
Briefings in Bioinformatics, 2022, pp. 1–12

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

Explorer: Efficient DNA Coding by De Bruijn Graph
towards Arbitrary Local and Global Biochemical
Constraints

Chang Dou,1,† Yijie Yang,1,† Fei Zhu,1 BingZhi Li2,3,∗ and Yuping Duan1,∗

1Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China, 2Frontiers Science Center for Synthetic Biology and Key

Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China and 3School of Chemical

Engineering and Technology, Tianjin University, Tianjin, 300072, China
†First Author and Second Author contribute equally to this work.∗Corresponding author. yuping.duan@tju.edu.cn,bzli@tju.edu.cn

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

With the exponential growth of digital data, there is a pressing need for innovative storage media and techniques. DNA
molecules, due to their stability, storage capacity, and density, offer a promising solution for information storage. However,
DNA storage also faces numerous challenges, such as complex biochemical constraints and encoding efficiency. This paper
presents Explorer, a high-efficiency DNA coding algorithm based on the De Bruijn graph, which leverages its capability
to characterize local sequences. Explorer enables coding under various biochemical constraints, such as homopolymers,
GC content, and undesired motifs. This paper also introduces Codeformer, a fast decoding algorithm based on the
transformer architecture, to further enhance decoding efficiency. Numerical experiments indicate that, compared to other
advanced algorithms, Explorer not only achieves stable encoding and decoding under various biochemical constraints
but also increases the encoding efficiency and bit rate by more than 10%. Additionally, Codeformer demonstrates the
ability to efficiently decode large quantities of DNA sequences. Under different parameter settings, its decoding efficiency
exceeds that of traditional algorithms by more than two-fold. When Codeformer is combined with RS code, its decoding
accuracy exceeds 99%, making it a good choice for high-speed decoding applications. These advancements are expected
to contribute to the development of DNA-based data storage systems and the broader exploration of DNA as a novel
information storage medium.

Key words: DNA storage, biochemical constraint, transformer, De Bruijn graph

Introduction

Due to the exponential growth of digital information, it

is necessary to develop new solutions to meet the growing

storage needs [1, 2, 3, 4]. Traditional storage devices are

facing limitations in capacity and longevity, proving them

insufficient for the increasing volume of the generated data.

DNA is well-known as one of the most stable biomolecules,

which can preserve information for more than centuries with

low energy costs. In addition to that, the storage capacity of

DNA molecules is about 4.2 × 1021 bits per gram, which is

420 billion times that of traditional storage media [5]. Thus,

DNA medium becomes a new data storage technology, which

can achieve digital data storage by encoding and decoding the

synthesized DNA. DNA storage involves five key components:

encoding, synthesis, storage, sequencing, and decoding (see Fig.

1A), where the coding algorithm serves as the intermediary for

the reciprocal conversion between digital information and DNA

molecules. Thus, the DNA coding algorithm is the most basic

and critical step for DNA storage.

Due to the limitation of biochemical technology during

the DNA storage process, the DNA sequence must conform

to specific biochemical constraints to minimize the error rate

in the biochemical process [6]. A key objective in designing

encoding algorithms is to ensure that the encoded DNA

strings adhere to the biochemical constraints imposed by

DNA storage synthesis and sequencing technologies. Two

primary biochemical constraints widely employed are GC

content balance and homopolymer length. Deviating from the

optimal GC content range, whether higher or lower, may

result in reduced sequencing coverage, emphasizing the need to

constrain GC content within a specific range [7]. The lengths

of homopolymer need to be constrained to a specific value

to minimize error rates during the synthesis and sequencing

[3]. Several existing DNA encoding algorithms have considered

the aforementioned two biochemical constraints during the

encoding process [5, 8, 9, 10, 11].

While an increasing number of encoding algorithms have

been developed to address the aforementioned biochemical

constraints, basic constraints alone are no longer adequate

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

1

email:email-id.com


2 C. Dou et al.

Fig. 1. The Complete Process of DNA Storage pipeline and the Explorer Encoding-Decoding Procedure. (A) The Complete Process of DNA storage

pipeline. (B) Global Demonstration of the Explorer. The algorithm employs binary information as input and takes into account specific biochemical

constraints to encode DNA sequences that satisfy said constraints, utilizing the De Bruijn graph and its vertices. (C) In the Explorer encoding process,

the available adjacent vertices are selected from the vertices in the De Bruijn graph according to the set biochemical constraints. (D) Application

Example of the Explorer Encoding Algorithm.

to fulfill the demands of the DNA storage domain. Complex

processes like DNA strand displacement, hybridization,

and transcription bestow DNA molecules with enhanced

maneuverability and functionality [12, 13, 14]. Additionally,

the utilization of molecular biology techniques for cell

line passage, manipulation, and information storage within

living cells presents a promising avenue for DNA storage

advancement [15, 16, 17, 18, 19]. Nevertheless, the application

of these emerging technologies introduces additional potential

biochemical constraints, encompassing homopolymer length,

GC content, and undesired motifs, among others. Hence, the

development of coding algorithms capable of accommodating

more biochemical constraints is of growing significance. Both

DNA Fountain and Yin-Yang Code employ screening

programs that consider biochemical constraints to manage

arbitrary constraints on the generated sequences. However,

when confronted with strict biochemical constraints, these

methods can give rise to issues related to inefficient

coding or high time complexity [20, 21]. The SPIDER-

WEB is a graph-based architecture for encoding that took

local biochemical constraints into account [22]. Nonetheless,

SPIDER-WEB remains incapable of encoding arbitrary

local biochemical constraints due to the exponential growth

of the number of vertices in the De Bruijn graph with

increasing observation length. The Hedges employs modular

operations to incorporate diverse local biochemical constraints,

enabling constrained encoding. Nevertheless, when subjected to

specific stringent constraints, Hedges may encounter encoding

limitations [10].

In this paper, we propose the Explorer, an efficient

and low-energy DNA encoding algorithm based on the De

Bruijn graph that can encode sequential data under arbitrary

local and global biochemical constraints. We express the

subsequences of length n within the encoded DNA sequence

as a vertex in De Bruijn graph. By ensuring that each

vertex complies with specific biochemical constraints, we

can guarantee that the obtained DNA sequences adhere

to the local biochemical constraints. Numerical experiments

demonstrate that Explorer exhibits greater stability under

various local constraint lengths, significantly reducing the

memory occupancy and improving the encoding efficiency.

Motivated by the recent advancements in applying deep

neural networks to DNA storage [23, 24], we introduce the

Codeformer, an efficient end-to-end deep learning decoding

method that enables rapid decoding of Explorer encoded

sequences. Specifically, a translation neural network model is

proposed to establish the mapping between DNA sequences and

binary sequences, which significantly improves the decoding



Explorer: Efficient DNA Coding by De Bruijn Graph 3

efficiency and expands the potential applications of the

Explorer algorithm in large-scale decoding scenarios.

Methodology

Biochemical constraints
Since specific DNA patterns may lead to an increase of errors

in DNA synthesis, PCR amplification, and DNA sequencing,

biochemical constraints are introduced to guarantee DNA

sequences suitable for the biochemical process [25]. More

specifically, higher or lower GC content usually results in

lower coverage during sequencing [7]. Long homopolymer in

DNA molecules may cause more difficulties in DNA synthesis

and higher error rates in DNA sequencing [6, 26]. The

undesired motifs have important roles in specific biochemical

manipulations or storage environments, such as some enzyme

cutting sites [27], primer fragments [26], etc. The presence of

these motifs in the payload area may lead to false amplification

of DNA sequences [25]. Compared to global constraints, local

constraints allow for sub-sequences of a certain length within

the sequence to meet specific biochemical properties. Thus,

local constraints are more stringent than global constraints,

meaning that if local constraints are satisfied, global constraints

must also be satisfied.

GC content balance (GC): The global constraint

mandates that the proportion of G and C in the sequence falls

within the interval [ε1, ε2], which implies that the number of

GC is within the range [ε1L, ε2L] with L being the sequence

length. On the other hand, the local constraint necessitates

that the portion of G and C should lie within the range

[ε1ℓ, ε2ℓ] with ℓ being the locally constrained observation

length. Obviously, we can divide the sequence into multiple sub-

sequences of length ℓ by setting ℓ as a factor of L. Within each

sub-sequence, the GC content falls within the specified range,

ensuring that the content constraint is satisfied across the entire

sequence. Mathematically, it holds the following relationship

between the global and local GC content of DNA sequences

GCGloal =
∑

GCLocal ∈
∑

[ε1ℓ, ε2ℓ] = [ε1L, ε2L] . (1)

Homopolymer length (HL): The local constraint

mandates that the length of any homopolymer within a sub-

sequence of length ℓ must not surpass M . Consequently, the

entire sequence must not contain any homopolymer exceeding

the length of M .

Undesired motifs (UM): Similar to homopolymer

constraint, special fragments that are prohibited at the local

level are also absent at the global level.

It demonstrates that implementing biochemical constraints

at the local level can give rise to satisfying global biochemical

constraints. Thus, we can approximate arbitrary global

constraints with the combination of local constraints. Since the

length of undesired motifs can range from a few characters to 30

characters, the encoding algorithm should accommodate local

biochemical constraints within an observation length range

from 0 to 30. In addition, it holds paramount importance that

the observation length can be flexibly adjusted within a specific

range.

Explorer - the De Bruijn graph-based encoding
algorithm
The De Bruijn graph has been demonstrated to be valuable

in the field of molecular biology because of the connectedness

between adjacent vertices. It was originally used for genome

assembly [28, 29], where Eulerian tours were performed to infer

the underlying sequences. Since then, the de Bruijn graph-

based sequence assembly methods were further studied for

mRNA [30], metagenome [31, 32]. Beyond that, the application

of De Bruijn graph also includes genomic variants detection

[33], read correction [34], read mapping [35], and long-read

assembly [36], etc.

In graph theory, the ℓ-dimensional De Bruijn graph of m

symbols is a directed graph that represents the overlap between

symbol sequences. For the De Bruijn graph of m symbols, i.e.,

S = {s1, s2, . . . , sm}, we use Dℓ
m to denote the De Bruijn graph

with each vertex being a sequence of length-ℓ within the given m

symbols. It then contains mℓ vertices, consisting of all possible

length-ℓ sequences of the given symbols, defined as

D
ℓ
m =

{
(s1, · · · , s1, s1) , (s1, · · · , s1, s2) , · · · , (sm, · · · , sm, sm)

}
.

(2)

Given two vertices A and B, if A[2:ℓ] is identical to B[1:ℓ-1],

it implies the existence of an edge from A to B, where the

edge is denoted by B[ℓ]. Furthermore, we designate B as the

forward adjacent vertex of A, and conversely, we refer to A as

the backward adjacent vertex of B. Thus, both A and B are

defined as adjacent vertices of each other.

In our work, we use the De Bruijn graph Dℓ
4, where ℓ is the

observed length of the local biochemical constraints and 4 is

used for quaternary encoding. We propose the Explorer, which

is a coding algorithm under arbitrary biochemical constraints

based on the De Bruijn graph. It begins by selecting a

vertex that satisfies local constraints. We iteratively search

for adjacent vertices meeting the biochemical constraints.

By interconnecting the edges in a specific order, we can

construct a DNA sequence satisfied the biochemical constraints

globally. Note that each subsequence within this constructed

sequence corresponds to vertices within the graph, ensuring the

fulfillment of local biochemical constraints.

Let X denote a text sequence information in the form

[x1x2x3x4 · · · xn] and C denote the biochemical constraint. We

can obtain the DNA sequence by Y = F (X , C) as shown in Fig.

1B. Note that C can be a combination of several biochemical

constraints from {GC,HL,UM}. More specifically, we first

convert the input binary message X into decimal numbers R
as follows

R =
∑

xi · 2n−i
. (3)

Then we select the initial vertex V according to the biochemical

constraints in the order of A → C → G → T. According

to the biochemical constraints, we determine whether the

forward adjacent vertex of the current vertex meets the

biochemical constraints. Fig. 1C provides an example to show

how to determine if the adjacent vertex satisfies biochemical

constraints. As seen, the number of forward adjacent vertices

that meet the constraint is used as the divisor p. The

current decimal number serves as the dividend, and division is

performed to obtain the quotient q and the remainder r. There

exists the following relationship

R = p ∗ q + r, r ∈ {0, 1, 2, 3}, (4)

where the current output bases is determined based on

the remainder value r. We arrange the available bases to

{0, 1, ..., p − 1} in order of A < C < G < T and select the base

corresponding to r. If the obtained quotient is not zero, the

quotient q is set as a new dividend, and the process is repeated



4 C. Dou et al.

Fig. 2. Decoding and error correction in the case of the Explorer.

Algorithm 1 Explorer coding algorithm

1: Input: Binary message X , Local biochemical constraints C, De Bruijn Graph Dℓ
4

2: Convert X to the decimal number R; Initialize Y as an empty string

3: Select the initial vertex V from Dℓ
4 based on constraints C

4: while R! = 0 do

5: Find the forward adjacent vertex of the current vertex from Dℓ
4

6: Calculate the number p of the available vertex that satisfy the constraints C
7: Divide R by p, get the quotient q and remainder r

8: Selected a new available base from {A,C,G,T} to add to Y based on the remainder r

9: Set R as q and set the current vertex according to the remainder r

10: end while

11: Return the DNA sequence Y

to continuously add new bases to the current DNA sequence.

When the obtained quotient q becomes zero, we output the final

DNA sequence.

An example of Explorer coding is provided in Fig. 1D.

The biochemical constraints are to require the homopolymer

length not to exceed 3, the GC content to be in [0.4, 0.6],

and the observing length ℓ is set to 6. It shows the

conversion of binary message [011011] into DNA sequence

[TTAGG]. First, it converts the binary sequence into decimal

to 27 and set the initial vertex to [AAACCC]. Then it

judges whether the forward adjacent vertices of the current

vertex [AAACCC] satisfy the local biochemical constraints.

Among them, two vertices [AACCCA,AACCCT] satisfy the

biochemical constraints. Then it sets 27 as the dividend and

2 as the divisor to perform division with remainder to get the

quotient 13 and the remainder of 1. The next base that can be

selected at this vertex is {A,T}. According to the rule between

{0, 1} and {A,T}, T is selected as the next base. Thus, the

quotient is used as the dividend in the next step, and the vertex

is slid to the selected vertex, and so on. Finally, when the

quotient is 0, it outputs the resulting complete DNA sequence

[TTAGG]. To sum up, we conclude Explorer coding algorithm

as Algorithm 1.

The decoding of Explorer reverses the coding process as

shown in the formula below. Fig. 2 shows the decoding and

error correction algorithms. Similarly, both decoding and error

correction algorithms can handle arbitrary local biochemical

constraints. The specific formulation of the decoding process

can be expressed by X = F−1(Y, C).

Codeformer – the transformer-based decoding
algorithm
Although the coding efficiency of DNA storage has been

improved by the Explorer method, it remains inconspicuous.

To enhance coding efficiency, we explore the application of deep

learning methods for expediting coding processes. Considering

the nature of both input and output as sequential data,

the entire procedure is conceptualized as a seq2seq process.

Accordingly, a neural machine translation model, incorporating

an attention mechanism, is employed to acquire the mapping

from DNA sequences to binary information sequences. While

deep learning approaches have previously found applications



Explorer: Efficient DNA Coding by De Bruijn Graph 5

Fig. 3. Decoding and error correction in the case of the Codeformer.

in DNA storage, this marks the inaugural application of such

methods in the domain of encoding and decoding. Upon

completion of training, the model can directly map DNA

sequences to binary message sequences, realizing an end-to-end

process, which is formulated by

X = T (Y; θ). (5)

To meet our scalability needs, we implement a highly scalable

neural network translation model called the Codeformer

to learn DNA coding mapping; see Fig. 3. We use the

binary sequences and their corresponding DNA sequences

encoded by the Explorer as the target and source languages,

respectively, as the input of the decoder and encoder during

the training process. To generate word sequences, the k-mers

word segmentation method is employed. Supposing k = 3, we

can segment the DNA sequence as follows

[x1x2x3x4 · · · xn] → [x1x2x3, x2x3x4, · · · , xn−2xn−1xn].

Fig. 3 elucidates the process in which the encoder transforms

each tokenized word in a DNA sequence into a corresponding

word vector. The vector is subsequently transformed into

a hidden layer representation using a self-attention layer

followed by a feed-forward neural network (FFN) layer. The

decoder then forecasts each potential succeeding word in the

binary sequence by amalgamating the vector representation of

the previously generated word with the hidden layer vector

produced by the encoder. The hidden layer representation

is subjected to the softmax layer, generating probabilities

that guide the selection of the target word. The attention

layer modulates the impact of source latent vectors on the

distribution, assigning weights to each source word based on

its contribution to target prediction.

Upon the completion of comprehensive training of the

Codeformer model using the designated training set, effective

acquisition of rules for decoding DNA sequences into binary

sequences is achieved. To decode DNA sequences, an initial

step involves tokenization, leading to the creation of DNA

word sequences. These sequences are then directly converted

into binary word sequences, and subsequently, into binary

sequences. While the deep learning method significantly

enhances decoding efficiency, it is also accompanied by an

increase in the decoding error rate. As shown in Fig. 3, we

introduce RS code [37] to rectify errors that occur during the

decoding process.

Results and Discussions

Performance evaluation of Explorer
The Explorer is a graph-based coding algorithm that enables

efficient, stable, and low-energy DNA coding under both local

and global biochemical constraints, exhibiting consistently

high coding efficiency. In this subsection, we analyze the

coding efficiency of our Explorer with respect to different

observation length and biochemical constraints. Fig. 4A

illustrates the variation of the coding efficiency across seven

types of biochemical constraints. As can be observed, when

the same biochemical constraints is used, coding efficiency

decreases as the observation length increases. Similarly, with

increased complexity of biochemical constraints, there is also a

notable decrease in coding efficiency. Thus, longer observation

length and more complex biochemical constraints prolong the

time required to ascertain whether a local sequence meets the

biochemical constraints, resulting in a decrease in encoding

efficiency.

Fig. 4B illustrates the coding efficiency of our Explorer with

respect to different lengths of binary sequence and observation

lengths. When we fix the length of the binary sequence, an

increase in observation length results in a decrease in coding



6 C. Dou et al.

Fig. 4. Variation of coding efficiency affected by different conditions. (A) The variation of coding efficiency under different constraint lengths under

seven kinds of constraints. (B) The variation of coding efficiency at different sequence lengths and different constraint lengths.

Fig. 5. (A) Comparison of Fountain, Hedges, Explorer, Yin-Yang, SPIDER-WEB, Explorer-8 on the code efficiency. (B) Comparison of

Fountain, Hedges, Explorer, Yin-Yang, SPIDER-WEB, Explorer-8 on the code rate.

efficiency. It is because that verifying whether a local sequence

satisfies biochemical constraints becomes increasingly time-

consuming. Furthermore, we find that the coding efficiency

also decreases as the binary sequence length increases. When

the length of the binary sequence increases, the decimal value

grows exponentially, which increases the complexity and time

of calculations, ultimately resulting in a decrease in encoding

efficiency. To sum up, the encoding efficiency of Explorer is

impacted by biochemical constraints, the length of sequences

and the length of the observation length.

Comparison with SOTA DNA coding methods
Several other coding algorithms allow encoding under specific

biochemical constraints, such as SPIDER-WEB [22],

Fountain [20], Hedges [10] and Yin-Yang [21]. We compared

the coding rate and coding efficiency of the Explorer with

these DNA coding algorithms by encoding the same information

with respect to different biochemical constraints. The detailed

biochemical constraints are displayed in Table 1, where the

observation length is set to 20 for all experiments. In [39],

Hoshika et al. proposed a more efficient DNA encoding method

using artificial bases. By increasing the DNA base, the amount

of DNA synthesis per storage unit is reduced. By modifying

the molecular structure of natural bases (ATCG), two artificial

pairs of bases (SB and PZ) are involved in DNA coding.

Combining artificial bases with natural bases, a total of eight

different bases are used to synthesize DNA. Thus, we also

integrated the concept of octal base encoding into Explorer

and referred it as Explorer-8. The comparison results are

presented in Fig. 5A. It demonstrates that Explorer can

maintain a relatively stable coding efficiency under the eight

different biochemical constraints and performs better than the

other coding algorithms. Although both SPIDER-WEB and

Explorer are coding algorithms based on graph structures,

SPIDER-WEB fail to encode data when the observation

length reaches 20. Moreover, we observe that SPIDER-WEB,

Fountain, and Hedges fail to encode the DNA sequences with

certain constraints, resulting in a coding efficiency of zero.

In terms of code rate, as demonstrated in Fig. 5B, Explorer

exhibits its superiority by achieving a higher code rate than

other algorithms. It confirms the efficiency of Explorer

in enhancing data storage density, particularly Explorer-

8, which boosts the code rate by utilizing eight different

bases for encoding, thereby surpassing Explorer and other



Explorer: Efficient DNA Coding by De Bruijn Graph 7

Table 1. Local biochemical constraints

Index Homopolymer GC content Motifs

01 3 N N

02 N [0.1, 0.3] N

03 N [0.5, 0.7] N

04 3 [0.4, 0.6] N

05 4 [0.45, 0.55] N

06 4 [0.4, 0.6] N

07 2 [0.4, 0.6] Motif-1

08 4 [0.4, 0.6] Motif-2

* Motif-1: AGCT, GACGC, CAGCAG, GATATC, GGTACC, CTGCAG, GAGCTC, GTCGAC,

AGTACT, ACTAGT, GCATGC, AGGCCT, TCTAGA [38]
* Motif-2: CTTGGTCAGACGAGTGCATG, GAGTTACGCGGGGATACATG (Primer) [26]

Fig. 6. Comparison between Explorer, SPIDER-WEB and Yin-Yang. (A) The Coding efficiency comparison between Explorer, SPIDER-WEB,

and Yin-Yang. The scatter point represents the results of individual experiments, while the histogram heights are constructed from the means of seven

experiments. (B) The number of the parameter comparison between Explorer and SPIDER-WEB.

coding algorithms. The enhanced base diversity delivers a

higher information density for DNA storage, yielding significant

advantages in storage capacity. The experimental results

underscore the efficiency and stability of Explorer in dealing

with various biochemical constraints, as well as its pronounced

advantages in code rate over other existing coding methods.

Furthermore, we compare the time complexity and space

complexity across the observation length ranged from 10 to

20. As shown in Fig. 5A, Yin-Yang demonstrates excellent

coding efficiency and maintains stable performance with respect

to different biochemical constraints. And SPIDER-WEB

is the only coding algorithm based on graph structure.

Therefore, we assess the time complexity among the three

coding methods: Explorer, SPIDER-WEB, and Yin-Yang

for different observation lengths. As can be seen in the Fig.

6A, the coding efficiency of Yin-Yang remains stable across

different observation lengths without a significant increase as

the observation length extending. On the other hand, although

SPIDER-WEB exhibits the best coding efficiency when the

observation length is short, e.g., ℓ = 10, its coding efficiency

significantly diminishes as the observation length increases. In

contrast, Explorer maintains stable and high coding efficiency

across all observed lengths. Notably, when observation length is

greater than or equal to 12, its performance markedly surpasses

that of the other two methods. Thus, Explorer is more suitable

for dealing with globally biochemical constraints.

For the space complexity comparison, we employed the

number of vertices in the graph as the comparative metric.

Therefore, we compared the Explorer with the other graph-

based coding method SPIDER-WEB. As shown in Fig. 6B,

when SPIDER-WEB handles longer observation lengths, the

number of parameters increases exponentially, necessitating

significant time and space resources for graph construction. The

exponential growth of space complexity eventually surpasses

the processing capabilities of typical computers, resulting in

SPIDER-WEB incapable of encoding tasks for observation

length larger than 18. In stark contrast, the number of vertices

of our Explorer maintains stable for all observation lengths,

such that it is minimally affected by increasing the observation

length.

In addition, we conduct the experiments to evaluate both

the time complexity and space complexity of Explorer with

different sizes of input data. As depicted in Fig. 7, both the

memory space utilized and the time expended by the Explorer

increase linearly with the size of the input data. Such linear

relationship indicates that the model possesses commendable



8 C. Dou et al.

Fig. 7. The time and space complexity with respect to different sizes of data. (A) The time complexity of Explorer with different input data sizes.

(B) The space complexity of Explorer with different input data sizes.

Fig. 8. The evaluation of decoding accuracy. (A) The correction rate of Explorer under different error rates. (B) The minimum reads number required

to support that the sequence with the highest frequency is the correct sequence.

scalability. The predictable nature of the linear growth is crucial

for resource planning and system design, as it allows for the

anticipation of resource requirements as data volumes expands.

Decoding accuracy of Explorer
In this section, we experimentally validate the decoding and

error correction performance of Explorer. To accord with

the existing DNA storage technologies, we introduce a set

of constraints to examine the decoding performance of our

Explorer. More specifically, we set the homopolymer length to

be 2 to better accommodate enzymatic DNA synthesis [40] and

the GC content to be 50% to enhance the success rate of PCR

amplification [41]. Additionally, we prohibit specific sequences

that may lead to increased error rates [26, 38].

We use the decoding accuracy as a metric to evaluate

the precision of decoding. The criterion for accurate decoding

stipulates that each position within the sequence should be

correctly decoded, underscoring the imperative for reliability

in the data conversion process. Mathematically, we can define

the decoding accuracy as

Accuracy =
#{Decoding Sequence == Encoding Sequence}

#{Input Sequence }
,

(6)

where # denotes the number of elements. Obviously, a sequence

contributes to the decoding Accuarcy only if it is perfectly

corrected at all positions. Moreover, in the context of DNA

sequence encoding and decoding, high decoding accuracy

exemplifies outstanding model performance.

We use 10,000 DNA sequences (DNA of length 200 nt) that

satisfied biochemical constraints as decoding DNA samples.

For simplicity, we assume that substitutions, insertions, and

deletions occur with equal probability and that errors occur at

random positions in DNA sequences. The correction rates with

respect to different error rates are shown in Fig. 8A. As can be

seen, Explorer can correct most errors and achieve a decoding

accuracy of 96.5%, when there is a 0.5% error rate (i.e., one

editing error in a 200 nt long sequence).

Additionally, considering that the DNA sequencing process

typically involves multiple sequence copies, we can assume that

the correct sequence is the one with the highest frequency.

By increasing the number of copies, the proportion of correct



Explorer: Efficient DNA Coding by De Bruijn Graph 9

Fig. 9. (A) Comparison of code Efficiency of Codeformer, Explorer, and Models Based on LSTM and GRU. (B) Code efficiency of the Codeformer

under different search widths.

Fig. 10. Decoding accuracy of the Codeformer and the number of chains

corrected by the RS code.

sequences among all sequences can be increased and used for

decoding. To study the minimum reads number required for

the above hypothesis, that is, the correct sequence occurring

most frequently, we conducted 10,000 random tests with the

different error rates mentioned above. As shown in Fig. 8B,

when the error rate is 0.5%, the correct decoding sequence

can be obtained through the above assumption when the reads

number exceeds 3. For the above assumptions to hold, the

number of reads per sequence needs to be no less than 3, 4,

6, 10, and 15 for editing error rates of 0.5%, 1.0%, 2.0%, 3.0%,

and 4.0%, respectively. Therefore, by utilizing a small number

of sequence copies, our Explorer can correctly decode the DNA

sequences when edit errors are involved in the data.

Performance evaluation of Codeformer
The training and testing datasets for Codeformer consist

of pairs comprising a binary sequence and a DNA sequence.

The DNA sequences are obtained using the Explorer from

binary sequences. We build up the training dataset including

300,000 pairs of sequences, and the test dataset consisting of

50,000 pairs. It is important to note that the testing dataset

is independent and meticulously curated to ensure there is no

overlap or duplication with the training dataset.

At the first place, we conduct the ablation experiments on

the Codeformer by replacing the transformer module with

LSTM and GRU. As shown in Fig. 9A, when the transformer

module is replaced with two alternative networks, the code

efficiency of the decoding algorithm decreases. It demonstrates

that Codeformer can operate more efficiently than LSTM

and GRU models. The increased efficiency is attributable

to the powerful parallel computing ability of Transformer in

processing data. The Codeformer utilizes a beam search

strategy to enhance its selection process, which is a heuristic

algorithm used in graphical models to keep multiple probable

decoding options at each step. It allows the exploration of

more decoding paths, potentially improving accuracy. The

beam width, a crucial parameter, determines the number of

sequences retained per step. Adjusting this width balances

accuracy and efficiency: larger widths enhance accuracy but

increase computational demand, while smaller widths speed

up decoding at the potential cost of reduced accuracy. As

shown in Fig. 9A, when the beam search width is set to 5,

the decoding efficiency of Codeformer is nearly ten times

faster than Explorer. Moreover, Fig. 9B illustrates decoding

efficiency of Codeformer using different beam search widths,

where X in Codeformer-X denotes the beam search width

set for Codeformer. The results indicate that as the search

width increases, the decoding efficiency of the Codeformer

gradually decreases. It is because the larger search width

requiring the Codeformer to evaluate more potential decoding

paths. Therefore, we set the beam width to be 5 to balance the

efficiency and accuracy.

These results demonstrate that Codeformer has high

decoding efficiency. Although increasing the search width may

reduce the overall effectiveness of Codeformer, it can still

maintain high efficiency relative to traditional algorithms, even

at higher search widths. It effectively addresses the challenge

of large-scale parallel decoding.



10 C. Dou et al.

Although the deep learning based DNA coding can

substantially enhance encoding and decoding efficiency, it may

also suffer from the increase in decoding error rate. Thus,

we employ Reed-Solomon (RS) codes [37] to correct errors

of Codeformer decoding, aiming to reduce the error rate

and maintain efficient encoding. A series of experiments are

conducted to evaluate the performance of RS code in correcting

the decoding error. Fig. 10 illustrates the decoding accuracy

of Codeformer and the number of DNA chains corrected

by RS code at a search width of 5. Obviously, the RS code

successfully increases the decoding accuracy of Codeformer.

It demonstrates that by combining the Codeformer with RS

codes, the goal of improving decoding efficiency while reducing

encoding and decoding error rates can be successfully achieved.

Prospects and limitations
With the rapid advancements in deep learning, various

learning-based encoding-decoding models have been proposed

for DNA storage [42, 43, 44, 45, 46, 47]. Compared to traditional

source and channel coding strategies, deep learning-based

methods significantly enhance encoding and decoding efficiency,

which is crucial given the massive volume of data involved.

It is noteworthy that many learning-based encoding-decoding

methods, including our Codeformer, are data-driven. These

methods leverage neural networks to learn the mapping between

binary information and codes generated using different coding

techniques, such as finite-state constrained codes [45] and

Turbo codes [43]. Moreover, learning-based methods have

demonstrated high efficiency in image data encoding and

decoding [47, 46, 42].

However, deep learning models are often criticized for their

black-box nature, which obfuscates their internal decision-

making processes. This lack of transparency can significantly

hinder applications in fields where understanding the rationale

behind each decision is critical. Specifically, in the DNA

storage domain, where the accuracy of every encoded and

decoded sequence is paramount, the inability to interpret the

logic of coding methods could limit their applications. Efforts

have been made to derive model-based methods to enhance

the interpretability of the channel Encoding/Decoding in the

context of DNA strorage. For example, a forward-backward

algorithm associated with marker codes [44] is unfolded into a

network to enhance interpretability. Given the development of

interpretable graph models, including XGNN [48], SubgraphX

[49] etc., we aim to develop an interpretable graph neural

network by incorporating De Bruijn graph structure for DNA

coding in the future.

Conclusion

In this work, we presented the Explorer, which is a DNA

coding method capable of handling increasingly intricate

local biochemical constraints, including toxic DNA sequences,

primers, and other lengthy sequences that amplify biochemical

errors within the DNA storage system [50, 51]. By utilizing

the structure of the De Bruijn graph, and ensuring that the

vertices in the graph meet specific biochemical constraints,

the entire DNA sequence can be guaranteed to satisfy the

corresponding local biochemical constraints. The Explorer can

provide sequences that simultaneously adhere to arbitrary local

biochemical constraints and meet arbitrary global constraints.

It also has advantages compared with other advanced coding

algorithms in terms of code rate and code efficiency. What

is more, we also proposed the Codeformer model, which is

a transformer-based learning model. The Codeformer can

achieve more efficient conversion between binary information

and DNA strings, which may help to promote industrialization

of DNA storage.

Although the proposed coding methods demonstrate

superiority, they still face several unresolved issues. Going

forward, enhancements to the Explorer can involve designing

it as a fixed-length code generation algorithm to ensure uniform

DNA sequence length. To address the issue of sequence

errors in the Codeformer, it is essential to develop effective

error correction methods. Additionally, future research should

concentrate on the development of models that harmonize

efficiency with transparent decision-making processes, thereby

enhancing their applicability in the field of DNA storage.

Data and code availability

The datasets and the codes are freely available at https://

github.com/DouC17/Explorer

Funding

This work was supported by the National Key Research

and Development Program of China under grant No.

2020YFA0712100.

Key Points

• We introduced Explorer, an coding algorithm

implemented using De Bruijn graph, enabling DNA

encoding and decoding under various local or global

biochemical constraints.

• Explorer outperforms other notable encoding

algorithms in terms of both coding efficiency and

code rate.

• We introduced Codeformer, a deep learning

decoding algorithm founded on the transformer

model.

• Codeformer facilitates more efficient conversion

between binary information and DNA strings,

achieving decoding speeds up to ten times faster than

traditional methods.

References

1. Ben Cao, Xiaokang Zhang, Shuang Cui, and Qiang Zhang.

Adaptive coding for dna storage with high storage density

and low coverage. NPJ systems biology and applications,

8(1):23, 2022.

2. Chengtao Xu, Biao Ma, Zhongli Gao, Xing Dong, Chao

Zhao, and Hong Liu. Electrochemical dna synthesis

and sequencing on a single electrode with scalability for

integrated data storage. Science Advances, 7(46):eabk0100,

2021.

3. Bichlien H Nguyen, Christopher N Takahashi, Gagan

Gupta, Jake A Smith, Richard Rouse, Paul Berndt, Sergey

Yekhanin, David P Ward, Siena D Ang, Patrick Garvan,

et al. Scaling dna data storage with nanoscale electrode

wells. Science advances, 7(48):eabi6714, 2021.

https://github.com/DouC17/Explorer
https://github.com/DouC17/Explorer


Explorer: Efficient DNA Coding by De Bruijn Graph 11

4. Guanjin Qu, Zihui Yan, and Huaming Wu. Clover: tree

structure-based efficient dna clustering for dna-based data

storage. Briefings in Bioinformatics, 23(5):bbac336, 2022.

5. Shufang Zhang, Beibei Huang, Xiangming Song, Tao

Zhang, Hanjie Wang, and Yuhong Liu. A high storage

density strategy for digital information based on synthetic

dna. 3 Biotech, 9:1–10, 2019.

6. Nick Goldman, Paul Bertone, Siyuan Chen, Christophe

Dessimoz, Emily M LeProust, Botond Sipos, and

Ewan Birney. Towards practical, high-capacity, low-

maintenance information storage in synthesized dna.

nature, 494(7435):77–80, 2013.

7. Michael G Ross, Carsten Russ, Maura Costello, Andrew

Hollinger, Niall J Lennon, Ryan Hegarty, Chad Nusbaum,

and David B Jaffe. Characterizing and measuring bias in

sequence data. Genome biology, 14:1–20, 2013.

8. George M Church, Yuan Gao, and Sriram Kosuri. Next-

generation digital information storage in dna. Science,

337(6102):1628–1628, 2012.

9. Tuan Thanh Nguyen, Kui Cai, Kees A Schouhamer Immink,

and Han Mao Kiah. Capacity-approaching constrained

codes with error correction for dna-based data storage.

IEEE Transactions on Information Theory, 67(8):5602–

5613, 2021.

10. William H Press, John A Hawkins, Stephen K Jones Jr,

Jeffrey M Schaub, and Ilya J Finkelstein. Hedges error-

correcting code for dna storage corrects indels and allows

sequence constraints. Proceedings of the National Academy

of Sciences, 117(31):18489–18496, 2020.

11. Xiayang Li, Moxuan Chen, and Huaming Wu. Multiple

errors correction for position-limited dna sequences with gc

balance and no homopolymer for dna-based data storage.

Briefings in Bioinformatics, 24(1):bbac484, 2023.

12. Callista Bee, Yuan-Jyue Chen, Melissa Queen, David Ward,

Xiaomeng Liu, Lee Organick, Georg Seelig, Karin Strauss,

and Luis Ceze. Molecular-level similarity search brings

computing to dna data storage. Nature communications,

12(1):4764, 2021.

13. Boya Wang, Cameron Chalk, and David Soloveichik.

Simd—— dna: Single instruction, multiple data

computation with dna strand displacement cascades.

In DNA Computing and Molecular Programming: 25th

International Conference, DNA 25, Seattle, WA, USA,

August 5–9, 2019, Proceedings 25, pages 219–235.

Springer, 2019.

14. Kevin N Lin, Kevin Volkel, James M Tuck, and Albert J

Keung. Dynamic and scalable dna-based information

storage. Nature communications, 11(1):2981, 2020.

15. Seth L Shipman, Jeff Nivala, Jeffrey D Macklis, and

George M Church. Crispr–cas encoding of a digital movie

into the genomes of a population of living bacteria. Nature,

547(7663):345–349, 2017.

16. Yangyi Liu, Yubin Ren, Jingjing Li, Fan Wang, Fei Wang,

Chao Ma, Dong Chen, Xingyu Jiang, Chunhai Fan, Hongjie

Zhang, et al. In vivo processing of digital information

molecularly with targeted specificity and robust reliability.

Science Advances, 8(31):eabo7415, 2022.

17. Lifu Song and An-Ping Zeng. Orthogonal information

encoding in living cells with high error-tolerance, safety,

and fidelity. ACS synthetic biology, 7(3):866–874, 2018.

18. Muhalb M Alsaffar, Mohammad Hasan, Gavin P McStay,

and Mohamed Sedky. Digital dna lifecycle security

and privacy: an overview. Briefings in Bioinformatics,

23(2):bbab607, 2022.

19. Jialu Hu, Yuanke Zhong, and Xuequn Shang. A versatile

and scalable single-cell data integration algorithm based

on domain-adversarial and variational approximation.

Briefings in Bioinformatics, 23(1):bbab400, 2022.

20. Yaniv Erlich and Dina Zielinski. Dna fountain enables

a robust and efficient storage architecture. science,

355(6328):950–954, 2017.

21. Zhi Ping, Shihong Chen, Guangyu Zhou, Xiaoluo Huang,

Sha Joe Zhu, Haoling Zhang, Henry H Lee, Zhaojun Lan,

Jie Cui, Tai Chen, et al. Towards practical and robust

dna-based data archiving using the yin–yang codec system.

Nature Computational Science, 2(4):234–242, 2022.

22. Haoling Zhang, Zhaojun Lan, Wenwei Zhang, Xun Xu,

Zhi Ping, Yiwei Zhang, and Yue Shen. Spider-web

generates coding algorithms with superior error tolerance

and real-time information retrieval capacity. arXiv preprint

arXiv:2204.02855, 2022.

23. Jinny X Zhang, Boyan Yordanov, Alexander Gaunt,

Michael X Wang, Peng Dai, Yuan-Jyue Chen, Kerou Zhang,

John Z Fang, Neil Dalchau, Jiaming Li, et al. A deep

learning model for predicting next-generation sequencing

depth from dna sequence. Nature communications,

12(1):4387, 2021.

24. Alan JX Guo, Cong Liang, and Qing-Hu Hou. Deep squared

euclidean approximation to the levenshtein distance for

dna storage. In International Conference on Machine

Learning, pages 8095–8108. PMLR, 2022.

25. Marius Welzel, Peter Michael Schwarz, Hannah F Löchel,

Tolganay Kabdullayeva, Sandra Clemens, Anke Becker,

Bernd Freisleben, and Dominik Heider. Dna-aeon provides

flexible arithmetic coding for constraint adherence and

error correction in dna storage. Nature Communications,

14(1):628, 2023.

26. Jerrod J Schwartz, Choli Lee, and Jay Shendure. Accurate

gene synthesis with tag-directed retrieval of sequence-

verified dna molecules. Nature methods, 9(9):913–915,

2012.

27. Barry Polisky, Patricia Greene, David E Garfin, Brian J

McCarthy, Howard M Goodman, and Herbert W Boyer.

Specificity of substrate recognition by the ecori restriction

endonuclease. Proceedings of the National Academy of

Sciences, 72(9):3310–3314, 1975.

28. Ramana M Idury and Michael S Waterman. A new

algorithm for dna sequence assembly. Journal of

computational biology, 2(2):291–306, 1995.

29. Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler.

How to apply de bruijn graphs to genome assembly. Nature

biotechnology, 29(11):987–991, 2011.

30. Manfred G Grabherr, Brian J Haas, Moran Yassour,

Joshua Z Levin, Dawn A Thompson, Ido Amit, Xian

Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong

Zeng, et al. Full-length transcriptome assembly from rna-

seq data without a reference genome. Nature biotechnology,

29(7):644–652, 2011.

31. Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL

Chin. Meta-idba: a de novo assembler for metagenomic

data. Bioinformatics, 27(13):i94–i101, 2011.

32. Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko

Sadakane, and Tak-Wah Lam. Megahit: an ultra-fast

single-node solution for large and complex metagenomics

assembly via succinct de bruijn graph. Bioinformatics,

31(10):1674–1676, 2015.

33. Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek,

and Gil McVean. De novo assembly and genotyping of



12 C. Dou et al.

variants using colored de bruijn graphs. Nature genetics,

44(2):226–232, 2012.

34. Antoine Limasset, Jean-François Flot, and Pierre

Peterlongo. Toward perfect reads: self-correction of short

reads via mapping on de bruijn graphs. Bioinformatics,

36(5):1374–1381, 2020.

35. Fatemeh Almodaresi, Mohsen Zakeri, and Rob Patro.

Puffaligner: a fast, efficient and accurate aligner based on

the pufferfish index. Bioinformatics, 37(22):4048–4055,

2021.

36. Jue Ruan and Heng Li. Fast and accurate long-read

assembly with wtdbg2. Nature methods, 17(2):155–158,

2020.

37. Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela

Paunescu, and Wendelin J Stark. Robust chemical

preservation of digital information on dna in silica with

error-correcting codes. Angewandte Chemie International

Edition, 54(8):2552–2555, 2015.

38. Richard J Roberts. Restriction and modification enzymes

and their recognition sequences. Gene, 8(4):329–343, 1980.

39. Shuichi Hoshika, Nicole A Leal, Myong-Jung Kim, Myong-

Sang Kim, Nilesh B Karalkar, Hyo-Joong Kim, Alison M

Bates, Norman E Watkins Jr, Holly A SantaLucia, Adam J

Meyer, et al. Hachimoji dna and rna: A genetic system with

eight building blocks. Science, 363(6429):884–887, 2019.

40. Roy Shafir, Omer Sabary, Leon Anavy, Eitan Yaakobi, and

Zohar Yakhini. Sequence reconstruction under stutter noise

in enzymatic dna synthesis. In 2021 IEEE Information

Theory Workshop (ITW), pages 1–6. IEEE, 2021.

41. Yair Benita, Ronald S Oosting, Martin C Lok, Michael J

Wise, and Ian Humphery-Smith. Regionalized gc content

of template dna as a predictor of pcr success. Nucleic acids

research, 31(16):e99–e99, 2003.

42. Wenfeng Wu, Luping Xiang, Qiang Liu, and Kun Yang.

Deep joint source-channel coding for dna image storage: A

novel approach with enhanced error resilience and biological

constraint optimization. IEEE Transactions on Molecular,

Biological and Multi-Scale Communications, 2023.

43. Marius Welzel, Hagen Dreßler, and Dominik Heider.

Turbo autoencoders for the dna data storage channel with

autoturbo-dna. Iscience, 27(5), 2024.

44. Guochen Ma, Xiaopeng Jiao, Jianjun Mu, Hui Han, and

Yaming Yang. Deep learning-based detection for marker

codes over insertion and deletion channels. arXiv preprint

arXiv:2401.01155, 2024.

45. Panpan Li, Kui Cai, Guanghui Song, Wentu Song, Zhen

Mei, and Xingwei Zhong. Neural network-based decoding

of constrained codes for dna data storage. In 2020 IEEE

International Conference on Consumer Electronics-Asia

(ICCE-Asia), pages 1–4. IEEE, 2020.

46. Jitesh Pradhan, Arup Kumar Pal, SK Hafizul Islam,

and Chiranjeev Bhaya. Dna encoding-based nucleotide

pattern and deep features for instance and class-based

image retrieval. IEEE Transactions on NanoBioscience,

2023.

47. Chao Pan, S Kasra Tabatabaei, SM Hossein

Tabatabaei Yazdi, Alvaro G Hernandez, Charles M

Schroeder, and Olgica Milenkovic. Rewritable two-

dimensional dna-based data storage with machine learning

reconstruction. Nature communications, 13(1):2984, 2022.

48. Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn:

Towards model-level explanations of graph neural networks.

In Proceedings of the 26th ACM SIGKDD international

conference on knowledge discovery & data mining, pages

430–438, 2020.

49. Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang

Ji. On explainability of graph neural networks via subgraph

explorations. In International conference on machine

learning, pages 12241–12252. PMLR, 2021.

50. Xavier Pic and Marc Antonini. Image storage on synthetic

dna using autoencoders. arXiv preprint arXiv:2203.09981,

2022.

51. David Mahan Knipe, Peter M Howley, et al. Fundamental

virology. Number Ed. 4. Lippincott Williams & Wilkins,

2001.

Chang Dou. Chang Dou received the B.S. degree in
mathematics from Ocean university of China, Qingdao, China,
in 2021. He is currently working toward the M.S. degree at
Tianjin University, Tianjin, China. His main interests include
DNA storage and deep learning.

Yijie Yang. Yijie Yang received the B.S. degree in
Mathematics from Harbin Engineering University (HEU),
Harbin, Heilongjiang, China, in 2019. He is currently
working toward the Ph.D. degree with the Center for Applied
Mathematics, Tianjin University(TJU), Tianjin. His research
interests include image segmentation, image reconstruction and
DNA storage.

Fei Zhu. Fei Zhu received the B.S. degree in mathematics
and applied mathematics and in economics from Xi’an Jiaotong
University, Xi’an, China, in 2011. She received the M.S. and
the Ph.D. degrees in systems optimization and security from
the University of Technology of Troyes (UTT), Troyes, France,
in 2013 and 2016, respectively. She is currently an Associate
Professor with the Center for Applied Mathematics, Tianjin
University, Tianjin, China. Her research interests include
nonlinear signal processing, hyperspectral image processing and
DNA storage.

BingZhi Li. Bingzhi Li is a professor with the School of
Chemical Engineering and Technology, Tianjin University,
China. He received the PhD degree from Tianjin University,
Tianjin, China, in 2005. His current research interests include
Synthetic Biology, Biochemistry and Molecular Biology and
Pharmaceutical Engineering.

Yuping Duan. Yuping Duan is a full professor at the
School of Mathematical Sciences of Beijing Normal University
(BNU). Before joining BNU, she was a professor at Tianjin
University in 2015 to 2023, and a research scientist at I2R,
A*STAR in 2012 to 2015. She received her Ph.D. from Nanyang
Technological University in 2012. Her research interests are
image processing and computer vision, variational methods,
deep learning methods, and DNA storage.


	Introduction
	Methodology
	Biochemical constraints
	Explorer - the De Bruijn graph-based encoding algorithm
	Codeformer – the transformer-based decoding algorithm

	Results and Discussions
	Performance evaluation of Explorer
	Comparison with SOTA DNA coding methods
	Decoding accuracy of Explorer
	Performance evaluation of Codeformer
	Prospects and limitations

	Conclusion
	Data and code availability
	Funding
	Key Points

