Briefings in Bioinformatics, 2022, pp. 1-12

doi: DOI HERE
Advance Access Publication Date: Day Month Year
Paper

PAPER

Explorer: Efficient DNA Coding by De Bruijn Graph
towards Arbitrary Local and (Global Biochemical
Constraints

Chang Dou," Yijie Yang,"'T Fei Zhu,' BingZhi Li*** and Yuping Duan®*

!Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China, 2Frontiers Science Center for Synthetic Biology and Key
Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China and ®School of Chemical
Engineering and Technology, Tianjin University, Tianjin, 300072, China

TFirst Author and Second Author contribute equally to this work.* Corresponding author. yuping.duan@tju.edu.cn,bzli@tju.edu.cn
FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

With the exponential growth of digital data, there is a pressing need for innovative storage media and techniques. DNA
molecules, due to their stability, storage capacity, and density, offer a promising solution for information storage. However,
DNA storage also faces numerous challenges, such as complex biochemical constraints and encoding efficiency. This paper
presents Explorer, a high-efficiency DNA coding algorithm based on the De Bruijn graph, which leverages its capability
to characterize local sequences. Explorer enables coding under various biochemical constraints, such as homopolymers,
GC content, and undesired motifs. This paper also introduces Codeformer, a fast decoding algorithm based on the
transformer architecture, to further enhance decoding efficiency. Numerical experiments indicate that, compared to other
advanced algorithms, Explorer not only achieves stable encoding and decoding under various biochemical constraints
but also increases the encoding efficiency and bit rate by more than 10%. Additionally, Codeformer demonstrates the
ability to efficiently decode large quantities of DNA sequences. Under different parameter settings, its decoding efficiency
exceeds that of traditional algorithms by more than two-fold. When Codeformer is combined with RS code, its decoding
accuracy exceeds 99%, making it a good choice for high-speed decoding applications. These advancements are expected
to contribute to the development of DNA-based data storage systems and the broader exploration of DNA as a novel
information storage medium.
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Introduction Due to the limitation of biochemical technology during

. .. . . . the DNA storage process, the DNA sequence must conform
Due to the exponential growth of digital information, it X i K . o
. . . to specific biochemical constraints to minimize the error rate
is necessary to develop new solutions to meet the growing X R . o K o
.. . in the biochemical process [6]. A key objective in designing
storage needs [1, 2, 3, 4]. Traditional storage devices are . . K
. . . . . . encoding algorithms is to ensure that the encoded DNA
facing limitations in capacity and longevity, proving them R . K . Rk
. . . R strings adhere to the biochemical constraints imposed by
insufficient for the increasing volume of the generated data. DNA st thesi d X technoloi T
. . storage synthesis and sequencin echnologies. wo
DNA is well-known as one of the most stable biomolecules, . .g y. . a . i &
. . . K R primary biochemical constraints widely employed are GC
which can preserve information for more than centuries with T
.. . content balance and homopolymer length. Deviating from the
low energy costs. In addition to that, the storage capacity of timal GC tont hether hich 1

optima content range, whether higher or lower, ma;
DNA molecules is about 4.2 x 102! bits per gram, which is P & & Y

420 billion times that of traditional storage media [5]. Thus,
DNA medium becomes a new data storage technology, which

result in reduced sequencing coverage, emphasizing the need to
constrain GC content within a specific range [7]. The lengths

of homopolymer need to be constrained to a specific value
can achieve digital data storage by encoding and decoding the . p. Y . K b K
. . to minimize error rates during the synthesis and sequencing
synthesized DNA. DNA storage involves five key components: oo . . K
. . . . . [3]. Several existing DNA encoding algorithms have considered
encoding, synthesis, storage, sequencing, and decoding (see Fig. . . ! X i
. . . . the aforementioned two biochemical constraints during the
1A), where the coding algorithm serves as the intermediary for .
encoding process [5, 8, 9, 10, 11].

the reciprocal conversion between digital information and DNA K . . . .
While an increasing number of encoding algorithms have

molecules. Thus, the DNA coding algorithm is the most basic

and critical step for DNA storage. been developed to address the aforementioned biochemical

constraints, basic constraints alone are no longer adequate
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Fig. 1. The Complete Process of DNA Storage pipeline and the Explorer Encoding-Decoding Procedure. (A) The Complete Process of DNA storage

pipeline. (B) Global Demonstration of the Explorer. The algorithm employs binary information as input and takes into account specific biochemical

constraints to encode DNA sequences that satisfy said constraints, utilizing the De Bruijn graph and its vertices. (C) In the Explorer encoding process,

the available adjacent vertices are selected from the vertices in the De Bruijn graph according to the set biochemical constraints. (D) Application

Example of the Explorer Encoding Algorithm.

to fulfill the demands of the DNA storage domain. Complex
like DNA
and transcription bestow DNA molecules with enhanced

processes strand displacement, hybridization,
maneuverability and functionality [12, 13, 14]. Additionally,

the utilization of molecular biology techniques for cell
line passage, manipulation, and information storage within
living cells presents a promising avenue for DNA storage
advancement [15, 16, 17, 18, 19]. Nevertheless, the application
of these emerging technologies introduces additional potential
biochemical constraints, encompassing homopolymer length,
GC content, and undesired motifs, among others. Hence, the
development of coding algorithms capable of accommodating
more biochemical constraints is of growing significance. Both
DNA Fountain and Yin-Yang Code employ screening
programs that consider biochemical constraints to manage
arbitrary constraints on the generated sequences. However,
when confronted with strict biochemical constraints, these
methods related to inefficient
coding or high time complexity [20, 21]. The SPIDER-
WEB is a graph-based architecture for encoding that took
local biochemical constraints into account [22]. Nonetheless,
SPIDER-WEB
local biochemical constraints due to the exponential growth

in the De

can give rise to issues

remains

incapable of encoding arbitrary

of the number of vertices Bruijn graph with

increasing observation length. The Hedges employs modular
operations to incorporate diverse local biochemical constraints,
enabling constrained encoding. Nevertheless, when subjected to
specific stringent constraints, Hedges may encounter encoding
limitations [10].
In this paper, we propose the Explorer, an efficient
and low-energy DNA encoding algorithm based on the De
Bruijn graph that can encode sequential data under arbitrary
local and global biochemical constraints. We express the
subsequences of length n within the encoded DNA sequence
as a vertex in De Bruijn graph. By ensuring that each
vertex complies with specific biochemical constraints, we
can guarantee that the obtained DNA sequences adhere
to the local biochemical constraints. Numerical experiments
demonstrate that Explorer exhibits greater stability under
various local constraint lengths, significantly reducing the
memory occupancy and improving the encoding efficiency.
Motivated by the recent advancements in applying deep
neural networks to DNA storage [23, 24], we introduce the
Codeformer, an efficient end-to-end deep learning decoding
method that enables rapid decoding of Explorer encoded
sequences. Specifically, a translation neural network model is
proposed to establish the mapping between DN A sequences and

binary sequences, which significantly improves the decoding



efficiency and expands the potential applications of the
Explorer algorithm in large-scale decoding scenarios.

Methodology

Biochemical constraints

Since specific DNA patterns may lead to an increase of errors
in DNA synthesis, PCR amplification, and DNA sequencing,
biochemical constraints are introduced to guarantee DNA
More
specifically, higher or lower GC content usually results in

sequences suitable for the biochemical process [25].

lower coverage during sequencing [7]. Long homopolymer in
DNA molecules may cause more difficulties in DNA synthesis
The
undesired motifs have important roles in specific biochemical

and higher error rates in DNA sequencing [6, 26].

manipulations or storage environments, such as some enzyme
cutting sites [27], primer fragments [26], etc. The presence of
these motifs in the payload area may lead to false amplification
of DNA sequences [25]. Compared to global constraints, local
constraints allow for sub-sequences of a certain length within
the sequence to meet specific biochemical properties. Thus,
local constraints are more stringent than global constraints,
meaning that if local constraints are satisfied, global constraints
must also be satisfied.

GC content (GC): The global
mandates that the proportion of G and C in the sequence falls

balance constraint
within the interval [e1, €2], which implies that the number of
GC is within the range [e1L, e2L] with L being the sequence
length. On the other hand, the local constraint necessitates
that the portion of G and C should lie within the range
[e1€, e2f] with £ being the locally constrained observation
length. Obviously, we can divide the sequence into multiple sub-
sequences of length £ by setting £ as a factor of L. Within each
sub-sequence, the GC content falls within the specified range,
ensuring that the content constraint is satisfied across the entire
sequence. Mathematically, it holds the following relationship
between the global and local GC content of DNA sequences

GCaqloal = »_ GClLocal € Y [e10,620] = [e1L, L] . (1)

Homopolymer length (HL): The local constraint
mandates that the length of any homopolymer within a sub-
sequence of length ¢ must not surpass M. Consequently, the
entire sequence must not contain any homopolymer exceeding
the length of M.

Undesired motifs (UM): Similar to homopolymer
constraint, special fragments that are prohibited at the local
level are also absent at the global level.

It demonstrates that implementing biochemical constraints
at the local level can give rise to satisfying global biochemical
Thus,

constraints with the combination of local constraints. Since the

constraints. we can approximate arbitrary global
length of undesired motifs can range from a few characters to 30
characters, the encoding algorithm should accommodate local
biochemical constraints within an observation length range
from 0 to 30. In addition, it holds paramount importance that
the observation length can be flexibly adjusted within a specific
range.

Explorer - the De Bruijn graph-based encoding
algorithm

The De Bruijn graph has been demonstrated to be valuable
in the field of molecular biology because of the connectedness
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between adjacent vertices. It was originally used for genome
assembly [28, 29], where Eulerian tours were performed to infer
the underlying sequences. Since then, the de Bruijn graph-
based sequence assembly methods were further studied for
mRNA [30], metagenome [31, 32]. Beyond that, the application
of De Bruijn graph also includes genomic variants detection
[33], read correction [34], read mapping [35], and long-read
assembly [36], etc.

In graph theory, the ¢-dimensional De Bruijn graph of m
symbols is a directed graph that represents the overlap between
symbol sequences. For the De Bruijn graph of m symbols, i.e.,
S = {81, 82, .

with each vertex being a sequence of length-£ within the given m

.., 8m}, we use DY to denote the De Bruijn graph

symbols. It then contains m? vertices, consisting of all possible
length-¢ sequences of the given symbols, defined as
Dfn ={(s1, - ,s1, s1),(s1, "+ ,81, 82),  , (Sm, -
@)
Given two vertices A and B, if A[2:/] is identical to B[1:¢-1],
it implies the existence of an edge from A to B, where the
edge is denoted by B[¢]. Furthermore, we designate B as the
forward adjacent vertex of A, and conversely, we refer to A as
the backward adjacent vertex of B. Thus, both A and B are
defined as adjacent vertices of each other.

In our work, we use the De Bruijn graph Dﬁ, where £ is the
observed length of the local biochemical constraints and 4 is
used for quaternary encoding. We propose the Explorer, which
is a coding algorithm under arbitrary biochemical constraints
It begins by selecting a
vertex that satisfies local constraints. We iteratively search

based on the De Bruijn graph.

for adjacent vertices meeting the biochemical constraints.
By interconnecting the edges in a specific order, we can
construct a DNA sequence satisfied the biochemical constraints
globally. Note that each subsequence within this constructed
sequence corresponds to vertices within the graph, ensuring the
fulfillment of local biochemical constraints.

Let X denote a text sequence information in the form
[zx1zoz3xys - - - ] and C denote the biochemical constraint. We
can obtain the DNA sequence by Y = F(X,C) as shown in Fig.
1B. Note that C can be a combination of several biochemical
constraints from {GC,HL,UM}. More specifically, we first
convert the input binary message X into decimal numbers R
as follows

R=> z-2"" (3)

Then we select the initial vertex V according to the biochemical
constraints in the order of A - C — G — T. According
to the biochemical constraints, we determine whether the
forward adjacent vertex of the current vertex meets the
biochemical constraints. Fig. 1C provides an example to show
how to determine if the adjacent vertex satisfies biochemical
constraints. As seen, the number of forward adjacent vertices
that meet the constraint is used as the divisor p. The
current decimal number serves as the dividend, and division is
performed to obtain the quotient ¢ and the remainder r. There
exists the following relationship

R=pxq+r, T€{071a273}7 (4)

where the current output bases is determined based on
the remainder value r. We arrange the available bases to
{0,1,...,p — 1} in order of A < C < G < T and select the base
corresponding to r. If the obtained quotient is not zero, the
quotient ¢ is set as a new dividend, and the process is repeated

1smasm) }
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Fig. 2. Decoding and error correction in the case of the Explorer.
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Algorithm 1 Explorer coding algorithm

: while R! = 0 do

: end while
: Return the DNA sequence Y

—
R e I A S N

Input: Binary message X, Local biochemical constraints C, De Bruijn Graph Dﬁ
: Convert X to the decimal number R; Initialize ) as an empty string
: Select the initial vertex V from D} based on constraints C

Find the forward adjacent vertex of the current vertex from Dﬁ

Calculate the number p of the available vertex that satisfy the constraints C

Divide R by p, get the quotient ¢ and remainder r

Selected a new available base from {A, C, G, T} to add to Y based on the remainder r
Set R as g and set the current vertex according to the remainder r

to continuously add new bases to the current DNA sequence.
When the obtained quotient ¢ becomes zero, we output the final
DNA sequence.

An example of Explorer coding is provided in Fig. 1D.
The biochemical constraints are to require the homopolymer
length not to exceed 3, the GC content to be in [0.4,0.6],
It shows the
conversion of binary message [011011] into DNA sequence

and the observing length £ is set to 6.
[TTAGG]. First, it converts the binary sequence into decimal
to 27 and set the initial vertex to [AAACCC]. Then it
judges whether the forward adjacent vertices of the current
vertex [AAACCC] satisfy the local biochemical constraints.
Among them, two vertices [AACCCA, AACCCT)] satisfy the
biochemical constraints. Then it sets 27 as the dividend and
2 as the divisor to perform division with remainder to get the
quotient 13 and the remainder of 1. The next base that can be
selected at this vertex is {A, T}. According to the rule between
{0,1} and {A, T}, T is selected as the next base. Thus, the
quotient is used as the dividend in the next step, and the vertex
is slid to the selected vertex, and so on. Finally, when the
quotient is 0, it outputs the resulting complete DNA sequence

[TTAGG]. To sum up, we conclude Explorer coding algorithm
as Algorithm 1.

The decoding of Explorer reverses the coding process as
shown in the formula below. Fig. 2 shows the decoding and
error correction algorithms. Similarly, both decoding and error
correction algorithms can handle arbitrary local biochemical
constraints. The specific formulation of the decoding process
can be expressed by X = F~1(¥,0C).

Codeformer — the transformer-based decoding
algorithm

Although the coding efficiency of DNA storage has been
improved by the Explorer method, it remains inconspicuous.
To enhance coding efficiency, we explore the application of deep
learning methods for expediting coding processes. Considering
the nature of both input and output as sequential data,
the entire procedure is conceptualized as a seq2seq process.
Accordingly, a neural machine translation model, incorporating
an attention mechanism, is employed to acquire the mapping
from DNA sequences to binary information sequences. While
deep learning approaches have previously found applications
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Fig. 3. Decoding and error correction in the case of the Codeformer.

in DNA storage, this marks the inaugural application of such
methods in the domain of encoding and decoding. Upon
completion of training, the model can directly map DNA
sequences to binary message sequences, realizing an end-to-end

process, which is formulated by
X =T;6). (5)

To meet our scalability needs, we implement a highly scalable
neural network translation model called the Codeformer
We use the
binary sequences and their corresponding DNA sequences

to learn DNA coding mapping; see Fig. 3.
encoded by the Explorer as the target and source languages,
respectively, as the input of the decoder and encoder during
the training process. To generate word sequences, the k-mers
word segmentation method is employed. Supposing k = 3, we
can segment the DNA sequence as follows
[T122T3%4 - - Tp] = [T1T2T3, T2T3Ta, "+ * , Tn—2Tn_1Tn].

Fig. 3 elucidates the process in which the encoder transforms
each tokenized word in a DNA sequence into a corresponding
word vector. The vector is subsequently transformed into
a hidden layer representation using a self-attention layer
followed by a feed-forward neural network (FFN) layer. The
decoder then forecasts each potential succeeding word in the
binary sequence by amalgamating the vector representation of
the previously generated word with the hidden layer vector
produced by the encoder. The hidden layer representation
generating probabilities
that guide the selection of the target word. The attention
layer modulates the impact of source latent vectors on the

is subjected to the softmax layer,

distribution, assigning weights to each source word based on
its contribution to target prediction.

Upon the completion of comprehensive training of the
Codeformer model using the designated training set, effective

acquisition of rules for decoding DNA sequences into binary
sequences is achieved. To decode DNA sequences, an initial
step involves tokenization, leading to the creation of DNA
word sequences. These sequences are then directly converted
into binary word sequences, and subsequently, into binary
sequences. While the deep learning method significantly
enhances decoding efficiency, it is also accompanied by an
increase in the decoding error rate. As shown in Fig. 3, we
introduce RS code [37] to rectify errors that occur during the

decoding process.

Results and Discussions

Performance evaluation of Explorer

The Explorer is a graph-based coding algorithm that enables
efficient, stable, and low-energy DNA coding under both local
and global biochemical constraints, exhibiting consistently

high coding efficiency. In this subsection, we analyze the
coding efficiency of our Explorer with respect to different
observation length and biochemical constraints. Fig. 4A
illustrates the variation of the coding efficiency across seven
types of biochemical constraints. As can be observed, when
the same biochemical constraints is used, coding efficiency
decreases as the observation length increases. Similarly, with
increased complexity of biochemical constraints, there is also a
notable decrease in coding efficiency. Thus, longer observation
length and more complex biochemical constraints prolong the
time required to ascertain whether a local sequence meets the
biochemical constraints, resulting in a decrease in encoding
efficiency.

Fig. 4B illustrates the coding efficiency of our Explorer with
respect to different lengths of binary sequence and observation
lengths. When we fix the length of the binary sequence, an
increase in observation length results in a decrease in coding
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efficiency. It is because that verifying whether a local sequence
satisfies biochemical constraints becomes increasingly time-
consuming. Furthermore, we find that the coding efficiency
also decreases as the binary sequence length increases. When
the length of the binary sequence increases, the decimal value
grows exponentially, which increases the complexity and time
of calculations, ultimately resulting in a decrease in encoding
efficiency. To sum up, the encoding efficiency of Explorer is
impacted by biochemical constraints, the length of sequences
and the length of the observation length.

Comparison with SOTA DNA coding methods

Several other coding algorithms allow encoding under specific
biochemical constraints, such as SPIDER-WEB [22],
Fountain [20], Hedges [10] and Yin-Yang [21]. We compared
the coding rate and coding efficiency of the Explorer with
these DNA coding algorithms by encoding the same information
with respect to different biochemical constraints. The detailed
biochemical constraints are displayed in Table 1, where the
observation length is set to 20 for all experiments. In [39],
Hoshika et al. proposed a more efficient DNA encoding method
using artificial bases. By increasing the DNA base, the amount

of DNA synthesis per storage unit is reduced. By modifying
the molecular structure of natural bases (ATCG), two artificial
pairs of bases (SB and PZ) are involved in DNA coding.
Combining artificial bases with natural bases, a total of eight
different bases are used to synthesize DNA. Thus, we also
integrated the concept of octal base encoding into Explorer
and referred it as Explorer-8. The comparison results are
presented in Fig. 5A. It demonstrates that Explorer can
maintain a relatively stable coding efficiency under the eight
different biochemical constraints and performs better than the
other coding algorithms. Although both SPIDER-WEB and
Explorer are coding algorithms based on graph structures,
SPIDER-WEB fail to encode data when the observation
length reaches 20. Moreover, we observe that SPIDER-WEB,
Fountain, and Hedges fail to encode the DNA sequences with
certain constraints, resulting in a coding efficiency of zero.

In terms of code rate, as demonstrated in Fig. 5B, Explorer
exhibits its superiority by achieving a higher code rate than
other algorithms. It confirms the efficiency of Explorer
in enhancing data storage density, particularly Explorer-
8, which boosts the code rate by utilizing eight different
bases for encoding, thereby surpassing Explorer and other
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Table 1. Local biochemical constraints

Index Homopolymer GC content Motifs
01 3 N N
02 N [0.1, 0.3] N
03 N [0.5, 0.7] N
04 3 [0.4, 0.6] N
05 4 [0.45, 0.55] N
06 4 [0.4, 0.6] N
07 2 [0.4, 0.6] Motif-1
08 4 [0.4, 0.6] Motif-2

* Motif-1: AGCT, GACGC, CAGCAG, GATATC, GGTACC, CTGCAG, GAGCTC, GTCGAC,
AGTACT, ACTAGT, GCATGC, AGGCCT, TCTAGA [38]
* Motif-2: CTTGGTCAGACGAGTGCATG, GAGTTACGCGGGGATACATG (Primer) [26]

3.7
4 '..}.. Explorer

3.34 .
- . Spider-web
() * .
52°1 ‘{- o Yin-Yang

o " . R
¥ 24 A )
3 r ik
4 ]

g 2.0 | | |
g 1.6 ~
[
& 0.8~
()] °
B 0.5
0
U L]

0.3 A °

L]
0.0 . o ;

=10 l=I12 l=|14 t=I16 l=I18 =20
Observation Length

le+12 Explorer

B Spider-web

le+10 - .
Savings

le+8
le+6

le+4

Number of the vertices

=10

£=12 (=14 (=16 (=18 (=20
Observing Length

Fig. 6. Comparison between Explorer, SPIDER-WEB and Yin-Yang. (A) The Coding efficiency comparison between Explorer, SPIDER-WEB,

and Yin-Yang. The scatter point represents the results of individual experiments, while the histogram heights are constructed from the means of seven

experiments. (B) The number of the parameter comparison between Explorer and SPIDER-WEB.

coding algorithms. The enhanced base diversity delivers a
higher information density for DNA storage, yielding significant
advantages in storage capacity. The experimental results
underscore the efficiency and stability of Explorer in dealing
with various biochemical constraints, as well as its pronounced
advantages in code rate over other existing coding methods.
Furthermore, we compare the time complexity and space
complexity across the observation length ranged from 10 to
20. As shown in Fig. 5A, Yin-Yang demonstrates excellent
coding efficiency and maintains stable performance with respect
And SPIDER-WEB

is the only coding algorithm based on graph structure.

to different biochemical constraints.

Therefore, we assess the time complexity among the three
coding methods: Explorer, SPIDER-WEB, and Yin-Yang
for different observation lengths. As can be seen in the Fig.
6A, the coding efficiency of Yin-Yang remains stable across
different observation lengths without a significant increase as
the observation length extending. On the other hand, although
SPIDER-WEB exhibits the best coding efficiency when the
observation length is short, e.g., £ = 10, its coding efficiency
significantly diminishes as the observation length increases. In
contrast, Explorer maintains stable and high coding efficiency
across all observed lengths. Notably, when observation length is

greater than or equal to 12, its performance markedly surpasses
that of the other two methods. Thus, Explorer is more suitable
for dealing with globally biochemical constraints.

For the space complexity comparison, we employed the
number of vertices in the graph as the comparative metric.
Therefore, we compared the Explorer with the other graph-
based coding method SPIDER-WEB. As shown in Fig. 6B,
when SPIDER-WEB handles longer observation lengths, the
number of parameters increases exponentially, necessitating
significant time and space resources for graph construction. The
exponential growth of space complexity eventually surpasses
the processing capabilities of typical computers, resulting in
SPIDER-WEB incapable of encoding tasks for observation
length larger than 18. In stark contrast, the number of vertices
of our Explorer maintains stable for all observation lengths,
such that it is minimally affected by increasing the observation
length.

In addition, we conduct the experiments to evaluate both
the time complexity and space complexity of Explorer with
different sizes of input data. As depicted in Fig. 7, both the
memory space utilized and the time expended by the Explorer
increase linearly with the size of the input data. Such linear
relationship indicates that the model possesses commendable
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to support that the sequence with the highest frequency is the correct sequence.

scalability. The predictable nature of the linear growth is crucial
for resource planning and system design, as it allows for the
anticipation of resource requirements as data volumes expands.

Decoding accuracy of Explorer

In this section, we experimentally validate the decoding and
error correction performance of Explorer. To accord with
the existing DNA storage technologies, we introduce a set
of constraints to examine the decoding performance of our
Explorer. More specifically, we set the homopolymer length to
be 2 to better accommodate enzymatic DNA synthesis [40] and
the GC content to be 50% to enhance the success rate of PCR
amplification [41]. Additionally, we prohibit specific sequences
that may lead to increased error rates [26, 38].

We use the decoding accuracy as a metric to evaluate
the precision of decoding. The criterion for accurate decoding
stipulates that each position within the sequence should be
correctly decoded, underscoring the imperative for reliability
in the data conversion process. Mathematically, we can define

the decoding accuracy as

#{Decoding Sequence == Encoding Sequence}

Accuracy =

)

(6)

where # denotes the number of elements. Obviously, a sequence

#{Input Sequence }

contributes to the decoding Accuarcy only if it is perfectly
corrected at all positions. Moreover, in the context of DNA
sequence encoding and decoding, high decoding accuracy
exemplifies outstanding model performance.

We use 10,000 DNA sequences (DNA of length 200 nt) that
satisfied biochemical constraints as decoding DNA samples.
For simplicity, we assume that substitutions, insertions, and
deletions occur with equal probability and that errors occur at
random positions in DNA sequences. The correction rates with
respect to different error rates are shown in Fig. 8A. As can be
seen, Explorer can correct most errors and achieve a decoding
accuracy of 96.5%, when there is a 0.5% error rate (i.e., one
editing error in a 200 nt long sequence).

Additionally, considering that the DNA sequencing process
typically involves multiple sequence copies, we can assume that
the correct sequence is the one with the highest frequency.
By increasing the number of copies, the proportion of correct
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sequences among all sequences can be increased and used for
decoding. To study the minimum reads number required for
the above hypothesis, that is, the correct sequence occurring
most frequently, we conducted 10,000 random tests with the
different error rates mentioned above. As shown in Fig. 8B,
when the error rate is 0.5%, the correct decoding sequence
can be obtained through the above assumption when the reads
number exceeds 3. For the above assumptions to hold, the
number of reads per sequence needs to be no less than 3, 4,
6, 10, and 15 for editing error rates of 0.5%, 1.0%, 2.0%, 3.0%,
and 4.0%, respectively. Therefore, by utilizing a small number
of sequence copies, our Explorer can correctly decode the DNA
sequences when edit errors are involved in the data.

Performance evaluation of Codeformer

The training and testing datasets for Codeformer consist
of pairs comprising a binary sequence and a DNA sequence.
The DNA sequences are obtained using the Explorer from

binary sequences. We build up the training dataset including
300,000 pairs of sequences, and the test dataset consisting of
50,000 pairs. It is important to note that the testing dataset
is independent and meticulously curated to ensure there is no
overlap or duplication with the training dataset.

At the first place, we conduct the ablation experiments on
the Codeformer by replacing the transformer module with
LSTM and GRU. As shown in Fig. 9A, when the transformer
module is replaced with two alternative networks, the code
efficiency of the decoding algorithm decreases. It demonstrates
that Codeformer can operate more efficiently than LSTM
and GRU models.
to the powerful parallel computing ability of Transformer in

The increased efficiency is attributable
processing data. The Codeformer utilizes a beam search
strategy to enhance its selection process, which is a heuristic
algorithm used in graphical models to keep multiple probable
decoding options at each step. It allows the exploration of
more decoding paths, potentially improving accuracy. The
beam width, a crucial parameter, determines the number of
sequences retained per step. Adjusting this width balances
accuracy and efficiency: larger widths enhance accuracy but
increase computational demand, while smaller widths speed
up decoding at the potential cost of reduced accuracy. As
shown in Fig. 9A, when the beam search width is set to 5,
the decoding efficiency of Codeformer is nearly ten times
faster than Explorer. Moreover, Fig. 9B illustrates decoding
efficiency of Codeformer using different beam search widths,
where X in Codeformer-X denotes the beam search width
set for Codeformer. The results indicate that as the search
width increases, the decoding efficiency of the Codeformer
gradually decreases. It is because the larger search width
requiring the Codeformer to evaluate more potential decoding
paths. Therefore, we set the beam width to be 5 to balance the
efficiency and accuracy.

These results demonstrate that Codeformer has high
decoding efficiency. Although increasing the search width may
reduce the overall effectiveness of Codeformer, it can still
maintain high efficiency relative to traditional algorithms, even
at higher search widths. It effectively addresses the challenge
of large-scale parallel decoding.
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Although the deep learning based DNA coding can
substantially enhance encoding and decoding efficiency, it may
also suffer from the increase in decoding error rate. Thus,
we employ Reed-Solomon (RS) codes [37] to correct errors
of Codeformer decoding, aiming to reduce the error rate
and maintain efficient encoding. A series of experiments are
conducted to evaluate the performance of RS code in correcting
the decoding error. Fig. 10 illustrates the decoding accuracy
of Codeformer and the number of DNA chains corrected
by RS code at a search width of 5. Obviously, the RS code
successfully increases the decoding accuracy of Codeformer.
It demonstrates that by combining the Codeformer with RS
codes, the goal of improving decoding efficiency while reducing
encoding and decoding error rates can be successfully achieved.

Prospects and limitations

With the rapid advancements in deep learning, various
learning-based encoding-decoding models have been proposed
for DNA storage [42, 43, 44, 45, 46, 47]. Compared to traditional
source and channel coding strategies, deep learning-based
methods significantly enhance encoding and decoding efficiency,
which is crucial given the massive volume of data involved.
It is noteworthy that many learning-based encoding-decoding
methods, including our Codeformer, are data-driven. These
methods leverage neural networks to learn the mapping between
binary information and codes generated using different coding
techniques, such as finite-state constrained codes [45] and
Turbo codes [43]. Moreover, learning-based methods have
demonstrated high efficiency in image data encoding and
decoding [47, 46, 42].

However, deep learning models are often criticized for their
black-box nature, which obfuscates their internal decision-
making processes. This lack of transparency can significantly
hinder applications in fields where understanding the rationale
behind each decision is critical. Specifically, in the DNA
storage domain, where the accuracy of every encoded and
decoded sequence is paramount, the inability to interpret the
logic of coding methods could limit their applications. Efforts
have been made to derive model-based methods to enhance
the interpretability of the channel Encoding/Decoding in the
context of DNA strorage. For example, a forward-backward
algorithm associated with marker codes [44] is unfolded into a
network to enhance interpretability. Given the development of
interpretable graph models, including XGNN [48], SubgraphX
[49] etc., we aim to develop an interpretable graph neural
network by incorporating De Bruijn graph structure for DNA
coding in the future.

Conclusion

In this work, we presented the Explorer, which is a DNA
coding method capable of handling increasingly intricate
local biochemical constraints, including toxic DNA sequences,
primers, and other lengthy sequences that amplify biochemical
errors within the DNA storage system [50, 51]. By utilizing
the structure of the De Bruijn graph, and ensuring that the
vertices in the graph meet specific biochemical constraints,
the entire DNA sequence can be guaranteed to satisfy the
corresponding local biochemical constraints. The Explorer can
provide sequences that simultaneously adhere to arbitrary local
biochemical constraints and meet arbitrary global constraints.
It also has advantages compared with other advanced coding
algorithms in terms of code rate and code efficiency. What

is more, we also proposed the Codeformer model, which is
a transformer-based learning model. The Codeformer can
achieve more efficient conversion between binary information
and DNA strings, which may help to promote industrialization
of DNA storage.

Although the proposed coding methods demonstrate
superiority, they still face several unresolved issues. Going
forward, enhancements to the Explorer can involve designing
it as a fixed-length code generation algorithm to ensure uniform
DNA sequence length. To address the issue of sequence
errors in the Codeformer, it is essential to develop effective
error correction methods. Additionally, future research should
concentrate on the development of models that harmonize
efficiency with transparent decision-making processes, thereby
enhancing their applicability in the field of DNA storage.

Data and code availability

The datasets and the codes are freely available at https://
github.com/DouC17/Explorer
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