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Abstract

Motivation: There has been substantial recent interest in developing methodology for high-dimensional mediation analysis. Yet, the majority of
mediation statistical methods lean heavily on mean regression, which limits their ability to fully capture the complex mediating effects across
the outcome distribution. To bridge this gap, we propose a novel approach for selecting and testing mediators throughout the full range of the
outcome distribution spectrum.

4

2, Yinan Zheng ® 3, Lifang Hou®, Cheng Zheng ® 4,

Results: The proposed high-dimensional quantile mediation model provides a comprehensive insight into how potential mediators impact out-
comes via their mediation pathways. This method's efficacy is demonstrated through extensive simulations. The study presents a real-world
data application examining the mediating effects of DNA methylation on the relationship between maternal smoking and offspring birthweight.

Availability and implementation: Our method offers a publicly available and user-friendly function gHIMA (), which can be accessed through

the R package HIMA at https://CRAN.R-project.org/package=HIMA.

1 Introduction

Mediation analysis is an important statistical technique, eluci-
dating the mechanisms of mediators that bridge the connec-
tion between an independent variable (e.g. exposure or
treatment) and a dependent variable (e.g. health outcome).
With the advancement of data collection technology, high-
dimensional data have become increasingly prevalent in vari-
ous fields. As a result, high-dimensional mediation analysis
has piqued the interest of a plethora of researchers recently.
For example, Zhang et al. (2016) proposed a novel method to
estimate and test high-dimensional mediation effects in epige-
netic studies. Methods to estimate and test mediation effects
with high-dimensional compositional microbiome data have
been proposed by researchers like Sohn and Li (2019), Wang
et al. (2020), Zhang et al. (2021a), and Zhang et al. (2021b).
Djordjilovi¢ et al. (2019) and Fang et al. (2021) studied the
group testing for high-dimensional mediation effects. Luo
et al. (2020) and Zhang et al. (2021c) embarked on exploring
high-dimensional mediation analysis specifically for the sur-
vival outcome. Additionally, Dai et al. (2022) and Liu et al.

(2022) made significant strides in hypothesis testing, with the
former devising a multiple-testing procedure for high-
dimensional mediation hypotheses and the latter probing into
large-scale hypothesis testing for causal mediation effects.
Building on previous works, Perera ef al. (2022) refined esti-
mation and inference procedures for the high-dimensional lin-
ear mediation model, extending the foundations laid by
Zhang et al. (2016). For an expansive understanding of high-
dimensional mediation analysis, please refer to two review
papers by Zeng et al. (2021) and Zhang et al. (2022).

It is worth noting that many of the aforementioned studies
primarily employed traditional mean-regression methods to
analyze outcomes. However, these mean-centric techniques
may not fully capture the mediation effects across the entire
spectrum of the outcome distribution. For instance, Shen et al.
(2014) introduced a quantile mediation model focusing on the
outcome distribution, with a single mediator modeled through
linear regression. Their study found that the mediation effects
of walkability on body mass index (BMI) were substantially
larger at the upper quantiles as opposed to the median or
average. Essentially, individuals with elevated BMI levels might
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respond differently to interventions compared to those with
average BMIs. Relying solely on mean regression could there-
fore offer an incomplete perspective of mediation effects across
various outcome distribution segments. In a parallel vein, Bind
et al. (2017) delved into the controlled direct and indirect
effects of exposure across percentiles of both the mediator and
outcome, taking into account longitudinal data.

It is necessary to point out that the models presented by
Shen et al. (2014) and Bind et al. (2017) honed in exclusively
on single-mediator cases. Given the prevalence of high-
dimensional data, there is a pressing need to develop innova-
tive statistical methods for quantile mediation analysis that can
accommodate high-dimensional mediators. The motivation for
our work stems from a birth cohort study, examining 954
mother—newborn pairs from a primarily urban, low-income,
multi-ethnic US birth cohort. A total of 865859 CpG sites
were measured for each newborn cord blood DNA sample.
The study by Xu et al. (2021) revealed that newborns exposed
to smoking weighed an average of 258 g less than their unex-
posed counterparts. Moreover, their findings suggested that
the impact of maternal smoking on offspring birthweight is
mediated by DNA methylation, as indicated by mean-
regression models. Probing into the mediation effects of DNA
methylation specifically on low birth weight (LBW) or high
birth weight (HBW) individuals, as opposed to those of aver-
age weight, introduces a riveting topic of mediation analysis.

As of our current understanding, there are no existing meth-
ods in published literature tailored for high-dimensional quan-
tile mediation analysis. In this study, we introduce a novel
quantile mediation model that incorporates high-dimensional
mediators. Here, the outcome Y is characterized by a quantile
regression model, while the mediators M;s are represented
through a collection of linear regression models. The advan-
tages of our proposed methodology are manifold. First, indi-
viduals experiencing extreme medical outcomes might be at a
heightened risk for specific diseases. Traditional regression
methods, grounded in averages, might overlook the influences
of markers on outcomes at the tails of the distribution. Our
quantile-focused mediation models could provide a compre-
hensive picture of mediating mechanisms that occur at the tails
of outcome distributions. Second, we employ a screening pro-
cedure to reduce the dimension of mediators, which could con-
siderably reduce the computational burden during the
estimation phase. Notably, post-screening survivors predomi-
nantly include mediators with significant relevance, elevating
the method’s precision. Third, to identify active mediators, we
introduce a statistic grounded in a joint significance test, ensur-
ing mediator selection with desired confidence levels.

The remainder of this article is organized as follows:
Section 2 unveils our newly developed quantile mediation
model, accommodating high-dimensional mediators. We also
present a three-step approach for pinpointing the most influ-
ential mediators. In Section 3, simulations are carried out to
evaluate the performance of our proposed methodology.
Section 4 comprises the application of our advanced quantile
mediation model to a birth cohort study involving multi-
ethnic US mother-newborn pairs. Finally, Section 5 encapsu-
lates our concluding remarks and future directions.

2 Model and method

Let X, M= (M,....M,), Z=(Z1,...,Z;), and Y
represent the observed exposure, mediators, covariates, and

Zhang et al.

outcome, respectively, where p is the number of mediators
and q is the dimension of Z. Denote by Q.(Y|Z) the tth per-
centile of the conditional distribution of outcome Y given Z.
Within the potential outcome framework, M(x)=
(Mi(x),...,M,(x))" represents the potential mediators that
would have been observed if X had been set to x, while
Y(x, m) denotes the potential outcome that would have been
observed if X had been set to x and M had been set to m.
Denote by O.{Y(x,m)|Z} the tth percentile of the condi-
tional distribution of the potential outcome Y(x, m) given Z.
In the potential outcome framework, we propose a high-
dimensional linear quantile mediation model (Fig. 1), which
is presented as follows:

My(x) = e+ oupx+{,Z+ep, k=1,....p, (1)

OAY(x,m)|Z} = .+ px + Pyomi+ -+ Bymy +10.Z, (2)

where m = (my,...,m,)" is a high-dimensional vector of
mediators; Z = (Z1,...,Z,)" is a vector of confounding vari-
ables or covariates; 7, is the “direct effect” of X on the tth
quantile of Y, after adjusting for all mediators and covariates;
a=(o,...,0,) is a vector of parameters relating the expo-
sure to p mediating variables; and B, = (/31‘1,...,&”)' is a
vector of parameters relating the mediators to the tth quan-
tile of the dependent variable adjusting for the effects of the
exposure and covariates; {,’s and n are the parameters of
covariates. In addition, ¢; and c¢’s are the intercept terms;
ey’s are zero-mean error terms.

Let Q. {Y(x, E[M(x*)|Z])|Z} represent the tth quantile of
the conditional distribution of the potential outcome that
would have been observed if X were set to x and m were set
to its conditional expected counterfactual value E[M(x*)|Z].
Under the regular assumptions in the Supplementary
Materials, we have derived that

Figure 1. A scenario of high-dimensional quantile mediation model under
level 7 € (0, 1) (confounding variables omitted).
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0. (¥ (x. E]M(x)[2]) 2} = c1+/rx+<zamktr)x*+c;z,

k=1

where Ci = ¢+ Y1, ciBr. and Cp =+, B Lp We
define the controlled direct effect (CDE) as

CDE = QA Y(x, EM(x")|Z])|Z}- QY (x", E[M(x")|Z])|Z}

=" (‘x_x* ) .
The controlled indirect effect (CIE) is defined as

CIE=QAY(x, EM(x)[Z])|Z} = QA Y (x, E[M(x") |Z])|Z}

P
Zakﬁkr
=1
(3)

Note that the definitions of natural direct effect (NDE)
and natural indirect effect (NIE) (in the Supplementary
Material) cannot be applied in this context due to our specific
focus on outcome quantiles. The CIE through the path
X — M, — Q:(Y|X,M,Z), as expressed by of,. for
k=1,...,p, is derived from (3). This implies that the tth
conditional quantile of Y serves as the primary outcome of in-
terest. The set Q. = {k: af, . #0,k =1,...,p} denotes the
indices of statistically significant mediators at a given quan-
tile level 7 € (0,1). Here we assume the sparsity of active
mediators with |Q;| < p. By virtue of (1) and (2), we can
reformulate it as a structural equation model (SEM) to evalu-
ate the mediating effects of high-dimensional mediators on
the outcome distribution:

My = et X+{,Z+e, k=1,...,p,
O:(Y|X,M, Z) = ¢y, X+ Mi+ -+, My+1.Z.

Assume that the observed samples are X;, M; =
(M, ... ,M,-p)/, and Y, wherei=1,...
is to provide an estimated index set Q. with desirable confi-
dence. To achieve this objective, we propose a three-step ap-
proach as outlined below.

Step 1. (Mediator screening). First, the mediators are stan-
dardized to ensure the regression coefficients are on the same
scale. Fork = 1,...,p, we perform a series of marginal quan-
tile models for the p mediators:

,n. Our main interest

Qk,r(Y|X7 Mk7 Z) = CT+V—:X+ﬁkJMk+”;Za (4)

Based on the marginal quantile screening idea of Li et al.
(2023), we can identify a subset Z, = {1 <k <p: M is
among the top d = 2[n/ log(n)] mediators having the largest
IBLl}, where B, is the estimate in marginal model (4).
The employed marginal quantile screening approach can be
considered as a specific parametric case of Li et al. (2023),
which has demonstrated a high probability that the nonzero
Br..’s belong to Z. In other words, we can reduce the dimen-
sion of mediators from p to d, while ensuring that active

mediators are retained with a probability approaching
to one.

Step 2. (Penalized estimate). Conduct variable selection for
mediators {My }.7. by minimizing the penalty-based criterion,

Zpr Y % er Zﬁkr k™ ”7,—

ke,

d+q+2 (5)

+ Z pen(()kﬂf),
k=1

where 0. = (B, ., ¢, 7.,1.)" € R*72 and Bz . denotes a sub-
vector of B with indices belonging to Z. p, (v) = v{t-I(v <
0)} is the check function, and pen(-) is the minimax concave
penalty (MCP; Zhang 2010) with the following expression:

Orc)” .
10c1- %110 < oy, < 02y
2

50 ,
+71{|9k,r| > 04}

p1.5(0k:) =

Here 2 > 0 is the regularization parameter, and é > 0 deter-
mines the concavity of MCP. The MCP procedure for quan-
tile regression has been implemented by Tan ef al. (2022). In
practical applications, the R package conquer can be uti-
lized to solve Equation (5). Let S; = {k : . # 0} denote the
index set of survived mediators after Step 2, where 5, ’s are
the penalized estimates in (5).

Step 3. (Mediator selection). To conduct mediator selec-
tion, we take into account the refitted sub-model as follows:

M, = Ck+oth+clkz+ek,
QT(Y‘Xv Ms., Z) =ty X+ Zkesr ﬁkAer‘i"l;Z’

keSS,
(6)

where M, denotes a sub-vector of M with indices belonging
to S;. The parameter estimator f§ ¢ and its standard error 6,
in model (6) can be easily obtained by the R function rg ().
The JS-type decision statistic is defined as

Dy, =min(d:P,, 1), k€S, (7)
where d; is the cardinality of set S, P{QSI = max(P,,, Pg, ),
max(a,b) denotes the maximum of & and b; P, =
2{1-®yi0,1)(|0]/6s,)}, &, is the ordinary least squares
estimate with its estimated standard error 6,, and
Py, =2{1=DN0,1)(|Br.:l/Fp.)}-

Based on the above three-step approach, an estimated set
of indices for significant mediators is derived as
Qys(7) = {k: Disr < 0.05,k € S;}, where DEI is defined in
(7). We provide a publicly accessible and user-friendly func-
tion gHIMA (), which can be conveniently accessed through
the R package HIMA.

3 Numerical simulation

In this section, we perform simulations to evaluate the effec-
tiveness of our proposed methodology. For comparison, we
also consider the one-mediator methods of Shen et al. (2014)
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and Bind et al. (2017) with Bonferroni adjusted P-values for
multiple comparisons, where we only focus on mediator’s
median (t = 0.5) in Bind et al. (2017)’s method. The media-
tors are generated from the following linear models:

My = ot X+{Z+ep, k=1,...,p, (8)

where the exposure X follows N(0, 4); the covariates Z =

(Z1,Z,) are independently generated from N(0, 4); e =

(e1,...,ep) is generated from a multivariate normal distribu-

tion with mean zero and covariance matrix X = (0.25"_")1-‘/-.
We consider the following two cases for the outcomes:

Case I. Y = c+yX+P Mty Z+e, 9)

Case II. Y = c+yX+BM+o'Z+e(0X+¢'M), (10)

where ¢ follows from N(0, 1). Under Case I, the tth condi-
tional quantile of Y is given by

QT(Y|X7 M, Z) = C+QT(6)+7X+ﬂIM+”,Za

where Q.(¢) represents the tth quantile of e. Under Case II,
the tth conditional quantile of Y can be expressed as

O(Y|X, M, Z) = c+{y+00Q.(e)} X+{B+O:(e)p} M4#'Z.

The true values of a, B and ¢ are set to be a=
(0.85,1.2,1,0.15,-0.25,0.65, —0.50,0,...,0), = (0.85,
1.2,1,0.25,-0.15,0,0,0.75,-0.5,0,...,0) and ¢ = (0.1,
0.1,0.1,0,...,0), where p=23000. Moreover, ¢, =c =0,
y=0.5,0=0.1,¢, = (0.3,0.3)', y = (0.5,0,5)". The sample
size is chosen as # = 200 and 300, respectively. All the simu-
lation results are based on 500 repetitions.

First, we generate random samples with models (8), (9)
and (10) to evaluate the proposed method in Section 2. The
quantile level is chosen as T = 0.05, 0.25, 0.5, 0.75, and 0.95,
respectively. In Tables 1 and 2, we report the simulation
results on the mediation effects {of,.}5_;, including the
bias (Bias) given by the difference of sample means of estima-
tors and the true value, together with the sampling standard
error (SSE). The estimation results for axf, ’s (R =7,...,p)
are similar to that of agf ., so we omit the details.

The results in Tables 1 and 2 demonstrate that our method
exhibits significantly smaller Bias and SSE compared to Shen
et al. and Bind et al. Hence, the one-by-one mediator procedure
is not applicable for estimating high-dimensional quantile medi-
ation effects. To describe the accuracy of our mediator selection
method, we report the following three results:

Model size (MS): |Q (1), where |Qo(t)| denotes the num-
ber of elements in Qo (7);

True positive proportion (TPP): |Q(z 1) N Qo(7)|/|Q0(7) 5

False discovery proportion (FDP): ) [Qo(7) \ Qo(2)|/1Q0 ()],
where [Qo(7) \ Qo(7)| denotes the set difference of Qq(t)
and Q (1)

Tables 3 and 4 present the mediator selection results in
terms of MS, TPP, and FDP. These results suggest that Shen
et al. and Bind et al. tend to select a smaller model with lower
TPP and FDP, i.e. the one-by-one mediator procedure is more
conservative than our JS-based procedure. Moreover, all
methods become better as the sample size 7 increases.

Zhang et al.

Overall, the proposed mediator selection method works well
for high-dimensional quantile mediation model in practical
applications. From the view of computational efficiency, our
method takes approximately 245.34 seconds for one repeti-
tion with Case I and #=300, where the computation is
implemented on a laptop with 8 G memory.

4 A birth cohort study of mother-newborn
pairs

Each year in the USA, maternal smoking affects over half a
million pregnancies, resulting in fetal growth limitations.
This is evident from the reduced birthweight and its subse-
quent long-term implications as noted by Wang et al. (2002).
In this section, we apply our proposed methodology to a
birth cohort study comprising mother—newborn pairs from a
predominantly urban, low-income multi-ethnic birth cohort
in the USA.

The study comprised a total of 954 mother-newborn pairs
from the racially diverse Boston Birth Cohort (Pearson et al.
2022). Among the mothers, 165 (17.3%) had a history of
smoking either before or during pregnancy. Newborns ex-
posed to smoking exhibited an average birthweight reduction
of 258 g compared to those without exposure (Xu et al.
2021). The DNA methylation (DNAm) markers of each
newborn were measured using the Illumina Infinium
MethylationEPIC BeadChip, which successfully produced
DNAm profiles for 865859 CpG sites (P=3865859). For
each CpG site examined, a f-value ranging from 0 to 1 was
reported. We aim to investigate the mediating role of DNA
methylation (DNAm) markers in the association between
smoking (binary exposure: 1 =smoker and 0 =non-smoker)
and birthweight (outcome). We also adjust for confounding
variables, including maternal age at delivery; parity (not in-
cluding the index pregnancy): 0 versus 1 or more; maternal
education: high school or less versus some college or more;
maternal self-reported race: Black versus non-Black, where
Black included self-reported Black (African American and
Haitian) and non-Black included white and Hispanic; mater-
nal alcohol consumption during pregnancy: never versus
ever; maternal pre-pregnancy BMI; child’s sex: female versus
male; and gestational age at birth. We also adjust for esti-
mated cord blood cell composition, which was calculated us-
ing the estimateCellCounts() function in the “minf” package,
with seven cell types: CD4+, T cells, B cells, monocytes, gran-
ulocytes, natural killer cells, and nucleated red blood cells.

We illustrate the distribution of infant birth weight in
Fig. 2. We are interested in examining the mediation effects
across the entire spectrum of the outcome distribution. In
other words, we are looking beyond just the average outcome
distribution, as is typically done using mean-regression meth-
ods. Specifically, we are keen on the effects on both the low
birth weight (LBW) and high birth weight (HBW) samples.
Based on the distribution, we can roughly categorize 7 €
{0.2,0.3} as the LBW group, 7 € {0.4,0.5,0.6} as the nor-
mal weight group, and 7 € {0.7,0.8} as the HBW group. The
results from our method for the chosen mediators are sum-
marized in Table 5. In contrast, with the same dataset, the
methods by Shen et al. (2014) and Bind et al. (2017) cannot
select any significant mediators after adjusting for multiple
comparisons. Under 7€ {0.2,0.3} (i.e. LBW group), we
identified three CpG sites (¢g25325512, ¢g07814318, and
cg14541773) as significant mediators, while under 7€
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Table 1. The (Bias,

SSE) of estimation for mediation effects in Case I.

n=200 n=300
orPr. Shenetal” Bind et al.® Proposed*® Shen et al. Bind et al. Proposed
=005 opy, (0.3088,0.2792) (0.3065,0.2793) (—0.0541,0.2386) (0.3233,0.2275) (0.3230, 0.2277) (—0.0173,0.1266)
wpfy.  (0.5335,0.3489)  (0.5317,0.3515)  (=0.0479,0.2593) (0.5598,0.2632)  (0.5576,0.2659)  (~0.0406,0.1885)
o3f;. (0.4132,0.3126) (0.4168,0.3165) (—0.0059,0.2308) (0.4249, 0.2711) (0.4259,0.2749) (0.0201, 0.1605)
o4fs. (0.0453,0.0608) (0.0444, 0.0628) (—0.0305,0.0213) (0.0487,0.0437) (0.0484, 0.0446) (—0.0258, 0.0235)
asPs.  (-0.0411,0.0975) (-0.0418,0.0991) (=0.0377,0.0055) (-0.0438,0.0772) (-0.0436,0.0774) (=0.0374,0.0017)
afs. (0.0298,0.2551) (0.0303,0.2559) (0.0009, 0.0175) (0.0257,0.2024) (0.0253,0.2021) (0.0013, 0.0169)
T=025 wf,. (0.3084,0.1877)  (0.3064,0.1906)  (-0.0172,0.1123) (0.3154,0.1459)  (0.3152,0.1474)  (=0.0120, 0.0866)
w2 fy. (0.5641,0.2174) (0.5624,0.2232) (—0.0465,0.1657)  (0.5749, 0.1806) (0.5727,0.1846) (—0.0204, 0.1326)
o3f3, (0.3909,0.2063) (0.3944, 0.2097) (0.0135,0.1390) (0.4143,0.1604) (0.4148,0.1614) (0.0085,0.1186)
o4fs. (0.0439,0.0411) (0.0429,0.0449) (—0.0281,0.0202) (0.0481, 0.0355) (0.0482,0.0372) (—0.0188, 0.0224)
usPs.  (=0.0349,0.0597) (=0.0349,0.0602) (~0.0375,0.0001) (=0.0424,0.0508) (-0.0425,0.0507) (~0.0375,0.0006)
a6fs.  (0.0256,0.1496)  (0.0255,0.1489)  (0.0007,0.0083)  (0.0225,0.1260)  (0.0225,0.1259) (< 107*,0.0073)
=035 o1fy.  (0.3221,0.1734) (0.3210,0.1761) (—0.0195,0.1065) (0.3110, 0.1316) (0.3109, 0.1321) (—0.0171, 0.0881)
mpy,  (0.5728,0.2048)  (0.5719,0.2092)  (-0.0577,0.1697) (0.5736,0.1737)  (0.5706,0.1782)  (~0.0409,0.1312)
a3f3. (0.4069,0.1949) (0.4107,0.1976) (—0.0035,0.1395) (0.4077,0.1448) (0.4080,0.1488) —0.0063,0.1114)
o4f4. (0.0455,0.0391) (0.0452,0.0435) (—0.0250, 0. 0222) (0.0476,0.0344) (0.0476,0.0363) (—0.0158, 0.0216)
asfs. (=0.0374,0.0565) (-0.0373,0.0564) (-0.0375, < 10 4) (-0.0380,0.0441) (-0.0379,0.0439) (—0.0374,0.0018)
aPe.  (0.0215,0.1444)  (0.0212,0.1440) (<1074, <107%)  (0.0265,0.1143)  (0.0267,0.1142)  (0.0006, 0.0067)
=075 ouf, (0.3266,0.1878) (0.3246, 0.1904) (—0.0234,0.1202) (0.3108, 0.1517) (0.3110, 0.1545) (—0.0079, 0.0873)
o2f>, (0.5704,0.2246) (0.5684,0.2291) (—0.0526,0.1839) (0.5609, 0.1870) (0.5577,0.1904) (—0.0343, 0.1462)
why.  (0.4168,0.2021)  (0.4202,0.2048)  (0.0051,0.1452)  (0.4030,0.1659)  (0.4030,0.1672)  (0.0069, 0.1134)
wafs.  (0.0482,0.0428)  (0.0463,0.0447)  (=0.0271,0.0214) (0.0464,0.0353)  (0.0463,0.0373)  (=0.0190,0.0225)
asfs. (—0.0371,0.0599) (-0.0369,0.0603) (-0.0374,0.0012) (-0.0388,0.0498) (-0.0387,0.0498) (-0.0374,0.0019)
uPs. (0.0155,0.1629) (0.0156, 0.1626) (0.0004, 0.0104) (0.0287,0.1251) (0.0289, 0.1253) (0.0009, 0.0099)
=095 wfy, (0.3204,0.2905) (0.3185,0.2923) (—0.0693,0.2358) (0.2965, 0.2315) (0.2969,0.2353) (—0.0135,0.1482)
mpy.  (0.5710,0.3364)  (0.5693,0.3405)  (-0.0338,0.2565) (0.5766,0.2612)  (0.5733,0.2631)  (=0.0397,0.1941)
o3f3,. (0.4032,0.3170) (0.4065, 0.3195) (—0.0171,0.2309) (0.3939,0.2703) (0.3941, 0.2721) (0.0115,0.1644)
wfs.  (0.0489,0.0593)  (0.0475,0.0623)  (-0.0315,0.0193) (0.0479,0.0481)  (0.0478,0.0500)  (=0.0273,0.0213)
asfs. (=0.0376,0.0957) (-0.0381,0.0953) (-0.0374,0.0033) (-0.0442,0.0788) (-0.0439,0.0799) (-0.0375,0.0010)
ogfs. (0.0267,0.2408) (0.0267,0.2405) (0.0007,0.0135) (0.0240, 0.2015) (0.0243, 0.2025) (0.0008,0.0139)

@ “Shen et al” denotes the method of Shen ez al. (2014); ® “Bind et al.” denotes the method of Bind et al. (2017); ¢ “Proposed” denotes our method.

Table 2. The (Bias,

SSE) of estimation for mediation effects in Case Il.

n=200 n=300
oxPr. Shenetal” Bind et al.® Proposed® Shen et al. Bind et al. Proposed
t=0.05 op, (0.4661,0.2804) (0.4654,0.2843) (0.0885,0.2472) (0.4632,0.2286) (0.4629,0.2287) (0.1178,0.1519)
o f,. (0.7665,0.3709) (0.7653, 0.3724) (0.1642,0.2655) (0.7732,0.2668) (0.7699,0.2679) (0.1546, 0.2065)
o3f3. (0.5795,0.3336) (0.5839,0.3395) (0.1625,0.2309) (0.5777,0.2591) (0.5781, 0.2625) (0.1689,0.1774)
o4fs. (0.0498,0.0607) (0.0498, 0.0649) (—0.0336, 0. 0162) (0.0469,0.0481) (0.0467,0.0501) (—0.0257,0.0229)
asfs. (—0.0383,0.0998) (-0. 0384 0.1021) (=0.0375,< 107%)  (=0. 0427 0.0779)  (=0.0425,0.0782) (-0.0375, < 1074
usfe. (0.0421,0.2479) (0.0426, 0.2487) (0.0022, 0.0265) (0.0261, 0.1907) (0.0259,0.1911) (—0.0001, 0.0158)
T=025 wfy, (0.3692,0.1844)  (0.3683,0.1877)  (0.0506,0.0868)  (0.3685,0.1392)  (0.3684,0.1411)  (0.0532, 0.0694)
wph,. (0.6356,0.2143) (0.6348,0.2203) (0.0416,0.1383) (0.6473,0.1732) (0.6442,0.1779) (0.0580,0.1083)
o3f3, (0.4656,0.2055) (0.4695,0.2091) (0.0867,0.1151) (0.4709,0.1567) (0.4713,0.1609) (0.0739,0.0860)
o4f4. (0.0453,0.0367) (0.0449, 0.0412) (—0.0259, 0. 0194) (0.0461,0.0331) (0.0459,0.0349) (—0.0159,0.0198)
asfs. (—0.0366,0.0563) (-0.0363,0.0569) (-0.0375,< 10~ 4 (~0.0388,0.0495) (—0.0388,0.0492) (—0.0375, < 1074
wefe.  (0.0291,0.1557)  (0.0294,0.1552)  (0.0007,0.0119)  (0.0270,0.1243)  (0.0269,0.1241) (< 10~*,0.0018)
=035 o1, (0.3134,0.1662) (0.3124,0.1691) (—0.0058,0.0765) (0.3050, 0.1315) (0.3050,0.1337) (—0.0081, 0.0563)
o f. (0.5602,0.1948) (0.5593,0.2003) (—0.0370,0.1189) (0.5599, 0.1545) (0.5569,0.1595) (—0.0294, 0.0867)
w3f3. (0.3981,0.1865) (0.4021, 0.1904) (0.0118,0.1038) (0.4034,0.1389) (0.4038,0.1441) (—0.0031, 0.0685)
o4fs, (0.0453,0.0376) (0.0450, 0.0429) (—0.0217, 0. 0211) (0.0453,0.0319) (0.0452,0.0341) (—0.0105, 0.0166)
asPs. (=0.0373,0.0545) (-0.0371,0.0551) (=0.0375,< 10~ 4 (0. 0384 0.0431) (-0.0384,0.0430) (-0.0374, 0.0021)
o6fs. (0.0223,0.1457) (0.0223, 0.1456) (—0.0001, 0.0019) (0.0279, 0.1174) (0.0281,0.1173) (0.0003, 0.0047)
t=0.75 wify, (0.2671,0.1817) (0.2650, 0.1836) (—0.0660, 0.0862) (0.2489, 0.1459) (0.2490, 0.1480) (—0.0627,0.0718)
wph. (0.4726,0.2218) (0.4708, 0.2269) (—0.1138,0.1370) (0.4747,0.1657) (0.4718,0.1722) (—0.1147,0.1044)
o3f3, (0.3474,0.1993) (0.3508,0.2018) (—0.049, 0.1157) (0.3314, 0.1591) (0.3317,0.1629) (—0.0617,0.0887)
wPyc  (0.0483,0.0406)  (0.0469,0.0444)  (<0.0247,0.0214) (0.0466,0.0338)  (0.0463,0.0352) ~ (~0.0150,0.0200)
asfs. (—0.0396,0.0583) (-0.0394,0.0587) (-0.0375, < 10~ 4 (—0. 0419 0.0503) (—0.0418, 0.0500) (-0.0375, < 1074
ogfs. (0.0213,0.1506) (0.0215,0.1503) (0.0011, 0.0119) (0.0211, 0.1209) (0.0214, 0.1211) (0.0003, 0.0048)
=095 wf,. (0.1792,0.3022)  (0.1781,0.3037)  (=0.2003,0.2432) (0.1741,0.2423)  (0.1744,0.2448)  (=0.1597, 0.1563)
o f. (0.3404,0.3392) (0.3395, 0.3423) (—0.2469, 0.2552) (0.3661, 0.2686) (0.3640,0.2715) (—0.2496, 0.2079)
o3fz,.  (0.2294,0.3216) (0.2333, 0.3244) (—0.1694,0.2431) (0.2439, 0.2589) (0.2441,0.2574) (-0.1613,0.1722)
o4f4, (0.0488,0.0584) (0.0477,0.0627) (—0.0314,0.0211)  (0.0493, 0.0515) (0.0492,0.0528) (—0.0256,0.0234)
asfs. (—0.0463,0.0944) (-0.0463,0.0955) (-0.0374,0.0023) (-0. 0467 0.0771) (-0.046S5,0.0777) (-0.0373, 0.0039)
o6fs. (0.0463,0.2389) (0.0459,0.2382) (0.0008, 0.0165) (0.0239,0.1942) (0.0243,0.1942) (0.0005, 0.0103)

@ “Shen et al.” denotes the method of Shen et al. (2014); ® “Bind et al.” denotes the method of Bind ez al. (2017);  “Proposed” denotes our method.
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Table 3. The performance of mediator selection in Case I.
n=200 n=300

Method Quantile level MS PP FDP MS PP FDP

Shen et al. 7=0.05 1.8520 0.3696 0.0017 2.4700 0.4932 0.0012
=025 2.8380 0.5676 <107* 3.0980 0.6196 <107*
7=0.50 2.9460 0.5892 <107* 3.1600 0.6316 0.0005
t=0.75 2.9160 0.5832 <107* 3.1000 0.6188 0.0017
t=0.95 1.8480 0.3696 <107 2.4460 0.4876 0.0021

Bind et al. 7=0.05 1.8380 0.3672 0.0010 2.4600 0.4912 0.0012
=025 2.8220 0.5644 <107* 3.0580 0.6116 <107*
7=0.50 2.9220 0.5840 0.0005 3.0760 0.6148 0.0005
t=0.75 2.8820 0.5764 <107 3.0460 0.6080 0.0017
t=0.95 1.8480 0.3692 0.0005 2.4340 0.4844 0.0031

Proposed 7=0.05 2.7080 0.5408 0.0010 3.0320 0.6040 0.0030
=025 3.0440 0.6056 0.0040 3.2620 0.6488 0.0042
7=0.50 3.0540 0.6084 0.0030 3.3220 0.6612 0.0036
t=0.75 3.0100 0.6012 0.0010 3.2500 0.6460 0.0046
1=0.95 2.7240 0.5432 0.0022 3.0000 0.5964 0.0045

? “MS?” denotes the model size; “TPP” denotes true positive proportion; “FDP” denotes the false discovery proportion; “Shen et al.” denotes the method
of Shen et al. (2014); “Bind et al.” denotes the method of Bind et al. (2017); “Proposed” denotes our method.

Table 4. The performance of mediator selection in Case II.

n=200 n=300
Method Quantile level MS TPP FDP MS PP FDP
Shen et al. 1=0.05 1.8720 0.3744 <107 2.4720 0.4944 <107*
=025 2.8520 0.5700 0.0005 3.1340 0.6256 0.0013
7=0.50 2.9880 0.5972 0.0004 3.1640 0.6320 0.0010
t=0.75 2.9360 0.5868 0.0005 3.1260 0.6252 <107*
t=0.95 1.8420 0.3684 <107 2.4720 0.4944 <107
Bind et al. 7=10.05 1.8660 0.3732 <107* 2.4460 0.4892 <107*
=025 2.8340 0.5664 0.0005 3.0640 0.6116 0.0014
7=0.50 2.9580 0.5912 0.0005 3.0800 0.6152 0.0010
t=0.75 2.9060 0.5808 0.0005 3.0600 0.6120 <107
t=0.95 1.8300 0.3660 <107 2.4480 0.4892 0.0007
Proposed 7=10.05 2.7340 0.5452 0.0022 3.0140 0.6008 0.0025
=025 3.1200 0.6224 0.0020 3.4140 0.6800 0.0031
1=0.50 3.2480 0.6476 0.0024 3.6680 0.7308 0.0031
t=0.75 3.1600 0.6304 0.0020 3.4600 0.6888 0.0039
=095 2.7260 0.5448 0.0005 3.0320 0.6028 0.0045

2 “MS” denotes the model size; “TPP” denotes true positive proportion; “FDP” denotes the false discovery proportion; “Shen et al.” denotes the method
of Shen et al. (2014); “Bind et al.” denotes the method of Bind et al. (2017); “Proposed” denotes our method.

{0.4,0.5,0.6} (i.e. regular weight group), one CpG site
(cg07814318) is consistently identified to be significant medi-
ators. Studies have shown that the effect of maternal smoking
on birth weight is partly mediated by the methylation of
cg25325512 (PIM1), which contributes to a decrease in birth
weight. Several studies have also identified that maternal
smoking may influence DNA methylation at the KLF13 gene
region in offsprings. This association may be dose dependent,
with stronger effects observed with higher smoking intensity
and duration. Additionally, the studies indicate that the asso-
ciation between KLF13 methylation and smoking may have
implications for child health and the developmental origins of
the metabolic syndrome. Under t € {0.7,0.8} (i.e. HBW
group), no significant mediator is identified under © = 0.7,
but under 7=0.8, our method identifies CpG sites
cg04411342 and ¢g05575921 as significant mediators.
cg05575921 (within gene AHRR) exhibits a significant
mediating effect in the higher quantiles (HBW), while no me-
diating effect is observed in the lower quantiles (LBW) and

median. Our previous study has identified CpG site
cg05575921 as a significant mediator of maternal smoking
and birthweight (Xu ez al. 2021). A low level of methylation
at the cg05575921 locus in the AHRR gene has been robustly
associated with smoking (Grieshober et al. 2020). This hypo-
methylation is thought to mediate the association between
maternal smoking and metabolic profiles in children.
Functionally, cigarette smoke contains toxic components,
such as polycyclic aromatic hydrocarbons, which can induce
aryl hydrocarbon receptor (AHR)-mediated AHRR expres-
sion and methylation (Tantoh et al. 2020). These results dem-
onstrate the capability of our method to thoroughly capture
the complex mediating effects across different sections of the
outcome distribution.

Per the suggestion of a reviewer, in Supplementary Table
SA, we present a summary of the top five CpGs identified by
Shen et al. and Bind et al. in their application to the real data.
When we compare these results with those obtained through
our method in Table 5, numerous discrepancies are evident.
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Figure 2. The histogram of infant birth weight (in grams).
Table 5. Summary results of selected CpGs in the birth cohort study.
Quantile (Q,) CpG Position Gene o (SE) [3’ < (SE) o fi’ ke
1=10.2(2642.0) cg25325512 chré PIM1 —0.26702 (0.08792) 0.07428 (0.02167) -0.01983
cg07814318 chr1s KLF13 —0.24828 (0.06781) 0.10808 (0.03080) —0.02683
7=0.3(2855.0) cgl14541773 chrl - —0.39719 (0.08463) 0.11209 (0.03349) —0.04452
t=0.4(3035.0) cg07814318 chrl$ KLF13 —0.24828 (0.06781) 0.10653 (0.03249) —0.02645
t=0.5(3177.5) cg07814318 chr1$ KLF13 —0.24828 (0.06781) 0.11949 (0.03614) —0.02967
7=0.6(3308.0) cg07814318 chrl$ KLF13 —0.24828 (0.06781) 0.15615 (0.03351) —-0.03877
7= 0.8 (3674.0) cg04411342 chr3 TMEM108 —0.28863 (0.08484) 0.10598 (0.03178) —0.03059
cg05575921 chr§ AHRR —0.74844 (0.08166) 0.08918 (0.02454) -0.06675

a

(in grams).

For instance, many of the CpGs identified by our method,
such as cg25325512, ¢g07814318, cg04411342, do not ap-
pear in the top five lists of Shen et al. and Bind et al.
However, there are some points of agreement. At t = 0.3,
cg14541773 is selected both by our method and by Shen
et al.; cg05575921 is included at © € {0.4,0.5} by Shen et al.
and Bind et al., while our method identifies ¢g05575921
att=0.8.

5 Concluding remarks

This study introduced a novel high-dimensional quantile me-
diation model. A three-step procedure was employed to iden-
tify active mediators. Simulations and real data application
were conducted to demonstrate the practical utility of our ap-
proach. The R function gHIMA () was developed to facilitate
the implementation of our method in practice, providing a
user-friendly interface. Assumption (C.4) highlights that
while mediators may be correlated, they do not have causal
relationships with each other. This is a crucial assumption for

7 €{0.2,0.3} is referred to as the low birth weight group; = € {0.8} is the high birth weight group; O, denotes the tth quantile of birth weight data

the validity of the causal interpretations of our Conditional
Direct Effect (CDE) and Conditional Indirect Effect (CIE),
even though exploring the causal links between the mediators
themselves is not our focus.

There are several topics that will be studied in the future.
First, the present study sheds light on high-dimensional quan-
tile mediation analysis, which has the potential for further ex-
pansion to include survival outcomes (Zhang et al. 2021c¢)
and longitudinal data (Bind et al. 2017). Second, the pro-
posed method incorporates linear models for the mediators
and a quantile model for the outcome. It is desirable to con-
sider using quantile models for both mediators and outcomes
under our framework. Third, the development of a robust
high-dimensional mediation analysis procedure becomes in-
triguing when potential outliers are present in the mediators
and outcomes. Fourth, the investigation of interactions be-
tween exposure and high-dimensional mediators poses signif-
icant challenges, necessitating further endeavors to address
this issue. Fifth, we have imposed a sparsity condition for ac-
tive mediators when applying our method. However, the
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approach to handling quantile mediation effects remains un-
certain in situations where there are multiple true mediators
that exceed the sample size.
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