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Revisiting the Effective Number Theory for
Imbalanced Learning

Ou Wu, Mengyang Li

Abstract—Imbalanced learning is a traditional yet hot research subarea in machine learning. There are a huge number of imbalanced
learning methods proposed in previous literature. This study focuses on one of the most popular imbalanced learning strategies, namely,
sample reweighting. The key issue is how to calculate the weights of samples in training. While most studies have relied on intuitive
theoretical or heuristic inspirations, few studies have attempted to establish a comprehensive theoretical path for weight calculation.
A recent study utilizes the effective number theory for random covering to construct a theoretical weighting framework. In this study,
we conduct a deep analysis to theoretically reveal the defects in the existing effective number-based weighting theory. An enhanced
effective number theory is established in which data scatter and covering offset among different categories are involved. Subsequently,
a new weight calculation manner is proposed based on our new theory, yielding a new loss, namely, NENum loss. In this loss, weights
are sample-wise instead of category-wise used in the existing effective number-based weighting. Furthermore, another novel loss that
combines weighting and logit perturbation is designed inspired the limitations of the NENum loss. Meta learning is employed to optimize
the concrete calculation based on sample-wise training dynamics. We conduct extensive experiments on benchmark imbalanced and
standard data corpora. Results validate the reasonableness of our enhanced theory and the effectiveness of the proposed methodology.

Index Terms—Imbalanced learning, effective number, covering offset, weight calculation, meta learning.
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1 INTRODUCTION

IN many real data classification tasks, imbalance (espe-
cially class imbalance) exists inevitably due to the intrin-
sic nature of the involved data or the technical limitation
of data collecting [1. On these tasks, the learned models
usually perform poorly on categories with small propor-
tions of training samples. Addressing this challenge falls
under the domain of imbalanced learning, a specialized
subarea of machine learning that focuses on mitigating the
impact of imbalanced data distributions across categories
(or regression targets).

The dominant categories in a training set are referred
to as majority categories, whereas those occupying little
are called minority ones. Previous literature has proposed
numerous imbalanced learning methods aiming to enhance
model performance on both the minority categories and the
entire data space. Generally, most existing methods can be
roughly placed into six technical paths: data resampling,
data reweighting, model adaptation, loss modification, data
augmentation, and model ensemble. Many approaches com-
bine multiple paths to form the final learning strategy. For
instance, Zhou and Liu [2] employed ensemble learning
to combine resampling and threshold-moving methods to
address class imbalance. Their study provides valuable in-
sights into the application of shallow classifiers for imbal-
anced learning.

Among the various imbalanced learning strategies, data
reweighting is usually among the first choices as it is inde-
pendent of the involved classification models and training
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loss and thus can work as a plug-in module. The pri-
mary issue for data reweighting lies in the calculation of
the weights for training samples. Generally, the category
proportion is considered and the larger the category pro-
portion is, the smaller the weight is. Existing weighting
strategies can also be roughly divided into category-wise
and sample-wise ones, or into static and dynamic ones.
Many strategies belong to category-wise, whereas methods
such as Focal loss [3] belong to sample-wise. In current
deep learning tasks, as the deep neural network (DNN)
models are optimized over training epochs, the dynamic
weighting strategy is demonstrated to be more effective
than the static weighting strategy. Fernando and Tsokos [4]
designed dynamically weighted loss based on both the class
proportion and model prediction on each training sample.
Ren et al. [5] inferred the sample weights at each epoch
based on the training dynamics of samples in each epoch.

There are limited studies focusing on the theoretical
aspect of the weight calculation for imbalanced learning.
Most methods assume the category proportion is the cat-
egorical prior probability. Consequently, the inverse of the
category proportion can be directly used as the categorical
weight based on the Bayesian rule. Recently, Cui et al. [11]
conducted a pioneering study to establish a theoretical
framework for weight calculation based on the effective
number theory which is explored in the random covering
problem [12]. They assumed that categories with larger
expected data volumes than others should have smaller
weights and proposed the following calculation manner for
the weight of the category y:

1-p

Wy = 1-— ﬁny ’ (1)
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where 3 is a hyper-parameter approaching one and n, is
the number of training samples for category y. This weight
yields the class-balanced loss [11] and provides a rationale
for the diminishing marginal benefits of increasing the train-
ing size in imbalanced learning. Although Cui et al.’s paper
receives a large number of citations, no study in the pa-
pers that cite this original paper of effective number-based
weighting has attempted to perform further discussion for
the effective number-based theory (referred to as ENum
weighting theory) for imbalanced learning. Moreover, even
though ENum weighting has demonstrated effectiveness in
various benchmark datasets, our analysis reveals that it has
some non-trivial limitations in its theoretical basis, which is
detailed in Sections 3.1 and 3.2.

In this study, we conduct an in-depth theoretical analysis
of the ENum weighting theory in the context of imbalanced
learning. We propose an enhanced ENum weighting theory,
along with a novel methodology. First, we theoretically
discuss the limitations of Cui et al’s ENum weighting
theory [11] and reveal that the determination of category-
wise weights in imbalanced learning cannot solely rely on
the data volume. Moreover, the ENum weighting theory
overlooks an essential sample interaction in random cov-
ering. Second, we establish a new effective number-based
weighting theory by considering two new factors, including
data scatter of different categories and covering offset in ran-
dom covering. Our theory is founded on more reasonable
assumptions and establishes a new weighting mechanism.
Third, we present two new loss functions. The first one is
the NENum loss, which enables sample-wise reweighting.
The second loss combines weighting with logit perturbation.
Meta learning is leveraged to infer the hyper-parameters
and important variables in the combining loss, which is
called the Meta-ENum method. The experimental results
as well as ablation study suggest that our Meta-ENum
outperforms state-of-the-art (SOTA) weighting methods for
imbalanced learning.

Our main contributions are summarized as follows:

o The defects of the existing effective number-based
weighting theory used for imbalanced learning are
revealed. Although the ENum weighting theory is
a classical study for imbalanced learning, it is built
upon an erroneous primary assumption and fails to
consider another crucial factor, namely, data scatter.

e A new effective number-based weighting theory is
established based on our theoretical exploration. The
weighting mechanism in our theory can alleviate the
defects of the existing theory and is more reasonable.

e Two new training losses are proposed. The hyper-
parameters and important variables of the proposed
combination loss are optimized via meta learning,
which forms a new method, namely, Meta-ENum. It
outperforms existing SOTA methods.

2 RELATED WORK
2.1 Imbalanced Learning

Recently, with the growing application of deep learning in
various domains, imbalanced learning has received increas-
ing attention in both the research and industrial communi-
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ties. Most imbalanced learning studies concern the classifi-
cation tasks, while some studies concern other tasks such
as regression and clustering. At present, typical imbalanced
learning methods can be placed into the following folds:

e Resampling/reweighting. This type of methods reor-
ganizes the training set by down/over-sampling of
the original training samples, or by exerting different
weights on different samples. Xie et al. [41] proposed
a new Gaussian distribution-based oversampling
technique to handle the imbalanced classification.

e New model. This type of methods adapts classical
learning models (e.g., DNNs) to new models special
for imbalanced learning tasks. Zhou et al. [27] con-
structed a novel DNN architecture to learn effective
feature representations for both the majority and the
minority categories.

e New loss. This type of methods adapts classical train-
ing losses models (e.g., cross entropy loss) to new
losses special for imbalanced learning tasks. Cao et
al. [26] designed a novel category distribution-aware
margin loss to deal with category imbalance.

o Data augmentation. This type of methods synthe-
sizes new training samples for imbalanced learning
tasks. Both explicit and implicit augmentation strate-
gies are proposed in the literature. Classical explicit
methods include SMOTE [9] and mixup [21]. Typical
implicit augmentation methods include ISDA [22]
and MetaSAug [23].

e Ensemble. This type of methods fuses different mod-
els to deal with imbalance. Liu et al. [14] proposed
a new method to resample training data to generate
multiple classifiers and formed a cascade ensemble
model, in which the resampling strategy is optimized
via meta learning. Yang et al. [7] combined ensemble
learning and sample reweighting to construct a more
effective and robust broad learning system for imbal-
anced learning.

Although numerous studies have been conducted in
the previous literature, it is still inadequate to conclude
that imbalanced learning has been fully addressed and
numerous open problems remain unsolved. For instance,
does the ENum weighting theory hold under arbitrary
imbalanced conditions? The establishment of a theoretical
analysis framework might aid the uncovering of a general
conclusion. Additionally, some studies explore the issue
of intra-class imbalance in which imbalance occurs in a
category [39], [40].

2.2 Sample Reweighting

This study focuses on the technical path of sample reweight-
ing, in which training samples are assigned distinct weights
during training. Indeed, sample reweighting is a common
technique in machine learning. Apart from imbalanced
learning, sample reweighting finds widespread application
in at least the following subdivisions:

o Noisy-label learning (NLL). Sample reweighting is
also the primay solution for NLL. Noisy labels are
judged and low or zero weights are assigned to these
samples.
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e Curriculum learning (CL). CL is motivated by hu-
man learning procedure that easy knowledge is
learned first and hard is learned later [20]. It assigns
low or zero weights for hard samples in the early
training stage and then increases their weights along
training epochs [25].

e Boosting. In shallow classifiers such as Ad-
aBoost [19], hard training samples are assigned large
weights in the next training iteration.

Clearly, there is a conflict in the inspirations between CL
and Boosting. The former chooses the easy first scheme (i.e.,
easy samples are assigned with large weights), whereas
the latter chooses the hard first one. Zhou and Wu [13]
investigated the issue of which samples should be learned
first in machine learning. However, limited studies aim to
develop a theoretical framework for how to calculate the
weights of training samples for imbalanced learning. To our
knowledge, in addition to the conventional Bayesian rule,
only Cui et al. [11] made an effort on this issue on the basis
of the effective number theory.

2.3 Data Enhancement

Many recent imbalanced methods do not employ sample
reweighting to address imbalance. Instead, they utilize data
enhancement methodologies to optimize the training data.
Data augmentation is a typical data enhancement method-
ology, which can simulate new training data for minor
classes. Representative data augmentation-based imbalance
learning methods include SMOTE [9] and mixup [21].

Data perturbation is also an effective data enhancement
methodology. It generates new features, logits, or labels on
the basis of the raw training samples. Many recent classical
imbalanced learning methods with different motivations
can be attributed to the perturbation on logits such as logit
adjustment (LA) [36], LDAM [26]], and MetaSAug [23]. Let
v(x;) be the logit output by a deep neural network for a
sample x;, and let y; be corresponding label. Let 7, be the
proportion of training samples with y. Logit perturbation
modifies the yth dimension of the logit into the following

vy(@i) = vy (@) + 0y, &)
where §,, , is yth quantity of the perturbation vector for
the logits of the y;th class. In LA, 6, , = logm,; in LDAM,
0y, .y = —logmy,; in MetaSAug, d;,,, = (wy—wy,)" Ty, (wy —
w%)

This study will combine sample reweighting and logit
perturbation for imbalanced learning.

2.4 Meta Learning

Meta learning is also denoted “learning to learn” [28]]. One
main application of meta learning is the seeking of optimal
hyper-parameters. Shu et al. [15] designed a sophisticated
weighting network for NLL and imbalanced learning. The
weighting network is trained on an unbiased meta set with
meta learning. Li et al. [16] developed a logit perturbation
strategy to address class imbalance and the perturbation
hyper-parameters are optimized via meta learning. Meta
learning requires an unbiased (e.g., clean and balanced)
meta set. In NNL, a clean meta set may be difficult to
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construct. Nevertheless, a balanced meta set can be easily
constructed from training data, so this study also utilizes
meta learning to seek optimal hyper-parameters.

2.5 Cost-sensitive Learning

Cost-sensitive learning is an application-oriented machine
learning division. In many real-world applications, such as
medical diagnosis, the misclassified costs of different cat-
egories are different. Numerous classical machine learning
methods have been adapted to cost-sensitive learning, such
as cost-sensitive SVM [18] and cost-sensitive boosting [17].
Reweighting (also called rescaling in cost-sensitive learn-
ing) is almost the most popular approach to cost-sensitive
learning [30]. Previous studies [10], [24] revealed that cost-
sensitive learning methodologies are also good solutions
to the class imbalance problem. Chen et al. [55] proposed
a cost-sensitive online adaptive kernel learning algorithm
to handle large-scale imbalanced multi-class classification
problems. Siers and Islam [42] constructed a taxonomy
which encompasses approaches to both class imbalance
treatment and cost-sensitive classification. Some studies [6]
investigated the influence of class imbalance on cost-
sensitive learning and perspective findings were revealed.

Notation | Description
x | asample or its feature
y (or z) | a categorical label
C | the number of categories in a classification task

ny | the number of training samples in category y
my | the proportion of training samples in y
the yath perturbation quantity for the logits of y1
x) | the output of the feature encoding layer for
the logit vector of
x) | the output of a classifier f for a sample x
wy | the weight vector for y in the last layer
¥, | the covariance matrix for category y
Sy | the set of all data in the feature space of y
Vy | the volume of category y
Ey | the effective number of £ random samples
wy | the weight of category y

I | the unit matrix
the classification accuracy of f on y
the prior probability of y
R™ | the n-dimensional Euclid space
the normal distribution
oy | the variance (factor) for y
the data scatter degree
the posterior probability of y on «
the loss
© | the parameters for the backbone network
Q2 | the parameters for the meta-learning modular
B | the hyper-parameter for weighting

TABLE 1: Summary of the Notations.

3 THEORETICAL ANALYSIS

This section briefly reviews the existing ENum weighting
theory [11]. The defects of this theory are then discussed.
The main notations of this study are summarized in Table 1.

3.1 The Existing ENum Weighting Theory

The effective number (E}) represents the expected volume
of a set containing k random samples. The ENum weighting
theory established by Cui et al. [11] is built on the basis of
the following four assumptions:
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Assumption 1. Each sample has the unit volume of 1.

Assumption 2. Vy, S, is bounded. Alternatively, V, is not
infinity. The values of Vys of all categories are identica]ﬂ

Assumption 3. There are only two ways that a newly
sampled data can interact with existing sampled data:
it either overlaps with one of the existing data with a
probability p, or it remains entirely outside the existing
data with a probability 1 — p.

Assumption 4. The weight assigned to category y is in-
versely proportional to the effective number (F,,,) of the
training samples in category .

Based on the above assumptions and some straight-
forward inference, Cui et al. [11] calculated the effective
number E,, of a category by using

1—By?
B =_"Y
Ny 1 _ /By I
where 3, =1 —1/V, € (0,1). According to Assumption 4,
Cui et al. proposed the following weighting mechanism for
category y:
I 1-8y

E,, — 1-By"

The four assumptions and the above weighting formulation
constitute Cui et al.’s effective number-based theory. Evi-
dently, the following two equations can be obtained with
Taylor expansion for (@):

®)

Wy X

(4)

1 X —
1m
wy V

L and lim  wy oc —. (5)

y Vy—+oo ny
The conclusion of indicates that the category weight
remains small when its volume (V) or training size (n,)
is large. Both of these findings are highly reasonable. In
particular, (5) can well explain the marginal benefits of in-
creasing the training size n,. As n, grows to a considerable
value, the weight of category y approaches to a constant
value (x 1/V}). Moreover, the weights of all categories are
equal as Vs become identical according to Assumption 2.
Extensive experiments [11] validate the effectiveness of
Cui et al’s theory and algorithm. Nevertheless, we argue
that their theory has the following limitations:

Limitation 1. There is no theoretical justification for why
only the effective number determines the weight in
imbalanced learning, as described in Assumption 4.

Limitation 2. Assumption 3 ignores that two or more cate-
gories may intersect with each other. Therefore, a newly
sampled data may offset another category’s sample,
thereby suggesting a third way of sample interaction.

Limitation 3. The ENum weights are static. Nevertheless,
in deep learning, the data volumes of each category
may vary as the feature space continuously optimizes
during training. This inconsistency clearly contradicts
the underlying assumption of using static weights.

It is noteworthy that, although the identical volume
assumption in Assumption 2 is also incorrect which has

1. Although Cui et al. [11] had pointed out that V};s may be different,
Vys are still assumed identical in their final method.

Category +1 Category +1

+

AN % \
Category -1— f * Category -1—

(@) ps:p.=K:1 ®) ps:p.=1:1
Fig. 1: Two binary learning tasks under uniform distribu-
tion. The classes” volumes are different.

been identified by Cui et al. [11], this study still inherits
this assumption because it is nearly impossible to calculate
the true values of Vys. As Limitation 3 is obvious, the
subsequent subsection presents a theoretical analysis of
Limitations 1 and 2.

3.2 Analysis for the Limitations
3.2.1 Analysis for Limitation 1

Two typical learning cases are explored to expose the first
limitation that the effective number is only determined by
the class volume (i.e., effective number) assumed in the
existing theory.

Case I: Learning under unequal classes’ volumes

In this case, classification tasks with unequal class vol-
umes are constructed to analyze the relationship between
class weights and their volumes.

Considering the following binary classification task. The
data from each category follow a uniform distribution D
within two circles that are centered on 6 and —6, respec-
tively. A K-factor difference is found between two circles’
radius: r4 : r— = K : 1 and K > 1. The data follow

Ply=+41)=py,Ply=—-1)=p_,
6 =nn" €eR?*n>0,

g, ity =+1[z -6l <Knp,  (©)
T~ 71-77;2’ ify:_17||w+0”2§77a
0, otherwise.

Fig.[1}illustrates two binary learning tasks with different
prior probability ratios: (@) py : p— = K? : 1 and (b)
py+ : p— = 1 : 1. We next reveal that in these two tasks,
the data scatter rather than the volume determines the
category weight when imbalanced learning is involved. Let
the optimal linear classifier f* be obtained by minimizing
the average classification error, i.e.,

fr= argm}n{P(f(w) #yly=+1) xpt

+P(f(x) #y|ly=—1) xp_},

In the first task, the two categories have equal probability
densities as — ;;f;nz = 25 in the second task, the two
categories have unequal probability densities. The following

two theorems with opposite conclusions can be obtained.

@)

Theorem 1. For a data distribution D in (6) and p; : p— =
K? : 1, let f* be the achieved optimal linear classifier.
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The classification accuracy (A) of class +1 is larger than
that of class -1, i.e.,, A (f*,+1) > A(f*, —1).

Theorem 2. For a data distribution D in (6) and p; : p— =
1:1,let f* be the achieved optimal linear classifier. The
classification accuracy of class +1 is smaller than that of
class -1,ie., A(f*,+1) < A(f*,—1).

The proof is presented in the online supplementary ma-
terials. Theorem 1 indicates that if the probability densities
at each sample are identical, then the category with the
larger volume will have better classification performance.
Consequently, a small weight should be assigned to this
category (category ‘+1’ in the setting) if imbalance (classi-
fication fairness) is concerned. That is, Assumption 4 holds
in the learning setting of Theorem 1. However, Theorem 2
contradicts the validity of Assumption 4, as it suggests that
category "-1" should receive a smaller weight, despite having
a smaller volume than category ‘+1’, when classification
fairness is a primary concern.

Considering that sampled data in regions with small
probability densities are usually more scattered than those
in regions with large probability densities. The contradictory
conclusions from Theorems 1 and 2 suggest that another
important data property, namely, scatter, also impacts the
category-wise performance and thus the category weight.
In Theorem 2, although category ‘-1” has a small volume,
its scatter is smaller than that of category ‘+1’. Accordingly,
category ‘-1’ is superior to category ‘+1” and it should be
assigned a small weight in imbalanced learning.

Case II: Learning under equal classes’ volumes

In this case, classification tasks with equal class volumes
are constructed. Xu et al. [29] examined the performance
gap between two categories within a binary classification
task, adhering to the following distribution:

u.a.”

y " {-1,41}, 0=n,....n" €eR%n>0,
2 iy — . 8
v N(e,a+£), if y = +1 ®)
N (-6,0%1), ify=-1

where a K-factor difference is set between two classes’
variances: oy : 0_ = K : 1 and K > 1. Fig. P]illuminates
the two categories. There are no bounds for both categories
and category ‘-1” is more compact than category ‘+1’. Un-
der the optimal linear classifier f* defined in Eq. (7), the
performance gap is

VA:A(f*a_l)_A(f*a+1) (9)
—P{-K-B+R<N(0,1)<B-K-R}>0

e %' R = /B?+q(K), and ¢(K) =
2log K

w271 - That is, category ‘+1” is more harder and has smaller
classification accuracy than category -1

The volumes of the two categories in the above task are
infinite. To meet the conditions of the effective number the-
orem that categories have bounded volumes, we construct
a new learning task based on the above learning task. For
each category in (8), there must be a bound p such that the

where B =

Category +1

+
f*

Category -1

Fig. 2: Two categories with Gaussian distributions. Based on
them, a task with equal classes’ volumes can be constructed.

probability of samples whose distances to the categorical
center are larger than the bound is less than V 4,/100:

\Y
P(la —6ll2 > ply = +1) < 1o
VA (10)
P 0 =-1)< =
(Il +0ll2 > ply = ~1) < T

The data samples distributed in the areas described in
can be relocated to other areas within the same category.
We can certainly devise a relocation strategy such that the
optimal linear classifier f* remains unchanged and aligns
with the classifier f* for the distribution in

As f* remains unchanged, for the new performance gap
between categories ‘+1” and ‘-1, we obtain

Vi= A( 1) = AU, +1) 2 V> 0.
The proof is straightforward. This inference denotes that
even when the two categories have identical volumes, cate-
gory ‘-1’ still exhibits higher accuracy than category ‘+1°.

Furthermore, if the bound p for category ‘+1” is adjusted
to 2p while the bound p for category ’-1” is adjusted to
1.5p or 3p, the conclusion stated in remains valid.
Alternatively, the relative volume of two categories does not
affect their relative accuracy for the two categories. That is,
if imbalanced learning is involved, then the weights are not
solely dependent on the class volume.

(11)

Summary
Based on the aforementioned analysis on two cases, the
following conclusions are obtained:

e We present a theoretical condition ensuring the va-
lidity of Assumption 4: when dealing with two cate-
gories having bounded volumes and both following
a uniform distribution, if their probability densi-
ties are equal, the category with the larger volume
receives a lower weight. Nevertheless, when their
probability densities are not equal, Assumption 4
may not hold.

e We reveal that another crucial factor, known as data
scatter, also heavily determines the category weight.
Note that a consistent relative relationship exists
among all the above designed cases: the variance
factor o2 for category ‘-1’ is consistently smaller

2. The online supplementary file provides an illustrative example for
how to construct such a relocation strategy.
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OAU possible regions 5 Region contain samples of the other category

N
]

Previously sampled data . Newly sampled data

‘@)
/

P AN

Overlapped

&
(a) Two interaction ways
in existing study.
Fig. 3: The interaction between a newly sampled data and
existing sampled data. If the newly sampled data falls into
the region containing samples of the other category, the
covering of this new sample will be offset as shown in (b).

Not overlapped,
Not overlapped

[P
N

OverlappeQ

N

j;

(b) Three interaction ways
considered in our study.

Offset

than the factor o2 for category ‘+1’. The variance
factor determines the relative probability density.
The above designed distribution cases suggest that
the data scatter still seems more deterministic than
the volume factor on performance and subsequently
the weights when class imbalance is concerned.

3.2.2 Analysis for Limitation 2

Limitation 2 concerns Assumption 2 in which only two
interaction ways are assumed between a newly selected
sample and all existing samples, as depicted in Fig. Bfa).
However, this assumption overlooks the presence of mul-
tiple categories, which could lead to interactions between
samples from different categories. While overlaps between
samples from the same category merely maintain the current
expected volume (i.e., E,_1), overlaps between samples
from different categories can also preserve the current ex-
pected volume (i.e., £, _1). As a result, the third interaction
way, offset, should not be disregarded.

We consider a straightforward random covering sce-
nario, illustrated in Fig. B(b). When a new sample is taken,
it can overlap with existing data from the same category
with the probability p;, or with existing data from another
category with the probability py, or falls entirely outside
with the probability 1 — p; — p2. Then we have

Ey=1—-p;
En=p1Ep1+ (1= p)p2En1+ (1= p2)(En + 1()% )
2
According to inference with Eq. (12), we have
1-—p"
E,=(1-p3) (13)

A
where . = . 4+ (1 — .)p2. The inference is presented in
the supplementary file. When ps = 0, F,, is reduced to the
original calculation defined in Eq. ; when p, = 1, E, is
reduced to 0. These two extreme cases are reasonable. In a
concrete learning task, let p(y|x) be the posterior probability
of category y on a sample x. The value of ps for the sample
a with label y can be calculated as follows:

p2(x) =1 —p(y|z). (14)

Decision boundary
Decision boundary ~__
~a

o

Direction vector

Direction vector

I i : il .
(a) (b)

Fig. 4: Two binary classification tasks in R%. The raw dis-
tribution characteristics do not exactly reflect the scatter
degrees of each class. As only the horizontal dimension
takes effects in classification for both tasks, the variances
of the samples projected to the horizontal dimension can
reflect the scatter of each class. Therefore, the scatter degree
of the orange class is smaller than that of the blue class in
(a), and the scatter degree of the orange class is larger than
that of the blue class in (b).

If p(y|x) = 1, then pa(x) = 0, meaning that there is no
overlap between different categories. Accordingly, the third
interaction way does not exist in this task and £, in Eq.
is reduced to the original effective number.

3.3 The Data Scatter Measurement

As data scatter is revealed to be more deterministic than
data volume in several typical cases, this subsection pro-
poses the measurement of the data scatter. In scenarios
involving the bounded uniform or the bounded Gaussian
distributions, the category with a low probability density
tends to exhibit inferior performance compared to the other
category. The low probability density leads to sampled data
with either low density or high scatter. However, utilizing
probability density directly is not appropriate for two main
reasons. First, the probability density is unknown in training
and the estimation is also a challenging problem. Second, in
Gaussian distributions, the probability densities of different
samples vary, making it difficult to derive category-wise
weights based on the varied probability densities.

As previously stated, a low probability density will
result in a large scatter degree. Covariance matrix can reflect
the scatter degree of sampled data. However, covariance
matrix is not a single value, and thus, it cannot be directly
utilized. Further, not all the raw distribution information is
useful in scatter measurement. The two learning tasks in
Fig. 4| illustrate that only the variance of projected samples
to a specific direction is useful for scatter measurement..

In LDA [35] for binary classification tasks, scatter is
quantified by the variance of the features mapped from
the original feature space to the classification boundary
parameterized by w. Let 3, be the covariance matrix for
category y. Let w be the coefficient vector of a given linear
boundary. In LDA, the data scatter for category y concerning
w in a binary task can be evaluated using w”? X, w with the
constraint that w”w = 1. This constraint ensures the scatter
degree remains unchanged when the direction of w is fixed.
As the constraint cannot be guaranteed in deep learning, the
following modified measure is used:

T w wTZyw

TwTwll; = TwTwll, ~  wlw
(15)
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Naturally, w’ Tw’ = 1. Under this measure, the scatter

degree remains unchanged when the direction of w is fixed.
During the deep learning training process, a direction vector
can be obtained between each pair of categories at each
epoch, so this vector is used to measure the scatter degree
of each category using Eq. (15). By applying this metric,
the scatter degrees of the categories in the learning cases
listed in Section 3.2.1 can be calculated and the results are
found to be reasonable. Take the learning case described by
Eq. as an example. Let w = [1,---,1]4. DS, = o2
and DS_; = 02. Then DS;; > DS_;. For the task in
Fig.[d the relative scatter orders between the two classes in
terms of either the average probability density or the norm
of covariance matrix are identical. Nevertheless, the relative
scatter orders are different yet reasonable according to our
measure. Therefore, our measure is better than them.

The above metric is only suitable for binary classifica-
tion tasks. In the case of a multi-class task (containing C
categories), we can first measure the scatter of a category in
terms of each of the remaining categories. Alternatively, the
scatter for category y consists of C' — 1 values:

Wy — ""Z)sz(“"y —w;)

(wy —w:) T (wy —w>)

’DS%Z - ( 707

(16)
where w, and w, are the weight coefficients in the soft-
max layer for the yth and the zth categories, respectively.
wy —w, is the direction VectOIﬂ of the linear boundary
between the two categories. Consequently, each category
corresponds to C' — 1 scatter degrees. The average of the
C'—1 scatter degrees can be leveraged to measure the overall
scatter degree of a category giving the direction vector.

, Zil,

4 NEw THEORY AND METHODS

This section firstly describes our novel theory of effective
number-based sample reweighting for imbalanced learning.
The new methodology is then introduced.

4.1 Our New Theory

The existing ENum weighting theory is founded on the
Assumptions 1-4 in Section 3.1. According to our analysis
on their limitations, new theory is established.

In our new theory, we retain Assumptions 1 and 2
particularly including the identical volume assumption as
it is nearly impossible to calculate the volumes accurately.
Building upon the preceding discussion, we present the
following assumptions to supplant Assumptions 3 and 4.

Assumption 5. There are three Waysﬂ that a newly sampled
data can interact with existing sampled data: overlapped
with one of the existing data in the same category with
the probability p;, or, offset with one of the existing data
from a different category with the probability (1 —p1)ps,
or, outside with the probability (1 — p1)(1 — p2).

3. Note that that the samples in the linear boundary between the two
categories y; and ya should satisfy wgl T = “"ij x. Therefore, the linear
boundary is (wy, — wy,)T @ = 0, and thus the direction is wy, — wy,.

4. We do not consider the case that a category’s volume may be
reduced by a sample sampled from a different category, as this con-

sideration results in the entire analysis considerably complex.

7

Assumption 6. The weight of category y depends on two
factors: the effective number (E,,,) of the training sam-
ples in category y and the data scatter degree of category
y. When the effective numbers are equal, the weights
vary normally with the data scatter for each category;
when the data scatter degrees are equal, the weights vary
inversely with the effective number for each category.

Assumptions 1, 2, 5, and 6 consist of the basis of our
new theory. Nevertheless, in real tasks, the probability p;
in Eq. is not a constant value. It varies at different
positions/samples of the category. As a result, obtaining a
concise formula for E,, becomes challenging, given that py
relies on . However, we can prove the following lemma:
Lemma 1. If the volume of each newly sampled data x in

category y is enlarged by then E;,  for category y
1-8,"Y
-8,

The proof is available at the online supplementary material.
According to Lemma 1, effective number-based weighting
can be modified to % X m Thereafter, a theoretical
weight can be calculated for each training sample as follows
1-8 o 1
1= plyile:)’
where DS, = -7 3.DS,, . is the average data scatter for
category y;. The term m is used according to Lemma
1. By, becomes 3 as Assumption 2 is inherited and Vs are
identical for all categories. In real training process, p(y;|x;)
can be approximated by the softmax output of the current
trained model that may be imperfect, and samples may be

1
p(ylz)’
is still

w(z;) x DSy, x

17)

noisy, so we use a function g(x;, y;) to replace m The
following theoretical weight is then used
_ 1-—
w(x;) x DS, X 75 - X g(Ti, ¥;)- (18)

When g(x;,y;) x [1 — p(y;|x:)]", the whole weight inte-
grates the Focal loss. However, Focal loss is sensitive to
noisy samples [13]], so a slight modification will be intro-
duced. The weights in Formula are dynamic.

Assumptions 1, 2, 5, and 6, and the weighting mecha-
nism described by Formula consist of our new ENum
weighting theory for imbalanced learning. In the succeeding
part, the concrete form of g(-) is presented.

4.2 The Proposed Method
4.2.1 Two New Losses

Noisy-label training samples commonly exist in real appli-
cations and thus their predictions p(y|x) may be quite low.
Consequently, their weights may become excessively large
if Formula is used, which is harmful for the training
process. Inspired by noisy-label learning, we first define

[1 = p(yi|z:)]",
Ti,Yi) = > r
oo ={ {1~ G0
where 7 and TE] are two hyper-parameters; p(y;) is the

average prediction probability for category y. Eq. indi-
cates that when the prediction (i.e., p(y;|z;)) for a particular

if p(yilz:) > 7

else (19)

5.In our experiments, to avoid grid-searching on too many hyper-
parameters, r is directly set as 2 and 7 is set as 0.2.
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sample is rather low, it can be considered as noisy or quite
difficult and thus its weight is reduced by replacing p(y;|;)
with p(y;) to alleviate the negative effect of this sample. The
Cross-entropy loss with the weights obtained by and
forms a new loss called NENum loss in this study.

The NENum loss still exhibits two limitations. First, the
data scatter measure is initially designed for binary tasks,
as shown in Eq. . The average (DS,,) alone cannot
fully capture the data scatter relationships among differ-
ent categories. Second, the function g(-) accounts for the
overall offset effect from the rest categories, overlooking
the individual contributions from each of the remaining
categories. To address these two limitations, the idea of logit
adjustment [36] is incorporated and the final training loss
combining category-wise weighting and sample-wise logit
perturbation becomes

1-p

O(f (), y:) = 1= X

CXP Vy, (931)

log

(20)
where 71 and T are two hyper-parameters; v(x;) is the
logit output of the backbone network; h(x;, z) reflects the
offset effects between x; and z. Likewise, h(x;, z) should be
non-increasing over p(z|x;), and if p(z|x;) is larger than a
certain threshold, h(z;, z) should be low as the sample may
be noisy. The concrete form of h(x;, z) is approximated by
using meta learning described in the succeeding part.

We emphasize that the Eq. loss adheres to Assump-
tions 1, 2, 5, and 6. First, Assumption 1 is trivial and is
certainly adopted. Second, § is equal for all categories in-
dicating that the volumes of each category are still assumed
to be identical as claimed in Assumption 2. Third, three
interaction ways are considered as claimed in Assumption 5.
Lastly, when 71 = 0 and the larger the data scatter DS, .,
the larger the loss of the sample. As a result, the sample
will play more important role in training. Alternatively, a
large data scatter will result in a large weight, which is in
accordance with Assumption 6.

We further elaborate the rationale behind utilizing the
Eq. loss, employing the first-order Taylor expansion for
the Cross-entropy (CE) loss. We have

) Av =) + (g -y) Av,

@1
where g =softmax () and y is the one-hot label for category
y. Then the regularizer (g — y) " Av becomes

v+ Av) =~ L(v) + (g—ﬁ

R(f(w), y) = Z qz [Tlh(w» Z) + TZDSy,z]'

27y

(22)

A large value of h(x, z) indicates that « could potentially be
mis-classified into category z by the current trained model.
Note that g, > 0. Therefore, the regularizer in Eq.
further attempts to reduce the value of p(z|x) (z # y) and
the data scatter of category y concerning category z if h(x, z)
is large. However, when p(z|x) is considerably high,  may
be noisy and its true label may be z. Theoretically, h(x, )
should be small, and thus less regularization will be placed

on p(z|x).

Zze[C] explv (@) + T1h(mi, 2) + 72 DSy, 5]
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Fig. 5: The main pipeline of the meta learning-based training
in a training epoch.
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4.2.2 Meta Learning-based Training

To avoid explicitly defining the form of A(-) and to alleviate
the inaccurate estimation of co-variance matrices (X,) for
data scatter, meta learning is employed.

Our meta learning-based training procedure follows the
steps used in Meta-Weight-Net || Let ©! and Qf (the
parameters W for h(-) and the covariance matrices 3¢,y
for all categories) be the parameters of the backbone net-
work and the meta-learning modular, respectively, in the tth
epoch. Fig. |5|illustrates the pipeline of our training process
in a training epoch which contains three main steps. In
the first step, a batch of n; training data is input into the
backbone network. Their training dynamics are extracted to
calculate h(-) and the data scatter for each class is calculated
based on £2'. A temporal value of © is then obtained by
conventional gradient-based optimizing technique such as
SGD as follows:

Al ¢

At
e =0'- ZV@l (for (@), yi; B4, W), (23)

i=1

where ); is the learning rate. In the second step, a batch of

n,, meta data is input into the backbone network. Then, (2
ot

is updated based on ® and the training loss on the meta

data as follows:

o =% - ngy (for (z;), yj,@ W' (24
j 1
and
Wi — wt - vaz for(®;).y;: 0 B4, (25)

m =1
where Ay and A3 are the learning rates. In the third step, both
h(-) and the data scatter are updated according to Q'"'. The
backbone parameters ® are then updated based on SGD
and the new training loss as follows:
et =e - ZV@l for (i), yis TiH, W) (26)
We use a three-layer MLP network to approximate
h(z;, z) depending on the following training dynamics,
rather than the sole value of p(z|xz;), which may lead to
inaccuracy:

o Training loss (x7"): The CE loss (-logp(y;|x;)) is usu-
ally used to directly deduce the weight of a sample
or to judge whether a sample is noisy or not [37].
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Algorithm 1: Meta-ENum

Input: ptrain pmeta 3 - 1, batch size ny, meta batch
size nm, T1 and T, learning rates A1, A2, and As.
Output: Trained backbone network fg .

1: Initialize h,, and backbone fg;
2: fort =1to 71 do )
3:  Sample a batch of samples from D"™™";
Calculate the standard CE loss on these samples;
Update © using SGD;
end for
7: fort =T1 + 1to 1> do
8:  Sample n; (denoted as B1 = {(xi,y:)};2,) and A
nm (denoted as By = {(;,y;)};m) samples from D"
and D™, respectively;
9:  Calculate covariance matrices 3. for each class;
10:  Extract {x],--- ,x]s} for each training data;
11:  Calculate DS.,. by Eq. (16) for all categories;
12:  Calculate loss by Eq. (20) for all samples in B1; and
update temporary © by Eq. ;
13:  Fixed © and W, calculate loss by Eq. for all data in
Ba, and update 3.} for all categories by Eq. @9;
14 Fixed © and £}/, calculate loss by Eq. (20) for all
samples in Bs, and ulfdate W by Eq. (25);
15:  Fixed W'*! and 27, calculate loss by Eq. for all
samples in Bi, and update © by Eq. .
16: end for

AL

o Prediction (z%): This quantity (p(z|x;)) is also used
for sample weighting in previous literature [3].

o Uncertainty («]%): The information entropy of the
softmax output quantifies uncertainty [38]. Samples
with high uncertainties are usually close to the clas-
sification boundary [43]].

o Margin (z;"): Margin measures the distance from
the sample to the classification boundary between
two categories. The margin is calculated by (w,, —
w2)” f(@).

 Forgetting (z'5): Sample forgetting is revealed to be
an effective quantity to characterize training sam-
ples [44]. Forgetting measures the proportions of
times that (w,, — w,)T f(z;) < 0 occurs in previous
epochs.

The whole method is called Meta-ENum and the algo-
rithmic steps are shown in Algorithm 1.

5 EXPERIMENTS

In addition to the imbalance datasets, standard datasets are
also leveraged to assess the performance of the proposed
methodology. The reason for leveraging standard datasets
lies in that the imbalance in terms of data scatter is also
considered in our study.

5.1 Results on Imbalance Datasets

Four benchmark datasets are involved including the im-
balance versions of CIFAR10 (i.e., CIFAR10-LT) and CI-
FAR100 (i.e., CIFAR100-LT) [51] and two large datasets iNat-
uralist 2017 (iNat2017) [49] and iNaturalist 2018 (iNat2018)
[50]. The training/validation/testing configurations in [23]],
[34], [36] are followed and the details are as follows:

9

CIFAR10-LT/CIFAR100-LT In the standard CI-
FAR10/CIFAR100 data sets, both have 50,000 train-
ing images and 10,000 testing images. Menon et
al. [36] compiled imbalanced CIFAR corpora un-
der different imbalance ratios (the ratio between
the numbers of the head and the tail categories).
In this study, two imbalance ratios are considered,
namely, 10:1 and 100:1, as the compiled corpora were
released by Menon et al. The numbers of training
samples in the four sets are: 20391 (CIFAR10 (10:1)),
12380 (CIFAR10 (100:1)), 19541 (CIFAR100 (10:1)),
and 19829 (CIFAR100 (100:1)). The original test sets
are used. Following [23], ten samples per class from
the original training set are randomly selected to
construct the validation set (also the meta datasetﬂ
iNaturalist 2017/2018 iNat2017 has 579,184 training
images and 5,089 categories with an imbalance ratio
of 3919:9. iNat2018 has 435,713 images and 8,142 cat-
egories with an imbalance ratio of 500:1. Following
[23], five and two random images per class from the
training sets of iNat2017 and iNat2018 are selected to
construct the meta data, respectively. The meta sets
are also fixed according to the fixed random seeds
provided by Li et al. [23].

The following classical and SOTA methods are compared
by adopting the same settings for hyper-parameters used in
previous studies [22], [36ﬂ

Class-balanced CE loss [11] This method assigns a
weight to each category with w, = 11:7,‘2 The value
of 3 is searched in {0.9, 0.99, 0.999, 0.9999}.
Class-balanced fine-tuning [45] This method con-
sists of two stages. In the first stage, a neural network
is trained on the whole imbalanced training set. In
the second stage, the network is fine-tuned on a
balanced subset of the training set.

Meta-weight net [15] This method assigns each sam-
ple a weight which is inferred by meta learning.
Hyper-parameters for the meta-learning module are
described in our supplementary file.

Focal loss [3] This method determines the weights of
each sample according to the formula w; = (1—p;)?,
where p; is the Softmax output on the true label and
«y is searched in {0.5, 1, 2}.

Class-balanced focal loss [11] This method combines
class-balanced loss and focal loss using the following
weighting scheme: w; = 1_1/8;&1(1 — pi)7, where 8
and vy are set as 0.999 and 0.1, respectively.

LDAM [26] As described in Section 2.3, LDM per-
turbs the logit vector of each sample in training. The
perturbation on the yth quantity of the logit vector
is 0y, y = *109(7'(;{4/)\) for the training sample z;,
where ) is set as 0.5 on CIFAR corpora and 0.3 for
iNaturalist corpora.

ISDA + Dropout [22] This method also perturbs

the logit vector of each sample in training. The

6. The released codes of [23] provide fixed random seeds which
ensure that the same validation set is used for each competing method.

7. Some recent classical methods are not in the same family as our
proposed method, so they are not involved in the comparison.
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perturbation on the yth quantity of the logit vector
is 8y, = AMwy — wy,)TE,, (wy — wy,), where X is
searched in {0.1, 0.25, 0.5, 0.75} for CIFAR corpora
and {1, 2.5, 5.0, 7.5} for iNaturalist corpora.

e LA [36] This method perturbs the yth quantity of
the logit vector of a training sample x; using d,, , =
Tlog T;“ , where 7 is set as 1.

. MetaSyAug [23] This method is an improvement of
ISDA, as ISDA performs poor in imbalanced learn-
ing. It learns ¥ ,}s for each class using meta learn-
ing. The algorithmic parameter A is searched in {0.25,
0.5,0.75, 1.0}.

e LPL [16] This method infers the perturbation vector
for the logit of a training sample via an optimization
process. The critical components include category
set split threshold 7 and perturbation bound e. 7
determines the categories that should be positively
or negatively augmented, while ¢ determines the
augmentation extent. The value of 7 is searched in
{0.4C, 0.5C, 0.6C}. The € is related to three concrete
hyper-parameters, namely, €,, Ae, and a. The value
of €. is set to 0, Ac¢ is searched in {1.5, 2.5, 5}, and «
is searched in {0.1, 0.2, 0.3}.

o KPS [46] This method modifies the logits using both
perturbation and scaling. First, the logit quantity on
the label y is perturbed via m, = m; Timas, ywhere
m; is dependent of n, and a hyper-parameter n,y,qq;
second, all the logit quantities are multiplied a factor
s. There are three hyper-parameters in KPS, namely,
Nmaz, Mmaz, and s. They are set as 50, 15, and 0.5,
respectively, on the CIFAR corpora and 50, 15, and
0.3, respectively, on the iNaturalist corpora.

e NENum loss This is the first proposed loss defined
in Formulas (18) and (19). Its hyper-parameters are
set according to Cui et al. [11], with r set to 2 and 8
set to 0.9999. v in Eq. (19) is set to 0.2.

e Meta-ENum This is the second proposed loss de-
fined in Eq. (20) based on meta learning. Its hyper-
parameters are set according to Shu et al. [15]. The
number of the middle nodes in the MLP is 100. SGD
is used over a total of 240 epochs on the CIFAR
corpora. The initial learning rate (A1) is set to 0.1 and
decayed at the 160th and 200th epochs with a factor
of 0.1. The momentum and the weight decay is set
to 0.9 and 5e-4, respectively. In Meta-ENum, %(-) and
E{y} are optimized at the same time, with batch size
set to 100, 71 set to 1.0 and 7» set to 1.0. For E{y},
since the gradient for X, in Algorithm 1 is quite
small during training, ), is set to 1e2 for CIFAR-10-
LT and 1e3 for CIFAR-100-LT, respectively. For W
in h(-), optimization is performed using the Adam
optimizer alone, with A3 set to 0.001 following Shu et
al. [15]. T is set as 160, and the other settings follow
the study of MetaSAug. On the iNaturalist Corpora,
all hyper-parameters and settings in the CIFAR ex-
periments are mainly retained, except for A2, which
is set to 1e3 for both iNat2017 and iNat2018.

Both the Class-balanced CE and the Class-balanced fo-
cal losses are directly derived from the ENum weight-
ing theory [11]. The rest hyper-parameters for each listed
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TABLE 2: Test Top-1 errors on CIFAR100-LT (ResNet-32).
[ Ratio H 100:1 H 10:1 ]
Class-balanced CE loss 61.23% 42.43%
Class-balanced fine-tuning 58.50% 42.43%
Meta-weight net 58.39% || 41.09%
Focal loss 61.59% 44.22%
Class-balanced focal loss 60.40% 42.01%
LDAM 59.40% 42.71%
LDAM-DRW 57.11% 41.22%
ISDA + Dropout 62.60% 44.49%
LA 56.11% 41.66%
MetaSAug 53.13% 38.27%
LPL 55.75% 39.03%
KPS 54.97% 40.16%
NENum loss 54.46% 40.39%
Meta-ENum 52.08% 37.33%
TABLE 3: Test Top-1 errors on CIFAR10-LT (ResNet-32).
[Ratio [ 1001 [ 101 ]
Class-balanced CE loss 27.32% 13.10%
Class-balanced fine-tuning 28.66% || 16.83%
Meta-weight net 26.43% 12.45%
Focal loss 29.62% 13.34%
Class-balanced focal loss 25.43% 12.52%
LDAM 26.45% 12.68%
LDAM-DRW 25.88% 11.63%
ISDA + Dropout 26.45% || 12.98%
LA 22.33% 11.07%
MetaSAug 19.46% || 10.56%
LPL 22.05% 10.59%
KPS 18.77% 10.95%
NENum loss 20.75% 10.91%
Meta-ENum 17.92% 9.83%

method (including the base neural networks) are presented
in the supplementary file.

The experimental results reported by Li et al. [23] for
some of the above competing methods are directly adopted.
The training settings are fixed. Similar to their experimental
settings, ResNet-32 [47] is used as the backbone neural
network for the two CIFAR datasets. The average top-1 error
of five repeated runs is presented. Let 1.5 be the test size.
The top-1 error is defined as follows

Top_1 error = 27;3% I(ypredict # yz)

Ntest

27)

In a single comparison, a smaller top-1 error indicates a
better performance.

Tables 2 and 3 show the top-1 errors of all the involved
methods on CIFAR10-LT and CIFAR100-LT, respectively.
Our method, Meta-ENum, outperforms all other competing
methods, including another meta-learning based approach,
MetaSAug. Our proposed direct weighting method NENum
loss also achieves good results. It is inferior or comparable to
MetaSAug, KPS, and LPL on the four datasets. Nevertheless,
it is better than the rest competing methods. It outperforms
Class-balanced focal loss, indicating that the data scatter
considered in our loss is useful.

In iNat2017 and iNat2018, the results of some competing
methods reported in [16] are directly borrowed. ResNet-
50 [47] is used as the backbone neural network following
the setting of [48]. Table 4 presents the top-1 errors of all
involved methods on the iNat2017 and iNat2018 datasets.
Similar conclusions are obtained. Our proposed method
Meta-ENum still achieves the lowest top-1 errors on both
datasets. NENum loss still achieves comparable results
and outperforms most existing methods including Class-
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TABLE 4: Test Top-1 errors on two real-world datasets
(ResNet-50).

Method iNat2017 iNat2018
Class-balanced CE loss 42.02% 33.57%
Class-balanced fine-tuning 41.77% 34.16%
Meta-weight net 37.48% 32.50%
Focal loss 38.98% 32.69%
Class-balanced focal loss 41.92% 38.88%
LDAM 39.15% 34.13%
LDAM-DRW 37.84% 32.12%
ISDA + Dropout 43.37% 39.92%
LA 36.75% 31.56%
MetaSAug 38.47% 32.06%
LPL 35.86% 30.59%
KPS 35.56% 29.65%
NENum loss 36.88% 31.67%
Meta-ENum 35.02% 29.31%

balanced focal loss and another meta learning-based method
MetaSAug.

5.2 Results on Standard Datasets

The standard versions of CIFAR10-LT and CIFAR100-LT are
involved in this part including CIFAR10 and CIFAR100. In
both corpora, there are 50,000 images for training and 10,000
images for testing. Following [23], ten random samples per
class from training set to construct the validation set for
both data sets. Li et al. [23] provided the random seeds in
their released codes, so the two validation sets are fixed. The
validation data are also taken as meta data.

The following classical and SOTA sample weighting loss
functions and logit perturbation-based losses are compared
by adopting the same settings for hyper-parameters used in
previous studies:

o Large Margin [52] This method replaces the
logit quantity (w'é' fy(x)) of the true label y with
llwyllll fy(z)]|2(8,), where ¢ is a function of 8, with
a hyper-parameter m, which is set as 0.2.

o Disturb label [53] This method actually disturbs the
true label of each training sample with a probability
a. For each disturbed sample, its label is randomly
drawn from a uniform distribution over all the pos-
sible labels. « is set as 0.05 in Wide-ResNet-28-10 on
both CIFAR-10 and CIFAR-100 datasets and ResNet-
110 on CIFAR 10, while it is set as 0.1 for ResNet-110
on CIFAR-100.

o Center loss [54] This method adds a regularizer to
the CE loss. The regularizer for a training sample is
defined as Reg(z) = \||Net(z) — &,|3, X is a hyper-
parameter and ¢, is the mean feature of the class y.
A is searched in {0.0001, 0.001, 0.01, 0.1, 1.0}.

e Lq loss [56] This method defines a new loss using
I(z) = @D where ¢ € (0, 1] is a hyper-
parameter. Foﬁowing [56], g is set as 0.4.

o LPL The value of 7 is set as the average of the average
predictions on the true label for samples in each
category. €. is set as the average prediction on the
true label for each category, Ac is searched in {0.1,
0.2}, and « is searched in {0.01, 0.02, 0.03}.

e ISDA/ISDA+Dropout/MetaSAug/NENum/Meta-
ENum These methods have been briefly described
in Section 5.1. The same settings for the hyper-
parameters are adopted.
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TABLE 5: Mean values and standard deviations of the test

Top-1 errors for all the involved methods on CIFAR10.

Method WRN-28-10 ResNet-110
Basic 3.82 + 0.15% 6.76 + 0.34%
Large Margin 3.69 = 0.10% 6.46 = 0.20%
Disturb Label 3.91 + 0.10% 6.61 + 0.04%
Focal loss 3.62 + 0.07% 6.68 + 0.22%
Center loss 3.76 + 0.05% 6.38 = 0.20%
Lq loss 3.78 + 0.08% 6.69 + 0.07%
ISDA 3.60 = 0.23% 6.33 = 0.19%
ISDA + Dropout 3.58 + 0.15% 5.98 + 0.20%
MetaSAug 3.85 + 0.33% 7.22 + 0.34%
LPL 3.37 + 0.04% 5.72 + 0.05%
NENum loss 3.64 + 0.09% 6.28 + 0.12%
Meta-ENum 2.80 + 0.06% 5.14 + 0.04%

Some methods such as KPS compared in Section 5.1 are not
involved as they are particularly designed for imbalanced
learning. The rest hyper-parameters for each listed method
are presented in the supplementary file. Wide-ResNet-28-
10 (WRN-28-10) [58] and ResNet-110 [47] are used as the
base neural networks. The top-1 errors reported in the LPL
paper [16] for the above competing methods are presented
directly as the training/testing configuration is identical for
both sets. Some results are directly from the original papers
of the competing algorithms. The experimental settings for
the base neural networks follow the descriptions given in
the ISDA paper [22] and the released codes. The top-1 error
is leveraged as the evaluation metric.

Tables 5 and 6 show the top-1 errors of the involved
methods on the two standard datasets CIFAR10 and CI-
FAR100, respectively. Meta-ENum achieves the lowest top-1
errors on both datasets under two different backbone DNN
architectures. Note that although Meta-ENum is based on a
meta set, the meta set is compiled from the original training
set without requiring any additional human labeling. There-
fore, the comparison is fair for all the competing methods.
The results indicate that our methodology considers the
data scatter imbalance which is effective for benchmark
datasets that are not considered as imbalance in terms of
sample proportion. Our proposed NENum loss does not
achieve competitive performance when ResNet-110 is used
on CIFAR10 and WRN-28-10 is used on CIFAR100. The
reason lies in that our NENum loss is particularly designed
for the imbalance scenario.

TABLE 6: Mean values and standard deviations of the test
Top-1 errors for all the involved methods on CIFAR100.

Method WRN-28-10 ResNet-110

Basic 18.53 = 0.07% 28.67 + 0.44%
Large Margin 18.48 + 0.05% 28.00 + 0.09%
Disturb Label 18.56 = 0.22% 28.46 + 0.32%
Focal loss 18.22 + 0.08% 28.28 + 0.32%
Center loss 18.50 = 0.25% 27.85 + 0.10%
Lq loss 18.43 + 0.37% 28.78 + 0.35%
ISDA 18.12 = 0.20% 27.57 + 0.46%
ISDA + Dropout 17.98 + 0.15% 26.35 + 0.30%
MetaSAug 18.61 = 0.29% 28.75 + 0.22%
LPL 17.61 + 0.30% 25.42 + 0.07%
NENum loss 18.27 + 0.28% 26.19 + 0.40%
Meta-ENum 16.31 = 0.15% 24.86 + 0.13%

5.3 Ablation Study

5.3.1 Ablation Study for NENum

In all the experiments, our NENum loss achieves superior
results compared with the Class-balanced CE loss, indi-
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cating that the considered data scatter holds significant
meaning. Our NENum loss modifies the Focal loss part
as described in Eq. (20). This modification aims to enhance
the robustness of our NENum loss, especially when dealing
with noisy labels in the training data, as noisy labels are
nearly unavoidable in real learning tasks. To this end, we
compare our NENum loss with its simplified version when
the original Focal-loss part is used as follows:
_ 1-5
w(®;) o DSy, x ———o— x [1 = p(yilz:)]".

1— "

(28)

Further, a more simplified version is also considered as
follows:

(29)

Tables 7 and 8 present the comparison among the
NENum loss, its simplified version (referred to as NENum-
), and the more simplified version (referred to as NENum-),
based on the four imbalanced datasets. Our modified parts
including both the introduced data scatter and g(x, z) are
useful. Note that g(x, z) is introduced with the illumination
of Assumption 5 and the data scatter factor is inspired
by Assumption 6. The comparison results support the two
assumptions.

TABLE 7: The comparison results among NENum, NENum-
, and NENum- on CIFAR10-LT and CIFAR100-LT.

CIFAR10-LT CIFAR100-LT
Ratio 100:1 10:1 100:1 10:1
NENum 20.75% 10.91% 54.46% 40.39%
NENum- 22.89% 11.37% | 56.10% 42.06%
NENum-— 24.63% 12.92% | 58.89% 42.28%

TABLE 8: The comparison results among NENum, NENum-
, and NENum- on iNat2017 and iNat2018.

iNat2017 iNat2018
NENum 36.88% 31.67%
NENum- 38.07% 33.18%
NENum- 40.64% 33.32%

5.3.2 Ablation Study for Meta-ENum

In our Meta-ENum loss, as defined in Eq. (21), there are two
perturbation terms including h(z, z) and DS, .. Therefore,
we conduct experiments to exam the significance of these
two terms. Tables 9 and 10 show the results of Meta-ENum
when one of the two terms is removed on the four im-
balanced datasets. In addition, the results for the variation
without both h(z, z) and DS, . are also presented. Results
validate the importance of both terms.

TABLE 9: The comparison results among Meta-ENum and
its variations on CIFAR10-LT and CIFAR100-LT.

CIFAR10-LT CIFAR100-LT

Ratio 100:1 10:1 100:1 10:1
Meta-ENum 17.92% 9.83% 52.08% 37.33%
-h(zx, 2) 18.65% 11.28% | 54.31% 38.75%
DSy~ 19.23% 10.95% | 55.65% 39.27%
-h(x, 2)-DSy, - 27.32% 13.10% | 61.23% 42.43%

We also examine whether the meta learning is truly
useful. Therefore, we replace the two terms (h(zx,z) and
DS, ») with their non-meta-learning versions. Specifically,
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TABLE 10: The comparison results among Meta-ENum and
its variations on iNat2017 and iNat2018.

iNat2017 iNat2018
Meta-ENum 35.02% 29.31%
-h(x, z) 35.99% 30.31%
-DSy,- 36.74% 31.14%
-h(z, z)-DSy - 42.02% 33.57%

TABLE 11: The comparison between Meta-ENum and its
non-meta-learning version on CIFAR10-LT and CIFAR100-
LT.

CIFAR1T0-LT CIFAR100-LT
Ratio 100:1 10:1 100:1 10:1
Meta-ENum 17.92% 9.83% | 52.08% || 37.33%
non-meta-learning | 18.76% || 10.73% | 52.60% || 38.28%

h(z, z) is replaced by g(z, z) and 3, in DS,, . is calculated
by the contained training samples in the class. Results are
shown in Tables 11 and 12. The results on these four datasets
indicate that meta learning does take effect in our method.

5.4 Discussion
5.4.1 Statistical test

To obtain a reliable comparison conclusion for the involved
competing methods, the significance test is utilized with the
Friedman test [57]], which can be used to verify whether
the performance differences among at least three methods
on multiple datasets are significant. On the imbalanced
datasets, there are fourteen competing methods. The test
value TF calculated by the Friedman test is 37.52, which
is larger than the critical value (10.64) when o = 0.05 («
is the significance level). On the standard datasets, there
are twelve competing methods. The T value calculated
by the Friedman test is 29.07, which is larger than the
critical value (7.81) when a = 0.05. Both results reject the
hypothesis that all competing methods have equal perfor-
mance. In other words, the performance differences among
the involved competing methods are significant.

5.4.2 Sensitivity Analysis on T1 and 1o

The loss in Meta-ENum contains two hyper-parameters,
namely, 7; and 7. In the aforementioned experiments, their
values are directly set to 1 to avoid excessive burden on
grid search. This part analyzes the sensitivity of the learn-
ing performance concerning these two hyper-parameters.
Fig. [f[a) shows the performance variations under different
values of 7y on CIFAR10 (Backbone uses WRN-28-10) and
CIFAR100-LT (100:1), while 7 is fixed as 1. Fig. @b) shows
the performance variation with different 75 values for the
same dataset scenario while 7, is fixed to 1. The results
reveal that fine-tuning the hyper-parameters leads to further
improvements in model performance. Nonetheless, even
with both 7 and 75 fixed at 1, the model still achieves
competitive results compared to the more detailed tuning
approach.

5.4.3 Analysis on the Sample-wise Weights

We make a statistic on the weights generated by our pro-
posed NENum loss on CIFAR10-LT (10:1) and CIFRAR100-
LT (10:1). For each set, we select one head category and



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, X 20XX

TABLE 12: The comparison between Meta-ENum and its
non-meta-learning version on iNat2017 and iNat2018.

iNat2017 iNat2018
Meta-ENum 35.02% 29.31%
non-meta-learning 36.34% 31.03%

one tail category. The weight distributions of the training
samples in CIFAR10- LT and CIFAR100-LT, corresponding
to the head and tail categories, are depicted in Fig. [] at
different epochs. Specifically, Fig.[7(a) and Fig.[7[b) show the
distributions of the head and the tail categories in CIFAR10-
LT, respectively, while Fig. [/(c) and Fig. [/[d) display the
weight distributions for CIFAR100-LT. The analysis reveals
that the overall weights of the head category tend to be
relatively small, although there are still instances where
large weights occur. On the other hand, the weights of the
tail categories are relatively larger, whereas there are still
samples with small weights in the tail categories.

r55.0

CIFAR10
—— CIFAR100-LT

CIFARI10
—— CIFARI00-LT

Test Top-1 error (%)
Test Top-1 error (%)

00 05 1.0 1.5 20 00 05 10 15 20
(a) Fixed 71, search 7 (b) Fixed 2, search 7

Fig. 6: Sensitivity analysis of 7, and 7.
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Fig. 7: Sample weight distribution of training data at differ-

ent epochs.

6 CONCLUSION

This study has re-investigated the effective number theory
for sample reweighting in imbalanced learning. The lim-
itations of this existing theory are summarized. Another
important factor, namely, data scatter, is defined to better
capture the relationship between two categories, and an-
other sample interaction way, namely, offset, is introduced
to better model the random covering issue for imbalanced
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learning. New effective number-based imbalanced learning
theory is then constructed, and a meta learning-based imbal-
anced learning method is proposed. Extensive experiments
indicate the effectiveness of the proposed method. Effective
number should not be the sole possible theory for imbal-
anced learning. Our future work will combine the effective
number-based theory with existing promising theories to
construct a more solid theory for imbalanced learning. In
addition, as intrinsic relations exist between cost-sensitive
learning and imbalanced learning, we also aim to explore
more effective learning methods for them together.
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1 PROOF OF THEOREMS 1 AND 2

Category +1 Category +1

Category -1 Category -1
Fig. 1: The geometric relationships for error calculation

when p; :p_ = K2 : 1 (left) and p; = p_ (right).
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error rate is as follows:
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where v+ = n, r— = Kn, ¢4+ = 2arccos :f—i, o =
2arccos ff—f, as shown in Fig. (1) left.

In Eq. , b is the variable. Therefore, we first derive the
partial derivative as follows:
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Eq. (@) denotes that the optimal linear boundary passes
through the two intersection points of the two boundaries

o Ou Wu and Mengyang Li are with the Center for Applied Mathematics,
Tianjin University, Tianjin, China, 300072.
E-mail: {wuou, limengyang }@tju.edu.cn

Manuscript received July 31, 2023.

of the two categories as shown in Fig.[l|left. As r, < r_, it
is easy to conclude that

¢+ > . )

As the accuracy of each category only depends on the arc
angle, so the following is obtained:

A(f*’+1)>“4(f*’_1)' (6)

That is, Theorem 1 holds. ,
In Theorem 2, py = p_. If % = 0, then we have

_ (h1)2 _ (h2)2
Y- 1o (7)
ry r_
Based on Eq. (7), we obtain

\/ri—hfz\/&—hg. (8)

2 2
Ty T

The above equation indicates that

sin 2+ sin &=

2 _ Sy )
Ty T_—

Note that 7, < r_. Consequently, ¢, < ¢_ is obtained
as shown in Fig. [I| right. Likewise, as the accuracy of each
category only depends on the arc angle, so the following is
obtained:

A(f*a+1) < A(f*a_l)
That is, Theorem 2 is established.

(10)

2 ANILLUSTRATIVE EXAMPLE FOR SECTION 3.2.2

Fig. [2| illustrates the construction of the distribution for
category ‘+1’. The circle is bounded by r. The distribution
for category ’+1’ is derived from the original Gaussian
distribution through the following steps. Firstly, data points
that lie outside the circle but between lines [, and [; are
uniformly relocated to the area within the circle and also
between lines [, and [;,. Secondly, data points situated in the
lower-left region of line /. and in the upper-right region of
line /. are uniformly moved to the upper-right semicircular
area.

Similarly, category -1’ follows the same construction
approach as described above. It is important to note that the



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, X 20XX

L

/
Category +1

/

[e X r+

N

Fig. 2: The illustration for the construction of a bounded
Gaussian distribution.
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"

bounds for both categories are sufficiently large to ensure
that the optimal linear classifier lies between the centers
of the two circles. Consequently, as the distance between
lines [/, and I, approaches infinitesimal values, it becomes
evident that the optimal linear classifier coincides with that
for classification tasks where both categories conform to
Gaussian distributions.

3 INFERENCE FOR EQ. (13) IN THE PAPER
First we have p; = E,,_1/V... Based on

E,=piEp1+ (1 —p1)[p2En-1+ (1 —p2)(Enaa +1)]
1n)
it is easy to obtain

E, = n71+(1_p1)(1_p2)

1—po
S (1),
v ) 1+ (1 —p2)

= ﬂ/En 1+ (1 _p2)
AsFE, =1— pg and according to Eq. (I2), assuming E,,_; =

=(1— (12)

(1- pg) holds, then
75/7171
E, =p.(1 —pz)l_icﬁ, + (1 —p2)
_ (1—p2)ﬁc_ﬁff5,l_ﬁc (13)
1- 8"
— (-

4 PROOF OF LEMMA 1
The condition is that when the newly sampled data is & and
its volume is englarged by % Then the volume of the
new sample x is

The second formufa of Eq. (12) in the paper becomes

En = plEnfl + (1 _pl)Eas[( —p(y|w)) n—1
1
- plEn—l + (1 _pl)]E;c[En—l + 1]

= Fbp_1+ (1 - pl)
which is exactly the iterative formula of the existing effective
number-based theory Consequently, the effective number of

category y is still X ﬁ yy .

2

5 HYPER-PARAMETERS SETTING FOR THE COM-
PETING METHODS

The rest hyper-parameters of the competing methods are as
follows:

e Class-balanced CE loss [6] The algorithmic pa-
rameter [ is searched in {0.9, 0.99, 0.999, 0.9999}.
The training hyper-parameters on CIFAR10 and CI-
FAR100 are set as follows. The epoch, batch size,
weight decay, and momentum are set as 200, 128,
0.0005, and 0.9, respectively. The learning rate is
initialized as 0.1 and decayed by 0.01 at the 160
epochs and again at 180 epochs. The training hyper-
parameters on iNat2017 and iNat2018 are set as
follows. The epoch, batch size, weight decay, and
momentum are set as 90, 1024, 0.0005, and 0.9, re-
spectively. The learning rate is initialized as and
decayed by 0.01 at the 30 epochs and again at 60
epochs. We used linear warm-up of learning rate [2]
in the first 5 epochs.

o Class-balanced fine-tuning [3] The training hyper-

parameters on CIFAR10 and CIFAR100 are set as
follows. The epoch, batch size, weight decay, and
momentum are set as 200, 128, 0.0005, and 0.9, re-
spectively. On iNat2017 and iNat2018, the epoch,
batch size, weight decay, and momentum are set as
90, 1024, 0.0005, and 0.9, respectively.
The learning rate is set as follows. In the first stage,
the neural network is trained on the entire imbal-
anced training set. The initial learning rate is set to
0.045, with exponential decay of 0.94 after every two
epochs. In the second stage, the neural network is
fine-tuned on a balanced subset of the training setﬂ
The initial learning rate is lowered to 0.0045 with the
learning rate decay of 0.94 after every 4 epochs.

e Meta-weight net [4] The training hyper-parameters
on CIFAR10 and CIFAR100 are set as follows. The
epoch, batch size, weight decay, and momentum are
set as 100, 100, 0.0005, and 0.9, respectively. The
learning rate for the backbone network is initialized
as 0.1 and decayed by 0.1 at the 80 epochs and again
at 90 epochs. The learning rate in meta learning
is set as 0.00001. The training hyper-parameters on
iNat2017 and iNat2018 are set as follows. The epoch,
batch size, weight decay, and momentum are set as
20,100, 0.0005, and 0.9, respectively. The learning rate
for the backbone network is set as 0.0001, and the
learning rate for meta learning is set as 0.00001.

e Focal loss [5] The algorithmic parameter < is
searched in {0.5, 1, 2}. The training hyper-parameters
on CIFAR10 and CIFAR100 are set as follows. The
epoch, batch size, weight decay, and momentum are
set as 200, 128, 0.0005, and 0.9, respectively. The
learning rate for the backbone network is initialized
as 0.1 and decayed by 0.1 at the 160 epochs and again
at 180 epochs. The training hyper-parameters on
iNat2017 and iNat2018 are set as follows. The epoch,
batch size, weight decay, and momentum are set as

1. The paper [3] does not describe how to construct the balanced
subset. Our results for this method are directly borrowed from previous
studies mentioned in the paper.
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90, 1024, 0.0005, and 0.9, respectively. The learning
rate is initialized as and decayed by 0.01 at the 30
epochs and again at 60 epochs. We also used linear
warm-up of learning rate [2] in the first 5 epochs.

o Class-balanced focal loss [6] The algorithmic param-
eters v and 3 are set as 0.5 and 0.999, respectively.
The training parameters are set with the same setting
as Class-balanced CE loss.

e LDAM [7] On the CIFAR corpora, the epoch, batch
size, weight decay, and momentum are set as 200,
128, 0.0004, and 0.9, respectively. The learning rate
is initialized as 0.1 and decayed by 0.1 at the 160
epochs and again at 180 epochs. The training hyper-
parameters on iNat2017 and iNat2018 are set as
follows. The epoch, batch size, weight decay, and
momentum are set as 90, 1024, 0.0005, and 0.9, re-
spectively. The learning rate is initialized as and
decayed by 0.01 at the 30 epochs and again at 60
epochs. We also used linear warm-up of learning rate
[2] in the first 5 epochs.

e ISDA + Dropout [8] TThe dropout rate is set as 0.3.
On the CIFAR corpora, the epoch, batch size, weight
decay, and momentum are set as 160, 128, 0.0004, and
0.9, respectively. The learning rate is initialized as 0.1
and decayed by 0.1 at the 80 epochs and again at
120 epochs. On iNat2017 and iNat2018, the training
hyper-parameters on CIFAR10 and CIFAR100 are
set as follows. The epoch, batch size, weight decay,
and momentum are set as 300, 512, 0.0004, and 0.9,
respectively. The learning rate is set as 0.2 and cosine
schedule.

e LA [9] The training hyper-parameters on CIFAR10
and CIFAR100 are set as follows. The epoch, batch
size, weight decay, and momentum are set as 200,
128, 0.0004, and 0.9, respectively. The learning rate
is initialized as 0.1 and decayed by 0.1 at the 160
epochs and again at 180 epochs. The training hyper-
parameters on iNat2017 and iNat2018 are set as
follows. The epoch, batch size, weight decay, and
momentum are set as 90, 512, 0.0004, and 0.9, respec-
tively. The learning rate is set as 0.4. We also used
linear warm-up of learning rate in the first 5 epochs.

e MetaSAug [10] The training hyper-parameters on
CIFAR10 and CIFAR100 are set as follows. The
epoch, batch size, weight decay, and momentum are
set as 200, 100, 0.0004, and 0.9, respectively. The
learning rate is initialized as 0.1 and decayed by
0.1 at the 160 epochs and again at 180 epochs. The
training hyper-parameters on iNat2017 and iNat2018
are set as follows. The epoch, batch size, weight
decay, and momentum are set as 20, 64, 0.0004, and
0.9, respectively. The learning rate is set as 0.4.

e LPL [11] For CIFAR10 and 100, the epoch, batch
size, weight decay, and momentum are set as 200,
100, 0.0004, and 0.9, respectively. The learning rate is
initialized as 0.1 and decayed by 0.1 at the 160 epochs
and again at 180 epochs. For the iNaturalist corpora,
the epoch, batch size, weight decay, and momentum
are set as 90, 512, 0.0004, and 0.9, respectively. The
learning rate is set as 0.4. We also used linear warm-
up of learning rate in the first 5 epochs.
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o KPS [13] For the CIFAR corpora, the epoch, batch
size, weight decay, and momentum are set as 200,
64, 0.0004, and 0.9, respectively. The learning rate is
initialized as 0.1 and decayed by 0.1 at the 160 epochs
and again at 180 epochs. linear warm-up of learning
rate in the first 5 epochs. For the iNaturalist corpora,
the epoch, batch size, weight decay, and momentum
are set as 180, 512, 0.0004, and 0.9, respectively. The
learning rate is initialized as 0.2 and decayed by 0.1
at the 160 epochs and again at 180 epochs. We also
used linear warm-up of learning rate in the first 5
epochs.

e NENum loss The rest hyper-parameters follow the
setting used in LPL [11].

e Meta-ENum The rest hyper-parameters for the back-
bone network follow the setting used in LPL [11].
The rest hyper-parameters for meta learning follow
the setting used in Meta-weight net [4].

For the experiments on the standard datasets, all method
are implemented with almost the same training configura-
tions. The epoch, batch size, weight decay, and momentum
are set as 160, 128, 0.0001, and 0.9, respectively. The learning
rate is initialized as 0.1 and decayed by 0.1 at the 80 epochs
and again at 120 epochs. For the center loss, its initial
learning rate is set as 0.5.
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