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Abstract. The unrolling method has been investigated for learning variational

models in X-ray computed tomography. However, for incomplete data reconstruction,

such as sparse-view and limited-angle problems, the unrolling method of gradient

descent of the energy minimization problem cannot yield satisfactory results. In this

paper, we present an effective CT reconstruction model, where the low-resolution image

is introduced as a regularization for incomplete data problems. In what follows, we

utilize the deep equilibrium approach to unfolding of the gradient descent algorithm,

thereby constructing the backbone network architecture for solving the minimization

model. We theoretically discuss the convergence of the proposed low-resolution prior

equilibrium model and provide the necessary conditions to guarantee its convergence.

Experimental results on both sparse-view and limited-angle reconstruction problems

are provided, demonstrating that our end-to-end low-resolution prior equilibrium

model outperforms other state-of-the-art methods in terms of noise reduction, contrast-

to-noise ratio, and preservation of edge details.

Keywords: CT reconstruction, limited-angle, sparse-view, deep equilibrium model,

unrolling, low-resolution image prior

1. Introduction

Computed Tomography (CT) is a fundamental imaging tool that finds wide applications

in various fields, such as industrial non-destructive testing, medical diagnoses, and

security inspections. The CT reconstruction problem aims to reconstruct clean image

u ∈ X ⊂ RN from the projection data b ∈ Y ⊂ Rl with unknown noise ξ ∈ Ξ ⊂ Rl. The

linear inverse problem in imaging is associated with a fixed linear operator A : X → Y .
In detail, for any given pair (b, ξ) ∈ Y × Ξ the corresponding forward model generates

the observations b via

b = Au+ ξ. (1)

where the reconstruction space X and the data space Y are typically Hilbert Spaces,

and N represents the number of pixels. Our objective is to reconstruct the clean image
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Low-resolution Prior Equilibrium (LRPE) Network 2

u from the measurement b. In general, when the number of pixels in a reconstructed

image exceeds the number of projection samples in CT imaging, the inverse problem of

(1) becomes ill-posed.

Due to the radiation, various approaches have been explored, which can be

primarily categorized into two main categories, either to modify the scanning protocol

by reducing the tube voltage and/or tube current [44] or downsample the measured

data for CT reconstruction, such as interior CT [36, 51, 60, 70], and sparse-view

CT [68, 66, 34, 63, 72, 65]. These approaches aim to achieve dose reduction while

maintaining satisfactory image quality. However, employing the first category of

approaches for radiation dose reduction may result in the measured CT data being

heavily contaminated with noise. The standard filtered back-projection (FBP) method,

when applied to reconstruct CT images using noise-contaminated CT data, suffers from

a significant degradation in image quality. On the other hand, the second category of

approaches, aimed at reducing radiation dose, usually introduces additional ill-posedness

into the inverse problem. It is worth noting that the regularization method is an effective

technique for tackling ill-posed problems by incorporating prior information. The total

variation (TV) regularization, as a prominent example, is considered state-of-the-art in

handling low-dose and few-view CT [38]. Moreover, alternative sparsity regularization

techniques, e.g., the utilization of wavelet frames [69], have been investigated in CT

reconstruction. A noise suppression-guided image filtering reconstruction algorithm has

recently been proposed as a solution to address the low signal-to-noise ratio (SNR)

problem [31].

With recent advancements in artificial intelligence and hardware performance, deep

learning (DL) has emerged as a promising approach for denoising in low-dose computed

tomography, which has demonstrated encouraging results. Since then, various deep

learning reconstruction methods have been studied including the pre-processing in the

projection domain, projection-to-image reconstruction, and post-processing in the image

domain [19, 25, 28, 2, 46, 49, 50]. These studies have shown that DL approaches

consistently deliver enhanced or comparable noise suppression and maintain structural

fidelity [57, 37, 54, 59, 3]. Broadly speaking, we can roughly divide the learning-based

methods for CT reconstruction into three categories as the post-processing methods

[56, 40], the plug-and-play priors methods [61, 10, 55, 48, 52] and the unrolling methods

[4, 22]. There methods have greatly improved the reconstruction qualities compared to

conventional methods. The remaining issues mainly include: firstly, the theoretical

property guarantees of learning-based reconstruction methods have not been fully

addressed, such as the convergence of the learning-based models. Secondly, for severely

ill-posed reconstruction problems, such as limited-angle and sparse-view reconstruction

issues, it still requires effective learning-based solutions.

1.1. Convergence studies of learning-based methods

Post-processing methods. A deep neural network-based post-processing of a
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Low-resolution Prior Equilibrium (LRPE) Network 3

model-based reconstruction is parameterized as Pθ ◦ B, where B denotes a classical

reconstruction method (e.g., FBP), Pθ represents a deep convolutional network with

parameters θ and ◦ represents composite operations. In general, there is no convergence

guarantee for the post-processing strategies. That means, a small value of ∥Au−b∥ does
not necessarily imply a small value of ∥APθ(u)−b∥ for the output of Pθ. Such issue was

addressed in [56] by parametrizing the operator Pθ as Pθ = I +
(
I −A⊤A

)
Qθ, where

Qθ is a Lipschitz-continuous deep convolutional neural network. Since I −A⊤A is the

projection operator in the null-space of A, the operator Pθ always satisfies APθ (u) =

Au. Null-space networks were demonstrated to offer convergent regularization schemes.

Inspired by the theory of optimal transport, an adversarial framework for learning

the regularization term was proposed in [40], which possessed the stability guarantee,

subjecting to the condition that the regularization is 1-Lipschitz and coercive.

Plug-and-play (PnP) priors methods. The PnP prior approach leverages the

strengths of both realistic modeling through physical knowledge and flexible learning

from data patterns. Relying on the maximum a posteriori probability (MAP) estimator,

the solution of (1) can be formulated as the following minimization problem

u ∈ argmin
u
S(u, b) +R(u;θ), (2)

where S(u, b) = − log(pb|u(u)) is the likelihood relating the solution u to the

measurement b and R(u;θ) = − log(pu(u)) is the denoiser to be learned by deep

neural network models. The PnP priors framework models the likelihood by obeying

the noise distributions of the underlying physical process, while it extracts flexible

priors from data observation. The learning-based regularization have shown excellent

empirical performance, which inspired the theoretical studies on its convergence. The

first result demonstrating the global objective convergence of PnP-ADMMwas presented

in [61], where the learned denoiser R(u;θ) should satisfy two requirements, i.e., it is

continuously differentiable, and its gradient matrix is doubly stochastic. The fixed-

point convergence of PnP-ADMM with a continuation scheme and bounded denoiser

was established in [10]. Ryu et al. [55] demonstrated that the iterations of both

PnP-proximal gradient-descent and PnP-ADMM exhibit contraction behavior when the

denoiser R(u;θ) satisfies the Lipschitz condition. The fixed-point convergence of PnP-

forward-backward splitting (FBS) and PnP-ADMM were proven in [48]. Specifically,

the proof was established for linear denoisers of the form R(u;θ) = Wu, where W

is diagonalizable and its eigenvalues are within the range of [0, 1]. The convergence

guarantees for the PnP methods were derived in [33] with gradient-step (GS), alleviating

the need for such restrictive assumptions. The GS denoiser, denoted as R(u;θ) =

I − ∇gσ, is formulated with gσ(u) = |u − Pσ(u)|, where Pσ represents a deep neural

network devoid of structural constraints. The parametrization was shown to have

enough expressive power to achieve state-of-the-art denoising performance in [33]. In

[52], a closely related PnP approach was employed with the objective of providing an

asymptotic characterization of the iterative PnP solutions. The key concept was to

model maximally monotone operators (MMO) using a deep neural network, where the
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Low-resolution Prior Equilibrium (LRPE) Network 4

Figure 1. Depiction of a typical bilevel problem for image reconstruction. The left box

represents the training process, which includes an upper-level loss and a lower-level cost

function. During training, the objective is to minimize the upper-level loss function.

Once the parameters θ are learned, it is employed in the same image reconstruction

task, as depicted in the right box.

parameterization of MMOs was achieved by modeling the resolvent through a non-

expansive neural network.

Unrolling methods. Algorithm unrolling [47] unfolds the iterative algorithms

with loops or recursion into non-recursive neural networks to construct interpretable

and effective deep learning models. The origin of unrolling can be traced back to the

seminal work by Gregor and LeCun [26] for solving sparse coding via unfolding the

iterative soft-thresholding algorithm. We can formally express the unrolling model for

(2) as a bilevel minimization problem

min
θ

1

m

m∑
i=1

ℓ (ui(θ),u
∗
i ) (UL)

s.t. ui(θ) ∈ argmin
u
S (u, bi) +R(u;θ) (LL)

(3)

where a loss function ℓ(·, ·) is employed to enforce the similarity between the

reconstructed image ui and ground truth ui
∗, S represents the data term, andR denotes

the learnable regularization term, m indicates the number of training data samples. The

upper-level (UL) loss function evaluates the quality of a vector of learnable parameters,

while it also depends on the solution to the lower-level (LL) cost function. Figure 1

illustrates a generic bilevel problem for image reconstruction, where the model-based

reconstruction represents the process of solving the lower-level minimization problem.

The bilevel problems [5, 7, 13, 16, 15] are known for their inherent difficulties to be

solved numerically. To utilize gradient descent methods, it is necessary to compute

the derivative of the solution operator for the lower-level problem (2) with respect

to the parameters θ. If the objective of the lower-level problem is differentiable and
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Low-resolution Prior Equilibrium (LRPE) Network 5

Figure 2. Depiction of a typical unrolling method using the gradient decent.

has a unique minimum, gradients can be computed using implicit differentiation [18].

However, non-smooth objectives, along with potentially multi-valued solution operators,

are frequently employed in image and signal processing tasks. The method of unrolling

involves utilizing an iterative algorithm that solves the lower-level problem and replaces

the optimal solution ui(θ) with the K stages. We can express the unrolling network as

follows

uk+1 = fk
θ

(
uk

)
for k = 0, . . . , K − 1, (4)

where k is the stage index and fk
θ (·) represents a nonlinear transformation, such as

convolution followed by the application of a nonlinear activation function.

In fact, different stages can share the same weights, such that fk
θ (·) at each stage

remains the same, i.e., fk
θ (·) = fθ(·) for all k. The equilibrium or fixed-point-based

networks introduced in [4, 22] used weight-sharing into the unrolling methods, which

has demonstrated the capability to attain competitive performance. The main concept

was to represent the output of a feed-forward neural network model as a fixed-point

of a nonlinear transformation, which enabled the use of implicit differentiation for the

back-propagation. Let us consider the K-stage network model with the input b and

weights θ. The output of the (k + 1)-th hidden layer can be denoted as uk+1 obtained

by the following recursion process

uk+1 = fθ
(
uk

)
. (5)

The limit of uk as K → ∞, provided it exists, is a fixed point of the operator fθ(·).
The series converges if the spectral norm of the Jacobian ∂ufθ(·) is strictly less than 1

for any u, which is true if and only if the iteration map fθ(·) is contractive. The deep

equilibrium model serves as a bridge between the conventional fixed-point methods in

numerical analysis and learning-based techniques for solving the inverse problems. We

illustrate the general diagram of the unrolling algorithm based on gradient descent of

the low-level minimization problem in Figure 2, while represent the structure of deep

equilibrium model in Figure 3. As can be shown, the difference between deep unrolling

model and deep equilibrium model lies in the iterative regime, where deep equilibrium

model shares the weights for all stage. Indeed, we use the deep neural networks to learn

the gradient operator of the data fidelity and regularization used in the gradient descent

scheme.
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Low-resolution Prior Equilibrium (LRPE) Network 6

Figure 3. Depiction of a typical deep equilibrium method using the gradient decent.

1.2. Low-resolution Prior for CT reconstruction

For severely degraded CT reconstruction problems such as sparse-view and limited-

angle, it is necessary to combine effective prior information to improve the quality of

the reconstructed images. Different kinds of prior knowledge have been investigated

for incomplete data reconstruction problems. The non-local similarity has been shown

highly beneficial for enhancing fine details in reconstructed CT images [32, 35, 21, 45].

Both low-rank prior and dictionary learning have been used to leverage the sparsity of

the image in a transform domain [41, 11, 53]. Deep learning methods by integrating

geometric priors have also been studied in [58, 39, 64, 71]. Besides, personalized

information as a prior has also been demonstrated to significantly enhance the

reconstruction results [20, 24].

The ill-posedness of CT problem (1) comes from the finite dimension of measured

rays and the infinite-dimensional nature of unknown objects. We can parameterize the

object by utilizing a finite-series expansion as follows

u(x, y) =
N∑
j=1

ujej(x, y), (6)

where {ej(x, y)} are basis functions that should be linearly independent. The square

pixels are the most commonly used basis function defined by

ej(x, y) = rect
(x− x̃j

∆x

)
rect

(y − ỹj
∆y

)
,

where

rect(t) ≜ 1{|t|≤1/2} =

{
1, |t| ≤ 1/2,

0, otherwise,

and (x̃j,ỹj) denotes the coordinates of the j-th pixel, (∆x, ∆y) denotes the size of

each pixel. The length of the ith ray passing through the pixel uj is denoted by

aij =
∫
ej(x, y)dℓ, where all aij constitute the system matrix A in (1). It is well-known

that using a finer grid can improve image resolution, but it also leads to an increase

in the number of unknowns, which exacerbates the ill-posedness of the inverse problem

and increases sensitivity to disturbances [27]. We can achieve the goal of reducing the

number of unknowns by increasing the size of pixels/voxels through modifying the basis

functions (6). Actually, there have been studies on the impact of resolutions on CT
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Low-resolution Prior Equilibrium (LRPE) Network 7

reconstruction. In [62], a low-resolution full-view image was initially reconstructed,

followed by a fine-resolution reconstruction of a specific region of interest (ROI). In

particular, the image attributes of the pixels inside the ROI were set to zero, and a

new projection sinogram was calculated using the forward model represented in matrix

form by (1). Afterward, the newly calculated sinogram was subtracted from the original

sinogram, resulting in a sinogram that contained projections exclusively corresponding

to the ROI. Dabravolski et al. [14] proposed to obtain an initial reconstruction of

a global coarse image, which was subsequently divided into regions comprising both

fixed and non-fixed pixels. Specifically, the boundary pixels that shared at least one

adjacent pixel with a different attenuation coefficient were assigned to the non-fixed

pixels region. The non-fixed pixels region was comprised of boundary pixels that had at

least one adjacent pixel with a different attenuation coefficient. Another method in [9]

involved dividing the image domain into sub-regions with varying levels of discretization,

which were characterized by either a coarse or fine pixel size. The projection data

obtained from both resolutions were combined to reconstruct an image with different

levels of discretization, effectively incorporating information from both measurements

to enhance the reconstructed image quality. Gao et al. [17] proposed a low-resolution

image prior image reconstruction model, which was realized in an end-to-end regime

showing impressive ability in dealing with limited-angle reconstruction problems. He

et al. [29] introduced a downsampling imaging geometric modeling approach for the

data acquisition process, which integrated the geometric modeling knowledge of the

CT imaging system with prior knowledge obtained from a data-driven training process

to achieve precise CT image reconstruction. Malik et al. [42] suggested employing

image fusion to generate a composite image that combines the high spatial resolution of

a partially ambiguous image obtained from incomplete data with the more dependable

quantitative information of a coarser image reconstructed from the same data in an over-

complete problem. The aforementioned methods demonstrate that the low-resolution

image can be used as an effective prior for ill-posed CT reconstruction problems.

1.3. Our contributions

In this work, we introduce the low-resolution image as the prior and propose a novel

image reconstruction model for sparse-view and limited-angle CT reconstruction tasks.

More specifically, the low-resolution image prior can introduce effective regularity into

the reconstruction model to guarantee the qualities for incomplete data problems.

Subsequently, we implement the algorithm unrolling to solve our low-resolution prior

image model, where the gradient descent is employed for minimizing the lower-level

problem with each Jacobi block being approximated by convolutional neural networks.

To balance feature extraction capability and model size, we establish the low-resolution

prior equilibrium (LRPE) network, where the weight-sharing strategy is used among

all stages. More importantly, our approach has provable convergence guarantees by

satisfying certain conditions to guarantee the iterative scheme converge to a fixed-point.
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Low-resolution Prior Equilibrium (LRPE) Network 8

(a) (b)

Figure 4. Illustration of the virtual CT scanning system, where (a) a fine CT scanning

system; (b) a coarse CT scanning system.

Through extensive numerical experiments on both sparse-view and limited-angle CT

reconstruction problems, our LRPE model demonstrates clear advantages over the state-

of-the-art learning methods. To sum up, the major contributions of this paper are as

follows

• By leveraging the characteristics of the physical process of CT imaging, we use

the low-resolution image as prior and establish an effective regularization model for

incomplete data CT reconstruction.

• We employ the deep equilibrium method to solve the low-resolution prior model,

where the convergence is established for both explicit data fidelity and learned data

fidelity.

• We conduct numerical experiments to demonstrate the advantages of the

low-resolution image prior and deep equilibrium strategy for incomplete data

reconstruction problems.

2. Our Low-resolution Prior Reconstruction Model

Let Al : Xl → Y be the system matrix for the low-resolution image ul ∈ Xl ⊂ Rn.

Thus, the low-resolution inverse problem can be formulated as follows

Alul = b, (7)

where n denotes the number of pixels of the low-resolution image. Without considering

the discretization error, the same projection data b is used for the low-resolution image.

The illustration of the fine and coarse CT scanning system is provided in Figure 4. As

can be observed, the red color dots denote the permissible positions for the emitter, and

the blue arc represents the corresponding receiving range of the receiver. It is obviously

shown that the coarse scanning system has the same field of view (FOV) but with a
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Low-resolution Prior Equilibrium (LRPE) Network 9

larger step size in spatial discretization. That means the low-resolution image can be

obtained from the high-resolution image as follows

ul = Du, (8)

where D : X → Xl is the down-sampling operator. In this work, we concern with the

following low-resolution image regularized CT reconstruction model

u ∈ argmin
u
S(Au, b) +R(u,D⊤ul), (9)

where D⊤ represents the transpose of the matrix D. Supposing both S and R are

differentiable, we can use the gradient descent to solve the minimization problem (9).

That is, we start with an initial estimate u0 such as u0 = 0 and a step size η > 0, such

that for stage k = 0, 1, . . . , K − 1, we estimate uk+1 from

uk+1 = uk − η
(
A⊤∇S

(
Auk, b

)
+∇R

(
uk,D⊤ul

) )
.

To leverage the rich information contained in the data, we adopt the deep unrolling

strategy to solve the above gradient descent problem. More specifically, we utilize two

convolutional neural networks Sθ(·, ·) : Y×Y → Y and Rθ(·, ·) : X×X → X to learn the

gradient operator ∇S
(
Auk, b

)
and ∇R

(
uk,D⊤ul

)
, respectively. For k = 0, . . . , K−1,

we then have the recursive update as follows

uk+1 = uk − η(A⊤sk + tk), (10)

where sk := Sθ(Auk, b) and tk := Rθ(u
k,D⊤ul) are the estimations of the two

convolutional neural network models, respectively. Moreover, we use the weight-sharing

scheme to improve the feature abstraction capabilities by unrolling the network to a

sufficient depth. Therefore, the final update scheme is achieved by connecting the

unrolled gradient descent stages (10) with the deep equilibrium architecture (5) as

follows

fθ(u
k+1) := uk − η

(
A⊤Sθ(Auk, b) +Rθ(u

k,D⊤ul)
)
. (11)

The objective function in the upper-level problem is simply the true risk for the squared

loss

ℓ(u,u∗) =
1

m

m∑
i=1

∥ui
∗ − ui

K∥22,

where ui
∗ is the ith ground truth, and uK

i denotes the reconstructed image. Indeed,

the use of the mean squared error (MSE) loss is not necessary, as any differentiable loss

function can be used.

3. Our Algorithm

The low-resolution prior equilibrium (LRPE) model can be outlined as Algorithm 1.

In both training and inference stage, the low-resolution prior image ul is obtained by

established reconstruction methods, where we used the Learned Primal-Dual network

[1] to estimate the low-resolution image in our work.
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Low-resolution Prior Equilibrium (LRPE) Network 10

Algorithm 1 Low-Resolution Prior Equilibrium (LRPE) Network

1: Step 0. Initialize u0, b, ul, step size η;

2: Step 1. For k = 0, 1, 2, · · · , K − 1 do
sk ←− Sθ(Auk, b);

tk ←− Rθ(u
k,D⊤ul);

uk+1 = uk − η(A⊤sk + tk);

3: Step 2. Return uK .

3.1. Network architecture

In Algorithm 1, both Rθ(·, ·) and Sθ(·, ·) are modeled by convolutional neural networks.

More specifically, we use a three layer convolutional neural network with residual

connections to express the two functionals

Rθ = IN +H3ϕ2(H2ϕ1(H1)),

and

Sθ = Il +K3ϕ2(K2ϕ1(K1)),

where the building blocks are defined as

• Hi : X → X , i = 1, . . . , 3, is the matrix representation of a learned 3×3 convolution
kernel.

• Ki : Y → Y , i = 1, . . . , 3, is the matrix representation of a learned 3×3 convolution

kernel.

• ϕi, i = 1, 2 is a differentiable element-wise activation function. We adopt the log-

student-t-distribution function as the activation function

ϕ(x) =
1

2
log(1 + x2). (12)

• IN ∈ RN×N and Il ∈ Rl×l stand for the identity transformation.

The inclusion of residual structures [30] is important, which can help prevent the loss of

fine details, expedite information flow, and enhance the capcity of the network model.

The residual structures can alleviate training challenges and expedite convergence.

The overall depth of the network is determined by the number of stages it contains,

which is fixed to strike a balance between the receptive fields and the total number of

parameters in the network. Therefore, we set the numbers of channels in each stage

as 6 → 32 → 32 → 5 for both Rθ and Sθ. We present the network structure and

subblocks in Figure 5, which is an end-to-end convlutional neural network model for CT

reconstruction problems.

3.2. Algorithm implementation and network optimization

In implementation, our algorithm was realized using the Operator Discretization Library

(ODL), the Adler package, the ASTRA Toolbox, and TensorFlow 1.8.0. In particular,
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Low-resolution Prior Equilibrium (LRPE) Network 11

Figure 5. The network structure of our LRPE: Low-Resolution Prior Equilibrium

network.

the TensorFlow is a toolkit designed for tackling complex mathematical problems, for

which the calculations are represented as graphs, mathematical operations are nodes,

and multidimensional data arrays are communicated as edges of the graphs. The

ASTRA Toolbox is a MATLAB and Python toolbox that provides high-performance

GPU primitives for 2D and 3D tomography. And ODL is a Python library focused on

fast prototyping for inverse problems. Adler is a toolkit that facilitates the efficient

implementation of neural network architectures.

In our network, the parameters are updated using the backpropagation algorithm

within the stochastic gradient descent method implemented in TensorFlow. We employ

the Xavier initialization scheme for the convolution parameters and initialize all biases

to zero. The adaptive moment estimation (Adam) optimizer is chosen to optimize the

learning rate with the parameter β set to 0.99 and the remaining parameters set to

their default values. The learning rate follows a cosine annealing strategy, which helps

to improve training stability. The initial learning rate is set to 10−4 and global gradient

norm clipping is performed by limiting the gradient norm to 1. Besides, the batch size

is set to 1 for all experiments.

4. Convergence Analysis

Here we study convergence of the proposed LRPE to a fixed-point at inference time.

Given the iteration map fθ(·) : X → X , we discuss the conditions that can guarantee

the convergence of the iterates uk+1 = fθ(u
k) to a fıxed-point u∞ as k → ∞. The
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Low-resolution Prior Equilibrium (LRPE) Network 12

classical fixed-point theorem [23] ensures the convergence of the iterates to a unique

fixed point if the iteration map is contractive, i.e. if exists a constant 0 ≤ c < 1 such

that ∥fθ(u)− fθ(u
′)∥ ≤ c ∥u− u′∥ for all u and u′.

Now we establish the conditions on Rθ and Sθ that can ensure the convergence of

the iterates uk+1 = fθ
(
uk

)
in Algorithm 1 to a fixed-point u∞ as the stage number k

approaches infinity. These conditions guarantee that the resulting mapping satisfies the

contractivity condition and, consequently, the fixed-point iteration converges. Relying

on the network structure shown in Figure 5, we denote NRθ
(u) = H3ϕ2(H2ϕ1(H1(u)))

and NSθ
(Au) = K3ϕ2(K2ϕ1(K1(Au))). Then we have

∥∂uNRθ
∥ =

∥∥H⊤
1 ∂uϕ1(H1u)H

⊤
2 ∂uϕ2(H2ϕ(H1u))H3

∥∥ ,
∥∂uNSθ

∥ =
∥∥A⊤K⊤

1 ∂uϕ1(K1Au)K⊤
2 ∂uϕ2(K2ϕ(K1Au))K3

∥∥ .
Due to supu |ϕ′(u)| = 0.5, ∥∂uNRθ

∥ and ∥∂uNSθ
∥ can be uniformly bounded

independently of u. Therefore, we can assume that NRθ
and NSθ

to be ϵ1-Lipschitz and

ϵ2-Lipschitz. As aforementioned, there is (Rθ − IN )(u) = NRθ
(u) and (Sθ − Il)(Au) =

NSθ
(Au). That means (Rθ−IN )(u) and (Sθ−Il)(Au) are ϵ1-Lipschitz and ϵ2-Lipschitz,

i.e.,

∥(Rθ − IN ) (u)− (Rθ − IN ) (u′)∥ ≤ ϵ1 ∥u− u′∥ ,
∥(Sθ − Il) (Au)− (Sθ − Il) (Au′)∥ ≤ ϵ2 ∥u− u′∥ .

In the following, we discuss convergences for the deep equilibrium unrolling algorithm

for the low-resolution prior reconstruction model with empirical data fidelity and learned

data fidelity, respectively.

Theorem 1. (Convergence of LRPE with empirical data fidelity). Assume that the

observed data is without noise, there is S = 1
2
||Au− b||22 in (9). Let L = λmax

(
A⊤A

)
and µ = λmin

(
A⊤A

)
, where λmax(·) and λmin(·) denote the maximum and minimum

eigenvalue, respectively. If the step-size parameter η > 0 satisfies η < 1/(L+1), we can

obtain the following inequality

∥fθ(u)− fθ (u
′)∥ ≤ (1− η(1 + µ) + ηϵ1)︸ ︷︷ ︸

=:γ

∥u− u′∥

for all u,u′ ∈ X . The coefficient γ is less than 1 if ϵ1 < 1+µ, in which case the iterates

of the LRPE model converges.

Proof. Let fθ(u) be the iteration map for the LRPE with empirical data fidelity. The

Jacobian of fθ(u) with respect to u denoted by ∂ufθ(u), is given by

∂ufθ(u) =
(
IN − ηA⊤A

)
− η∂uRθ(u),

where ∂uRθ(u) is the Jacobian of Rθ(u) with respect to u. To prove fθ(·) is contractive,
it suffices to show ∥∂ufθ(u)∥ < 1 for all u ∈ X , where ∥ · ∥ denotes the spectral norm.
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Low-resolution Prior Equilibrium (LRPE) Network 13

Towards this end, we have

∥∂ufθ(u)∥ =
∥∥IN − ηA⊤A− η∂uRθ(u)

∥∥
=

∥∥IN − ηA⊤A− ηIN + ηIN − η∂uRθ(u)
∥∥

≤
∥∥(1− η)IN − ηA⊤A

∥∥+ η ∥∂uRθ(u)− IN∥
≤ max

i
|(1− η)− ηλi|+ ηϵ1,

(13)

where λi denotes the i th eigenvalue of A⊤A. Here, we use the assumption that the

map (Rθ − IN ) (u) := Rθ(u)− u is ϵ1-Lipschitz to guarantee the spectral norm of the

Jacobian ∂uRθ(u) − IN to be bounded by ϵ1. Based on the assumption η < 1
1+L

with

L := maxi λi, we have η < 1
1+λi

for all i, which implies (1 − η) − ηλi > 0 for all i.

Therefore, the maximum in (13) is obtained at µ := mini λi, which gives

∥∂ufθ(u)∥ ≤ 1− η(1 + µ) + ηϵ1.

It shows fθ is γ-Lipschitz with γ = 1− η(1 + µ) + ηϵ1, proving the claim.

Theorem 2. (Convergence of LRPE with learned data fidelity). Assume that (Rθ −
IN )(u) is ϵ1-Lipschitz and (Sθ − Il)(Au) is ϵ2-Lipschitz, and let L = λmax

(
A⊤A

)
and µ = λmin

(
A⊤A

)
, where λmax(·) and λmin(·) denote the maximum and minimum

eigenvalue, respectively. If the step-size parameter η > 0 obeys η < 1/(L+1), the LRPE

iteration map fθ(·) defined in (11) satisfies

∥fθ(u)− fθ (u
′)∥ ≤ (1− η(1 + µ) + η(Lϵ2 + ϵ1))︸ ︷︷ ︸

=:γ

∥u− u′∥

for all u,u′ ∈ X . The coefficient γ is less than 1 if ϵ1 + Lϵ2 < 1 + µ, in which case the

iterates of the LRPE-net converges.

Proof. Let fθ(u) be the iteration map for LRPE with learned data fidelity. The Jacobian

of fθ(u) with respect to u ∈ X , denoted by ∂ufθ(u), is given by

∂ufθ(u) =
(
IN − ηA⊤∂uSθ(Au)A

)
− η∂uRθ(u),

where ∂uRθ(u) is the Jacobian of Rθ(u) with respect to u ∈ X and ∂uSθ(Au) is

the Jacobian of Sθ(Au). Similarly, we show ∥∂ufθ(u)∥ < 1 for all u ∈ X . Since

(Rθ − IN ) (u) and (Sθ − Il) (Au) are ϵ1-Lipschitz and ϵ2-Lipschitz, respectively, we

have the spectral norm of its Jacobian ∂uRθ(u)−IN is bounded by ϵ1 and ∂uSθ(u)−Il
is bounded by ϵ2. Then there is

∥∂ufθ(u)∥ =
∥∥IN − ηA⊤∂uSθ(Au)A− η∂uRθ(u)

∥∥
=

∥∥IN − ηIN + ηIN − ηA⊤A+ ηA⊤A− ηA⊤∂uSθ(Au)A− η∂uRθ(u)
∥∥

=
∥∥IN − ηA⊤A− ηIN − η (∂uRθ(u)− IN )− ηA⊤(∂uSθ(Au)− Il)A

∥∥
≤

∥∥(1− η)IN − ηA⊤A
∥∥+ η ∥∂uRθ(u)− IN∥+ ηA⊤ ∥∂uSθ(Au)− Il∥A

≤ max
i
∥(1− η)− ηλi∥+ ηϵ1 + ηLϵ2,

(14)
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Low-resolution Prior Equilibrium (LRPE) Network 14

where λi denotes the i the eigenvalue of A⊤A. Finally, by our assumption η < 1
1+L

where L := maxi λ1, we have η < 1
1+λi

for all i, which implies (1 − η) − ηλi > 0 for all

i. Therefore, the maximum in (14) is obtained at µ := mini λi, which gives

∥∂ufθ(u)∥ ≤ 1− η(1 + µ) + ηϵ1 + ηLϵ2.

It shows that fθ is γ-Lipschitz with γ = 1−η(1+µ)+η(Lϵ2+ϵ1) , proving the claim.

5. Numerical Results

In this section, we evaluate our LRPE model on both sparse-view and limited-angle

reconstruction problems and compare it with several state-of-the-art methods using a

dataset of human phantoms. We utilize the peak signal-to-noise ratio (PSNR) and the

structural similarity index (SSIM) as evaluation metrics to measure the quality of the

reconstructed images produced by different methods.

5.1. Comparison algorithms

We employ several recent CT reconstruction methods for comparison studies, including

both traditional and learning-based approaches, as described below:

• TV model: the TV regularized reconstruction model proposed in [8]. We tuned the

balance parameter λ ∈ [1, 3], the step size for the primal value τ within the range

of [0.5, 0.9], and the step size for the dual value σ within the range of [0.2, 0.5].

These parameter settings were adjusted accordingly for different experiments.

• PD: the Learned Primal-Dual network in [1]. The network is a deep unrolled neural

network with 10 stages. The number of initialization channels for both primal and

dual values is set to 5. The network parameters are initialized using the Xavier

initialization scheme. In all experiments, we employed the mean squared loss as

the objective function, which measures the discrepancy between the reconstructed

image and the ground truth.

• SIPID: the Sinogram Interpolation and Image Denoising (SIPID) network presented

in [67]. The SIPID network utilizes a deep learning framework and achieves accurate

reconstructions by iteratively training the sinogram interpolation network and the

image denoising network. The network parameters are initialized using the Xavier

initialization scheme, and the mean squared loss is employed as the objective

function in all experiments.

• FSR: the Learned Full-Sampling Reconstruction From Incomplete Data in [12].

The FSR-Net is an iterative expansion method that uses the corresponding full

sampling projection system matrix as prior information. They employed two

separate networks, namely IFSR and SFSR. Specifically, the IFSR and SFSR are

utilized for reconstructions using IFS and SFS system matrices, respectively. The

number of initialization channels for primal values and dual values is set as 6 and
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Low-resolution Prior Equilibrium (LRPE) Network 15

7, respectively. The loss function is the mean square error of the image domain and

the Radon domain with the weight α being 1.

• LRIP: the Low-Resolution Image Prior based Network in [17]. It is a low-resolution

image prior image reconstruction model for the limited-angle reconstruction

problems. The number of initialization channels is set as 5 for both primal and

dual values. The loss function used in training is a combination of MSE and SSIM

calculated in the image domain. The weight parameter α for balancing the two

components of the loss function is set to 1.

• GRAD: gradient descent is used instead of the primal-dual algorithm to solve the

low-level problem described in model (9). It does not incorporate low-resolution

image prior information. The network is a deep unrolled neural network with 10

stages. The number of initialization channels is set to 5. The Xavier initialization

and the mean squared loss of the reconstructed image and the ground truth are

used in all experiments.

5.2. Datasets and settings

In the experiments, we utilize the clinical dataset known as “The 2016 NIH-AAPM-

Mayo Clinic Low Dose CT Grand Challenge” [43]. This dataset comprises 10 full-dose

scans of the ACR CT accreditation phantom. To establish the training dataset, we select

9 of these scans, reserving the remaining 1 scan for evaluation purposes. Consequently,

the training dataset consists of 2164 images, each with dimensions of 512×512, while
the evaluation dataset comprises 214 images. We set the scanning angular interval to

be 1 degree. To assess the performance of the reconstruction methods, we introduce

various types of noises into the projected data, which allows us to validate and compare

the effectiveness of the different reconstruction techniques.

5.3. Test Settings and Parameter Choice

In this subsection, we evaluate the choices of the parameters to the performance of

our algorithm. There are several important parameters in Algorithm 1, including the

number of stages K, the step size η and the dimension of the variables in the network

model.

We first study the influence of the stage number K on the convergence of the

algorithm. We use the squared error ∥uK − u∗∥2 to measure the data error during

the training process. Both the results of 150◦ limited-angle and 60 sparse-view

reconstruction with and without 5% Gaussian noises are presented in Figure 6. As we

can see, our LRPE model demonstrates convergence as the number of epochs increases,

regardless of whether there are 5, 10, or 15 stages (iterations). As Theorem 4.8 in [6]

indicates, convergence to the optimal value can be achieved when the data itself is noise-

free. If the observed data contains noises, the expected objective value of the fixed-point

iteration converges to a neighborhood of the optimal value. We can observe from the
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Low-resolution Prior Equilibrium (LRPE) Network 16

Figure 6. The data error measured by L2 norm with respect to the numbers of

epochs in our LRPE model. The curves represent the results for 150◦ limited-angle

(First row)and 60 sparse-view (Second row) with and without 5% Gaussian noises. On

each row, the left one is the result without noises, and the right one is the result with

5% Gaussian noises.

numerical error of our LRPE method converges to lower error for cases without noises.

When noises are introduced into observed data, the solution converges to much higher

error, which is consistent with the theoretical analysis results in [6]. With the same

number of iterations, more stages can optimize to a lower data error faster. Since there

is a trade-off between the error reduction and training efficiency, we fix the total number

of stages to 10 to achieve a good balance.

On the other hand, we also conducted experiments with different numbers of stages

during the inference phase, where the LRPE models trained with 10 stages are used in

the experiment. As can be observed in Figure 7(a), as the number of stages increases,

the PSNR generally improves for all the limited-angle reconstruction problems. It is

worth noting that by using a parameter-sharing strategy in the deep equilibrium model,

the number of parameters is significantly reduced compared to the learned PD model.

Specifically, the number of parameters in our model is only 1/10th of the number of

parameters in the learned PD model. In what follows, we analyze the effect of the

hyper-parameter η on the performance of limited-angle reconstruction. We perform a

parameter sweep and obtain the results shown in Figure 7(b), which models are used

10 stages. From the results, we observe that the highest PSNR value is achieved when
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Low-resolution Prior Equilibrium (LRPE) Network 17

Table 1. The performance of our LRPE was evaluated in terms of PSNR across

different values of Np.

Limited-angle

Np 1 3 4 5 6 7

90◦ 25.6472 25.8506 25.9506 25.9517 25.9129 25.9565

120◦ 29.1946 29.2797 29.4326 29.4835 29.4718 29.4815

150◦ 31.2969 31.4487 31.5884 31.636 31.4477 31.3321

we set η as η = 0.1. Therefore, in all other experiments, we fix the hyper-parameter η

to a value of 0.1.

(a) Results of the different stages (b) Results of the different step size

Figure 7. Evaluation results of our LRPE model with respect to different settings of

parameters during inference process.

Expanding the variable space is a common technique used in network optimization

to improve stability during the training process. In our case, we expand the variable

space by considering multiple variables u = [u(1),u(2), . . . ,u(Np)]. In Table 1, we

investigate the influence of different choices of Np on the reconstruction accuracy using

limited-angle data. From the perspective of results obtained from various views in Table

1, we fix the value of Np to 5 for all experiments, which provides a good balance between

reconstruction accuracy and computational efficiency.

5.4. Empirical data fidelity or learned data fidelity?

We evaluate the differences between the empirical data fidelity and learned fidelity on

150◦ limited-angle reconstruction problems, where the empirical one is chosen as the

L2 norm following the assumption in Theorem 1 and the learned one following the

assumption in Theorem 2. Table 2 presents the PSNR and SSIM values for both cases,

for which the raw data are corrupted by 5% Gaussian noises and Poisson noises with up

to 100, 1000, and 10000 incident photons per pixel before attenuation, respectively. As

Page 17 of 30 AUTHOR SUBMITTED MANUSCRIPT - IP-104216.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Low-resolution Prior Equilibrium (LRPE) Network 18

can be seen, when the mixed noises are contained in the projection data, the model with

the learned fidelity outperforms the model with the empirical fidelity. It is attributed to

the fact that the L2 norm measures the Euclidean distance, which is not ideal for complex

noise distributions in mixed noises. When salt-and-pepper noises are introduced into

the measured data, we can observe similar results as shown in Table 3. To sum up, the

learned data fidelity performs better than the empirical data fidelity term, especially

when the noises become significant.

Table 2. Evaluation results on the 150◦ limited-angle reconstruction problem

corrupted by the mixed Gaussian and Poisson noises.

Method

Settings 100 photons 1000 photons 10000 photons

PSNR SSIM PSNR SSIM PSNR SSIM

Empirical 29.6282 0.9172 30.4864 0.9082 31.5067 0.9412

Learned 29.8253 0.9194 30.9255 0.9193 32.2568 0.9446

Table 3. Evaluation results on the 150◦ limited-angle reconstruction problems

corrupted by salt-and-pepper noises.

Method

Settings 10% noise 5% noise 1% noise

PSNR SSIM PSNR SSIM PSNR SSIM

Empirical 33.6648 0.9412 33.9457 0.9436 34.5948 0.9493

Learned 33.9674 0.9508 34.4504 0.9586 35.1745 0.9589

5.5. Experiments on the sparse-view reconstruction

We further evaluate the image qualities of our LRPE model under the low-dose sparse-

view projection data. We utilize 60 views, 45 views, and 30 views projection data

corrupted by 5% white Gaussian noises for evaluation, where the reconstruction results

of different reconstruction methods are provided in Table 4. Both PSNR and SSIM

demonstrate that our LRPE model outperforms other reconstruction methods. Figure

8 presents the reconstructed images obtained by the comparative methods on the 30-

view reconstruction problem. By comparing images (g) and (h), it is evident that

the low-resolution image prior can significantly improve the reconstruction quality by

preserving fine details and sharp edges. Moreover, the zoomed region exhibits that the

deep equilibrium architecture can well maintain structural information.

We further increase the noise level in the raw data to 10% white Gaussian noises

and provide the quantitative results in Table 5. It can be observed that the FBP

method performs poorly in the presence of high-level noises, with a decrease in PSNR

by 4 dB compared to previous experiments. In contrast, the learning-based methods

are demonstrated to be less sensitive to noises. Similarly, our LRPE model exhibits the

best performance among all the deep learning-based algorithms.
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(a) Clean (b) FBP (c) TV (d) PD-net

(e) IFSR (f) SFSR (g) GRAD (h) LRPE

Figure 8. The sparse-view reconstruction experiments are performed on the AAPM

phantom dataset using 30 views and 5% Gaussian noise. The display window was set

to [0, 1].

Table 4. Comparison of different methods on sparse-view data corrupted by 5%

Gaussian noises in terms of PSNR and SSIM.

Nview Metrics FBP TV PD IFSR SFSR GRAD LRPE

60
PSNR 21.4443 27.0301 30.0261 30.4563 30.4681 26.2635 31.0746

SSIM 0.4828 0.8548 0.9237 0.9321 0.9331 0.8647 0.9337

45
PSNR 19.7123 25.7201 29.1028 29.6814 29.7915 24.3606 30.8035

SSIM 0.4061 0.8183 0.9135 0.9253 0.9263 0.8031 0.9342

30
PSNR 17.8999 23.705 28.9207 29.0632 29.5072 23.713 29.7237

SSIM 0.3257 0.7615 0.9167 0.9198 0.9244 0.8355 0.921

Table 5. Comparison of different methods on sparse-view data corrupted by 10%

Gaussian noises in terms of PSNR and SSIM.

Nview Metrics FBP TV PD IFSR SFSR GRAD LRPE

60
PSNR 17.6258 24.6045 28.311 28.3782 28.6113 24.4988 28.7754

SSIM 0.277 0.7826 0.9079 0.9147 0.9161 0.8514 0.9174

45
PSNR 16.1392 23.7815 27.5534 28.0502 28.3181 23.6734 28.6671

SSIM 0.2236 0.752 0.9049 0.9116 0.9141 0.8318 0.9137

30
PSNR 14.3605 22.9388 26.9146 27.0682 27.653 23.0145 27.8697

SSIM 0.166 0.7416 0.9011 0.9026 0.9071 0.8156 0.9043
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Table 6. Comparison of different methods on limited-angle data corrupted by 5%

Gaussian noises in terms of PSNR and SSIM.

Nview Metrics FBP TV SIPID PD SFSR LRIP GRAD LRPE

150◦
PSNR 13.5911 25.8815 30.3275 30.3766 30.9411 31.5957 24.3043 31.636

SSIM 0.4854 0.8091 0.9276 0.9301 0.9324 0.9426 0.8572 0.9422

120◦
PSNR 13.4418 23.5852 27.0428 27.1539 28.3263 29.2763 21.6601 29.4835

SSIM 0.4008 0.7891 0.9024 0.9037 0.9103 0.9361 0.801 0.9378

90◦
PSNR 13.0314 19.9501 22.7492 22.6047 24.2494 25.1555 19.3469 25.9517

SSIM 0.3881 0.6918 0.8626 0.8612 0.8761 0.8893 0.7538 0.8814

(a) FBP (b) TV (c) SIPID (d) PD

(e) SFSR (f) LRIP (g) GRAD (h) LRPE

Figure 9. Limited-angle reconstruction experiment with 150◦ scanning angular range

and 5% Gaussian noises.

5.6. Experiments on the limited-angle reconstruction

In this subsection, we evaluate the performance of our LRPE model on the limited-

angle reconstruction, where 5% Gaussian noises are corrupted in the projection data.

Both PSNR and SSIM of the comparison methods are provided in Table 6. We can

observe that the reconstruction qualities of all methods decrease as the scanning angle

shrinks. Not surprisingly, our LRPE model has the numerical advantage compared to

other comparison algorithms, which provides a 0.8 dB higher PSNR than the LRIP

on 90◦ limited-angle reconstruction task. Particularly, the projection data of the low-

resolution prior used by LRIP model is different from ours, which was computed using

the down-sampling matrix. Obviously, our setting is more reasonable and in accord with

the CT scanner, which also gives better reconstruction results. Figure 9 and Figure 10

present the reconstruction results with a scanning range of 150◦ limited-angle and 90◦

limited-angle, respectively. As can be observed, the learning-based methods outperform
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(a) FBP (b) TV (c) SIPID (d) PD

(e) SFSR (f) LRIP (g) GRAD (h) LRPE

Figure 10. Limited-angle reconstruction experiment of the AAPM phantom dataset

with 90◦ scanning angular range and 5% Gaussian noises.

both FBP and TV, which contain noticeable artifacts in regions within missing angles.

Moreover, our LRPE model surpasses the SIPID, PD, FSR, and LRIP by providing more

image details and continuous contours. Thus, both quantitative and qualitative results

confirm that the low-resolution image is a suitable prior for the ill-posed limited-angle

reconstruction. Furthermore, by comparing the reconstruction results of 150◦ limited-

angle and 90◦, it is not difficult to find that the resolution of the reconstruction results

of all methods significantly decreases with the loss of angles. Although our method can

provide better structural information by introducing the low-resolution image prior, it

still suffers details missing due to angle deficient. It is mainly because our low-resolution

image is the direct reconstruction result of 90◦ limited-angle data. Thus, our future work

includes to explore effective reconstruction methods for low-resolution images.

In Figure 11, we present and compare the output results of the LRIP, GRAD,

and LRPE models during the iterative process. Although we have shown the

numerical convergence of our LRPE model in the inference phase in Figure 7 (a), the

visual comparison further demonstrates that our model can provide more meaningful

intermediate results in the iterative process. Compared to GRAD model, our method

can effectively improve the quality of reconstruction results by introducing a low-

resolution image prior. On the other hand, the results of the LRIP model are not

stable in the first six stages, and only provide meaningful results in the last two stages.

Thus, the deep equilibrium model with convergence guarantee is a better choice for

establishing a stable end-to-end reconstruction network.

Last but not least, we conduct the comparison study on the running time of the
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(a) PSNR:9.1227 (b) PSNR:10.2367 (c) PSNR:11.9091 (d) PSNR:14.2079 (e) PSNR:17.2330

(f) PSNR:20.9317 (g) PSNR:23.0121 (h) PSNR:24.4391 (i) PSNR:25.8657 (j) PSNR:25.9517

Figure 11. The comparison results of the LRIP, GRAD, and LRPE model on the

human phantom dataset with a scanning angular range of 90◦ and 5% Gaussian noise.
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(a) Sparse-view reconstruction (b) Limited-angle reconstruction

Figure 12. The execution times of various methods were assessed using a sparse angle

of 30 degrees and a limited scanning angular range of 90◦.

evaluated methods, which are illustrate in Figure 12. Notably, excluding the running

time of the TV method, it exhibits an execution time approximately ten times longer

than that of the FBP. By analyzing the bar chart results, we can observe that although

our method is not as rapid as the PD method, we incur only a 100-millisecond increase

in running time to achieve superior reconstruction results.

6. Concluding Remarks

In this paper, we proposed a novel end-to-end equilibrium imaging geometric model

for the ill-posed image reconstruction problems. The low-resolution image was used

prior to guarantee that the proposed model can achieve good reconstruction results

based on incomplete projection data. The advantages of our proposal were validated

using a substantial amount of numerical experiments on sparse-view and limited-angle

settings. The experimental results demonstrated that our model can enable accurate

and efficient CT image reconstruction. Although our downsampling imaging geometric

modeling was studied for the fan-beam imaging systems, it can be also used for other

modern CT settings. Similar works include [29] and [17], where the low-resolution image

prior was incorporated into the reconstruction network. The prior information in [29]

was obtained by halving the receiver signal, requiring a second scan of the patient,

which is clinically prohibitive. In contrast, our approach eliminates the need of re-

scanning patients. On the other hand, Gao et al. [17] also requires two distinct sets of

projection data. Obviously, the low-resolution image obtained from the same scan can

better maintain consistency with the high-resolution image, thereby preserving more

structural and fine information. According to the experimental results, although our

LRPE model is superior to other algorithms in reconstruction results, there is still

a problem of detail loss in the case of incomplete data sampling. Thus, enhancing

the quality of low-resolution images through effective sinogram restoration methods is
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a possible way to improve the reconstruction results of our LRPE model on severe

incomplete data problems. One of the future research directions is to enhance the

resolution of reconstructed images under extreme limited-angle and low-dose scanning

problems. In theoretical analysis, the noises in data present new challenges in estimating

the gradients of network models. We plan to investigate the convergence of the deep

equilibrium model based on stochastic gradient similar to [6].
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