite subcomplex
of T satisfing that

#(|To]) € Dy, D, C ¢'(|To]),

then there exists a constant M = M(e) > 0 such that for every i € V satisfying
¢'(i) € Dys o, we have
/

U, Zlog%—M.

Proof. Without loss of generality, we assume ¢ < 7/6. By scaling, we may assume
r= isin3 e< i and 7’ = 1. Denote
Vi={ieV:¢(i)e D= D}

and 71 = T(V4) as the subcomplex generated by V;. Then ¢, ¢’ map |T3| into D.
Let z; = ¢(i), 2, = ¢'(i). Denote
ul = u; +In 1_7
11—z
We claim uf > 0 for every i € Vi. Just let 4 attain the minimum of v” in V4.
Here int(V1) and 0V; are with respect to T', and defined in Section
(1) If i € int(Vy) and Ij; < (1 — |2{|?)sine, for every ij € E, then from Lemma
¢’ induces a hyperbolic geodesic embedding ¢ from the 1-ring neighborhood R; of
ig into D. Since ¢’ is Delaunay, ¢/ is also Delaunay. Since ¢(|V1]) C Dgips . /4, for
the same reason ¢ also induces a Delaunay hyperbolic geodesic embedding ¢ from
R; into D. Then the hyperbolic maximum principle Lemma implies u* > 0.
(2) If i € int(V1) and there exists j € Vi, ij € E such that Ij; > (1 — |2]|*) sine,
then from Lemma (b),
Suimupyjz _ €T Ly L

_ = - > sin? e
eCertun 2 = 1y 1y
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where Aijk € F. So

/
ST Izz O P IZ:j
1-— Z; lij 1-— Z;
li; 1—|z)? 1—|z)? s 1/2
ZL-Sin26'il/|Zsin36-ﬂ28in36-L=1.
lij 1— |Zi|2 lij 2r

(3) If i € OVA, then there exists j € V such that ¢'(j) ¢ D. Then [j; > 1 — [z]].
Since we assume € < %, then Ij; > (1 — [2]|*) sine. As the estimates above, we also
have et > 1.

So ul" > 0 for every i € Vi. Then for i € V satisfying ¢/(i) € Dy, set

. 3
M = —In #=, and we have
/
h

1 |22 1 |z 1
u; = U flnﬁZflnﬁ21n(17|z§|2)21n7:1nr—7M.
1]z 11z 2 r

O

3.3. Proof of the boundedness of the conformal factor. In this section, we
prove that the discrete conformal factor u is bounded, i.e. Proposition [1.5

Proof of Proposition[1.5, Without loss of generality, we may assume that ¢’ o ¢!
is linear on each triangle ¢(Aijk). Then ¢’ o ¢! is K-quasiconformal for some
constant K = K(e) > 0. We will prove the boundedness of u by showing that for
every ji,j2 € V,
luj, —uj,| <2M +2InC +InC’ —1n2,

where M = M(¢) is the constant given in Proposition and C = C(e) is the
constant given in Lemma (e) and C' = C'(€) = 207K

Assume ji,jo € V. For convenience, let us assume ¢(j1) = ¢'(j1) = 0 by
translations. Pick r > 0 sufficiently large such that |¢(j2)| < r/(2C) and ¢(R;,) C
D,.. Let

Vi={ieV:¢(i)eD,}and Vo = {i € V: ¢(i) € Docrp}.

Denote 11,7, as the subcomplexes generated by Vi, Vs respectively. Then by
Lemma (e) we have

(3.1) {#(1), #(j2)} € Dy 20y € Drje € ¢(|T1]) € D,
And
(3.2) Derr € ¢(|T2]) € Doy

Recall that A4,, ., = {# € C:r; <|z| < z2}. Then A = A, ¢, separates ¢(|T1|)
and ¢(|Tz|)¢, and then A’ = ¢’ 0 p~1(A) separates ¢'(T1) and ¢’ (Ty)¢. Furthermore
1 1 1. Cr
> . - — .

Mod(A4") > e Mod(A) % o In

Then by Lemma there exists 7' > 0 such that A, 5, C A’. So A,/ o, separates

¢'(Th) and ¢'(T2)° and then

(3:3) ¢'(IT1]) € Dy

and

(3.4) {¢'(41),¢'(J2)} € Dy C Do C ¢/(|T3]).

= 100.
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By Proposition Equation (3.2)) and Equation (3.4), both w;,, u;, are at least

2r! r’ 2
—— — M=In—+In—— — M.
" oo Nt ao
Again by Proposition Equation (3.3)) and Equation (3.1, both —u;, and —uj,
are at least

1

r/C

ln—/ zlnil—lnC—M.
r r

So both u;, and u;, are in the interval

/ /

T 2 T
[ln?—i—lncc/ —M,ln?—i—lnC—i—M]7

and |uj, — u;,| is bounded by the length of this interval

2M +1InC —In =2M +2InC+InC’' —In2.

2
cor
O

3.4. A discrete Liouville theorem. In this section, we prove the following dis-
crete Liouville theorem.

Proposition 3.3. Suppose ¢ : |T| — C is a geodesic homeomorphism, and l satis-
fies the uniformly nondegenerate condition and the Delaunay condition. Given the
weight p € REO defined as in equation , then any bounded function u on V is
constant if u is harmonic at every point of V.

Proof. By Lemma it suffices to show (V) E, u) is recurrent. Let us assume [ is
uniformly nondegerate with constant € > 0. Then for all : € V,

Z wij < deg(i) - cote < 27 cot <.
JujeER €
Then by Lemma m it suffices to show (V, E) is VEL-parabolic and (V, E, u) is
connected.
First we show that if two subsets V7, V5 are separated by an annulus, then the
vertex extremal length has a lower bound.

Lemma 3.4. Let V1,V be two nonempty subsets of V' such that ¢(V1) C D, ,
#(Va) C Dy,. Suppose for every i € Vi, ¢(|Ri|) € D,,. Then there is a constant
C = C(e) > 0 such that
VEL(Vi,V2) 2 C(1 - (£)?).
2
In particular, if ro > 2rq, there is a constant C = C(e) > 0 such that VEL(Vy,Va) >
C.

Proof. Denote dps(i) = max d(¢(i), #(j)). Consider the vertex metric n as follows.
Jijie
For i € V, if ¢(i) € D¢ , then define n(i) = 0; if ¢(i) € D,, and there exists j € V,

T2 -
ji € E such that ¢(j) € D,,, then define n(i) = %; if (i) € D,, and there is

no j € V, ji € E such that ¢(j) € D,,, then define n(v) = 0.
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First we check 7 is T'(V1, V2 )-admissible. Let v = {ig, ..., it} be a path joining V}

and V> such that ig, - ,ix_1 € Dy, and iy € Dy,. Then from the assumptions
k—1 =
s=0 2= s=0

1 = 1

> d(p(is), d(is > d(¢(%0), o2 .
> o D d0li) $er)) 2 1 d(0li). o)

Since ¢(ip) € Vi C D, and ¢(ir41) € Dy, we obtain ) n(i) > T;Tl (ro—ry) =1.

1€y
Next we estimate an upper bound of Y~ 7?(i). We only need to consider the
i€V

vertices where 7 are nonzero. For ¢ € V', n(i) # 0, since ¢(i) € D,, and there is
j € V such that ¢(j) € D,, and ji € E, we have d(¢(i),¢(j)) < 2re. Then from
Lemma[3.1] (a) and (b), there is a constant C; = Cy(€) > 0 such that ds (i) < Cira.
So for every i € V, n(i) # 0, we have ¢(R;) C D(14¢,)r,- Then from Lemma
(a) and (b) and (c), there is a constant Cy = C3(e) > 0 such that

) d3, (i) CaArea(p(R;))

2r0= 2 B X T
eV n(0)£0 n(i)£0

Since every triangle is calculated at most three times in ¢(|R;|), i € V, we obtain

ZUQ(’L) < 302AI‘€&(D(1+CI)T2) - 1 ’r‘%

icv (TQ —7“1)2 o 5(7“2 —7“1)2'
So Mod(Vi, V) < & %45z We finish the proof. O

The vertex extremal length has a property of additivity, which is from Lemma
5.1 in [He99).

Lemma 3.5 (Lemma 5.1 in [He99]). Let Vi, Va, -+, Vay, be mutually disjoint, non-
void subsets of vertices such that for i1 < ia < i3, Vi, separates V;, from Vi,,
i.e. every path joining Vi, and Vi, must pass through a vertex in Vi,. We allow
Vom = 0o. Then we have

m
VEL(Vy,Vam) > Y VEL(Vay 1, Vo).
i=1
Then combining Lemma [3.4] and Lemma we can show the following lemma.
Lemma 3.6. (V, E) is VEL-parabolic.

Proof. We construct infinitely many Vj by induction starting from a finite subset V3
of V. Given a finite subset V}, of V, choose r large enough such that |J #(R;) C D...

i€Vy
Denote V = {i € V : ¢(i) € Dy, }. Consider V' = |J R;, V" = |J R;. Choose 7/
iev iev’

such that ¢(V"") C D,.. Since the interior of ¢(R;), i € V cover the plane, we can
choose a finite subset V}, | such that 0D,» C |J int(¢(R;)), and we may assume

i€V,

0D, Nint(¢(R;)) # 0. Then set
Viq1 = {i € V : there exists j € V][, such that ji € E}.
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We claim ¢(Vi41) € D5, If not, then there exists i € V| such that i € V'. Then
¢(R;) C D,s, which does not intersect with 0D,.. Contradiction.
As construction above, we obtain that for ¢ € Vi, ¢(R;) C D, and ¢(Vi41) C
Ds,.. Since 0D, € |J ¢(R;), it is clearly Vi1 separates Vi and Viy2. So the
i€V,

conditions in Lemma [3.4] and Lemma [3.5] hold. O

It remains to show that G, = (V, E, 1) is connected, i.e., G}, is connected. We
notice that if p;; = 0 then the points ¢(i), d(k1), ¢(j), ¢(k2) are co-circle. So to
obtain G;U we just delete, for finitely many times, the interior edges of a polygon,
whose vertices are co-circle. So G;L is connected. O

3.5. Proof of that the conformal factor is constant. In this section, we show
that u is constant, i.e. Proposition[I.6] then finish the whole proof of main Theorem
.ol

Proof of Proposition[1.6 In the proof, we will construct a deformation of discrete
conformal factors u(t). To avoid being confused with u and u(t), we use the notation
u instead of w in the statement of Proposition In other words, we assume
I = u x| and want to prove that @ is bounded.

Let us prove by contradiction and assume that @ is not constant. Without loss
of generality, we can do a scaling and assume

inf u; < 0 < supu;
eV eV
and
— inf @; = sup @; = |U]co.
eV eV

By a standard compactness arguement, there exists a constant dy = dp(€), such
that for every function u : V' — R satisfying |u|. < 200, u * [ satisfies the triangle
inequalities and is uniformly nondegenerate and uniformly Delaunay.

Denote § = min{do, |ti|}. Pick a sequence of increasing finite subsets V;, of V'

oo
such that |J Vi, = V. We use the notation in Section For each n € N, we will
n=1

construct a smooth RV»-valued function u(™ () = [u;"™ (t)];cv, on (—24,24) such
that

0) =0, and
= U;/|t]cs if i € OV, and
( int(V,,) then
(3.5) D7 (@) (g (1) — i (1) = 0
JujeER
where p;;(u) is defined for all ij € E(V},) as in Equation ([2.6).

The conditions (b) and (c¢) give an autonomous ODE system on

U, = {u € R : |ulo < 26}

g

N
-
=
~
m
—

Notice that j;;(u) > 0 if w € U,. Then by Lemma 2.6, @™ (¢) is smoothly
determined by u(™(t) on U,. Given the initial condition u(™(0) = 0, assume
the maximum existence interval for this ODE system on U,, i (min, tmax) Where
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tmin € [—00,0) and tyax € (0,00]. By the maximum principle Lemma for all
1€V,

[0 oo < e i = mae [,/ 1] < 1.

So [t (t)]so <t < tmax for all t € [0, tmax). By the maximality of tymax, tmax > 20
and for a similar reason ty;, < —26. So u(")(t) is indeed well-defined on (—24, 24).
By Equation and Equation (3.5), K;(u(™(t)) = 0 for all i € int(V},). Then by
Lemma[2.5] for all i € V,,

@ — u{™ (9)] < max |a; — ui" (5)]

JEIV,
_ Uy N _
. = . — . < el r—— OO: oo — O.
(36) s (=0 ) < (0= Dl = fale -6

By picking a subsequence, we may assume that ugn) converge to uf on [0, ]

uniformly for all i € V. Then u* = [u}];cv satisfies the following properties.
(a) uf(t) is 1-Lipschitz for all ¢ € V. As a consequence, for all i € V, u}(t) is
differentiable at a.e. t € [0, d].
(b) w*(t) * is uniformly nondegenerate and uniformly Delaunay for all ¢ € [0, J].
(c) For all i € V, K;(u*(t)) = 0. As a consequence for a.e. t € [0, 0],

d * * . . %
0= Ki(u(t) = Y n(ut () (@5 (8) =i (1)),
JHjEE
foralli e V.
(d) By Proposition[3.3] @*(t) is constant on V for a.e. t € [0,8]. As a consequence
uf(0) equals to a constant ¢ independent on i € V.

(f) By Equation ({3.6]),
s — ¢ = | — ui(6)| < |t]oo — 0
for all 1 € V. As a consequence we get the following contradiction

2|t|oo = |sup@; — inf ;| < |supa; —c¢| + | inf @; — ¢| < 2| — 20.
i€V eV % eV
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