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and Self-paced Constraint Weighting
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Abstract—An adversarial attack is typically implemented by
solving a constrained optimization problem. In top-% adversarial
attacks implementation for multi-label learning, the attack failure
degree (AFD) and attack cost (AC) of a possible attack are
major concerns. According to our experimental and theoretical
analysis, existing methods are negatively impacted by the coarse
measures for AFD/AC and the indiscriminate treatment for all
constraints, particularly when there is no ideal solution. Hence,
this study first develops a refined measure based on the Jaccard
index appropriate for AFD and AC, distinguishing the failure
degrees/costs of two possible attacks better than the existing
indicator function-based scheme. Furthermore, we formulate
novel optimization problems with the least constraint violation via
new measures for AFD and AC, and theoretically demonstrate the
effectiveness of weighting slack variables for constraints. Finally,
a self-paced weighting strategy is proposed to assign different
priorities to various constraints during optimization, resulting in
larger attack gains compared to previous indiscriminate schemes.
Meanwhile, our method avoids fluctuations during optimization,
especially in the presence of highly conflicting constraints. Ex-
tensive experiments on four benchmark datasets validate the
effectiveness of our method across different evaluation metrics.

Index Terms—Multi-label learning, adversarial attack, opti-
mization problem, optimization goal, solving strategy.

I. INTRODUCTION

EEP neural networks (DNN) are influenced by adver-

sarial examples leading to wrong classifications [1], [2].
Specifically, when minor noises are added to normal samples
(adversarial perturbations), the model makes incorrect deci-
sions with high confidence [1]. This outcome promotes the de-
velopment of adversarial attacks and adversarial defenses [3],
with existing adversarial attack methods focusing on single-
label classification tasks [3], [4], [5], [6], [7]. Besides, multi-
label learning also prevails in practice [8]. Hence, the design of
top-k adversarial attacks for multi-label learning has received
increasing attention in recent years [9], [11].

Solving constrained optimization problems to obtain ad-
versarial perturbations is the mainstream research path for
both top-k targeted and untargeted attack tasks in multi-label
learning [9], [12]. The optimization goals basically comprise
the attack failure degree (AFD), the attack cost (AC), and
the perturbation bound, whose measures heavily determine the
final attack performance. These goals are transformed into
either optimization objectives or a series of constraints in
mathematical optimization. Therefore, although many studies
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do not explicitly mention AFD and AC, their constraints do
imply how they measure AFD and AC. Current works, e.g.,
Top-k multi-label attack (TxML) [11], measure AFD and AC
based on an indicator function, which is relatively coarse and
cannot accurately reflect the practical AFD or AC for a possi-
ble attack. Moreover, since achieving the optimization goals is
often not ideal, some constraints may be more challenging to
satisfy than others, and in some cases, they may even conflict
with each other. However, nearly all studies treat all constraints
indiscriminately’'. As a result, some challenging constraints
will negatively impact the solving process because other
constraints must make excessive concessions. In other words,
these challenging constraints cause more other constraints to
be unsatisfied. Meanwhile, in the case of highly conflicting
constraints where only a part of the constraints can be satisfied,
the solving procedure will fluctuate and thus increase the
solution’s complexity or even force the procedure to diverge.
[45] extends TyML to pursue imperceptible adversarial per-
turbations when evaluation metrics are unreliable. However,
similar problems still exist. To the best of our knowledge,
previous studies have not reported this yet.

Therefore, this study designs more accurate AFD/AC mea-
sures and a more reasonable constraint treatment scheme
for the underlying constrained optimization problem in top-
k adversarial attacks for multi-label learning. Specifically, we
conduct statistical and theoretical analysis to reveal the de-
fects of current measures for AFD/AC and the indiscriminate
treatment scheme employed in existing optimizing procedures.
Second, we develop a new measure for AFD and AC based on
the Jaccard index [19], which can more fine-grainedly reflect
the failure degree and cost of a possible attack. Adopting
our measure affords excluding more ground-truth labels from
the top-k predicted labels of an implemented attack and thus
increases the total attack gain. Third, this work considers the
difficult-to-satisfy degree (slack variable) for each constraint.
We theoretically demonstrate the effectiveness of weighting
slack variables for constraints. Finally, based on the theoretical
analysis, the constraints are discriminately treated using a
novel self-paced weighting strategy. The proposed strategy
dampens the fluctuation and thus accelerates the convergence
speed of optimizing. Extensive trials on four benchmark data
sets indicate that our method uses a small perturbation to make
the adversarial attack more profitable. Our contributions are
summarized as follows:

o Deep experimental and theoretical analysis of the opti-
mization goals and procedures in several typical methods

I'Section III-C presents theoretical analysis and illustrative examples.
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reveals that a coarse AFD/AC measure and the indiscrim-
inate treatment for constraints harm the attack gain and
optimizing convergence.

e The Jaccard index is introduced to measure AFD/AC,
formulating new optimization problems with the least
constraint violation for both top-k targeted and untargeted
multi-label adversarial attacks. And an extensive theoret-
ical analysis of weighting strategies for slack variables is
conducted for our new optimization problems.

o Based on our theoretical analysis, a self-paced weighting
strategy is employed to assign different priorities for the
constraints, benefiting the attack gain and the solving
process.

II. RELATED WORK

Notations. Let C' be the label set. Y and Y; are ground-
truth and target labels sets (C C) of a sample x, respectively.
F@) = [f1(@).-- . fie) @7, f;(@) € [0,1] is a probability
vector of a DNN. Let [f1;(x), - ,fHCH(ac)]T be the values
of f(x) sorted in descending order, i.e., fj;(x) is the jth
largest value of f(x), where [j] is the label index of the top-j
prediction score. Yi(x + 2z) = {[1],---,[k]} A < k < |C))
is the top-k label index set and z is the perturbation. Assume
that N.; is the total number of constraints. $R is the real space.
Let Yis(2) be {j : fi(x +2) > 0.5,¥j € Y}. B is a set
of denoted irrelevant labels (neither ground truth nor target
labels). Note that By(x, z) = {j : I(f;(x) > 0.5) = I(f;(x +
z) > 0.5); Vj € B} is the irrelevant labels without obvious
prediction changes, where I(con) is the indicator function that
is 1 when the condition con is true and O otherwise.
Multi-label Learning. There are two common multi-label
classifiers: rank-based and threshold-based classifiers [9], [11].
Rank-based classifier aims to achieve ¥ C ffk(w) Threshold-
based classifier, on the other hand, assigns labels in Y with
predicted probabilities greater than a certain threshold. Multi-
label learning faces many challenges, such as missing views
and missing labels, which can be addressed by a novel two-
stage network, proposed by [13]. In addition, [14] introduced
an asymmetric loss that dynamically handles the easy negative
samples and possibly mislabeled samples. To better address the
distribution shift problem, [16] constructed a semi-supervised
dual relation learning framework. [34] introduced a simple
yet effective procedure, MILe, which incorporates inductive
biases. And, better representation of deep features has been
shown to facilitate multi-label learning [35]. Network architec-
ture design is also a widely-used approach [15], [50]. Recently,
[51] treated texts as images for prompt tuning to improve
multi-label learning.

Adversarial Attack. Top-k untargeted and targeted attacks
aim to find perturbations z that make Y N }A’k(:l: +2)=10
and Yk(a} + z) = Y, respectively. [9] defined the multi-
label adversarial example and introduced a general framework
to generate adversarial perturbations. [11] proposed a novel
loss for multi-label top-k attack, which considers the ranking
relation among labels. And, linear programming has facilitated
progress in multi-label attacks [17]. And [36] elaborated on
the theoretical analysis of multi-label classifier’s attackability.

Generative approaches, adopted in [10], [37], have also driven
the advances in multi-label attacks. Moreover, [38] proposed
PSAT-GAN, promoting the parallelism in multi-task holistic
scene understanding. Other attack methods for single-label
learning include [1], [12], [18]. Recently, [30] designed a more
robust and invisible backdoor attack method, that achieved
better attack performance. [39] directly minimized the dis-
tortion by modeling the noise distribution. Moreover, [46]
applied label correlation to improve the methods in [9], [11],
[17], which obtains larger adversarial attack gains. [47] pro-
posed two novel adversarial attack methods against regression
models for unmanned aerial vehicles (UAV) based on deep
learning and further enhanced the robustness of regression
models in UAV. [48] proposed Perturbing State Variables,
Tailored Loss Function Design, and Change of Variables to
infer suitable multi-label adversarial perturbations. Finally,
[49] designed an effective multi-label black-box attack method
based on differential evolution algorithm which includes a
complementary mutation operator.

Adversarial Robustness. Top-k Adversarial robustness has
also received much attention. [42] showed a certain number of
|Y NY% (224 2)|, when random smoothing is used to train f(-).
[43] carried out a through and rigorous theoretical analysis
to bridge the robustness gap between the norms of ¢, and
{5 of multi-label classifiers. And [44] derived a tight top-
k robustness in £ norm when using the Gaussian random
smoothing. Furthermore, [52] proposed to use the partial
weight initialization and fine-tuning to enhance the robustness
of DNN against the clean-image backdoor attack.

III. ANALYSIS FOR EXISTING METHODS
A. Goals and Constraints in Existing Methods

Generally, the optimization goals for an attack generation
in most existing top-k multi-label adversarial attack studies
explicitly or implicitly include three folds as follows:

o Attack failure degree (AFD): It is actually the primary
goal of an attack task. Existing methods usually rely on
the indicator function I(+). For instance, [11] defined label
consistency (LC) to measure AFD as follows:

AFDy (x,2) =1(Y C Yi(z + 2))
+I(Vi(x +2) CY) +1(Yi(x +2)=Y)
Note that a smaller failure degree is preferred.

o Attack cost (AC): This is the second goal that reflects
the cost brought by a given attack. A typical cost is the
change of predictions on irrelevant labels, i.e., the number
(or proportion) of irrelevant labels whose predictions
were changed significantly. A lower total cost is preferred.

 Perturbation bound: This goal mainly uses £, norm to
reflect the difference between the normal sample and the
generated attack. A lower bound is preferred.

)

Existing measures often rely on an indicator function, which
cannot accurately capture the degree of attack failure or cost
for a possible attack, as analyzed in Section III-B. The goals
AFD and AC are then translated into a set of constraints
in mathematical optimization, as explained in Section IV-A.
Some constraints are challenging to satisfy and may even
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be mutually exclusive. Neglecting the distinct difficulties and
conflicts among these constraints can result in unstable or non-
convergent mathematical optimization, as discussed in Section
II-C. The perturbation bound goal is directly treated as an
optimization objective.

B. Defects Incurred by AFD/AC Measures

Three typical measures for AFD and AC are analyzed with
three toy datasets and three Multi-layer Perceptron (MLP)
classifiers trained on these toy datasets. The AFD measure
in Eq. (1) takes O for an ideal attack or the most partially suc-
cessful attacks on . Naturally, this measure cannot well dis-
tinguish the failure degrees for two possible attacks (including
the ideal one). Fig. 1(a) presents the top-3 untargeted multi-
label attack for the toy dataset when Eq. (1) is used, revealing
that AFD;.(x1, 21) = AFD.(z1,2?) = 0, as Y = {2,3,4},
Va(x, + 2z)) = {1,2,3}, and Ys(z; 4+ 22) = {5,6,4}. If
l|z3]] < ||22||, then ¢} (= &1+ 2z{) rather than 2 (= =, +2%)
may be the solution. However, w% affords a smaller failure
degree than x! because 1 = |Y NV (22)] < [Y NYj(2l)| = 2.
Hence, an Eq. (1)-based optimization goal is inappropriate.

The label’s prediction confidence is also a main consider-
ation in adversarial attacks. From Fig. 1(b), the Y of x is
{1,4,5}, and we have fi(z2+ 23) > 0.5, fi(z2+22) > 0.5
and f5(x2+ 23) > 0.5. An underlying AFD measure, namely
label flip (LF), is defined as follows [9]:

AFDy (x, 2) = 1(|Yif (2)| # 0). @
According to Eq. (2), AFD;f(x2, z3) = AFD;f(x2, 23) = 1.
Although @} and @3 have the identical AFD, s value, x5 makes
more labels (labels 4 and 5) with prediction confidence below
0.5 than the adversarial image x3 makes (label 4), and the
measure in Eq. (2) cannot distinguish them.

The AC measure used in [9] for targeted attack quantifies
the irrelevant labels with obvious changes of the predictions
after the attack:

AC(x, z) = I(|B (¢, z)| # | B). 3)
Likewise, for an ideal attack z (if it exists), AC(x, z) is 0.
Otherwise, it becomes 1. For the top-2 targeted attack on the
toy dataset illustrated in Fig. 1(c), Y = {6,7}, ¥; = {2,8},
and B = {1,4,5}. According to the trained MLP model,
we have I(f;(x3) > 0.5) = 0, I(f4(x3) > 0.5) = 1,
and I(f5(x3) > 0.5) = 1. We also have Bj(xs,z3) =
0 and Bj(zs,23) = {1,4}. Then AC(z3,23) = 1 and
AC(x3,23) = 1, if the measure in Eq. (3) is used. However,
the actual cost of 3 (= x3 + 23) is obviously smaller than
that of =} because BN B(x3,23) = 0 and BN By(x3,23) =
{1, 4}. Therefore, the measure in Eq. (3) may impose a higher
cost when no ideal attack exists.

More details of the above statistical analysis about Fig.

are shown in the supplementary materials. The following
proposition summarizes the defects of existing measures, with
the proof being in Appendix.
Proposition 1. For AFD/AC in Egs. (1), (2), and (3), given
two perturbations z* and z°, even if Y NYi(z+2Y) # YN
Yil@+22)|, [Yig(21)] # |Yig(22)], and |B;(21)| # | By (2?)
we still have AFD,.(x, z') = AFD,.(z, z2*), AFD;(x, 2') =
AFD;f(x, 2?) and AC(x, 2') = AC(z, 2%), that is, the exist-
ing measures cannot distinguish two possible attacks well.

s s
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Fig. 1. (a) and (b) Illustrative examples for AFD. (c) Illustrative example
for AC. x;,7 = 1,2, 3 are normal samples, marked with the green circles.
! =x; + z],j = 1,2 are the adversarial samples of @;, where 2] is the
j-th adversarial perturbation of ;. Each divided region denotes a subset of
data with a specific label or labels (Y'), represented by the diverse colored
squares at the top. And each point in a region symbolizes a data sample.

prediction: $0.62 #80.55 &80.3
Slack Value: 0,12 €m0.05 550.01
Weightw: 1.00 0 1.00 | 1.00

Prediction: §0.87 #80.39 #8.0.37
Slack Value{(;,0.37 £m0.00, £40.0
Weightw? 0.10 | 1.00 = 1.00

Fig. 2. (a) Normal image, (b) Adversarial image generated by [9], and (c)
Adversarial image generated by [9] via down-weighting the weight of the
difficult constraint (for ‘person’).

C. Defects Incurred by Constraints Treatment

Current studies transform both measures for AFD and AC
into equality or inequality constraints in the final optimization
problem~. So, numerous constraints are typically considered,
with existing optimization schemes treating all constraints
equally and being given identical weights (excluding the La-
grange coefficients) in the Lagrangian optimization objective.
However, this approach has two shortcomings.

First, large slack values typically indicate that certain con-
straints are hard to satisfy, thereby negatively affecting the total
attack gain. Take Fig. 2(a) as an example. Fig. 2(b) shows the
adversarial image generated by [9] which treats all constraints
equally, that is, the weights are 1 for all labels. Only one label
‘boat’ is successfully attacked (its prediction is 0.38 < 0.5).
The slack value for the constraint corresponding to label
‘person’ (0.12) is much larger than those of ‘motorbike’ (0.05)
and ‘boat’ (0.00), indicating that the constraint of ‘person’ is
more difficult to satisfy. If the constraint for label ‘person’ is
down-weighted (its weight is 0.10), then both ‘motorbike’ and
‘boat’ are successfully attacked as depicted in Fig. 2(c). The
attack gain thus increases. We consider the value of the slack
value of a constraint as the constraint difficulty. The larger the
slack value is, the more difficult to satisfy the constraint is. To
obtain a statistical support, we employ factor w to multiply
the five constraints with largest slack values for 400 random
images from VOC 2012 [21] and COCO 2014 [22] (200 for
each). It is worth noting that the total number of constraints
is greater than 10. Fig. 3(a) shows the average relative AFD
to those achieved with equal constraint weights (i.e., w = 1)
when w ranges from 0 to 2. This figure highlights that AFD
consistently increases as w increases, i.e., the equal weights on
the constraints may be ineffective, potentially yielding larger
failure degrees than a lower weight on difficult constraints.

2Some studies directly construct the constraints. Nevertheless, implicit
measures for AFD and AC can still be observed.
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Fig. 3. (a) Relative AFD variation with different w values on VOC 2012

and COCO 2014, (b) and (c) variations of the Lagrangian values of [9] and
our MASWT on VOC 2012, respectively.

Second, inevitably, some constraints cannot be satisfied si-
multaneously when no ideal solution exists’. These constraints
fluctuate the optimization procedure as the following theorem:

Theorem 1. Let C'T;(z) be the jth constraint. Assume that all
constraints can form Ng disjoint subregions of z, where the

J'th subregion Gy is {z : CTj (z) > 0, Oy ‘(z) >0}

and Gy N G = O,VE £ j'. If all constraints are equally
weighted, then z fluctuates among all local minimizers with a
positive constant ¢* > 0:

inf {||z' — 2%|]2: 2! € Gjr, 2 € Gy } > . (4)

That is, if the feasible regions for all constraints comprise
some disjoint regions far from each other, the optimization pro-
cedure diverges. Fig. 3(b) illustrates the fluctuated Lagrangian
of [9] on VOC 2012. Nevertheless, the proposed MASWT
method introduced later is smoother (Fig. 3(c)). Theorem
explains our finding from a theoretical perspective. The lower
bound in Theorem | is subject to the involved model and the
sample implied in the constraints. And a video presented in
the supplementary material highlights this fluctuation.

In summary, given the existing schemes, a more effective
constraint treatment manner should be explored.

IV. METHODOLOGY
A. Optimization Problem with New Measures

1) New Measures with the Jaccard Index. The indicator
function in existing attack studies calculates set similarity.
In contrast to current methods, this study utilizes a more
effective similarity measure, the Jaccard index [19]. Given two
sets, A and B, the Jaccard index follows one of the three
forms according to the specific situations: |[A N B|/|A U B|,
|A N B|/max{|A|,|B|}, or |A N B|/min{|A|,|B|}. The
Jaccard index ranges in [0, 1] rather than {0,1}, so it can
more accurately reflect the AFD and AC for a given attack. Its
superiority over the indicator function in set similarity has also
been verified in various research areas [20]. Theoretically, each
existing indicator function-based measure (including the ones
used in other adversarial attack studies) can be transformed
into a Jaccard index-based form. In this study, the following
two measures are defined for top-k multi-label attack. The first
measure is the soft label consistency (SLC):

AFDg.(z, 2) = |Y NYj,(z+2)|/ min{|Y|, |Yi(z+2)[}. (5)
AFDy;. measures better the two possible attacks x1 and x?
(Fig. 1(a)): AFDg.(x1,21) = 2/3 > AFDg(x1, 23) = 1/3,
whereas when the existing measure is used, AFD;.(x1, 21) =

3Qur initial statistics on VOC 2012 show that about 40% samples have no
ideal attacks under the worst targeted case using the SOTA method in [11].
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Fig. 4. Illustration for our methodology. The top-3 attack is considered.

The labels within the dotted box have confidence greater than 0.5. Y; =
{Tv, Diningtable, Train}. Y = {Person, Car, Horse}.

AFD; (1, 27) = 0. Obviously, the refined measure in Eq. (5)
is superior because it assigns distinct values to different
attacks. In other words, the Jaccard idnex-based measure (e.g.,
Eq. (5)) can better distinguish different adversarial attacks".
The second new AFD measure concerns the label’s predic-
tion confidence. Based on the Jaccard index, a more refined
measure, soft label flip (SLF), is defined as follows.

AFDp(®,2) = [Yis NY|/[Yi UY| = [Yif| /Y] (6)

The succeeding parts describe our constructed optimization
problems and new solving strategy. Fig. 4 illustrates our
method for targeted and untargeted attacks.

2) Problem for Untargeted Attack Implementation. The
untargeted attack aims to find a small perturbation so that the
labels in Y are excluded from the top-k prediction and are
below a certain threshold 0.5. Hence, the following constrained
optimization problem is constructed.

min [AFDg;., AFDyy, ||2][2/2], st &+ 2 € [-1,1]", (7)

where n is the feature dimension. AFDy,. = 0 is equivalent
to excluding all the labels in Y from Yy (z + z), that is, Y N
Yi(x 4 z) = 0 which is also equivalent to satisfying all the
following |Y| inequalities:

filx+2) < frepy(®+2), Vj €Y. (®)

In general, not all inequalities in (8) can be satisfied. AFD . is
proportional to the number of violated constraints among those
in (8). Following [40], we introduce slack variables ¢’, and
minimizing AFDg;. can be modeled as a novel optimization
problem with the least constraint violation:

1 .
min 3[[¢]3, st fi(@+2) < frn(@+2) + GV EY, O

where ¢’ = (1, ’C\/Y|]T' Since f(a) is the label probability
vector, if fi(z + 2) < fir41)(z + 2) holds, then ¢} = 0.
Similarly, minimizing AFD;; in Eq. (6) can be modeled as:

4The ablation study in Fig. 8(a), the statistical analysis, and Proposition
in Section demonstrate that the defects of existing measures can be
compensated by the proposed measures.
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Fig. 5. Comparison of the main steps of our SPW-based solving (left) and existing mainstream algorithms (right) for untargeted attack.

in %Hg"ug, st fi(@+2) <05+ LYY,  (10)
where ¢ = [¢f,--- ,C"g,l]T. Combining (9), (10), and
||z|13/2, the following optimization problem is obtained:
1 A A
Jmin Sl=lE+ SHICE + SHIC B
st. fj(@+2) < fregy(®+2)+ V€Y,
file+2)<054+(/,VieY; x+ze[-1,1]",

where \; and \s are balancing factors for these three optimiza-
tion objectives which can be determined through a sensitivity
test. The proposed constrained optimization problem in (I1),
derived from Egs. (5) and (6), can obtain the optimal solution,
while those constrained optimization problems in existing
works [9], [11] cannot.

3) Problem for Universal Untargeted Attack Implemen-
tation. Sample-wise untargeted attack in (7) can be extended
to universal untargeted attack, with the latter aiming to find
an adversarial perturbation z shared by all samples [31].
Assume X; = {(x1,Y1), -, (2;,Y;),- -+, (N, Yn)}, where
N is the number of samples in X;. Following [11], [12],
an iterative algorithm on the dataset X; can be derived to
find a perturbation z shared by X;. Specifically, Algorithm 1
(without using the projection) is used to find an adversarial
perturbation z; for a sample (x;,Y;). Then a projection
operation P, () is used to update z [18]. Algorithm 2 shows
the processing steps, where for simplicity and efficiency, early-
stopping [32] terminates the algorithm.

4) Problem for Targeted Attack Implementation. Since
the targeted attack aims to find a small perturbation z so that
Y, = Yj(x + z), replacing Y in Eq. (5) with Y; is necessary,
and minimizing —AFDy;, is expected. Meanwhile, regardless
of whether it is a targeted attack or an untargeted attack, the
probability of per label in Y is required to be less than 0.5.
Therefore, AFD; ¢y remains unchanged. Then we obtain:

min [~AFD,;., AFD.y, ||z][3/2], st @+ z € [-1,1]". (12)

(11)

Likewise, (12) then becomes the following optimization prob-
lem with the least constraint violation:
min

Jnin_sl1zlB+ L¢3 + 221”113

st. fj(@+2) < fregn(®+2) + (5 Vi€ C\ Y,
fi(®+2) + > frey(x+2); Viey,
file+2) <054 VjeY; z+zel-1,1]"

This study focuses on AFD. However, AC can also be con-
sidered in targeted attack.

(13)

B. Theoretical Analysis of Weighting Strategy

Although directly solving (11) can also obtain a solution
with least constraint violation, the solution may not satisfy
the constraints as much as possible, that is, the number
of successfully attacked labels is not the largest in multi-
label attack. Meanwhile, the strategy of treating constraints
indiscriminately leads to fluctuation in the solution process
(Theorem 1). Existing works do not take these into account.
Then a weighting strategy can be applied to give various
constraints different priorities during the solution process.
Let w = [Mw', hw”|T,¢ = [¢,¢")F, and CT(2) =

. v . v 1"

[f[k+1](w+z) fj($+z)]j:1 ) [05 fj($+z)]j=1 s
where w’ and w” are the weights of the constraints. A natural
weighted version of (11) is described below and its theoretical

analysis is performed in detail:
1 2 L.
12171zn§||z|\2 + §C D(w)¢

s.t. CT(z)+¢ > 0.
where D (w) is the diagonal matrix of w and the constraint x+
z € [—1,1]™ is satisfied by using the projection method [18].
In order to facilitate theoretical analysis, following [40], (14)
is extended to the following optimization problem, with more
details being shown in the supplementary materials:

(14)

1
min 2 2/ .
. 1T .
s.t. (¢, z) solves {Sntmz)cz éTa()?CC
(15) means AFDy;. and AFD;; are minimized first, and
then finding z with the smallest /5 norm. Minimizing firstly
]|z||3 is not desired, because if so, obviously z = 0, but
AFDy,. and AFDy;; are large. Then we denote:

1

O(z) = min{=¢"D(w)¢ : CT(z) + ¢ > 0}

¢ 2
1 (16)

= L OT () D (w)[CT (=)

where [CT(z)]- = min{0,CT(z)}. Then we have the
following derivative of ©(z) with respect to z:

VO(z) = J(CT(2))" D(w)[CT(2)]-, (17)
where J(-) is the jacobian matrix. Denoting v = CT(z) + ¢,
then (15) can be extended as follows:

min [zl st F(z,¢0) =0, Gv)eQ, (8
where Q@ = {({,v) : 0 < ¢ L v > 0} and F(z,{,v) =

—J(CT(2))D(w)¢

CT(z)+¢—v | Then we have the following theorem:
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Theorem 2. Let (z*,(*,v*) be a local minimum of (18).
Denote 1 ={j: ( >0=vi},ia={j:(=0=0]},13=
{J:¢G=0<0vi} If —Z?‘:Yll Crw;V?CTj(z) is positive
definite, then there exist 7 € R", &’ € 9‘{"’2‘,52‘2* € Rl
which satisfy ;€7 =0, or § < 0, & < 0,Vj € 1o, We

have
2|y

2+ T(CTa (2 )E — (D Gu v CTy(z")+

Tj:1 T (19)
J(CT, (") T(CT(=) " D(w))., )ni =0,

T(CT (=)D (w))e,)ni + &, + &5 = 0.

The proof is in Appendix. Theorem 2 describes a necessary
condition for the local minimums of (18). From Theorem 2,
it can be seen that the weights w determine the necessary
conditions for a local minimum. And the different weights
allow different constraints to be satisfied. Further, denote
G(z,¢,v) as follows:

G(z,(,v) = 20)

[~J(CT(2))D(w)¢, CT(z)+ ¢ — v, min{¢,v}]".
Assuming G(-,-,-) is a Lipschitz continuous mapping, (15)
can be extended as follows (more details are shown in the
supplementary materials):

min ||z]3/2 s.t. G(2,¢,v) = 0.
z

Then, we get a more concise theorem as follows:

2y

Theorem 3. Let (2*,(*, v*) be a local minimum of (21). Then
there exist ¢* € Ry, mi € R, 0], € Rl which satisfy
0% € [0,1], Vj € 12. We have:

- (7T oW TETE) D W)

2|Y| (22)

+> ijVQCTj(z*))nf +¢'2z" =0.
j=1

The proof is in Appendix. Similarly, according to The-
orem 3, different weights can determine which constraints
participate in optimization and are satisfied.

According to Theorems 1, 2 and 3, we have the following
two corollaries, which illustrate the effectiveness of weighting
strategy. Corollary states that weighting strategy for ¢
maximizes the number of constraints that are met, which
means that the most labels are successfully attacked when
there is no ideal solution. Meanwhile, Corollary 2 shows that
weighting strategy can stabilize the solution only at a local
minimizer. All in all, weighting strategy finds a stable optimal
solution. And the proofs of these two corollaries are shown in
Appendix.

Corollary 1. Denote 15, C S = {1,2,---2|Y[};j" =
1,--+ 1, which satisfy Ué‘/:ﬂ?/ =S, {z:CTj(z) >0,j €
N {z: CTy(z) > 0,5 €15,y =0, 5 U, = 0,5 # K.
Without loss of generality, assume that 15| > |t5] > -+ > |¢f].
If we set w,e = 1, and w,e, = 0,Vy' = 2,---,l. Then, the
number of labels that are successfully attacked is the largest.
Corollary 2. According to the settings in Corollary 1, if
w,e = 1, and we, = 0, then the weighting strategy makes
the optimization process converge.

C. Optimization with Self-paced Weighting

The Lagrangian form of (14) is:

L(Gw,2) = 52l + 3¢ Dw)¢ —w(CT(z) + ), @3)
where v is a hyperparameter’.

Inspired by our experimental and theoretical analysis, we
next devise an iterative optimization process in which a novel
weighting strategy is utilized. In each iteration of our iterative
optimization process, we still measure the constraint difficulty
using the value of a constraint’s slack variable achieved in the
previous iteration. Let € be a threshold to distinguish normal
and difficult constraints. An ad hoc strategy is to set w; to 0
if Cjt._l in the ¢ — 1th iteration is larger than € and 1 otherwise.
In this strategy, the highly difficult constraints (constraints
satisfying (!~! > ¢) are excluded in the next iteration as their
weights are set as zero. This simple strategy is quite sensitive
to the choice of €. A soft scheme is defined as:

wh = e/max{(;"!, e} = 1/max{(} "' /e, 1}, (24)
Moreover, motivated by self-paced learning (SPL), which
places dynamic weights on train samples according to their
dynamic learning difficulties [23], we propose a self-paced
weighting (SPW) strategy. Initializing w = 1, each iteration
of our SPW strategy comprises three main steps:

o Perform gradient descent (GD) to minimize (23) in the

first iteration step.

« In the second iteration step, the threshold € is updated.

o In the third iteration step, the weights for each constraint

(or slack variable) are updated using Eq. (24). Thereafter,
return to the first iteration step.

During each update of € in SPL, its value increases gradu-
ally, e.g., ¢/ = 1.01 x ¢'~! at the tth iteration. Consequently,
the weights of more difficult constraints will become one in the
rest solving procedure. However, we design a more effective
update method where € is updated according to Eq. (23),
denoted as L. If L' decreases compared with L!~!, then ¢
is increased to allow more constraints to participate in the
optimization process, i.e., €/ =7 x e~ (n > 1); otherwise, €
is reduced to limit the participation of difficult constraints by
et = (et71 + €72) /2. Our SPW achieves better results than
the SPL method, independently if an ideal solution exists. The
corresponding results are presented in the experiments.

Algorithm | reports the details of our implementation for
the Multi-label Untargeted Attack based on our SPW, namely,
MASW. To ensure the optimization efficiency, similar to [24],
only one GD at each iteration is performed on L!. Fig.
depicts the difference between our algorithm and existing
methods in actual execution. As an example, take the linear
model f(x) = WTx + b to analyze the time complexity
of Algorithm | using the big O notation. In Step 3 of Al-
gorithm 1, the time complexity of one forward propagation is
|C|(n+1). The time complexity of calculating the Lagrangian
function of (14) is n+ 7|Y|, and that of calculating the index
[k] is |C|log k. The time complexity of one back-propagation
is n(1 + 2|Y]) + 4|Y]. L! in step 4 can be obtained through

SBesides the optimization objective (23), we also propose an additional
novel method based on our theoretical analysis, shown in Section S.II-C of
the supplementary file.
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Algorithm 1 SPW-based Untargted Attack (MASWU).
Input: x, Y, A1, Ay, model f(-), T, step size n for e
QOutput: Adversarial perturbation z

e

1: Initialize L = +o0, €°
2. fort=1to T
3 Update C s

4 Calculate Lagranglan value L! of (14);
5: if L' < L'"! then ¢ = nxet™1; 2% = zt,
6:  else e = (el +€t72)/2; Lt = LT
7

8

9:

/O 1/0'
o w;” and w; "}

, z! by solving (14);

if ||[V.L!|]2 <1073 then break;
Update w;!

return z*.

and w;-/t by using Eq. (24);

Algorithm 2 Universal untargted Attack (MASWUyv).
Input: Xt, )\1, )\2, E, f(), T
Output: Universal perturbation z*

1: Initialize z* =0, E1,Ey; =0, 71,72 = 0;

2: while true do

3. for (x;,Y;) € X; do

4: = MASWU(x;, Y;, A\1, M1, f, T, ’17);

5: z* =P (2" + 2f);

6:  Calculate SASR (Eq. (26)) and LFR (Eq. (28)) on X;
7 if SASR < 71 then E; = E; + 1;

8: else 4 = SASR; F; =0;

9: if LFR < 7 then Fy; = Fs + 1;

10: else 5 = LFR; E5 = 0;
11: if E; > FE and E5 > E then break;
12: return z*.

step 3. As the time complexity of Steps 5 and 6 is constant,
we can disregard them. Finally, the time complexity of Step
7 is n. Therefore, the total time complexity of Algorithm
is approximately O(7'(|C|n + |C|?)). Our theoretical analysis
and Fig. 3(c) show that our SPW-based method is more stable.
SPW better attenuates the fluctuations during optimization.
Therefore, T" is small in actual attack. Then, the actual time
cost is small. Further, a statistical comparison of the time
cost reveals that except for some methods that use single-step
or few-step GD, such as [1], our method achieves lower or
comparable time cost, shown in Section V.

Algorithm 2 outlines the calculation steps for universal
untargeted attack, extended by Algorithm |. Additionally, fol-

Algorithm 3 SPW-based Targted Attack (MASWT).
Input: x, Y, Y3, Ay, do, (1), T, 7
Output: Adversarial perturbation z

1: Initialize L° = +o00, €%, ¢, ¢0, ;0 and w;/o;

22 fort=1t0T

3 Update (', ; ', 2" by solving the weighted (13);
4 Calculate Lagrangian objective Lt'

5: if L < L= then €/ = n*el~liz" = zt,

6: else e = (el +72) /Lt = L Ll 7t = €172
7. if ||V, Lf|\2 < 107 then break;

8 Update w;" and w, "t by using Eq. (24);

9: return z*

lowing the same approach as Algorithm |, we can easily derive
an algorithm for targeted attack, as presented in Algorithm

V. EXPERIMENTS
A. Experimental Setup

Datasets and Models. Four benchmark multi-label learning
datasets VOC 2012, COCO 2014, NUS-WIDE [25], and Open
Images [26] are employed.

¢ VOC 2012/COCO 2014. The training and validation sets
comprise 5,717/82,081 and 5,823/40,137 images from
20/80 categories, respectively. And the average number
of positive label per image is 1.43/3.67.

o NUS-WIDE. [14] provides a variant of this dataset that
contains 220,000 images from 81 classes. We adopt the
standard 70-30 train-test split suggested in [14].

o Open Images. This large-scale dataset comprises more
than 9,000,000 training images and 125,436 test images
from 9,605 classes.

Moreover, the Inception-v3 [27], ResNet50 [28], and Tres-
net [29] models are used. Following the settings in [11], [14],
Inception-v3 and ResNet50 achieve 87.2 % mAP and 93.6
% mAP on VOC 2012 and COCO 2014, respectively. And
Tresnet achieves 66.1 % mAP and 86.9 % micro mAP on
NUS-WIDE and Open Images, respectively.

Competing Methods. The competing methods include: Fast
gradient sign method (FGSM [1]), Momentum iterative
fast gradient sign method (MFGSM [7]), Projected gradi-
ent descent (PGD [18]), Rank I [9], Multi-label DeepFool
(MLDF [9]) and Carlini & Wagner (MLCW [9]) attacks,
Multi-label attack by linear programming (MLALP [17]),
Top-k universal untargeted attck (kKUv [12]) and untarged
attck by DeepFool (kFool [12]), TML [11], Generative
Adversarial Multi object Attacks (GAMA [10]), Local Patch
Difference (LPD [37]), Top-k Attack with Label Correla-
tion (T ALC [46]) and Top-k Measure Imperceptible Attack
(TxyMIA [45]). The settings in [11], [33] are used. Three
suffixes U, Uv and T mean the untargeted attack, universal
untargeted attack, and targeted attack, respectively. Then our
methods are denoted as MASWU, MASWUv and MASWT.
Settings. We set to v = 1 in our experiments. Similar to
[9], [11], GD method is used to minimize L({,w, z). The
Lagrangian form of (13) is similar to Eq. (23). We do not
explicitly minimize ||z||3 in Eq. (23) in actual execution,
but following [11], [18], we use a projector operation P.(-) to
control ||z||2 < 7, where T is a hyperparameter, and following
[11], 7 = 2,10,100 for targeted, untargeted and universal
untargeted attacks, respectively. We set Ay = Ay = 0.5. 7
is set to 1.01, and € is initialized to 0.01. We record the
results when T' = 300. Furthermore, ¢’,¢”, w’, and w” are
initialized to obey a uniform distribution of [0, 1]. Following
[11], the learning rate for GD is set to 0.01. 3000 images from
the validation set of each benchmark dataset are selected to
build X, for universal untargeted attack. Besides, we apply
early stopping [32] on X; to terminate Algorithm 2. The
patience of early stopping E is set to 40. Following [11], for
PGD, Rank I, MLCW, kFool, TyML, T ALC and T;MIA, the
basic experimental setups are the same as above. Following
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[11], [33], for FGSM and MFGSM, T is set to 1 and 40,
respectively, and the learning rate is set to 0.03. For MLDF
and MLALP, T is set to 300. For LPD and GAMA, the original
experimental setups are used. For all universal untargeted
attack methods, the settings in [11] are used. Following [11],
[33], 1000 successfully classified images are selected from
the validation set of each dataset to build X, to evaluate
performance. For efficiency, a batch of 50 images is used to
attack. All experiments are conducted on a Linux server with
four RTX 3090 24Gb graphics cards. Additionally, all random
seeds are fixed, and each method is executed three times, with
the mean results being reported.

Evaluation Metrics. Following [11], we use the attack success
rate (ASR) to measure the attack performance, which is
defined as follows:

ASR=1-— ZmerAFDlC(:c7 z)/Nq,, (25)
where X, is the evaluation dataset, and N, = |X,|. ASR
represents the proportion of completely successful attacks. A
soft ASR (SASR) can be introduced by AFDg,.

SASR=1- 3,y AFD.(z,2)/N,. (26)

The higher both ASR (%) and SASR (%), the better the attack.
Similar to [11], the metric, namely Pert, is used to evaluate
the perceptual quality of attacks.

Pert = 3"« (|[z]l2/# of pixels of x)/N,. 7)
The smaller Pert (x1072), the less visible z. Another metric,
namely label flip rate (LFR), is devised by AFDy; s as follows:

LFR=1— ZweXUAFDslf(a:,z)/Nv. (28)
A larger LFR means higher attacking quality.

B. Untargeted Attack

Results. Table [ reports the top-k attack performance for
k = 3,5,10. The results infer that the proposed MASWU
achieves the best or comparable results. FGSMU uses single-
step GD (1" = 1) and a large learning rate, still requiring a
larger Pert and performing poorly in terms of ASR, SASR, and
LFR. For MFGSMU, which utilizes a few-step GD (T" = 40)
and the momentum, although it requires the smallest Pert,
its performance is poor. Moreover, the multi-label attack
methods MLCWU and MLDFU explicitly lower the prediction
confidence of the ground truth below a certain threshold but
only achieve a low LFR. Both PGDU and kFool are initially
designed for single-label learning. They usually use larger
perturbation bound Pert to attack model, but the attack perfor-
mance is still inferior to MASWU. MLALP uses the interior
point method to solve linear programs, but its performance is
still lower than that of MASWU. Compared with the SOTA
method TMLU, MASWU achieves better results on ASR,
SASR, and LFR for 7' = 300 while yielding similar Pert
values. Same or smaller Perts imply that TyMLU may just
obtain suboptimal solutions. Both LPD and GAMA utilize
complex generative models, yet rely on larger perturbation
bounds (Pert), resulting in lower ASR, SASR, and LFR values
compared to our method. Though Ty ALCU and T;MIAU use
label correlation and design complex optimization problems
in adversarial attacks respectively, they are still inferior to our
method.

TABLE I

COMPARSION OF UNTARGETED ATTACK METHODS. BOLD NUMBERS

HIGHLIGHT THE BEST RESULTS.
VOC 2012 COCO 2014
k| T |Method ASR SASR Pert LFR| ASR SASR Pert LFR
1 [FGSMU [23.00 31.06 3.99 47.30[18.10 51.62
40 [MFGSMU[17.20 24.70 0.32 53.74[22:20 56.87
'MLCWU [19.80 29.46 2.38 50.27(25.00 33.94 3.71 4559
MLDFU
PGDU
MLALP
3 kFool
300|TxMLU
LPD
GAMA
T, ALCU
T MIAU
MASWU

1 |FGSMU
40 [MFGSMU(11:80 17.73 0.33 52.91(18:00 50.74

19.80 29.46 2.38 50.27(25.00 33.94 3.
18.00 29.17 1.74 45.28(23.60 31.19
85.17 93.21 3.67 85.42|90.43 97.72
64.97 76.52 0.71 86.59(55.90 69.72
93.50 96.87 1.42 94.05(60.80 83.20
95.53 95.73 0.48 97.88(99.83 99.86
89.90 90.11 0.91 90.42|92.30 93.86
91.30 92.57 0.73 91.05{94.40 95.39
95.97 96.11 0.52 98.18(99.40 99.52
96.03 96.17 0.55 98.14(99.73 99.75
97.13 97.34 0.49 99.83(99.90 99.95

17.30 24.43 4.00 47.39(14.40 44.28

MLCWU [18.00 26.95 2.45 51.74|23.70 31.29
17.20 27.06 1.85 49.21{22.10 30.37 2.
85.27 93.25 3.75 85.95|89.47 97.53 5.
5827 67.34 0.74 87.56(54.63 67.47
93.60 95.78 2.35 95.81(65.10 84.69
93.33 93.76 0.52 98.06(99.67 99.71
87.23 89.26 0.91 90.42|91.13 92.28
90.10 91.23 0.73 91.05(92.47 93.74
94.10 95.20 0.56 98.27(99.70 99.72
94.37 95.20 0.57 98.36(99.53 99.60
96.17 96.23 0.52 99.92(99.80 99.78

9.90 14.81 3.98 47.30{11.20 35.34

300{ T, MLU

0.54 99.63
7.29 40.55

15.20 25.61 2.52 53.91(20.60 29.17
17.10 26.54 1.87 52.38(20.00 27.97
85.00 92.76 3.85 86.20|87.67 97.08
49.17 61.32 0.75 88.29(52.70 65.29
88.40 90.18 4.95 97.12|68.00 85.82 14.95 85.82
87.93 88.43 0.57 98.15|99.47 99.52 0.60 98.90
86.73 88.09 0.91 90.42190.10 91.12 0.73 91.97
88.07 89.18 0.73 91.05]|90.17 91.06 0.69 93.78
89.17 90.29 0.60 98.38/99.40 99.51 0.64 98.48
89.30 90.67 0.59 98.40(99.10 99.26 0.62 98.72
91.40 91.89 0.57 99.97(99.93 99.98 0.60 99.89

10 kFool
300|TxMLU

C. Universal Untargeted Attack

Results. Table I presents the results of each universal
untargeted attack method on VOC 2012 and COCO 2014.
Our method MASWUyv use the smaller or smallest Pert to
achieve the best ASR, SASR, and LFR. X in Table [l means
that the method kUv takes an excessive amount of time (more
than a week) but could not produce the result. Therefore
we do not report this result. PGDUv usually utilizes the
highest Pert but achieves lower ASR, SASR and LFR than our
methods. Compared to TyMLUv, Ty ALCUv, and T;MIAUYv,
the proposed method achieves higher ASR, SASR, and LFR
only with a lower Pert.

D. Targeted Attack

Additional settings. Following [11], this paper considers
three target types Y;, namely, worst, random, and best cases.
These cases mean that labels in Y; have the lowest prediction
scores, labels in Y; are selected randomly, and labels in Y;
have the largest prediction scores, respectively.

Results. Table reports the results for top-k targeted
attacks under the best case. When similar Pert values are
achieved on two datasets, MASWT outperforms all competitor
methods considering the ASR, SASR, and LFR metrics for
different £ values. FGSMT uses a single-step GD (1" = 1), but
it requires larger bounds and achieves poor ASR, SASR, and
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TABLE 11
COMPARSION OF UNIVERSAL UNTARGETED ATTACK METHODS WITH
k=2,3,5,10 0N VOC 2012 AND COCO 2014. BOLD NUMBERS MEAN
THE BEST RESULTS. X MEANS THAT THE METHOD CAN NOT OUTPUT THE
RESULT.

TABLE IV
COMPARISON OF TARGETED ATTACK METHODS UNDER RANDOM CASE.
VOC 2012 COCO 2014
ASR SASR Pert LFR| ASR SASR Pert LFR
21.23 0.68 16.84 7.68 0.82 39.13

k| T |Method
1 |[FGSMT

VOC 2012

COCO 2014

k [Method

ASR SASR Pert LFR

ASR SASR Pert LFR

PGDUv
kUv X
TrMLUv
T, ALCUv|66.30
T, MIAUv
MASWUv

60.13

67.37

66.60
68.47

64.76 34.12 77.19
X X X|72.90
71.52 16.27 92.55
69.12 18.41 90.15
70.29 17.21 91.59
72.21 15.63 94.39

86.52 71.52 81.28
86.18 51.38 79.56
88.78 15.26 94.44
86.82 17.06 92.41
87.18 16.46 92.64
89.17 14.79 95.61

PGDUv
kUv X
TxMLUv
TLALCUV[62.10
T, MIAUvV
MASWUv

57.73

64.43

63.20
64.90

63.41 39.54 78.92
X X X|61.40
68.11 17.28 96.11
66.13 20.18 94.01
66.71 19.29 94.28
69.13 16.59 96.41

76.29 74.11 83.95
73.64 51.26 80.43
87.24 16.36 94.82
84.47 19.31 92.91
85.18 18.69 93.12
87.34 15.62 95.71

PGDUv
kUv X
TxMLUv
T ALCUv|61.00
T, MIAUv
MASWUv

53.97

61.87

61.80
63.60

62.37 43.53 80.54
X X X|69.80
66.22 19.27 98.01
65.21 23.73 95.16
65.12 23.15 95.26
67.97 18.57 98.99

80.58 75.61 85.13
78.82 52.34 85.51
85.29 17.19 96.01
84.09 21.09 94.03
84.49 20.17 94.51
86.19 16.47 96.66

PGDUv
kUv X
T,MLUy
T, ALCUv [40.20
T,MIAUv [41.00
MASWUv |42.97

35.33

41.63

38.94 49.55 81.02

47.93 22.84 98.69
47.11 25.19 96.92
47.41 23.81 97.09
49.53 22.56 99.39

X X X

66.79 79.62 85.98

X X X
83.49 18.61 97.92
82.21 23.34 96.42
83.02 22.14 97.10
85.79 18.25 98.39

TABLE III

MLCWT
MLDFT
PGDT
Rank I
TixMLT
Tr ALCT
T MIAT
MASWT

40 |MFGSMT|T0.70

74.43 0.60 89.70
17.14 0.86 13.58
49.73 0.82 49.82
71.73 0.55 98.48
88.80 0.57 97.09
89.11 0.59 97.34
89.20 0.60 97.83
89.65 0.57 99.53

75.19 1.04 90.06
19.21 1.45 17.36
31.96 1.47 85.47
99.06 0.95 99.17
99.28 1.00 99.27
99.31 1.03 99.30
99.39 1.02 99.27
99.87 1.00 99.95

300

FGSMT

0 (MFGSMT
~ [MLCWT

MLDFT
PGDT
Rank I
TirMLT
TrALCT
T MIAT
MASWT

30.89 0.70 18.04

61.00 0.67 85.51
20.79 0.90 7.98
43.99 0.76 44.88
63.44 0.58 98.01
86.69 0.60 96.28
87.06 0.61 97.20
87.20 0.62 97.72
88.19 0.60 99.29

8.78 0.84 39.63

72.24 1.29 91.39
15.64 1.46 14.01
28.33 1.46 87.56
91.66 1.10 99.29
97.54 1.17 99.25
97.60 1.20 99.29
97.64 1.19 99.30
98.35 1.17 99.98

FGSMT

0 (MFGSMT

MLCWT
MLDFT
PGDT
Rank I
Ty MLT
Tr ALCT
T MIAT
MASWT

53.64 0.75 18.95

61.46 0.75 73.40
51.71 0.92 6.33
57.19 0.79 35.30
69.02 0.57 98.08
90.09 0.61 95.31
90.59 0.64 96.00
90.64 0.63 96.20
91.52 0.61 98.91

12.45 0.85 40.43

48.78 1.31 92.28
12.65 1.46 12.60
25.84 1.47 81.34
59.22 1.17 99.27
94.89 1.28 99.44
95.08 1.30 99.47
95.10 1.29 99.40
95.90 1.28 99.96

COMPARISON OF THE TARGETED ATTACK METHODS UNDER THE BEST
CASE SCENARIO.
VOC 2012

COCO 2014

Method | ASR SASR Pert LFR| ASR SASR Pert LFR
1 |FGSMT 62.83 0.80 23.41 52.00 1.48 29.68
[ 40 [MFGSMT|T1.50 66.19 0.20 26.68|16.30 59.130.34 35.18

TABLE V
COMPARISON OF TARGETED ATTACK METHODS UNDER WORST CASE.
VOC 2012 COCO 2014
ASR SASR Pert LFR| ASR SASR Pert LFR
6.19 0.72 17.21 6.98 0.83 42.48

k| T |Method
1 |[FGSMT

MLCWT [82.70

MLDFT
PGDT
Rank I
TirMLT
T, ALCT
Tk MIAT
MASWT

93.86 0.47 86.48
78.13 0.87 53.53
76.83 0.81 49.19
95.86 0.43 93.44
97.39 0.43 93.35
97.41 0.45 93.70
97.47 0.47 95.29
97.79 0.43 98.25

92.43 0.56 88.51
72.20 1.42 65.83
62.16 1.43 71.47
99.21 0.56 90.04
99.11 0.58 90.78
99.20 0.61 92.29
99.23 0.63 93.45
99.86 0.60 96.37

300

0 (MFGSMT
MLCWT [38.00

FGSMT

MLDFT
PGDT
Rank I
TiMLT
Tr ALCT
T MIAT
MASWT

84.14 0.55 84.88
74.53 0.92 21.38
78.04 0.84 44.18
93.16 0.49 96.56
96.55 0.49 96.62

95.19 0.53 96.71

65.52 0.78 23.26

95.25 0.52 97.10
96.83 0.49 98.81

60.05 1.51 28.61

93.45 0.78 91.65
70.54 1.45 56.03
69.54 1.44 69.07
99.34 0.67 97.28
99.20 0.69 96.83
99.12 0.73 97.11
99.20 0.71 97.34
99.94 0.69 98.56

10
301

(=]

FGSMT
MFGSMT
MLCWT
MLDFT
PGDT
Rank I
TixMLT
TrxALCT
T MIAT
MASWT

74.92 0.64 73.02
82.41 0.99 40.56
77.88 0.85 36.56
91.11 0.52 97.09
96.27 0.53 97.13
97.13 0.55 97.40
97.89 0.56 97.84
99.65 0.53 99.16

66.28 0.81 24.15

61.89 1.69 28.31

94.19 1.17 90.14
73.82 1.47 37.03
70.49 1.43 57.43
99.02 0.81 97.79
99.47 0.85 97.47
99.50 0.89 98.01
99.54 0.89 98.18
99.91 0.86 99.16

300

0 (MFGSMT
~ [MLCWT

MLDFT
PGDT
Rank I
TixMLT
Ti ALCT
T MIAT
MASWT

40.06 0.66 89.30

9.88 0.78 7.63
22.23 0.86 50.13
41.09 0.61 98.19
72.23 0.64 96.65
72.68 0.65 97.01
73.00 0.66 97.46
74.85 0.64 99.06

57.93 1.13 92.35
10.75 1.56 12.69
26.61 1.45 91.12
83.47 1.05 99.24
93.06 1.12 99.24
92.74 1.14 98.67
92.90 1.15 98.90
93.27 1.13 99.89

300

FGSMT

0 (MFGSMT

MLCWT
MLDFT
PGDT
Rank I
TirMLT
TxALCT
T MIAT
MASWT

5.62 0.73 15.74

28.66 0.74 86.38
8.74 0.79 7.12
18.71 0.94 44.11
28.72 0.61 97.83
70.65 0.66 95.40
71.01 0.68 96.10
71.28 0.68 96.45
72.58 0.66 98.81

6.26 0.84 41.61

62.06 1.28 93.17
9.52 1.57 13.46
26.58 1.58 90.73
71.72 1.15 99.29
91.16 1.24 99.25
91.20 1.25 99.30
91.25 1.25 99.27
92.31 1.24 99.97

300

FGSMT

0 IMFGSMT
~ [MLCWT

MLDFT
PGDT
Rank I
TiMLT
Ty ALCT
T MIAT
MASWT

4.31 0.73 15.35

37.55 0.78 77.38

6.77 0.79 6.54
28.51 0.97 34.58
40.18 0.59 97.93
76.83 0.65 93.98
76.91 0.66 94.37
77.10 0.66 95.10
78.29 0.65 98.24

5.34 0.82 41.47

58.68 1.31 93.79
7.66 1.57 12.58
21.79 1.61 86.88
44.73 1.22 99.37
88.01 1.29 99.07
88.19 1.30 99.10
88.21 1.31 99.06
88.65 1.28 99.96

LFR values for targeted attacks. Although MFGSMT obtains
the smallest Pert, its attack performance is still unacceptable.
Moreover, MLCWT, MLDFT, and PGDT attain a much lower
performance than our methods by a large margin in terms
of ASR, SASR, and LFR. MLCWT and MLDFT explicitly
lower the prediction confidence of the ground truth below
a certain threshold. However they achieve low LFR values.
TxMLT and Rank I are designed specifically for top-k targeted

attacks, but their attack performance is still lower than our
methods regarding ASR, SASR, and LFR. Although using
complex methods, both TyALCT and TxMIAT are inferior
to our method.

Tables and V present the results under the random and
worst cases. Similar to Table I1I, our method achieves a better
attack performance in terms of ASR, SASR, and LFR with
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comparable Pert.

TABLE VI

COMPARISON OF UNTARGETED ATTACK METHODS ON TWO LARGE SETS.
NUS-WIDE Open Images
Method | ASR SASR  Pert LFR| ASR SASR Pert LFR
MLCWU|14.70 29.65 0.87 35.84{27.60 78.17 1.39 25.22
MLDFU [10.70 19.64 1.56 30.38(23.10 50.64 1.97 22.89
PGDU [85.23 94.15 1.68 63.91(92.13 93.46 1.65 64.45
3 {300{kFool  |69.80 88.03 1.51 36.33|87.10 93.37 2.73 40.35
TirMLU [96.33 97.01 0.15 79.75|97.27 97.99 0.14 85.34
MASWU |98.17 99.67 0.14 98.83(99.87 99.90 0.13 98.45
MLCWU|10.00 25.47 0.62 37.29{14.20 66.11 1.35 27.46
MLDFU | 8.60 17.62 1.58 35.69(13.30 45.48 1.99 25.86
PGDU |84.37 93.92 1.69 68.18{90.80 91.21 1.69 74.61
5|300|kFool  |72.30 88.22 5.28 47.49(82.70 92.18 5.71 51.53
TirMLU [95.77 96.54 0.16 81.29|96.20 97.01 0.15 86.36
MASWU|97.73 99.33 0.14 98.86(99.67 99.63 0.14 98.97
MLCWU| 8.50 17.81 0.59 37.64| 9.10 50.84 1.09 29.02
MLDFU | 6.90 15.64 1.61 37.58]11.50 37.95 2.07 27.73
PGDU 82.77 93.57 1.70 73.59(85.23 96.72 1.71 81.83
10{300|{kFool ~ |71.70 87.06 11.59 60.54|81.50 91.75 14.98 63.03
TirMLU [94.10 9543 0.16 85.69|94.73 95.48 0.17 87.12
MASWU|95.97 97.69 0.15 98.83(99.47 99.53 0.15 99.14

k[T

TABLE VIII

COMPARISON OF TARGETED ATTACK METHODS ON TWO LARGE SETS.
NUS-WIDE Open Images
Method | ASR SASR Pert LFR| ASR SASR Pert LFR
MLCWT|18.20 48.43 0.17 46.23|27.00 45.26 0.37 57.98
MLDFT (14.50 35.39 0.45 44.43|23.70 38.92 0.41 50.52
PGDT |38.47 67.96 0.34 28.28|32.63 50.97 0.35 57.24
Rank I [92.60 94.23 0.13 30.59(90.10 92.35 0.16 25.37
TrMLT (9527 96.71 0.14 75.27|95.07 96.72 0.15 82.14
MASWT|98.13 98.85 0.13 93.61(99.93 99.75 0.15 95.67
[MLCWT |15.10 758.18 0.19 43:34]20.30 40.66 0.34 61.82°
MLDFT 34.56 0.41 35.28 34.72 0.39 45.86
PGDT 70.26 0.33 22.41|23.97 47.79 0.35 59.15
Rank I 94.19 0.14 31.62(89.60 91.13 0.18 28.69
T MLT 95.94 0.15 77.39|94.83 96.01 0.16 83.56
MASWT |96.53 98.69 0.15 95.18(99.80 99.74 0.16 95.51
[MLCWT |14.80 770.27 0.25 40.14]14.60 35.64 0.30 55.29°
MLDFT 29.73 0.43 33.37|15.70 30.23 0.40 44.19
PGDT 73.20 0.35 16.02|17.47 46.03 0.36 49.22
Rank I 81.48 0.21 37.85(87.20 89.65 0.20 28.81
T MLT 94.56 0.17 79.25|93.53 94.49 0.18 85.69
MASWT|95.50 98.13 0.16 96.77(99.37 99.75 0.18 95.21
MLCWT|16.50 40.92 0.21 65.98(24.60 40.19 0.39 61.17
MLDFT 33.39 0.40 47.71]20.90 35.65 0.44 55.87
PGDT 50.29 0.32 50.39(25.63 43.38 0.41 50.51

Case |[k|T

3 1300

Best |5

300

10{300

COMPARSION OF UNIVERSAL UNTARGETED ATTACK METHODS ON
NUS-WIDE AND OPEN IMAGES. PERT IS IN 1072,

TABLE VII

NUS-WIDE Open Images
k [Method ASR SASR Pert LFR| ASR SASR Pert LFR
PGDUv  [69.90 76.18 8.91 57.64|75.53 80.71 7.45 66.48
2 kUv 65.80 69.34 7.98 53.91|73.60 78.62 6.24 61.46
TrMLUv |77.93 87.07 3.93 63.08|82.70 94.19 3.41 81.17
MASWUv|79.93 90.31 3.89 80.79(84.97 97.24 3.23 85.93
PGDUv  [65.47 73.46 8.96 60.93(70.47 76.58 7.49 67.93
3 kUv 60.70 65.96 8.04 55.78|67.80 73.48 6.63 65.28
TMLUv |71.57 84.29 4.20 74.39|80.27 94.89 3.25 82.37
MASWUyv |75.47 86.87 4.17 86.79|82.43 96.62 3.12 87.69
PGDUv  [60.43 67.65 9.04 64.56(64.53 71.45 7.91 70.91
5 kUv 57.50 63.48 8.11 57.59(62.10 69.48 6.77 67.94
TrMLUv [69.03 82.07 4.61 80.13|77.03 95.46 3.56 83.07
MASWUyv|72.27 84.35 4.55 93.39/80.87 96.27 3.29 89.26
PGDUv  [55.73 61.47 9.15 67.64|60.27 70.64 7.93 73.75
10 kUv 5430 60.38 8.75 65.69|57.90 67.26 6.91 70.72
TrMLUv [59.37 76.51 6.52 93.19|70.47 93.42 3.71 83.56
MASWUv|60.93 78.59 6.51 97.33|74.87 94.27 3.67 91.01

E. Attacks on Large Datasets

Table

reports the results of untargeted attacks on two

31300 Rank I

TiMLT
MASWT
[MLCWT
MLDFT
PGDT
Rank I
TiMLT
MASWT
[MLCWT
MLDFT
PGDT
Rank I
TiMLT
MASWT

Random| 5 {300

10(300

82.62 0.19 33.69
91.28 0.20 77.25
95.12 0.19 94.01
32.26 0.24 64.41
30.38 0.42 53.32
40.24 0.35 42.81
54.74 0.21 47.71
86.52 0.24 78.98
91.27 0.19 92.99
22.57 0.25 58.13
25.37 0.44 54.72
33.41 0.37 32.96

50.28 0.23 49.96|30.

3 71.52 0.26 81.09

76.16 0.23 91.01

79.49 0.26 68.66
92.75 0.29 74.64
94.21 0.25 96.32
31.28 0.35 54.82
25.78 0.45 53.26
35.66 0.40 55.54
43.24 0.28 70.23
83.58 0.31 78.65

27.84 0.36 46.31
22.17 0.46 52.69
33.29 0.42 55.14
38.73 0.30 69.31
61.44 0.31 71.69
69.99 0.28 86.42

MLCWT
MLDFT
PGDT
Rank I
TiMLT
MASWT
[MLCWT
MLDFT
PGDT
Rank I
TiMLT
MASWT
[MLCWT
MLDFT
PGDT
Rank I
TiMLT
MASWT

3 {300

Worst | 5

300

10{300

27.91 0.23 72.42
23.46 0.39 65.47
31.28 0.29 55.14
24.88 0.22 49.33

3 62.48 0.23 71.43

65.70 0.14 88.23
19.71 0.25 71.82
14.28 0.38 64.19
15.85 0.31 45.94
18.61 0.21 48.91
52.31 0.25 81.19
56.55 0.14 91.04
16.84 0.28 70.02
14.72 0.43 67.85
11.28 0.33 48.59
19.86 0.24 46.64
46.06 0.29 83.42
49.72 0.27 91.23

26.61 0.34 66.67
23.79 0.46 55.75
36.19 0.39 54.28
78.62 0.26 58.87
87.94 0.27 74.12
88.93 0.26 95.74
23.19 0.35 62.38
17.26 0.45 55.46
30.75 0.37 43.39
36.02 0.28 60.71
85.64 0.28 76.53

2491 0.36 64.51
18.84 0.49 56.74
26.71 0.38 46.78
66.80 0.31 71.56
92.54 0.32 79.24
96.89 0.29 86.43

large datasets, NUS-WIDE and Open Images, revealing that
our method, MASWU, obtain the best results for k = 3,5, 10.
Regarding the SOTA methods MLCWU, MLDFU, PGDU,
kFoolU, and T;MLU, although these require a larger pertur-
bation bound Pert, they still achieve lower ASR, SASR and
LFR values. Besides, MLCWU and MLDFU explicitly lower
the confidence of the true label below a certain threshold
but still achieve low LFR. Table reports the results of
universal untargeted attacks. Similarly, MASWUv obtain the
lowest Pert and the highest ASR, SASR, and LFR. Table
presents the results of targeted attack for £ = 3,5,10 under
best, random, and worst cases. MASWT still outperform other
SOTA methods in ASR, SASR, and LFR by utilizing a lower
or comparable Pert. Rank I and T;MLT, are specially designed
for top-k attacks, but still obtain lower ASR and SASR than
our methods”.

%More results regarding LPD, GAMA, T, ALC and T;MIA are included
in the supplementary materials.

F. More Analysis

Visual comparison. Fig. ¢ illustrates two examples of top-3
untargeted attack (top) and targeted attack (bottom) on VOC
2012, where our SPW-based methods make the top-3 outputs
of the adversarial image have higher confidence, and the
ground truth labels have lower prediction confidence than the
other methods. Fig. 7 visualizes some examples for universal
untargeted attack on COCO 2014, revealing that MASWUv
uses a smaller Pert to make a successful attack. The labels in
Y have a lower prediction confidence acquired by MASWUv
than £Uv and T;MLUyv, and the top-3 outputs have a higher
prediction confidence than the other two methods. For kUy,
the perturbation is more visible.

Ablation study. Next, we compare our two AFD measures
with the AFD measures in TyML and MLCW using the con-
ventional optimization strategy rather than our SPW. Fig. &(a)
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Prediction Scores and Ranked Labels

1. Persor{(,99) #6. Dog 0.00] w11. Bird 0.00] ' 16. Diningtable [ 0
2. Bottle|0.78|#»7. Bicycle [0.00| ®12. Train 0.00[ 4 17. Plane 0.00
83, Chair [0.12| 4 8. Motorbikg0.00| ¢ 13. Pottedplant|0.00| ©18. Tv 0.00
=4, Car |0.03|#9. Sheep 0.00|w14. Cow 0.00| »f19. Horse 0.00
@ 5. Cat [0.01/®10. Boat 0.00|=15. Bus 0.00] =20. Sofa 0.00
J ' .

Top-3: 1 2 v

04 1 0 9
GT: 4,
PerILtl()n Score

1. Person 0.99] 6. Bottle 2] =11.Bus [0.00] * 16.Sheep [0.00
2.P 0.96| 557. Bicycle 1| =12.Sofa [0.00| »17.Horse |0.00
3. Motorbike 0.90| ief8. Diningtable|0.01| # 13.Cat |0.00| #18.Cow 0.00
a4, Car 021] 9. Dog 001| #14.Boat |0.00| ¥19.Bird 0.0
&5, Chair 0.08] @10. Tv 0.00] ®15.Train [0.00| #420.Plane |0.00
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Fig. 6. Visual images in VOC 2012 for top-3 untargeted attck (top) and
targeted attack under the best case (bottom).
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Fig. 7. Visual images in COCO 2014 for top-3 universal untargeted attack.

illustrates the results of top-3 untargeted attack on VOC
2012, demonstrating that our measures outperform T;ML and
MLCW and proving the effectiveness of our AFD measures.
To validate SPW, we replace the optimizing strategy in MLCW
with our SPW. Fig. 8(b) presents the results on the top-
10 untargeted and targeted attacks, highlighting that when
applying SPW to MLCW the performance is improved further
demonstrating the effectiveness of SPW. Similar conclusions
are made from Fig. 8(c) when applying SPW to TyML for
a targeted attack. In theory, SPW can be applied to arbitrary
adversarial attack tasks involving multiple constraints.
Secondly, we study the effect of the update strategies of € in
SPL, our SPW, and the fixed ¢ (FE). These three strategies are
compared by replacing the update strategy in SPW with the
strategy of SPL and FE. Fig. 9(a), (b) and (c) compare ASR,
LFR and Pert when three strategies are applied. The results
demonstrate that our strategy achieves a higher ASR and LFR
and lower Pert than the strategy in SPL and FE.
Sensitivity test. There are three important hyperparameters
A1, A2 and 7). Fig. 10(a) presents the results of top-10 targeted
attack under the worst case on VOC 2012 with varied A\;
(A2 remains 0.5). As \; increases, ASR also increases, and
LFR decreases. A\; and Ao should be tuned according to
the application scenario. Moreover, Fig. 10(b) presents the
effect of » on ASR and LFR, achieving the best value
for » = 1.01. Based on this sensitivity test, we conclude
that A\, A2 = 0.5, and n = 1.01 attain the best possible
performance. Besides, Fig. 10(c) visualizes the change process
of €’ during the solution process, highlighting that when there
is no ideal solution, €’ increases to a certain value and tends

to remain unchanged. Additionally, €' keeps increasing when
the ideal solution exists. These results demonstrate that e can
be properly adjusted according to the change of the attack
performance instead of continuously increasing in SPL.
Early stopping strategy [32] is used to terminate Algo-
rithm 2. Fig. | 1(a) shows the results of the patience £ on VOC
2012, revealing that as E increases, ASR first increases and
then decreases. ASR reaches its maximum value for £ = 40.
In our experiments, we set £/ = 40. We also study the impact
of v on attack performance, with Figs. 11(b) and (c) reporting
the results under different v on VOC 2012 and COCO 2014,
respectively. As v increases, ASR and LFR increase, but LFR
tends to a plateau in Fig. 11(c). Since v = 1 satisfies the
required attack performance, we set ¥ = 1 in our experiments’.

- TML - MLCW 80 - TML
80 Ours MLCW+SPW TMLSPW
60 - MLCW § 60
4
40
40 2
20 I 2
0 0 0
ASR SASR LFR uT TB (b)TR ™ TB "l('R) ™
c

Fig. 8. (a) AFD results, (b) and (c) SPW results (UT means untargeted attack,
and TB/TR/TW means targeted attack under the best/random/worst case.

Fig. 9. (a), (b) and (c) ablation studies of top-3 untargeted attack for the
update strategy of € on VOC 2012.
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Fig. 10. (a) and (b) effect of A\; and 1 on ASR and LFR, respectively. (c)
variation of € when the ideal solution does not exist (FIS) and exists (TIS).

ASR #1965 ASR - D S D 4 [100.0
e s ! 9.8
64.5 - 90 470 9.6
N % . g 6
g e SE4704 e :
< e S2465{ ff = i 25
95.0 / 0-<645) |
P I 80 i {99.0
6: 945  46.0{# 975 6401 4 198.8
- LR & LIk ASR - 1w lgg 6
63 940 455 70 635 :
1020 30, .40 50 60 0.5 1.0 3.0 5.0 7.0 05 1.0 3.0

5.0 7.0
L

(a) E - ()

Fig. 11. (a) ASR and LFR of the top-3 universal untargeted attack with
variable £ on VOC 2012. (b) and (c) ASR and LFR of the top-10 targeted
attack under the worst case with a varied v on VOC 2012 and COCO 2014.

VI. CONCLUSION

The defects of existing SOTA methods are revealed from
both experimental and theoretical perspectives. To deal with
the two defects, we propose a new measure scheme based
on the Jaccard index, yielding two concrete measures called
AFDy,;. and AFD,; ;. Moreover, the constrained optimization
problems with the least constraint violation are reconstructed
for untargeted and targeted attacks. We conduct a solid the-
oretical analysis that demonstrates the effectiveness of the

"More details can be found in the supplementary materials.
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weighting strategy. A natural weighted Lagrangian form is
proposed. Then we develop a self-paced weighting (SPW)
scheme that gradually involves difficult constraints in the
optimization process. SPW increases the attack gain and
avoids fluctuations during optimization. Extensive experiments
validate the effectiveness of our method.
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APPENDIX
A. Proof of Proposition

Proof. According to the definition of AFD;., for a perturbation
2,if Y ¢ Yi(x+2) holds, then I(Y C Vi (z + 2)) = 0 holds.
Likewise, if we have Yj,(x+2z) ¢ Y and Y # Yj.(x+z), then
I(YVi(x4+2) CY)=0and [(Yi(z+2)=Y) = 0 are ture.
Then, we have AFD,.(x, z) = 0. Therefore, if two arbitrary
different perturbations z! and 22 satisfy the above statement,
we have AFD,.(z, 21) = AFD,.(z, 22) = 0. Similarly, even if
Yig ()] # [Yip(z3)] # 0, |Bi(, 2Y)| # |Bi(w. z2)| # B,
and [Yiy (z))] # [Yig (z2)], |Bi(z))] # [Br(22)] are true, we
still have AFD;¢(x, 2') = AFD;¢(x, 2?) and AC(z,2') =
AC(z, 22). The above analysis means that the existing
AFD/AC measures cannot accurately distinguish between the
different perturbations. O

B. Proof of Theorem

Proof. We consider a common constrained optimization prob-
lem as follows:

) th . (29)

According to ( ) the Lagrangian form in [9], [11] is
min ||z]|3 — Z tCTj(z), where X is the Lagrange coeffi-
cient (greater than or equal to 0). The KKT condition requires
CTj(z) > 0; j = 1,---, Nes. Therefore, we can divide all
constraints into Ng groups and form Ng disjoint regions for
z, namely, G/, j' =1,--- , Ng.

Firstly, we prove that G;s are the closed sets. Let z* be
a cluster point of G;/. Then there exists {z™},°° such that
lim,,—,+002™ = 2z* holds. Since CT}(z) is continuous, we
have CT;(z*) > 0. Otherwise, there exists & that satisfies
CT;(z) < 0; Vz € (2 — R, 2" + 7). Due to lim,,,_, 4 o0 2™ =
z*, there exists a positive integer m* that satisfies z,, € (z*—
h,z* + h), ¥V m >m*, and CT}(zm,) < 0. This contradicts

min||z|[3/2 s.t. CT;(2) >0; j=1,---

CTj(Zm) Z 0.
Secondly, since Gy N G = @ is true, we have
inf o eg, zmrcg 2™ — 2™ [l > 0. There exist

. 1
% and limy,r 400 277

infs €6,z €6, 125 =2 ||z = im0 |12 =2 ||2 =
125 — zill2- If [[25, — 25]l2 = 0O holds, then we have
Z5 =2y 2,2 € Gj NGy This contradicts G; NGy = (.

. ’ .
limp, 400 277 = 2 = zj, that satisfy

Let ¢* be the minimum value of inf {||z! — 22|, : 2! €
Gjr,22 € G },Vj', k' =1,--- | Ng and j’ # k. The proof is
completed. O

C. Proof of Theorem
Proof. According to (18), the Jacobian matrix of F' is
_ |- GuvieTy(z) —J(CT(2)"D(w) 0
J(F)_{ "7CT(2) T —1}’ G0
Let ® := {(2,{,v) € R" x Q : F(z,(,v) = 0}. Following
Proposition 2.1 of [40], the normal cone of ® is
n . (m,m2) € R
NCa((2,¢,v)) C {J(F)T ]+ [sl] S e }
[€2)
where NOQ(( ) - {(C7 ) : (Cj?ﬁj) € Nw(Cjan)z .] =
-, 2|Y[}. If ¢; > 0 and v; = 0, then N,,(¢;,v;) = {0} x

R; if ¢; = 0 and v; > 0, then Ny, ((j,v;) = R x {0}; else
Ny(C,v) =R x {0} U{0} x RUR_ x R_.
According to Theorem 6.12 in [41], we have
0€z"+NCs((2%,¢",v"))). (32)
With (31), there exist (n%,n3) € R"H2Y| and (¢, &) €
NCq((¢*,v*)), we have
2 - Gw VAOT; (2" )nf + T (CT(="))m; 0
0]+ ~J(CT(2))"D(w)ny +mn; + & =10
0 —n; +€° 0
(33)
Further, we have

=7 = Y2 Gw, VEOT (27 )mi + T (CT ()€™ :(o>_ a4
CrCTE) D wmt + € + e 0

We also have & = J(CT(z)"D(w))n; from &7 =
0,&;, = 0 and the second line of Eq. (34). Then from the
first line of Eq. (34), we have

2|Y|
z" + J(CT,(z7))E; (w]VCT(z)

’ (JZI (35)
+J(CT, (") T(CT(2)" D (w))., )ni =0.

The proof is completed. O

D. Proof of Theorem

Proof. The Lagrangian form of (21) is Lg = %2||z||3+ <
G(z,(,v),A\¢ >, where < -,- > is the inner product.
Following [40], there exist A # 0, ¢g > 0, we have
0 € 0.Lg, where 0, is Clarke generalized Jacobian. And we
haved, min{¢*,v*} = [D(v?),D(b?)], where v?, v° satisfy
that if i € ¢1, then ¢ = 0,0% = 1; if i € 13, then 0% = 1,00 =
0; and if i € 1o, then v¢ =¢,02 = 1—¢, t € [0, 1]. Then there
exist ¢*, n7, n3, §* v, 0°, such that

* =2 Cw, VECT (2" )m) + T(CT(2%))ms 0
_T(CT(2) "D (w)n; 4} +D(v")E" = (9] @0

—n3 +D(v%)¢"
)-6)

Further, according to Eq. (36), we have
<<*z* = S50 Gy VEOT (27)mi + T(OT ()0 (0")¢
37)
J(CT(2)D(w)) n;

~J(CT(2))"D(w)ny +D(v")&" +D(v")E"
Due to D(0?) +D(v?)
And bringing £" into the first line of Eq. (37),

Fz

=1, then £&* =
holds.

then we have ¢*z* 22|Y| Cw;V2CTi(z*)nf +
j(CT(z*))@(bb)J(C’T(z)TQ( ))n1 0. According to
the definition of v®, v®, Eq. (22) holds. O

E. Proof of Corollary

Proof. According to Eq. (22) in Theorem 3, if w,c = 1 and
w,e, = 0,Vj’ =2,---,1 holds, then we have

[ D GVICT (") + T(CT s (7)) T(CT, s (27))+

]61/1

T(CT, g5 ()0 (0], 0,6) T (C

and Corollary

LQmL(z*))'U;mi]"ﬁ +¢"2" =0
. 38
Obviously, Eq. (38) means that only the constraints in set ¢§

participate in the optimization process. Due to [¢§] > |¢§] >
<> |uf| and {z : CTj(z) < 0,5 € 1§} # 0, Eq. (38) implies
that the labels in ¢{ are successfully attacked.

Further, if we set we = 1 and 'wL = 0,V) =
1,---,1I, then Eq. (38) means the entire optlmlzauon pro-
cess is performed only in a sub-region of z. We get
inf §infrieg, 22eq,, |21 — ngg}} =0 because j' = k' =1
holds. This means that the weighting strategy makes the
optimization process converge. O
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S.I. SUPPLEMENTARY MATERIALS FOR SECTION III

A. Supplementary Materials for Section III-B

In this section, a more detailed statistical analysis of Fig. 1
is provided. Firstly, Fig. 1(a) presents a top-3 untargeted multi-
label attack for the toy dataset when Eq. (1) is used. And a
multi-label classifier based on multi-layer perceptron (MLP)
is trained to analyze the defects of Eq. (1). According to
the output of the MLP classifier, the top-3 prediction label
set Ya(xy + z1) of &l (= @ + z]) is {1,2,3} and the
top-3 prediction label set Ys(x1 + 22) of 2 (= x; + 22)
is {5,6,4}. Since Y = {2,3,4}, I(Y C Yi(z1 + 21)) =
0, IVe(z1+21)CY) = 0, [(Yi(z1+21)=Y) = 0,
and (Y C Yi(x, +23) = 0, I(Vi(z1+23)CY) =
0, I(Yi(z1 4+ 22) =Y) = 0 hold. Then, according to the
definition of Eq. (1), AFDy.(x1, 2{) = AFD;.(x1,2%) = 0
holds. If ||z}|| < [|2}||, then &1 (= @1 + 2{) rather than
x? (= 1 + 2?) may be the solution. However, 2 affords a
smaller failure degree than @} because 1 = |Y N Yi(x?)| <
|Y N Yj(x!)| = 2. Hence, an Eq. (1)-based optimization goal
is inappropriate.

Similarly, a multi-label classifier based on MLP is trained
on the toy dataset shown in Fig. 1(b). Based on the predictions
of this multi-label classifier on Y = {1,4,5}, fi(z2 + 23) >
0.5, fa(xa + 23) < 0.5, fs(za + 23) < 0.5, and f;(z2 +
z3) > 05, fi(za + 21) < 0.5, fs(za + 23) > 0.5 hold.
Then, according to Yi¢(2) = {j : fi(x +2) > 0.5,Vj €
Y}, Yig(2d) = {1} and Yj4(23) = {1,5} also hold. Further,
according to the definition of AFD;¢(x, 2) = I(|Y;7(2)| # 0),
we have AFD; (2, 23) = AFD;(x2, 23) = 1. Although x}
and 3 have the identical AFD;; value, 3 makes more labels
(labels 4 and 5) with prediction confidence below 0.5 than
the adversarial image a:% makes (label 4), and the measure in
Eq. (2) cannot distinguish them.

Thirdly, the toy dataset in Fig. 1(c) is used to analyze
AC(zx, z). Likewise, a multi-label classifier based on MLP
is trained on this toy dataset. According to the trained MLP
model, I(fi(xz3) > 0.5) = 0, I(f4(x3) > 0.5) = 1, and
I(fs(x3) > 0.5) = 1 hold. For the data point z3(= @3 + 23),
we have I(fi(z3) > 0.5) = 1, I(fa(x3) > 0.5) = 0, and
I(f5(x3) > 0.5) = 0. And for the data point, I(f(x3) >
0.5) = 0, I(fa(x3) > 0.5) = 1, and I(f5(x3) > 0.5) = 0
also hold. Then B;(z3,2}) = 0 and B(x3,23) = {1,4} are
obtained. Further, according to the definition of AC(x, z) =
I(|B;(x, 2)| # |B|), AC(x3,23) = 1 and AC(z3,23) = 1
hold. If the measure in Eq. (3) is used. However, the actual

cost of &3 (= x3 + 23) is obviously smaller than that of x}
because B N Br(x3,z3) = 0 and BN By(x3,23) = {1,4}.
Therefore, the measure in Eq. (3) may impose a higher cost
when no ideal attack exists.

B. Supplementary Materials for Section III-C

A video, named “Untargeted attack procedure.mp4”, shows
the optimization process of kFool, PGD, TyML, and our
method, which attack a pre-trained multi-layer perceptron
(MLP) on a 2D toy example dataset. The results show that
other methods are more likely to diverge during the attack
process, while our method is more stable. The video can be
available at https://github.com/ffgg1 I/MASW.

S.II. SUPPLEMENTARY MATERIALS FOR SECTION IV
A. Supplementary Materials for Section IV-A-1

In this section, the reason for using min{|Y|,|YVi(z + 2)|}
as the denominator is explained in detail. The first measure is
the soft label consistency (SLC):

AFDgc(z,2) = Y N Yy (x + z)|/min{\Y\, |Yi(z + 2)|}.
(S.1)
In Eq. (5.1), we use min{|Y|, |Y%(x+2z)|} as the denominator.
The reason is : In experiments, we found that the attack
performance was negatively affected when the maximum set
|Y UYy(x + 2)| was used, and the evaluation metric, namely,
soft attack success rate (SASR), derived from the maximum
set was highly correlated with k, which meant that the actual
attack success rate could not be reflected. Therefore, we just
use min{|Y|, |Yi(x + 2)|} as the denominator of AFDy,.

B. Supplementary Materials for Section IV-A-4

Below, more results regarding the measure for AC are
provided. A new measure based on the Jaccard index [8] for
AC is defined as follows:
|B 1N B| .
|B rUB | o

| Br|

AC(x,z)=1— .
Bl

(S.2)
Next, we formulate the following constrained optimization
problem for targeted attacks

min [~AFDy., AFDyy,AC, [|z|3/2], st x +z € [-1,1]".
(S.3)
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Therefore, a new optimization problem with the least con-
straint violation for targeted attack can be constructed as
follows

A
b2l + ST + 2T D!

czc;x
st. fi(®+2) < frepry(x+2) +(; Vie C\ Y,
fil®+2)+ G > fies(x+2); Vi€Y, (S:4)
fj(ac+z)§05—|—C’4’; Vi €Y U B,
file +2)+ ¢ >0.5; Vje By,
x+ze[-1,1"
where By = je€B:f(x+2z)>=05 and By =

je€B: f(x+z) <0.5.
According to Eq. (S.2), a new evaluation metric, namely
soft AC (SAC), is defined as follows:

ZEGXU AC((L‘, Z)

SAC=1—
N,y

(S.5)

C. Supplementary Materials for Section 1V-B

In this section, the transformation process from (14) to
(15) is provided first. Then, the mathematical transformations
among optimization problems (15), (18), and (21), as well as
their differences and similarities, are described.

Following [13], the optimization objective in (14) is min-
imized by first solving the constrained optimization problem
as follows:

min 1( T®(w)¢
¢,z 2
st. 0 < CT(2)+¢

Then a solution set of (S.6) is § = {(2¢ :
min¢,» 3¢7D(w)¢,s.t. 0 < CT(z) + ¢}. Second, a final
adversarial attack with the smallest {5 norm can be obtained
from S. Then, (15) is obtained in our manuscript.

Below, more details on (15), (18) and (21) are provided:
Following [13], the sub-optimization problem in optimization
problem (15) is dealt with first, which is the constrained
optimization problem (S.6). Then ©(z) is introduced for (S.6)
as follows:

o(z)

; (5.6)

= min{%CTQ(w)C :CT(z)+¢ >0} -

[CT(2)]"0(w)[CT(2)]-

N

where [CT(z)]-
derivative of ©

Voe(z)

= min{0,CT(z)}. Then the following
z) with respect to z is easily obtained:

= J(CT(2))"D(w)[CT(2)]-,

where J(-) is the jacobian matrix.
Let v = CT(z) + . Following [13], then (15) can be
extended as follows:

A._.

(S.8)

1
min Z||z]l3 st F(2,¢,v) =0, ((,v) €2, (S9)
where Q = {({,v) : 0 < ¢ L v > 0} and F(z,¢{,v) =
—J(CT(2))D(w)¢ .
l CT(z)+¢—v | Then, the conversion between (15) to
18) is completed.

Further, following [13], denote G(z, {,v) as follows:

G(z,¢v) =[-J(CT(2))D

(S.10)
Assume G(-,-,+) is a Lipschitz continuous mapping. Follow-
ing [13], (15) can be extended as follows:

min ||z]|3/2 s.t. G(z,¢,v) = 0. (S.11)

Then, (21) is obtained. As mentioned in [13], when the
optimization problem (15) is convex, the optimization problem
(18) is the equivalent form of optimization problem (15).
Further, if (15) is a nonlinear optimization problem with
possible inconsistent constraints, then (21) is a mathematical
program with complementarity constraints (MPCC), which is
equivalent to the minimization problem with least constraint
violation in (15). A deep learning model f(-) may be convex
or non-convex. Therefore, our theoretical analysis on weight-
ing strategy is universally applicable to various situations.

D. Supplementary Materials for Section IV-C

In addition to the Lagrangian form (Eq. (23)), a innovative
adversarial attack algorithm in this section is derived based on
Theorem 3.

Eq. (22) in Theorem 3 gives the necessary condition that
an optimal perturbation z* will satisfy. Note that:

1
s(zvmq) = 3| (CT@ DT CTE Dw)
2|Y| 2
+> C;ijQCTj(Z*)>771 -z

— 5

! (S.12)
Theorem 3 states that there is a non-zero solution
[2*, 0%, m7,¢*]T that satisfies £(z*,0*,1},¢*) = 0. There-

fore, we model the adversarial attack as a nonlinear system
of equations solving problem. The damped least squares
method (DLS) [11] is often used to solve nonlinear systems
of equation. It updates variables as follows:

JE)TT(L)s =-T(8)Te
where J(£) is the Jacobian matrix of £ at (z,b,71,¢), and
d = Alz,v,m1,5]7 is the increment for [z*,0*, 1}, ¢*]T. A

damping factor Ap is introduced to make Eq. ( ) more
stable [11]. Thus, a novel updated version is as follows:

(S.13)

(T()TT(L)+ A\pI)d =-J(£)"¢ (S.14)
where [ is an identity matrix. Then we have:
6 =—(J()"T L)+ D) T(L)"L (S.15)

The (non-negative) damping factor Ap is adjusted at each
iteration. Generally, if £ decreases, then A\p also decreases;
conversely, A\p increases. An increase by f;, = 2 and a
decrease by f4. = 3 have been shown to be effective, while
for large problems, f;, = 1.5, f4¢ = 5 can work better [11].

Solving £(z*,0*,m},¢*) = 0 also includes the following
three main steps:

o Perform Eq. ( ) induced by DLS to minimize ( )
in the first iteration step.

(U})C, CT(Z) + C -, min{C7vHT'
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Algorithm S.1 DSW-based Untargted Attack (MADWU).

Algorithm S.3 DSW-based Targted Attack (MADWT).

Input: x, Y, A1, Ay, model f(-), T, 1, fin,fdes AD
Qutput: Adversarial perturbation z*
1: Initialize 2°, 0%, 1?, 0, A%, w0, w"?;
2: Denote £° = £(2°, 0%, 1?,<0);
3 fort=1to T
4:  Update &' by Eq. (S.15);
s [z 0l gt )T = [z, 0t gt 1T 4 gt
6: if £ < £t lthen
7
8
9

et =nxe
Z* — zt.
t _ yt—1 .
: )‘D - )‘D /fde’
10: else

1: €= (e 4 €172)/2;

12  gt=gt L

13 el — 2.

14: A = )\3)—1 * fins

15: if [[VJ(£Y)]|]2 < 1073 then break;
16: Update w'* and w'”* by using Eq. (24);
17: return z*.

Input: x, Y, Y:, A1, Ao, £(), T, 1
Qutput: Adversarial perturbation z*
1: Initialize 2°, 0%, 19, 0, A}, w0, w7,
2: Denote £° = £(2°%,0°% 1, c0) for targeted attack;
fort=1toT
4:  Update &' by Eq. (S.15);
s [2f0f,ml, )T = [z, ut 1 gttt 1T 4 gt
6. if £ < £ then
7
8
9

et =mxetl;
Z* — zt.
t _ yt—1 .
: )‘D - )‘D /fde’
10: else

11: e = (et +€e72)/2;

12: gt=gt L

13: el = ¢l=2

14: A = Xb_l * fins

if ||[VJ(£Y)|l2 <1073 then break;
16: Update w'* and w'”* by using Eq. (24);
17: return z*.

—_
W

Algorithm S.2 Universal untargted Attack (MADWUyv).
Imput: X;, A1, Ao, E, f(:), T, n
Output: Universal perturbation z*

1: Initialize z* =0, 4, Ey =0, 7,7 = 0;

2: while true do

3: for (x;,Y;) € X; do

4: z7 = MADWU(x;, Y3, A1, A1, f, T, n);
5: z* =P (2" + 2F);

6: Calculate SASR and LFR on X;

7: if SASR < 7, then E| = E; + 1;

8: else ; = SASR; F; = 0;

9: if LFR < 7, then E5 = Fy + 1;

10: else » = LFR; Fy = 0;
11: if £1 > F and Fy > E then break;
12: return z*.

o In the second iteration step, the threshold e is updated.

o In the third iteration step, the weights for each constraint
(or slack variable) are updated using Eq. (24). Thereafter,
return to the first iteration step.

Similarly, € is updated according to Eq. ( ), denoted as
£t If £ decreases compared with £/71, then € is increased
to allow more constraints to participate in the optimization
process, i.e., €& = n x =1 (np > 1); otherwise, € is
reduced to limit the participation of difficult constraints by
et = (71 + €72)/2. Algorithm reports the details
of our implementation for the multi-label untargeted attack
based on DLS and SPW, namely, MADW, for simplicity.
Algorithm computes third-order derivatives and therefore
requires a higher time cost than MASW. Algorithm
outlines the calculation steps for universal untargeted attack,
which is extended by Algorithm S.1. Additionally, following
the same approach as Algorithm S.1, we can easily derive an
algorithm for targeted attack, as presented in Algorithm

S.III. SUPPLEMENTARY MATERIALS FOR SECTION V

A. Supplementary Materials for Section V-A

Competing Methods. The comparison methods include: Fast
gradient sign method (FGSM [1]), Momentum iterative fast
gradient sign method (MFGSM [2]), Projected gradient de-
scent (PGD [7]), Rank I [3], Multi-label DeepFool (MLDF [3])
and Carlini & Wagner (MLCW [3]) attacks, Multilabel at-
tack by linear programming (MLALP [6]), Top-k universal
untargeted attck (kKUv [5]) and untarged attck by DeepFool
(kFool [5]), and TpML [4], Generative Adversarial Multi ob-
ject Attacks (GAMA [16]), Local Patch Difference (LPD [15]),
Top-k Attack with Label Correlation (T;ALC [18]) and Top-
k Measure Imperceptible Attack (TxMIA [17]). For these
methods, we use the settings in [4], [10]. Three suffixes U,
Uv and T mean the untargeted attack, universal untargeted
attack, and targeted attack, respectively. Then our methods are
denoted as MASWU, MASWUv and MASWT.

Setting. Next, we introduce the experimental setup of the
proposed MADW. DLS is used to solve the nonlinear equation
L(z*, 0%, n7,¢*) = 0. We set A\; = 0.5 and Ay = 0.5, 7 is
set to 1.015, and ¢ is initialized to 0.01. We record the results
when T' = 300. Furthermore, w’, and w" are initialized to
obey a uniform distribution of [0, 1]. 3000 images from the
validation set of each benchmark dataset are selected to build
X, for universal untargeted attack. Additionally, we apply
early stopping [9] on X; to terminate Algorithm . The
patience of early stopping E is set to 40.

The damping factor Ap in MADW is dynamically adjusted
at each step. [11] suggested that for large-scale problems,
fin = 1.5 and fge = 5 are used to adjust Ap. We use
this setting. These settings result in relatively good attack
performance, shown in Tables S.I-S.VIIL.
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TABLE S.I
COMPARSION OF UNTARGETED ATTACK METHODS. BOLD NUMBERS
HIGHLIGHT THE BEST RESULTS.

VOC 2012

COCO 2014

TABLE S.II
COMPARSION OF UNIVERSAL UNTARGETED ATTACK METHODS WITH
k=2,3,5,10 0N VOC 2012 AND COCO 2014. BOLD NUMBERS MEAN
THE BEST RESULTS. X MEANS THAT THE METHOD CAN NOT OUTPUT THE

Method

ASR SASR Pert LFR

ASR SASR  Pert LFR

300

FGSMU
'MFGSMU
MLCWU
MLDFU
PGDU
MLALP
kFool
TrMLU
LPD
GAMA

T ALCU
T MIAU
MADWU
MASWU

31.06 3.99 47.30

29.46 2.38 50.27
29.17 1.74 45.28
93.21 3.67 85.42
57.48 0.68 79.75
96.87 1.42 94.05
95.73 0.48 97.88
90.11 0.91 90.42
92.57 0.73 91.05
96.11 0.52 98.18

3 96.17 0.55 98.14

97.02 0.50 99.54
97.34 0.49 99.83

300

FGSMU
MFGSMU

MLCWU
MLDFU

24.43 4.00 47.39

26.95 2.45 51.74
27.06 1.85 49.21
93.25 3.75 85.95
57.12 0.69 80.26
95.78 2.35 95.81
93.76 0.52 98.06
89.26 0.91 90.42
91.23 0.73 91.05
95.20 0.56 98.27
95.20 0.57 98.36
96.02 0.52 99.44
96.23 0.52 99.92

7.81 76.91
0.54 98.67
0.73 91.97
0.69 93.78
0.58 98.26
0.55 98.39
0.55 99.07
0.54 99.63

14.81 3.98 47.30

25.61 2.52 53.91

7.29 40.55

RESULT.

VOC 2012

COCO 2014

e

Method

ASR SASR Pert LFR

ASR

SASR Pert LFR

PGDUv
kUv
T,MLUv
2 | T ALCUv
T MIAUv
MADWUv
MASWUv

60.13

X
67.37
66.30
66.60
68.13
68.47

64.76 34.12 77.19

X X X
71.52 16.27 92.55
69.12 18.41 90.15
70.29 17.21 91.59
72.19 15.79 93.97
72.21 15.63 94.39

86.52 71.52 81.28
86.18 51.38 79.56
88.78 15.26 94.44
86.82 17.06 92.41
87.18 16.46 92.64
89.08 14.99 95.40
89.17 14.79 95.61

PGDUv
kUv

T MLUv
3 | T ALCUv
TiMIAUV
MADWUv
MASWUv

57.73

X
64.43
62.10
63.20
64.80
64.90

63.41 39.54 78.92

X X X
68.11 17.28 96.11
66.13 20.18 94.01
66.71 19.29 94.28
68.89 16.95 96.36
69.13 16.59 96.41

76.29 74.11 83.95
73.64 51.26 80.43
87.24 16.36 94.82
84.47 19.31 92.91
85.18 18.69 93.12
87.17 15.97 95.42
87.34 15.62 95.71

PGDUv
kUv
TrMLUv
5 |Tx ALCUv
T, MIAUY
MADWUv
MASWUv

53.97

X
61.87
61.00
61.80
63.47
63.60

62.37 43.53 80.54

X X X
66.22 19.27 98.01
65.21 23.73 95.16
65.12 23.15 95.26
67.79 18.55 98.72
67.97 18.57 98.99

80.58 75.61 85.13
78.82 52.34 85.51
85.29 17.19 96.01
84.09 21.09 94.03
84.49 20.17 94.51
86.02 16.48 96.15
86.19 16.47 96.66

PGDUv
kUv
TiMLUv
10{Tx ALCUv
T, MIAUY
MADWUv
MASWUv

35.33

X
41.63
40.20
41.00
42.63
42.97

38.94 49.55 81.02

X X X
47.93 22.84 98.69
47.11 25.19 96.92
47.41 23.81 97.09
48.92 22.59 99.02
49.53 22.56 99.39

66.79 79.62 85.98

X X X
83.49 18.61 97.92
82.21 23.34 96.42
83.02 22.14 97.10
85.12 18.26 98.04
85.79 18.25 98.39

26.54 1.87 52.38|20.00
92.76 3.85 86.20|87.67
56.52 0.69 81.27|°
90.18 4.95 97.12{68.00
88.43 0.57 98.15(99.47
88.09 0.91 90.42{90.10
89.18 0.73 91.05{90.17
90.29 0.60 98.38|99.40
90.67 0.59 98.40(99.10
90.13 0.59 99.66(99.80
91.89 0.57 99.97|99.93

0.58 84.95
14.95 85.82
0.60 98.90
0.73 91.97
0.69 93.78
0.64 98.48
0.62 98.72
0.61 99.48
0.60 99.89

300

B. Supplementary Materials for Section V-B

Results. Table reports the top-k attack performance for
k = 3,5,10. The results infer that the proposed MADWU
and MASWU achieve the best or comparable results. FGSMU
uses single-step GD (T" = 1) and a large learning rate, still
requiring a larger Pert and performing poorly in terms of ASR,
SASR, and LFR. For MFGSMU, which utilizes a few-step
GD (T' = 40) and the momentum, although it requires the
smallest Pert, its performance is poor. Moreover, the multi-
label attack methods MLCWU and MLDFU explicitly lower
the prediction confidence of the ground truth below a certain
threshold but only achieve a low LFR. Both PGDU and
kFool are initially designed for single-label learning. They
usually use larger perturbation bound Pert to attack model,
but the attack performance is still inferior to MADWU and
MASWU. MLALP uses the interior point method to solve
linear programs, but its performance is still lower than that of
MADWU and MASWU. Compared with the SOTA method
T,MLU, MADWU and MASWU achieve better results on
ASR, SASR, and LFR for T' = 300 while yielding similar
Pert values. Same or smaller Perts imply that TyMLU may
just obtain suboptimal solutions. Both LPD and GAMA utilize
complex generative models, yet rely on larger perturbation

bounds (Pert), resulting in lower ASR, SASR, and LFR values
compared to our method. Though Ty ALCU and T;MIAU use
label correlation and design complex optimization problems
in adversarial attacks respectively, they are still inferior to our
method.

C. Supplementary Materials for Section V-C

Results. Table presents the results of each universal
untargeted attack method on VOC 2012 and COCO 2014.
Our methods MADWUv and MASWUyv use the smaller or
smallest Pert to achieve the best ASR, SASR, and LFR. X
in Table means that the method kUv takes an excessive
amount of time (more than a week) but could not produce the
result. Therefore we do not report this result. PGDUv usually
utilizes the highest Pert but achieves lower ASR, SASR and
LFR than our methods. Compared to T;MLUv, TxALCUy,
and TxMIAUYv, the proposed methods achieves higher ASR,
SASR, and LFR only with a lower Pert.

D. Supplementary Materials for Section V-D

Additional settings. Following [4], this paper considers
three target types Y;, namely, worst, random, and best cases.
These cases mean that labels in Y; have the lowest prediction
scores, labels in Y; are selected randomly, and labels in Y;
have the largest prediction scores, respectively.

Results. Table reports the results for top-k targeted
attacks under the best case. When similar Pert values are
achieved on two datasets, MADWT and MASWT outperform
all competitor methods considering the ASR, SASR, and LFR
metrics for different k& values. Although TyMLT and Rank I
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COMPARISON OF THE TARGETED ATTACK METHODS UNDER THE BEST

TABLE S.III

CASE SCENARIO.

VOC 2012

COCO 2014

Method

ASR SASR Pert

LFR

ASR

SASR Pert LFR

1 [FGSMT
MFGSMT
MLCWT
MLDFT
PGDT

3 Rank I
300| T MLT
TrALCT
T MIAT
MADWT
MASWT

62.83 0.80 23.41

78.13 0.87 53.53
76.83 0.81 49.19
95.86 0.43 93.44
97.39 0.43 93.35
97.41 0.45 93.70
97.47 0.47 95.29
97.61 0.44 97.95
97.79 0.43 98.25

52.00 1.48 29.68

92.43 0.56 88.51
7220 1.42 65.83
62.16 1.43 71.47
99.21 0.56 90.04

3 99.11 0.58 90.78

99.20 0.61 92.29
99.23 0.63 93.45
99.78 0.60 95.76
99.86 0.60 96.37

I [FGSMT
[ 40 |MFGSMT

MLDFT
PGDT

5 Rank I
300| T, MLT
TxALCT
T MIAT
MADWT
MASWT

MLCWT |7

65.52 0.78 23.26

84.14 0.55 84.88
74.53 0.92 21.38
78.04 0.84 44.18
93.16 0.49 96.56
96.55 0.49 96.62
95.19 0.53 96.71
95.25 0.52 97.10
96.77 0.50 98.14
96.83 0.49 98.81

60.05 1.51 28.61

93.45 0.78 91.65
70.54 1.45 56.03
69.54 1.44 69.07
99.34 0.67 97.28

3 99.20 0.69 96.83

99.12 0.73 97.11
99.20 0.71 97.34
99.79 0.69 98.11
99.94 0.69 98.56

COMPARISON OF TARGETED ATTACK METHODS UNDER RANDOM CASE.

TABLE S.IV

VOC 2012

COCO 2014

k| T |Method

ASR SASR Pert LFR

ASR

SASR Pert LFR

1 |[FGSMT
40 |MFGSMT
T IMLCWT
MLDFT
PGDT

3 Rank I
300| T, MLT
Tr ALCT
T MIAT
MADWT
MASWT

21.23 0.68 16.84

74.43 0.60 89.70
17.14 0.86 13.58
49.73 0.82 49.82
71.73 0.55 98.48
88.80 0.57 97.09
89.11 0.59 97.34
89.20 0.60 97.83
89.11 0.58 98.89
89.65 0.57 99.53

7.68 0.82 39.13

75.19 1.04 90.06
19.21 1.45 17.36
31.96 1.47 85.47
99.06 0.95 99.17
99.28 1.00 99.27
99.31 1.03 99.30
99.39 1.02 99.27
99.47 1.01 99.56
99.87 1.00 99.95

1 |[FGSMT
40 |MFGSMT
T IMLCWT
MLDFT
PGDT

5 Rank I
300| Tk MLT
Ti ALCT
T MIAT
MADWT
MASWT

30.89 0.70 18.04

61.00 0.67 85.51
20.79 0.90 7.98

3 43.99 0.76 44.88

63.44 0.58 98.01
86.69 0.60 96.28
87.06 0.61 97.20
87.20 0.62 97.72
87.71 0.60 98.46
88.19 0.60 99.29

8.78 0.84 39.63

72.24 1.29 91.39
15.64 1.46 14.01
28.33 1.46 87.56
91.66 1.10 99.29
97.54 1.17 99.25
97.60 1.20 99.29

3 97.64 1.19 99.30

97.94 1.17 99.62
98.35 1.17 99.98

1 |FGSMT

53.64 0.75 18.95

12.45 0.85 40.43

1 [FGSMT
[ 40 |MFGSMT
MLCWT

66.28 0.81 24.15

61.89 1.69 28.31

74.92 0.64 73.02{62.60

94.19 1.17 90.14

40 [MFGSMT

MLCWT
MLDFT

61.46 0.75 73.40
51.71 0.92 6.33

MLDFT
PGDT

10 Rank I
300| T, MLT
TrALCT
T MIAT
MADWT
MASWT

82.41 0.99 40.56
77.88 0.85 36.56
91.11 0.52 97.09
96.27 0.53 97.13
97.13 0.55 97.40
97.89 0.56 97.84
98.19 0.54 98.91
99.65 0.53 99.16

73.82 1.47 37.03
70.49 1.43 57.43
99.02 0.81 97.79
99.47 0.85 97.47
99.50 0.89 98.01
99.54 0.89 98.18
99.87 0.86 98.74
99.91 0.86 99.16

PGDT

10 Rank I
300| T MLT
Ty ALCT
Tk MIAT
MADWT
MASWT

57.19 0.79 35.30
69.02 0.57 98.08
90.09 0.61 95.31
90.59 0.64 96.00
90.64 0.63 96.20
90.03 0.63 98.51
91.52 0.61 98.91

94.89 1.28 99.44
95.08 1.30 99.47
95.10 1.29 99.40
95.61 1.29 99.69
95.90 1.28 99.96

are designed specifically for top-k targeted attacks, their attack
performance is still lower than our methods regarding ASR,
SASR, and LFR. Moreover, the FGSMT, MFGSMT, MLCWT,
MLDFT, and PGDT attain a much lower performance than
our methods by a large margin in terms of ASR, SASR, and
LFR. Similar Perts imply that Rank I and T;MLT may just
obtain suboptimal solutions. Although MLCWT and MLDFT
explicitly lower the prediction confidence of the ground truth
below a certain threshold, they achieve low LFR values.
Besides, FGSMT uses a single-step GD (I' = 1), but it
requires larger bounds and achieves poor ASR, SASR, and
LFR values for targeted attacks. Although MFGSMT obtains
the smallest Pert, its attack performance is still unacceptable.
Although using complex methods, both Ty ALCT and T;; MIAT
are inferior to our methods.

Tables and present the results under the random
and worst cases. Similar to Table , our methods achieve
a better attack performance in terms of ASR, SASR, and
LFR with comparable Pert. As k increases, the larger Pert
is required, but the ASR and SASR generally decrease due to
the increased difficulty of the attack.

E. Supplementary Materials for Section V-E

Table reports the results of untargeted attacks on two
large datasets, NUS-WIDE and Open Images, revealing that
our methods, MADWU and MASWU, obtain the best results
for £k = 3,5,10. Regarding the SOTA methods MLCWU,
MLDFU, PGDU, kFool, and TMLU, although these require
a larger perturbation bound Pert, they still achieve lower

ASR, SASR and LFR values. Besides, MLCWU and MLDFU
explicitly lower the confidence of the true label below a certain
threshold but still achieve low LFR. Using label correlation
and constructing complex constrained optimization problems
respectively, yet, TyALCT and TyxMIAT are inferior to our
methods.

Table reports the results of universal untargeted at-
tacks. Similarly, MADWUv and MASWUv obtain the lower
Pert and the higher ASR, SASR, and LFR.

Table presents the results of targeted attack for
k = 3,5,10 under best, random, and worst cases. MADWT
and MASWT still outperform other SOTA methods in ASR,
SASR, and LFR by utilizing a lower or comparable Pert.

Table shows the results about AC, indicating that our
method is superior to the existing methods.

F. Supplementary Materials for Section V-F

In this section, the experimental setups for ablation ex-
periments and sensitivity tests are provided firstly. Further
details of the ablation study and sensitivity test are provided.
Similar to [19], [20], Ao is firstly fixed at 0.5, while )\
varies within the set {0.1,0.3,0.5,0.7,0.9} in our sensitivity
test. And, as A; changes, the values of ASR and LFR are
recorded separately. Then Fig. 10(a) is drawn. As \; increases,
ASR also increases, and LFR decreases. A\; and \y should be
fine-tuned according to the application scenario of multi-label
adversarial attack. From Fig. 10(a), if the optimization goal
AFDy, is given more weight than AFD,; ¢, then the value of
A1 should be greater than Ay. Otherwise the value of Ao should
be greater than \;. Although the attack performance can be
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TABLE S.V
COMPARISON OF TARGETED ATTACK METHODS UNDER WORST CASE.

TABLE S.VI
COMPARISON OF UNTARGETED ATTACK METHODS ON TWO LARGE SETS.

VOC 2012

COCO 2014

k| T |Method

ASR SASR Pert LFR

ASR

SASR Pert LFR

NUS-WIDE

Open Images

1 [FGSMT

[ 40 |[MFGSMT
MLCWT
MLDFT
PGDT

3 Rank I
300| T MLT

T MIAT
MADWT
MASWT

T, ALCT |-

6.19 0.72 17.21

40.06 0.66 89.30

9.88 0.78 7.63
22.23 0.86 50.13
41.09 0.61 98.19
72.23 0.64 96.65
72.68 0.65 97.01
73.00 0.66 97.46
73.82 0.64 98.54
74.85 0.64 99.06

6.98 0.83 42.48

92.74 1.14 98.67
92.90 1.15 98.90
93.11 1.13 99.42
93.27 1.13 99.89

1 |[FGSMT
40 |MFGSMT
MLCWT
MLDFT
PGDT

5 Rank I
300| T MLT
T, ALCT
T MIAT
MADWT
MASWT

5.62 0.73 15.74

28.66 0.74 86.38

8.74 0.79 17.12
18.71 0.94 44.11
28.72 0.61 97.83
70.65 0.66 95.40
71.01 0.68 96.10
71.28 0.68 96.45
71.82 0.67 98.61
72.58 0.66 98.81

6.26 0.84 41.61

9.52 1.57 13.46
26.58 1.58 90.73
71.72 1.15 99.29
91.16 1.24 99.25
91.20 1.25 99.30
91.25 1.25 99.27
92.01 1.24 99.61
92.31 1.24 99.97

1 |[FGSMT
40 |MFGSMT
[~ |[MCCWT
MLDFT
PGDT

10 Rank I
300| T MLT
T, ALCT
T MIAT

MASWT

MADWT |3

4.310.73 15.35

37.550.78 77.38
6.77 0.79 6.54

3 28.51 0.97 34.58

40.18 0.59 97.93
76.83 0.65 93.98
76.91 0.66 94.37
77.10 0.66 95.10

3 78.05 0.65 98.10

78.29 0.65 98.24

5.34 0.82 41.47

58.68 1.31 93.79
7.66 1.57 12.58
21.79 1.61 86.88
44.73 1.22 99.37
88.01 1.29 99.07
88.19 1.30 99.10
88.21 1.31 99.06
88.19 1.29 99.63
88.65 1.28 99.96

improved under any experimental setup when A; and Ay are
well fine-tuned, it can result in a significant increase in time
cost. Therefore, after a sensitivity test is simply conducted
once, the values of \; and \, are fixed as two constant values
in all experiments. And in all experiments, \; = 0.5 and
A2 = 0.5 also achieve the best or competitive performance.
Furthermore the values of A1 and A\, are also set to 0.5 in the
ablation studies.

Visual comparison. We perform more visual comparisons.
Fig. illustrates some examples of top-k untargeted attacks
on VOC 2012, where our SPW-based method makes the top-
k outputs of the adversarial image have higher confidence
than the competitor methods, and the ground truth labels have
lower prediction confidence than the other methods. Fig.
visualizes some examples for kUv, TxMLUv, and MASWUv
on COCO 2014, revealing that MASWUv uses a smaller
Pert to make a successful attack, affording higher confidence
than the competitor methods. The ground truth labels have
a lower prediction confidence acquired by MASWUyv than
kUv and TyMLUv, and the top-3 outputs have a higher
prediction confidence than the other two methods. For kUv,
the perturbation is more visible than TyMLUv and MASWUyv.

Fig. illustrates a targeted attack example under the best-
case scenario, where MASWT predicts the targeted labels as
top-k outputs with higher confidence than the other methods.
Moreover, MASWT affords the ground truth labels to have
lower confidence than the other methods. When k£ = 3,5, all
methods successfully attack. However, for k£ = 10, Rank I and
TrMLT fail, but our MASWT successfully attacks.

Ablation study. We perform more ablation experiments on

k| T |Method
MLCWU
MLDFU
PGDU
kFool

TiyMLU

ASR SASR Pert LFR| ASR SASR Pert LFR
14.70 29.65 0.87 35.84{27.60 78.17 1.39 25.22
10.70 19.64 1.56 30.38|23.10 50.64 1.97 22.89
85.23 94.15 1.68 63.91/92.13 93.46 1.65 64.45
69.80 88.03 1.51 36.33(87.10 93.37 2.73 40.35
96.33 97.01 0.15 79.75(97.27 97.99 0.14 85.34
300|LPD 92.50 93.18 0.81 91.09{93.10 94.26 0.71 93.43
GAMA [93.10 94.07 0.80 92.00{94.10 95.27 0.68 94.16
TrALCU|96.50 97.20 0.25 85.71(97.40 98.11 0.23 90.17
TirMIAU |96.73 97.45 0.24 86.79(97.57 98.20 0.21 91.34
MADWU|97.73 99.11 0.16 96.29(99.40 99.16 0.15 97.14
MASWU |98.17 99.67 0.14 98.83(99.87 99.90 0.13 98.45
MLCWU |10.00 25.47 0.62 37.29(14.20 66.11 1.35 27.46
MLDFU 17.62 1.58 35.69(13.30 45.48 1.99 25.86
PGDU  [84.37 93.92 1.69 68.18/90.80 91.21 1.69 74.61
kFool 7230 88.22 5.28 47.49(82.70 92.18 5.71 51.53
TirMLU |95.77 96.54 0.16 81.29(96.20 97.01 0.15 86.36
300|LPD 91.40 92.87 0.81 91.09{92.80 93.77 0.71 93.43
GAMA [92.17 93.15 0.80 92.00|93.17 94.35 0.68 94.16
T, ALCU|95.80 96.60 0.26 87.79(96.40 97.62 0.25 92.72
TiMIAU |95.90 96.78 0.25 89.56(96.93 98.00 0.24 93.45
MADWU |97.07 98.48 0.15 96.45(98.77 98.76 0.15 97.24
MASWU |97.73 99.33 0.14 98.86(99.67 99.63 0.14 98.97
MLCWU 17.81 0.59 37.64| 9.10 50.84 1.09 29.02
MLDFU 15.64 1.61 37.58|11.50 37.95 2.07 27.73
PGDU  [82.77 93.57 1.70 73.59|85.23 96.72 1.71 81.83
kFool 71.70 87.06 11.59 60.54{81.50 91.75 14.98 63.03
TirMLU |94.10 9543 0.16 85.69(94.73 95.48 0.17 87.12
10|300(LPD 90.70 91.04 0.81 91.09{90.90 91.76 0.71 93.43
GAMA [89.50 90.12 0.80 92.00/90.43 90.94 0.68 94.16
TrALCU|94.23 95.61 0.27 90.61(95.10 95.78 0.26 93.10
TiMIAU |94.40 95.78 0.26 91.19(95.33 96.00 0.25 94.28
MADWU |95.03 96.56 0.17 96.57(98.43 98.27 0.16 97.43
MASWU |95.97 97.69 0.15 98.83(99.47 99.53 0.15 99.14

%)

w

TABLE S.VII
COMPARSION OF UNIVERSAL UNTARGETED ATTACK METHODS ON
NUS-WIDE AND OPEN IMAGES. PERT IS IN 102,

NUS-WIDE Open Images
k [Method ASR SASR Pert LFR| ASR SASR Pert LFR
PGDUv  [69.90 76.18 8.91 57.64{75.53 80.71 7.45 66.48
kUv 65.80 69.34 7.98 53.91|73.60 78.62 6.24 61.46
TirMLUv |77.93 87.07 3.93 63.08|82.70 94.19 3.41 81.17

2 |T,ALCUv|77.30 87.15 4.41 70.21|82.10 93.79 3.89 82.08
TiMIAUv |77.60 87.56 4.13 73.31|82.40 94.01 3.72 83.07
MADWUYV|79.40 89.68 3.92 79.39|84.17 96.02 3.27 84.10
MASWUv |79.93 90.31 3.89 80.79|84.97 97.24 3.23 85.93

PGDUv  |65.47 73.46 8.96 60.93|70.47 76.58 7.49 67.93
kUv 60.70 65.96 8.04 55.78|67.80 73.48 6.63 65.28
TrMLUv |71.57 84.29 4.20 74.39|80.27 94.89 3.25 82.37

3 |TxALCUv|72.70 83.28 4.91 77.47|79.10 94.25 4.11 83.62
TirMIAUv [73.10 84.11 4.57 80.25|80.20 94.35 4.05 84.17
MADWUYV|74.73 85.91 4.18 85.99|82.00 95.68 3.19 86.69
MASWUyv |75.47 86.87 4.17 86.79|82.43 96.62 3.12 87.69

PGDUv  |60.43 67.65 9.04 64.56|64.53 71.45 7.91 70.91
kUv 57.50 63.48 8.11 57.59|62.10 69.48 6.77 67.94
TrMLUv |69.03 82.07 4.61 80.13|77.03 95.46 3.56 83.07

5 |[TxALCUV|69.00 81.24 5.91 80.03|77.10 93.59 5.26 84.67
TirMIAUvV [69.40 82.31 5.56 80.74|77.50 94.59 4.96 85.32
MADWUYV|71.50 83.47 4.59 91.92|80.17 95.72 3.34 86.78
MASWUyv |72.27 84.35 4.55 93.39|80.87 96.27 3.29 89.26

PGDUv  |55.73 61.47 9.15 67.64|60.27 70.64 7.93 73.75
kUv 5430 60.38 8.75 65.69(57.90 67.26 6.91 70.72
TrMLUv |59.37 76.51 6.52 93.19|70.47 93.42 3.71 83.56

10|{T,ALCUv|58.70 75.17 6.61 94.07({71.70 91.22 6.56 85.79
TirMIAUV [59.00 75.47 6.64 94.64|72.40 92.16 4.79 88.28
MADWUYV|60.27 77.79 6.52 96.10|73.97 93.78 3.68 87.69
MASWUyv |60.93 78.59 6.51 97.33|74.87 94.27 3.67 91.01

the proposed SPW strategy. Fig. shows the attack results
of removing SPW from MASW and the original MASW.
Removing SPW from MASW results in lower ASR and LFR,
and higher Pert, which illustrates the effectiveness of the
proposed method.

Sensitivity test. Three important hyperparameters, namely, A1,
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COMPARISON OF TARGETED ATTACK METHODS ON TWO LARGE SETS.

TABLE S.VIII

Case

NUS-WIDE

Open Images

k

T

Method

ASR SASR Pert LFR

ASR SASR Pert LFR

Best

5

300

300

300

MLCWT
MLDFT
PGDT
Rank I
TxMLT
TrALCT
TrMIAT
MADWT
MASWT
[MLCWT
MLDFT
PGDT
Rank I
TxMLT
TrALCT
T MIAT
MADWT
MASWT
MLCWT
MLDFT
PGDT
Rank I
TxMLT
Tr ALCT
T MIAT
MADWT
MASWT

18.20
14.50
38.47
92.60
95.27
95.50
95.93
97.73

48.43 0.17 46.23
35.39 0.45 44.43
67.96 0.34 28.28
94.23 0.13 30.59
96.71 0.14 75.27
96.93 0.21 78.73
97.42 0.20 80.54
98.01 0.14 92.03
98.85 0.13 93.61
58.18 0.19 43.34
34.56 0.41 35.28
70.26 0.33 22.41
94.19 0.14 31.62
95.94 0.15 77.39
96.11 0.23 80.59
96.67 0.22 83.56
97.96 0.15 94.15
98.69 0.15 95.18
70.27 0.25 40.14
29.73 0.43 33.37
73.20 0.35 16.02
81.48 0.21 37.85
94.56 0.17 79.25
94.94 0.24 85.43
95.30 0.24 88.79
96.99 0.17 96.02
98.13 0.16 96.77

27.00
23.70
32.63
90.10
95.07
95.60
96.20
99.03

45.26 0.37 57.98
38.92 0.41 50.52
50.97 0.35 57.24
92.35 0.16 25.37
96.72 0.15 82.14
97.14 0.20 85.63
97.89 0.21 87.79
99.05 0.16 94.97
99.75 0.15 95.67
40.66 0.34 61.82
34.72 0.39 45.86
47.79 0.35 59.15
91.13 0.18 28.69
96.01 0.16 83.56
96.73 0.21 86.14
97.14 0.22 89.79
98.89 0.17 94.78
99.74 0.16 95.51
35.64 0.30 55.29
30.23 0.40 44.19
46.03 0.36 49.22
89.65 0.20 28.81
94.49 0.18 85.69
95.30 0.23 88.70
96.78 0.23 91.35
98.16 0.19 94.96
99.75 0.18 95.21

Random

5

300

300

300

MLCWT
MLDFT
PGDT
Rank I
TiMLT
Tr ALCT
T, MIAT
MADWT
MASWT
IMLCWT
MLDFT
PGDT
Rank I
TiMLT
Tr ALCT
T, MIAT
MADWT
MASWT
[IMLCWT
MLDFT
PGDT
Rank I
TiMLT
Tr ALCT
T, MIAT
MADWT
MASWT

40.92 0.21 65.98
33.39 0.40 47.71
50.29 0.32 50.39
82.62 0.19 33.69
91.28 0.20 77.25
92.56 0.23 80.11
93.10 0.24 83.26
93.48 0.21 92.18
95.12 0.19 94.01
32.26 0.24 64.41
30.38 0.42 53.32
40.24 0.35 42.81
54.74 0.21 47.71
86.52 0.24 78.98
87.11 0.27 84.45
88.02 0.25 86.35
90.77 0.22 92.39
91.27 0.19 92.99
22.57 0.25 58.13
25.37 0.44 54.72
33.41 0.37 32.96
50.28 0.23 49.96
71.52 0.26 81.09
72.67 0.30 85.10
73.41 0.29 87.14
74.57 0.24 90.51
76.16 0.23 91.01

40.19 0.39 61.17
35.65 0.44 55.87
43.38 0.41 50.51
79.49 0.26 68.66
92.75 0.29 74.64
93.34 0.31 86.23
93.05 0.30 88.37
93.34 0.27 93.47
94.21 0.25 96.32
31.28 0.35 54.82
25.78 0.45 53.26
35.66 0.40 55.54
43.24 0.28 70.23
83.58 0.31 78.65
84.71 0.33 88.41
85.28 0.33 90.39
87.01 0.26 93.16
87.79 0.25 94.02
27.84 0.36 46.31
22.17 0.46 52.69
33.29 0.42 55.14
38.73 0.30 69.31
61.44 0.31 71.69
64.51 0.35 82.53
65.36 0.34 83.41
68.19 0.29 84.69
69.99 0.28 86.42

Worst

5

300

300

300

MLCWT
MLDFT
PGDT
Rank I
TrMLT
Tr ALCT
TxMIAT
MADWT
MASWT
IMLCWT
MLDFT
PGDT
Rank I
TrMLT
TxALCT
TxMIAT

MADWT |2

MASWT
[MLCWT
MLDFT
PGDT
Rank I
TrMLT
TrALCT
TxMIAT
MADWT
MASWT

2791 0.23 72.42
23.46 0.39 65.47
31.28 0.29 55.14
24.88 0.22 49.33
62.48 0.23 71.43
63.18 0.25 73.56
63.29 0.24 79.57

3 64.97 0.16 86.21

65.70 0.14 88.23
19.71 0.25 71.82
14.28 0.38 64.19
15.85 0.31 45.94
18.61 0.21 48.91
52.31 0.25 81.19
53.42 0.28 82.34
54.84 0.27 84.56
55.41 0.16 90.16
56.55 0.14 91.04
16.84 0.28 70.02
14.72 0.43 67.85
11.28 0.33 48.59
19.86 0.24 46.64
46.06 0.29 83.42
46.46 0.29 84.72
47.21 0.28 85.52
48.98 0.27 90.79
49.72 0.27 91.23

26.61 0.34 66.67
23.79 0.46 55.75
36.19 0.39 54.28
78.62 0.26 58.87
87.94 0.27 74.12
86.04 0.33 80.31
86.73 0.32 84.48
88.68 0.27 95.19
88.93 0.26 95.74

30.75 0.37 43.39
36.02 0.28 60.71
85.64 0.28 76.53
84.21 0.34 79.72
85.38 0.33 83.59
86.93 0.26 92.96
87.49 0.25 94.29
24.91 0.36 64.51
18.84 0.49 56.74
26.71 0.38 46.78
66.80 0.31 71.56
92.54 0.32 79.24
93.46 0.36 79.02
94.25 0.35 80.48
95.98 0.31 85.16
96.89 0.29 86.43

TABLE S.IX
COMPARISON OF AC OF TARGETED ATTACKS WITH k£ = 3,5, 10. THE
BEST RESULTS ARE IN BOLD.

NUS-WIDE Open Image
Method [k = 3|k =5|k =10|k = 3|k =5k =10
SAC| SAC SAC| SAC| SAC SAC
PGDT 94.82| 95.09| 95.53| 97.54| 97.52| 97.31
Best |Rank I 94.96| 94.64| 94.72| 98.34| 98.01| 97.54
Case |TipMLT | 95.01| 94.79| 96.86| 98.56| 98.60| 98.42
MASWT| 97.79| 98.23| 99.69| 99.91| 99.96| 99.95
PGDT 93.13] 94.38| 91.07| 97.31| 97.05| 96.46
Random [Rank I 9291| 94.31| 93.02| 97.54| 97.51| 97.63
Case |TpMLT | 93.18| 94.51| 92.37| 98.43| 98.39| 98.23
MASWT| 95.83| 96.77| 95.11| 99.69| 99.65| 99.28
PGDT 92.87| 92.21| 88.48| 96.54| 96.07| 95.19
Worst [Rank I 93.33] 92.72| 89.39| 96.40| 95.77| 93.80
Case |TpMLT | 93.64| 93.86| 92.25| 96.59| 95.76| 93.35
MASWT| 95.89| 94.97| 94.87| 9947 99.13| 98.08
Original Image Prediction Scores and Ranked Labels
k& 1. Person w 6. Do,
[ & GT 2 Bot|078 5 0.00| 4 17. Plane
e P &3, Chair|0.12| 4 8. Motorbikg0.00| ¢ 13. Pottedplant|0.00| @18, Tv
=4, Car 0.00| »19. Horse
¢ 5. Cat 0.00] =20. Sofa

~
-
4

Fool Pert ~ ~
S ~ !

Fig. S.1.
k = 3,5,10. Adv and Perturb mean adversarial image and perturbation,
respectively.

Ilustrative images in VOC 2012 for untargeted attacks with

A2 and 7, are used in MADW. Fig. S.5(a) presents the results
of top-10 targeted attack under the worst case on VOC 2012
with varied A1 (A remains 0.5). As \; increases, ASR also
increases, and LFR decreases. A\; and Ao should be tuned
according to the application scenario. Moreover, Fig. (b)
presents the effect of n on ASR and LFR, achieving the
best value for = 1.015. Based on this sensitivity test, we
conclude that A1, Ay = 0.5, and n = 1.015 attain the best
possible performance. Besides, Fig. S.5(c) shows the impact
of the damping factor update method on attack performance.
When f;,, = 1.5 and f4 = 5, ASR and LFR achieve larger
values than those when §;,, = 2 and f4. = 3. Therefore we set
fin = 1.5 and f4e = 5 in our experiments.

Convergence Comparison. Fig. presents more results on
the fluctuating Lagrangian values of MLCWU, T;MLU, and
MASWU on VOC 2012 and COCO 2014. The flat curves of
MASWU rather than the undulatory curves of MLCWU and
TL.MLU infer that MASWU is more stable than MLCWU
and T;MLU. We statistically analyzed 200 random images
in VOC 2012 / COCO 2014 for a top-10 untargeted attack
and a targeted attack. The results on VOC 2012 / COCO
2014 reveal that the proportions of fluctuations exceeding
0.3 of MLCWU, T,ALCU, T;MIAU, T,MLU, MADWU
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Fig. S.2. TIllustrative images in COCO 2014 for top-3 universal untargeted
attack. Adv means adversarial image.

Prediction Scores and Ranked Labels

1. Person 16. Bottle «11.Bus [0,00] * 16.Sheep [0.00]
2. Pottedplant|0.96| 7. Bicycle =12.Sofa [0.00| #'17. Horse
3. Motorbike {0.90| 18, Diningtable[0.01| o 13. Cat w18, Cow
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MASWT Adv_ MASWU Perturbe

084 x10

Fig. S.3. Tllustrative images in VOC 2012 for targeted attacks under the best
case scenario with £ = 3,5, 10.

and MASWU are 17.0%/21.5%, 9.0%/8.5%, 11.5%/10.0%,
10.5%/9.5% , 7.0% /5.0% and 6.5% /5.0%, respectively. And
for targeted attack, the proportions on VOC 2012/ COCO
2014 of MLCWT, T, ALCT, T;MIAT, T,MLT, MADWT
and MASWT are 12.5%/18.0%, 8.5%/9.0%, 7.0%/8.5%,
9.0%/11.5%, 6.0%/7.0% and 6.0%/7.5%, respectively. From
the statistical analysis, our methods are more stable than these
existing methods.

Time Cost Comparison: Tables S.X and S.XI report the
runtime of the targeted and untargeted attack methods. Except

 MASW wio SPW
B MASW w SPW

- MASW wio SPW
- MASW w SPW

N MASW wio SPW
B MASW w SPW.

Fig. S.4. Ablation study on SPW on VOC 2012.
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Fig. S.5. (a), (b) and (c) effect of A1,  and (fin,fqe) on ASR and LFR,
respectively.

for FGSM and MFGSM, our methods generally require the
lowest time cost. Moreover, FGSM requires only one gradient
ascent, so its time cost is sharply reduced. However, the time
costs of our methods are comparable or even significantly
lower than the SOTA methods, namely T;ML, kFool, Rank
I, MLDF, and MLCW, T,ALC and T;MIA. Although the
generation of adversarial attacks by LPD and GAMA is rapid
after the completion of the generative model training, the
training of the generative model still requires a significant
amount of time cost (i.e., exceeding three hours).

Table S.XII shows the time cost of each universal untargeted
attack method. Specifically, kUv requires more than a week
(168.00 hours) for an execution without eventually producing
a result. Our method, MASWUYv achieves the lowest time cost.
What’s more, MADWUv has comparable performance.

TABLE S.XI
RUN TIME (S) OF EACH UNTARGETED ATTACK METHOD ON VOC 2012
AND COCO 2014.

Dataset VOC 2012 COCO 2014

Method k=3 k=5 k=10|k=3 k=5 k=10
FGSMU 0.06  0.07 0.07 0.04  0.05 0.05
MFGSMU 1.63 1.64 1.69 1.01 1.03 1.06
"MLCWU™ | 719.34 719,57 ~ 2001 11197 1214 ~ 1267
MLDFU 23.92 2425 25.12| 29.16 29.41 30.03
PGDU 283 297 3.23 1.22 1.34 1.57
kFool 418  5.04 13.12| 1391 1557 22.99
TiMLU 3.67 436 5.69 0.43 0.51 0.63
TiALCT 421 5.07 6.01 0.67 0.73 0.98
T, MIAT 406 478 5.93 0.61 0.69 0.81
MADWU 431 5.34 9.57 1.01 1.14 1.48
MASWU 3.04 379 5.21 041 046 0.61

TABLE S.X

RUN TIME (S) OF EACH TARGETED ATTACK METHOD UNDER BEST CASE
ON VOC 2012 AND COCO 2014.

Dataset VOC 2012 COCO 2014
Method k=3 k=5 k=10|k=3 k=5 k=10
FGSMT 0.07  0.07 0.08 0.04  0.04 0.04
MFGSMT 1.60 1.66 1.66 096  0.99 1.02
"MLCWT ™|~ 546 “13.61 ~— 19887 ~ 238 ~ 316 ~ 5777
MLDFT 67.66 95.06 11831 |116.51 147.92 174.50
PGDT 14.17 2031 24.44 7.14 8.56 10.74
Rank I 3.83 5.87 9.02 0.56 1.06 2.29
TiMLT 3.67 551 8.22 0.53 0.76 1.23
TiALCT 456  6.04 9.35 089  0.93 1.46
T, MIAT 423 5.56 8.59 0.78 0.84 1.41
MADWT 521 5.56 10.26 1.16 1.42 2.01
MASWT 3.11 4.64 7.07 0.54  0.75 1.21
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Fig. S.6. Variations of the Lagrangian values of MLCWU, T MLU and our MASWU on VOC 2012 and COCO 2014 during optimizing. The top-10 untargeted

attack is considered.

TABLE S.XII
RUN TIME (H) OF EACH UNIVERSAL UNTARGETED ATTACK METHOD ON
VOC 2012 AND COCO 2014.

Dataset VOC 2012 COCO 2014

Method k=3 k=5 k=10|k=3 k=5 k=10
PGDUv 1.03 1.98 3.79 0.83 1.23 1.75
kUv 168.00 168.00 168.00 | 11.49 90.44 168.00
TrMLUvV 0.68 1.08 3.12 0.11 0.13 0.17
Tr ALCUvV 0.70 1.15 3.50 0.16 0.23 0.26
TrMIAUvV 0.71 1.16 3.52 0.15 0.18 0.23
MADWUv 1.01 1.64 3.97 0.21 0.22 0.22
MASWUv 0.59 0.99 2.97 0.10 0.12 0.14
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