

ACCEPTED MANUSCRIPT

Low-resolution Prior Equilibrium Network for CT Reconstruction

To cite this article before publication: Yijie Yang *et al* 2024 *Inverse Problems* in press <https://doi.org/10.1088/1361-6420/ad5d0d>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2024 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by-nc-nd/3.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

Low-resolution Prior Equilibrium Network for CT Reconstruction

Yijie Yang¹, Qifeng Gao¹ and Yuping Duan^{2*}

¹ Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China

² School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China

* Corresponding author

E-mail: ypduan@bnu.edu.cn

Abstract. The unrolling method has been investigated for learning variational models in X-ray computed tomography. However, for incomplete data reconstruction, such as sparse-view and limited-angle problems, the unrolling method of gradient descent of the energy minimization problem cannot yield satisfactory results. In this paper, we present an effective CT reconstruction model, where the low-resolution image is introduced as a regularization for incomplete data problems. In what follows, we utilize the deep equilibrium approach to unfolding of the gradient descent algorithm, thereby constructing the backbone network architecture for solving the minimization model. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium model and provide the necessary conditions to guarantee its convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.

Keywords: CT reconstruction, limited-angle, sparse-view, deep equilibrium model, unrolling, low-resolution image prior

1. Introduction

Computed Tomography (CT) is a fundamental imaging tool that finds wide applications in various fields, such as industrial non-destructive testing, medical diagnoses, and security inspections. The CT reconstruction problem aims to reconstruct clean image $\mathbf{u} \in \mathcal{X} \subset \mathbb{R}^N$ from the projection data $\mathbf{b} \in \mathcal{Y} \subset \mathbb{R}^l$ with unknown noise $\xi \in \Xi \subset \mathbb{R}^l$. The linear inverse problem in imaging is associated with a fixed linear operator $\mathbf{A} : \mathcal{X} \rightarrow \mathcal{Y}$. In detail, for any given pair $(\mathbf{b}, \xi) \in \mathcal{Y} \times \Xi$ the corresponding forward model generates the observations \mathbf{b} via

$$\mathbf{b} = \mathbf{A}\mathbf{u} + \xi. \quad (1)$$

where the reconstruction space \mathcal{X} and the data space \mathcal{Y} are typically Hilbert Spaces, and N represents the number of pixels. Our objective is to reconstruct the clean image

1 2 *Low-resolution Prior Equilibrium (LRPE) Network* 2 3

4
5 **u** from the measurement **b** . In general, when the number of pixels in a reconstructed
6 image exceeds the number of projection samples in CT imaging, the inverse problem of
7 (1) becomes ill-posed.

8 Due to the radiation, various approaches have been explored, which can be
9 primarily categorized into two main categories, either to modify the scanning protocol
10 by reducing the tube voltage and/or tube current [44] or downsample the measured
11 data for CT reconstruction, such as interior CT [36, 51, 60, 70], and sparse-view
12 CT [68, 66, 34, 63, 72, 65]. These approaches aim to achieve dose reduction while
13 maintaining satisfactory image quality. However, employing the first category of
14 approaches for radiation dose reduction may result in the measured CT data being
15 heavily contaminated with noise. The standard filtered back-projection (FBP) method,
16 when applied to reconstruct CT images using noise-contaminated CT data, suffers from
17 a significant degradation in image quality. On the other hand, the second category of
18 approaches, aimed at reducing radiation dose, usually introduces additional ill-posedness
19 into the inverse problem. It is worth noting that the regularization method is an effective
20 technique for tackling ill-posed problems by incorporating prior information. The total
21 variation (TV) regularization, as a prominent example, is considered state-of-the-art in
22 handling low-dose and few-view CT [38]. Moreover, alternative sparsity regularization
23 techniques, e.g., the utilization of wavelet frames [69], have been investigated in CT
24 reconstruction. A noise suppression-guided image filtering reconstruction algorithm has
25 recently been proposed as a solution to address the low signal-to-noise ratio (SNR)
26 problem [31].

27 With recent advancements in artificial intelligence and hardware performance, deep
28 learning (DL) has emerged as a promising approach for denoising in low-dose computed
29 tomography, which has demonstrated encouraging results. Since then, various deep
30 learning reconstruction methods have been studied including the pre-processing in the
31 projection domain, projection-to-image reconstruction, and post-processing in the image
32 domain [19, 25, 28, 2, 46, 49, 50]. These studies have shown that DL approaches
33 consistently deliver enhanced or comparable noise suppression and maintain structural
34 fidelity [57, 37, 54, 59, 3]. Broadly speaking, we can roughly divide the learning-based
35 methods for CT reconstruction into three categories as the post-processing methods
36 [56, 40], the plug-and-play priors methods [61, 10, 55, 48, 52] and the unrolling methods
37 [4, 22]. These methods have greatly improved the reconstruction qualities compared to
38 conventional methods. The remaining issues mainly include: firstly, the theoretical
39 property guarantees of learning-based reconstruction methods have not been fully
40 addressed, such as the convergence of the learning-based models. Secondly, for severely
41 ill-posed reconstruction problems, such as limited-angle and sparse-view reconstruction
42 issues, it still requires effective learning-based solutions.

43 44 *1.1. Convergence studies of learning-based methods*

45
46 **Post-processing methods.** A deep neural network-based post-processing of a
47

1
2 *Low-resolution Prior Equilibrium (LRPE) Network* 3
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

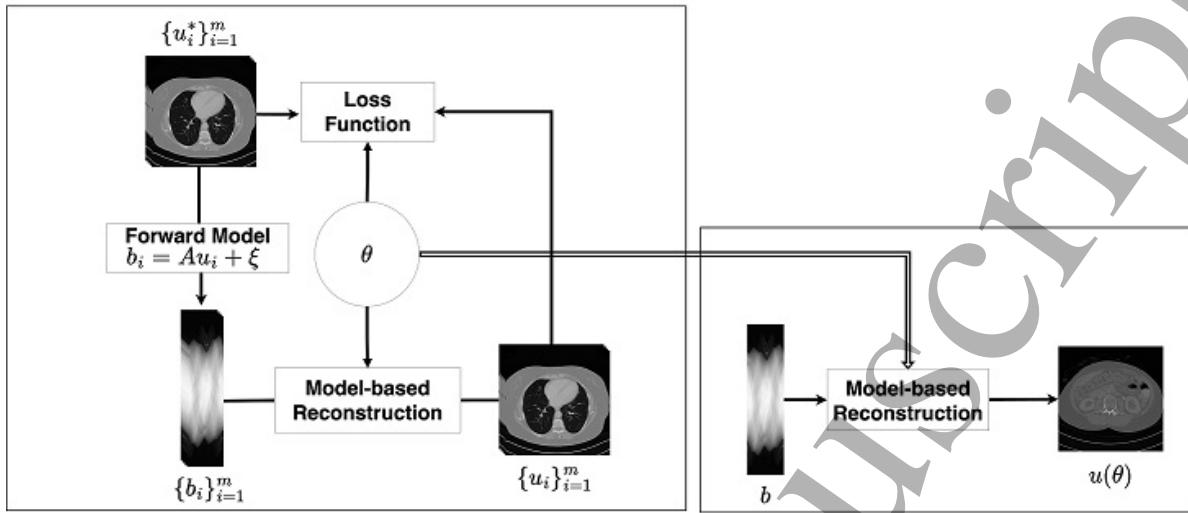
model-based reconstruction is parameterized as $\mathcal{P}_\theta \circ \mathcal{B}$, where \mathcal{B} denotes a classical reconstruction method (e.g., FBP), \mathcal{P}_θ represents a deep convolutional network with parameters θ and \circ represents composite operations. In general, there is no convergence guarantee for the post-processing strategies. That means, a small value of $\|\mathbf{A}\mathbf{u} - \mathbf{b}\|$ does not necessarily imply a small value of $\|\mathbf{A}\mathcal{P}_\theta(\mathbf{u}) - \mathbf{b}\|$ for the output of \mathcal{P}_θ . Such issue was addressed in [56] by parametrizing the operator \mathcal{P}_θ as $\mathcal{P}_\theta = \mathbf{I} + (\mathbf{I} - \mathbf{A}^\top \mathbf{A}) \mathcal{Q}_\theta$, where \mathcal{Q}_θ is a Lipschitz-continuous deep convolutional neural network. Since $\mathbf{I} - \mathbf{A}^\top \mathbf{A}$ is the projection operator in the null-space of \mathbf{A} , the operator \mathcal{P}_θ always satisfies $\mathbf{A}\mathcal{P}_\theta(\mathbf{u}) = \mathbf{A}\mathbf{u}$. Null-space networks were demonstrated to offer convergent regularization schemes. Inspired by the theory of optimal transport, an adversarial framework for learning the regularization term was proposed in [40], which possessed the stability guarantee, subjecting to the condition that the regularization is 1-Lipschitz and coercive.

Plug-and-play (PnP) priors methods. The PnP prior approach leverages the strengths of both realistic modeling through physical knowledge and flexible learning from data patterns. Relying on the *maximum a posteriori probability* (MAP) estimator, the solution of (1) can be formulated as the following minimization problem

$$\mathbf{u} \in \arg \min_{\mathbf{u}} \mathcal{S}(\mathbf{u}, \mathbf{b}) + \mathcal{R}(\mathbf{u}; \theta), \quad (2)$$

where $\mathcal{S}(\mathbf{u}, \mathbf{b}) = -\log(p_{\mathbf{b}|\mathbf{u}}(\mathbf{u}))$ is the likelihood relating the solution \mathbf{u} to the measurement \mathbf{b} and $\mathcal{R}(\mathbf{u}; \theta) = -\log(p_{\mathbf{u}}(\mathbf{u}))$ is the denoiser to be learned by deep neural network models. The PnP priors framework models the likelihood by obeying the noise distributions of the underlying physical process, while it extracts flexible priors from data observation. The learning-based regularization have shown excellent empirical performance, which inspired the theoretical studies on its convergence. The first result demonstrating the global objective convergence of PnP-ADMM was presented in [61], where the learned denoiser $\mathcal{R}(\mathbf{u}; \theta)$ should satisfy two requirements, i.e., it is continuously differentiable, and its gradient matrix is doubly stochastic. The fixed-point convergence of PnP-ADMM with a continuation scheme and bounded denoiser was established in [10]. Ryu *et al.* [55] demonstrated that the iterations of both PnP-proximal gradient-descent and PnP-ADMM exhibit contraction behavior when the denoiser $\mathcal{R}(\mathbf{u}; \theta)$ satisfies the Lipschitz condition. The fixed-point convergence of PnP-forward-backward splitting (FBS) and PnP-ADMM were proven in [48]. Specifically, the proof was established for linear denoisers of the form $\mathcal{R}(\mathbf{u}; \theta) = \mathbf{W}\mathbf{u}$, where \mathbf{W} is diagonalizable and its eigenvalues are within the range of $[0, 1]$. The convergence guarantees for the PnP methods were derived in [33] with gradient-step (GS), alleviating the need for such restrictive assumptions. The GS denoiser, denoted as $\mathcal{R}(\mathbf{u}; \theta) = \mathbf{I} - \nabla g_\sigma$, is formulated with $g_\sigma(\mathbf{u}) = |\mathbf{u} - P_\sigma(\mathbf{u})|$, where P_σ represents a deep neural network devoid of structural constraints. The parametrization was shown to have enough expressive power to achieve state-of-the-art denoising performance in [33]. In [52], a closely related PnP approach was employed with the objective of providing an asymptotic characterization of the iterative PnP solutions. The key concept was to model maximally monotone operators (MMO) using a deep neural network, where the

1
2 *Low-resolution Prior Equilibrium (LRPE) Network*
3
4



22
23 **Figure 1.** Depiction of a typical bilevel problem for image reconstruction. The left box
24 represents the training process, which includes an upper-level loss and a lower-level cost
25 function. During training, the objective is to minimize the upper-level loss function.
26 Once the parameters θ are learned, it is employed in the same image reconstruction
27 task, as depicted in the right box.

28
29 parameterization of MMOs was achieved by modeling the resolvent through a non-
30 expansive neural network.
31

32 **Unrolling methods.** Algorithm unrolling [47] unfolds the iterative algorithms
33 with loops or recursion into non-recursive neural networks to construct interpretable
34 and effective deep learning models. The origin of unrolling can be traced back to the
35 seminal work by Gregor and LeCun [26] for solving sparse coding via unfolding the
36 iterative soft-thresholding algorithm. We can formally express the unrolling model for
37 (2) as a bilevel minimization problem
38

$$\begin{aligned} & \min_{\theta} \frac{1}{m} \sum_{i=1}^m \ell(u_i(\theta), u_i^*) && \text{(UL)} \\ & \text{s.t. } u_i(\theta) \in \arg \min_u \mathcal{S}(u, b_i) + \mathcal{R}(u; \theta) && \text{(LL)} \end{aligned} \quad (3)$$

46 where a loss function $\ell(\cdot, \cdot)$ is employed to enforce the similarity between the
47 reconstructed image u_i and ground truth u_i^* , \mathcal{S} represents the data term, and \mathcal{R} denotes
48 the learnable regularization term, m indicates the number of training data samples. The
49 upper-level (UL) loss function evaluates the quality of a vector of learnable parameters,
50 while it also depends on the solution to the lower-level (LL) cost function. Figure 1
51 illustrates a generic bilevel problem for image reconstruction, where the model-based
52 reconstruction represents the process of solving the lower-level minimization problem.
53

54 The bilevel problems [5, 7, 13, 16, 15] are known for their inherent difficulties to be
55 solved numerically. To utilize gradient descent methods, it is necessary to compute
56 the derivative of the solution operator for the lower-level problem (2) with respect
57 to the parameters θ . If the objective of the lower-level problem is differentiable and
58

Low-resolution Prior Equilibrium (LRPE) Network

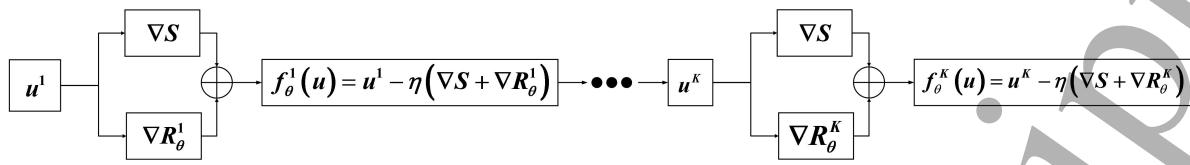


Figure 2. Depiction of a typical unrolling method using the gradient decent.

has a unique minimum, gradients can be computed using implicit differentiation [18]. However, non-smooth objectives, along with potentially multi-valued solution operators, are frequently employed in image and signal processing tasks. The method of unrolling involves utilizing an iterative algorithm that solves the lower-level problem and replaces the optimal solution $\mathbf{u}_i(\boldsymbol{\theta})$ with the K stages. We can express the unrolling network as follows

$$\mathbf{u}^{k+1} = f_\theta^k(\mathbf{u}^k) \quad \text{for } k = 0, \dots, K-1, \quad (4)$$

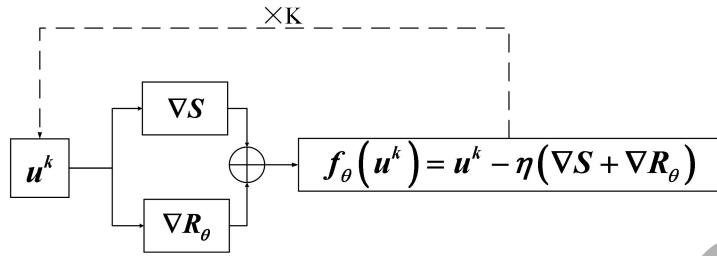
where k is the stage index and $f_\theta^k(\cdot)$ represents a nonlinear transformation, such as convolution followed by the application of a nonlinear activation function.

In fact, different stages can share the same weights, such that $f_\theta^k(\cdot)$ at each stage remains the same, i.e., $f_\theta^k(\cdot) = f_\theta(\cdot)$ for all k . The equilibrium or fixed-point-based networks introduced in [4, 22] used weight-sharing into the unrolling methods, which has demonstrated the capability to attain competitive performance. The main concept was to represent the output of a feed-forward neural network model as a fixed-point of a nonlinear transformation, which enabled the use of implicit differentiation for the back-propagation. Let us consider the K -stage network model with the input \mathbf{b} and weights $\boldsymbol{\theta}$. The output of the $(k+1)$ -th hidden layer can be denoted as \mathbf{u}^{k+1} obtained by the following recursion process

$$\mathbf{u}^{k+1} = f_\theta(\mathbf{u}^k). \quad (5)$$

The limit of \mathbf{u}^k as $K \rightarrow \infty$, provided it exists, is a fixed point of the operator $f_\theta(\cdot)$. The series converges if the spectral norm of the Jacobian $\partial_u f_\theta(\cdot)$ is strictly less than 1 for any \mathbf{u} , which is true if and only if the iteration map $f_\theta(\cdot)$ is contractive. The deep equilibrium model serves as a bridge between the conventional fixed-point methods in numerical analysis and learning-based techniques for solving the inverse problems. We illustrate the general diagram of the unrolling algorithm based on gradient descent of the low-level minimization problem in Figure 2, while represent the structure of deep equilibrium model in Figure 3. As can be shown, the difference between deep unrolling model and deep equilibrium model lies in the iterative regime, where deep equilibrium model shares the weights for all stage. Indeed, we use the deep neural networks to learn the gradient operator of the data fidelity and regularization used in the gradient descent scheme.

1
2 *Low-resolution Prior Equilibrium (LRPE) Network*
3
4
5
6
7
8
9
10
11
12
13
14



15 **Figure 3.** Depiction of a typical deep equilibrium method using the gradient decent.
16
17

18 **1.2. Low-resolution Prior for CT reconstruction**
19
20
21
22
23
24
25
26
27
28
29
30
31

32 For severely degraded CT reconstruction problems such as sparse-view and limited-
33 angle, it is necessary to combine effective prior information to improve the quality of
34 the reconstructed images. Different kinds of prior knowledge have been investigated
35 for incomplete data reconstruction problems. The non-local similarity has been shown
36 highly beneficial for enhancing fine details in reconstructed CT images [32, 35, 21, 45].
37 Both low-rank prior and dictionary learning have been used to leverage the sparsity of
38 the image in a transform domain [41, 11, 53]. Deep learning methods by integrating
39 geometric priors have also been studied in [58, 39, 64, 71]. Besides, personalized
40 information as a prior has also been demonstrated to significantly enhance the
41 reconstruction results [20, 24].

42 The ill-posedness of CT problem (1) comes from the finite dimension of measured
43 rays and the infinite-dimensional nature of unknown objects. We can parameterize the
44 object by utilizing a finite-series expansion as follows

$$45 \quad \mathbf{u}(x, y) = \sum_{j=1}^N u_j e_j(x, y), \quad (6)$$

46 where $\{e_j(x, y)\}$ are basis functions that should be linearly independent. The square
47 pixels are the most commonly used basis function defined by
48

$$49 \quad e_j(x, y) = \text{rect}\left(\frac{x - \tilde{x}_j}{\Delta x}\right) \text{rect}\left(\frac{y - \tilde{y}_j}{\Delta y}\right),$$

50 where
51
52

$$53 \quad \text{rect}(t) \triangleq 1_{\{|t| \leq 1/2\}} = \begin{cases} 1, & |t| \leq 1/2, \\ 0, & \text{otherwise,} \end{cases}$$

54 and $(\tilde{x}_j, \tilde{y}_j)$ denotes the coordinates of the j -th pixel, $(\Delta x, \Delta y)$ denotes the size of
55 each pixel. The length of the i th ray passing through the pixel u_j is denoted by
56 $a_{ij} = \int e_j(x, y) d\ell$, where all a_{ij} constitute the system matrix \mathbf{A} in (1). It is well-known
57 that using a finer grid can improve image resolution, but it also leads to an increase
58 in the number of unknowns, which exacerbates the ill-posedness of the inverse problem
59 and increases sensitivity to disturbances [27]. We can achieve the goal of reducing the
60 number of unknowns by increasing the size of pixels/voxels through modifying the basis
functions (6). Actually, there have been studies on the impact of resolutions on CT

1
2 *Low-resolution Prior Equilibrium (LRPE) Network* 7
3
45 reconstruction. In [62], a low-resolution full-view image was initially reconstructed,
6 followed by a fine-resolution reconstruction of a specific region of interest (ROI). In
7 particular, the image attributes of the pixels inside the ROI were set to zero, and a
8 new projection sinogram was calculated using the forward model represented in matrix
9 form by (1). Afterward, the newly calculated sinogram was subtracted from the original
10 sinogram, resulting in a sinogram that contained projections exclusively corresponding
11 to the ROI. Dabovolski *et al.* [14] proposed to obtain an initial reconstruction of
12 a global coarse image, which was subsequently divided into regions comprising both
13 fixed and non-fixed pixels. Specifically, the boundary pixels that shared at least one
14 adjacent pixel with a different attenuation coefficient were assigned to the non-fixed
15 pixels region. The non-fixed pixels region was comprised of boundary pixels that had at
16 least one adjacent pixel with a different attenuation coefficient. Another method in [9]
17 involved dividing the image domain into sub-regions with varying levels of discretization,
18 which were characterized by either a coarse or fine pixel size. The projection data
19 obtained from both resolutions were combined to reconstruct an image with different
20 levels of discretization, effectively incorporating information from both measurements
21 to enhance the reconstructed image quality. Gao *et al.* [17] proposed a low-resolution
22 image prior image reconstruction model, which was realized in an end-to-end regime
23 showing impressive ability in dealing with limited-angle reconstruction problems. He
24 *et al.* [29] introduced a downsampling imaging geometric modeling approach for the
25 data acquisition process, which integrated the geometric modeling knowledge of the
26 CT imaging system with prior knowledge obtained from a data-driven training process
27 to achieve precise CT image reconstruction. Malik *et al.* [42] suggested employing
28 image fusion to generate a composite image that combines the high spatial resolution of
29 a partially ambiguous image obtained from incomplete data with the more dependable
30 quantitative information of a coarser image reconstructed from the same data in an over-
31 complete problem. The aforementioned methods demonstrate that the low-resolution
32 image can be used as an effective prior for ill-posed CT reconstruction problems.
33
3443 *1.3. Our contributions*
4445 In this work, we introduce the low-resolution image as the prior and propose a novel
46 image reconstruction model for sparse-view and limited-angle CT reconstruction tasks.
47 More specifically, the low-resolution image prior can introduce effective regularity into
48 the reconstruction model to guarantee the qualities for incomplete data problems.
49 Subsequently, we implement the algorithm unrolling to solve our low-resolution prior
50 image model, where the gradient descent is employed for minimizing the lower-level
51 problem with each Jacobi block being approximated by convolutional neural networks.
52 To balance feature extraction capability and model size, we establish the low-resolution
53 prior equilibrium (LRPE) network, where the weight-sharing strategy is used among
54 all stages. More importantly, our approach has provable convergence guarantees by
55 satisfying certain conditions to guarantee the iterative scheme converge to a fixed-point.
56
57
58
59
60

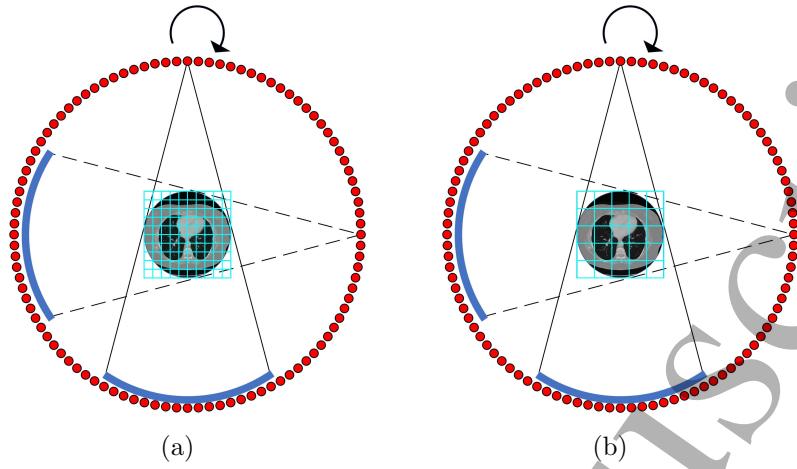
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Low-resolution Prior Equilibrium (LRPE) Network

Figure 4. Illustration of the virtual CT scanning system, where (a) a fine CT scanning system; (b) a coarse CT scanning system.

Through extensive numerical experiments on both sparse-view and limited-angle CT reconstruction problems, our LRPE model demonstrates clear advantages over the state-of-the-art learning methods. To sum up, the major contributions of this paper are as follows

- By leveraging the characteristics of the physical process of CT imaging, we use the low-resolution image as prior and establish an effective regularization model for incomplete data CT reconstruction.
- We employ the deep equilibrium method to solve the low-resolution prior model, where the convergence is established for both explicit data fidelity and learned data fidelity.
- We conduct numerical experiments to demonstrate the advantages of the low-resolution image prior and deep equilibrium strategy for incomplete data reconstruction problems.

2. Our Low-resolution Prior Reconstruction Model

Let $\mathbf{A}_l : \mathcal{X}_l \rightarrow \mathcal{Y}$ be the system matrix for the low-resolution image $\mathbf{u}_l \in \mathcal{X}_l \subset \mathbb{R}^n$. Thus, the low-resolution inverse problem can be formulated as follows

$$\mathbf{A}_l \mathbf{u}_l = \mathbf{b}, \quad (7)$$

where n denotes the number of pixels of the low-resolution image. Without considering the discretization error, the same projection data \mathbf{b} is used for the low-resolution image. The illustration of the fine and coarse CT scanning system is provided in Figure 4. As can be observed, the red color dots denote the permissible positions for the emitter, and the blue arc represents the corresponding receiving range of the receiver. It is obviously shown that the coarse scanning system has the same field of view (FOV) but with a

1
2
3
Low-resolution Prior Equilibrium (LRPE) Network 9
4
56
larger step size in spatial discretization. That means the low-resolution image can be
7
obtained from the high-resolution image as follows
8

9
$$\mathbf{u}_l = \mathbf{D}\mathbf{u}, \quad (8)$$

10

11
where $\mathbf{D} : \mathcal{X} \rightarrow \mathcal{X}_l$ is the down-sampling operator. In this work, we concern with the
12
following low-resolution image regularized CT reconstruction model
13

14
$$\mathbf{u} \in \arg \min_{\mathbf{u}} \mathcal{S}(\mathbf{A}\mathbf{u}, \mathbf{b}) + \mathcal{R}(\mathbf{u}, \mathbf{D}^T \mathbf{u}_l), \quad (9)$$

15

16
where \mathbf{D}^T represents the transpose of the matrix \mathbf{D} . Supposing both \mathcal{S} and \mathcal{R} are
17
differentiable, we can use the gradient descent to solve the minimization problem (9).
18
That is, we start with an initial estimate \mathbf{u}^0 such as $\mathbf{u}^0 = 0$ and a step size $\eta > 0$, such
19
that for stage $k = 0, 1, \dots, K-1$, we estimate \mathbf{u}^{k+1} from
20

21
$$\mathbf{u}^{k+1} = \mathbf{u}^k - \eta \left(\mathbf{A}^T \nabla \mathcal{S}(\mathbf{A}\mathbf{u}^k, \mathbf{b}) + \nabla \mathcal{R}(\mathbf{u}^k, \mathbf{D}^T \mathbf{u}_l) \right).$$

22

23
To leverage the rich information contained in the data, we adopt the deep unrolling
24
strategy to solve the above gradient descent problem. More specifically, we utilize two
25
convolutional neural networks $S_\theta(\cdot, \cdot) : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathcal{Y}$ and $R_\theta(\cdot, \cdot) : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ to learn the
26
gradient operator $\nabla \mathcal{S}(\mathbf{A}\mathbf{u}^k, \mathbf{b})$ and $\nabla \mathcal{R}(\mathbf{u}^k, \mathbf{D}^T \mathbf{u}_l)$, respectively. For $k = 0, \dots, K-1$,
27
we then have the recursive update as follows
28

29
$$\mathbf{u}^{k+1} = \mathbf{u}^k - \eta (\mathbf{A}^T s^k + t^k), \quad (10)$$

30

31
where $s^k := S_\theta(\mathbf{A}\mathbf{u}^k, \mathbf{b})$ and $t^k := R_\theta(\mathbf{u}^k, \mathbf{D}^T \mathbf{u}_l)$ are the estimations of the two
32
convolutional neural network models, respectively. Moreover, we use the weight-sharing
33
scheme to improve the feature abstraction capabilities by unrolling the network to a
34
sufficient depth. Therefore, the final update scheme is achieved by connecting the
35
unrolled gradient descent stages (10) with the deep equilibrium architecture (5) as
36
follows
37

38
$$f_\theta(\mathbf{u}^{k+1}) := \mathbf{u}^k - \eta \left(\mathbf{A}^T S_\theta(\mathbf{A}\mathbf{u}^k, \mathbf{b}) + R_\theta(\mathbf{u}^k, \mathbf{D}^T \mathbf{u}_l) \right). \quad (11)$$

39

40
The objective function in the upper-level problem is simply the true risk for the squared
41
loss
42

43
$$\ell(\mathbf{u}, \mathbf{u}^*) = \frac{1}{m} \sum_{i=1}^m \|\mathbf{u}_i^* - \mathbf{u}_i^K\|_2^2,$$

44

45
where \mathbf{u}_i^* is the i th ground truth, and \mathbf{u}_i^K denotes the reconstructed image. Indeed,
46
the use of the mean squared error (MSE) loss is not necessary, as any differentiable loss
47
function can be used.
4849

3. Our Algorithm

5051
The low-resolution prior equilibrium (LRPE) model can be outlined as Algorithm 1.
52
In both training and inference stage, the low-resolution prior image \mathbf{u}_l is obtained by
53
established reconstruction methods, where we used the Learned Primal-Dual network
54
[1] to estimate the low-resolution image in our work.
55

1
2
3
4
5 *Low-resolution Prior Equilibrium (LRPE) Network* 106 **Algorithm 1** Low-Resolution Prior Equilibrium (LRPE) Network

7 1: **Step 0.** Initialize $\mathbf{u}^0, \mathbf{b}, \mathbf{u}_l$, step size η ;
8 2: **Step 1.** For $k = 0, 1, 2, \dots, K - 1$ do
9
$$\begin{cases} s^k \leftarrow S_\theta(\mathbf{A}\mathbf{u}^k, \mathbf{b}); \\ t^k \leftarrow R_\theta(\mathbf{u}^k, \mathbf{D}^\top \mathbf{u}_l); \\ \mathbf{u}^{k+1} = \mathbf{u}^k - \eta(\mathbf{A}^\top s^k + t^k); \end{cases}$$

10 3: **Step 2.** Return \mathbf{u}^K .
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3.1. Network architecture

In Algorithm 1, both $R_\theta(\cdot, \cdot)$ and $S_\theta(\cdot, \cdot)$ are modeled by convolutional neural networks. More specifically, we use a three layer convolutional neural network with residual connections to express the two functionals

$$R_\theta = \mathbf{I}_N + H_3\phi_2(H_2\phi_1(H_1)),$$

and

$$S_\theta = \mathbf{I}_l + K_3\phi_2(K_2\phi_1(K_1)),$$

where the building blocks are defined as

- $H_i : \mathcal{X} \rightarrow \mathcal{X}, i = 1, \dots, 3$, is the matrix representation of a learned 3×3 convolution kernel.
- $K_i : \mathcal{Y} \rightarrow \mathcal{Y}, i = 1, \dots, 3$, is the matrix representation of a learned 3×3 convolution kernel.
- $\phi_i, i = 1, 2$ is a differentiable element-wise activation function. We adopt the log-student-t-distribution function as the activation function

$$\phi(x) = \frac{1}{2} \log(1 + x^2). \quad (12)$$

- $\mathbf{I}_N \in \mathbb{R}^{N \times N}$ and $\mathbf{I}_l \in \mathbb{R}^{l \times l}$ stand for the identity transformation.

The inclusion of residual structures [30] is important, which can help prevent the loss of fine details, expedite information flow, and enhance the capacity of the network model. The residual structures can alleviate training challenges and expedite convergence. The overall depth of the network is determined by the number of stages it contains, which is fixed to strike a balance between the receptive fields and the total number of parameters in the network. Therefore, we set the numbers of channels in each stage as $6 \rightarrow 32 \rightarrow 32 \rightarrow 5$ for both R_θ and S_θ . We present the network structure and subblocks in Figure 5, which is an end-to-end convolutional neural network model for CT reconstruction problems.

3.2. Algorithm implementation and network optimization

In implementation, our algorithm was realized using the Operator Discretization Library (ODL), the Adler package, the ASTRA Toolbox, and TensorFlow 1.8.0. In particular,

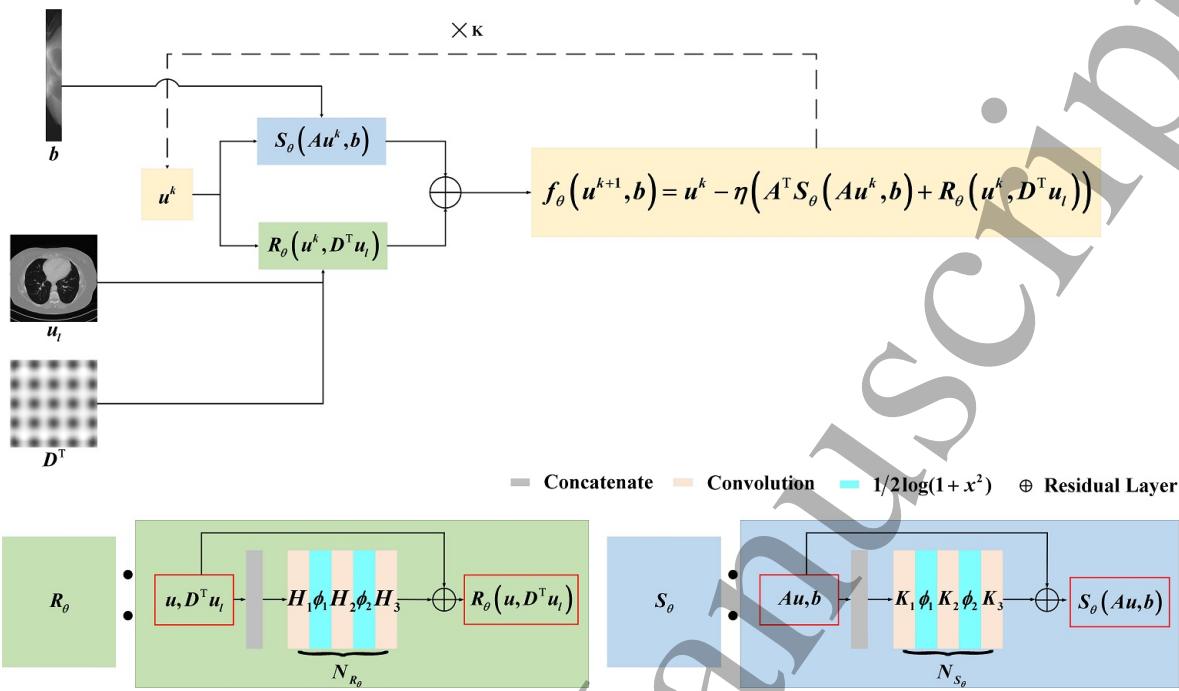
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Low-resolution Prior Equilibrium (LRPE) Network
11

Figure 5. The network structure of our LRPE: Low-Resolution Prior Equilibrium network.

the TensorFlow is a toolkit designed for tackling complex mathematical problems, for which the calculations are represented as graphs, mathematical operations are nodes, and multidimensional data arrays are communicated as edges of the graphs. The ASTRA Toolbox is a MATLAB and Python toolbox that provides high-performance GPU primitives for 2D and 3D tomography. And ODL is a Python library focused on fast prototyping for inverse problems. Adler is a toolkit that facilitates the efficient implementation of neural network architectures.

In our network, the parameters are updated using the backpropagation algorithm within the stochastic gradient descent method implemented in TensorFlow. We employ the Xavier initialization scheme for the convolution parameters and initialize all biases to zero. The adaptive moment estimation (Adam) optimizer is chosen to optimize the learning rate with the parameter β set to 0.99 and the remaining parameters set to their default values. The learning rate follows a cosine annealing strategy, which helps to improve training stability. The initial learning rate is set to 10^{-4} and global gradient norm clipping is performed by limiting the gradient norm to 1. Besides, the batch size is set to 1 for all experiments.

4. Convergence Analysis

Here we study convergence of the proposed LRPE to a fixed-point at inference time. Given the iteration map $f_\theta(\cdot) : \mathcal{X} \rightarrow \mathcal{X}$, we discuss the conditions that can guarantee the convergence of the iterates $\mathbf{u}^{k+1} = f_\theta(\mathbf{u}^k)$ to a fixed-point \mathbf{u}^∞ as $k \rightarrow \infty$. The

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Low-resolution Prior Equilibrium (LRPE) Network 12

classical fixed-point theorem [23] ensures the convergence of the iterates to a unique fixed point if the iteration map is contractive, i.e. if exists a constant $0 \leq c < 1$ such that $\|f_\theta(\mathbf{u}) - f_\theta(\mathbf{u}')\| \leq c \|\mathbf{u} - \mathbf{u}'\|$ for all \mathbf{u} and \mathbf{u}' .

Now we establish the conditions on R_θ and S_θ that can ensure the convergence of the iterates $\mathbf{u}^{k+1} = f_\theta(\mathbf{u}^k)$ in Algorithm 1 to a fixed-point \mathbf{u}^∞ as the stage number k approaches infinity. These conditions guarantee that the resulting mapping satisfies the contractivity condition and, consequently, the fixed-point iteration converges. Relying on the network structure shown in Figure 5, we denote $N_{R_\theta}(\mathbf{u}) = H_3\phi_2(H_2\phi_1(H_1(\mathbf{u})))$ and $N_{S_\theta}(\mathbf{A}\mathbf{u}) = K_3\phi_2(K_2\phi_1(K_1(\mathbf{A}\mathbf{u})))$. Then we have

$$\begin{aligned}\|\partial_u N_{R_\theta}\| &= \|H_1^\top \partial_u \phi_1(H_1 \mathbf{u}) H_2^\top \partial_u \phi_2(H_2 \phi(H_1 \mathbf{u})) H_3\|, \\ \|\partial_u N_{S_\theta}\| &= \|\mathbf{A}^\top K_1^\top \partial_u \phi_1(K_1 \mathbf{A}\mathbf{u}) K_2^\top \partial_u \phi_2(K_2 \phi(K_1 \mathbf{A}\mathbf{u})) K_3\|.\end{aligned}$$

Due to $\sup_{\mathbf{u}} |\phi'(\mathbf{u})| = 0.5$, $\|\partial_u N_{R_\theta}\|$ and $\|\partial_u N_{S_\theta}\|$ can be uniformly bounded independently of \mathbf{u} . Therefore, we can assume that N_{R_θ} and N_{S_θ} to be ϵ_1 -Lipschitz and ϵ_2 -Lipschitz. As aforementioned, there is $(R_\theta - \mathbf{I}_N)(\mathbf{u}) = N_{R_\theta}(\mathbf{u})$ and $(S_\theta - \mathbf{I}_l)(\mathbf{A}\mathbf{u}) = N_{S_\theta}(\mathbf{A}\mathbf{u})$. That means $(R_\theta - \mathbf{I}_N)(\mathbf{u})$ and $(S_\theta - \mathbf{I}_l)(\mathbf{A}\mathbf{u})$ are ϵ_1 -Lipschitz and ϵ_2 -Lipschitz, i.e.,

$$\begin{aligned}\|(R_\theta - \mathbf{I}_N)(\mathbf{u}) - (R_\theta - \mathbf{I}_N)(\mathbf{u}')\| &\leq \epsilon_1 \|\mathbf{u} - \mathbf{u}'\|, \\ \|(S_\theta - \mathbf{I}_l)(\mathbf{A}\mathbf{u}) - (S_\theta - \mathbf{I}_l)(\mathbf{A}\mathbf{u}')\| &\leq \epsilon_2 \|\mathbf{u} - \mathbf{u}'\|.\end{aligned}$$

In the following, we discuss convergences for the deep equilibrium unrolling algorithm for the low-resolution prior reconstruction model with empirical data fidelity and learned data fidelity, respectively.

Theorem 1. *(Convergence of LRPE with empirical data fidelity).* Assume that the observed data is without noise, there is $\mathcal{S} = \frac{1}{2}\|\mathbf{A}\mathbf{u} - \mathbf{b}\|_2^2$ in (9). Let $L = \lambda_{\max}(\mathbf{A}^\top \mathbf{A})$ and $\mu = \lambda_{\min}(\mathbf{A}^\top \mathbf{A})$, where $\lambda_{\max}(\cdot)$ and $\lambda_{\min}(\cdot)$ denote the maximum and minimum eigenvalue, respectively. If the step-size parameter $\eta > 0$ satisfies $\eta < 1/(L+1)$, we can obtain the following inequality

$$\|f_\theta(\mathbf{u}) - f_\theta(\mathbf{u}')\| \leq \underbrace{(1 - \eta(1 + \mu) + \eta\epsilon_1)}_{=:\gamma} \|\mathbf{u} - \mathbf{u}'\|$$

for all $\mathbf{u}, \mathbf{u}' \in \mathcal{X}$. The coefficient γ is less than 1 if $\epsilon_1 < 1 + \mu$, in which case the iterates of the LRPE model converges.

Proof. Let $f_\theta(\mathbf{u})$ be the iteration map for the LRPE with empirical data fidelity. The Jacobian of $f_\theta(\mathbf{u})$ with respect to \mathbf{u} denoted by $\partial_u f_\theta(\mathbf{u})$, is given by

$$\partial_u f_\theta(\mathbf{u}) = (\mathbf{I}_N - \eta \mathbf{A}^\top \mathbf{A}) - \eta \partial_u R_\theta(\mathbf{u}),$$

where $\partial_u R_\theta(\mathbf{u})$ is the Jacobian of $R_\theta(\mathbf{u})$ with respect to \mathbf{u} . To prove $f_\theta(\cdot)$ is contractive, it suffices to show $\|\partial_u f_\theta(\mathbf{u})\| < 1$ for all $\mathbf{u} \in \mathcal{X}$, where $\|\cdot\|$ denotes the spectral norm.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Low-resolution Prior Equilibrium (LRPE) Network 13

Towards this end, we have

$$\begin{aligned}
 \|\partial_u f_\theta(\mathbf{u})\| &= \|\mathbf{I}_N - \eta \mathbf{A}^\top \mathbf{A} - \eta \partial_u R_\theta(\mathbf{u})\| \\
 &= \|\mathbf{I}_N - \eta \mathbf{A}^\top \mathbf{A} - \eta \mathbf{I}_N + \eta \mathbf{I}_N - \eta \partial_u R_\theta(\mathbf{u})\| \\
 &\leq \|(1 - \eta) \mathbf{I}_N - \eta \mathbf{A}^\top \mathbf{A}\| + \eta \|\partial_u R_\theta(\mathbf{u}) - \mathbf{I}_N\| \\
 &\leq \max_i |(1 - \eta) - \eta \lambda_i| + \eta \epsilon_1,
 \end{aligned} \tag{13}$$

where λ_i denotes the i th eigenvalue of $\mathbf{A}^\top \mathbf{A}$. Here, we use the assumption that the map $(R_\theta - \mathbf{I}_N)(\mathbf{u}) := R_\theta(\mathbf{u}) - \mathbf{u}$ is ϵ_1 -Lipschitz to guarantee the spectral norm of the Jacobian $\partial_u R_\theta(\mathbf{u}) - \mathbf{I}_N$ to be bounded by ϵ_1 . Based on the assumption $\eta < \frac{1}{1+L}$ with $L := \max_i \lambda_i$, we have $\eta < \frac{1}{1+\lambda_i}$ for all i , which implies $(1 - \eta) - \eta \lambda_i > 0$ for all i . Therefore, the maximum in (13) is obtained at $\mu := \min_i \lambda_i$, which gives

$$\|\partial_u f_\theta(\mathbf{u})\| \leq 1 - \eta(1 + \mu) + \eta \epsilon_1.$$

It shows f_θ is γ -Lipschitz with $\gamma = 1 - \eta(1 + \mu) + \eta \epsilon_1$, proving the claim. \square

Theorem 2. (Convergence of LRPE with learned data fidelity). Assume that $(R_\theta - \mathbf{I}_N)(\mathbf{u})$ is ϵ_1 -Lipschitz and $(S_\theta - \mathbf{I}_l)(\mathbf{A}\mathbf{u})$ is ϵ_2 -Lipschitz, and let $L = \lambda_{\max}(\mathbf{A}^\top \mathbf{A})$ and $\mu = \lambda_{\min}(\mathbf{A}^\top \mathbf{A})$, where $\lambda_{\max}(\cdot)$ and $\lambda_{\min}(\cdot)$ denote the maximum and minimum eigenvalue, respectively. If the step-size parameter $\eta > 0$ obeys $\eta < 1/(L+1)$, the LRPE iteration map $f_\theta(\cdot)$ defined in (11) satisfies

$$\|f_\theta(\mathbf{u}) - f_\theta(\mathbf{u}')\| \leq \underbrace{(1 - \eta(1 + \mu) + \eta(L\epsilon_2 + \epsilon_1))}_{=:\gamma} \|\mathbf{u} - \mathbf{u}'\|$$

for all $\mathbf{u}, \mathbf{u}' \in \mathcal{X}$. The coefficient γ is less than 1 if $\epsilon_1 + L\epsilon_2 < 1 + \mu$, in which case the iterates of the LRPE-net converges.

Proof. Let $f_\theta(\mathbf{u})$ be the iteration map for LRPE with learned data fidelity. The Jacobian of $f_\theta(\mathbf{u})$ with respect to $\mathbf{u} \in \mathcal{X}$, denoted by $\partial_u f_\theta(\mathbf{u})$, is given by

$$\partial_u f_\theta(\mathbf{u}) = (\mathbf{I}_N - \eta \mathbf{A}^\top \partial_u S_\theta(\mathbf{A}\mathbf{u}) \mathbf{A}) - \eta \partial_u R_\theta(\mathbf{u}),$$

where $\partial_u R_\theta(\mathbf{u})$ is the Jacobian of $R_\theta(\mathbf{u})$ with respect to $\mathbf{u} \in \mathcal{X}$ and $\partial_u S_\theta(\mathbf{A}\mathbf{u})$ is the Jacobian of $S_\theta(\mathbf{A}\mathbf{u})$. Similarly, we show $\|\partial_u f_\theta(\mathbf{u})\| < 1$ for all $\mathbf{u} \in \mathcal{X}$. Since $(R_\theta - \mathbf{I}_N)(\mathbf{u})$ and $(S_\theta - \mathbf{I}_l)(\mathbf{A}\mathbf{u})$ are ϵ_1 -Lipschitz and ϵ_2 -Lipschitz, respectively, we have the spectral norm of its Jacobian $\partial_u R_\theta(\mathbf{u}) - \mathbf{I}_N$ is bounded by ϵ_1 and $\partial_u S_\theta(\mathbf{u}) - \mathbf{I}_l$ is bounded by ϵ_2 . Then there is

$$\begin{aligned}
 \|\partial_u f_\theta(\mathbf{u})\| &= \|\mathbf{I}_N - \eta \mathbf{A}^\top \partial_u S_\theta(\mathbf{A}\mathbf{u}) \mathbf{A} - \eta \partial_u R_\theta(\mathbf{u})\| \\
 &= \|\mathbf{I}_N - \eta \mathbf{I}_N + \eta \mathbf{I}_N - \eta \mathbf{A}^\top \mathbf{A} + \eta \mathbf{A}^\top \mathbf{A} - \eta \mathbf{A}^\top \partial_u S_\theta(\mathbf{A}\mathbf{u}) \mathbf{A} - \eta \partial_u R_\theta(\mathbf{u})\| \\
 &= \|\mathbf{I}_N - \eta \mathbf{A}^\top \mathbf{A} - \eta \mathbf{I}_N - \eta (\partial_u R_\theta(\mathbf{u}) - \mathbf{I}_N) - \eta \mathbf{A}^\top (\partial_u S_\theta(\mathbf{A}\mathbf{u}) - \mathbf{I}_l) \mathbf{A}\| \\
 &\leq \|(1 - \eta) \mathbf{I}_N - \eta \mathbf{A}^\top \mathbf{A}\| + \eta \|\partial_u R_\theta(\mathbf{u}) - \mathbf{I}_N\| + \eta \mathbf{A}^\top \|\partial_u S_\theta(\mathbf{A}\mathbf{u}) - \mathbf{I}_l\| \mathbf{A} \\
 &\leq \max_i \|(1 - \eta) - \eta \lambda_i\| + \eta \epsilon_1 + \eta L \epsilon_2,
 \end{aligned} \tag{14}$$

1
2 *Low-resolution Prior Equilibrium (LRPE) Network* 14
34
5 where λ_i denotes the i the eigenvalue of $\mathbf{A}^\top \mathbf{A}$. Finally, by our assumption $\eta < \frac{1}{1+L}$
6 where $L := \max_i \lambda_1$, we have $\eta < \frac{1}{1+\lambda_i}$ for all i , which implies $(1 - \eta) - \eta\lambda_i > 0$ for all
7 i . Therefore, the maximum in (14) is obtained at $\mu := \min_i \lambda_i$, which gives
8

9
$$\|\partial_u f_\theta(\mathbf{u})\| \leq 1 - \eta(1 + \mu) + \eta\epsilon_1 + \eta L\epsilon_2.$$

10

11 It shows that f_θ is γ -Lipschitz with $\gamma = 1 - \eta(1 + \mu) + \eta(L\epsilon_2 + \epsilon_1)$, proving the claim. \square
1213
14 **5. Numerical Results**
1516 In this section, we evaluate our LRPE model on both sparse-view and limited-angle
17 reconstruction problems and compare it with several state-of-the-art methods using a
18 dataset of human phantoms. We utilize the peak signal-to-noise ratio (PSNR) and the
19 structural similarity index (SSIM) as evaluation metrics to measure the quality of the
20 reconstructed images produced by different methods.
2122
23 **5.1. Comparison algorithms**
2425 We employ several recent CT reconstruction methods for comparison studies, including
26 both traditional and learning-based approaches, as described below:
2728
29

- TV model: the TV regularized reconstruction model proposed in [8]. We tuned the
30 balance parameter $\lambda \in [1, 3]$, the step size for the primal value τ within the range
31 of [0.5, 0.9], and the step size for the dual value σ within the range of [0.2, 0.5].
32 These parameter settings were adjusted accordingly for different experiments.
- PD: the Learned Primal-Dual network in [1]. The network is a deep unrolled neural
33 network with 10 stages. The number of initialization channels for both primal and
34 dual values is set to 5. The network parameters are initialized using the Xavier
35 initialization scheme. In all experiments, we employed the mean squared loss as
36 the objective function, which measures the discrepancy between the reconstructed
37 image and the ground truth.
- SIPID: the Sinogram Interpolation and Image Denoising (SIPID) network presented
38 in [67]. The SIPID network utilizes a deep learning framework and achieves accurate
39 reconstructions by iteratively training the sinogram interpolation network and the
40 image denoising network. The network parameters are initialized using the Xavier
41 initialization scheme, and the mean squared loss is employed as the objective
42 function in all experiments.
- FSR: the Learned Full-Sampling Reconstruction From Incomplete Data in [12].
43 The FSR-Net is an iterative expansion method that uses the corresponding full
44 sampling projection system matrix as prior information. They employed two
45 separate networks, namely IFSR and SFSR. Specifically, the IFSR and SFSR are
46 utilized for reconstructions using IFS and SFS system matrices, respectively. The
47 number of initialization channels for primal values and dual values is set as 6 and
48 49

50

1
2 *Low-resolution Prior Equilibrium (LRPE) Network* 15
3
45, respectively. The loss function is the mean square error of the image domain and
6 the Radon domain with the weight α being 1.7
8 • LRIP: the Low-Resolution Image Prior based Network in [17]. It is a low-resolution
9 image prior image reconstruction model for the limited-angle reconstruction
10 problems. The number of initialization channels is set as 5 for both primal and
11 dual values. The loss function used in training is a combination of MSE and SSIM
12 calculated in the image domain. The weight parameter α for balancing the two
13 components of the loss function is set to 1.
14
15 • GRAD: gradient descent is used instead of the primal-dual algorithm to solve the
16 low-level problem described in model (9). It does not incorporate low-resolution
17 image prior information. The network is a deep unrolled neural network with 10
18 stages. The number of initialization channels is set to 5. The Xavier initialization
19 and the mean squared loss of the reconstructed image and the ground truth are
20 used in all experiments.
21
22
2324
25 *5.2. Datasets and settings*
2627 In the experiments, we utilize the clinical dataset known as “The 2016 NIH-AAPM-
28 Mayo Clinic Low Dose CT Grand Challenge” [43]. This dataset comprises 10 full-dose
29 scans of the ACR CT accreditation phantom. To establish the training dataset, we select
30 9 of these scans, reserving the remaining 1 scan for evaluation purposes. Consequently,
31 the training dataset consists of 2164 images, each with dimensions of 512×512 , while
32 the evaluation dataset comprises 214 images. We set the scanning angular interval to
33 be 1 degree. To assess the performance of the reconstruction methods, we introduce
34 various types of noises into the projected data, which allows us to validate and compare
35 the effectiveness of the different reconstruction techniques.
36
37
3839
40 *5.3. Test Settings and Parameter Choice*
4142 In this subsection, we evaluate the choices of the parameters to the performance of
43 our algorithm. There are several important parameters in Algorithm 1, including the
44 number of stages K , the step size η and the dimension of the variables in the network
45 model.
4647 We first study the influence of the stage number K on the convergence of the
48 algorithm. We use the squared error $\|\mathbf{u}^K - \mathbf{u}^*\|^2$ to measure the data error during
49 the training process. Both the results of 150° limited-angle and 60° sparse-view
50 reconstruction with and without 5% Gaussian noises are presented in Figure 6. As we
51 can see, our LRPE model demonstrates convergence as the number of epochs increases,
52 regardless of whether there are 5, 10, or 15 stages (iterations). As Theorem 4.8 in [6]
53 indicates, convergence to the optimal value can be achieved when the data itself is noise-
54 free. If the observed data contains noises, the expected objective value of the fixed-point
55 iteration converges to a neighborhood of the optimal value. We can observe from the
56
57
58
59
60

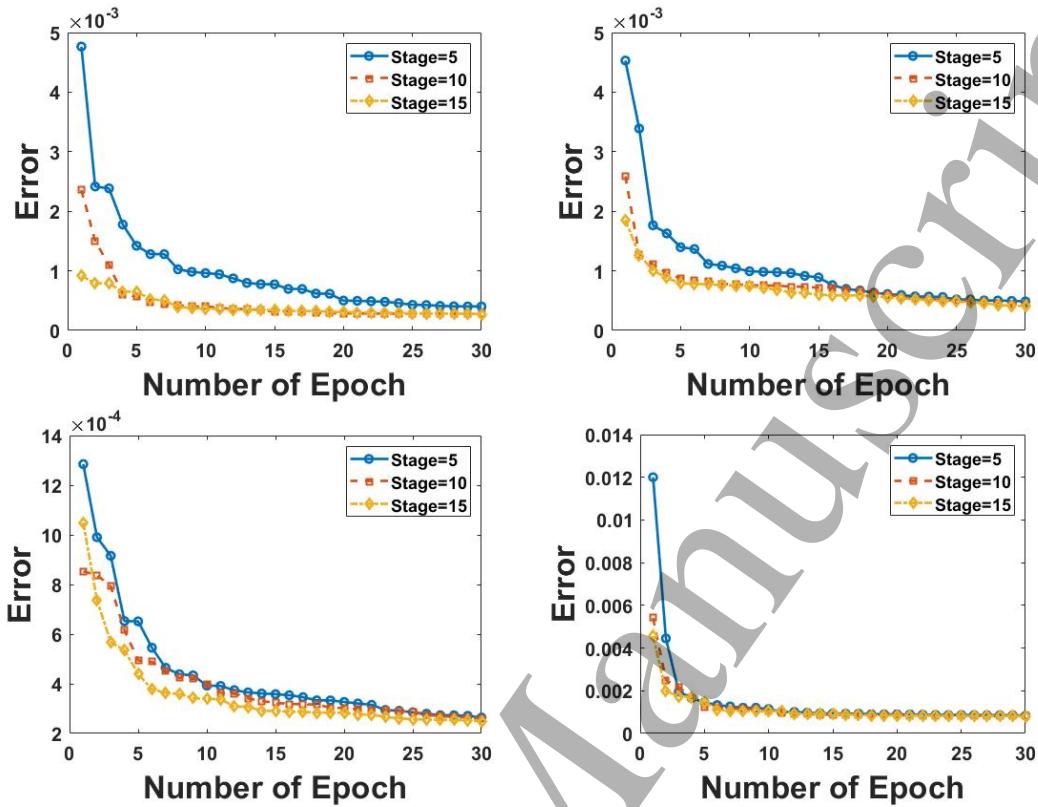
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Low-resolution Prior Equilibrium (LRPE) Network

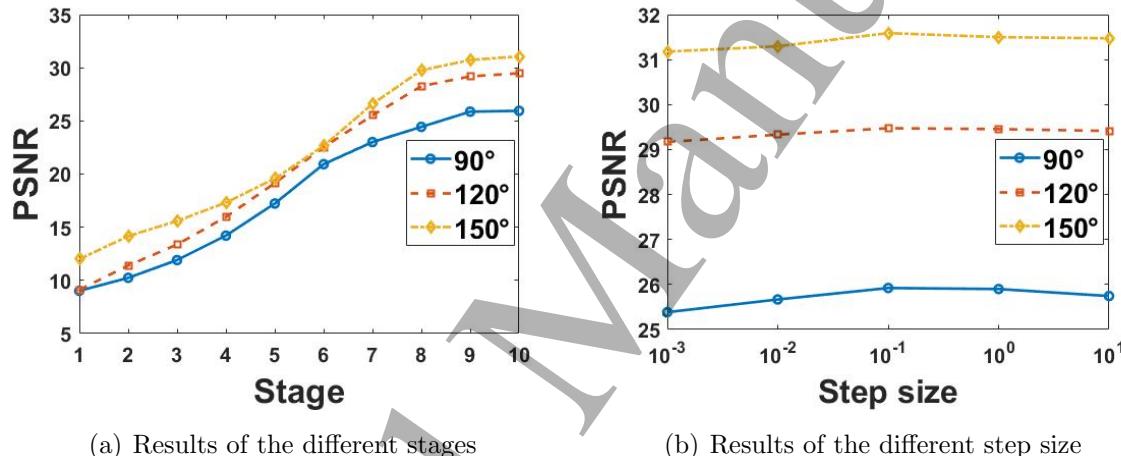
Figure 6. The data error measured by L2 norm with respect to the numbers of epochs in our LRPE model. The curves represent the results for 150° limited-angle (First row) and 60 sparse-view (Second row) with and without 5% Gaussian noises. On each row, the left one is the result without noises, and the right one is the result with 5% Gaussian noises.

numerical error of our LRPE method converges to lower error for cases without noises. When noises are introduced into observed data, the solution converges to much higher error, which is consistent with the theoretical analysis results in [6]. With the same number of iterations, more stages can optimize to a lower data error faster. Since there is a trade-off between the error reduction and training efficiency, we fix the total number of stages to 10 to achieve a good balance.

On the other hand, we also conducted experiments with different numbers of stages during the inference phase, where the LRPE models trained with 10 stages are used in the experiment. As can be observed in Figure 7(a), as the number of stages increases, the PSNR generally improves for all the limited-angle reconstruction problems. It is worth noting that by using a parameter-sharing strategy in the deep equilibrium model, the number of parameters is significantly reduced compared to the learned PD model. Specifically, the number of parameters in our model is only 1/10th of the number of parameters in the learned PD model. In what follows, we analyze the effect of the hyper-parameter η on the performance of limited-angle reconstruction. We perform a parameter sweep and obtain the results shown in Figure 7(b), which models are used 10 stages. From the results, we observe that the highest PSNR value is achieved when

1
2
3
4
5 *Low-resolution Prior Equilibrium (LRPE) Network* 17
6
75 **Table 1.** The performance of our LRPE was evaluated in terms of PSNR across
6 different values of N_p .
7

Limited-angle \ N_p	1	3	4	5	6	7
90°	25.6472	25.8506	25.9506	25.9517	25.9129	25.9565
120°	29.1946	29.2797	29.4326	29.4835	29.4718	29.4815
150°	31.2969	31.4487	31.5884	31.636	31.4477	31.3321

14
15
16 we set η as $\eta = 0.1$. Therefore, in all other experiments, we fix the hyper-parameter η
17 to a value of 0.1.
1832 **Figure 7.** Evaluation results of our LRPE model with respect to different settings of
33 parameters during inference process.
3435
36 Expanding the variable space is a common technique used in network optimization
37 to improve stability during the training process. In our case, we expand the variable
38 space by considering multiple variables $\mathbf{u} = [\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \dots, \mathbf{u}^{(N_p)}]$. In Table 1, we
39 investigate the influence of different choices of N_p on the reconstruction accuracy using
40 limited-angle data. From the perspective of results obtained from various views in Table
41 1, we fix the value of N_p to 5 for all experiments, which provides a good balance between
42 reconstruction accuracy and computational efficiency.
43
4445 *5.4. Empirical data fidelity or learned data fidelity?*
4647 We evaluate the differences between the empirical data fidelity and learned fidelity on
48 150° limited-angle reconstruction problems, where the empirical one is chosen as the
49 L2 norm following the assumption in Theorem 1 and the learned one following the
50 assumption in Theorem 2. Table 2 presents the PSNR and SSIM values for both cases,
51 for which the raw data are corrupted by 5% Gaussian noises and Poisson noises with up
52 to 100, 1000, and 10000 incident photons per pixel before attenuation, respectively. As
53
54
55
56
57
58
59
60

1
2 *Low-resolution Prior Equilibrium (LRPE) Network* 18
3
4
5
6
7
8
9
10
11
12
13

can be seen, when the mixed noises are contained in the projection data, the model with the learned fidelity outperforms the model with the empirical fidelity. It is attributed to the fact that the L2 norm measures the Euclidean distance, which is not ideal for complex noise distributions in mixed noises. When salt-and-pepper noises are introduced into the measured data, we can observe similar results as shown in Table 3. To sum up, the learned data fidelity performs better than the empirical data fidelity term, especially when the noises become significant.

14
15 **Table 2.** Evaluation results on the 150° limited-angle reconstruction problem
16 corrupted by the mixed Gaussian and Poisson noises.
17

Method	Settings		100 photons		1000 photons		10000 photons	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Empirical	29.6282	0.9172	30.4864	0.9082	31.5067	0.9412		
Learned	29.8253	0.9194	30.9255	0.9193	32.2568	0.9446		

24
25 **Table 3.** Evaluation results on the 150° limited-angle reconstruction problems
26 corrupted by salt-and-pepper noises.
27

Method	Settings		10% noise		5% noise		1% noise	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Empirical	33.6648	0.9412	33.9457	0.9436	34.5948	0.9493		
Learned	33.9674	0.9508	34.4504	0.9586	35.1745	0.9589		

35
36 *5.5. Experiments on the sparse-view reconstruction*
37
38

39 We further evaluate the image qualities of our LRPE model under the low-dose sparse-
40 view projection data. We utilize 60 views, 45 views, and 30 views projection data
41 corrupted by 5% white Gaussian noises for evaluation, where the reconstruction results
42 of different reconstruction methods are provided in Table 4. Both PSNR and SSIM
43 demonstrate that our LRPE model outperforms other reconstruction methods. Figure
44 8 presents the reconstructed images obtained by the comparative methods on the 30-
45 view reconstruction problem. By comparing images (g) and (h), it is evident that
46 the low-resolution image prior can significantly improve the reconstruction quality by
47 preserving fine details and sharp edges. Moreover, the zoomed region exhibits that the
48 deep equilibrium architecture can well maintain structural information.
49
50
51
52

53 We further increase the noise level in the raw data to 10% white Gaussian noises
54 and provide the quantitative results in Table 5. It can be observed that the FBP
55 method performs poorly in the presence of high-level noises, with a decrease in PSNR
56 by 4 dB compared to previous experiments. In contrast, the learning-based methods
57 are demonstrated to be less sensitive to noises. Similarly, our LRPE model exhibits the
58 best performance among all the deep learning-based algorithms.
59
60

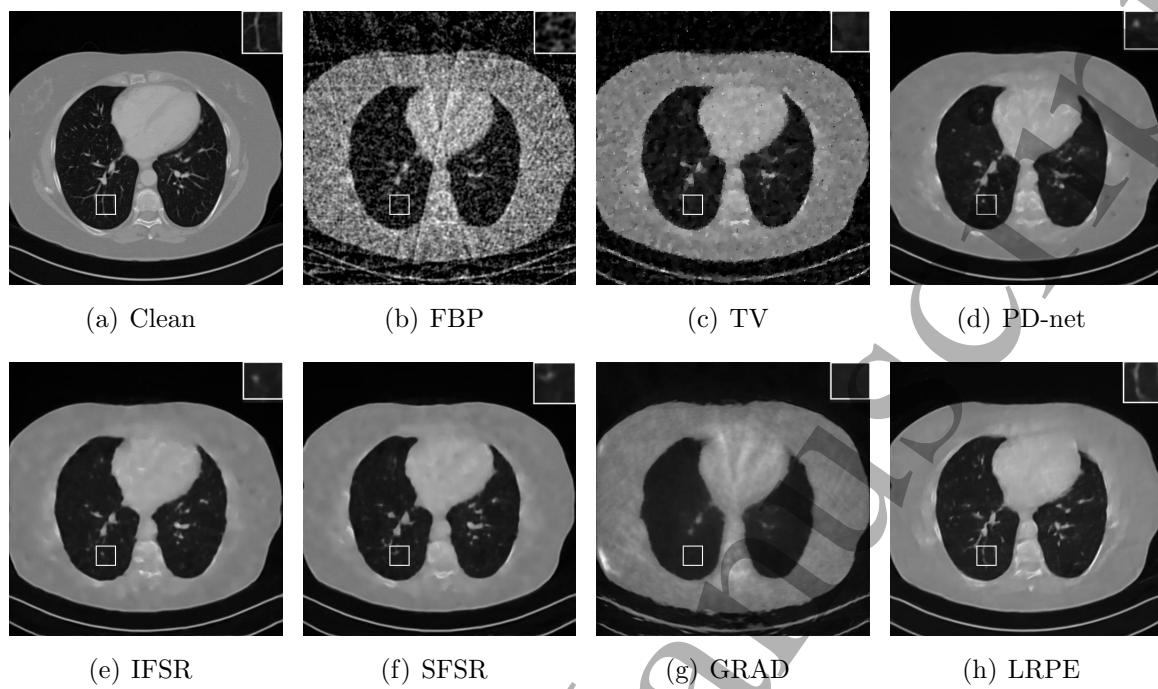
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Low-resolution Prior Equilibrium (LRPE) Network 19

Figure 8. The sparse-view reconstruction experiments are performed on the AAPM phantom dataset using 30 views and 5% Gaussian noise. The display window was set to [0, 1].

Table 4. Comparison of different methods on sparse-view data corrupted by 5% Gaussian noises in terms of PSNR and SSIM.

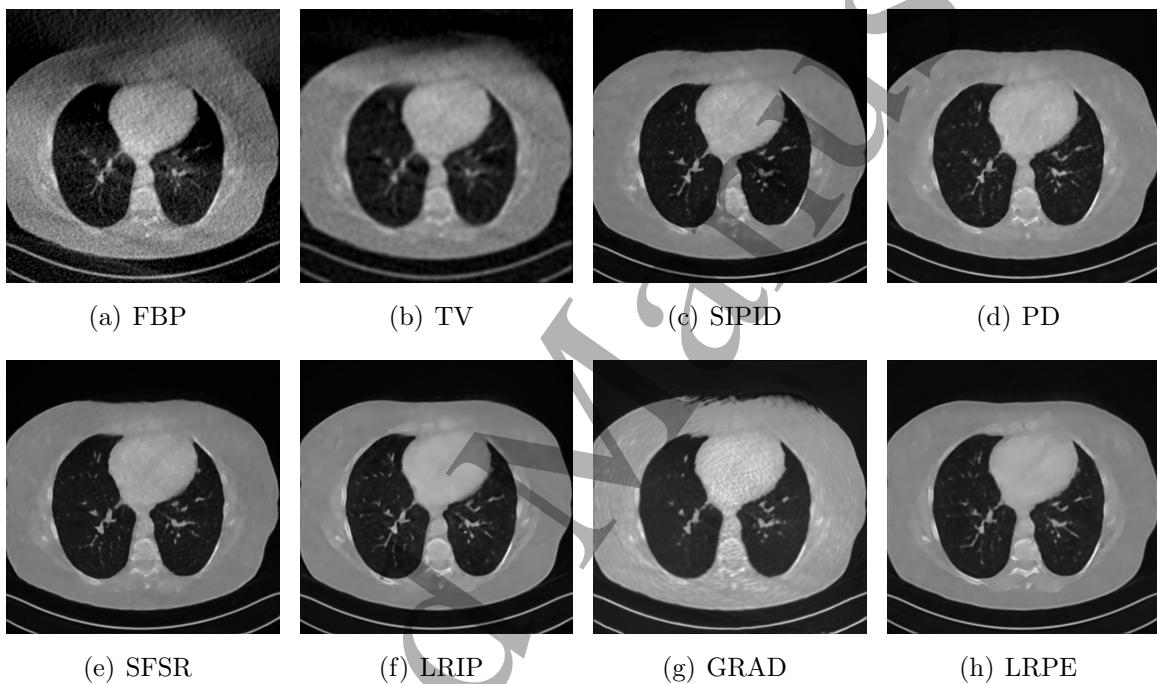
<i>N_{view}</i>	Metrics	FBP	TV	PD	IFSR	SFSR	GRAD	LRPE
60	PSNR	21.4443	27.0301	30.0261	30.4563	30.4681	26.2635	31.0746
	SSIM	0.4828	0.8548	0.9237	0.9321	0.9331	0.8647	0.9337
45	PSNR	19.7123	25.7201	29.1028	29.6814	29.7915	24.3606	30.8035
	SSIM	0.4061	0.8183	0.9135	0.9253	0.9263	0.8031	0.9342
30	PSNR	17.8999	23.705	28.9207	29.0632	29.5072	23.713	29.7237
	SSIM	0.3257	0.7615	0.9167	0.9198	0.9244	0.8355	0.921

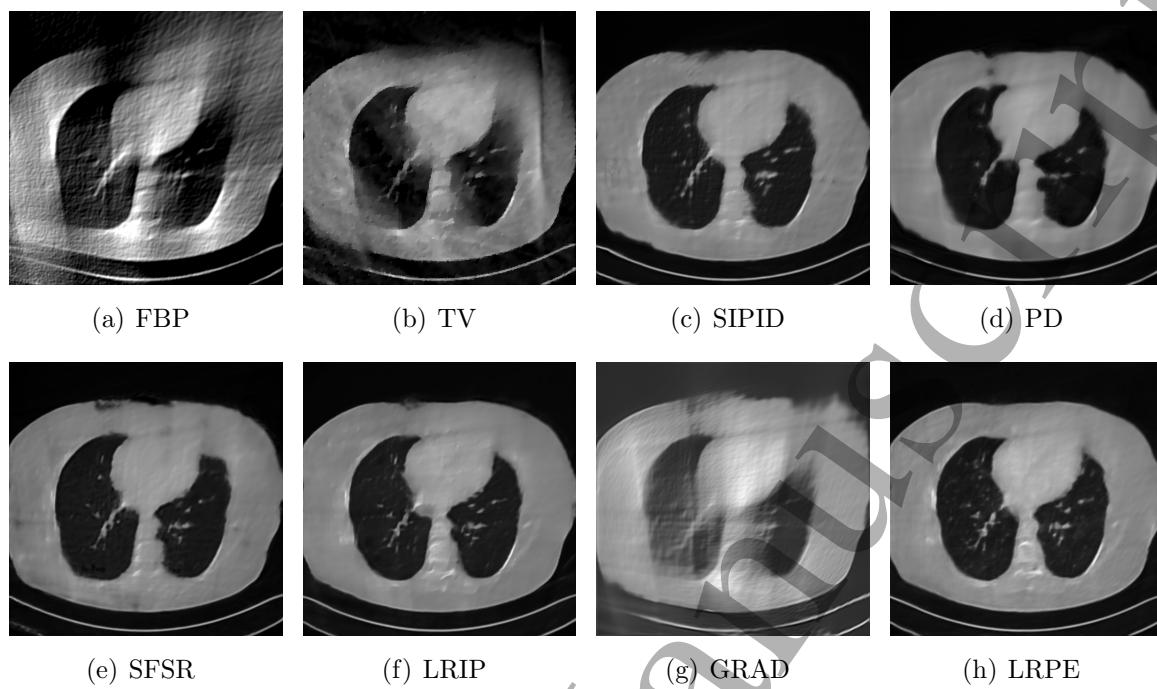
Table 5. Comparison of different methods on sparse-view data corrupted by 10% Gaussian noises in terms of PSNR and SSIM.

<i>N_{view}</i>	Metrics	FBP	TV	PD	IFSR	SFSR	GRAD	LRPE
60	PSNR	17.6258	24.6045	28.311	28.3782	28.6113	24.4988	28.7754
	SSIM	0.277	0.7826	0.9079	0.9147	0.9161	0.8514	0.9174
45	PSNR	16.1392	23.7815	27.5534	28.0502	28.3181	23.6734	28.6671
	SSIM	0.2236	0.752	0.9049	0.9116	0.9141	0.8318	0.9137
30	PSNR	14.3605	22.9388	26.9146	27.0682	27.653	23.0145	27.8697
	SSIM	0.166	0.7416	0.9011	0.9026	0.9071	0.8156	0.9043

1
2
3
4
5 *Low-resolution Prior Equilibrium (LRPE) Network* 206
7
8 **Table 6.** Comparison of different methods on limited-angle data corrupted by 5%
9 Gaussian noises in terms of PSNR and SSIM.10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

<i>N_{view}</i>	Metrics	FBP	TV	SIPID	PD	SFSR	LRIP	GRAD	LRPE
150°	PSNR	13.5911	25.8815	30.3275	30.3766	30.9411	31.5957	24.3043	31.636
	SSIM	0.4854	0.8091	0.9276	0.9301	0.9324	0.9426	0.8572	0.9422
120°	PSNR	13.4418	23.5852	27.0428	27.1539	28.3263	29.2763	21.6601	29.4835
	SSIM	0.4008	0.7891	0.9024	0.9037	0.9103	0.9361	0.801	0.9378
90°	PSNR	13.0314	19.9501	22.7492	22.6047	24.2494	25.1555	19.3469	25.9517
	SSIM	0.3881	0.6918	0.8626	0.8612	0.8761	0.8893	0.7538	0.8814

38
39 **Figure 9.** Limited-angle reconstruction experiment with 150° scanning angular range
40 and 5% Gaussian noises.41
42 *5.6. Experiments on the limited-angle reconstruction*43
44
45 In this subsection, we evaluate the performance of our LRPE model on the limited-
46 angle reconstruction, where 5% Gaussian noises are corrupted in the projection data.
47 Both PSNR and SSIM of the comparison methods are provided in Table 6. We can
48 observe that the reconstruction qualities of all methods decrease as the scanning angle
49 shrinks. Not surprisingly, our LRPE model has the numerical advantage compared to
50 other comparison algorithms, which provides a 0.8 dB higher PSNR than the LRIP
51 on 90° limited-angle reconstruction task. Particularly, the projection data of the low-
52 resolution prior used by LRIP model is different from ours, which was computed using
53 the down-sampling matrix. Obviously, our setting is more reasonable and in accord with
54 the CT scanner, which also gives better reconstruction results. Figure 9 and Figure 10
55 present the reconstruction results with a scanning range of 150° limited-angle and 90°
56 limited-angle, respectively. As can be observed, the learning-based methods outperform
57
58
59
60

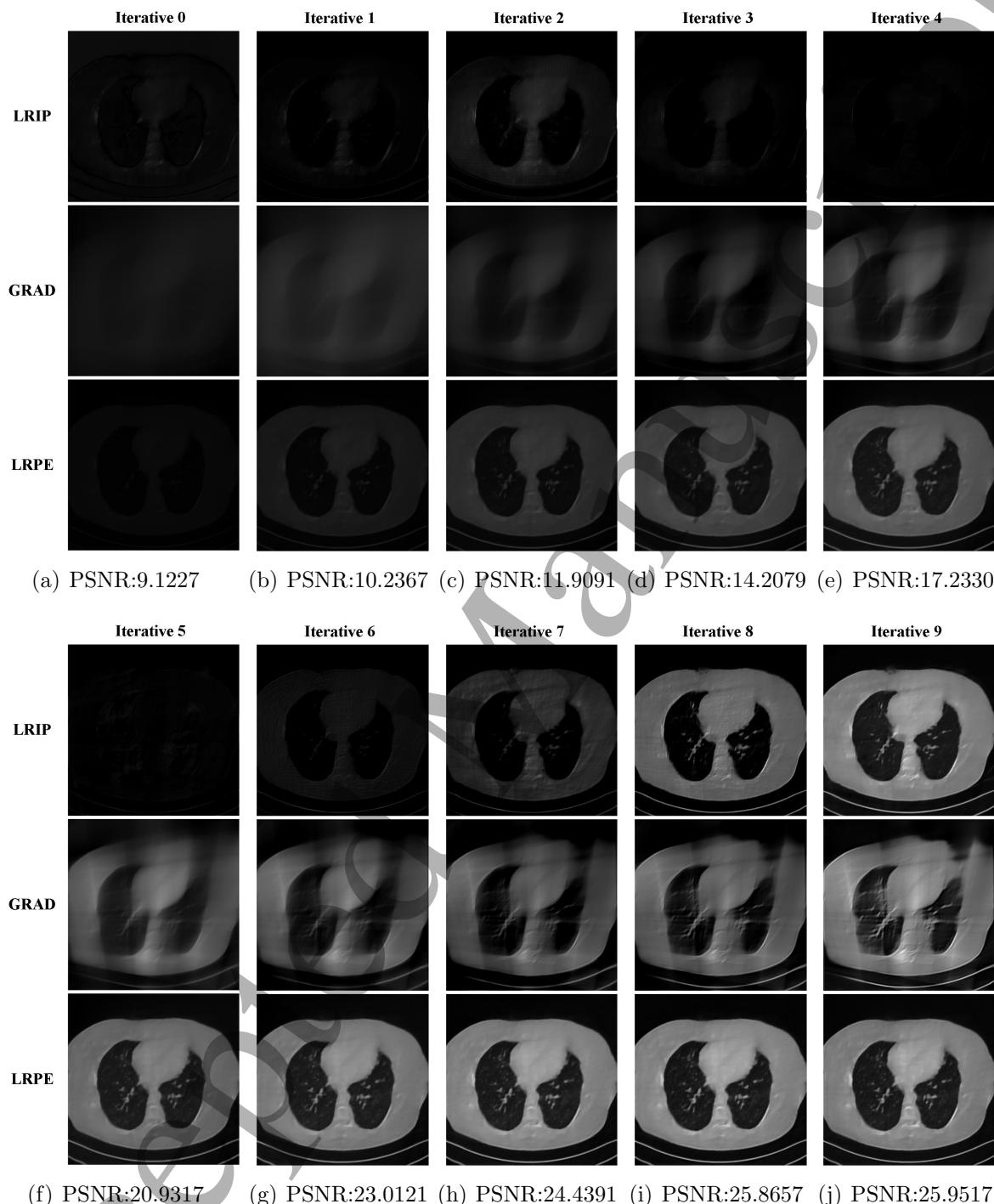
1
2 *Low-resolution Prior Equilibrium (LRPE) Network* 21
326
27 **Figure 10.** Limited-angle reconstruction experiment of the AAPM phantom dataset
28 with 90° scanning angular range and 5% Gaussian noises.
29

30 both FBP and TV, which contain noticeable artifacts in regions within missing angles.
31 Moreover, our LRPE model surpasses the SIPID, PD, FSR, and LRIP by providing more
32 image details and continuous contours. Thus, both quantitative and qualitative results
33 confirm that the low-resolution image is a suitable prior for the ill-posed limited-angle
34 reconstruction. Furthermore, by comparing the reconstruction results of 150° limited-
35 angle and 90°, it is not difficult to find that the resolution of the reconstruction results
36 of all methods significantly decreases with the loss of angles. Although our method can
37 provide better structural information by introducing the low-resolution image prior, it
38 still suffers details missing due to angle deficient. It is mainly because our low-resolution
39 image is the direct reconstruction result of 90° limited-angle data. Thus, our future work
40 includes to explore effective reconstruction methods for low-resolution images.
41

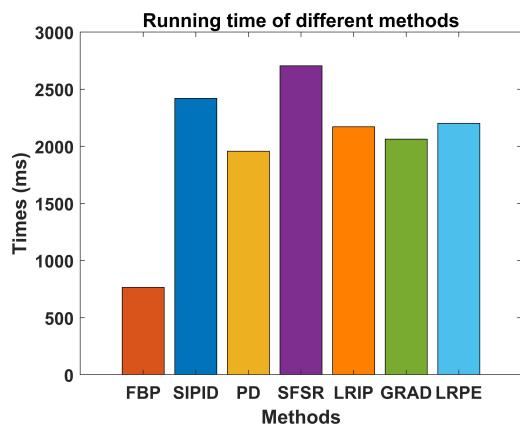
42 In Figure 11, we present and compare the output results of the LRIP, GRAD,
43 and LRPE models during the iterative process. Although we have shown the
44 numerical convergence of our LRPE model in the inference phase in Figure 7 (a), the
45 visual comparison further demonstrates that our model can provide more meaningful
46 intermediate results in the iterative process. Compared to GRAD model, our method
47 can effectively improve the quality of reconstruction results by introducing a low-
48 resolution image prior. On the other hand, the results of the LRIP model are not
49 stable in the first six stages, and only provide meaningful results in the last two stages.
50 Thus, the deep equilibrium model with convergence guarantee is a better choice for
51 establishing a stable end-to-end reconstruction network.
52

53 Last but not least, we conduct the comparison study on the running time of the
54

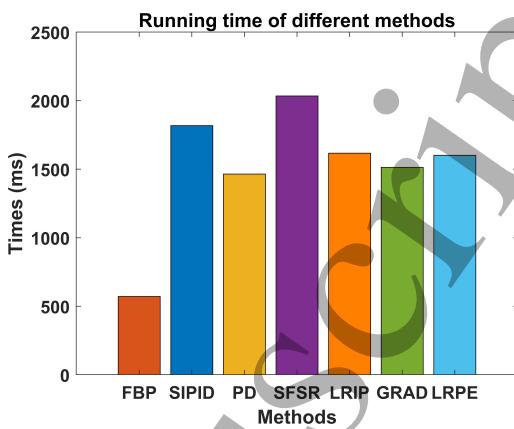
55
56
57
58
59
60

1
2 *Low-resolution Prior Equilibrium (LRPE) Network* 22
3

50 **Figure 11.** The comparison results of the LRIP, GRAD, and LRPE model on the
51 human phantom dataset with a scanning angular range of 90° and 5% Gaussian noise.
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Low-resolution Prior Equilibrium (LRPE) Network
23

(a) Sparse-view reconstruction



(b) Limited-angle reconstruction

Figure 12. The execution times of various methods were assessed using a sparse angle of 30 degrees and a limited scanning angular range of 90°.

evaluated methods, which are illustrated in Figure 12. Notably, excluding the running time of the TV method, it exhibits an execution time approximately ten times longer than that of the FBP. By analyzing the bar chart results, we can observe that although our method is not as rapid as the PD method, we incur only a 100-millisecond increase in running time to achieve superior reconstruction results.

6. Concluding Remarks

In this paper, we proposed a novel end-to-end equilibrium imaging geometric model for the ill-posed image reconstruction problems. The low-resolution image was used prior to guarantee that the proposed model can achieve good reconstruction results based on incomplete projection data. The advantages of our proposal were validated using a substantial amount of numerical experiments on sparse-view and limited-angle settings. The experimental results demonstrated that our model can enable accurate and efficient CT image reconstruction. Although our downsampling imaging geometric modeling was studied for the fan-beam imaging systems, it can be also used for other modern CT settings. Similar works include [29] and [17], where the low-resolution image prior was incorporated into the reconstruction network. The prior information in [29] was obtained by halving the receiver signal, requiring a second scan of the patient, which is clinically prohibitive. In contrast, our approach eliminates the need of re-scanning patients. On the other hand, Gao *et al.* [17] also requires two distinct sets of projection data. Obviously, the low-resolution image obtained from the same scan can better maintain consistency with the high-resolution image, thereby preserving more structural and fine information. According to the experimental results, although our LRPE model is superior to other algorithms in reconstruction results, there is still a problem of detail loss in the case of incomplete data sampling. Thus, enhancing the quality of low-resolution images through effective sinogram restoration methods is

1
2 *REFERENCES*
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

24

a possible way to improve the reconstruction results of our LRPE model on severe incomplete data problems. One of the future research directions is to enhance the resolution of reconstructed images under extreme limited-angle and low-dose scanning problems. In theoretical analysis, the noises in data present new challenges in estimating the gradients of network models. We plan to investigate the convergence of the deep equilibrium model based on stochastic gradient similar to [6].

7. Acknowledgments

We would like to thank the anonymous referees for the valuable comments and helpful suggestions to improve this paper. The work was partially supported by the National Natural Science Foundation of China (NSFC 12071345).

References

- [1] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. *IEEE Transactions on Medical Imaging*, 37(6):1322–1332, 2018.
- [2] Clemens Arndt, Felix Güttler, Andreas Heinrich, Florian Bürckenmeyer, Ioannis Diamantis, and Ulf Teichgräber. Deep learning ct image reconstruction in clinical practice. In *RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren*, volume 193, pages 252–261. Georg Thieme Verlag KG, 2021.
- [3] Daniel Otero Baguer, Johannes Leuschner, and Maximilian Schmidt. Computed tomography reconstruction using deep image prior and learned reconstruction methods. *Inverse Problems*, 36(9):094004, 2020.
- [4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *Advances in Neural Information Processing Systems*, 32, 2019.
- [5] Jonathan F Bard. *Practical bilevel optimization: algorithms and applications*, volume 30. Springer Science & Business Media, 2013.
- [6] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. *SIAM review*, 60(2):223–311, 2018.
- [7] Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the constraints. *Operations Research*, 21(1):37–44, 1973.
- [8] Ailong Cai, Linyuan Wang, Hanming Zhang, Bin Yan, Lei Li, Xiaoqi Xi, and Jianxin Li. Edge guided image reconstruction in linear scan ct by weighted alternating direction tv minimization. *Journal of X-ray Science and Technology*, 22(3):335–349, 2014.
- [9] Qian Cao, Wojciech Zbijewski, Alejandro Sisniega, John Yorkston, Jeffrey H Siewerdsen, and J Webster Stayman. Multiresolution iterative reconstruction in high-resolution extremity cone-beam ct. *Physics in Medicine & Biology*, 61(20):7263, 2016.

1
2 *REFERENCES*
3
4

25

5 [10] Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play admm for
6 image restoration: Fixed-point convergence and applications. *IEEE Transactions*
7 on *Computational Imaging*, 3(1):84–98, 2016.

8 [11] Guang-Hong Chen, Jie Tang, and Shuai Leng. Prior image constrained compressed
9 sensing (piccs): a method to accurately reconstruct dynamic ct images from highly
10 undersampled projection data sets. *Medical physics*, 35(2):660–663, 2008.

11 [12] Weilin Cheng, Yu Wang, Ying Chi, Xuansong Xie, and Yuping Duan. Learned full-
12 sampling reconstruction. In *International Conference on Medical Image Computing*
13 and *Computer-Assisted Intervention*, pages 375–384. Springer, 2019.

14 [13] Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel
15 optimization. *Annals of Operations Research*, 153:235–256, 2007.

16 [14] Andrei Dabravolski, Kees Joost Batenburg, and Jan Sijbers. A multiresolution
17 approach to discrete tomography using dart. *PloS One*, 9(9):e106090, 2014.

18 [15] Stephan Dempe and Alain Zemkoho. Bilevel optimization. *Springer optimization*
19 and its *applications*, 161, 2020.

20 [16] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. *Regularization of*
21 *inverse problems*, volume 375. Springer Science & Business Media, 1996.

22 [17] Qifeng Gao, Rui Ding, Linyuan Wang, Bin Xue, and Yuping Duan. Lrip-net: Low-
23 resolution image prior based network for limited-angle ct reconstruction. *IEEE*
24 *Transactions on Radiation and Plasma Medical Sciences*, 2022.

25 [18] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel
26 programming. *arXiv preprint arXiv:1802.02246*, 2018.

27 [19] Maryam Gholizadeh-Ansari, Javad Alirezaie, and Paul Babyn. Deep learning for
28 low-dose ct denoising using perceptual loss and edge detection layer. *Journal of*
29 *Digital Imaging*, 33(2):504–515, 2020.

30 [20] Suhita Ghosh, Philipp Ernst, Georg Rose, Andreas Nürnberg, and Sebastian
31 Stober. Towards patient specific reconstruction using perception-aware cnn and
32 planning ct as prior. In *2022 IEEE 19th International Symposium on Biomedical*
33 *Imaging (ISBI)*, pages 1–5. IEEE, 2022.

34 [21] Guy Gilboa and Stanley Osher. Nonlocal operators with applications to image
35 processing. *Multiscale Modeling & Simulation*, 7(3):1005–1028, 2009.

36 [22] Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep equilibrium architectures
37 for inverse problems in imaging. *IEEE Transactions on Computational Imaging*,
38 7:1123–1133, 2021.

39 [23] Andrzej Granas and James Dugundji. *Fixed point theory*, volume 14. Springer,
40 2003.

41 [24] Jace Grandinetti, Yin Gao, Yesenia Gonzalez, Jie Deng, Chenyang Shen, and Xun
42 Jia. Mr image reconstruction from undersampled data for image-guided radiation
43 therapy using a patient-specific deep manifold image prior. *Frontiers in Oncology*,
44 12:1013783, 2022.

1
2 *REFERENCES*
3
45
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[25] Joël Greffier, Aymeric Hamard, Fabricio Pereira, Corinne Barrau, Hugo Pasquier, Jean Paul Beregi, and Julien Frandon. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for ct: a phantom study. *European Radiology*, 30(7):3951–3959, 2020.
[26] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In *Proceedings of the 27th international conference on international conference on machine learning*, pages 399–406, 2010.
[27] Per Christian Hansen. *Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion*. SIAM, 1998.
[28] Akinori Hata, Masahiro Yanagawa, Yuriko Yoshida, Tomo Miyata, Mitsuko Tsubamoto, Osamu Honda, and Noriyuki Tomiyama. Combination of deep learning-based denoising and iterative reconstruction for ultra-low-dose ct of the chest: image quality and lung-rads evaluation. *American Journal of Roentgenology*, 215:1321–1328, 2020.
[29] Ji He, Shilin Chen, Hua Zhang, Xi Tao, Wuhong Lin, Shanli Zhang, Dong Zeng, and Jianhua Ma. Downsampled imaging geometric modeling for accurate ct reconstruction via deep learning. *IEEE Transactions on Medical Imaging*, 40(11):2976–2985, 2021.
[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 770–778, 2016.
[31] Yuanwei He, Li Zeng, Wei Yu, and Changcheng Gong. Noise suppression-guided image filtering for low-snr ct reconstruction. *Medical & Biological Engineering & Computing*, 58(11):2621–2629, 2020.
[32] Jing Huang, Jianhua Ma, Nan Liu, Hua Zhang, Zhaoying Bian, Yanqiu Feng, Qianjin Feng, and Wufan Chen. Sparse angular ct reconstruction using non-local means based iterative-correction pocs. *Computers in Biology and Medicine*, 41(4):195–205, 2011.
[33] Samuel Hurault, Arthur Leclaire, and Nicolas Papadakis. Gradient step denoiser for convergent plug-and-play. *arXiv preprint arXiv:2110.03220*, 2021.
[34] Eunhee Kang, Junhong Min, and Jong Chul Ye. A deep convolutional neural network using directional wavelets for low-dose x-ray ct reconstruction. *Medical Physics*, 44(10):e360–e375, 2017.
[35] Hojin Kim, Josephine Chen, Adam Wang, Cynthia Chuang, Mareike Held, and Jean Pouliot. Non-local total-variation (nltv) minimization combined with reweighted l1-norm for compressed sensing ct reconstruction. *Physics in Medicine & Biology*, 61(18):6878, 2016.
[36] Frederick J Larke, Randell L Kruger, Christopher H Cagnon, Michael J Flynn, Michael M McNitt-Gray, Xizeng Wu, Phillip F Judy, and Dianna D

1
2 *REFERENCES*
3
4

27

5 Cody. Estimated radiation dose associated with low-dose chest ct of average-
6 size participants in the national lung screening trial. *American Journal of*
7 *Roentgenology*, 197(5):1165–1169, 2011.

8 [37] Marc Lenfant, Olivier Chevallier, Pierre-Olivier Comby, Grégory Secco, Karim
9 Haioun, Frédéric Ricolfi, Brivaël Lemogne, and Romaric Loffroy. Deep learning
10 versus iterative reconstruction for ct pulmonary angiography in the emergency
11 setting: improved image quality and reduced radiation dose. *Diagnostics*, 10(8):558,
12 2020.

13 [38] Kuai Li, Ziru Sang, Xuezhu Zhang, Mengxi Zhang, Changhui Jiang, Qiyang Zhang,
14 Yongshuai Ge, Dong Liang, Yongfeng Yang, Xin Liu, et al. Few-view ct image
15 reconstruction using improved total variation regularization. *Journal of X-ray*
16 *Science and Technology*, 27(4):739–753, 2019.

17 [39] Wei-An Lin, Haofu Liao, Cheng Peng, Xiaohang Sun, Jingdan Zhang, Jiebo Luo,
18 Rama Chellappa, and Shaohua Kevin Zhou. Dudonet: Dual domain network for ct
19 metal artifact reduction. In *Proceedings of the IEEE/CVF Conference on Computer*
20 *Vision and Pattern Recognition*, pages 10512–10521, 2019.

21 [40] Sebastian Lunz, Ozan Öktem, and Carola-Bibiane Schönlieb. Adversarial
22 regularizers in inverse problems. *Advances in Neural Information Processing*
23 *Systems*, 31, 2018.

24 [41] Michael Lustig, David Donoho, and John M Pauly. Sparse mri: The application
25 of compressed sensing for rapid mr imaging. *Magnetic Resonance in Medicine: An*
26 *Official Journal of the International Society for Magnetic Resonance in Medicine*,
27 58(6):1182–1195, 2007.

28 [42] Varinder Malik and Esam MA Hussein. A fuzzy inference method for image
29 fusion/refinement of ct images from incomplete data. *Helijon*, 7(4):e06839, 2021.

30 [43] C McCollough. Tu-fg-207a-04: overview of the low dose ct grand challenge. *Medical*
31 *Physics*, 43(6Part35):3759–3760, 2016.

32 [44] Mingqiang Meng, Sui Li, Lisha Yao, Danyang Li, Manman Zhu, Qi Gao, Qi Xie,
33 Qian Zhao, Zhaoying Bian, Jing Huang, et al. Semi-supervised learned sinogram
34 restoration network for low-dose ct image reconstruction. In *Medical Imaging 2020:*
35 *Physics of Medical Imaging*, volume 11312, pages 67–73. SPIE, 2020.

36 [45] Jiang Min, Hongwei Tao, Xinglong Liu, and Kai Cheng. A non-local total
37 generalized variation regularization reconstruction method for sparse-view x-ray
38 ct. *Measurement Science and Technology*, 35(4):045404, 2024.

39 [46] Payam Mohammadinejad, Achille Mileto, Lifeng Yu, Shuai Leng, Luis S Guimaraes,
40 Andrew D Missant, Corey T Jensen, Hao Gong, Cynthia H McCollough,
41 and Joel G Fletcher. Ct noise-reduction methods for lower-dose scanning:
42 strengths and weaknesses of iterative reconstruction algorithms and new techniques.
43 *RadioGraphics*, 41(5):1493–1508, 2021.

1
2 *REFERENCES*
3
45
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[47] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. *IEEE Signal Processing Magazine*, 38(2):18–44, 2021.
[48] Pravin Nair, Ruturaj G Gavaskar, and Kunal Narayan Chaudhury. Fixed-point and objective convergence of plug-and-play algorithms. *IEEE Transactions on Computational Imaging*, 7:337–348, 2021.
[49] Ju Gang Nam, Jung Hee Hong, Da Som Kim, Jiseon Oh, and Jin Mo Goo. Deep learning reconstruction for contrast-enhanced ct of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction. *European Radiology*, 31(8):5533–5543, 2021.
[50] Yoshifumi Noda, Tetsuro Kaga, Nobuyuki Kawai, Toshiharu Miyoshi, Hiroshi Kawada, Fuminori Hyodo, Avinash Kambadakone, and Masayuki Matsuo. Low-dose whole-body ct using deep learning image reconstruction: image quality and lesion detection. *The British Journal of Radiology*, 94(1121):20201329, 2021.
[51] Edward F Patz, Paul Pinsky, Constantine Gatsonis, JoRean D Sicks, Barnett S Kramer, Martin C Tammemägi, Caroline Chiles, William C Black, Denise R Aberle, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. *JAMA Internal Medicine*, 174(2):269–274, 2014.
[52] Jean-Christophe Pesquet, Audrey Repetti, Matthieu Terris, and Yves Wiaux. Learning maximally monotone operators for image recovery. *SIAM Journal on Imaging Sciences*, 14(3):1206–1237, 2021.
[53] Saiprasad Ravishankar and Yoram Bresler. Mr image reconstruction from highly undersampled k-space data by dictionary learning. *IEEE transactions on medical imaging*, 30(5):1028–1041, 2010.
[54] Romke Rozema, Herbert T Kruitbosch, Baucke van Minnen, Bart Dorgelo, Joep Kraeima, and Peter MA van Ooijen. Iterative reconstruction and deep learning algorithms for enabling low-dose computed tomography in midfacial trauma. *Oral surgery, Oral Medicine, Oral Pathology and Oral Radiology*, 132(2):247–254, 2021.
[55] Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Plug-and-play methods provably converge with properly trained denoisers. In *International Conference on Machine Learning*, pages 5546–5557. PMLR, 2019.
[56] Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. Deep null space learning for inverse problems: convergence analysis and rates. *Inverse Problems*, 35(2):025008, 2019.
[57] Hongming Shan, Atul Padole, Fatemeh Homayounieh, Uwe Kruger, Ruhani Doda Khera, Chayanan Nitiwarangkul, Mannudeep K Kalra, and Ge Wang. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose ct image reconstruction. *Nature Machine Intelligence*, 1(6):269–276, 2019.

1
2 *REFERENCES*
3
4

29

[58] Liyue Shen, Wei Zhao, Dante Capaldi, John Pauly, and Lei Xing. A geometry-informed deep learning framework for ultra-sparse 3d tomographic image reconstruction. *Computers in Biology and Medicine*, 148:105710, 2022.

[59] Yoon Joo Shin, Won Chang, Jong Chul Ye, Eunhee Kang, Dong Yul Oh, Yoon Jin Lee, Ji Hoon Park, and Young Hoon Kim. Low-dose abdominal ct using a deep learning-based denoising algorithm: a comparison with ct reconstructed with filtered back projection or iterative reconstruction algorithm. *Korean Journal of Radiology*, 21(3):356–364, 2020.

[60] Byeongsu Sim, Gyutaek Oh, Jeongsol Kim, Chanyong Jung, and Jong Chul Ye. Optimal transport driven cyclegan for unsupervised learning in inverse problems. *SIAM Journal on Imaging Sciences*, 13(4):2281–2306, 2020.

[61] Suhas Sreehari, S Venkat Venkatakrishnan, Brendt Wohlberg, Gregery T Buzzard, Lawrence F Drummy, Jeffrey P Simmons, and Charles A Bouman. Plug-and-play priors for bright field electron tomography and sparse interpolation. *IEEE Transactions on Computational Imaging*, 2(4):408–423, 2016.

[62] Charles W Stearns, Ravindra M Manjeshwar, and Scott D Wollenweber. An efficient algorithm for targeted reconstruction of tomographic data. In *2006 IEEE Nuclear Science Symposium Conference Record*, volume 5, pages 2808–2811. IEEE, 2006.

[63] Jelmer M Wolterink, Tim Leiner, Max A Viergever, and Ivana Išgum. Generative adversarial networks for noise reduction in low-dose ct. *IEEE Transactions on Medical Imaging*, 36(12):2536–2545, 2017.

[64] Dufan Wu, Kyungsang Kim, Georges El Fakhri, and Quanzheng Li. Iterative low-dose ct reconstruction with priors trained by artificial neural network. *IEEE Transactions on Medical Imaging*, 36(12):2479–2486, 2017.

[65] Jinqiu Xu, Yunsong Zhao, Hongwei Li, and Peng Zhang. An image reconstruction model regularized by edge-preserving diffusion and smoothing for limited-angle computed tomography. *Inverse Problems*, 35(8):085004, 2019.

[66] Qingsong Yang, Pingkun Yan, Yanbo Zhang, Hengyong Yu, Yongyi Shi, Xuanqin Mou, Mannudeep K Kalra, Yi Zhang, Ling Sun, and Ge Wang. Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss. *IEEE Transactions on Medical Imaging*, 37(6):1348–1357, 2018.

[67] Huizhuo Yuan, Jinzhu Jia, and Zhanxing Zhu. Sipid: A deep learning framework for sinogram interpolation and image denoising in low-dose ct reconstruction. In *2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)*, pages 1521–1524. IEEE, 2018.

[68] Zhicheng Zhang, Xiaokun Liang, Xu Dong, Yaoqin Xie, and Guohua Cao. A sparse-view ct reconstruction method based on combination of densenet and deconvolution. *IEEE Transactions on Medical Imaging*, 37(6):1407–1417, 2018.

[69] Bo Zhao, Hao Gao, Huanjun Ding, and Sabee Molloi. Tight-frame based iterative image reconstruction for spectral breast ct. *Medical Physics*, 40(3):031905, 2013.

1
2 *REFERENCES*
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[70] Shusen Zhao, Dimeng Xia, and Xing Zhao. A fast image reconstruction method for planar objects ct inspired by differentiation property of fourier transform (dpft). *Inverse Problems*, 37(7):075001, 2021.

[71] Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen, and Matthew S Rosen. Image reconstruction by domain-transform manifold learning. *Nature*, 555(7697):487–492, 2018.

[72] Gustav Zickert, Ozan Öktem, and Can Evren Yarman. Joint gaussian dictionary learning and tomographic reconstruction. *Inverse Problems*, 38(10):105010, 2022.