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Abstract

We study the linear stability of plane Couette flow subject to an anisotropic slip boundary condition
that models the slip effect of parallel microgrooves with a misalignment about the direction of the wall
motion. This boundary condition has been reported to be able to destabilize channel flow far below
the critical Reynolds number of the no-slip case. Unlike channel flow, the no-slip plane Couette flow is
known to be linearly stable at arbitrary Reynolds numbers. Nevertheless, the results show that the slip
can cause linear instability at finite Reynolds numbers also. The misalignment angle of the microgrooves
that maximizes the destabilizing effect is nearly π/4, and the unstable modes are of small streamwise
wavenumbers and relatively large spanwise wavenumbers. The flow is always more destabilized by
two slippery walls compared to a single slippery wall. These observations are in qualitative agreement
with the slippery channel flow with the same boundary condition, indicating that such an anisotropic
superhydropbobic effect has a rather general destabilizing effect in shear flows regardless of the profile
of the base flow. The absence of the Tollmien-Schlichting instability allows us to reveal the inverse
relationship between the critical Reynolds number and the slip length as well as the misalignment in the
small-parameter regime. The results suggest that arbitrary nonvanishing slip length and misalignment,
with arbitrarily weak anisotropy, may suffice to destabilize plane Couette flow.

1 Introduction
On a smooth solid surface, a viscous fluid sticks to the surface (on macroscopic scale) and a no-slip
boundary condition is the natural choice. On the other hand, superhydrophobic solid surfaces can induce
an apparent velocity slip in viscous flows (see e.g. Refs. [1–7]). This effect can be modeled as a partial slip
on a smooth solid surface with proper slip parameters, following the spirit of the Navier-slip boundary
condition. This simplification avoids treating the complex microstructures of the solid surface, easing
computational and theoretical analysis, and has been applied to a broad range of problems including
linear stability [8–24], transition and turbulence [20, 21, 23, 25, 26]. The focus of this paper is the linear
stability problem.

The simplest slip boundary condition is a Robin-type condition on velocity with a single slip length
parameter. This essentially assumes isotropy and homogeneity in the surface properties, i.e. slip properties
are independent of the direction and location within the solid surface. In this case, studies have shown
that the flow is stabilized by the velocity slip [8, 10, 11, 13, 18, 19, 27]. For example, in channel flow, the
two dimensional (2D) Tollmien-Schlichting modes (T-S modes), which are the dominant linear modes,
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Figure 1: Schematic of the liquid flow over a microgrooved superhydrophobic surface. The x axis shows
the flow direction (i.e. the direction of the driving pressure gradient in case of channel flow and the
direction of wall motion in the plane Couette flow case), and x′ shows the longitudinal direction of the
microgrooves. The misalignment angle is denoted as θ.

have been shown to be significantly stabilized by the slip so that the critical Reynolds number for linear
instability is higher than the classic no-slip case [18, 19, 23]. Similarly, slip was shown to delay natural
transition in boundary layer flow by stabilizing the 2D T-S modes [21]. We want to note here that
the above-mentioned stabilizing effect was concluded for single-phase parallel shear flows. In the case
of nonparallel flows (such as divergent channel flow) and multiphase flows with interfaces or viscosity
stratification, slip can have a destabilizing effect also [12, 16, 17]. In this paper, we only discuss about
single-phase parallel shear flows.

In contrast, if anisotropy is introduced to the slip effect, it was shown that the slip does not always
stabilize the flow but can also destabilize the flow given proper parameters [18, 19, 22, 23, 27]. The
simplest situation is channel flow with distinct slip lengths in the streamwise and spanwise directions
[19, 27]. The anisotropy was shown to be able to destabilize three dimensional (3D) perturbations at
much lower Reynolds numbers than the critical Reynolds number for 2D T-S modes. Such slip effect
can be generated by superhydrophobic surfaces with textures that have distinct geometric properties in
different directions, such as parallel microgrooves. It can be expected that the slip effect would be different
in the longitudinal and transverse directions for microgrooves, which indeed is the case according to several
theoretical analysis [28, 29]. The slip length in the longitudinal direction was shown to be larger than
that in the transverse direction. In this paper, we will focus on this type of superhygrophobic surface
considering that it is possibly the easiest way to introduce anisotropy in experiments.

Besides different slip lengths in different directions, microgrooves can have a misalignment about the
driving direction (e.g. pressure gradient in channel flow and wall motion in plane Couette flow), which
adds further complexity to the slip effect (see Fig. 1). According to theoretical analysis, this complexity
can be modeled with a tensorial slip boundary condition [18, 28, 30][

u
w

]
+ Λ

∂

∂n

[
u
w

]
= 0 (1)

at the walls, where u denotes the velocity component along the direction of the top-wall motion (will be
referred to as streamwise direction for simplicity), w denotes the spanwise velocity, and n denotes the
outward normal direction at the wall. It should be noted that u and w should be the velocities relative
to the solid wall when considering slip boundary condition. The boundary condition for the wall normal
velocity is v = 0. The slip properties are given by the tensor Λ with the following form

Λ = Q

[
λ∥ 0
0 λ⊥

]
QT , with Q =

[
cos θ − sin θ
sin θ cos θ

]
, (2)

where λ∥ and λ⊥ correspond to the slip lengths in the longitudinal and transverse directions, respectively,
and θ is the angle of misalignment of the microgrooves about the driving direction (this direction will be
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referred to as the streamwise direction hereafter). The two slip lengths can be determined by the specific
geometries of the microgrooves [29].

There is certainly a limitation of the applicability of the above homogenization of the surface and
base flow. The global stability analysis of Ref. [31, 32] considering the actual structure of the textured
surface showed that the above homogenization only applies when the texture periodicity L (transverse
periodicity of the grooves) is much smaller compared to the distance between the two walls H (the
gap width). When L/H = O(0.01), the global stability analysis and the local stability analysis with
homogenization treatment give very close results. However, when L/H = 0.1, the base flow cannot be
homogenized, and the spanwise alteration of solid and gas parts causes an inflectional instability of the
base flow, which can occur at much lower Reynolds number compared to the homogenized case [31]. Other
types of inviscid instability have also been reported when L/H is large [32]. Besides, by considering the
interface dynamics on the liquid-gas interface, Ref. [23, 33] showed that an interfacial instability can
occur when L/H = O(0.1) or larger, which can become the dominant destabilizing mechanism, whereas
L/H = O(0.01) or smaller does not suffer this problem no matter the value of the shear-free portion δ of
the surface. Therefore, we only consider the case L/H = O(0.01) or smaller where the grooved surface
can be homogenized with the slip boundary condition (1).

With this boundary condition, a few studies investigated the effects of the slip anisotropy and mis-
alignment on the critical Reynolds numbers for linear instability in channel flow [18, 24]. The results show
that the slip can significantly destabilize the flow and cause linear instability at Reynolds numbers much
below the critical Reynolds number of the no-slip case. The Squire’s theorem may not hold anymore
and 3D perturbations can become the most dangerous ones [18], depending on the specific parameters,
and the lowest critical Reynolds number is realized for 3D perturbations at the misalignment somewhere
around θ = π/4. The larger the anisotropy (quantified by the slip length ratio λ∥/λ⊥), the more the flow
is destabilized (i.e. the lower the critical Reynolds number), and in most cases, channel flow with two
superhygrophobic walls is more unstable than that with a single slippery wall [24]. More complicated
behaviors may appear in the small-misalignment and small-slip-length regimes due to the competition
between the T-S instability and the instability caused by the slip [24]. Recently, Ref. [23] studied the
stability and transition to turbulence in channel flow with the same boundary condition and confirmed
the destabilizing effects of the slip. All these studies [18, 23, 24] showed that the 3D superhydropho-
bic instability modes are of small streamwise wavenumbers and relatively large spanwise wavenumbers,
which is similar to the crossflow instability in 3D boundary layer flows [34, 35]. Therefore, this raises the
question whether the superhydrophobic instability is caused by the cross-flow component of the base flow
induced by the slip and belongs to the cross-flow instability. But unlike the 3D boundary layer flow, in
which the cross-flow component is inflectional and responsible for the cross-flow instability, it was pointed
out that the cross-flow component in channel flow induced by the slip boundary condition (1) is either
constant or linear and therefore is not inflectional [18, 23, 24]. It is still unclear how a non-inflectional
base flow can induce the seeming cross-flow instability, or if the cross-flow component of the base flow
does not take part in the instability at all. The destabilizing mechanism remains to be clarified.

Distinct with channel flow, the no-slip plane Couette flow has been rigorously proved to be linearly
stable at arbitrary Reynolds numbers [36, 37]. The aim of this paper is to study the slip effect on the
stability of plane Couette flow and to find out whether such an anisotrpopic boundary condition can also
induce a linear instability or not. The effects of the slip on the eigenspectrum and the dependence of
the critical Reynolds number on the slip parameters will be studied particularly. Due to the absence of
the T-S instability in plane Couette flow, the flow must behave differently in the small-misalignment and
small-slip-length regimes, which will be discussed also.

It should be noted that, in shear flows, non-modal instability usually plays a more important role
than modal instability in transition to turbulence if perturbation level is sufficiently high. Specific to
plane Couette flow, it has been shown that transition can occur at Reynolds numbers of a few hundreds
under finite-amplitude perturbations (see, e.g. [38, 39]). Linear modal stability analysis certainly cannot
cover all aspects of flow stability, especially for no-slip plane Couette flow which is always linearly stable.
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Nevertheless, as reported in Ref. [23], the linear instability incurred by this anisotropic slip effect opens
a new route to turbulence when velocity-perturbation level is low, especially when the non-modal growth
of small perturbations is not sufficient for triggering the transition. If the slip could also destabilize plane
Couette flow also, there will be an alternative route to turbulence as well. Besides, the destabilizing effect
of the slip could be utilized to enhance transport and mixing processes in flows. The major point of this
work is to first clarify whether this anisotropic effect has a general destabilizing effect on shear flows,
disregarding the properties of the basic flow.

2 Methods
2.1 The physical model and linearized equations
We consider the nondimensional incompressible Navier-Stokes equations for a plane Couette flow in Car-
tisian coordinates (x, y, z), where u = (u, v, w) denotes the velocity and p denotes the pressure. The flow
is driven by the walls moving in opposite directions at speeds Uw and −Uw, respectively. Velocities are
normalized by Uw, length by half gap width h and time by h/Uw, and the Reynolds number Re = Uwh/ν
where ν is the kinematic viscosity of the fluid. The origin of the y-axis is placed at the centreplane.

In the following, we denote the fully developed base flow as

U = U(y)ex +W (y)ez, (3)

where ex and ez are the unit vectors in the streamwise and spanwise directions, respectively. The governing
equations for U and W are

d2U

dy2 = 0,
d2W

dy2 = 0. (4)

Subject to the slip boundary condition (1), the base flow in case of a single SH wall, say the bottom wall,
reads

U(y) =
kλ2 + 2λ(k sin2 θ + cos2 θ)

kλ2 + 2(k + 1)λ+ 4
(1− y) + y, (5)

W (y) =
2(1− k)λ sin θ cos θ
kλ2 + 2(k + 1)λ+ 4

(1− y), (6)

where λ := λ∥ and k = λ⊥/λ∥ is the slip length ratio. If both walls are slippery and assuming the same
slip parameters on the two walls, the base flow reads

U(y) =

(
1− kλ2 + λ cos2 θ + kλ sin2 θ

(kλ+ 1)(λ+ 1)

)
y, (7)

W (y) =
(1− k)λ sin θ cos θ
(kλ+ 1)(λ+ 1)

y. (8)

In either case, both the U and W components of the base flow are linear with respect to y and the
wall-normal component of the base flow is V = 0 considering the impermeability condition at the walls.

Introducing small disturbances u = (u, v, w) and linearizing the Navier-Stokes equations about the
base flow, we obtain the governing equation for u as the following,

∂u

∂t
+ u ·∇U +U ·∇u = −∇p+

1

Re
∇2u, ∇ · u = 0 (9)

with the condition Eqs. (1) and impermeability condition for u. In the following, we introduce primitive
variable formulation for the eigenvalue analysis. Alternatives such as velocity-vorticity formulation and
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time-stepping the Navier-Stokes equations can also be used [24]. A disturbance is expressed in terms of
Fourier modes along the wall-parallel directions,

q(x, y, z, t) = q̂(y)ei(αx+βz−ωt) + c.c., (10)

where α and β are the streamwise and spanwise wavenumbers, respectively, q̂ is the Fourier coefficient,
and c.c. denotes the complex conjugate. The complex angular frequency is denoted as ω = ωr + iωi

(subscript i denotes the imaginary part, and subscript r denotes the real part) and ωi > 0 indicates a
linear instability. Plugging into Eqs. (9), we get

−iωBq̂ = Lq̂. (11)

This is an generalized eigenvalue problem, where

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , L =


A −∂U

∂y 0 −iα

0 A 0 − ∂
∂y

0 −∂W
∂y A −iβ

iα ∂
∂y iβ 0

 , q̂ =


û
v̂
ŵ
p̂

 , (12)

A =
1

Re
(
∂2

∂y2
− α2 − β2)− iαU − iβW. (13)

We use a Chebyshev-collocation discretization in the wall-normal direction [40]. This formulation has been
validated against velocity-vorticity formulation and time-stepping the linearized Navier-Stokes equations
for channel flow, and the readers are referred to Ref. [24] for details about the validation and numerical
methods.

3 Results
First, we make a note on the selection of the value of the slip length λ in this study. As discussed in
the introduction, we choose the groove periodicity to channel gap width ratio L/H = O(0.01) so that
the homogenization of the wall surface and the local stability analysis apply [31, 32]. The slip length λ
has been estimated to be up to 0.02 ∼ 0.03 with the groove periodicity L = 0.02 ∼ 0.025 and the gas
fraction up to δ = 0.9 [23, 31]. Larger λ is possible in principle if δ is larger, and λ could even approach
infinity in theory if δ → 1 and the liquid protrudes into the grooves [41]. However, it may be difficult
to achieve and maintain very large δ in experiments, and λ = O(0.01) or smaller should be considered
realistic. Nevertheless, in this paper, λ is taken up to around 0.1 mainly for illustrative purposes (e.g. to
show the trend) and to compare with the results for channel flow in some studies where λ is taken up to
above 0.1 [18, 19, 24, 27].

3.1 Effects of the anisotropic slip on the eigenvalues
We show the effect of the slip on the distribution of ωi in the α− β plane, and only the one-SH-wall case
will be considered for this study. In the no-slip case, the distribution of ωi is symmetric about either the
α = 0 or β = 0 axis, see figure 2(a), therefore, only a single quadrant, say the first quadrant, needs to
be considered for the linear stability analysis. The flow is stable at arbitrary Re and the (α, β) = (0, 0)
mode is the least stable mode. On the contrary, in the slip case, it can be seen from figure 2(b,c) that the
distribution is not symmetric about either axis anymore, therefore, a half plane needs to be considered
for the stability analysis. The instability appears in a region with small α and relatively large |β|. As the
slip length increases, the unstable region enlarges and ωi increases as well. Therefore, it can be concluded
that the slip has a destabilizing effect to the flow. Similar observations have been reported for channel
flow [23]. However, in channel flow, there would be an unstable TS-mode region that is least stable or
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Figure 2: The distribution of ωi in the α− β plane for Re = 5000, θ = π/4, and λ = 0 (a), 0.03 (b), and
0.1 (c). The bold curves are the contour lines of ωi = 0 and enclose the linearly unstable regions. Only
the bottom wall is superhydrophobic.

most unstable when the slip length is sufficiently small, whereas such a region is absent in plane Couette
flow.

Figure 3 shows the effect of the slip on the eigenspectrum of 1D, 2D and 3D perturbation modes.
The 1D mode (α, β) = (0, 0) is the least stable mode in the no-slip case, and figure 3(a) shows its
eigenspectrum. The observation is that the eigenvalues of this mode stay purely imaginary as λ increases,
and they all move toward 0 but stay negative. In other words, such perturbations will become less stable
under the slip but stay linearly stable. No qualitative changes in the stability property are observed.
Figure 3(b, c) show the eigenspectra of 2D modes (α, β) = (0, 3) and (α, β) = (0.1, 0), respectively.
For the streamwise-independent mode (α, β) = (0, 3), the slip significantly changes the eigenspectrum.
Besides destabilizing the leading eigenmode, the slip greatly changes the phase speed of the eigenmodes.
In the no-slip case, the eigenvalues are imaginary and have zero streamwise and spanwise phase speeds.
As λ increases, the real part of the eigenvalues becomes non-zero, i.e. the eigenmodes develop non-zero
spanwise phase speeds, and the phase speeds appear to increase as λ increases. This can be expected
because the slip induces a spanwise base-flow component, which increases as λ increases and will have an
advective effect on the eigenmodes in the spanwise direction. On the contrary, the spanwise-independent
mode (α, β) = (0.1, 0) only undergoes a slight quantitative change under the slip, see figure 3(c). Most
eigenmodes are slightly destabilized by the slip, including the leading eigenmode, but there are ones that
are stabilized, see the inset in panel (c). Although most of the eigenmodes become less stable, they all
stay linearly stable even when λ is as large as 0.1. That β = 0 modes all stay linearly stable as λ increases
can also be seen in figure 2. The spanwise phase speed of mode (α, β) = (0.1, 0) necessarily stays zero
and the streamwise phase speed only increases very slightly under the slip. This is also expected because
the advection by the W component of the base flow will not have an influence on the spanwise phase
speed for spanwise independent flow structures, because a shift in the spanwise direction will not induce
any phase change. The left part of the Y-shape spectrum, which corresponds to the wall modes near the
bottom wall, is more affected than the right part of the spectrum, which corresponds to wall modes near
the top wall.

The eigenspectrum of the 3-D mode (α, β) = (0.1,−3) also undergoes qualitative changes as λ in-
creases, similar to the 2D mode (α, β) = (0, 3). Figure 3(d) shows that the eigenvalues of the no-slip case
are all located below ωi = 0 and symmetrically about ωr = 0. Whereas, the eigenvalues move to the left
and the left branch of the Y-shape spectrum is separated into two branches. The streamwise phase speed
|ωr/α| can even be larger than the wall speed, which is attributed to the convective effect of the spanwise
base-flow component and the smallness of arctan |α/β| of the eigenmodes, see the illustration in figure
4(a). Similar phenomenon for small-α modes was reported for channel flow [18]. Besides, the centremodes
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Figure 3: (a-f) The eigenspectrum of modes (α, β) = (0, 0), (α, β) = (0, 3), (α, β) = (0.1, 0), (α, β) =
(0.1, − 3), (α, β) = (1.0, − 3), and (α, β) = (1.0, − 30) for Re = 5000, θ = π/4 and k = 0.5. The inset
in panel (a) shows the zoom-in view of the least stable eigenmode. Only the bottom wall is slippery.
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Figure 4: Illustration of the effect of W on the streamwise phase speed of the eigenmodes with α > 0
and β < 0. Bottom wall is slippery, near which W is positive (see the vertical arrow) and U is negative
(the horizontal arrow). Although W is small, a spanwise advection of the waves (from the thin black
line to the red bold line) can cause a large shift in the streamwise direction (from A to A′) if arctan |αβ |
is small (a), therefore, the spanwise advection could add on the streamwise advection by U , resulting
in a streamwise phase speed larger than the wall speed. On the contrary, if arctan |αβ | is large (b), the
spanwise advection will have a much weaker effect on the streamwise phase speed and the advection of U
will dominate.

also develop a non-zero phase speed because the slip on the bottom wall results in an asymmetry about
y and a spanwise component in the base flow. The ωi of the leading eigenmode changes from negative
to positive, indicating the appearance of linear instability as λ becomes sufficiently large. The 3D mode
(α, β) = (1.0,−3.0), which is outside of the linearly unstable region and has a relatively large arctan |α/β|,
is only slightly affected, see figure 3(e) and 4(b). However, although the mode (α, β) = (1.0,−30.0) is
also outside the linearly unstable region, the spectrum also undergoes significant changes in ωr (see figure
3f), indicating significant changes in the streamwise phase speed, which can also be attributed to the
smallness of arctan |α/β| and the non-zero W , see the illustration in figure 4(b).

In summary, the slip mainly affects the eigenspectrum in two aspects. First, the slip can destabilize
the modes with small α and relatively large |β|, including the streamwise independent modes. Second,
the slip affects the phase speed of the modes with small arctan |αβ | significantly, no matter the mode is
inside the unstable region or not. The streamwise phase speed may either be larger than the wall speed
or change its sign due to the smallness of arctan |αβ | and the spanwise advection by W . The slip only has
a slight effect on the spanwise-independent modes and the modes with large arctan |α/β|.

In the following, we will focus on the critical Reynolds number Recr, at which the instability first
appears, and its dependence on the slip parameters.

3.2 The neutral curves
For fixed slip parameters, it takes scanning the three dimensional parameter space (Re, α, β) to obtain
the neutral surface, at which the growth rate ωi = 0. This will be very expensive. Here, we choose to fix
either α or β to compute the neutral curve in the Re-α plane or Re-β plane, and show the changes as the
slip parameters change.

In figure 5, it can be seen that, as λ increases, the neutral curve moves towards smaller Re in all the
cases, which indicates that a larger slip length destabilizes the flow more, as also shown in figure 2. For
fixed β = −1 (panel a, c), instability is confined in the small-α regime even at high Reynolds numbers, see
the turning down of the upper branch of the neutral curves for λ = 0.03 and 0.05 as Re increases, and the
λ = 0.01 curve is likely of the same trend also, just the turning should happen at higher Re. Comparing
θ = π/4 and θ = π/8, the former shows instability at lower Re and in a wider α region, indicating that
the former destabilizes the flow more than the latter. This is consistent with former studies for channel
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Figure 5: Neutral curves for fixed α or β, and their dependence on the slip length λ and the misalignment
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one SH wall, =0.03

one SH wall, =0.155

two SH walls, =0.03

two SH walls, =0.155

(a) (b)

Figure 6: (a) The dependence of Recr on the misalignment angle θ for λ = 0.03 and 0.155. (b) The
critical wavenumber as a function of θ. The value of α is very small, being O(10−3) or smaller, and β is
close to unity. The critical wavenumbers for the two slip lengths are close, and only those for λ = 0.155
are plotted to avoid crowding.

flow which reported that θ = π/4 is close to the optimal angle [18, 23, 24]. In fact, later sections will
show that θ = π/4 is nearly optimal for destabilizing the plane Couette flow also.

For fixed α = 0, the unstable β region keeps broadening as Re increases. The upper branch shows a
β ∝ 1

Re scaling for all the λ values considered. The lower branch is in a regime with |β| ≫ 1, and the
magnitude of β keeps increasing as Re increases and no sign of saturation is observed in the Re range we
considered. But it should be noted that, results with very large β may be only illustrative for showing the
trend, because the spanwise wavelength of the unstable wave, 2π/|β|, will be very small and may become
comparable with the widths of the microgrooves, which will make the homogenization of the slip effect
invalid.

Another noticeable point is that, in each case, the noses of the neutral curves, i.e. the lowest Re for
instability, appear at a nearly constant α (close to 0) or β (close to −1) for different λ values. This will
be revisited in the following sections when the critical Reynolds number is investigated.

3.3 The critical Reynolds number Recr

3.3.1 Dependence on the misalignment angle θ

First, we show the dependence of Recr on the misalignment angle θ. It has been shown that the angle that
has the strongest destabilizing effect is close to (slightly larger than) π/4 for channel flow [24], and the
larger the λ, the larger the deviation from π/4. Figure 6(a) shows the dependence of the critical Reynolds
number on θ for plane Couette flow. Both the one-SH-wall case and two-SH-walls case are shown. It can
be seen that, for either case, Recr reaches its minimum approximately at π/4, even at large slip length
of λ = 0.155. Different from channel flow where the Recr curve shows noticeable asymmetry about the
most destabilizing θ, here, the Recr curve is nearly symmetric about θ = π/4. This observation indicates
that plane Couette flow is less sensitive to the slip-length ratio k = 0.5 than channel flow. In comparison,
the two-SH-walls case always has a lower Recr than the one-SH-wall case for all θ values investigated. In
channel flow, the two-SH-walls case gives a lower Recr also for most θ values except for the close vicinity
of θ = 0 where the one-SH-wall case may give a lower Recr [24]. This complexity for channel flow near
θ = 0 is attributed to the existence of the TS instability. Ref. [24] reported the following. At θ = 0,
compared to the two-SH-walls case, the TS mode is less stabilized by the slip in the one-SH-wall case
because the other wall is no-slip and the TS mode is expected to be nearly unaffected near the no-slip
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Figure 7: Eigenfunctions for large and small θ values at the critical Reynolds number. (a, b) One-SH-wall
at θ = π/4 and π/64, respectively. (c, d) Two-SH-walls at θ = π/4 and π/64, respectively. Because u
component is much larger than the other two, it is scaled properly for a better visualization, and v and
w components are normalized by the maximum of their respective u component, i.e. maxy |û|. Other
parameters are λ = 0.03 and k = 0.5 for all the cases.

wall. Whereas, the TS mode is greatly stabilized by the slip in the two-SH-walls case, resulting in a much
higher Recr than the one-SH-wall case. As said above, there is no such TS instability in plane Couette
flow so that there is no such complexity in plane Couette flow near θ = 0.

Figure 6(b) shows the critical wavenumbers as θ changes. It can be seen that both α and β are nearly
constant at the criticality. It is noted that α is very small, at O(10−3) or even smaller, i.e. the leading
eigenmodes are of structures that are nearly streamwise independent. This characteristic is similar to the
unstable modes in slippery channel flow, termed as crossflow vortices in Ref. [23], and in the cross-flow
instability of 3D boundary layer flow [34, 35]. The spanwise wavenumber β stays close to −1 for all
θ values. Therefore, the flow structures are likely similar at different θ values, just as the similarities
between the eigenfunctions indicate in figure 7 for θ = π/64 and π/4. This point is different from channel
flow, for which it was shown that the critical α and β at small θ values both undergo complex changes
[24], indicating changes in the flow structures. This is also attributed to the switch between TS mode
and superhydrophobic mode in channel flow in the small-θ regime.

Figure 8 shows the flow structure of the leading eigenmode at the critical Reynolds number for θ = π/4
and λ = 0.03. In both cases, the flow structures nearly fill the whole gap between the two walls. The
flow structure in the one-SH-wall case is slightly skewed toward the bottom wall (see figure 7(a,b) also).
Both structures exhibit vortices and alternating high-speed and low-speed regions along the streamwise
direction, and the two are highly similar to each other except for in the region close to the top wall, just
as indicated by the similar eigenfunctions shown in figure 7.

Figure 9 shows Recr and the critical wavenumber in the small-θ regime. The results suggest a Recr ∝
θ−1 scaling for both the one-SH-wall and two-SH-walls cases. This gives Recr → ∞ as θ → 0. However,
it should be noted that we have only explored Re up to O(106) and θ down to O(10−5), therefore, we
cannot claim that this scaling still holds at higher Re or smaller θ. Nevertheless, if this scaling would
indeed hold, it would suggest that any arbitrarily non-vanishing θ is sufficient to cause superhydrophobic
instability, for both λ = 0.03 and λ = 0.155. The same scaling is also found in our data as θ → π/2,
i.e. Recr ∝ (π/2− θ)−1 (not shown). These results also indicate that, without the misalignment, the
slip-length ratio of k = 0.5 alone is not sufficient to destabilize the flow. Figure 9(b) shows that the
critical wavenumber αcr ∝ θ in the small-θ regime. Given that Recr ∝ θ−1, we get Recrαcr ≈ const.. The
critical β is nearly constant for both slip cases, which is about −1.1 for the one-SH-wall case and −1.01
for the two-SH-walls case.
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Figure 8: The flow structure of the leading eigenmode at the critical Reynolds number for θ = π/4
and λ = 0.03. The color shows the streamwise velocity and the arrows show the velocity in the z − y
crosssection. (a) One SH wall at Re = 2165, α = 0.004 and β = −1.17. (b) Two SH walls at Re = 1223,
α = 0.004 and β = −1.07.
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Figure 9: (a) The relationship between Recr and θ at small θ values. The dashed line is to show the
∝ θ−1 scaling. (b) The scaling of the critical α with θ. The dashed line is to show the ∝ θ scaling. The
critical β is not shown, which is nearly constant of βcr ≈ −1.1 for the one-SH-wall case and −1.01 for the
two-SH-walls case with λ = 0.155, and −1.17 and −1.09, respectively, with λ = 0.03.
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the λ−1 scaling. (c) The critical α in the small-λ regime. The dashed line shows the ∝ λ scaling. The
critical β is nearly constant and not shown here, which is −1.18 in the one-SH-wall case and −1.1 in the
two-SH-wall case.

3.3.2 Dependence on the slip length λ

Next, considering that θ = π/4 nearly gives the lowest Recr, in the following, we fix θ = π/4 and investigate
the dependence of Recr on the slip length λ, see figure 10. The overall trend is that Recr decreases as λ
increases, and the decrease is sharp when λ is small and slow when λ becomes large. The Recr can be
reduced to a few hundred when λ is O(10−1). In the whole λ range investigated, the two-SH-walls case
always gives a lower Recr than the one-SH-wall case does.

In the small-λ regime, we find a Recr ∝ λ−1 scaling, see figure 9(b). This trend gives Recr → ∞ as
λ → 0, which is consistent with the fact that the no-slip plane Couette flow is linearly stable at arbitrary
Re. It can be seen that the relationship deviates from this scaling above λ ≃ 0.01. An implication of
this λ−1 scaling is that, surprisingly, any arbitrarily small slip length can make the flow linearly unstable,
at least for θ = π/4 and k = 0.5. Figure 9(c) shows the scaling of the critical streamwise wavenumber,
which is nearly ∝ λ, which indicates that Recrαcr ≈ const., whereas the critical spanwise wavenumber
stays nearly constant, being −1.18 in the one-SH-wall case and −1.1 in the two-SH-wall case.

In the following, we discuss about the scaling of Recr in the small-parameter regime. We take the
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θ λ k Recr α β
π
4 0.00125 0.5 28046 0.00021 -1.103
π
4 0.01 0.936403 28017 0.00020 -1.086
π
4 0.05 0.986254 28583 0.00013 -1.039
π
4 0.1 0.992457 30012 0.00006 -0.991
π
64 0.01 0.354904 28231 0.00019 -1.105
π
64 0.05 0.860594 28685 0.00013 -1.047
π
64 0.1 0.923525 30050 0.000059 -0.999

Table 1: Different slip parameters (θ, λ, k) that give identical W = 3.12× 10−4y and the corresponding
Recr. The data is from the two-SH-wall case.

10
-4

10
-3

10
-2

10
3

10
4

10
5

Figure 11: (a) The dependence of Recr on the prefactor A in W . The data from figure 9 are plotted as
open symbols, data from figure 10(b) are plotted as filled symbols, and data from table 1 are plotted as
pentagrams.

two-SH-walls case for an example. It is noticed that, for fixed slip length λ, k (excluding k = 1) and y, in
the limit of θ → 0, we have

W (y) =
(1− k)λ sin θ cos θ
(kλ+ 1)(λ+ 1)

y ∼ sin 2θ ∼ θ. (14)

Similarly, for fixed k (excluding k = 1), θ and y, in the limit of λ → 0, we have

W (y) =
(1− k)λ sin θ cos θ
(kλ+ 1)(λ+ 1)

y ∼ λ. (15)

Based on these observations, if denoting the prefactor in the expression of W (y) as A, i.e. denoting
W (y) = Ay, then the above two relationships seem to suggest that

Recr ∝ A−1 (16)

in the limit of A → 0, which can be realized by either θ → 0 or λ → 0. The nonvanishing W is a result
of the anisotropy of the slip combined with the misalignment of the microgrooves with the wall motion,
and to some extent, W or the prefactor A can be considered as the ‘strength’ of the overall slip effect.
Then this implies an inverse relationship between Recr and the ‘strength’ of the slip effect, and that an
arbitrarily small slip effect can lead to linear instability.

To verify the relationship (16), we calculate Recr at different slip parameters that give identical
A. Table 1 shows the parameters (θ, λ, k) we have considered, which give A = 3.12 × 10−4, and the
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Figure 12: The dependence of Recr on the slip length ratio k. The slip length is fixed at λ = 0.03 for
all ratios. (a) One SH wall. (b) Two SH walls. The lowest Recr achieved (approximately at θ = π/4) is
plotted against k in panel (c).

corresponding Recr, critical wavenumbers α and β. The parameters are arbitrarily selected, including
both large values and small values, but the Recr’s turn out to be very close to each other. This seems to
support our argument that Recr is approximately determined by the prefactor A when A is sufficiently
small. To show the dependence of Recr on A, we collect data from figure 9(a) , figure 10(b) and table 1
and plot them together in figure 11. It can be seen that each data set supports the Recr ∝ A−1 scaling,
and furthermore, all data sets are quite close to each other, although a complete collapse is not obtained.
This suggests that Recr indeed can be approximately determined by A in the small-parameter regime,
disregarding the specific parameter setting.

3.3.3 Dependence on the slip length ratio k

Third, we investigate the influence of the anisotropy, quantified by the slip length ratio k, on the critical
Reynolds number. So far, only k = 0.5 is studied systematically. This ratio is suggested by a few
theoretical modelings by assuming flat and rigid gas-liquid interfaces with free-slip boundary condition on
the interfaces [28, 29, 42]. Nevertheless, some studies suggested that this ratio can be smaller if the fluid
is allowed to partially intrude into the grooves, which can significantly reduce the effective transverse slip
length of the microgrooves so that reduce the ratio [43]. We consider smaller ratios of k = 0.3, 0.1 and 0,
and compare them with k = 0.5, see figure 12. The results show that as k decreases, Recr monotonically
decrease in all the cases investigated. The lowest Recr at θ = π/4 can be reduced to approximately 200
in the two-SH-walls case with k = 0. This trend suggests that Recr can be reduced further if k can be
reduced further, but smaller ratios may not be realized easily in experiments. It is noticed that Recr only
reduces slightly from k = 0.1 to 0. This dependence on the ratio k is similar to channel flow [24]. The
difference is that, here, even at the limiting case of k = 0, the Recr curve is still nearly symmetric about
θ = π/4, whereas there is significant asymmetry and the θ giving the minimum Recr is significantly larger
than θ = π/4 in channel flow. Again, this further indicates a less sensitivity on the slip anisotropy for
plane Couette flow.

3.3.4 Influence of the parallelism of microgrooves on the two walls

Following Ref. [24], here we also investigate the stability of the flow with different misalignment angles
θ on the two walls. We do not intend to systematically calculate Recr as we did above, instead, starting
from the minRecr = 1223 at θ = 45◦ with λ = 0.03 and k = 0.5, we change θ on the bottom wall and
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on the top wall and −45◦ on the bottom wall. (b) The maximum growth rate maxωi as the bottom θ
changes. The top θ is fixed at 45◦, and other parameters are Re = 1223, λ = 0.03 and k = 0.5.

calculate the largest growth rate maxωi while fixing θ = 45◦ on the top wall. Figure 13(a) shows the base
flow of the special case of θ = 45◦ on the top wall and −45◦ on the bottom wall. It can be seen that, in
this special case, the spanwise base flow W is independent of y, and U is identical to the case with equal
θ on both walls. Figure 13(b) shows maxωi as the bottom θ changes around 45◦. Clearly, maxωi reaches
the maximum when θ = 45◦ on the bottom wall, which indicates that the case with equal θ on the two
walls is more unstable or less stable than the case with different θ’s. Particularly, the maxωi of the case
shown in panel (a) is −0.0017, i.e. when θ = −45◦ on the bottom wall, which is much lower than the
maxωi of those θ values close to 45◦ shown in panel (b). Therefore, if instability is favored in the flow,
the microgrooves on the two walls should be parallel to each other because differing θ’s would result in a
lower growth rate (i.e. higher stability). This conclusion is similar to the channel-flow case [24].

3.4 Energy budget analysis
Energy budget analysis was shown to be able to reveal the destabilizing mechanism in parallel shear flows
of both miscible and immiscible fluids that involve viscosity stratification or interfaces [16, 17, 44, 45].
In order to further analyze the instability of the flow in concern, we also performed an energy budget
analysis. The energy budget equation reads

Ė :=
∂

∂t

∫
V
u2dV = P − ϵ+Π, (17)

where P , ϵ and Π are defined as

P = −
∫
V

[
uv

dU
dy + wv

dW
dy

]
dV, (18)

ϵ =
1

Re

∫
V

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2
]

dV, (19)

Π =
1

Re

∫ 2π/α

0

∫ 2π/β

0
[u(x, 1, z)

∂u(x, 1, z)

∂y
− u(x,−1, z)

∂u(x,−1, z)

∂y

+w(x, 1, z)
∂w(x, 1, z)

∂y
− w(x, 1, z)

∂w(x, 1, z)

∂y
]dxdz. (20)
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λ α β Ė PU PW ϵ Π

0 0.0046 −1.1 −0.0055 0 0 0.0055 0
0.02 0.0046 −1.1 −0.0033 0.0022 −2.6842× 10−9 0.0054 −9.4011× 10−5

0.04 0.0046 −1.1 −0.0012 0.0044 6.4487× 10−8 0.0055 −1.6745× 10−4

0.06 0.0046 −1.1 3.2261× 10−4 0.0063 1.2992× 10−7 0.0058 −2.2825× 10−4

0.08 0.0046 −1.1 0.0012 0.0078 −3.6691× 10−8 0.0063 −2.8363× 10−4

Table 2: Energy budget of the leading eigenmode for a few parameters across the stability boundary.
The Reynolds number Re = 700, θ = π/4, and wavenumbers are fixed while λ is increased such that the
flow changes from being stable to unstable. The kinetic energy production due to the streamwise base
flow U , PU = −

∫
V uv dU

dy dV , and due to the spanwise base flow W , PW = −
∫
V wv dW

dy dV , are calculated
separately. All terms are normalized by the kinetic energy E.

Re α β Ė PU PW ϵ Π

300 0.004 −1 −0.0034 0.0080 1.6361× 10−6 0.0105 −8.4128× 10−4

400 0.004 −1 −4.9081× 10−4 0.0085 1.2405× 10−7 0.0084 −6.0612× 10−4

500 0.004 −1 9.4153× 10−4 0.0087 7.7030× 10−7 0.0072 −4.7115× 10−4

600 0.004 −1 0.0016 0.0086 2.8530× 10−7 0.0066 −3.8662× 10−4

Table 3: Energy budget of the leading eigenmode for a few parameters across the stability boundary.
λ = 0.1, θ = π/4, and wavenumbers are fixed while Re is increased such that the flow changes from being
stable to unstable. The definitions of all terms are the same as those in table 2.

As usual, P measures the extraction rate of kinetic energy by disturbances from the base flow, ϵ measures
the viscous dissipation rate. Different from the no-slip case, an extra contribution to the energy production
rate by the spanwise base flow W appears in P (see equation (18)), and an extra term Π appears which
measures the contribution of the nonvanishing slip velocities the wall boundary (see equation (20)).

The results are shown in table 2 and 3. It can be seen that the production of kinetic energy is mainly
attributed to the part PU . The production due to the spanwise velocity PW is orders of magnitude smaller
than PU . This is because W is much smaller than U and the spanwise perturbation w is also much smaller
than the streamwise perturbation u, as shown in figure 7. Therefore, PW cannot be responsible for the
destabilization, and in other words, the cross-flow component of the spanwise base flow W does not
directly contribute to the observed instability. The contribution from the slip velocity Π is much larger
than PW , but still significantly smaller than PU . Besides, for all the parameters considered, Π is negative,
which suggests that the velocity slip on the walls does not directly destabilize the flow either but plays a
stabilizing role. When Re, α and β are fixed while λ is increased (see table 2), the energy dissipation only
changes slightly, whereas the production PU increases significantly until it outweighs dissipation so that
the flow becomes unstable. When λ, α and β are fixed while Re is increased (see table 3), the production
PU changes little, whereas the dissipation decreases significantly until being outweighed by PU so that
the flow becomes unstable.

4 Conclusion
We studied the linear stability of plane Couette flow subject to an anisotropic slip boundary condition
which models the effective slip effects of microgrooves that can have a misalignment about the direction
of wall motion. We focused on the effects of the slip on the eigenspectrum and on the critical Reynolds
number at which linear instability first appears.

The slip can significantly affect the growth rate and phase speed of the modes with small α and large
|β|, including the α = 0 modes, and render the flow linearly unstable. The slip can also significantly affect
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the streamwise phase speed of the modes with small arctan |αβ | that are not destabilized by the slip. We
have illustrated that the significant change in the streamwise phase speed is due to the spanwise base-flow
induced by the slip and the smallness of arctan |αβ |. The eigenmodes with large arctan |αβ | and with β = 0
are not significantly affected by the slip in either growth rate or streamwise phase speed.

The critical Reynolds number Recr is very sensitive to the misalignment and the angle π/4 nearly
results in the lowest Recr. In all parameter ranges investigated, the unstable mode at the critical Reynolds
number is nearly streamwise-independent given αcr ≪ 1, and the two-SH-wall setting always gives a lower
Recr than the one-SH-wall setting. By fixing other parameters, Recr monotonically decreases as the slip
length λ increases. Unlike channel flow, because of the absence of TS instability in plane Couette flow,
there is no complexity due to the competition between the TS and superhydrophobic instabilities at small
values of θ and λ. This allows us to study the scaling laws at small parameters, and the results show
Recr ∝ θ−1 and Recr ∝ λ−1. These scaling laws suggest that instability can be induced by arbitrary
non-vanishing misalignment and slip length. Besides, our data show that αcr ∝ θ and αcr ∝ λ in the
small parameter regime, indicating Recrαcr ≈ const., whereas βcr is nearly constant and close to −1.
We further identified an inverse relationship between Recr and the prefactor in the expression of W (y)
(involving θ, λ and k), which we proposed as a compound measure of the strength of the slip effect.
Similar to the channel flow, a larger slip length ratio k, which means stronger anisotropy in the slip effect,
can result in a lower critical Reynolds number. The lowest Recr obtained is O(102) when the slip length
is increased to O(0.1). For the two-SH-walls case, the flow is most unstable or least stable when the
misalignment angles on the two walls are equal.

The energy budget analysis indicates that, aside from the production and dissipation terms as in
the no-slip case, contributions from the spanwise base flow and nonvanishing slip velocities on the wall
appear. However, the contribution from the spanwise base flow is very small and negligible, whereas the
slip velocities at the wall tend to stabilize the flow for the parameters we investigated. At least from the
point of view of the energy budget, both the spanwise base flow component and the slip velocities at the
wall do not directly contribute to the instability. Therefore, it can be inferred that the slip must affect
the stability by affecting the production and dissipation in the bulk flow.

Although there are differences between plane Couette flow and channel flow due to the distinct base
flows and stability properties in the no-slip case, our results show a high similarity of the slip effects
on the superhydrophobic stability as well as in the flow structures of the unstable modes. Therefore, it
can be inferred that this anisotropic slip boundary condition has a general destabilizing effects on wall-
bounded shear flows and can cause linear instability at low Reynolds numbers. This destabilizing effect
can be utilized to induce instability and asymmetry for flow controls, which may be useful for mixing-rate
enhancement in low-Reynolds-number flows and flow-based particle sorting.
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