
RIGIDITY OF THE DELAUNAY TRIANGULATIONS OF THE

PLANE

SONG DAI AND TIANQI WU

Abstract. We proved a rigidity result for Delaunay triangulations of the

plane under Luo’s discrete conformal change, extending previous results on
hexagonal triangulations. Our result is a discrete analogue of the conformal

rigidity of the plane. We followed Zhengxu He’s analytical approach in his work

on the rigidity of disk patterns, and developed a discrete Schwarz lemma and a
discrete Liouville theorem. The main tools include conformal modulus, discrete

extremal length, and maximum principles in discrete conformal geometry.
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1. Introduction

A fundamental property in conformal geometry is that a conformal embedding of
the plane R2 to itself must be a similar transformation. In this paper we discretize
the plane by geodesic triangulations and prove a similar rigidity result under the
notion of discrete conformal change introduced by Luo [Luo04].

Let T = (V,E, F ) be a topological triangulation of a surface with or without
boundary, where V is the set of vertices, E is the set of edges and F is the set
of faces. Denote |T | as the underlying space of the complex T . A PL (piecewise
linear) metric on T is a function, l : E → R+ such that every triangle 4ijk ∈ F
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2 SONG DAI AND TIANQI WU

could form a Euclidean triangle under the length l. Luo [Luo04] introduced the
following notion of discrete conformality.

Definition 1.1 ([Luo04]). Two PL metrics l, l′ on T = (V,E, F ) are discretely
conformal if there exists a function u : V → R such that for any edge ij ∈ E,

l′ij = e
1
2 (ui+uj)lij .

In this case, u is called a discrete conformal factor, and we denote l′ = u ∗ l.

Given a PL metric l on T , let θijk denote the inner angle at the vertex i in the
Euclidean triangle 4ijk under the metric l. The PL metric l is called

(a) uniformly nondegenerate if there exists a constant ε > 0 such that θijk ≥ ε
for all 4ijk in T , and

(b) Delaunay if θk1ij + θk2ij ≤ π for any pair of adjacent triangles 4ijk1 and
4ijk2 in T , and

(c) uniformly Delaunay if there exists a constant ε > 0 such that θk1ij + θk2ij ≤
π − ε for any pair of adjacent triangles 4ijk1 and 4ijk2 in T .

Remark 1.2. The Delaunay condition is equivalent to that for every pair of adja-
cent triangles 4ijk1,4ijk2 ∈ F , if the Euclidean quadrilateral (ik1jk2) is isomet-
rically embedded in C, then k2 /∈ int(Dijk1), where int(Dijk1) is the interior of the
circumscribed disk of 4ijk1.

A map φ : |T | → C is called a geodesic embedding if for every ij ∈ E, φ maps
ij to a segment connecting φ(i) and φ(j), and φ maps |T | homeomorphically to
its image. If further φ is surjective, we call φ is a geodesic homeomorphism or a
geodesic triangulation. It is clear that a geodesic embedding φ gives a PL metric
l(φ), or l for short, by using the Euclidean distance. A geodesic embedding φ is
called (uniformly) Delaunay if l(φ) is (uniformly) Delaunay. The main result of the
paper is the following.

Theorem 1.3. Suppose φ : |T | → C is a geodesic homeomorphism and φ′ : |T | → C
is a geodesic embedding with the induced PL metric l, l′ respectively, such that

(a) l, l′ are both uniformly nondegenerate,
(b) l is uniformly Delaunay and l′ is Delaunay,
(c) l is discretely conformal to l′, i.e., l′ = u ∗ l for some u ∈ RV .

Then l and l′ differ by a constant scaling, i.e., u is constant on V .

Wu-Gu-Sun [WGS15] first proved Theorem 1.3 for the special case where φ(T ) is
a regular hexagonal triangulation and φ′(T ) satisfies the uniformly acute condition,
i.e. all the inner angles are no more than π

2−ε for some constant ε > 0. Luo-Sun-Wu
[LSW22] and Dai-Ge-Ma [DGM22] generalized Wu-Gu-Sun’s result by allowing l′

to be only Delaunay rather than uniformly acute. All these works essentially rely on
the lattice structure of the regular hexagonal triangulation, and apparently cannot
be generalized to triangulations without translational invariance.

Remark 1.4. In [BPS15], Bobenko-Pinkall-Springborn observed the relation be-
tween Luo’s discrete conformality and the hyperbolic polyhedra in H3. In fact the
rigidity problem in this paper corresponds to the Cauchy rigidity of certain hyperbolic
polyhedra and the Delaunay condition corresponds to the convexity of the hyperbolic
polyhedra.
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To prove Theorem 1.3, we follow the approach developed by Zhengxu He in his
state-of-the-art work on the rigidity of disk patterns [He99]. Theorem 1.3 immedi-
ately follows from the following two propositions.

Proposition 1.5. Under the conditions of Theorem 1.3, the discrete conformal
factor u is bounded on V . Furthermore, the condition (b) could be relaxed to that
both l, l′ are just Delaunay.

Proposition 1.6. Under the conditions of Theorem 1.3, if the discrete conformal
factor u is bounded on V , then it is constant on V .

The proof of Proposition 1.5 relies on a discrete Schwarz lemma, and estimating
conformal moduli for annuli. The proof of Proposition 1.6 is by constructing a
discretely conformal geometric flow from l toward l′, keeping the surface flat. The
derivative of the conformal factor in this flow is known to be discrete harmonic,
and thus constant by a discrete Liouville theorem.

1.1. Notations and conventions. Given 0 < r < r′, denote Dr = {z ∈ C : |z| <
r} and Ar,r′ = {z ∈ C : r < |z| < r′}. We also denote D = D1 as the unit open
disk. Given a subset X of C, Xc denotes the complement C\X and ∂X denotes
the boundary of X in C and int(X) denotes the interior of X in C and

diam(X) = sup{|z − z′| : z, z′ ∈ X},
denotes the diameter of X. Given two subsets X,Y of C, the distance between
X,Y is denoted by

d(X,Y ) = inf{|z − z′| : z ∈ X, z′ ∈ Y }.
Given i ∈ V , denote deg(i) as the number of neighbors of i and Ni as set of

neighbors of i, i.e., Ni = {j ∈ V : ij ∈ E}. Furthermore, we denote Ri as the union
of the triangles in T containing i. Ri is always viewed as the underlying space of
the subcomplex generated by the triangles containing i. Such Ri is called a 1-ring
neighborhood of i if Ri is homeomorphic to a closed disk with vertex i mapped to
the center of the disk. Given a subset V0 of V , a vertex i ∈ V0 ⊆ V is called an
inner point of V0, if Ni ⊆ V0 and Ri is a 1-ring neighborhood of i. We denote
int(V0) as the set of inner points of V0, and ∂V0 = V0 − int(V0). In particular, ∂V
is the set of vertices of T that are on the boundary of the surface |T |.

Given l ∈ RE and u ∈ RV , if u ∗ l is a PL metric then

(a) θijk(u) = θijk(u, l) denotes the inner angle of 4ijk at i under u ∗ l, and

(b) Ki(u) = Ki(u, l) denotes the discrete curvature at i for i ∈ int(V )

Ki(u) = 2π −
∑

jk:4ijk∈F

θijk(u).

1.2. Acknowledgement. The authors would like to thank Huabin Ge for the
encouragement. The first author is supported by NSF of China (No.11871283,
No.11971244 and No.12071338). The second author is supported by NSF 1760471.

2. Preparations for the Proof

2.1. Hyperbolic discrete conformality. The notion of the hyperbolic discrete
conformality was first introduced by Bobenko-Pinkall-Springborn in [BPS15]. A
piecewise hyperbolic (PH) metric on T is represented by a function lh : E → R+

such that every 4ijk ∈ F could form a hyperbolic triangle under the length lh.
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Let lh, lh′ be two PH metrics on T . We say lh is hyperbolic discretely conformal to
lh′ if there exists a function uh : V → R such that for any edge ij ∈ E

sinh
lhij
2

= e
1
2 (uh

i +uh
j ) sinh

lh′ij
2
.

In this case, u is called a hyperbolic discrete conformal factor and we denote lh′ =
uh ∗h lh.

Denote D as the hyperbolic space, represented in the Poincaré disk model. A
map φh : |T | → D is called a hyperbolic geodesic embedding if for every ij ∈ E, φh

maps ij to a hyperbolic geodesic segment connecting φh(i) and φh(j), and φh maps
|T | homeomorphically to its image. It is clear that a hyperbolic geodesic embedding
φh gives a PH metric lh(φh), or lh for short, by using the hyperbolic distance. A
hyperbolic geodesic embedding φh is called Delaunay if for any pair of adjacent
triangles 4ijk1,4ijk2 in T , φh(k2) /∈ int(Dijk1) where Dijk1 is the circumscribed
disk of φh(4ijk1). Notice that in the Poincaré disk model, a hyperbolic disk in D
is also a Euclidean disk in C.

Given i ∈ int(V ) and a Euclidean geodesic embedding φ : Ri → D, we say that
φ induces the hyperbolic geodesic embedding φh : Ri → D if φ(j) = φh(j) for all
j ∈ {i} ∪Ni. Such φh exists if l(φ) is non-degenerate and small, and φ(Ri) is away
from ∂D.

Lemma 2.1. Let φ : Ri → D be a (Euclidean) geodesic embedding where all the
inner angles in are at least ε > 0. Suppose

(2.1) lij ≤ (1− |φ(i)|2) sin ε, for every j ∈ Ni.

Then there exists a hyperbolic geodesic embedding φh : Ri → D such that φh coin-
cides with φ on the set of vertices, i.e., φ(j) = φh(j) for any j ∈ Ni ∪ {i}.

Proof. Denote m = deg(i) and z0 = φ(i). Let z1, ..., zm be the points in φ(Ni) such
that z1 − z0, ..., zm − z0 are counterclockwise. Let expz0 be the exponential map
with respect to the hyperbolic metric at z0. Identifying Tz0D with C by translating
z0 to the origin, denote v(z) = exp−1

z0 z ∈ C for any z ∈ D. Then we only need to
show the following claims.

(2.2) arg(
v(zk+1)

v(zk)
) ∈ (0, π), k = 1, · · · ,m,

and

(2.3)

m∑
k=1

arg
(v(zk+1)

v(zk)

)
= 2π,

where zm+1 = z1.
We first show the claim (2.2). Fix k ∈ {1, · · · ,m}, denote

P = {z ∈ C : arg(
z − z0

zk − z0
) ∈ (0, π)},

and

Ph = {z ∈ D : arg(
v(z)

v(zk)
) ∈ (0, π)}.

See Figure 1 for illustrations. Since φ is a geodesic embedding and z1−z0, ..., zm−z0

are counterclockwise, we have zk+1 ∈ P . We need to show zk+1 ∈ Ph. Let γh be the
entire geodesic connecting z0 and zk with respect to the hyperbolic metric. If γh is
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(a) Case 1 (b) Case 2

Figure 1

a straight line, then zk+1 ∈ Ph = P and we are done. Otherwise, γh is a Euclidean
circular arc and orthogonal to the boundary of the unit disk D. We denote z∗ and
R as the Euclidean center and the radius, respectively, or this circular arc. Then

R2 + 1 = |z∗|2 ≤ (|z0|+R)2.

So
1− |z0|2 ≤ 2R|z0| < 2R.

Then by Equation (2.1)

sin
∠z0z∗zk

2
=
|zk − z0|

2R
≤ (1− |z0|2) sin ε

2R
< sin ε.

So

∠z0zk+1zk ≥ ε >
1

2
∠z0z∗zk,

and

∠z0zk+1zk ≤ π − ε < π − 1

2
∠z0z∗zk.

Then from the knowledge of the plane geometry, we see zk ∈ Ph. We finish the
proof of claim (2.2).

Next we show the claim (2.3). We have

(2.4) arg
(v(zk+1)

v(zk)

)
+ arg

( v(zk)

zk − z0

)
= arg

(zk+1 − z0

zk − z0

)
+ arg

( v(zk+1)

zk+1 − z0

)
+ 2nπ,

for some integer n. From the knowledge of plane geometry, we have that

arg
( v(zk)

zk − z0

)
∈ (−π

2
,
π

2
).

Then together with the claim (2.2), both the right hand side and the left hand side
of Equation (2.4) lies in (−π2 ,

3π
2 ), so n = 0. Then we obtain

m∑
k=1

arg
(v(zk+1)

v(zk)

)
=

m∑
k=1

arg
(zk+1 − z0

zk − z0

)
= 2π.

We finish the proof. �
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Remark 2.2. One can show that such hyperbolic geodesic embedding φh exists, if
the Euclidean geodesic embedding φ maps each triangle in Ri to an acute triangle.

The discrete conformality and the hyperbolic discrete conformality are related
as follows.

Lemma 2.3. Let φ, φ′ : |T | → D be two geodesic embeddings with the induced PL
metrics l, l′ respectively. Suppose both φ, φ′ induce hyperbolic geodesic embeddings
φh, φh′ : |T | → D with the induced hyperbolic PH metrics lh, lh′ respectively. Then
l′ = u ∗ l if and only if lh′ = uh ∗h lh where u and uh are related by

uhi = ui + ln
1− |zi|2

1− |z′i|2
,

with zi = φ(i), z′i = φ′(i).

Proof. Denote dh as the hyperbolic distance function on D. Then the lemma follows
from the formula

sinh
dh(z1, z2)

2
=

|z1 − z2|√
(1− |z1|2)(1− |z2|2)

,

where z1, z2 ∈ D. See [And05]. �

Remark 2.4. In the smooth setting, Lemma 2.3 is interpreted as follows. Let Ω be
a domain in D and f be a smooth map from Ω to D, w = f(z). Denote g0 = |dz|2
as the Euclidean metric on D and g−1 = 4

(1−|z|2)2 |dz|
2 as the hyperbolic metric on

D. Suppose f is conformal with respect to g0, i.e. f∗g0 = e2ug0 for some smooth
function u = u(z). Then f is also conformal with respect to g−1. In fact

f∗g−1 = f∗(
4

(1− |w|2)2
|dw|2) =

4

(1− |f(z)|2)2
e2u|dz|2

=
( 1− |z|2

1− |f(z)|2
)2
e2ug−1 = e

2(u+ln
1−|z|2

1−|f(z)|2
)
g−1.

2.2. Discrete Laplacian on graphs. Let G = (V,E) be a connected simple
graph, and µ : E → [0,+∞) be a function on the set of edges. We call Gµ =
(V,E, µ) a weighted graph, or an electrical network. The discrete Laplacian operator
∆µ : RV → RV is defined as

(∆µu)i =
∑
j:ij∈E

µij(uj − ui).

We say that u is harmonic at i ∈ V , if (∆µu)i = 0. In this case we have the average
property

ui =
∑
j:ij∈E

µij∑
k:ik∈E

µik
uj

if µjk > 0 for all jk ∈ E. So we have the maximum principle.

Lemma 2.5 (Maximum principle for discrete harmonic functions). If µij > 0 for
all ij ∈ E and V0 is a finite proper subset of V and u is harmonic at every point
in V0, then u achieves its maximum and minimum on V − V0.

We also have the following well-posedness result of the discrete Laplace equation
with Dirichlet boundary condition.
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Lemma 2.6. Suppose µij > 0 for all ij ∈ E and V0 is a finite proper subset of V
and f is a given funciton on V − V0. Then the following equation of u ∈ RV

∆µu = 0 in V0, u = f on (V − V0)

has a unique solution. Furthermore, the map (µ, f) 7→ u is smooth.

Lemma 2.6 is well-known. Solving u ∈ RV here is indeed solving a diagonal
dominant linear system.

Let T = (V,E, F ) be a triangulation and l be a PL metric. Recall that Ki(u) =
2π −

∑
jk:4ijk∈F

θijk is the curvature at i ∈ V under the metric u ∗ l. The operator

K, u 7→ K(u), is smooth with respect to u. From the direct calculation or [Luo04],
one have

(2.5) dKi = −
∑
j:ij∈E

µij(duj − dui),

where

(2.6) µij = µij(u) =
1

2
(cot θk1ij (u) + cot θk2ij (u))

for adjacent triangles 4ijk1,4ijk2 ∈ F . It is not difficult to check that if u ∗ l
is uniformly Delaunay then µij ≥ ε for some constant ε = ε(T, l, u) > 0. From
Equation (2.5), we see that the linearization of −K is in fact a discrete Laplacian
operator with respect to Gµ = (V,E, µ).

2.3. Maximum principles for discrete curvature. Maximum principle plays
a very important role in partial differential equations and geometric analysis. For
the discrete conformal geometry, the curvature K, which is clearly nonlinear as
an operator on the set of conformal factors, also satisfies the (strong) maximum
principle.

The following lemma is a corollary of Theorem 3.1 in [LSW22]. In [DGM22] there
is another proof of the maximum principle for a special case. Let T = (V,E, F ) be
a triangulated surface.

Lemma 2.7. Suppose i ∈ V and Ri is a 1-ring neighborhood. Let φ, φ′ : Ri → C
be two Delaunay geodesic embeddings with induced PL metric l, l′ respectively. If
l′ = u ∗ l, then

ui ≤ max
j∈Ni

uj , ui ≥ min
j∈Ni

uj .

Furthermore, if ui = max
j∈Ni

uj or ui = min
j∈Ni

uj, then u is a constant on {i} ∪Ni.

As a direct corollary, we have the following maximum principle.

Lemma 2.8. Let T = (V,E, F ) be a triangulation of a compact surface with bound-
ary. Let φ, φ′ : |T | → C be two Delaunay geodesic embeddings with induced PL
metric l, l′ respectively. Suppose φ and φ′ are discretely conformal, l′ = u ∗ l. Then

max
j∈V

uj = max
j∈∂V

uj , min
j∈V

uj = min
j∈∂V

uj .

Furthermore, if max
j∈int(V )

uj = max
j∈V

uj or min
j∈int(V )

uj = min
j∈V

uj, then u is a constant

on V .

For the hyperbolic setting, we have the following modified version of the maxi-
mum principle.
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Lemma 2.9. Suppose i ∈ V and Ri is a 1-ring neighborhood. Let φh, φh′ : Ri →
D be two Delaunay hyperbolic geodesic embeddings with induced PH metric lh, lh′

respectively. Suppose φh and φh′ are hyperbolic discretely conformal, lh′ = uh ∗h lh.
Then uhi < 0 implies that

uhi > min
j∈Ni

uhj .

Proof. Since the hyperbolic discrete conformality and conformal factor are invariant
under the hyperbolic isometric group, we may assume φh(i) = 0, φh′(i) = 0. Then
φh, φh′ are induced by Euclidean geodesic embeddings φ, φ′ with PL metric l, l′

respectively. Notice that the hyperbolic isometric group preserves circles, so l, l′

are also Delaunay. From Lemma 2.3, since lh′ = uh ∗h lh, we have l and l′ are also
discretely conformal. Specifically l′ = u ∗ l where

uj = uhj − ln
1− |zj |2

1− |z′j |2
.

In particular ui = uhi . From the maximum principle Lemma 2.7, there exists j0 ∈ Ni
such that uj0 ≤ ui. Suppose uhi < 0. Then

|z′j0 | = l′ij0 = e
1
2 (ui+uj0

)lij0 < lij0 = |zj0 |.
Therefore

uhj0 = uj0 + ln
1− |zj0 |2

1− |z′j0 |2
≤ ui + ln

1− |zj0 |2

1− |z′j0 |2
< ui = uhi .

So
uhi > min

j∈Ni

uhj .

�

As a direct corollary, we have

Lemma 2.10. Let T = (V,E, F ) be a triangulation of a compact surface with
boundary. Let φh, φh′ : |T | → D be two Delaunay hyperbolic geodesic embeddings
with induced PH metric lh, lh′ respectively. Suppose φh and φh′ are hyperbolic dis-
cretely conformal, lh′ = uh ∗h lh. Then uhi < 0 implies that

uhi > min
j∈∂V

uhj .

Remark 2.11. In the smooth setting, the maximum principles above are interpreted
as follows. Let Ω be a domain in C. Let f be a conformal map from Ω to C with
respect to the Euclidean metric g0 = |dz|2. Suppose f∗g0 = e2ug0. From the
curvature formula, for g = g(z)|dz|2,

Kg = − 2

g(z)
∂z∂z̄ ln g(z),

we have 4u = 0. So u satisfies the maximum principle as in Lemma 2.8.
On the other hand, let Ω be a domain in D. Let f be a conformal map from Ω

to D with respect to the hyperbolic metric g−1 = 4
(1−|z|2)2 |dz|

2. Suppose f∗g−1 =

e2uh

g−1. From the curvature formula, we have

4g−1
uh = e2uh

− 1,

where 4g−1 = (1− |z|2)2∂z∂z̄. So uh satisfies the maximum principle as in Lemma
2.10.
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2.4. Modulus of annuli. We briefly review the notion of conformal modulus.
The definitions and properties discussed here are mostly well-known. One may
refer [Ahl10] and [LV73] for more comprehensive introductions.

A closed annulus is a subset of C that is homeomorphic to {z ∈ C : 1 ≤ |z| ≤
2}. An (open) annulus is the interior of a closed annulus. Given an annulus A,
denote Γ = Γ(A) as the set of smooth simple closed curves in A separating the
two boundary components of A. A real-valued Borel measurable function f on A
is called admissible if

∫
γ
fds ≥ 1 for all γ ∈ Γ. Here ds denotes the element of arc

length. The (conformal) modulus of A is defined as

Mod(A) = inf{‖f‖22 : f is admissible},
where ‖f‖22 denotes the integral of (f(z))2 against the 2-dim Lebesgue measure on
A. From the definition it is straightforward to verify that Mod(A) is conformally
invariant. Furthermore, if f : A → A′ is a K-quasiconformal homeomorphism
between two annuli, then

1

K
·Mod(A) ≤ Mod(A′) ≤ K ·Mod(A).

Given 0 < r < r′, denote Ar,r′ as the annulus {z ∈ C : r < |z| < r′}. It is
well-known that

Mod(Ar,r′) =
1

2π
ln
r′

r
.

Intuitively, the modulus measures the relative thickness of an annulus. If an an-
nulus A in C\{0} contains Ar,r′ , then it is “thicker” than Ar,r′ and we have the
monotonicity

Mod(A) ≥ Mod(Ar,r′) =
1

2π
ln
r′

r
.

On the other hand, we have that

Lemma 2.12. Suppose A ⊆ C\{0} is an annulus separating 0 from the infinity. If
Mod(A) ≥ 100, then A ⊇ Ar,2r for some r > 0.

Proof. Deonte B as the bounded component of C − A, and r = max{|z| : z ∈ B}
and r′ = min{|z| : z ∈ (B ∪ A)c}. If r′ ≥ 2r we are done. So we may assume
r′ < 2r.

Then D2r∩γ 6= ∅ for all γ ∈ Γ(A). Let f be the function on A such that f(z) = 1
r

on A ∩D3r and f(z) = 0 on A\D3r. If γ ∈ Γ and γ ⊆ D3r,∫
γ

fds = s(γ) · 1

r
≥ 2 · diam(B) · 1

r
≥ 2r · 1

r
> 1.

If γ ∈ Γ and γ 6⊆ D3r, then γ is a connected curve connecting D2r and Dc
3r and∫

γ

fds ≥ d(D2r, D
c
3r) ·

1

r
= r · 1

r
= 1.

So f is admissible and

Mod(A) ≤
∫
A

f2 =
1

r2
·Area(A ∩D3r) ≤

π(3r)2

r2
= 9π < 100.

This contradicts with our assumption. �

Remark 2.13. To some extend, Lemma 2.12 is a consequence of Teichmüller’s
result on extremal annuli (see Theorem 4-7 in [Ahl10]). The constant 100 is chosen
for convenience and should not be optimal.
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2.5. Recurrence of electrical networks. Discrete harmonic functions are closely
related to the theory of electrical networks. Let Gµ = (V,E, µ) be a weighted graph,
i.e. a graph G = (V,E) with a function µ : E → [0,∞). A weighted graph Gµ
could be viewed as an electrical network, where µij denotes the conductance of
the edge ij. Consider a function u : V → R, which denotes the electric potentials
at the vertices. Then u is harmonic at i if and only if the outward electric flux
at i is 0. The theory of electrical networks is closely related to discrete extremal
length, originally introduced by Duffin [Duf62]. Here we briefly review the theory of
discrete extremal length, adapted to our setting. All the definitions and properties
here are well-known and one may read [He99] for references.

Let V1, V2 be two nonempty disjoint subsets of V . Denote Γ(V1, V2) as the set
of the paths joining V1 and V2. An edge metric is a function m : V → [0,∞). An
edge metric m is called Γ(V1, V2)-admissible if

∑
e∈γ

m(e) ≥ 1 for every γ ∈ Γ(V1, V2).

The conductance of Γ(V1, V2) is defined as

Cond(V1, V2) = inf{
∑
e∈E

µ(e)m2(e) : m is Γ(V1, V2)-admissible.}.

The resistance of Γ(V1, V2) is defined as

Res(V1, V2) =
1

Cond(V1, V2)
.

An electrical network Gµ is called connected if G′µ = (V,E \ {e ∈ E : µ(e) = 0}) is
connected. Let V0 be a nonempty finite subset of vertices in Gµ. Then a connected
electric network Gµ is called recurrent if Res(V0,∞) =∞, and transient otherwise.
The recurrency of Gµ is independent of the choice of V0. The following lemma is
well-known and shows that the recurrency implies a discrete Liouville property. See
Lemma 5.5 in [He99] for a proof.

Lemma 2.14. Suppose Gµ is recurrent and u is a bounded function on V , if u is
harmonic on every point of V , then u is constant.

To check that an electrical network Gµ is recurrent, one may study the vertex
extremal length of the graph G as follows.

Let G = (V,E) be a graph. A vertex metric is a function η : V → [0,∞). A
vertex metric η is called Γ(V1, V2)-admissible if

∑
v∈γ

η(v) ≥ 1 for every γ ∈ Γ(V1, V2).

The vertex modulus of Γ(V1, V2) is defined as

Mod(V1, V2) = inf{
∑
v∈V

η2(v) : η is Γ(V1, V2)-admissible.}.

The vertex extremal length of Γ(V1, V2) is defined as

VEL(V1, V2) =
1

Mod(V1, V2)
.

Let V0 be a nonempty finite subset of vertices in a connected graph G. Then G
is called VEL-parabolic if VEL(V0,∞) = ∞, and VEL-hyperbolic otherwise. The
definition is independent of the choice of V0.

The relation between the VEL-parabolicity and the recurrence is as follows.
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Lemma 2.15 (Lemma 5.4 in [He99]). Let C > 0 be a constant. Suppose that for
each vertex v, we have

∑
v∈e

µ(e) ≤ C. Then for any mutually disjoint, nonempty

subsets V1 and V2 of V , we have

VEL(V1, V2) ≤ 2C · Res(V1, V2).

In particular, if G is VEL-parabolic and Gµ is connected, then Gµ is recurrent.

3. Proof of the Main Theorem

We will prove our main Theorem 1.3 by proving Propositions 1.5 and 1.6. We
will first derive needed estimates on uniformly nondegenerate triangulations in Sec-
tion 3.1. A discrete Schwarz lemma is developed in Section 3.2, for the proof of
Proposition 1.5 in Section 3.3. A discrete Liouville theorem is developed in Section
3.4, for the proof of Proposition 1.6 in Section 3.5.

3.1. Estimates on uniformly nondegenerate triangulations.

Lemma 3.1. Suppose φ : |T | → C is a geodesic embedding and all the inner angles
in l = l(φ) are at least ε. Then we have the following.

(a) For all i ∈ V , deg(i) ≤ 2π
ε .

(b) For all 4ijk ∈ F ,

sin ε ≤ lij
lik
≤ 1

sin ε
.

(c) For all 4ijk,

sin2 ε

2
l2ij ≤ Area(φ(4ijk)) ≤ 1

2 sin ε
l2ij .

(d) There exists a constant δ = δ(ε) > 0 such that for all 4ijk ∈ F with
i, j, k ∈ int(V ),

d(U cijk, φ(4ijk)) ≥ δ · diam(φ(4ijk)),

where

Uijk = int(φ(Ri)) ∪ int(φ(Rj)) ∪ int(φ(Rk)).

(e) Suppose a ∈ V and φ(a) = 0. Assume r > 0 is such that

φ(Ra) ⊆ Dr ⊆ φ(|T |).
Denote V1 = {i ∈ V : φ(i) ∈ Dr} and T1 as the subcomplex generated by V1. Then
there exists a constant C = C(ε) > 0 such that Dr/C ⊆ φ(|T1|).

Proof. (a) It is from

2π ≥
∑

jk:4ijk∈F

θijk ≥
∑

jk:4ijk∈F

ε = deg(i) · ε.

(b) This is by the sine law.
(c) This estimate is straightforward from the area formula

Area(φ(4ijk)) =
1

2
lij lik sin θijk =

1

2
l2ij

sin θjik
sin θkij

sin θijk.

(d) We may normalize diam(φ(4ijk)) = 1 and φ(i) = 0. By part (a), there
are finitely many possible combinatorial structures of the natural triangulation of
Ri ∪ Rj ∪ Rk. Fixing a combinatorial structure, d(U cijk, φ(4ijk)) is positive and
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continuously determined by φ(a)’s for a ∈ Ni ∪ Nj ∪ Nk. By the compactness
d(U cijk, φ(4ijk)) has a positive lower bound δ = δ(ε).

(e) Pick δ as in part (d) and we claim that C = 1 + 2/δ is a desired constant.
Let us prove by contradiction and assume that there exists z ∈ Dr/C\φ(|T1|). Then
there exists a triangle 4ijk ∈ F such that z ∈ 4ijk. Then 4ijk is not a triangle
in T1 and we may assume i /∈ V1, so |φ(i)| ≥ r. Since φ(Ra) ⊆ Dr, we have ai /∈ E.
So a 6= i, j, k, then 0 = φ(a) /∈ Uijk. Then

r/C ≥ |0− z| ≥ d(U cijk,4ijk) ≥ δ · diam(4ijk)

≥ δ · |φ(i)− z| ≥ δ · (r − r/C) = (r/C) · δ(C − 1) = 2r/C

and we get a contradiction. �

3.2. A discrete Schwarz lemma. Recall that the Schwarz lemma says that any
holomorphic map f : D → D satisfies that |f ′(0)| ≤ 1 if f(0) = 0. Here we prove a
discrete weaker version of the Schwarz lemma. Let T be a triangulated surface.

Proposition 3.2. Suppose φ, φ′ are geodesic embeddings of |T | into C with induced
PL metrics l, l′. Assume both l, l′ satisfy the uniformly nondegenerate condition with
constant ε > 0 and the Delaunay condition. If r, r′ > 0 and T0 is a finite subcomplex
of T satisfing that

φ(|T0|) ⊆ Dr, Dr′ ⊆ φ′(|T0|),

then there exists a constant M = M(ε) > 0 such that for every i ∈ V satisfying
φ′(i) ∈ Dr′/2, we have

ui ≥ log
r′

r
−M.

Proof. Without loss of generality, we assume ε ≤ π/6. By scaling, we may assume
r = 1

4 sin3 ε ≤ 1
4 and r′ = 1. Denote

V1 = {i ∈ V : φ′(i) ∈ D = D1}

and T1 = T (V1) as the subcomplex generated by V1. Then φ, φ′ map |T1| into D.
Let zi = φ(i), z′i = φ′(i). Denote

uhi = ui + ln
1− |zi|2

1− |z′i|2
.

We claim uhi ≥ 0 for every i ∈ V1. Just let i attain the minimum of uh in V1.
Here int(V1) and ∂V1 are with respect to T , and defined in Section 1.1.
(1) If i ∈ int(V1) and l′ij < (1− |z′i|2) sin ε, for every ij ∈ E, then from Lemma 2.1,

φ′ induces a hyperbolic geodesic embedding φh′ from the 1-ring neighborhood Ri of
i0 into D. Since φ′ is Delaunay, φh′ is also Delaunay. Since φ(|V1|) ⊂ Dsin3 ε/4, for

the same reason φ also induces a Delaunay hyperbolic geodesic embedding φh from
Ri into D. Then the hyperbolic maximum principle Lemma 2.9 implies uhi ≥ 0.
(2) If i ∈ int(V1) and there exists j ∈ V1, ij ∈ E such that l′ij ≥ (1 − |z′i|2) sin ε,
then from Lemma 3.1 (b),

e(ui−uj)/2 =
e(ui+uk)/2

e(uj+uk)/2
=
l′ik
lik

ljk
l′jk
≥ sin2 ε
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where 4ijk ∈ F . So

eu
h
i = eui · 1− |zi|2

1− |z′i|2
=
l′ij
lij
· e(ui−uj)/2 · 1− |zi|2

1− |z′i|2

≥
l′ij
lij
· sin2 ε · 1− |zi|2

1− |z′i|2
≥ sin3 ε · 1− |zi|2

lij
≥ sin3 ε · 1/2

2r
= 1.

(3) If i ∈ ∂V1, then there exists j ∈ V such that φ′(j) /∈ D. Then l′ij ≥ 1 − |z′i|.
Since we assume ε ≤ π

6 , then l′ij ≥ (1− |z′i|2) sin ε. As the estimates above, we also

have eu
h
i ≥ 1.

So uhi ≥ 0 for every i ∈ V1. Then for i ∈ V satisfying φ′(i) ∈ D1/2, set

M = − ln sin3 ε
8 , and we have

ui = uhi − ln
1− |zi|2

1− |z′i|2
≥ − ln

1− |zi|2

1− |z′i|2
≥ ln(1− |z′i|2) ≥ ln

1

2
= ln

r′

r
−M.

�

3.3. Proof of the boundedness of the conformal factor. In this section, we
prove that the discrete conformal factor u is bounded, i.e. Proposition 1.5.

Proof of Proposition 1.5. Without loss of generality, we may assume that φ′ ◦ φ−1

is linear on each triangle φ(4ijk). Then φ′ ◦ φ−1 is K-quasiconformal for some
constant K = K(ε) > 0. We will prove the boundedness of u by showing that for
every j1, j2 ∈ V ,

|uj1 − uj2 | ≤ 2M + 2 lnC + lnC ′ − ln 2,

where M = M(ε) is the constant given in Proposition 3.2 and C = C(ε) is the
constant given in Lemma 3.1 (e) and C ′ = C ′(ε) = e200πK .

Assume j1, j2 ∈ V . For convenience, let us assume φ(j1) = φ′(j1) = 0 by
translations. Pick r > 0 sufficiently large such that |φ(j2)| < r/(2C) and φ(Rj1) ⊆
Dr. Let

V1 = {i ∈ V : φ(i) ∈ Dr} and V2 = {i ∈ V : φ(i) ∈ DCC′r}.

Denote T1, T2 as the subcomplexes generated by V1, V2 respectively. Then by
Lemma 3.1 (e) we have

(3.1) {φ(j1), φ(j2)} ⊆ Dr/(2C) ⊆ Dr/C ⊆ φ(|T1|) ⊆ Dr.

And

(3.2) DC′r ⊆ φ(|T2|) ⊆ DCC′r.

Recall that Ar1,r2 = {z ∈ C : r1 < |z| < z2}. Then A = Ar,C′r separates φ(|T1|)
and φ(|T2|)c, and then A′ = φ′ ◦φ−1(A) separates φ′(T1) and φ′(T2)c. Furthermore

Mod(A′) ≥ 1

K
·Mod(A) =

1

K
· 1

2π
ln
C ′r

r
= 100.

Then by Lemma 2.12 there exists r′ > 0 such that Ar′,2r′ ⊆ A′. So Ar′,2r′ separates
φ′(T1) and φ′(T2)c and then

(3.3) φ′(|T1|) ⊆ Dr′

and

(3.4) {φ′(j1), φ′(j2)} ⊆ Dr′ ⊆ D2r′ ⊆ φ′(|T2|).
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By Proposition 3.2, Equation (3.2) and Equation (3.4), both uj1 , uj2 are at least

ln
2r′

CC ′r
−M = ln

r′

r
+ ln

2

CC ′
−M.

Again by Proposition 3.2, Equation (3.3) and Equation (3.1), both −uj1 and −uj2
are at least

ln
r/C

r′
−M = ln

r

r′
− lnC −M.

So both uj1 and uj2 are in the interval

[ln
r′

r
+ ln

2

CC ′
−M, ln

r′

r
+ lnC +M ],

and |uj1 − uj2 | is bounded by the length of this interval

2M + lnC − ln
2

CC ′
= 2M + 2 lnC + lnC ′ − ln 2.

�

3.4. A discrete Liouville theorem. In this section, we prove the following dis-
crete Liouville theorem.

Proposition 3.3. Suppose φ : |T | → C is a geodesic homeomorphism, and l satis-
fies the uniformly nondegenerate condition and the Delaunay condition. Given the
weight µ ∈ RE≥0 defined as in equation (2.6), then any bounded function u on V is
constant if u is harmonic at every point of V .

Proof. By Lemma 2.14, it suffices to show (V,E, µ) is recurrent. Let us assume l is
uniformly nondegerate with constant ε > 0. Then for all i ∈ V ,∑

j:ij∈E
µij ≤ deg(i) · cot ε ≤ 2π cot ε

ε
.

Then by Lemma 2.15, it suffices to show (V,E) is VEL-parabolic and (V,E, µ) is
connected.

First we show that if two subsets V1, V2 are separated by an annulus, then the
vertex extremal length has a lower bound.

Lemma 3.4. Let V1, V2 be two nonempty subsets of V such that φ(V1) ⊆ Dr1 ,
φ(V2) ⊆ Dc

r2 . Suppose for every i ∈ V1, φ(|Ri|) ⊆ Dr2 . Then there is a constant
C = C(ε) > 0 such that

VEL(V1, V2) ≥ C
(
1− (

r1

r2
)2
)
.

In particular, if r2 ≥ 2r1, there is a constant C = C(ε) > 0 such that VEL(V1, V2) ≥
C.

Proof. Denote dM (i) = max
j:ji∈E

d(φ(i), φ(j)). Consider the vertex metric η as follows.

For i ∈ V , if φ(i) ∈ Dc
r2 , then define η(i) = 0; if φ(i) ∈ Dr2 and there exists j ∈ V ,

ji ∈ E such that φ(j) ∈ Dr2 , then define η(i) = dM (i)
r2−r1 ; if φ(i) ∈ Dr2 and there is

no j ∈ V , ji ∈ E such that φ(j) ∈ Dr2 , then define η(v) = 0.
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First we check η is Γ(V1, V2)-admissible. Let γ = {i0, ..., ik} be a path joining V1

and V2 such that i0, · · · , ik−1 ∈ Dr2 and ik ∈ Dc
r2 . Then from the assumptions

k−1∑
s=0

η(is) =
1

r2 − r1

k−1∑
s=0

dM (is)

≥ 1

r2 − r1

k−1∑
s=0

d(φ(is), φ(is+1)) ≥ 1

r2 − r1
d(φ(i0), φ(ik+1)).

Since φ(i0) ∈ V1 ⊆ Dr1 and φ(ik+1) ∈ Dc
r2 , we obtain

∑
i∈γ

η(i) ≥ 1
r2−r1 (r2− r1) = 1.

Next we estimate an upper bound of
∑
i∈V

η2(i). We only need to consider the

vertices where η are nonzero. For i ∈ V , η(i) 6= 0, since φ(i) ∈ Dr2 and there is
j ∈ V such that φ(j) ∈ Dr2 and ji ∈ E, we have d(φ(i), φ(j)) ≤ 2r2. Then from
Lemma 3.1 (a) and (b), there is a constant C1 = C1(ε) > 0 such that dM (i) ≤ C1r2.
So for every i ∈ V , η(i) 6= 0, we have φ(Ri) ⊂ D(1+C1)r2 . Then from Lemma 3.1
(a) and (b) and (c), there is a constant C2 = C2(ε) > 0 such that∑

i∈V
η2(i) =

∑
η(i) 6=0

d2
M (i)

(r2 − r1)2
≤
∑
η(i)6=0

C2Area(φ(Ri))

(r2 − r1)2
.

Since every triangle is calculated at most three times in φ(|Ri|), i ∈ V , we obtain∑
i∈V

η2(i) ≤
3C2Area(D(1+C1)r2)

(r2 − r1)2
=

1

C

r2
2

(r2 − r1)2
.

So Mod(V1, V2) ≤ 1
C

r22
(r2−r1)2 . We finish the proof. �

The vertex extremal length has a property of additivity, which is from Lemma
5.1 in [He99].

Lemma 3.5 (Lemma 5.1 in [He99]). Let V1, V2, · · · , V2m be mutually disjoint, non-
void subsets of vertices such that for i1 < i2 < i3, Vi2 separates Vi1 from Vi3 ,
i.e. every path joining Vi1 and Vi3 must pass through a vertex in Vi2 . We allow
V2m =∞. Then we have

VEL(V1, V2m) ≥
m∑
i=1

VEL(V2k−1, V2k).

Then combining Lemma 3.4 and Lemma 3.5, we can show the following lemma.

Lemma 3.6. (V,E) is VEL-parabolic.

Proof. We construct infinitely many Vk by induction starting from a finite subset V1

of V . Given a finite subset Vk of V , choose r large enough such that
⋃
i∈Vk

φ(Ri) ⊆ Dr.

Denote Ṽ = {i ∈ V : φ(i) ∈ D2r}. Consider V ′ =
⋃
i∈Ṽ

Ri, V
′′ =

⋃
i∈V ′

Ri. Choose r′

such that φ(V ′′) ⊆ Dr′ . Since the interior of φ(Ri), i ∈ V cover the plane, we can
choose a finite subset V ′k+1 such that ∂Dr′ ⊆

⋃
i∈V ′k+1

int(φ(Ri)), and we may assume

∂Dr′ ∩ int(φ(Ri)) 6= ∅. Then set

Vk+1 = {i ∈ V : there exists j ∈ V ′k+1 such that ji ∈ E}.
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We claim φ(Vk+1) ⊆ Dc
2r. If not, then there exists i ∈ V ′k+1 such that i ∈ V ′. Then

φ(Ri) ⊆ Dr′ , which does not intersect with ∂Dr′ . Contradiction.
As construction above, we obtain that for i ∈ Vk, φ(Ri) ⊆ Dr and φ(Vk+1) ⊆

Dc
2r. Since ∂Dr′ ⊆

⋃
i∈V ′k+1

φ(Ri), it is clearly Vk+1 separates Vk and Vk+2. So the

conditions in Lemma 3.4 and Lemma 3.5 hold. �

It remains to show that Gµ = (V,E, µ) is connected, i.e., G′µ is connected. We
notice that if µij = 0 then the points φ(i), φ(k1), φ(j), φ(k2) are co-circle. So to
obtain G′µ, we just delete, for finitely many times, the interior edges of a polygon,
whose vertices are co-circle. So G′µ is connected. �

3.5. Proof of that the conformal factor is constant. In this section, we show
that u is constant, i.e. Proposition 1.6, then finish the whole proof of main Theorem
1.3.

Proof of Proposition 1.6. In the proof, we will construct a deformation of discrete
conformal factors u(t). To avoid being confused with u and u(t), we use the notation
ū instead of u in the statement of Proposition 1.6. In other words, we assume
l′ = ū ∗ l and want to prove that ū is bounded.

Let us prove by contradiction and assume that ū is not constant. Without loss
of generality, we can do a scaling and assume

inf
i∈V

ūi < 0 < sup
i∈V

ūi

and

− inf
i∈V

ūi = sup
i∈V

ūi = |ū|∞.

By a standard compactness arguement, there exists a constant δ0 = δ0(ε), such
that for every function u : V → R satisfying |u|∞ < 2δ0, u ∗ l satisfies the triangle
inequalities and is uniformly nondegenerate and uniformly Delaunay.

Denote δ = min{δ0, |ū|∞}. Pick a sequence of increasing finite subsets Vn of V

such that
∞⋃
n=1

Vn = V . We use the notation in Section 2.2. For each n ∈ N, we will

construct a smooth RVn -valued function u(n)(t) = [u
(n)
i (t)]i∈Vn

on (−2δ, 2δ) such
that

(a) u(n)(0) = 0, and

(b) u̇
(n)
i (t) = ūi/|ū|∞ if i ∈ ∂Vn, and

(c) if i ∈ int(Vn) then

(3.5)
∑
j:ij∈E

µij(u
(n)(t))(u̇

(n)
j (t)− u̇(n)

i (t)) = 0

where µij(u) is defined for all ij ∈ E(Vn) as in Equation (2.6).
The conditions (b) and (c) give an autonomous ODE system on

Un = {u ∈ RVn : |u|∞ < 2δ}.

Notice that µij(u) > 0 if u ∈ Un. Then by Lemma 2.6, u̇(n)(t) is smoothly

determined by u(n)(t) on Un. Given the initial condition u(n)(0) = 0, assume
the maximum existence interval for this ODE system on Un is (tmin, tmax) where
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tmin ∈ [−∞, 0) and tmax ∈ (0,∞]. By the maximum principle Lemma 2.5, for all
i ∈ Vn

|u̇(n)|∞ ≤ max
j∈∂Vn

|u̇(n)
j | = max

j∈∂Vn

|ūj |/|ū|∞ ≤ 1.

So |u(n)(t)|∞ ≤ t ≤ tmax for all t ∈ [0, tmax). By the maximality of tmax, tmax ≥ 2δ
and for a similar reason tmin ≤ −2δ. So u(n)(t) is indeed well-defined on (−2δ, 2δ).
By Equation (2.5) and Equation (3.5), Ki(u

(n)(t)) = 0 for all i ∈ int(Vn). Then by
Lemma 2.5, for all i ∈ Vn

|ūi − u(n)
i (δ)| ≤ max

j∈∂Vn

|ūj − u(n)
j (δ)|

= max
j∈∂Vn

(
ūj − δ ·

ūj
|ū|∞

)
≤ (1− δ

|ū|∞
)|ū|∞ = |ū|∞ − δ.(3.6)

By picking a subsequence, we may assume that u
(n)
i converge to u∗i on [0, δ]

uniformly for all i ∈ V . Then u∗ = [u∗i ]i∈V satisfies the following properties.
(a) u∗i (t) is 1-Lipschitz for all i ∈ V . As a consequence, for all i ∈ V , u∗i (t) is

differentiable at a.e. t ∈ [0, δ].
(b) u∗(t)∗ l is uniformly nondegenerate and uniformly Delaunay for all t ∈ [0, δ].
(c) For all i ∈ V , Ki(u

∗(t)) = 0. As a consequence for a.e. t ∈ [0, δ],

0 =
d

dt
Ki(u

∗(t)) =
∑
j:ij∈E

µij(u
∗(t))(u̇∗j (t)− u̇∗i (t)),

for all i ∈ V .
(d) By Proposition 3.3, u̇∗(t) is constant on V for a.e. t ∈ [0, δ]. As a consequence

u∗i (δ) equals to a constant c independent on i ∈ V .
(f) By Equation (3.6),

|ūi − c| = |ūi − u∗i (δ)| ≤ |ū|∞ − δ
for all i ∈ V . As a consequence we get the following contradiction

2|ū|∞ = | sup
i∈V

ūi − inf
i∈V

ūi| ≤ | sup
i∈V

ūi − c|+ | inf
i∈V

ūi − c| ≤ 2|ū|∞ − 2δ.

�

References

[Ahl10] Lars Valerian Ahlfors. Conformal invariants: topics in geometric function theory, vol-
ume 371. American Mathematical Soc., 2010.

[And05] James W Anderson. Hyperbolic geometry. Springer, 2005.
[BPS15] Alexander I Bobenko, Ulrich Pinkall, and Boris A Springborn. Discrete conformal maps

and ideal hyperbolic polyhedra. Geometry & Topology, 19(4):2155–2215, 2015.

[DGM22] Song Dai, Huabin Ge, and Shiguang Ma. Rigidity of the hexagonal delaunay triangu-

lated plane. Peking Mathematical Journal, 5(1):1–20, 2022.
[Duf62] RJ Duffin. The extremal length of a network. Journal of Mathematical Analysis and

Applications, 5(2):200–215, 1962.
[He99] Zheng-Xu He. Rigidity of infinite disk patterns. Annals of Mathematics, pages 1–33,

1999.

[LSW22] Feng Luo, Jian Sun, and Tianqi Wu. Discrete conformal geometry of polyhedral surfaces

and its convergence. Geometry & Topology, 26(3):937–987, 2022.
[Luo04] Feng Luo. Combinatorial yamabe flow on surfaces. Communications in Contemporary

Mathematics, 6(05):765–780, 2004.
[LV73] Olli Lehto and Kaarlo Ilmari Virtanen. Quasiconformal mappings in the plane, volume

126. Citeseer, 1973.



18 SONG DAI AND TIANQI WU

[WGS15] Tianqi Wu, Xianfeng Gu, and Jian Sun. Rigidity of infinite hexagonal triangulation

of the plane. Transactions of the American Mathematical Society, 367(9):6539–6555,

2015.

Center for Applied Mathematics, Tianjin University, Tianjin, 300072, P.R. China
Email address: song.dai@tju.edu.cn

Department of Mathematics, Clark University, 950 Main St, Worcester, MA 01610,
USA

Email address: mike890505@gmail.com


	1. Introduction
	1.1. Notations and conventions
	1.2. Acknowledgement

	2. Preparations for the Proof
	2.1. Hyperbolic discrete conformality
	2.2. Discrete Laplacian on graphs
	2.3. Maximum principles for discrete curvature
	2.4. Modulus of annuli
	2.5. Recurrence of electrical networks

	3. Proof of the Main Theorem
	3.1. Estimates on uniformly nondegenerate triangulations
	3.2. A discrete Schwarz lemma
	3.3. Proof of the boundedness of the conformal factor
	3.4. A discrete Liouville theorem
	3.5. Proof of that the conformal factor is constant

	References

