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Abstract

Imbalanced data distributions are prevalent in real-world classification and
regression tasks. Data augmentation is a commonly employed technique to
mitigate this issue, with implicit methods gaining attention for their effec-
tiveness and efficiency. However, implicit data augmentation methods have
not been extensively explored in the context of regression tasks. To address
this gap, we introduce IRDA, a novel learning method for regression that
incorporates implicit data augmentation. Our approach includes developing
a new augmentation strategy specifically tailored for deep imbalanced regres-
sion tasks, and a regression loss function that is suitable for real-world data
with imbalanced label distributions and non-uniformly distributed features.
We derive an easily computable surrogate loss and propose two implicit data
augmentation algorithms, one incorporating meta-learning and one without.
Additionally, we provide a regularization perspective to offer a deeper under-
standing of IRDA. We evaluate IRDA on five datasets, including a large-scale
dataset, demonstrating its effectiveness in mitigating the adverse effects of
imbalanced data distribution and its adaptability to various regression tasks.
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1. Introduction

Imbalanced data distribution is a common challenge in real-world machine
learning applications, adversely affecting model generalizability [1]. This
issue has recently garnered significant attention in deep regression tasks, as
most real-world datasets used for deep regression are affected by imbalance.
Several techniques have been proposed to address this issue.

In classification tasks, the issue of data imbalance has been extensively
discussed and investigated. Various solutions have been proposed, including
re-sampling [2], re-weighting [3], adjusting the loss function [4, 5], modifying
the network [6, 7], and data augmentation [8, 9]. In this work, we specifically
focus on data augmentation methods. Explicit data augmentation techniques
are widely used to generate new samples for underrepresented or tail labels,
i.e., targets with fewer observations, through methods such as cropping, ro-
tation, and generative adversarial networks. The word “explicit” indicates
that the samples are actually generated. Methods such as BalanceMix [9] and
LeGAN [8] have been investigated to expand the dataset size, particularly for
tail labels. A recent notable work by Ren et al. [10] proposes using generative
adversarial networks to augment data and address the non-identical distri-
butions between training and test sets. These explicit data augmentation
methods have demonstrated significant effectiveness in handling imbalanced
issues. However, as the number of augmented samples increases, the time
required for augmentation also grows.

Previous work [11] has noted that allowing semantic transformations,
such as changing the textures of an object, can enhance the effectiveness of
data augmentation in improving generalizability. Traditional explicit meth-
ods, which apply transformations without considering semantic directions,
are limited in their ability to improve generalizability, thereby reducing their
effectiveness. The implicit data augmentation strategy emerges as a solution
to the problem of time consumption, significantly enhancing the effective-
ness of generalizability improvement. The term “implicit” indicates that the
samples are virtually generated.

Wang et al. [12] introduced the first implicit data augmentation method
ISDA, which implicitly generates samples along semantic directions by vir-
tually sampling infinite samples from a constructed distribution. ISDA then
optimizes the upper bound of the loss for these infinite generated samples.
This method not only reduces time consumption but also proves to be more
effective in improving generalizability than explicit augmentations. The co-



variance matrix is crucial for implicit data augmentation, as it stores se-
mantic information. Recently, Li et al. [13] demonstrated that estimating a
diversified covariance matrix using training samples is a challenging task for
tail labels. To address this, Chen et al. [14] introduce semantic knowledge
of other labels to enhance the diversity of the estimated covariance matrix,
proposing a modified version of ISDA called RISDA, which has been shown
to be more effective on long-tailed distribution data. Implicit data augmenta-
tions are also widely discussed and used for data imbalance in topics such as
face recognition, active learning, and vehicle re-identification [15, 16, 17, 18],
and are recognized as essential methods for image data augmentation [19].

Data imbalance is also a common issue in regression tasks and has re-
ceived extensive attention in research over the years. To address this prob-
lem, the re-sampling strategy has been widely adopted. Torgo et al. [20]
were the first to propose an adaptive re-sampling method for imbalanced
regression called SMOTER, which over-samples instances from tail labels.
Subsequently, Branco et al. [21] proposed SMOGN, which not only over-
samples rare samples, but also adds Gaussian noise to frequent samples.
Recently, with the rise of deep learning, Yang et al. [22] introduced a pioneer-
ing concept called Deep Imbalanced Regression (DIR), specifically designed
to handle real-world tasks such as age inference and temperature predic-
tion. Compared to regression tasks in shallow learning, DIR involves larger
datasets and requires longer training times. Yang et al. proposed two loss
adjustment solutions that introduce distribution smoothing strategies into
DIR tasks. These strategies assign larger weights to tail labels and enhance
the features of tail labels using the features of neighboring labels. Ren et
al. [23] recently introduced a novel loss adjustment method, Balanced-MSE
(BMSE), to reduce the bias caused by MSE, which is especially severe in
DIR tasks.

In a recent work, Wu [24] highlighted the existence of intra-label imbal-
ance in real-world data, describing the skewed distributions of features. This
intra-label imbalance undermines the commonly adopted label-conditional
invariance assumption, which presumes that the feature distribution is uni-
form across different labels. This assumption is presumed to hold during the
inference of BMSE. Therefore, BMSE is inappropriate when the assumption
of label-conditional invariance is violated. Explicit augmentation methods,
such as RegMix [25] have been proposed to generate new samples by com-
bining original samples. Although there are existing solutions for DIR tasks,
they still have certain inadequacies. Explicit data augmentation methods



are time-consuming and inefficient. Despite the proven effectiveness and effi-

ciency of implicit data augmentation in addressing imbalanced classification,

no significant progress has been made in applying this approach to DIR tasks.
The contributions of our work are summarized as follows:

e We introduce the concept of implicit data augmentation, previously
shown to be effective in classification tasks, to the domain of deep
regression. To our knowledge, this is the first framework to apply
implicit data augmentation to enhance regression tasks.

e We provide an in-depth theoretical analysis of related works from a
regularization perspective, offering vivid geometric visualizations to
compare different methods. A comprehensive comparison between our
proposed method and several closely related methods is provided to
further enhance the understanding of our approach.

e We propose two implicit learning algorithms, IRDA and Meta-IRDA.
Our methods are compared with nine state-of-the-art techniques. Ex-
tensive experiments were conducted on five widely used benchmarks,
including one large-scale dataset, and the results demonstrate the ef-
ficacy of our approach. Additionally, in-depth ablation studies and
comprehensive sensitivity tests were performed.

2. Related Work

2.1. Imbalanced regression

Imbalanced regression has been a subject of investigation for years, though
the concept of Deep Imbalanced Regression (DIR) has been introduced only
recently, with limited related works. Various methods have been proposed
to address imbalanced regression in both deep learning and shallow learning
contexts.

Initially, data imbalance in regression was mitigated using re-sampling
strategies. Torgo et al. [20] modified the SMOTE [2] method, originally
designed for classification tasks, into a regression version called SMOTER,
which over-samples rare samples and under-samples frequent samples. How-
ever, a common shortcoming of re-sampling strategies is their limited ability
to enhance generalizability due to the insufficient semantic information con-
tained in samples from tail labels.



Table 1: Summary of the specific concepts and abbreviations.

Concepts/Abbreviations Meanings

MSE Mean squared error.

DIR Deep imbalanced regression.

LDS Label distribution smoothing.

FDS Feature distribution smoothing.

BMSE Balanced MSE.

LA Logit adjustment.

KDE Kernel distribution smoothing.

NLL Negative-log likelihood.

W-FDS Weighted-feature distribution smoothing.

CE Cross-entropy.

LCDI Label-conditional distribution invariance.

PLCDI Partition-projected label-conditional distribu-
tion invariance.

Tail label Target with significant fewer observations.

Head label Target with significant larger observations.

Explicit augmentation
Implicit augmentation
Semantics

Skewness
Compactness

Truly generating samples.

Virtually generating samples.

Information carried by features such as color,
shape, and so on.

The imbalanced ratio.

The radius of the scatter of samples.

Recently, there has been increased focus on deep regression tasks with im-
balanced distributions, primarily addressed through loss adjustment strate-
gies. For example, techniques such as Logit Adjustment (LA)[26], initially
developed for classification tasks, have been adapted into a regression con-
text by Ren et al., resulting in BMSE [23]. This modification reformulates
the commonly used MSE loss to emphasize samples from tail labels, thereby
improving the model’s ability to learn from them effectively. Furthermore,
Yang et al.[22] introduced the distribution smoothing technique into DIR
tasks, proposing two frameworks: Label Distribution Smoothing (LDS) and
Feature Distribution Smoothing (FDS). LDS is a re-weighting method that
smooths the label distribution using Kernel Density Estimation (KDE)[27]
and reversely applies the smoothed distribution as a continuous weighting
function to favor tail labels. Recognizing the similarity between neighboring
labels in regression tasks, FDS leverages this similarity to compensate for the
lack of information in tail label features. Similarly, RankSim [28] by Gong et
al. and SupCR [29] by Zha et al. adjust the loss function based on feature
similarity. Dubost et al. [30] introduced a novel regularized neural network



regressor called Hydranet, which regularizes the deep regressor according to
an estimated minimum number for each label.

Additionally, explicit data augmentation has been extensively studied in
imbalanced regression. Branco et al. proposed SMOGN [21], which builds
on SMOTER by over-sampling rare samples and generating new frequent
samples by adding Gaussian noise. Hwang et al.[25] introduced a data aug-
mentation meta-learning framework named Mixrl for regression. Stocksieker
et al.[31] developed DA-WR, combining traditional explicit data augmenta-
tions with a re-weighting strategy to enhance model performance.

2.2. Data augmentation

Data augmentation is one of the most investigated strategies in machine
learning. It includes explicit augmentation methods such as BalanceMix [9]
and LeGAN [8], as well as implicit augmentation methods like RISDA [14]
and MetaSAug [13].

Typical explicit data augmentations such as BalanceMix apply linear
combinations to generate new training samples. Ren et al.[10] proposed
generating samples using a generative adversarial network and the Gaussian
mixture model to reduce distribution differences between training and test
sets. However, explicit augmentations often face limitations in improving
generalizability as they randomly augment samples without considering se-
mantic directions, which can make the augmented samples less valuable or
even harmful to generalizability[14].

To address this, Chen et al.[32] introduced semantic transformations into
one-shot learning with TriNet, generating samples along the co-linear seman-
tic directions of a novel sample and existing training samples. Despite their
benefits, explicit data augmentations that generate samples to enlarge the
dataset are time-consuming and less efficient for deep learning.

Implicit data augmentation, on the other hand, augments towards seman-
tic directions without generating actual samples. This concept was initially
proposed by Li et al.[12] with ISDA, which extracts semantics from each label
and augments original samples towards these semantic directions. Semantic
information signifies features such as “red color”, “tail”, or “glasses”. Chen et
al.[14] recognized the potential of implicit data augmentation for imbalanced
classification and identified that an underestimation of the covariance ma-
trix could lead to inaccurate semantic directions, resulting in insufficiently
augmented samples. They proposed RISDA, which selects semantics from
both the true label and easily confused labels for augmentation directions.
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Li et al.[13] introduced MetaSAug, incorporating implicit augmentation into
meta-learning to extract the most significant semantic information for opti-
mal generalizability on validation sets.

Implicit data augmentations are also widely applied in various related
topics. Low and Teoh [15] introduced implicit data augmentations into low-
resolution face recognition tasks by training an IDEA-Net instance to aug-
ment the small-scale low-resolution face dataset implicitly in the represen-
tation space. Chen et al.[16] used ISDA in active learning with a diversity-
aware semantic transformation framework named DAST-AL, which considers
ISDA’s effect in selecting unlabeled samples. Li et al.[17] applied ISDA to
vehicle re-identification tasks, proposing bi-level implicit semantic data aug-
mentation based on identity-level and superclass-level intra-class variations
to generate more diverse semantic augmentations. Seo et al.[18] utilized im-
plicit data augmentation in hand pose estimation, introducing metric learn-
ing and hand-dependent augmentation techniques. Yang et al.[19] provided a
comprehensive survey on image data augmentations, discussing implicit data
augmentation methods.

3. Methodology

This section begins by defining the problem setting, followed by a detailed
description of the proposed method, IRDA. We then outline the two main
components of IRDA: the augmentation strategy and the proposed surrogate
loss, Rebalanced MSE. Furthermore, we provide a theoretical investigation
of methods addressing the imbalance issue from a regularization perspective.
Finally, we compare several closely related methods for addressing imbal-
anced data.

3.1. Problem Setting

Let « and y be the variable of the input and the target respectively.
Denote the training set as {(z;, v;)}Y,, where x; and y; are realizations of x
and y. In regression setting, the target y is continuous.

One of the most common methods for learning continuous targets in deep
learning is to discretize the continuous target ) into B discrete bins. Fol-
lowing the approach in related works [22], we adopt the general settings for
bin length in imbalanced regression, which represents the smallest granular-
ity of the continuous labels. For example, the continuous target ) in the
AgeDB-DIR dataset signifies human age, ranging from 0 to 101 years, with



a bin length of 1 year. Another dataset, NYUD2-DIR, contains images and
depth maps for different indoor scenes, with the continuous target ) ranging
from 0.7 to 10 meters, and a bin length of 0.1 meters. Although different
datasets follow the same binning strategy, the bin length varies according to
the specific domain and range of the targets.

Accordingly, we use the same setting of [22], where ) is divided into B
groups [Yo, Y1) s - [Ybs Y1) s --s [Ys—1,YB), and b € B = {0, ..., B—1} signifies
the the group index of the target value. The bin length is set as the smallest
granularity of each dataset. z; = f(x;,0) denotes the deep feature of x; where
f(x;,0) is parameterized by a deep neural network model with parameter 6
and y; € [yp, Yps1). The prediction g(a;) for x; is given by a regressor g(+)
that operates over z;, i.e., §(x;) = g(2;) = w' z; +wy with regressor’s weight
and bias w and wy.

The most commonly used MSE loss can be written as

Lass = 3 (0 — §(a0) . (1

As is demonstrated in [33], minimizing MSE is equivalent to maximum likeli-
hood estimation in regression with an underlying Gaussian error model [33].
Therefore, MSE loss equals to the Negative Log-Likelihood (NLL) loss of the

prediction distribution py.qin(y|x, 0), i.e.,

Lnrr = — logptmm(y|93, 9)- (2>

In the classic probabilistic interpretation [34], the prediction distribution
is considered as a noisy Gaussian distribution with the mean of ¢, i.e.,

Perain(y|T,0) = N(y;9,02,;,.) With 0,05 the scale of an i.i.d. noisy term

e~ N(0,02,.)

noise

3.2. The Proposed Method IRDA

The overall process of our proposed method, IRDA, is illustrated in Fig.1.
IRDA consists of two primary components: a specifically designed augmen-
tation strategy and a surrogate loss.

Given a long-tailed dataset used in DIR tasks, a feature subnet is em-
ployed to extract the deep feature z; of each sample (x;,y;). The extracted
features are clustered into £ clusters using k-means. Sample numbers in each
cluster are counted to obtain the posterior distribution. After extracting all
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Figure 1: Overview of our proposed IRDA scheme. Features of each sample are extracted
using a subnet. Label similarities and clustering distributions are calculated. The mean
and covariance matrix are estimated and then smoothed using the given weights. Samples
are augmented by infinitely sampling from the distribution defined by the smoothed mean
and covariance matrix. These augmented samples are fed into the proposed loss function,
Rebalanced-MSE, and an upper bound of the loss is calculated and used for optimization.



features, the mean p;, and the covariance matrix 3, of the features from the
b-th bin are estimated. Additionally, the label similarities between the true
target and other targets are estimated based on the probability of mislabel-
ing. After estimation, p, and 3, undergo a Weighted Feature Distribution
Smoothing (W-FDS) process, where the mean and covariance are influenced
by neighboring labels. The calculated label similarities are used as weights
during the W-FDS process, ensuring that neighboring labels with greater
similarity have a greater influence on the estimated mean and covariance of
the target label.

Based on the smoothed feature statistics of the b-th bin, we simulate a
Gaussian distribution of features. Assuming an infinite number of samples
are drawn from the simulated distribution, we calculate the overall loss of
infinite samples by deducing an upper bound, i.e., L..During this calcula-
tion, we assign weights to samples from each target, using the proportions
of each label inversely as weights. This inferred loss Lo is then used as the
optimization objective function of IRDA.

3.8. Augmentation Strateqy

Several implicit data augmentation methods have been proposed for clas-
sification tasks, such as ISDA and RISDA. ISDA randomly samples from
N(0, 5%,) to generate features with different semantic transformations ac-
cording to their true targets, i.e.,

i~ N(zi, %), (3)

where 3 is a positive coefficient and z; = f(x;, ) is the feature of sample
x; belonging to the category 1,. RISDA, on the other hand, enriches the
covariance matrix of the true label by introducing the covariance matrix of
similar labels, and then samples from this enriched covariance matrix.

Under the setting of regression, the statistics for features of samples be-
longing to the b-th bin [y,, ypy1), is denoted as {py, Xy}, where

1 B
szmbzlzi,

Z(zi — ) (zi — )"

b=1

(4)
3y =

1
Ny —1

are the mean and the covariance matrix of features respectively. N, is the
number of samples in the b-th bin. As stated in previous work [13], the
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statistics of features estimated using training samples are often underesti-
mated and lack diversity, especially for tail labels. Therefore, we aim to
enrich the statistics of tail labels using the following approach,

i =Y sy yy by
veB
3 (5)
B => s(un yy) Sy
v'eB
where s(yp,y, ) a function over all target bins. Motivated by RISDA, we en-
rich the statistics of tail labels using easily confused labels. Previous work [22]
also revealed that the features of tail labels can be effectively enhanced by

neighboring labels. Based on these considerations, the function s(yp,y,) is
given by the following form:

s(Yp, Yy ) = vk (Yo, Yrr )

with & (yp, ypr) a symmetric kernel and

[(yy < g(x:i) < yprs1)
Epy = Z Nb . (6)

x; s.t. y; € [yb:yb+1)

Accordingly, I(+) is an indicator function. ey is the element in the b-th
line, &’-th column of the matrix € and denotes the similarity between the b-th
bin and the &'-th bin.

This process degenerates to the FDS process when the matrix € is an
identity matrix. Accordingly, we name this process as Weighted-FDS (W-
FDS) process.

For a sample (z;,y;) from the b-th bin with z; = f(x;,0), the augmen-

tation strategy of IRDA proposes to sample along N (ajiy, %) to generate
features, i.e.,

Zi ~ N(zi + afiy, B5). (7)
Assuming the sample (x;,y;) is augmented M times, the resulting dataset
is {(zh9), -, (2™ 5), -, (2M,y:)}Y, where 2™ sampled from Z; is the

m-th augmented feature of z;.

This augmentation strategy, which perturbs the features’ distribution
along N (ajiy, %), differs from the typical Gaussian noise addition. Gaus-
sian noise lacks semantic information, while our implicit augmentation mod-
ule perturbs both the mean and variance towards specific semantic directions.
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3.4. The Inference of Surrogate Loss

As mentioned earlier, implicit data augmentation was initially proposed
for classification tasks. A crucial step in this approach estimating the upper
bound of the total loss of M augmented samples as M tends to infinity.
This estimation depends on the original choice of loss function, such as the
commonly used Cross-Entropy (CE) loss for classification tasks. However,
the CE loss cannot be directly applied to DIR and is incompatible with
regression tasks. Additionally, existing loss functions may not be well-suited
for imbalanced distributions or other real-world cases. In this regard, we
introduce a new loss function for deep regression tasks, and then derive a
surrogate loss that can be used in IRDA.

3.4.1. The introduction of Rebalanced-MSE

The MSE loss, which is widely used for regression tasks, has been found
to be insufficient for DIR tasks dealing with imbalanced distributions in real-
world datasets. It has been revealed that due to the disparate distributions
between the training set and the test set, the MSE loss leads to low general-
izability on the test set.

BMSE has recently been proposed as a surrogate loss for DIR tasks,
replacing the typical MSE loss. First, we briefly introduce the main idea
of BMSE. Considering the disparate distributions of the skewed training set
and the balanced test set,

DPtrain (y) 7A pvalid(y) . (8>

BMSE aims to estimate pyq4(y|x) accurately instead of training on p.qin (y|x)
as in Eq.(2), because pyqin(y|x) is also skewed. By Bayes’ Rule, following
relations hold,
Ptrain (?/|CB) X ptrain(m|y)pt7‘ain(y)
(9)
Poatid(Y|T) o< Puatia(T|Y)Poatia(y)
Eq. (10) infers to the following relation between skewed piyqin(y|x) and
balanced pyaua(y|x),

ptrain(y|w) o ptrain<y>
pvalid(y|w) pvalid(y>
based on the following assumption.

(10)

Assumption 1. The label-conditional distribution invariance (LCDI) holds
if
ptrain($|y) - pvalid(w|y)- (11)
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Based on Eqgs. (9) and Eq. (10), BMSE proposes to optimize the NLL
loss of pyaia(y|®, 0)Pirain(y). An implementation form of BMSE loss for the
sample (x;,y;) with the deep feature z; is given by

exp(—(yp — y(x:))?)
Zb’eB exp(—(yy — 9(x;))?)’

The aforementioned inference of BMSE holds if the LCDI assumption
is satisfied. However, beyond imbalanced distributions, additional cases,
such as the presence of clustering structures among features, have been re-
vealed [35]. In such cases, the LCDI assumption is unsatisfied. We now
present our proposed loss, namely Balanced MSE. Recent work [35] reveals
that under a clustering structure, the label-conditional distribution can be
refined as follows:

EBMSE(zi) = —10g (12)

pzly) =Y p(n(@) = kly)p(@ly, n(x) = k), (13)

k=1

where m: X — {1,2,--- , K} maps each € X to the index of the cluster it
belongs to. p(x|y,m(x)) is the label-conditional distribution projected onto
the partition containing x. Specifically, [35] states the following assumption.

Assumption 2. The partition-projected label-conditional distribution invari-
ance (PLCDI) holds if Vk € {1,2,--- | K}

ptrain(w|y’7r<w) = k) - pvalid(m|y7 77(33) = k)

When K = 1, PLCDI is equivalent to LCDI assumption. Based on this as-
sumption ensured by [35], we can further reconsider Eq. (10). Under PLCDI
assumption and the assumption that the validation set is balanced, we rewrite
Eq. (10),

ptrain(y|m) x Zlf;{:l ptrain(ﬂ—(m> - k|y>ptrain(y)

Patid(y|T) Zle Poatid(T(x) = k|y)Pvatia(y)
Accordingly, we propose a novel loss namely Rebalanced-MSE loss (ReMSE)
which optimize the NLL loss of

(14)

K
vaalid(y|m7 e)ptrmﬁn(ﬂ-(m) = k|y)ptrain (y)

k=1
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An implementation of ReMSE is given following the inference of BMSE
n [23]. The ReMSE loss of the sample (x;,y;) with the deep feature z; is
given by

fsran(=) = — 3o ep(mlln—o(z)?)
e ; ngK:IZyb/EyeXp(_nlzb,(yb’_g(zi)))2> (15)

where 1" = P(n(x;) = kly = v;). Denote Uy, (2i) = —(yy — g(z))?. By
Bayes’ Rule, p(r|y) = p(y|7)p(7)/p(y). Therefore, P(w(x;) = k|y = y») can
be obtained by estimating P(y = y,|n(x;) = k) and P(n(x;) = k) given
P(y = yp). The estimation method follows [35], which is composed by firstly
applying k-means clustering then counting samples in each cluster.

3.4.2. The deduction of surrogate loss
Thereafter, the entire loss of M augmented samples can be given,

Ly = A Zz: i Z Cremise(2]"), (16)

Considering the needs of tail labels, M must be large enough since the
effect of augmentation is limited with a small number of augmented samples.
However, as M increases, the process becomes time-consuming. An implicit
approach inspired by ISDA and RISDA is to let M — oco. The loss can be
defined as

L oo = Z ZEZZ Cremse(Zi)], (17)

beB =1

Though, Eq. (17) is still challenging to calculate. An upper bound for
Eq. (17) can be obtained using the Jensen’s inequality E[log X] < log E[X],

£M—>oo
< Z ZZlog E;, Z @ﬁzb/%b/ (Z)—niuy, (£7)

beB i=1 k=1 Yy €Y (18)
< Z Z Zlog Z E; [enk Uy, (£1) =y uy, (20)

beB i=1 k=1 Yy EY

14



Due to z; ~ N (z; + ajip, Bib) and the moment-generating function
E[etX] — et,qu%atQ’ X NN(M,O’),
we can deduce the following relation,

Yy! ~ Y ~
]Ei- enkb Uyyr (Zi)fnkzuyi (%1)
1

Yp! Vi b'i ey T i 10 By TS (19)
_ enk uyb,(zi)—nkluyi(zi)-i-rl taw ' fiy+713 " fw wa’

/. /.
where Tll) ik Y/ gzk _

= (" =) + 20 yor — niys) and 5 = (g yy — 0l y)® +
(Y — n)?/4. Finally, we can get the upper bound of the loss,

Lo= =Y 0 2o tosoun) (20)

beB i=1 k=1

Yyt /g ~ /i S Yp!
where Z% = r{™alw’ fiy, — yi| + 7§ *Bw Syw + n;" uy,, (2;) and

exp(ZY})
Oik = i : =T .
> ket Zyb,ey exp(Zi,k )

As pointed out by [14], if both head and tail labels are augmented in-
finitely, samples from the head labels will still dominate because the aug-
mentation is based on the training samples, which are predominantly from
head labels. To address this issue, a re-weighting strategy is employed to

adjust the augmentation strength, ensuring that tail labels are given more
weight during training.

1 Qan 1
Lirpa=—Y N, >N — log(ix), (21)
Yi

beB i=1 k=1

where 7,, = P(y = v;). According to Logit Adjustment (LA) [26], 7,, can be
reformed as a logit perturbation, i.e.,

Ny K K
1 /
Liroa=D 72 D los(l+ > > exp(AZy
beB 0 i=1 k=1 Yy Ayi k=1 (22)
+ri%alw i — il + 3" fw  Syw +log(my, /7)),
where AZ;’;’,; = 0wy, (2:) — Njuy,(2;). Eq. (22) provides the surrogate loss
for IRDA.
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3.5. Implementations of IRDA

Our proposed method, IRDA, includes three crucial parameters: fi,, 3,
and vy, which vary according to different labels and are predefined. Accord-
ingly, we propose two implementations of our proposed method, which are a
direct estimation approach and a meta-learning-based approach.

3.5.1. Direct estimation approach (IRDA)

A straightforward approach to determining the values of the three crucial
parameters is to directly calculate fiy, f)b and choose a value for v, based on
ablation experiments. However, the covariance matrix is anisotropic during
the initial iterations of the training process which can hinde the convergence
of test error in high-dimensional regression [36].

To address this, we propose estimating an isotropic covariance matrix to
accelerate the convergence of test error. The covariance matrix is estimated
by adjusting the 3, with the identity matrix. Precisely,

Eb = (1 — Ub>§~]b + Ub)\b]:a (23)

where ), is the largest item of 3, and I is an identity matrix of the size of
3. Inspired by [37], the parameter can be calculated as follows,

Up = Z (O\b - ‘721)2 + ZO-’?J2> ) (24)

J#

where aﬁ-” ; 1s the item of >, in the i-th line and j-th column. v, for each label
is normalized according to the whole label set. High values of v, indicate
severe correlation between features, implying high anisotropy. This adjust-
ment coincides with whitening, a commonly used approach for decorrelation
of features to avoid overfitting.

3.5.2. Meta-learning based approach (Meta-IRDA)

Inspired by previous work [13], meta-learning is also introduced to strengthen
the effectiveness of IRDA. We tend to learn crucial parameters fu, >, and
v, of each label by meta-learning using a series of label-concerning inputs,
which are as follows,

e N,: The normalized number of samples in each bin is employed to
reflect the extent of imbalance.
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Algorithm 1 IRDA

Input: Training data D% batch size n, number of iterations 7', kernel k,

a, (.

Output: Learned parameter w.
1: Initialization: Initialize w®, ™.
2: fort=1to T do

3. Sample {(x;,y;)}, from Dren;

4:  Extract features of each sample {z;} ;;

5. Calculate Nz()t) and El(f) for each label y;

6:  a®, 20 « W-FDS (“l()t)’ E(bt)7 e, k);

7. Calculate v, by Eq. (24);

8:  Formulate f,(f) by Eq. (23) using vy, A and Zy;
9:  m « Cluster(z;);

10:  Calculate L;rpa by Eq. (22) using [L(t),fl(,t), n,a, 3;
11:  Update w1 by back-propagation on L£zpa:
12:  Update €' by Eq. (6);

13: end for

e pp: As mentioned in [22], two labels containing the same number of

samples can exhibit different extents of imbalance due to the regions
they belong to. A high-density region indicates a set of neighboring
labels that are mostly head labels, whereas a low-density region indi-
cates a set of tail labels. Therefore, it is important to consider region
density, which is calculated as follows,

b+2
p = Lj\fb
b N )

where N signifies the amount of samples of the entire dataset.

e Uy, The uncertainty is a widely used characteristic of samples. There-

fore, we compute the average uncertainty of samples from each label by
calculating the average information entropy of the model predictions,
ie.,

Ny
Uy == jlx;)log ().
=1
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e L, The average loss of each label is also reported,

where £(-) signifies the ReMSE loss of sample (x;, y;).

The four characteristics listed above are extracted as inputs for the meta-
network, which is a two-layer MLP. Following MetaSAug [13] and Meta-

Weight-Net [38], we optimize three label-wise parameters fi,, 3, and v, on
metadata.

3.6. Regularization Analysis

Regularization is a common technique used in various machine learning
tasks to enhance model generalizability. Ridge regression is a typical example
of a regularization approach that mitigates overfitting by reducing the Lo
norm of a model’s parameters and diminishing the variance of its predictions.
BMSE introduces a modified MSE loss function that enables the derivation of
a regularization term. This term in BMSE works to counteract the negative
effects of imbalanced data by penalizing samples from tail labels.

The proposed IRDA approach can also be adapted into a regularization
form, similar to ISDA-R and RISDA-R. From a regularization perspective,
the rationale behind IRDA can be more clearly articulated by comparing it
to existing algorithms. The proposed surrogate loss of IRDA in Eq. (22) can
be rewritten in a regularization form using the first-order Taylor expansion.

. exp(uq1;)
For a given loss /(u) = —log ————————, we have
Zj exp(u;;)
oL\’
l(u+ Au) =~ {(u) + <8_'u,) Au.

Accordingly, for a sample (x;, y;) falling in the b-th bin, i.e., yv; € [y, Yp+1),
denote

Au; = 0 )
riPalw’ fiy, — yi| + r§? fw Syw + 55
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Table 2: Regularization terms and generalization effect of existing methods.

Methods ‘ Uncertainty ‘ Skewness ‘ Compactness ‘ Precision
Ridge Regression ‘ 1 ‘ - ‘ _ ‘ R
BMSE \ - ‘ l ‘ _ ‘ _
ISDA-R ‘ - ‘ - ‘ l ‘ R
RISDA-R ‘ - ‘ - ‘ 1 ‘ 1
IRDA ‘ 1 ‘ l ‘ ! ‘ il

as the logit and the logit perturbation successively and 0y = log(,,, ). Refor-
mulate the continuous scalar target value y; = ¥, into a one-hot vector y; =
(0,-+, 1, ,O)T where the b-th item of y; equals to 1 and others equal to 0.

Denote g; = (i, - a%,B)T and gip, = exp(1;'uy, (2:))/ Zyb,ey eXP("Zbuyb/(zi))'
Denote my, = (9, - -+ ,m7”). The b-th item of Aw; equals to 0. According to
Eq. (22), we have
Ou; + Awg) ~ w;) + (e © (g — y:)) T A
= 0(u;) + (0 qin e (Qipe — 1), W;ZB%,B,/C)T

y1ik T~ y1ik Ty
r{"olw ' iy — yi| + T fw ! Syw + 6y
X 5(,
ypik T~ ypik Ty
" alw ' fiy, — yi| + 757 fw Lyw + dp

= 0(w;) + 0" Qi p b + Ry lw iy, — vl
+ R;’b’k’wTib’w + Z ,',/’?ib/ Sy,

Yy FYb
3,0,k Yo Ypr ik i,b,k Yy Yprik
where R = Zylﬂéyb Gy gom ri? " and Ry = Zyb#yb Qi kPO TS

Since Zyb/ L nY 6y is a constant item, we omit the term. Thereafter, the
proposed IRDA loss in Eq. (22) can be rewritten in a regularization form as
follow,

Ny
1
Lirpa = g oA E Lrenvse + Rirpa, (26)
beB 0 =1
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with

Ny, K
1 ,
- b . ibky, T~
Rirpa = Z N, Z Z[le %,b,kéb + Rl w Uy yzl
beB i=1 k=1
+ Ry w T Sw).
For a profound comprehension of the regularization analysis, we introduce
the following two propositions concerning the averaged boundary distance

and the mapping variance of features.

Definition 1. For the samples {x;, y; }i=1... n, falling in b-th bin of the label
space Y, the averaged residual distance of features according to the true model
is defined by |w ' fiy, — ).

As shown in Fig. 2, the average prediction of features {x;,y;}i=1.. n,
has a residual distance to the true center of the feature. According to the
problem setting, which divides the label space into B bins, the true center
of the features should be located at y,. If the residual distance is large, the
true model is poorly approximated by the learned one. Therefore, the learned
model should be adjusted to approach the true model, which can be achieved
by drawing the average prediction closer to the true center of the features.

Proposition 1. For the samples {x;,y;}i=1... n, falling in b-th bin of the
label space Y, the mapping variance of features {z;}i=1... n, is W' Spw.

Proof. The boundary distance d describes the vertical distance between the
features and the true model. It also illustrate the position of projected fea-
ture z; according to the model. The mapping value of each feature can be
expressed by

$(zi) = w2 — -
Expand ¢(z;) as ¢(z;) = w'z; — y, which gives the possibility that the
features could be projected on the both side of the true model. The mapping
variance can be deduced as follows,

E., [¢(zi)] = E, [(’wTZz‘ —yp— Kz, ['szi - yb])ﬂ
=E., [(w'z —y—w'E, [2] +y)%]
=E,, [('szi —w'E,, [z,]ﬂ
=E,, [wT(zi —E, [z])(z — E,, [zi])Tw}
= w'Es, [(zi — ) (zi — )| w

=w' Yw
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(b) Original residual distance () Optimized residual distance

Yb A
%
4 ,,
iy i y 1 &
(a) Original illustration N\ = |- 1'-.--4-3-__._.:'_;_.

1

1 ..._.'

°
.l 33
%, .\\,

(d) Original mapping variance  (e) Optimized mapping variance

Figure 2: For regularization analysis, an example of linear regression is given. The purple
dotted line restricts the b-th bin of the label space and the black dotted line is the mean
value of b-th bin. The learned model is shown as the pink line. The black squared area is
zoomed in and illustrations before and after optimization of the focused area are shown

in (b)-(e).

]

Apart from our proposed IRDA, the regularization terms of Ridge Re-
gression, BMSE, ISDA-R, and RISDA-R are formulated as follows,

e Ridge Regression: R,jgge = 2w T w
e BMSE : Rpuse = ZbeB N%, Zivzbl Zyb/;éyb Qb O
e ISDA-R : RISDA—R = ZbGB NLb Z;V:bl Bq@b'wTwa

o RISDA-R: Rprspa—r = Ypen v 2o GinlBw Ssw+d" . (alw fuy—
g + fw ' Lyw))

The effects of the regularization terms of the aforementioned methods are
summarized in Table 2. The analysis reveals that the typical regularization
term used in Ridge Regression improves generalizability by reducing overall
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Data Augmentation Re-sampling
Deep
Imbalanced
Regression
Re-weighting Loss Adjustment

Figure 3: An overview of existing strategies for DIR tasks. According to data augmen-
tation, only explicit data augmentation methods have been investigated in the previous
literature.

prediction variance, thereby significantly decreasing prediction uncertainty.
The regularization term of BMSE addresses imbalance by increasing the loss
for tail samples, thus reducing the imbalance extent. ISDA-R aims to reduce
the variance of features within each label, making samples from different
labels more distinct and increasing sample compactness. RISDA-R reduces
the variance of features for tail labels and decreases the average residual
distance, bringing each sample closer to the true model.

IRDA encourages greater compactness of samples within each label. Ad-
ditionally, as previously discussed, each cluster comprises samples from dif-
ferent labels, and the distribution within each cluster is also imbalanced.
Under this clustering structure, IRDA encourages tail samples in each clus-
ter to have larger losses and to be more focused.

3.7. Comparison between related works

In this section, we compare the differences between several related meth-
ods from two perspectives: motivation and implementation.

e Motivation: Our proposed IRDA is an implicit data augmentation
approach. Implicit data augmentation has recently been proposed for
imbalanced classification and has demonstrated significant effective-
ness. Our work introduces the implicit data augmentation into deep
imbalanced regression for the first time. The motivation behind im-
plicit data augmentation is to redesign the loss by virtually generating
samples and enriching the features with more semantic information.

Several methods proposed for addressing imbalanced issues fall into
the following categories: re-sampling, re-weighting, loss adjustment,
and explicit data augmentation. Fig. 3 illustrates the existing types of
methods proposed for DIR tasks. For example, LDS proposed by [22]
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Figure 4: The comparison between IRDA and VAE.

is a re-weighting approach. The motivation behind re-weighting ap-
proaches is to rebalance the skewed distribution of labels. BMSE pro-
posed by [23] is a loss adjustment approach. The motivation behind
loss adjustment approaches is to modify the loss according to various
heuristic discoveries. Variational Auto Encoder (VAE) is a typical ex-
plicit data augmentation approach. The motivation of explicit data
augmentation is to actually generate samples and increase the data
size. Accordingly, different approaches have distinct motivation.

Implementation: The implementation of each method differs. We
take the following four methods as example and compare with our
proposed IRDA.

— LDS: The differences between LDS and IRDA can be summarized
as follows:

* The information considered in LDS and IRDA is different.
LDS uses the proportion of each label in the training set as the
weight. The prior of the label in the training set, i.e., pyain(y),
, guides the redesign of the loss. IRDA uses the semantic
information extracted from features of easily-confused labels
to enrich the features of tail labels.

x The application targets of LDS and IRDA differ. LDS is a
label-wise approach, assigning the same weight to all sam-
ples from the same target. IRDA is a sample-wise approach,
processing different samples differently.
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Figure 5: The comparison between IRDA and BMSE.

— FDS: The differences between FDS and IRDA can be summarized
as follows:

* The focus of FDS and IRDA differs. FDS uses the information
extracted from neighbor labels to enrich the features of tails
labels. TRDA uses the semantic information extracted from
features of easily-confused labels to enrich the features of tail

labels.

« The attentions on which FDS and IRDA pay attention are
different. FDS treats samples from each label equally, whereas
IRDA applies weights to samples, giving more focus to those
from tail labels.

— VAE: The differences between VAE and IRDA can be summarized
as follows:

* Their applied scenarios are different. VAE is an unsupervised
method, whereas IRDA is a supervised method.

x The goals of VAE and IRDA are different. VAE aims to gen-
erate samples that are similar to the input samples. TRDA
aims to extract semantic information by virtually generating
samples to enrich deficient features.

* The perturbations used in VAE and IRDA are different. VAE
perturbs features with a zero-mean error and random scale.
IRDA perturbs features using semantic information extracted
from easily-confused labels.
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— BMSE: The differences between BMSE and IRDA can be sum-
marized as follows:

x BMSE and IRDA are based on different assumptions. BMSE
relies on the LCDI assumption, i.e., Puain(Z|y) = Poatia(x|y).
IRDA, on the other hand, uses the PLCDI assumption, which
posits that samples from each label have a clustering structure
that differs from label to label.

* The goals of BMSE and IRDA are different. BMSE aims to
learn a balanced posterior by redesigning the loss based on
the distribution of labels in the training set.

« The application targets of BMSE and IRDA are different.
BMSE is a label-wise approach, meaning that it applies iden-
tical adjustments to all samples from the same target. In
contrast, IRDA is a sample-wise approach, meaning that it
differentially influences distinct samples.

Fig. 4 illustrates the implementation differences between VAE and IRDA.
Fig. 5 shows the implementation differences between BMSE and IRDA. As

demonstrated, the aforementioned methods have clear distinctions from our
proposed IRDA.

4. Experimental results

In this section, we present the validation of the proposed method de-
scribed in Section III through extensive experiments. We compare our pro-
posed methodology with nine recent methods from four strategies: re-sampling,
explicit data augmentation, loss adjustment, and re-weighting. Additionally,
we use five benchmarks that have been employed in three recent works for
comparison. Section IV-A describes the DIR benchmarks used, which span
computer vision and healthcare. The implementation details are provided in
Section IV-B, while Section IV-C details the various state-of-the-art methods
chosen for comparison, along with the evaluation metrics used. The main re-
sults are presented in Section IV-D, followed by further analysis in Section
IV-E.

4.1. Datasets

Five DIR benchmarks spanning computer vision and healthcare are em-
ployed. The label density distribution and the level of imbalance are detailed
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in [22].

e AgeDB-DIR: Constructed from the AgeDB dataset [39], which contains
face images with corresponding ages. Ages range from 0 to 101 with
a bin length of 1. The maximum bin density is 353 images, and the
minimum bin density is 1 in the 12K training samples. 2.1K images
are split as the balanced validation and test sets.

e IMDB-WIKI-DIR: IMDB-WIKI-DIR [40] is a large-scale face image
dataset for age estimation from single input images. The original
dataset contains 523.0K face images and corresponding ages, with 460.7K
images from the IMDB website and 62.3K images from Wikipedia. The
IMDB-WIKI-DIR constructed by [22] used in this work contains 191.5K
images for training and 11.0K images for validation and testing.

e NYUDZ2-DIR: Constructed from the NYU Depth Dataset V2 [41], con-
taining images and depth maps for different indoor scenes. Depth
ranges from 0.7 to 10 meters with a bin length of 0.1. The training
set contains 50,688 images, and the balanced test set contains 654 im-
ages.

e TUAB: TUAB [42] is used for brain-age estimation from EEG resting-
state signals. The dataset comes from EEG exams at the Temple Uni-
versity Hospital in Philadelphia. Following the setting in [42], the
dataset is split into a 1,246-subject training set and a 139-subject test
set.

e SkyFinder: SkyFinder [43, 44] is used for temperature prediction from
outdoor webcam images. It contains 35,417 images captured by 44
cameras around 1lam on each day under a wide range of weather and
illumination conditions. It is split into a 28,373-image training set, a
3,522-image validation set and a 3,522-image test set.

4.2. Implementation Details
4.2.1. Network architectures

The proposed method is implemented using PyTorch. We adopt ResNet-
50 [45] as our backbone network for AgeDB-DIR, IMDB-WIKI-DIR and
SkyFinder. Besides, ResNet-50-based encoder-decoder architecture [46] is
employed for NYUD2-DIR and a 24-layer 1D ResNet used in [47] is employed
for TUAB.
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Table 3: Benchmarking results on AgeDB-DIR.

Metrics \ MAE | \ GM |

Shot ‘ All' Many Med. Few ‘ All Many Med. Few
VANILLA | 777 662 955 1367 ] 505 423 7.0l 10.75
SMOTER [20] 816 739 865 1228 | 521 465 569 849
SMOGN [21] 826 764 901 1209 | 536 490 619 844
FOCAL-R [22] 764 668 922 1300 | 490 426 639  9.52

SMOGN + LDS + FDS [22] 790 732 851 1119 | 498 464 541 735
FOCAL-R + LDS + FDS [22] | 747 6.69 830 1255 | 471 425 536 859

BMC [23] 796 694 892 1204 | 511 487 584  7.62
GAI [23] 767 675 904 1132 | 486 424 591  8.89
SupCR(MSE) [47] 736 653 837 11.00 | 478 435 566 717
RankSim [28] 7.23 651 877 1092 | 448 401 587  7.79
ISDA-R 711 6.01 814 995 | 455 399 540  7.09
RISDA-R 719 633 809 998 | 461 409 555 687
IRDA 662 611 789 899 | 417 335 4.75 6.64
Meta-TRDA 6.58 6.02 7.60 8.47 | 3.94 3.18 480 6.30

SOTA (Best) vs. VANILLA | +0.54 +0.11 +1.18 +2.75 | 4$0.57 +0.22 +1.60 +3.58

OURS (Best) vs. VANILLA | +1.19 +0.61 +1.95 +520 | +1.11 +1.05 +2.26 +4.45

4.2.2. Training details

The standard model without any technique for dealing with imbalanced
data is used as the backbone. For fair comparison, the same settings for
SMOTER and SMOGN described in [22] are used, as well as the settings for
Focal-R, LDS, and FDS.

All models are trained for 90 epochs using the Adam optimizer [48] with
an initial learning rate of 1073, which is decayed by 0.1 at the 60th and 80th
epochs. The batch size is fixed at 256. For LDS, FDS, and our W-FDS, we
use a Gaussian kernel with a kernel size of 5 and a standard deviation of
2. The momentum of W-FDS and FDS is fixed at 0.9 following [22] for fair
comparison. « and 8 in Eq. (7) are set to 0.5 and 0.75 respectively. The
choices of o and 8 are detailed in Section IV.E 2) through sensitive tests.

4.3. Compared Methods and Fvaluation Metrics

4.8.1. Compared methods
Few methods have been proposed for DIR, and we describe here both the
compared methods and adapted imbalanced classification methods here.
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Re-sampling: The SMOTER algorithm first separates samples into rare
and frequent categories, then performs oversampling on the rare sam-
ples and undersampling on the frequent samples.

Ezxplicit data augmentation: SMOGN generates new rare samples by
using linear combinations of existing rare samples, and generates new
frequent samples by adding Gaussian noise to the existing frequent
samples.

Weighting strategy: FOCAL-R is proposed as a sample-wise error-
aware weighting strategy for DIR. It is initially proposed as a regres-
sion version of Focal Loss (FL) [3]. The loss is mapped to a continu-
ous weighting function, with samples having larger loss being assigned
higher weights.

Distribution Smoothing: LDS reversely uses the smoothed label distri-
bution as a continuous label-wise weighting function, assigning larger
weights to labels with low density. FDS smooths the feature distribu-
tion by KDE to mitigate the limitation of information contained in tail
labels.

Loss adjustment: To address the shortcomings of MSE in DIR, balanced-
MSE is proposed to fit imbalanced situations. GMM-based Analytical
Integrarion (GAI) and Batch-based Monte-Carlo (BMC) are two imple-
mentations of balanced-MSE. GAI tends to express the label distribu-
tion as a Gaussian Mixture Model (GMM), while BMC treats all labels
in a training batch as random samples from the entire training set and
adds a loss term for the label-sampling process. SupCR combines su-
pervised contrastive learning with DIR by applying data augmentation
to the batch to obtain a two-view batch, encouraging samples that are
close in label space to be similar in feature space. Similarly, RankSim
encourages features of samples from neighboring labels to have high
similarity, ordering the features’ similarity and labels’ distance and en-
forcing the two orders to coincide.

ISDA-R: The proposed regression version of ISDA, namely ISDA-R is
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compared. The final optimization function for ISDA-R is as follows,

Ny
1 ,
Lispi-r = E N, E log(1 + E exp(AZ,", (27)
beB =1 yb/#yi

+ BwTEbw)),

where AZy" = uy,,(2;) — uy,(2;). The ISDA-R uses the covariance ma-
trix before W-FDS. ISDA-R doesn’t consider the augmentation strength.
The hyper-parameter § in ISDA-R follows the settings in [12].

RISDA-R: The regression version of RISDA is also compared by re-
maining the original augmentation strategy and changing the CE loss
into BMSE. RISDA separates the label space into two sets, a H indi-
cating head labels containing majority of samples and a 7 indicating
tail labels possessing few samples, and B=H UT.

Ny
1
Lrispa-r = Z N, Zlog(l + Z exp(AZr'))

beH i=1 Yot Y
N (28)
+ Z % Z log(1 + Z exp(AZgjf’
beT 0 i=1 Yy Vi

+alw' i, — | + fw Zyw)),

where f1, = ), € o, 3, =3+ Sy € X, and AZyY = uy,, (2;) —
uy,(z;). RISDA-R has an augmentation strength v, = (1—7)/(1—~™)
on tail labels in 7 with v a hyper-parameter. The choice of v is set

to 0.5 following the settings and the results of ablation experiments
in [14].

4.3.2. Evaluation metrics

Following [22], the whole test set is separated into many-shot region (bins

with > 100 training samples), medium-shot region (bins with 20 to 100 train-
ing samples), and few-shot region (bins with < 20 training samples).

Aprat from the widely used Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE), we also use following metrics for specific cases.
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Table 4: Benchmarking results on IMDB-WIKI-DIR.

Metrics ‘ MAE | ‘ GM |

Shot ‘ All Many Med. Few ‘ Al Many Med. Few
VANILLA | 806 7.23 1512 26.33 | 457 417 10.59 20.46
SMOTER [20] 814 742 1415 2528 | 464 430 9.05 19.46
SMOGN |[21] 803 7.30 14.02 25.93 | 4.63 430 874 20.12
FOCAL-R [22] 7.97 712 1514 2696 | 449 410 10.37 21.20
SMOGN + LDS + FDS [22] 7.97 738 1322 2295 | 459 439 784 14.94
FOCAL-R + LDS + FDS [22] | 7.88  7.10 14.08 25.75 | 447 411 932 1867
BMC [23] 808  7.52 1247 2329 | 461 421 886 16.33
GAT [23] 812  7.58 1227 23.05 | 459 427 911 16.42
SupCR(MSE) [47] 807 746 13.02 2341 | 456 409 7.91 1522
RankSim [28] 772 6.93 1448 2538 | 427 3.90 10.02 1584
ISDA-R 732 7.04 1213 22.87 | 416 3.85 7.63 14.29
RISDA-R 7.21  6.76 1247 21.75 | 4.09 3.89 821 13.76
IRDA 7.09  5.90 1287 2099 | 406 3.99 7.95 13.06
Meta-IRDA 6.94 597 11.76 20.73 | 3.70 3.55 T7.42 12.94
SOTA (Best) vs. VANILLA | +0.34 +0.30 +2.85 +3.38 | +0.30 +0.27 +2.75 +5.52
OURS (Best) vs. VANILLA | +1.12 +1.33 +3.36 +5.60 | +0.87 +0.62 +3.17 +7.52

e GM: The geometric mean proposed by [23] is defined as Y/TIY, |y; — 44|

characterizing the uniformity of model predictions.

e 0;: The threshold accuracy is defined as the percentage of J; such
that max(d;/g;, g:/d;) = 0; < 1.25° where g; denotes the value of a
pixel in the ground truth depth image and d; represents the value of
its corresponding pixel in the predicted depth image. d; is used as a
standard depth estimation evaluation metric.

4.4. Main Results

For five DIR benchmarks employed, the main results obtained are re-

ported in this section.

4.4.1. Age inference

We evaluated the performance of our proposed method, IRDA, and Meta-
IRDA, against existing SOTA methods using two benchmarks for age infer-
ence: AgeDB-DIR and IMDB-WIKI-DIR. The results for AgeDB-DIR and
IMDB-WIKI-DIR are shown in Table 3 and Table 4 respectively. SMOTER
and SMOGN exhibited the worst performance overall, even worse than the
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Table 5: Benchmarking results on NYUD2-DIR.

Metrics \ ReMSE | \ 5 1

Shot ‘ All Many  Med. Few ‘ All Many  Med. Few
VANILLA ‘ 1.477  0.591 0.952 2.123 ‘ 0.677  0.777  0.693  0.570
VANILLA + LDS + FDS [22] | 1.338 0.670  0.851 1.880 0.705 0.730 0.764  0.655
BMC [23] 1.283 0.787  0.870 1.736 0.694  0.622 0.806  0.723
GAT [23] 1.251 0.692  0.959 1.851 0.702 0.676 0.734  0.715
ISDA-R 1.179 0.586  0.881 1.749 0.772  0.790 0.739  0.781
RISDA-R 1.192 0.610  0.877 1.732 0.769 0.788 0.712  0.793
IRDA 1.096 0.514 0.787  1.700 0.797  0.777  0.820 0.809
Meta-IRDA 1.045 0.499 0.791 1.697 | 0.805 0.774  0.817 0.839

SOTA (Best) vs. VANILLA ‘+().226 -0.079  +0.101 +0.387‘+0.028 -0.047  +0.113 +0.153
OURS (Best) vs. VANILLA ‘—&-0.432 +0.092  +0.165 +0.423‘+0.128 +0.013  +0.127 +0.269

vanilla model, though they slightly improved generalizability in few-shot re-
gions. Focal-R showed improved overall performance, with a more distinct
improvement in many-shot regions than in few-shot regions. Applying distri-
bution smoothing strategies slightly enhance the effectiveness of Focal-R and
SMOGN. Two implementations of Balanced-MSE demonstrated similar per-
formance to Focal-R but were inferior to the distribution-smoothed Focal-R.
SupCR and RankSim showed better performance among all SOTA methods.

Among the four implicit data augmentation methods, there was a sig-
nificant promotion in few-shot regions compared to the vanilla model, with
an increase of 38% and a 20% improvement over the best SOTA algorithm.
Notably, Meta-IRDA achieved the best performance among all implicit data
augmentation methods, with IRDA being the second best.

4.4.2. Depth inference

The NYUD2-DIR was used for the depth inference and the results are
presented in Table 5. Due to the dataset’s specific characteristics, which in-
volve learning pixel-wise information for each image, methods like SMOTER
and SMOGN cannot be easily employed. Hence, only the vanilla model, the
distribution-smoothed vanilla model and two implements of Balanced-MSE
are compared with our proposed methods. Among the existing SOTA meth-
ods, BMC showed the best performance in few-shot regions, whereas GAI
demonstrated overall impressive performance. Nevertheless, the improve-
ment brought by Meta-IRDA was even more significant, with an elevation of
29.25%, compared to the SOTA, which only showed a 15.3% overall improve-
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Table 6: Benchmarking results on TUAB.

Metrics \ MAE | \ GM |

Shot | Al Many Med. Few | Al Many Med. Few
VANILLA | 896 745 1005 1477 | 6.62 538 824 11.92
SMOTER [20] 885 759 965 1433 | 6.15 592 799 1173
SMOGN [21] 879 751 997 1411 | 6.09 543 806 11.81
FOCAL-R [22] 877 743 976 1408 | 6.33 556 845 11.03

SMOGN + LDS + FDS [22] 864 753 972 1381 | 6.03 537 8.04 10.35
FOCAL-R + LDS + FDS [22] | 8.61 733  9.61 14.07 | 6.11 5.41 8.39  10.98

BMC [23] 8.72 729 950 13.74 | 6.26 547 812 10.37
GAI [23] 8.76 731 942 1334 | 6.07 536 809 10.72
SupCR(MSE) [47] 8.58 722 958 1342 | 6.03 529 817 10.67
RankSim [28] 841 718 939 1386 | 593 497 876 11.02
ISDA-R 8.11 6.54 9.32 1341 | 5.06 428 7.87 10.13
RISDA-R 8.09 6.90 9.19 13.04 | 5.07 4.31 7.71 9.98
IRDA 7.78 6.12 898 12,57 | 496 4.09 734 9.53
Meta-IRDA 7.73 6.11 8.88 12.41 | 4.98 411 7.30 9.18

SOTA (Best) vs. VANILLA | 4+0.55 +0.27 +0.63 4143 | 40.69 +0.41 4020 +1.57
OURS (Best) vs. VANILLA | +1.23 +1.34 +1.17 4236 | +1.66 +1.29 +0.94 +2.74

ment and performed worse than the vanilla model in many-shot regions.

4.4.3. Brain-age estimation

The TUAB benchmark was used for the brain-age estimation and the
results are presented in Table 6. All of the compared methods were tested on
TUAB, and among all existing state-of-the-art techniques, RankSim achieved
the best overall performance. However, the implicit data augmentation
strategies generally outperformed other strategies for DIR. In particular, the
proposed IRDA and Meta-IRDA showed significant improvements in both
metrics. Meta-IRDA achieved an overall improvement 13.73% compared to
the vanilla model, whereas the existing SOTA only achieved a 6.28% improve-
ment. In the few-shot regions, IRDA and Meta-IRDA showed improvements
of 14.9% and 15.98%, respectively, compared to the existing SOTA’s 9.68%
improvement.

4.4.4. Temperature prediction

The SkyFinder dataset was used for temperature prediction and the re-
sults are presented in Table 7. Compared to SupCR, which is the optimal
SOTA on SkyFinder, all implicit data augmentation methods outperformed
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SupCR. Among all implicit augmentation methods, IRDA and Meta-IRDA
further improved both the overall performance and performance in few-shot
regions. Specifically, Meta-IRDA achieved a 27.92% improvement on the en-
tire dataset and a 22.92% improvement in the few-shot regions, whereas the
SOTA showed only a 6.17% improvement on the entire dataset and a 13.62%
improvement in the few-shot regions.

(a) (b)

Figure 6: Results of ablation experiments comparing proposed augmentation strategy of
IRDA with existing augmentation strategies shown in (a) and comparing ReMSE with
existing BMSE and the typical MSE shown in (b).

4.5. Further Analysis

4.5.1. Ablation study

We conducted an ablation study to evaluate the effectiveness of the aug-
mentation strategy and ReMSE separately. The study consisted of two parts:
assessing the effectiveness of the augmentation strategies and ReMSE.

To evaluate the effectiveness of the augmentation strategy, we compared
IRDA with ISDA-R and RISDA-R without using ReMSE on AgeDB-DIR.
The results, shown in Fig. 6 (a), indicate that the augmentation strategy of
IRDA achieves the best performance.

We further demonstrated the effectiveness of ReMSE by evaluating IRDA
with and without ReMSE on five benchmarks. The results, shown in Fig. 6
(b), indicate that IRDA with ReMSE significantly outperforms IRDA with-
out ReMSE.

33



Table 7: Benchmarking results on SkyFinder.

Metrics \ MAE | \ GM |

Shot | Al Many Med. Few | Al Many Med. Few
VANILLA | 308 211 415 624 [ 255 190 3.76 5.2
SMOTER [20] 321 257 409 610 | 278 200 355 491
SMOGN [21] 329 266 402  6.02 | 279 203 347 488
FOCAL-R [22] 301 223 407  6.07 | 247 195 341 409

SMOGN + LDS + FDS [22] 3.05 258 391 539 | 2.39 1.87 333 423
FOCAL-R + LDS + FDS [22] | 3.16 213 399 597 | 239 203 3.09 4.14

BMC [23] 3.17 2.64 3.86 5.86 2.52 1.99 3.05 3.89
GAT [23] 2.97 2.01 3.97 5.67 2.12 1.85 3.06 3.89
SupCR(MSE) [47] 289 191 381 572 | 203 179 295 3.71
RankSim [28] 2.99 2.05 3.88 5.69 2.15 1.89 3.00 3.80
ISDA-R 2.81 1.89 3.79 5.61 1.99 1.75 291 3.65
RISDA-R 2.87 1.92 3.85 5.24 2.02 1.81 2.93 3.41
IRDA 241 1.56  3.21  4.96 1.56 124  2.31  3.05
Meta-IRDA 2.22 147 329 4.81 147 1.19 2.32 2.98

SOTA (Best) vs. VANILLA | 40.19 +0.20 +0.34 +0.85 | +0.52 +0.11 +0.81 +1.31
OURS (Best) vs. VANILLA | +0.86 +0.64 +0.94 +1.43 | +1.08 +0.71 +145 +2.04

4.5.2. Sensitive test

There are three hyper-parameters in IRDA: «, 8 and v,. v, is a hyper-
parameter that can be directly calculated or learned through mete-learning.
Therefore, conducted a sensitivity test on o and # and discussed wvy,.

A sensitivity test was conducted for a and #. The values of a and [
were selected from {0.25,0.50,0.75,1.00, 1.25,1.50} for our proposed IRDA
and Meta-IRDA on AgeDB-DIR. The values of MAE for many-shot, medium-
shot, and few-shot categories were compared. For many shots, MAE achieved
the minimum value at @ = 0.50 and § = 0.50. For medium shots, MAE
achieved the minimum value at « = 0.50 and § = 0.75. For few shots,
MAE achieved the minimum value at o = 0.50 and § = 1.00. Overall, MAE
achieved the minimum value at g = 0.75.

As mentioned in Section IV.B, the estimations of feature statistics can
be inaccurate. We use a class-wise parameter v, to adjust the covariance
matrix. To investigate the effect of vy, we plotted the variation of v, learned
by the meta network during the entire training process for different regions.
As shown in Fig. 7(b), v, sharply decreases at the beginning of the training
process for a head label and rapidly converges to 0. For a tail label, v,
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gently decreases and hardly reaches 0 before the end of training, as shown in
Fig. 7(a). Our investigation indicates that samples from tail labels are more
likely to have correlations between features.
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Figure 7: The variation of hyper-parameter v, during a whole training process. Two labels
are discussed, including a tail label and a head label.

4.6. Future Work

Learning continuous targets differs significantly from learning discrete
target. In deep learning, a common approach is to convert the continuous
target ) into B discrete bins. According to related works [22, 23, 39, 40,
42, 43, 44], we have adhered to the general settings of the length of bins
for imbalanced regression, which represents the smallest granularity of the
continuous labels. We are also interested in how the length of bins could
influence the optimization of deep regression tasks. We plan to explore the
discretization of continuous labels as a future direction.

5. Conclusion

Our study proposes a novel approach to investigate DIR tasks using im-
plicit data augmentation strategies. First, we suggest a new augmentation
strategy that incorporates information from neighboring labels during aug-
mentation. Then, we introduce a novel regression loss function, ReMSE,
which accounts for both imbalanced label distribution and skewed feature
distribution. Our proposed method, IRDA, integrates the augmentation
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strategy and the loss function into an easy-to-compute objective function.
We provide two implementations of IRDA: a direct estimation approach and
a meta-learning-based approach, Meta-IRDA. We offer a regularization anal-
ysis and a theoretical examination of the rationality of IRDA. Through ex-
tensive experiments, we compare existing SOTA methods with our proposed
IRDA and Meta-IRDA. The results demonstrate the superiority of IRDA and
Meta-IRDA. Our work presents a new approach to solving DIR tasks.
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