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Abstract 
Motivation: There has been substantial recent interest in developing methodology for high-dimensional mediation analysis. Yet, the majority of 
mediation statistical methods lean heavily on mean regression, which limits their ability to fully capture the complex mediating effects across 
the outcome distribution. To bridge this gap, we propose a novel approach for selecting and testing mediators throughout the full range of the 
outcome distribution spectrum.
Results: The proposed high-dimensional quantile mediation model provides a comprehensive insight into how potential mediators impact out
comes via their mediation pathways. This method’s efficacy is demonstrated through extensive simulations. The study presents a real-world 
data application examining the mediating effects of DNA methylation on the relationship between maternal smoking and offspring birthweight.
Availability and implementation: Our method offers a publicly available and user-friendly function qHIMA(), which can be accessed through 
the R package HIMA at https://CRAN.R-project.org/package=HIMA.

1 Introduction
Mediation analysis is an important statistical technique, eluci
dating the mechanisms of mediators that bridge the connec
tion between an independent variable (e.g. exposure or 
treatment) and a dependent variable (e.g. health outcome). 
With the advancement of data collection technology, high- 
dimensional data have become increasingly prevalent in vari
ous fields. As a result, high-dimensional mediation analysis 
has piqued the interest of a plethora of researchers recently. 
For example, Zhang et al. (2016) proposed a novel method to 
estimate and test high-dimensional mediation effects in epige
netic studies. Methods to estimate and test mediation effects 
with high-dimensional compositional microbiome data have 
been proposed by researchers like Sohn and Li (2019), Wang 
et al. (2020), Zhang et al. (2021a), and Zhang et al. (2021b). 
Djordjilovi�c et al. (2019) and Fang et al. (2021) studied the 
group testing for high-dimensional mediation effects. Luo 
et al. (2020) and Zhang et al. (2021c) embarked on exploring 
high-dimensional mediation analysis specifically for the sur
vival outcome. Additionally, Dai et al. (2022) and Liu et al. 

(2022) made significant strides in hypothesis testing, with the 
former devising a multiple-testing procedure for high- 
dimensional mediation hypotheses and the latter probing into 
large-scale hypothesis testing for causal mediation effects. 
Building on previous works, Perera et al. (2022) refined esti
mation and inference procedures for the high-dimensional lin
ear mediation model, extending the foundations laid by 
Zhang et al. (2016). For an expansive understanding of high- 
dimensional mediation analysis, please refer to two review 
papers by Zeng et al. (2021) and Zhang et al. (2022).

It is worth noting that many of the aforementioned studies 
primarily employed traditional mean-regression methods to 
analyze outcomes. However, these mean-centric techniques 
may not fully capture the mediation effects across the entire 
spectrum of the outcome distribution. For instance, Shen et al. 
(2014) introduced a quantile mediation model focusing on the 
outcome distribution, with a single mediator modeled through 
linear regression. Their study found that the mediation effects 
of walkability on body mass index (BMI) were substantially 
larger at the upper quantiles as opposed to the median or 
average. Essentially, individuals with elevated BMI levels might 
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respond differently to interventions compared to those with 
average BMIs. Relying solely on mean regression could there
fore offer an incomplete perspective of mediation effects across 
various outcome distribution segments. In a parallel vein, Bind 
et al. (2017) delved into the controlled direct and indirect 
effects of exposure across percentiles of both the mediator and 
outcome, taking into account longitudinal data.

It is necessary to point out that the models presented by 
Shen et al. (2014) and Bind et al. (2017) honed in exclusively 
on single-mediator cases. Given the prevalence of high- 
dimensional data, there is a pressing need to develop innova
tive statistical methods for quantile mediation analysis that can 
accommodate high-dimensional mediators. The motivation for 
our work stems from a birth cohort study, examining 954 
mother–newborn pairs from a primarily urban, low-income, 
multi-ethnic US birth cohort. A total of 865 859 CpG sites 
were measured for each newborn cord blood DNA sample. 
The study by Xu et al. (2021) revealed that newborns exposed 
to smoking weighed an average of 258 g less than their unex
posed counterparts. Moreover, their findings suggested that 
the impact of maternal smoking on offspring birthweight is 
mediated by DNA methylation, as indicated by mean- 
regression models. Probing into the mediation effects of DNA 
methylation specifically on low birth weight (LBW) or high 
birth weight (HBW) individuals, as opposed to those of aver
age weight, introduces a riveting topic of mediation analysis.

As of our current understanding, there are no existing meth
ods in published literature tailored for high-dimensional quan
tile mediation analysis. In this study, we introduce a novel 
quantile mediation model that incorporates high-dimensional 
mediators. Here, the outcome Y is characterized by a quantile 
regression model, while the mediators Mks are represented 
through a collection of linear regression models. The advan
tages of our proposed methodology are manifold. First, indi
viduals experiencing extreme medical outcomes might be at a 
heightened risk for specific diseases. Traditional regression 
methods, grounded in averages, might overlook the influences 
of markers on outcomes at the tails of the distribution. Our 
quantile-focused mediation models could provide a compre
hensive picture of mediating mechanisms that occur at the tails 
of outcome distributions. Second, we employ a screening pro
cedure to reduce the dimension of mediators, which could con
siderably reduce the computational burden during the 
estimation phase. Notably, post-screening survivors predomi
nantly include mediators with significant relevance, elevating 
the method’s precision. Third, to identify active mediators, we 
introduce a statistic grounded in a joint significance test, ensur
ing mediator selection with desired confidence levels.

The remainder of this article is organized as follows: 
Section 2 unveils our newly developed quantile mediation 
model, accommodating high-dimensional mediators. We also 
present a three-step approach for pinpointing the most influ
ential mediators. In Section 3, simulations are carried out to 
evaluate the performance of our proposed methodology. 
Section 4 comprises the application of our advanced quantile 
mediation model to a birth cohort study involving multi- 
ethnic US mother–newborn pairs. Finally, Section 5 encapsu
lates our concluding remarks and future directions.

2 Model and method
Let X, M ¼ ðM1; . . . ;MpÞ

0, Z ¼ ðZ1; . . . ;ZqÞ
0, and Y 

represent the observed exposure, mediators, covariates, and 

outcome, respectively, where p is the number of mediators 
and q is the dimension of Z. Denote by QsðYjZÞ the sth per
centile of the conditional distribution of outcome Y given Z. 
Within the potential outcome framework, MðxÞ ¼
ðM1ðxÞ; . . . ;MpðxÞÞ

0 represents the potential mediators that 
would have been observed if X had been set to x, while 
Yðx;mÞ denotes the potential outcome that would have been 
observed if X had been set to x and M had been set to m. 
Denote by QsfYðx;mÞjZg the sth percentile of the condi
tional distribution of the potential outcome Yðx;mÞ given Z. 
In the potential outcome framework, we propose a high- 
dimensional linear quantile mediation model (Fig. 1), which 
is presented as follows: 

MkðxÞ ¼ ckþ akxþf
0

kZþek; k ¼ 1; . . . ;p; (1) 

QsfYðx;mÞjZg ¼ csþ csxþb1;sm1þ � � � þbp;smpþ g
0

sZ; (2) 

where m ¼ ðm1; . . . ;mpÞ
0 is a high-dimensional vector of 

mediators; Z ¼ ðZ1; . . . ;ZqÞ
0 is a vector of confounding vari

ables or covariates; cs is the “direct effect” of X on the sth 
quantile of Y, after adjusting for all mediators and covariates; 
a ¼ ða1; . . . ; apÞ

0 is a vector of parameters relating the expo
sure to p mediating variables; and bs ¼ ðb1;s; . . . ; bp;sÞ

0 is a 
vector of parameters relating the mediators to the sth quan
tile of the dependent variable adjusting for the effects of the 
exposure and covariates; fk’s and g are the parameters of 
covariates. In addition, cs and ck’s are the intercept terms; 
ek’s are zero-mean error terms.

Let QsfYðx;E½Mðx�ÞjZ�ÞjZg represent the sth quantile of 
the conditional distribution of the potential outcome that 
would have been observed if X were set to x and m were set 
to its conditional expected counterfactual value E½Mðx�ÞjZ�. 
Under the regular assumptions in the Supplementary 
Materials, we have derived that 

Figure 1. A scenario of high-dimensional quantile mediation model under 
level s 2 ð0; 1Þ (confounding variables omitted).
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Qs Y x;E M x�ð ÞjZ
� �� �

jZ
� �

¼ C1þcsxþ
Xp

k¼1

akbk;s

 !

x�þC
0

2Z;

where C1 ¼ csþ
Pp

k¼1 ckbk;s and C2 ¼ gsþ
Pp

k¼1 bk;sfk. We 
define the controlled direct effect (CDE) as 

CDE ¼ QsfYðx;E½Mðx�ÞjZ�ÞjZg−QsfYðx�;E½Mðx�ÞjZ�ÞjZg

¼ csðx−x�Þ:

The controlled indirect effect (CIE) is defined as 

CIE¼QsfYðx;E½MðxÞjZ�ÞjZg−QsfYðx;E½Mðx�ÞjZ�ÞjZg

¼
Xp

k¼1

akbk;sðx−x�Þ:

(3) 

Note that the definitions of natural direct effect (NDE) 
and natural indirect effect (NIE) (in the Supplementary 
Material) cannot be applied in this context due to our specific 
focus on outcome quantiles. The CIE through the path 
X!Mk ! QsðYjX;M;ZÞ, as expressed by akbk;s for 
k ¼ 1; . . . ;p, is derived from (3). This implies that the sth 
conditional quantile of Y serves as the primary outcome of in
terest. The set Xs ¼ fk : akbk;s 6¼ 0; k ¼ 1; . . . ;pg denotes the 
indices of statistically significant mediators at a given quan
tile level s 2 ð0; 1Þ. Here we assume the sparsity of active 
mediators with jXsj � p. By virtue of (1) and (2), we can 
reformulate it as a structural equation model (SEM) to evalu
ate the mediating effects of high-dimensional mediators on 
the outcome distribution: 

Mk ¼ ckþakXþf
0

kZþek; k ¼ 1; . . . ;p;

QsðYjX;M;ZÞ ¼ csþcsXþb1;sM1þ � � � þbp;sMpþg
0

sZ:

Assume that the observed samples are Xi, Mi ¼

ðMi1; . . . ;MipÞ
0, and Yi, where i ¼ 1; . . . ;n. Our main interest 

is to provide an estimated index set X̂s with desirable confi
dence. To achieve this objective, we propose a three-step ap
proach as outlined below.

Step 1. (Mediator screening). First, the mediators are stan
dardized to ensure the regression coefficients are on the same 
scale. For k ¼ 1; . . . ;p, we perform a series of marginal quan
tile models for the p mediators: 

Qk;sðYjX;Mk;ZÞ ¼ csþcsXþbk;sMkþg
0

sZ; (4) 

Based on the marginal quantile screening idea of Li et al. 
(2023), we can identify a subset I s ¼ f1 � k � p : Mk is 
among the top d ¼ 2½n= logðnÞ� mediators having the largest 
j~bkjg, where ~bk is the estimate in marginal model (4). 
The employed marginal quantile screening approach can be 
considered as a specific parametric case of Li et al. (2023), 
which has demonstrated a high probability that the nonzero 
bk;s’s belong to I s. In other words, we can reduce the dimen
sion of mediators from p to d, while ensuring that active 

mediators are retained with a probability approaching 
to one.

Step 2. (Penalized estimate). Conduct variable selection for 
mediators fMkgk2I s 

by minimizing the penalty-based criterion, 

GðhsÞ ¼
1
n

Xn

i¼1

qsðYi−c−csXi−
X

k2I s

bk;sMik−g
0

sZiÞ

þ
Xdþqþ2

k¼1

penðhk;sÞ;

(5) 

where hs ¼ ðb
0

I ;s; c; cs; g
0

sÞ
0
2 Rdþqþ2 and bI ;s denotes a sub- 

vector of b with indices belonging to I . qsðvÞ ¼ vfs−Iðv <
0Þg is the check function, and penð�Þ is the minimax concave 
penalty (MCP; Zhang 2010) with the following expression: 

pk;dðhk;sÞ ¼ k½jhk;sj−
jhk;sj

2

2dk
�If0 � jhk;sj < dkg

þ
k2d

2
Ifjhk;sj � dkg:

Here k > 0 is the regularization parameter, and d > 0 deter
mines the concavity of MCP. The MCP procedure for quan
tile regression has been implemented by Tan et al. (2022). In 
practical applications, the R package conquer can be uti
lized to solve Equation (5). Let Ss ¼ fk : ~bk;s 6¼ 0g denote the 
index set of survived mediators after Step 2, where ~bk;s’s are 
the penalized estimates in (5).

Step 3. (Mediator selection). To conduct mediator selec
tion, we take into account the refitted sub-model as follows: 

Mk ¼ ckþakXþf
0

kZþek; k 2 Ss;

QsðYjX;MSs
;ZÞ ¼ csþcsXþ

P
k2Ss

bk;sMkþg
0

sZ;
(6) 

where MSs 
denotes a sub-vector of M with indices belonging 

to Ss. The parameter estimator b̂k;s and its standard error r̂bk 

in model (6) can be easily obtained by the R function rq(). 
The JS-type decision statistic is defined as 

D
JS
k;s ¼ minðdsP

JS
k;s;1Þ; k 2 Ss; (7) 

where ds is the cardinality of set Ss; PJS
k;s ¼ maxðPak ;Pbk;sÞ;

maxða; bÞ denotes the maximum of a and b; Pak ¼

2f1−UNð0;1Þðjâkj=r̂akÞg; âk is the ordinary least squares 
estimate with its estimated standard error r̂ak , and 
Pbk;s

¼ 2f1−UNð0;1Þðjb̂k;sj=r̂bk;s
Þg.

Based on the above three-step approach, an estimated set 
of indices for significant mediators is derived as 
X̂JSðsÞ ¼ fk : D

JS
k;s < 0:05;k 2 Ssg, where DJS

k;s is defined in 
(7). We provide a publicly accessible and user-friendly func
tion qHIMA(), which can be conveniently accessed through 
the R package HIMA.

3 Numerical simulation
In this section, we perform simulations to evaluate the effec
tiveness of our proposed methodology. For comparison, we 
also consider the one-mediator methods of Shen et al. (2014)
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and Bind et al. (2017) with Bonferroni adjusted P-values for 
multiple comparisons, where we only focus on mediator’s 
median (s ¼ 0:5) in Bind et al. (2017)’s method. The media
tors are generated from the following linear models: 

Mk ¼ ckþakXþf
0

kZþek; k ¼ 1; . . . ;p; (8) 

where the exposure X follows N(0, 4); the covariates Z ¼
ðZ1;Z2Þ

0 are independently generated from N(0, 4); e ¼
ðe1; . . . ; epÞ

0 is generated from a multivariate normal distribu
tion with mean zero and covariance matrix R ¼ ð0:25ji−jjÞi;j.

We consider the following two cases for the outcomes: 

Case I: Y ¼ cþcXþb0Mþg0Zþ�; (9) 

Case II: Y ¼ cþcXþb0Mþg0Zþ�ðhXþ/0MÞ; (10) 

where � follows from N(0, 1). Under Case I, the sth condi
tional quantile of Y is given by 

QsðYjX;M;ZÞ ¼ cþQsð�ÞþcXþb0Mþg0Z;

where Qsð�Þ represents the sth quantile of �. Under Case II, 
the sth conditional quantile of Y can be expressed as 

QsðYjX;M;ZÞ ¼ cþfcþhQsð�ÞgXþfbþQsð�Þ/g
0Mþg0Z:

The true values of a; b and / are set to be a ¼

ð0:85; 1:2; 1;0:15;−0:25; 0:65; −0:50; 0; . . . ;0Þ0; b ¼ ð0:85;
1:2; 1;0:25;−0:15;0; 0;0:75;−0:5; 0; . . . ; 0Þ0 and / ¼ ð0:1;
0:1; 0:1; 0; . . . ;0Þ0, where p¼ 3000. Moreover, ck ¼ c ¼ 0;
c ¼ 0:5; h ¼ 0:1; fk ¼ ð0:3; 0:3Þ

0
; g ¼ ð0:5;0; 5Þ0. The sample 

size is chosen as n ¼ 200 and 300, respectively. All the simu
lation results are based on 500 repetitions.

First, we generate random samples with models (8), (9) 
and (10) to evaluate the proposed method in Section 2. The 
quantile level is chosen as s ¼ 0.05, 0.25, 0.5, 0.75, and 0.95, 
respectively. In Tables 1 and 2, we report the simulation 
results on the mediation effects fakbk;sg

6
k¼1, including the 

bias (Bias) given by the difference of sample means of estima
tors and the true value, together with the sampling standard 
error (SSE). The estimation results for akbk;s’s (k ¼ 7; . . . ;p) 
are similar to that of a6b6;s, so we omit the details.

The results in Tables 1 and 2 demonstrate that our method 
exhibits significantly smaller Bias and SSE compared to Shen 
et al. and Bind et al. Hence, the one-by-one mediator procedure 
is not applicable for estimating high-dimensional quantile medi
ation effects. To describe the accuracy of our mediator selection 
method, we report the following three results:

Model size (MS): jX̂0ðsÞj, where jX̂0ðsÞj denotes the num
ber of elements in X̂0ðsÞ;

True positive proportion (TPP): jX̂0ðsÞ \ X0ðsÞj=jX0ðsÞj;
False discovery proportion (FDP): jX̂0ðsÞ n X0ðsÞj=jX̂0ðsÞj, 

where jX̂0ðsÞ n X0ðsÞj denotes the set difference of X̂0ðsÞ

and X0ðsÞ.

Tables 3 and 4 present the mediator selection results in 
terms of MS, TPP, and FDP. These results suggest that Shen 
et al. and Bind et al. tend to select a smaller model with lower 
TPP and FDP, i.e. the one-by-one mediator procedure is more 
conservative than our JS-based procedure. Moreover, all 
methods become better as the sample size n increases. 

Overall, the proposed mediator selection method works well 
for high-dimensional quantile mediation model in practical 
applications. From the view of computational efficiency, our 
method takes approximately 245.34 seconds for one repeti
tion with Case I and n¼ 300, where the computation is 
implemented on a laptop with 8G memory.

4 A birth cohort study of mother–newborn  
pairs
Each year in the USA, maternal smoking affects over half a 
million pregnancies, resulting in fetal growth limitations. 
This is evident from the reduced birthweight and its subse
quent long-term implications as noted by Wang et al. (2002). 
In this section, we apply our proposed methodology to a 
birth cohort study comprising mother–newborn pairs from a 
predominantly urban, low-income multi-ethnic birth cohort 
in the USA.

The study comprised a total of 954 mother–newborn pairs 
from the racially diverse Boston Birth Cohort (Pearson et al. 
2022). Among the mothers, 165 (17.3%) had a history of 
smoking either before or during pregnancy. Newborns ex
posed to smoking exhibited an average birthweight reduction 
of 258 g compared to those without exposure (Xu et al. 
2021). The DNA methylation (DNAm) markers of each 
newborn were measured using the Illumina Infinium 
MethylationEPIC BeadChip, which successfully produced 
DNAm profiles for 865 859 CpG sites (P¼ 865 859). For 
each CpG site examined, a b-value ranging from 0 to 1 was 
reported. We aim to investigate the mediating role of DNA 
methylation (DNAm) markers in the association between 
smoking (binary exposure: 1¼ smoker and 0¼non-smoker) 
and birthweight (outcome). We also adjust for confounding 
variables, including maternal age at delivery; parity (not in
cluding the index pregnancy): 0 versus 1 or more; maternal 
education: high school or less versus some college or more; 
maternal self-reported race: Black versus non-Black, where 
Black included self-reported Black (African American and 
Haitian) and non-Black included white and Hispanic; mater
nal alcohol consumption during pregnancy: never versus 
ever; maternal pre-pregnancy BMI; child’s sex: female versus 
male; and gestational age at birth. We also adjust for esti
mated cord blood cell composition, which was calculated us
ing the estimateCellCounts() function in the “minf” package, 
with seven cell types: CD4þ, T cells, B cells, monocytes, gran
ulocytes, natural killer cells, and nucleated red blood cells.

We illustrate the distribution of infant birth weight in  
Fig. 2. We are interested in examining the mediation effects 
across the entire spectrum of the outcome distribution. In 
other words, we are looking beyond just the average outcome 
distribution, as is typically done using mean-regression meth
ods. Specifically, we are keen on the effects on both the low 
birth weight (LBW) and high birth weight (HBW) samples. 
Based on the distribution, we can roughly categorize s 2

f0:2; 0:3g as the LBW group, s 2 f0:4; 0:5; 0:6g as the nor
mal weight group, and s 2 f0:7; 0:8g as the HBW group. The 
results from our method for the chosen mediators are sum
marized in Table 5. In contrast, with the same dataset, the 
methods by Shen et al. (2014) and Bind et al. (2017) cannot 
select any significant mediators after adjusting for multiple 
comparisons. Under s 2 f0:2; 0:3g (i.e. LBW group), we 
identified three CpG sites (cg25325512, cg07814318, and 
cg14541773) as significant mediators, while under s 2
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Table 1. The (Bias, SSE) of estimation for mediation effects in Case I.

n¼200 n¼ 300

akbk;s Shen et al.a Bind et al.b Proposedc Shen et al. Bind et al. Proposed

s ¼ 0:05 a1b1;s (0.3088, 0.2792) (0.3065, 0.2793) (−0.0541, 0.2386) (0.3233, 0.2275) (0.3230, 0.2277) (−0.0173, 0.1266)
a2b2;s (0.5335, 0.3489) (0.5317, 0.3515) (−0.0479, 0.2593) (0.5598, 0.2632) (0.5576, 0.2659) (−0.0406, 0.1885)
a3b3;s (0.4132, 0.3126) (0.4168, 0.3165) (−0.0059, 0.2308) (0.4249, 0.2711) (0.4259, 0.2749) (0.0201, 0.1605)
a4b4;s (0.0453, 0.0608) (0.0444, 0.0628) (−0.0305, 0.0213) (0.0487, 0.0437) (0.0484, 0.0446) (−0.0258, 0.0235)
a5b5;s (−0.0411, 0.0975) (−0.0418, 0.0991) (−0.0377, 0.0055) (−0.0438, 0.0772) (−0.0436, 0.0774) (−0.0374, 0.0017)
a6b6;s (0.0298, 0.2551) (0.0303, 0.2559) (0.0009, 0.0175) (0.0257, 0.2024) (0.0253, 0.2021) (0.0013, 0.0169)

s ¼ 0:25 a1b1;s (0.3084, 0.1877) (0.3064, 0.1906) (−0.0172, 0.1123) (0.3154, 0.1459) (0.3152, 0.1474) (−0.0120, 0.0866)
a2b2;s (0.5641, 0.2174) (0.5624, 0.2232) (−0.0465, 0.1657) (0.5749, 0.1806) (0.5727, 0.1846) (−0.0204, 0.1326)
a3b3;s (0.3909, 0.2063) (0.3944, 0.2097) (0.0135, 0.1390) (0.4143, 0.1604) (0.4148, 0.1614) (0.0085, 0.1186)
a4b4;s (0.0439, 0.0411) (0.0429, 0.0449) (−0.0281, 0.0202) (0.0481, 0.0355) (0.0482, 0.0372) (−0.0188, 0.0224)
a5b5;s (−0.0349, 0.0597) (−0.0349, 0.0602) (−0.0375, 0.0001) (−0.0424, 0.0508) (−0.0425, 0.0507) (−0.0375, 0.0006)
a6b6;s (0.0256, 0.1496) (0.0255, 0.1489) (0.0007, 0.0083) (0.0225, 0.1260) (0.0225, 0.1259) (< 10−4, 0.0073)

s ¼ 0:5 a1b1;s (0.3221, 0.1734) (0.3210, 0.1761) (−0.0195, 0.1065) (0.3110, 0.1316) (0.3109, 0.1321) (−0.0171, 0.0881)
a2b2;s (0.5728, 0.2048) (0.5719, 0.2092) (−0.0577, 0.1697) (0.5736, 0.1737) (0.5706, 0.1782) (−0.0409, 0.1312)
a3b3;s (0.4069, 0.1949) (0.4107, 0.1976) (−0.0035, 0.1395) (0.4077, 0.1448) (0.4080, 0.1488) −0.0063, 0.1114)
a4b4;s (0.0455, 0.0391) (0.0452, 0.0435) (−0.0250, 0.0222) (0.0476, 0.0344) (0.0476, 0.0363) (−0.0158, 0.0216)
a5b5;s (−0.0374, 0.0565) (−0.0373, 0.0564) (−0.0375, < 10−4) (−0.0380, 0.0441) (−0.0379, 0.0439) (−0.0374, 0.0018)
a6b6;s (0.0215, 0.1444) (0.0212, 0.1440) (< 10−4; < 10−4) (0.0265, 0.1143) (0.0267, 0.1142) (0.0006, 0.0067)

s ¼ 0:75 a1b1;s (0.3266, 0.1878) (0.3246, 0.1904) (−0.0234, 0.1202) (0.3108, 0.1517) (0.3110, 0.1545) (−0.0079, 0.0873)
a2b2;s (0.5704, 0.2246) (0.5684, 0.2291) (−0.0526, 0.1839) (0.5609, 0.1870) (0.5577, 0.1904) (−0.0343, 0.1462)
a3b3;s (0.4168, 0.2021) (0.4202, 0.2048) (0.0051, 0.1452) (0.4030, 0.1659) (0.4030, 0.1672) (0.0069, 0.1134)
a4b4;s (0.0482, 0.0428) (0.0463, 0.0447) (−0.0271, 0.0214) (0.0464, 0.0353) (0.0463, 0.0373) (−0.0190, 0.0225)
a5b5;s (−0.0371, 0.0599) (−0.0369, 0.0603) (−0.0374, 0.0012) (−0.0388, 0.0498) (−0.0387, 0.0498) (−0.0374, 0.0019)
a6b6;s (0.0155, 0.1629) (0.0156, 0.1626) (0.0004, 0.0104) (0.0287, 0.1251) (0.0289, 0.1253) (0.0009, 0.0099)

s ¼ 0:95 a1b1;s (0.3204, 0.2905) (0.3185, 0.2923) (−0.0693, 0.2358) (0.2965, 0.2315) (0.2969, 0.2353) (−0.0135, 0.1482)
a2b2;s (0.5710, 0.3364) (0.5693, 0.3405) (−0.0338, 0.2565) (0.5766, 0.2612) (0.5733, 0.2631) (−0.0397, 0.1941)
a3b3;s (0.4032, 0.3170) (0.4065, 0.3195) (−0.0171, 0.2309) (0.3939, 0.2703) (0.3941, 0.2721) (0.0115, 0.1644)
a4b4;s (0.0489, 0.0593) (0.0475, 0.0623) (−0.0315, 0.0193) (0.0479, 0.0481) (0.0478, 0.0500) (−0.0273, 0.0213)
a5b5;s (−0.0376, 0.0957) (−0.0381, 0.0953) (−0.0374, 0.0033) (−0.0442, 0.0788) (−0.0439, 0.0799) (−0.0375, 0.0010)
a6b6;s (0.0267, 0.2408) (0.0267, 0.2405) (0.0007, 0.0135) (0.0240, 0.2015) (0.0243, 0.2025) (0.0008, 0.0139)

a “Shen et al” denotes the method of Shen et al. (2014); b “Bind et al.” denotes the method of Bind et al. (2017); c “Proposed” denotes our method.

Table 2. The (Bias, SSE) of estimation for mediation effects in Case II.

n¼200 n¼ 300

akbk;s Shen et al.a Bind et al.b Proposedc Shen et al. Bind et al. Proposed

s ¼ 0:05 a1b1;s (0.4661, 0.2804) (0.4654, 0.2843) (0.0885, 0.2472) (0.4632, 0.2286) (0.4629, 0.2287) (0.1178, 0.1519)
a2b2;s (0.7665, 0.3709) (0.7653, 0.3724) (0.1642, 0.2655) (0.7732, 0.2668) (0.7699, 0.2679) (0.1546, 0.2065)
a3b3;s (0.5795, 0.3336) (0.5839, 0.3395) (0.1625, 0.2309) (0.5777, 0.2591) (0.5781, 0.2625) (0.1689, 0.1774)
a4b4;s (0.0498, 0.0607) (0.0498, 0.0649) (−0.0336, 0.0162) (0.0469, 0.0481) (0.0467, 0.0501) (−0.0257, 0.0229)
a5b5;s (−0.0383, 0.0998) (−0.0384, 0.1021) (−0.0375, < 10−4) (−0.0427, 0.0779) (−0.0425, 0.0782) (−0.0375, < 10−4)
a6b6;s (0.0421, 0.2479) (0.0426, 0.2487) (0.0022, 0.0265) (0.0261, 0.1907) (0.0259, 0.1911) (−0.0001, 0.0158)

s ¼ 0:25 a1b1;s (0.3692, 0.1844) (0.3683, 0.1877) (0.0506, 0.0868) (0.3685, 0.1392) (0.3684, 0.1411) (0.0532, 0.0694)
a2b2;s (0.6356, 0.2143) (0.6348, 0.2203) (0.0416, 0.1383) (0.6473, 0.1732) (0.6442, 0.1779) (0.0580, 0.1083)
a3b3;s (0.4656, 0.2055) (0.4695, 0.2091) (0.0867, 0.1151) (0.4709, 0.1567) (0.4713, 0.1609) (0.0739, 0.0860)
a4b4;s (0.0453, 0.0367) (0.0449, 0.0412) (−0.0259, 0.0194) (0.0461, 0.0331) (0.0459, 0.0349) (−0.0159, 0.0198)
a5b5;s (−0.0366, 0.0563) (−0.0363, 0.0569) (−0.0375, < 10−4) (−0.0388, 0.0495) (−0.0388, 0.0492) (−0.0375, < 10−4)
a6b6;s (0.0291, 0.1557) (0.0294, 0.1552) (0.0007, 0.0119) (0.0270, 0.1243) (0.0269, 0.1241) (< 10−4, 0.0018)

s ¼ 0:5 a1b1;s (0.3134, 0.1662) (0.3124, 0.1691) (−0.0058, 0.0765) (0.3050, 0.1315) (0.3050, 0.1337) (−0.0081, 0.0563)
a2b2;s (0.5602, 0.1948) (0.5593, 0.2003) (−0.0370, 0.1189) (0.5599, 0.1545) (0.5569, 0.1595) (−0.0294, 0.0867)
a3b3;s (0.3981, 0.1865) (0.4021, 0.1904) (0.0118, 0.1038) (0.4034, 0.1389) (0.4038, 0.1441) (−0.0031, 0.0685)
a4b4;s (0.0453, 0.0376) (0.0450, 0.0429) (−0.0217, 0.0211) (0.0453, 0.0319) (0.0452, 0.0341) (−0.0105, 0.0166)
a5b5;s (−0.0373, 0.0545) (−0.0371, 0.0551) (−0.0375, < 10−4) (−0.0384, 0.0431) (−0.0384, 0.0430) (−0.0374, 0.0021)
a6b6;s (0.0223, 0.1457) (0.0223, 0.1456) (−0.0001, 0.0019) (0.0279, 0.1174) (0.0281, 0.1173) (0.0003, 0.0047)

s ¼ 0:75 a1b1;s (0.2671, 0.1817) (0.2650, 0.1836) (−0.0660, 0.0862) (0.2489, 0.1459) (0.2490, 0.1480) (−0.0627, 0.0718)
a2b2;s (0.4726, 0.2218) (0.4708, 0.2269) (−0.1138, 0.1370) (0.4747, 0.1657) (0.4718, 0.1722) (−0.1147, 0.1044)
a3b3;s (0.3474, 0.1993) (0.3508, 0.2018) (−0.049, 0.1157) (0.3314, 0.1591) (0.3317, 0.1629) (−0.0617, 0.0887)
a4b4;s (0.0483, 0.0406) (0.0469, 0.0444) (−0.0247, 0.0214) (0.0466, 0.0338) (0.0463, 0.0352) (−0.0150, 0.0200)
a5b5;s (−0.0396, 0.0583) (−0.0394, 0.0587) (−0.0375, < 10−4) (−0.0419, 0.0503) (−0.0418, 0.0500) (−0.0375, < 10−4)
a6b6;s (0.0213, 0.1506) (0.0215, 0.1503) (0.0011, 0.0119) (0.0211, 0.1209) (0.0214, 0.1211) (0.0003, 0.0048)

s ¼ 0:95 a1b1;s (0.1792, 0.3022) (0.1781, 0.3037) (−0.2003, 0.2432) (0.1741, 0.2423) (0.1744, 0.2448) (−0.1597, 0.1563)
a2b2;s (0.3404, 0.3392) (0.3395, 0.3423) (−0.2469, 0.2552) (0.3661, 0.2686) (0.3640, 0.2715) (−0.2496, 0.2079)
a3b3;s (0.2294, 0.3216) (0.2333, 0.3244) (−0.1694, 0.2431) (0.2439, 0.2589) (0.2441, 0.2574) (−0.1613, 0.1722)
a4b4;s (0.0488, 0.0584) (0.0477, 0.0627) (−0.0314, 0.0211) (0.0493, 0.0515) (0.0492, 0.0528) (−0.0256, 0.0234)
a5b5;s (−0.0463, 0.0944) (−0.0463, 0.0955) (−0.0374, 0.0023) (−0.0467, 0.0771) (−0.0465, 0.0777) (−0.0373, 0.0039)
a6b6;s (0.0463, 0.2389) (0.0459, 0.2382) (0.0008, 0.0165) (0.0239, 0.1942) (0.0243, 0.1942) (0.0005, 0.0103)

a “Shen et al.” denotes the method of Shen et al. (2014); b “Bind et al.” denotes the method of Bind et al. (2017); c “Proposed” denotes our method.
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f0:4; 0:5; 0:6g (i.e. regular weight group), one CpG site 
(cg07814318) is consistently identified to be significant medi
ators. Studies have shown that the effect of maternal smoking 
on birth weight is partly mediated by the methylation of 
cg25325512 (PIM1), which contributes to a decrease in birth 
weight. Several studies have also identified that maternal 
smoking may influence DNA methylation at the KLF13 gene 
region in offsprings. This association may be dose dependent, 
with stronger effects observed with higher smoking intensity 
and duration. Additionally, the studies indicate that the asso
ciation between KLF13 methylation and smoking may have 
implications for child health and the developmental origins of 
the metabolic syndrome. Under s 2 f0:7; 0:8g (i.e. HBW 
group), no significant mediator is identified under s ¼ 0:7, 
but under s ¼ 0:8, our method identifies CpG sites 
cg04411342 and cg05575921 as significant mediators. 
cg05575921 (within gene AHRR) exhibits a significant 
mediating effect in the higher quantiles (HBW), while no me
diating effect is observed in the lower quantiles (LBW) and 

median. Our previous study has identified CpG site 
cg05575921 as a significant mediator of maternal smoking 
and birthweight (Xu et al. 2021). A low level of methylation 
at the cg05575921 locus in the AHRR gene has been robustly 
associated with smoking (Grieshober et al. 2020). This hypo
methylation is thought to mediate the association between 
maternal smoking and metabolic profiles in children. 
Functionally, cigarette smoke contains toxic components, 
such as polycyclic aromatic hydrocarbons, which can induce 
aryl hydrocarbon receptor (AHR)-mediated AHRR expres
sion and methylation (Tantoh et al. 2020). These results dem
onstrate the capability of our method to thoroughly capture 
the complex mediating effects across different sections of the 
outcome distribution.

Per the suggestion of a reviewer, in Supplementary Table 
SA, we present a summary of the top five CpGs identified by 
Shen et al. and Bind et al. in their application to the real data. 
When we compare these results with those obtained through 
our method in Table 5, numerous discrepancies are evident. 

Table 3. The performance of mediator selection in Case I.

n¼200 n¼300

Method Quantile level MS TPP FDP MS TPP FDP

Shen et al. s ¼ 0:05 1.8520 0.3696 0.0017 2.4700 0.4932 0.0012
s ¼ 0:25 2.8380 0.5676 < 10−4 3.0980 0.6196 < 10−4

s ¼ 0:50 2.9460 0.5892 < 10−4 3.1600 0.6316 0.0005
s ¼ 0:75 2.9160 0.5832 < 10−4 3.1000 0.6188 0.0017
s ¼ 0:95 1.8480 0.3696 < 10−4 2.4460 0.4876 0.0021

Bind et al. s ¼ 0:05 1.8380 0.3672 0.0010 2.4600 0.4912 0.0012
s ¼ 0:25 2.8220 0.5644 < 10−4 3.0580 0.6116 < 10−4

s ¼ 0:50 2.9220 0.5840 0.0005 3.0760 0.6148 0.0005
s ¼ 0:75 2.8820 0.5764 < 10−4 3.0460 0.6080 0.0017
s ¼ 0:95 1.8480 0.3692 0.0005 2.4340 0.4844 0.0031

Proposed s ¼ 0:05 2.7080 0.5408 0.0010 3.0320 0.6040 0.0030
s ¼ 0:25 3.0440 0.6056 0.0040 3.2620 0.6488 0.0042
s ¼ 0:50 3.0540 0.6084 0.0030 3.3220 0.6612 0.0036
s ¼ 0:75 3.0100 0.6012 0.0010 3.2500 0.6460 0.0046
s ¼ 0:95 2.7240 0.5432 0.0022 3.0000 0.5964 0.0045

a “MS” denotes the model size; “TPP” denotes true positive proportion; “FDP” denotes the false discovery proportion; “Shen et al.” denotes the method 
of Shen et al. (2014); “Bind et al.” denotes the method of Bind et al. (2017); “Proposed” denotes our method.

Table 4. The performance of mediator selection in Case II.

n¼200 n¼300

Method Quantile level MS TPP FDP MS TPP FDP

Shen et al. s ¼ 0:05 1.8720 0.3744 < 10−4 2.4720 0.4944 < 10−4

s ¼ 0:25 2.8520 0.5700 0.0005 3.1340 0.6256 0.0013
s ¼ 0:50 2.9880 0.5972 0.0004 3.1640 0.6320 0.0010
s ¼ 0:75 2.9360 0.5868 0.0005 3.1260 0.6252 < 10−4

s ¼ 0:95 1.8420 0.3684 < 10−4 2.4720 0.4944 < 10−4

Bind et al. s ¼ 0:05 1.8660 0.3732 < 10−4 2.4460 0.4892 < 10−4

s ¼ 0:25 2.8340 0.5664 0.0005 3.0640 0.6116 0.0014
s ¼ 0:50 2.9580 0.5912 0.0005 3.0800 0.6152 0.0010
s ¼ 0:75 2.9060 0.5808 0.0005 3.0600 0.6120 < 10−4

s ¼ 0:95 1.8300 0.3660 < 10−4 2.4480 0.4892 0.0007
Proposed s ¼ 0:05 2.7340 0.5452 0.0022 3.0140 0.6008 0.0025

s ¼ 0:25 3.1200 0.6224 0.0020 3.4140 0.6800 0.0031
s ¼ 0:50 3.2480 0.6476 0.0024 3.6680 0.7308 0.0031
s ¼ 0:75 3.1600 0.6304 0.0020 3.4600 0.6888 0.0039
s ¼ 0:95 2.7260 0.5448 0.0005 3.0320 0.6028 0.0045

a “MS” denotes the model size; “TPP” denotes true positive proportion; “FDP” denotes the false discovery proportion; “Shen et al.” denotes the method 
of Shen et al. (2014); “Bind et al.” denotes the method of Bind et al. (2017); “Proposed” denotes our method.
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For instance, many of the CpGs identified by our method, 
such as cg25325512, cg07814318, cg04411342, do not ap
pear in the top five lists of Shen et al. and Bind et al. 
However, there are some points of agreement. At s ¼ 0:3, 
cg14541773 is selected both by our method and by Shen 
et al.; cg05575921 is included at s 2 f0:4; 0:5g by Shen et al. 
and Bind et al., while our method identifies cg05575921 
at s ¼ 0:8.

5 Concluding remarks
This study introduced a novel high-dimensional quantile me
diation model. A three-step procedure was employed to iden
tify active mediators. Simulations and real data application 
were conducted to demonstrate the practical utility of our ap
proach. The R function qHIMA() was developed to facilitate 
the implementation of our method in practice, providing a 
user-friendly interface. Assumption (C.4) highlights that 
while mediators may be correlated, they do not have causal 
relationships with each other. This is a crucial assumption for 

the validity of the causal interpretations of our Conditional 
Direct Effect (CDE) and Conditional Indirect Effect (CIE), 
even though exploring the causal links between the mediators 
themselves is not our focus.

There are several topics that will be studied in the future. 
First, the present study sheds light on high-dimensional quan
tile mediation analysis, which has the potential for further ex
pansion to include survival outcomes (Zhang et al. 2021c) 
and longitudinal data (Bind et al. 2017). Second, the pro
posed method incorporates linear models for the mediators 
and a quantile model for the outcome. It is desirable to con
sider using quantile models for both mediators and outcomes 
under our framework. Third, the development of a robust 
high-dimensional mediation analysis procedure becomes in
triguing when potential outliers are present in the mediators 
and outcomes. Fourth, the investigation of interactions be
tween exposure and high-dimensional mediators poses signif
icant challenges, necessitating further endeavors to address 
this issue. Fifth, we have imposed a sparsity condition for ac
tive mediators when applying our method. However, the 
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Figure 2. The histogram of infant birth weight (in grams).

Table 5. Summary results of selected CpGs in the birth cohort study.

Quantile (Qs) CpG Position Gene âk (SE) b̂k;s (SE) âkb̂k;s

s ¼ 0:2 (2642.0) cg25325512 chr6 PIM1 −0.26702 (0.08792) 0.07428 (0.02167) −0.01983
cg07814318 chr15 KLF13 −0.24828 (0.06781) 0.10808 (0.03080) −0.02683

s ¼ 0:3 (2855.0) cg14541773 chr1 – −0.39719 (0.08463) 0.11209 (0.03349) −0.04452
s ¼ 0:4 (3035.0) cg07814318 chr15 KLF13 −0.24828 (0.06781) 0.10653 (0.03249) −0.02645
s ¼ 0:5 (3177.5) cg07814318 chr15 KLF13 −0.24828 (0.06781) 0.11949 (0.03614) −0.02967
s ¼ 0:6 (3308.0) cg07814318 chr15 KLF13 −0.24828 (0.06781) 0.15615 (0.03351) −0.03877
s ¼ 0:8 (3674.0) cg04411342 chr3 TMEM108 −0.28863 (0.08484) 0.10598 (0.03178) −0.03059

cg05575921 chr5 AHRR −0.74844 (0.08166) 0.08918 (0.02454) −0.06675

a s 2 f0:2; 0:3g is referred to as the low birth weight group; s 2 f0:8g is the high birth weight group; Qs denotes the sth quantile of birth weight data 
(in grams).
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approach to handling quantile mediation effects remains un
certain in situations where there are multiple true mediators 
that exceed the sample size.

Acknowledgements
We would like to express our gratitude to the Editor, the 
Associate Editor, and three anonymous reviewers for their 
valuable comments and suggestions, which greatly contrib
uted to enhancing the quality of this article.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

Funding
This work was partly supported by NIH [R21 AG063370, 
R21 AG068955, R01 AG081244, and UL1 TR002345].

Data availability
The data underlying this article cannot be shared publicly 
due to ongoing follow-up and the informed consent govern
ing the protection of the privacy of individuals that partici
pated in the study. The data will be shared on reasonable 
request to the corresponding author.

References
Bind M-A, VanderWeele TJ, Schwartz JD et al. Quantile causal media

tion analysis allowing longitudinal data. Stat Med 2017;36:4182–95.
Dai JY, Stanford JL, LeBlanc M. A multiple-testing procedure for high- 

dimensional mediation hypotheses. J Am Stat Assoc 2022; 
117:198–213.

Djordjilovi�c V, Page CM, Gran JM et al. Global test for high- 
dimensional mediation: testing groups of potential mediators. Stat 
Med 2019;38:3346–60.

Fang R, Yang H, Gao Y et al. Gene-based mediation analysis in epige
netic studies. Brief Bioinform 2021;22. https://doi.org/10.1093/ 
bib/bbaa113

Grieshober L, Graw S, Barnett MJ et al. Ahrr methylation in heavy 
smokers: associations with smoking, lung cancer risk, and lung can
cer mortality. BMC Cancer 2020;20:905.

Li D, Kong Y, Zerom D. Nonparametric screening for additive quantile 
regression in ultra-high dimension. arXiv, arXiv:2311.03769v1, 
2023, preprint: not peer reviewed.

Liu Z, Shen J, Barfield R et al. Large-scale hypothesis testing for causal 
mediation effects with applications in genome-wide epigenetic stud
ies. J Am Stat Assoc 2022;117:67–81.

Luo C, Fa B, Yan Y et al. High-dimensional mediation analy
sis in survival models. PLoS Comput Biol 2020; 
16:e1007768.

Pearson C, Bartell T, Wang G et al. Boston birth cohort profile: ratio
nale and study design. Precis Nutr 2022;1:e00011.

Perera C, Zhang H, Zheng Y et al. HIMA2: high-dimensional media
tion analysis and its application in epigenome-wide DNA methyla
tion data. BMC Bioinformatics 2022;23:296.

Shen E, Chou C-P, Pentz MA et al. Quantile mediation mod
els: a comparison of methods for assessing mediation across 
the outcome distribution. Multivariate Behav Res 2014; 
49:471–85.

Sohn MB, Li H. Compositional mediation analysis for microbiome 
studies. Ann Appl Stat 2019;13:661–81.

Tan KM, Wang L, Zhou W-X. High-dimensional quantile regression: 
convolution smoothing and concave regularization. J R Stat Soc Ser 
B 2022;84:205–33.

Tantoh DM, Wu M-C, Chuang C-C et al. AHRR cg05575921 methyla
tion in relation to smoking and pm2.5 exposure among Taiwanese 
men and women. Clin Epigenetics 2020;12:117.

Wang C, Hu J, Blaser MJ et al. Estimating and testing the microbial 
causal mediation effect with high-dimensional and compositional 
microbiome data. Bioinformatics 2020;36:347–55.

Wang X, Zuckerman B, Pearson C et al. Maternal cigarette smoking, 
metabolic gene polymorphism, and infant birth weight. JAMA 
2002;287:195–202.

Xu R, Hong X, Zhang B et al. DNA methylation mediates the effect of 
maternal smoking on offspring birthweight: a birth cohort study of 
multi-ethnic us mother–newborn pairs. Clin Epigenetics 2021; 
13:47.

Zeng P, Shao Z, Zhou X. Statistical methods for mediation analy
sis in the era of high-throughput genomics: current successes 
and future challenges. Comput Struct Biotechnol J 2021; 
19:3209–24.

Zhang C-H. Nearly unbiased variable selection under minimax concave 
penalty. Ann Stat 2010;38:894–942.

Zhang H, Chen J, Feng Y et al. Mediation effect selection in high- 
dimensional and compositional microbiome data. Stat Med 2021a; 
40:885–96.

Zhang H, Chen J, Li Z et al. Testing for mediation effect with 
application to human microbiome data. Stat Biosci 2021b; 
13:313–28.

Zhang H, Hou L, Liu L. A review of high-dimensional mediation analy
ses in DNA methylation studies. In: Guan W (ed.), Epigenome-Wide 
Association Studies: Methods and Protocols 2432. New York City, 
New York, USA: Humana Press, 2022.

Zhang H, Zheng Y, Hou L et al. Mediation analysis for survival 
data with high-dimensional mediators. Bioinformatics 2021c; 
37:3815–21.

Zhang H, Zheng Y, Zhang Z et al. Estimating and testing high- 
dimensional mediation effects in epigenetic studies. Bioinformatics 
2016;32:3150–4.

8                                                                                                                                                                                                                                     Zhang et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/2/btae055/7593745 by guest on 25 M

arch 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae055#supplementary-data
https://doi.org/10.1093/bib/bbaa113
https://doi.org/10.1093/bib/bbaa113

	Active Content List
	1 Introduction
	2 Model and method
	3 Numerical simulation
	4 A birth cohort study of mother&#x02013;newborn pairs
	5 Concluding remarks
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References


