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Abstract. The unrolling method has been investigated for learning variational
models in X-ray computed tomography. However, for incomplete data reconstruction,
such as sparse-view and limited-angle/problems, the unrolling method of gradient
descent of the energy minimization problem cannot yield satisfactory results. In this
paper, we present an effective CThreconstruction model, where the low-resolution image
is introduced as a regularization forsincomplete data problems. In what follows, we
utilize the deep equilibrium approach toyunfolding of the gradient descent algorithm,
thereby constructing the backbone network architecture for solving the minimization
model. We theoretically discuss'the,convergence of the proposed low-resolution prior
equilibrium model and provideithe necessary conditions to guarantee its convergence.
Experimental results on both sparse-view and limited-angle reconstruction problems
are provided, demonstrating that our end-to-end low-resolution prior equilibrium
model outperforms®ther state-of-the-art methods in terms of noise reduction, contrast-
to-noise ratio, and preservation of edge details.
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Keywords: CT reconstruction, limited-angle, sparse-view, deep equilibrium model,
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1. Introduction

Computed Tomography (CT) is a fundamental imaging tool that finds wide applications
in various fields, 'such as industrial non-destructive testing, medical diagnoses, and
security inspections. The CT reconstruction problem aims to reconstruct clean image
u &X' C R¥ffom the projection data b € Y C R! with unknown noise ¢ € Z C R!. The
linear inverse problem in imaging is associated with a fixed linear operator A : X — ).
In detail;for any given pair (b,§) € ) x = the corresponding forward model generates
the observations b via

b=Au+¢. (1)

where the reconstruction space X and the data space ) are typically Hilbert Spaces,
and N represents the number of pixels. Our objective is to reconstruct the clean image
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u from the measurement b. In general, when the number of pixels in a reconstructed
image exceeds the number of projection samples in CT imaging, the inverse problem of
(1) becomes ill-posed.

Due to the radiation, various approaches have been explored, avhich, can be
primarily categorized into two main categories, either to modify the séanning protocol
by reducing the tube voltage and/or tube current [44] or downsample the, measured
data for CT reconstruction, such as interior CT [36, 51, 60, 70], and{sparse-view
CT [68, 66, 34, 63, 72, 65]. These approaches aim to achieve’dose,reduction while
maintaining satisfactory image quality. However, employing the first category of
approaches for radiation dose reduction may result in the measured’ CT data being
heavily contaminated with noise. The standard filtered back-projeetion (FBP) method,
when applied to reconstruct CT images using noise-contaminated CT data, suffers from
a significant degradation in image quality. On the other hand, the second category of
approaches, aimed at reducing radiation dose, usually introduces additional ill-posedness
into the inverse problem. It is worth noting that the regularization method is an effective
technique for tackling ill-posed problems by incorporating’prior information. The total
variation (TV) regularization, as a prominent example, is considered state-of-the-art in
handling low-dose and few-view CT [38]."Mereover, alternative sparsity regularization
techniques, e.g., the utilization of wavelet framesy[69], have been investigated in CT
reconstruction. A noise suppression-guidedsimage filtering reconstruction algorithm has
recently been proposed as a solution to,address the low signal-to-noise ratio (SNR)
problem [31].

With recent advancementsdn artificial intelligence and hardware performance, deep
learning (DL) has emerged as/a promising approach for denoising in low-dose computed
tomography, which has demonstrated encouraging results. Since then, various deep
learning reconstruction metheds have been studied including the pre-processing in the
projection domain, projection-to-image reconstruction, and post-processing in the image
domain [19, 25, 28,42.046, 49, 50]. These studies have shown that DL approaches
consistently deliver enhanced or comparable noise suppression and maintain structural
fidelity [57, 37, 54, 59, 3], Broadly speaking, we can roughly divide the learning-based
methods for €T reconstruction into three categories as the post-processing methods
[56, 40], the [plugsandsplay, priors methods [61, 10, 55, 48, 52] and the unrolling methods
[4, 22]. There methods have greatly improved the reconstruction qualities compared to
conventional methods. The remaining issues mainly include: firstly, the theoretical
property sguarantees of learning-based reconstruction methods have not been fully
addressed, such as the convergence of the learning-based models. Secondly, for severely
ill-posed reconstruction problems, such as limited-angle and sparse-view reconstruction
issues, it still requires effective learning-based solutions.

1.1. Convergence studies of learning-based methods

Post-processing methods. A deep neural network-based post-processing of a
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model-based reconstruction is parameterized as Py o B, where B denotes a ¢lassical
reconstruction method (e.g., FBP), Py represents a deep convolutional network with
parameters @ and o represents composite operations. In general, there iso.convergence
guarantee for the post-processing strategies. That means, a small value ofy|| Aw=b|| does
not necessarily imply a small value of || APy(u) —b|| for the output of PgaSuch issue was
addressed in [56] by parametrizing the operator Py as Py = I + (I = ATA) Qy, where
Qp is a Lipschitz-continuous deep convolutional neural network. Since I (A" A is the
projection operator in the null-space of A, the operator Py always satisfies APy (u) =
Aw. Null-space networks were demonstrated to offer convergent regulaﬁzation schemes.
Inspired by the theory of optimal transport, an adversarial, framework for learning
the regularization term was proposed in [40], which possessed the, stability guarantee,
subjecting to the condition that the regularization is 1-Lipsehitz and coercive.

Plug-and-play (PnP) priors methods. The/PnP prior approach leverages the
strengths of both realistic modeling through physical knowledge and flexible learning
from data patterns. Relying on the mazimum a posterioriprobability (MAP) estimator,
the solution of (1) can be formulated as the following minimization problem

u € argmin S(u, b) + R(u; 0), (2)
where S(u,b) = —log(ppu(u)) is the likelihood relating the solution w to the
measurement b and R(u;0) = “log(pu(w)) is the denoiser to be learned by deep

neural network models. The PnP priors.framework models the likelihood by obeying
the noise distributions of the wnderlying physical process, while it extracts flexible
priors from data observation. ‘Fhe learning-based regularization have shown excellent
empirical performance, which inspired the theoretical studies on its convergence. The
first result demonstrating the'glebal objective convergence of PnP-ADMM was presented
in [61], where the learned denoiser R (u;0) should satisfy two requirements, i.e., it is
continuously differentiable, and dts gradient matrix is doubly stochastic. The fixed-
point convergence of PnP-ADMM with a continuation scheme and bounded denoiser
was established in [10]s, Ryu et al. [55] demonstrated that the iterations of both
PnP-proximal gradient-descent and PnP-ADMM exhibit contraction behavior when the
denoiser R (u;@) satisfies the Lipschitz condition. The fixed-point convergence of PnP-
forward-backward splitting (FBS) and PnP-ADMM were proven in [48]. Specifically,
the proofawas established for linear denoisers of the form R(u;0) = Wu, where W
is diagonalizable and its eigenvalues are within the range of [0, 1]. The convergence
guarantees for the PnP methods were derived in [33] with gradient-step (GS), alleviating
the need for such restrictive assumptions. The GS denoiser, denoted as R(u;0) =
I -~ Vy,, is formulated with g,(u) = |u — P,(u)|, where P, represents a deep neural
network ‘devoid of structural constraints. The parametrization was shown to have
enough, expressive power to achieve state-of-the-art denoising performance in [33]. In
[52], a closely related PnP approach was employed with the objective of providing an
asymptotic characterization of the iterative PnP solutions. The key concept was to
model maximally monotone operators (MMO) using a deep neural network, where the
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Figure 1. Depiction of a typical bilevel problem for image reconstruction. The left box
represents the training process, which includesian upper-level loss and a lower-level cost
function. During training, the objective is o minifiize the upper-level loss function.
Once the parameters 6 are learned, it is employed in the same image reconstruction
task, as depicted in the right box.

parameterization of MMOs was achieved by modeling the resolvent through a non-
expansive neural network.

Unrolling methods. Algorithm untelling [47] unfolds the iterative algorithms
with loops or recursion into non-recursive neural networks to construct interpretable
and effective deep learning models. The origin of unrolling can be traced back to the
seminal work by Gregor and I@Cun [26] for solving sparse coding via unfolding the
iterative soft-thresholding algerithm. We can formally express the unrolling model for
(2) as a bilevel minimization problem

A .
min E;E(ui(e),ui) (UL) 5
st w;(0) € argmin S (u, b;) + R(u; 0) (LL)

where a loss function #(:,-) is employed to enforce the similarity between the
reconstrueted imageu; and ground truth w;*, S represents the data term, and R denotes
the learnable regularization term, m indicates the number of training data samples. The
upper-level (UL) loss function evaluates the quality of a vector of learnable parameters,
while it also depends on the solution to the lower-level (LL) cost function. Figure 1
illustrates & generic bilevel problem for image reconstruction, where the model-based
reconstruction represents the process of solving the lower-level minimization problem.
The bilevel problems [5, 7, 13, 16, 15] are known for their inherent difficulties to be
solved numerically. To utilize gradient descent methods, it is necessary to compute
the derivative of the solution operator for the lower-level problem (2) with respect
to the parameters 6. If the objective of the lower-level problem is differentiable and
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£ (u)=u* “5(Vs + VRY)

Figure 2. Depiction of a typical unrolling method using the gradient,decent.

has a unique minimum, gradients can be computed using implicit differentiation [18].
However, non-smooth objectives, along with potentially multi-valuedsolution operators,
are frequently employed in image and signal processing tasks. The method of unrolling
involves utilizing an iterative algorithm that solves the lower-level pfoblem and replaces
the optimal solution w;(€) with the K stages. We can express the unrolling network as
follows

utt = fF(uh) for k=0,....K 41, (4)

where k is the stage index and f¥(-) represents a nouligear transformation, such as
convolution followed by the application of a nonlinear activation function.

In fact, different stages can share the'same weights, such that fF(-) at each stage
remains the same, i.e., f¥(-) = fa(-) for all ky The equilibrium or fixed-point-based
networks introduced in [4, 22] used, weight-sharing into the unrolling methods, which
has demonstrated the capability to attain eompetitive performance. The main concept
was to represent the output of a feed-forward neural network model as a fixed-point
of a nonlinear transformation, which enabled the use of implicit differentiation for the
back-propagation. Let us con$ider the K-stage network model with the input b and
weights 6. The output of the'(k + 1)-th hidden layer can be denoted as u*** obtained
by the following recursion procés

uk+1 — f0 (uk) 4 (5>
The limit of u* as K =, 00, provided it exists, is a fixed point of the operator fj(-).
The series converges if the spectral norm of the Jacobian 9, fy(+) is strictly less than 1
for any w, whichris true if and only if the iteration map fy(-) is contractive. The deep
equilibrium model serves as a bridge between the conventional fixed-point methods in
numerical analysis and learning-based techniques for solving the inverse problems. We
illustrate-the general diagram of the unrolling algorithm based on gradient descent of
the low-level minimization problem in Figure 2, while represent the structure of deep
equilibrium model in Figure 3. As can be shown, the difference between deep unrolling
model and.deep equilibrium model lies in the iterative regime, where deep equilibrium
model shares the weights for all stage. Indeed, we use the deep neural networks to learn
the gradient operator of the data fidelity and regularization used in the gradient descent
scheme.
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Figure 3. Depiction of a typical deep equilibrium method.using,the gradient decent.
~

1.2. Low-resolution Prior for CT reconstruction

For severely degraded CT reconstruction problems suchyas sparse-view and limited-
angle, it is necessary to combine effective prior information te.improve the quality of
the reconstructed images. Different kinds of prior knowledge have been investigated
for incomplete data reconstruction problems. The.non=local similarity has been shown
highly beneficial for enhancing fine details in reconstructed CT images [32, 35, 21, 45].
Both low-rank prior and dictionary learning have been used to leverage the sparsity of
the image in a transform domain [41, 11, 53]. Deeprlearning methods by integrating
geometric priors have also been studied in [58, 39, 64, 71]. Besides, personalized
information as a prior has alsosbeen demonstrated to significantly enhance the
reconstruction results [20, 24].

The ill-posedness of CT problem (1)‘@omes from the finite dimension of measured
rays and the infinite-dimensional mature of unknown objects. We can parameterize the
object by utilizing a finite-series expansion as follows

u(r,y) = 30w, Hw (6)

where {e;(z,y)} are basis funetions that should be linearly independent. The square
pixels are the most.ecommonly, used basis function defined by

e, y) = Tect(g:;jj>rect(y;ygj)a

where
L [t <1/2,

rect(t) £ 1 =
(t) {lel<1/2} {O, otherwise,

and (@y,9;). denotes the coordinates of the j-th pixel, (Az, Ay) denotes the size of
each pixel¢, The length of the ith ray passing through the pixel u; is denoted by
aij =nf e;(@,y)dl, where all a;; constitute the system matrix A in (1). It is well-known
that using a finer grid can improve image resolution, but it also leads to an increase
in themumber of unknowns, which exacerbates the ill-posedness of the inverse problem
and increases sensitivity to disturbances [27]. We can achieve the goal of reducing the
number of unknowns by increasing the size of pixels/voxels through modifying the basis
functions (6). Actually, there have been studies on the impact of resolutions on CT
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reconstruction. In [62], a low-resolution full-view image was initially reconstructed,
followed by a fine-resolution reconstruction of a specific region of interest {ROI). In
particular, the image attributes of the pixels inside the ROI were set to.zero, and«a
new projection sinogram was calculated using the forward model represented in matrix
form by (1). Afterward, the newly calculated sinogram was subtracted from the original
sinogram, resulting in a sinogram that contained projections exclusively corresponding
to the ROIL. Dabravolski et al. [14] proposed to obtain an initial reconstruction of
a global coarse image, which was subsequently divided into regions»comprising both
fixed and non-fixed pixels. Specifically, the boundary pixels that ghared at least one
adjacent pixel with a different attenuation coefficient were assigned 4o the non-fixed
pixels region. The non-fixed pixels region was comprised of boundary pixels that had at
least one adjacent pixel with a different attenuation coefficient. Another method in [9]
involved dividing the image domain into sub-regions with varying levels of discretization,
which were characterized by either a coarse or fifie pixel size. The projection data
obtained from both resolutions were combined o reconstruct an image with different
levels of discretization, effectively incorporating information from both measurements
to enhance the reconstructed image quality. Gao ‘et al. [17] proposed a low-resolution
image prior image reconstruction model,"whiech was realized in an end-to-end regime
showing impressive ability in dealing with limiteds=angle reconstruction problems. He
et al. [29] introduced a downsamplingtimaging geometric modeling approach for the
data acquisition process, which integrated the geometric modeling knowledge of the
CT imaging system with prior knowledge obtained from a data-driven training process
to achieve precise CT image recomstruction. Malik et al. [42] suggested employing
image fusion to generate a composite image that combines the high spatial resolution of
a partially ambiguous image ebtained from incomplete data with the more dependable
quantitative information of a goarser image reconstructed from the same data in an over-
complete problem. (T'he aforementioned methods demonstrate that the low-resolution
image can be used as ameffective prior for ill-posed CT reconstruction problems.

1.3. Our contributions

In this works we dntroduce the low-resolution image as the prior and propose a novel
image reconstruction model for sparse-view and limited-angle CT reconstruction tasks.
More spécifically;ithe low-resolution image prior can introduce effective regularity into
the reconstruction model to guarantee the qualities for incomplete data problems.
Subsequently;swe implement the algorithm unrolling to solve our low-resolution prior
image model, where the gradient descent is employed for minimizing the lower-level
problem. with each Jacobi block being approximated by convolutional neural networks.
‘To balance feature extraction capability and model size, we establish the low-resolution
prior equilibrium (LRPE) network, where the weight-sharing strategy is used among
all stages. More importantly, our approach has provable convergence guarantees by
satisfying certain conditions to guarantee the iterative scheme converge to a fixed-point.
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Figure 4. Illustration of the virtual CT scanning system, where (a) a fine CT scanning
system; (b) a coarse CT scanning system.

Through extensive numerical experiments on both sparsg—view and limited-angle CT
reconstruction problems, our LRPE modghdemonstrates clear advantages over the state-
of-the-art learning methods. To sum up, the'major contributions of this paper are as
follows

e By leveraging the characteristies,of thesphysical process of CT imaging, we use
the low-resolution image as prior and establish an effective regularization model for
incomplete data CT reconstruction.

e We employ the deep equilibriummethod to solve the low-resolution prior model,
where the convergence is e%ablished for both explicit data fidelity and learned data
fidelity.

e We conduct numerical experiments to demonstrate the advantages of the
low-resolution image prior and deep equilibrium strategy for incomplete data
reconstructionsproblems.

2. Our Low+resolution Prior Reconstruction Model

Let A; : & — Y be the system matrix for the low-resolution image u; € X; C R™.
Thus, the low-rtesolution inverse problem can be formulated as follows

Alul = b, (7)

where n denotes the number of pixels of the low-resolution image. Without considering
the diseretization error, the same projection data b is used for the low-resolution image.
The illustration of the fine and coarse CT scanning system is provided in Figure 4. As
can be observed, the red color dots denote the permissible positions for the emitter, and
the blue arc represents the corresponding receiving range of the receiver. It is obviously
shown that the coarse scanning system has the same field of view (FOV) but with a
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larger step size in spatial discretization. That means the low-resolution image can be
obtained from the high-resolution image as follows

u; = Du, (8)

where D : X — A] is the down-sampling operator. In this work, we concern with the
following low-resolution image regularized CT reconstruction model

u € argmin S(Au, b) + R(u, D " u;), (9)

where DT represents the transpose of the matrix D. Suppgsing. both S and R are
differentiable, we can use the gradient descent to solve the aninimization problem (9).
That is, we start with an initial estimate u" such as u® = 0 andya stép size n > 0, such
that for stage k =0,1,..., K — 1, we estimate «**! from

Wt = ut —n(ATVS (Aut,b) + VRAWSD ) ).

To leverage the rich information contained in the data, we adopt the deep unrolling
strategy to solve the above gradient descent problem. Mage specifically, we utilize two
convolutional neural networks Sy(+,-) : Y xY =Y and Ry(-,-) : X x X — X to learn the
gradient operator VS (Auk, b) and VR (uk, DTul), respectively. For k=0,..., K —1,
we then have the recursive update as follows

uk—i—l — uk _ T](ATSk T tk), (10)

where s¥ = Sp(AuF b) and t* := Rp(u*, DTu;) are the estimations of the two
convolutional neural network models, respectively. Moreover, we use the weight-sharing
scheme to improve the featuresabstraction capabilities by unrolling the network to a
sufficient depth. Therefore, the final mpdate scheme is achieved by connecting the
unrolled gradient descent Stagesn(10) with the deep equilibrium architecture (5) as
follows

Fo(u = ulie n(ATSH(Auk, b) + Ro(u", DTul)>. (11)

The objective fungtioniin theaipper-level problem is simply the true risk for the squared
loss

*\ 1 — * K2
f(uau)—EZHui —u; |3,
=1

where ui¥is théyith ground truth, and uX denotes the reconstructed image. Indeed,
the uselof the mean squared error (MSE) loss is not necessary, as any differentiable loss
function can.be used.

3. Our Algorithm

The low-resolution prior equilibrium (LRPE) model can be outlined as Algorithm 1.
In both training and inference stage, the low-resolution prior image wu; is obtained by
established reconstruction methods, where we used the Learned Primal-Dual network
[1] to estimate the low-resolution image in our work.
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Algorithm 1 Low-Resolution Prior Equilibrium (LRPE) Network

1: Step 0. Initialize u°, b, u;, step size n;
2: Step 1. For k=0,1,2,---, K — 1 do
sk «— Sp(Au*, b);
th — Rg(’u,k, DT’U,l);
uFtl = ufF — 77(14T8k + tk);
3: Step 2. Return u”.

3.1. Network architecture

In Algorithm 1, both Ry(-,-) and Sy(-, -) are modeled by envolutional neural networks.
More specifically, we use a three layer convolutionalsneural metwork with residual
connections to express the two functionals

Ry = Iy + H3¢2(H2¢1(H1))7’

and
So = I + K30s( K101 (KY)),

where the building blocks are defined as

e H,: X = X,i=1,...,3, is thematrixTepresentation of a learned 3 x 3 convolution
kernel.

o K;: Y — Y, i=1,...,3, isthe matrix representation of a learned 3 x 3 convolution
kernel.

e ¢;,t = 1,2 is a differentiable element-wise activation function. We adopt the log-
student-t-distribution funetion as the activation function
1
o) = o1t ). (12)
o Iy € RVXN and I, @R'*L stand for the identity transformation.

The inclusion of residual'structures [30] is important, which can help prevent the loss of
fine details, expedite. information flow, and enhance the capcity of the network model.
The residual stracturesncan alleviate training challenges and expedite convergence.
The overall depth of the network is determined by the number of stages it contains,
which ig fixed to strike a balance between the receptive fields and the total number of
parameters in the network. Therefore, we set the numbers of channels in each stage
as 6 — 32 = 32 — 5 for both Ry and Sy. We present the network structure and
subblocks in Figure 5, which is an end-to-end convlutional neural network model for CT
reconstruction problems.

8.2. Algorithm implementation and network optimization

In implementation, our algorithm was realized using the Operator Discretization Library
(ODL), the Adler package, the ASTRA Toolbox, and TensorFlow 1.8.0. In particular,
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Figure 5. The network structure of our LRPE: Low-Resolution Prior Equilibrium
network.

the TensorFlow is a toolkit designed for tackling complex mathematical problems, for
which the calculations are represented as graphs, mathematical operations are nodes,
and multidimensional data arrays, are communicated as edges of the graphs. The
ASTRA Toolbox is a MATLAB and Python toolbox that provides high-performance
GPU primitives for 2D and 3D\tomography. And ODL is a Python library focused on
fast prototyping for inverse problems. Adler is a toolkit that facilitates the efficient
implementation of neural'network architectures.

In our network, the parameters are updated using the backpropagation algorithm
within the stochastiégradient descent method implemented in TensorFlow. We employ
the Xavier initialization scheme for the convolution parameters and initialize all biases
to zero. The adaptive moment estimation (Adam) optimizer is chosen to optimize the
learning raté with the parameter 3 set to 0.99 and the remaining parameters set to
their default walues. /The learning rate follows a cosine annealing strategy, which helps
to impr@ve training stability. The initial learning rate is set to 10~% and global gradient
norm clipping is performed by limiting the gradient norm to 1. Besides, the batch size
is sét to 1 forall experiments.

4. Convergence Analysis

Here we study convergence of the proposed LRPE to a fixed-point at inference time.
Given the iteration map fy(-) : X — X, we discuss the conditions that can guarantee
the convergence of the iterates u**! = fy(u*) to a fixed-point u> as k — oo. The
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classical fixed-point theorem [23] ensures the convergence of the iterates to alunique
fixed point if the iteration map is contractive, i.e. if exists a constant 0 < ¢ 1 such
that || fo(u) — fo(u)| < ¢|lu — /|| for all w and o'

Now we establish the conditions on Ry and Sy that can ensure the gonvergence of
the iterates u**! = f; (uk) in Algorithm 1 to a fixed-point 4™ as thefstage number &
approaches infinity. These conditions guarantee that the resulting mapping satisfies the
contractivity condition and, consequently, the fixed-point iteration converges. Relying
on the network structure shown in Figure 5, we denote Ng,(u)= Hgps(Hod1(H1(u)))
and N, (Au) = K3és(Ko1 (K1 (Au))). Then we have .

10uNR, || = || H Qutpr (Hyw) Hy Dupo(Hop(Hyu) Y Ha|] ,
10.Ns, || = || AT K| 0.61(K1 Au) K, 0,¢2(Kag( K1 Aw)) K| -
Due to sup, |¢/(u)] = 0.5, [|0u.Ng,| and |0,Ng,|I 'eanbe uniformly bounded
independently of u. Therefore, we can assume thateVz, and Ng, to be €;-Lipschitz and
eo-Lipschitz. As aforementioned, there is (Ry — Igp)(u) = Ng,(u) and (Sp — I;)(Au) =
Ng,(Aw). That means (Ry—In)(u) and (Sy—Iy) (A ) are'€,-Lipschitz and e-Lipschitz,
ie.,

I(Ro — In) (w) = (Rg — IN) (Ui < €1 [lu — '],
1(So — L) (Au) = (Sp= L) (Aw)|[ < €2 [Ju — u].

In the following, we discuss convergenees for the deep equilibrium unrolling algorithm
for the low-resolution prior regonstruction medel with empirical data fidelity and learned
data fidelity, respectively.

Theorem 1. (Convergence of LRPE with empirical data fidelity). Assume that the
observed data is without noise,there is S = 1[|Au — b[|3 in (9). Let L = A\pax (ATA)
and j1 = Apin (ATA), whereA\max(-) and Amin(+) denote the mazimum and minimum
eigenvalue, respectively. If the step-size parameter n > 0 satisfiesn < 1/(L+1), we can
obtain the following anegualily

1 folw) = o (u)]| < (1 —n(1 tu) +ne) [lu — |

(. v

=y
for all w,u' € X .. The cocfficient -y is less than 1 if e < 1+ p, in which case the iterates
of the LRPE model converges.

Proof. Let fq(w) be the iteration map for the LRPE with empirical data fidelity. The
Jacobian of fy(w) with respect to u denoted by 9, fy(u), is given by
Oufo(u) = (IN — nATA) —n0uRo(u),

where @Ry (w) is the Jacobian of Ry(u) with respect to u. To prove fy(-) is contractive,
itsuffices to show [|0, fo(u)]| < 1 for all w € X, where || - || denotes the spectral norm.

Page 12 of 30
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4

5 Towards this end, we have

° 10.fo(w)| = [[In —nATA =00, Ro(w)

8 = |[In —nATA —nIn +nIn — 0, Ro(u)|| (13)
° <|[|(1 = mIn — nAT Al +n [0 Ro(u) — In|

1 §m?X|(1—7l)—Tl)\i|+77617

12

13 where ); denotes the i th eigenvalue of AT A. Here, we use the assumption that the
14 map (Ry — In) (u) := Ry(u) — w is €;-Lipschitz to guarantee the spectral norm of the
12 Jacobian 0, Rs(u) — In to be bounded by €;. Based on the assumptlon n < 1+_L with
17 L = max; \;, we have n < 1+)\ for all 4, which implies (1= 17) — pA; > 0 for all i.
18 Therefore, the maximum in (13) is obtained at p := min; \;, which gives

19

2 10u fo(w)[| < 1= (1 + ) e,

;g It shows fp is y-Lipschitz with v = 1 — (1 + p) € pproving the claim. ]
24

25 Theorem 2. (Convergence of LRPE with learned data ﬁdelity). Assume that (Ry —
26 IN)(w) is e-Lipschitz and (Sp — I)(Amw). is €x-Lipschitz, and let L = Apax (ATA)
;é and [t = Apin (ATA), where Amax(+) and Aniw(:) denote the mazimum and minimum
29 eigenvalue, respectively. If the step-size parametery > 0 obeysn < 1/(L+1), the LRPE
30 iteration map fy(-) defined in (11)satisfies

31

32 1fo(w) = fo ()] < (1=t 1) + n(Lex + 1)) [lu — o

33 —

34 -

35 for all u,uw' € X. The coefficient v is less than 1 if e; + Lea < 1+ p, in which case the
36 iterates of the LRPE-net CONVETGEs.

37

38 Proof. Let fg(u) be the iteration map for LRPE with learned data fidelity. The Jacobian
zg of fo(u) with respeétto u € X, denoted by 0, fs(u), is given by

2; auf@(,u’) ~ (IN y nATauSG(Au)A) - nauRG(u)u

43 where 0, Rg(u)4s the Jacobian of Rg(w) with respect to u € X and 9,S¢(Au) is
2;1 the JacobianoftSg(Aw). Similarly, we show |0,fp(u)|| < 1 for all w € X. Since
46 (Rp — In) (w) and Sy =I;) (Au) are € -Lipschitz and e;-Lipschitz, respectively, we
47 have the spectral norm of its Jacobian 0, Ry(u) — I is bounded by €; and 0,5y (uw) — I,
48 . .

49 is bounded by e5. Then there is

g? O fo(u)|| = HIN —nA"9,S)(Au)A — nd, Ry(u H

52 = HIN —nIn+nIn —1mATA+nATA - nAT0,Sy(Au)A — n@uRg(u)H
53 = HIN — UATA — T]IN -n (8UR9(u) — IN) — nAT(GuSG(Au) — Il)AH
o < |1 = n)In —nAT Al + 0 [|0.Rs(u) — In|| +nA" [0.Sy(Au) — L] A
56 < max [(1 =n) = nAl| +nex +nLes,

57

58

59
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1
1+L

for all ¢, which implies (1 —7) — nX; 0 for all

where ); denotes the i the eigenvalue of AT A. Finally, by our assumption 3’ <
1

T+N

i. Therefore, the maximum in (14) is obtained at p := min; \;, which gives

where L := max; \;, we have n <

[0ufo(w)]] <1 —n(1+p)+ne + nles.
It shows that fp is y-Lipschitz with v = 1—n(1+pu)+n(Lea+¢€1) , proving the claim. [

5. Numerical Results
~

In this section, we evaluate our LRPE model on both sparse-view and limited-angle
reconstruction problems and compare it with several state-of-the-aft methods using a
dataset of human phantoms. We utilize the peak signal4e-noise ratio (PSNR) and the
structural similarity index (SSIM) as evaluation metriésito measure the quality of the
reconstructed images produced by different methods:.

5.1. Comparison algorithms &

We employ several recent C'T reconstruction methods for comparison studies, including
both traditional and learning-based approaches; as described below:

e TV model: the TV regularizedaeconstruetion model proposed in [8]. We tuned the
balance parameter A € [1, 3], the'step size for the primal value 7 within the range
of [0.5, 0.9], and the step size for therdual value o within the range of [0.2, 0.5].
These parameter settings were adjusted accordingly for different experiments.

e PD: the Learned Primal-Dual netwerk in [1]. The network is a deep unrolled neural
network with 10 stages. Tke number of initialization channels for both primal and
dual values is set to/h. The network parameters are initialized using the Xavier
initialization scheme:. JIn all experiments, we employed the mean squared loss as
the objective funetion, which measures the discrepancy between the reconstructed
image and thesground truth.

e SIPID: the Sinogram Interpolation and Image Denoising (SIPID) network presented
in [67]. TheSIPID nétwork utilizes a deep learning framework and achieves accurate
reconstructions by iteratively training the sinogram interpolation network and the
image.denoising network. The network parameters are initialized using the Xavier
initialization scheme, and the mean squared loss is employed as the objective
funetion in'all experiments.

e FSR: the Learned Full-Sampling Reconstruction From Incomplete Data in [12].
The ESR-Net is an iterative expansion method that uses the corresponding full
sampling projection system matrix as prior information. They employed two
separate networks, namely IFSR and SFSR. Specifically, the IFSR and SFSR are
utilized for reconstructions using IFS and SFS system matrices, respectively. The
number of initialization channels for primal values and dual values is set as 6 and
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7, respectively. The loss function is the mean square error of the image domain and
the Radon domain with the weight o being 1.

e LRIP: the Low-Resolution Image Prior based Network in [17]. It is a low-resolution
image prior image reconstruction model for the limited-angle freconstruction
problems. The number of initialization channels is set as 5 for both primal and
dual values. The loss function used in training is a combinationfof MSEand SSIM
calculated in the image domain. The weight parameter « for balancing the two

components of the loss function is set to 1. 0

e GRAD: gradient descent is used instead of the primal-dual.algorithm to solve the
low-level problem described in model (9). It does not ineerperate low-resolution
image prior information. The network is a deep unrolled neural network with 10
stages. The number of initialization channels is setsto 5/ The Xavier initialization
and the mean squared loss of the reconstructed imagerand the ground truth are
used in all experiments.

5.2. Datasets and settings

In the experiments, we utilize the clinical dataset known as “The 2016 NIH-AAPM-
Mayo Clinic Low Dose CT Grand Challenge?” [43]s, This dataset comprises 10 full-dose
scans of the ACR CT accreditation/phantem. To establish the training dataset, we select
9 of these scans, reserving the remaining,l scan for evaluation purposes. Consequently,
the training dataset consistsf, 2164 imagesy each with dimensions of 512x512, while
the evaluation dataset comprises 214 images. We set the scanning angular interval to
be 1 degree. To assess the performance of the reconstruction methods, we introduce
various types of noises intotheprojected data, which allows us to validate and compare
the effectiveness of the different reconstruction techniques.

5.8. Test Settings and Parameter Choice

In this subsection, we evaluate the choices of the parameters to the performance of
our algorithm. There are several important parameters in Algorithm 1, including the
number of stages K, the step size n and the dimension of the variables in the network
model.

Wefirst study the influence of the stage number K on the convergence of the
algorithm. We use the squared error ||[u’ — u*||? to measure the data error during
the «training, process. Both the results of 150° limited-angle and 60 sparse-view
reconstruction with and without 5% Gaussian noises are presented in Figure 6. As we
can see, our LRPE model demonstrates convergence as the number of epochs increases,
regardless of whether there are 5, 10, or 15 stages (iterations). As Theorem 4.8 in [6]
indicates, convergence to the optimal value can be achieved when the data itself is noise-
free. If the observed data contains noises, the expected objective value of the fixed-point
iteration converges to a neighborhood of the optimal value. We can observe from the
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Figure 6. The data error measured by L2 norm with respect to the numbers of

epochs in our LRPE model. The,curves represent the results for 150° limited-angle

(First row)and 60 sparse-view (Second row) with and without 5% Gaussian noises. On

each row, the left one"is the result without noises, and the right one is the result with

5% Gaussian noises.

N

numerical error of our LRPEmethod converges to lower error for cases without noises.
When noises are introduced into/observed data, the solution converges to much higher
error, which is consistent, with the theoretical analysis results in [6]. With the same
number of iterations, more stages can optimize to a lower data error faster. Since there
is a trade-off between the error reduction and training efficiency, we fix the total number
of stages to 10 te achieve a good balance.

On the other hand, we also conducted experiments with different numbers of stages
during thesinference'phase, where the LRPE models trained with 10 stages are used in
the experimentd, As can be observed in Figure 7(a), as the number of stages increases,
the PSNR, generally improves for all the limited-angle reconstruction problems. It is
worth noting that by using a parameter-sharing strategy in the deep equilibrium model,
the number of parameters is significantly reduced compared to the learned PD model.
Specifically, the number of parameters in our model is only 1/10th of the number of
parameters in the learned PD model. In what follows, we analyze the effect of the
hyper-parameter 1 on the performance of limited-angle reconstruction. We perform a
parameter sweep and obtain the results shown in Figure 7(b), which models are used
10 stages. From the results, we observe that the highest PSNR value is achieved when
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4
5 Table 1. The performance of our LRPE was evaluated in terms of PSNR across
? different values of Np,.

N,
2 Limited-angle ’ L 3 4 g 6 §
10 90° 25.6472 | 25.8506 | 25.9506 | 25.9517 | 25.9129 | 25.9565
1; 120° 29.1946 | 29.2797 | 29.4326 | 29.48354| 29.4718, | 29.4815
13 150° 31.2969 | 31.4487 | 31.5884 | 31.636 | 31.4477 | 31.3321
14
15 o
1? we set 7 as n = 0.1. Therefore, in all other experiments, werfix the hyper-parameter n
18 to a value of 0.1.
19
7 . 2
22 M7
23 30+
” At ~-90°
26 N 28 -=-120°
7 i) 150°
29 <9 W e P o]
30 5 S . 25
31 1 2 3 4 5 6 7 8 9 40 1073 102 107" 10° 10"
32 Stage Step size
gi (a) Results of the different stages (b) Results of the different step size
22 Figure 7. Evaluation results of our LRPE model with respect to different settings of
37 parameters dufing iniference process.
38
39
40 Expanding thevariable space is a common technique used in network optimization
41 to improve stability. during the training process. In our case, we expand the variable
fé space by considefing multiple variables u = [u® u® ... «w®™)]. In Table 1, we
44 investigate the influence of different choices of N, on the reconstruction accuracy using
45 limited-angle/data. From the perspective of results obtained from various views in Table
j? 1, we fix the walue of IV, ta'5 for all experiments, which provides a good balance between
48 reconstruetion aceuracy and computational efficiency.
49
g? 5.4 .«Empiricalidata fidelity or learned data fidelity?
gg We evaluate the differences between the empirical data fidelity and learned fidelity on
54 150° limited-angle reconstruction problems, where the empirical one is chosen as the
55 L2 morm following the assumption in Theorem 1 and the learned one following the
g ? assumption in Theorem 2. Table 2 presents the PSNR and SSIM values for both cases,
58 for which the raw data are corrupted by 5% Gaussian noises and Poisson noises with up
59 to 100, 1000, and 10000 incident photons per pixel before attenuation, respectively. As
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can be seen, when the mixed noises are contained in the projection data, the model with
the learned fidelity outperforms the model with the empirical fidelity. It is attgibuted to
the fact that the L2 norm measures the Euclidean distance, which is not ideal for complex
noise distributions in mixed noises. When salt-and-pepper noises are introduced into
the measured data, we can observe similar results as shown in Table 34To sum up, the
learned data fidelity performs better than the empirical data fidelity termy especially
when the noises become significant.

~
Table 2. Evaluation results on the 150° limited-angle<reconstruction problem

corrupted by the mixed Gaussian and Poisson noises.

Settings 100 photons 1000 photons 10000 photons
Method PSNR SSIM PSNR SSIM PSNR SSIM
Empirical 29.6282 | 0.9172 | 30.48644 | 0.9082° 1 31.5067 | 0.9412
Learned 29.8253 | 0.9194 | 30.9255 .| 0.9193 | 32.2568 | 0.9446
- 4

Table 3. Evaluation resultsi onnthe 150° limited-angle reconstruction problems
corrupted by salt-and-pepper noises.

Settings 10% noise 5% mnoise 1% noise
Method PSNR SSIM PSNR SSIM PSNR SSIM
Empirical 33.6648 | 0.9412n 33.9457 | 0.9436 | 34.5948 | 0.9493
Learned 33.9674.0.9508 | 34.4504 | 0.9586 | 35.1745 | 0.9589
N

5.5. Experiments on the Sparse-view reconstruction

We further evaluate thie image qualities of our LRPE model under the low-dose sparse-
view projection data. “We utilize 60 views, 45 views, and 30 views projection data
corrupted by 5% white Gaussian noises for evaluation, where the reconstruction results
of different recomstruction methods are provided in Table 4. Both PSNR and SSIM
demonstrate ghat our ERPE model outperforms other reconstruction methods. Figure
8 presents the reconstrueted images obtained by the comparative methods on the 30-
view recemstruction’ problem. By comparing images (g) and (h), it is evident that
the low-resolution image prior can significantly improve the reconstruction quality by
preserving fine/details and sharp edges. Moreover, the zoomed region exhibits that the
deep equilibrium architecture can well maintain structural information.

We further increase the noise level in the raw data to 10% white Gaussian noises
and provide the quantitative results in Table 5. It can be observed that the FBP
method performs poorly in the presence of high-level noises, with a decrease in PSNR
by 4 dB compared to previous experiments. In contrast, the learning-based methods
are demonstrated to be less sensitive to noises. Similarly, our LRPE model exhibits the
best performance among all the deep learning-based algorithms.
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4

5

6

7
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13

14

15

16

17
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19

20

21

22

23

24

. (z) GRAD

26

27 Figure 8. The sparse-view reconstruction experiments are performed on the AAPM
28 phantom dataset using 30 views and 5%, Gaussian noise. The display window was set
29 to [0, 1].

30

31

32 Table 4. Comparison of different methods on sparse-view data corrupted by 5%
33 Gaussian noises in terms of PSNR ‘and SSIM.

34 Nyiew | Metrics FBP TV PD IFSR SFSR GRAD LRPE
gg 60 PSNR | 21.4443 | 27.0301 |'30:0261 | 30.4563 | 30.4681 | 26.2635 | 31.0746
37 SSIM 0.4828 0.8648 |4 0.9237 | 0.9321 0.9331 0.8647 0.9337
38 45 PSNR | 19.7123 | 25.7201 | 29.1028 | 29.6814 | 29.7915 | 24.3606 | 30.8035
o SSIM | 0:4061 |70.8183 | 0.9135 | 0.9253 | 0.9263 | 0.8031 [ 0.9342
41 20 PSNR | 178999 | 23.705 | 28.9207 | 29.0632 | 29.5072 | 23.713 | 29.7237
42 SSIM 0.3257 10.7615 0.9167 | 0.9198 | 0.9244 | 0.8355 0.921
43

44

22 Table 5. Comparison of different methods on sparse-view data corrupted by 10%
47 Gaussian noises in terms of PSNR and SSIM.

48 Nyiew |Metrics FBP TV PD IFSR SFSR GRAD LRPE
49 60 PSNR' | 17.6258 | 24.6045 | 28.311 | 28.3782 | 28.6113 | 24.4988 | 28.7754
g? SSIM 0.277 0.7826 | 0.9079 0.9147 | 0.9161 0.8514 0.9174
52 8 PSNR | 16.1392 | 23.7815 | 27.5534 | 28.0502 | 28.3181 | 23.6734 | 28.6671
53 SSIM 0.2236 0.752 0.9049 0.9116 | 0.9141 | 0.8318 0.9137
gg 30 PSNR | 14.3605 | 22.9388 | 26.9146 | 27.0682 | 27.653 | 23.0145 | 27.8697
56 SSIM 0.166 0.7416 | 0.9011 0.9026 | 0.9071 | 0.8156 0.9043
57

58

59
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Table 6. Comparison of different methods on limited-angle data corrupted by 5%
Gaussian noises in terms of PSNR and SSIM.

Nyiew | Metrics | FBP TV SIPID PD SFSR | LRIP | GRAD | LRPE
150° PSNR | 13.5911 | 25.8815 | 30.3275 | 30.3766 | 30.9411 | 31.5957 | 24.3043,| 31.636
SSIM 0.4854 | 0.8091 0.9276 | 0.9301 | 0.9324 | 0.9426 | 0.8572 0.9422
120° PSNR | 13.4418 | 23.5852 | 27.0428 | 27.1539 | 28.3263 | 29.2763 | 21.6601 | 29.4835
SSIM 0.4008 | 0.7891 | 0.9024 | 0.9037 | 0.9103 | 0.9361 0.801 0.9378
90° PSNR | 13.0314 | 19.9501 | 22.7492 | 22.6047 | 24.2494 | 25.1565 | 19.3469 | 25.9517
SSIM 0.3881 | 0.6918 | 0.8626 | 0.8612 | 0.8761 | 0.8893 |, 0.7538 0.8814

-—

(e) SFSR (E)NLRIP (g) GRAD (h) LRPE

Figure 9. Limitéd-angle reconstruction experiment with 150° scanning angular range
and 5% Gaussian neises.

5.0. Experiments on the limited-angle reconstruction

In this subsection, we-evaluate the performance of our LRPE model on the limited-
angle reconstructiony where 5% Gaussian noises are corrupted in the projection data.
Both PSNR and SSIM of the comparison methods are provided in Table 6. We can
observe that thé reconstruction qualities of all methods decrease as the scanning angle
shrinks. “Not surprisingly, our LRPE model has the numerical advantage compared to
other comparison algorithms, which provides a 0.8 dB higher PSNR than the LRIP
on 90° limited-angle reconstruction task. Particularly, the projection data of the low-
resolution prior used by LRIP model is different from ours, which was computed using
the down-sampling matrix. Obviously, our setting is more reasonable and in accord with
the CT scanner, which also gives better reconstruction results. Figure 9 and Figure 10
present the reconstruction results with a scanning range of 150° limited-angle and 90°
limited-angle, respectively. As can be observed, the learning-based methods outperform
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(c) SIPID

(e) SFSR (f) LRIP (g) GRAD

Figure 10. Limited-angle reconstruction expéeriment of the AAPM phantom dataset
with 90° scanning angular range and 5%. Gaussian noises.

both FBP and TV, which contain notieeable artifacts in regions within missing angles.
Moreover, our LRPE model surpasses the SIPID, PD, FSR, and LRIP by providing more
image details and continuous contoeurs. Thus, both quantitative and qualitative results
confirm that the low-resolution image is a suitable prior for the ill-posed limited-angle
reconstruction. Furthermore; Qz comparing the reconstruction results of 150° limited-
angle and 90°, it is not difficult to-find that the resolution of the reconstruction results
of all methods significantly.decreases with the loss of angles. Although our method can
provide better structural information by introducing the low-resolution image prior, it
still suffers details missing due to angle deficient. It is mainly because our low-resolution
image is the direct reconstruction result of 90° limited-angle data. Thus, our future work
includes to explore effective reconstruction methods for low-resolution images.

In Figure 11, we present and compare the output results of the LRIP, GRAD,
and LRPE “moédels/ during the iterative process.  Although we have shown the
numerigal convergence of our LRPE model in the inference phase in Figure 7 (a), the
visual comparison further demonstrates that our model can provide more meaningful
intermediaterresults in the iterative process. Compared to GRAD model, our method
can  effectively improve the quality of reconstruction results by introducing a low-
resolution’image prior. On the other hand, the results of the LRIP model are not
stable in the first six stages, and only provide meaningful results in the last two stages.
Thus, the deep equilibrium model with convergence guarantee is a better choice for
establishing a stable end-to-end reconstruction network.

Last but not least, we conduct the comparison study on the running time of the
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Iterative 0 Iterative 1 Tterative 2 Iterative 3 Tterative 4
) . . . .
- . . . .
(a) PSNR:9.1227 ) PSNR:10.2367 (c¢) PSNR:11.9091 (d) PSNR:14.2079 (e) PSNR:17.2330

Iterative 5 Iterative 6 Tterative 7 Iterative 8 Iterative 9

(f) PSNR:20.9317 (g) PSNR:23.0121 (h) PSNR:24.4391 (i) PSNR:25.8657 (j) PSNR:25.9517

LRIP

:

:

Figure 11. The comparison results of the LRIP, GRAD, and LRPE model on the
human phantom dataset with a scanning angular range of 90° and 5% Gaussian noise.
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Figure 12. The execution times of various methodswere assessed using a sparse angle
of 30 degrees and a limited scanning angular tange of 90°.

evaluated methods, which are illustrate in Figure 42. Nozably, excluding the running
time of the TV method, it exhibits an eXecution time/approximately ten times longer
than that of the FBP. By analyzing the bar chart results, we can observe that although
our method is not as rapid as the PD method, weincur only a 100-millisecond increase
in running time to achieve superior reconstruction results.

6. Concluding Remarks

In this paper, we proposed a novel end-to-end equilibrium imaging geometric model
for the ill-posed image regcomsttuction problems. The low-resolution image was used
prior to guarantee that the proposed model can achieve good reconstruction results
based on incomplete projection data. The advantages of our proposal were validated
using a substantial amount of numerical experiments on sparse-view and limited-angle
settings. The expérimental results demonstrated that our model can enable accurate
and efficient C'Thimage reconstruction. Although our downsampling imaging geometric
modeling wassstudied, for the fan-beam imaging systems, it can be also used for other
modern CT Settings.¢Similar works include [29] and [17], where the low-resolution image
prior was incorporated into the reconstruction network. The prior information in [29]
was obtained by halving the receiver signal, requiring a second scan of the patient,
which_is elinically prohibitive. In contrast, our approach eliminates the need of re-
scamming patients. On the other hand, Gao et al. [17] also requires two distinct sets of
projection data. Obviously, the low-resolution image obtained from the same scan can
better maintain consistency with the high-resolution image, thereby preserving more
structural and fine information. According to the experimental results, although our
LRPE model is superior to other algorithms in reconstruction results, there is still
a problem of detail loss in the case of incomplete data sampling. Thus, enhancing
the quality of low-resolution images through effective sinogram restoration methods is
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a possible way to improve the reconstruction results of our LRPE model on severe
incomplete data problems. One of the future research directions is to enhance the
resolution of reconstructed images under extreme limited-angle and low-dose scanning
problems. In theoretical analysis, the noises in data present new challenges in estimating
the gradients of network models. We plan to investigate the convergénce of the deep
equilibrium model based on stochastic gradient similar to [6].
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