

WEAK TYPE A_p ESTIMATE FOR BILINEAR CALDERÓN-ZYGMUND OPERATORS

LINFEI ZHENG

ABSTRACT. In this paper, we investigate the boundedness of bilinear Calderón-Zygmund operators T from $L^{p_1}(w_1) \times L^{p_2}(w_2)$ to $L^{p,\infty}(v_{\vec{w}})$ with the stopping time method, where $1/p = 1/p_1 + 1/p_2$, $1 < p_1, p_2 < \infty$ and \vec{w} is a multiple $A_{\vec{P}}$ weight. Specifically, we study the exponent α of $A_{\vec{P}}$ constant in formula

$$\|T(\vec{f})\|_{L^{p,\infty}(v_{\vec{w}})} \leq C_{m,n,\vec{P},T} [\vec{w}]_{A_{\vec{P}}}^{\alpha} \|f_1\|_{L^{p_1}(w_1)} \|f_2\|_{L^{p_2}(w_2)}.$$

Surprisingly, we show that when $p \geq \frac{3+\sqrt{5}}{2}$ or $\min\{p_1, p_2\} > 4$, the exponent α in the above estimate can be less than 1, which is different from the linear scenario.

1. INTRODUCTION AND MAIN RESULTS

In recent years, the theory of Calderón-Zygmund operators has attracted widespread attention. There have been many advances in the optimal control of weighted operator norms with A_p weights.

In the linear case, in 2012, Hytönen proved the A_2 conjecture in [3] and obtained

$$\|T(f)\|_{L^p(w)} \lesssim [w]_{A_p}^{\max\{1, \frac{p'}{p}\}} \|f\|_{L^p(w)}.$$

Just one year later, in [6], Lerner proved that Calderón-Zygmund operators can be controlled by sparse operators and provided an alternative proof of the A_2 theorem. We recommend interested readers to learn about the history of A_2 theorem in the above two papers and the references therein.

For the weak weighted operator norms of Calderón-Zygmund operators, in [4], Hytönen, Lacey, Martikainen, Orponen, Reguera, Sawyer, and Uriarte-Tuero obtained

$$\|T(f)\|_{L^{p,\infty}(w)} \lesssim [w]_{A_p} \|f\|_{L^p(w)}.$$

In the multilinear case, in [10], Li, Moen, and Sun proved that when $1 < p, p_1, p_2 < \infty$,

$$(1.1) \quad \|T(\vec{f})\|_{L^p(v_{\vec{w}})} \lesssim [\vec{w}]_{A_{\vec{P}}}^{\max\{1, \frac{p'_1}{p}, \frac{p'_2}{p}\}} \|f_1\|_{L^{p_1}(w_1)} \|f_2\|_{L^{p_2}(w_2)},$$

and they provided a beautiful example to show that their result is optimal. When $p < 1$, the estimate (1.1) still holds since the Calderón-Zygmund operators can be controlled by sparse operators pointwise, as shown in [1, 7, 2]. For weak norms, it is generally believed that the optimal exponent in $A_{\vec{P}}$ estimate is 1, which is the same as the linear case. Li and Sun gave a mixed $A_p - A_{\infty}$ estimate in [11], just in terms of the $A_{\vec{P}}$ constant, with the exponent larger than 1. In Li's master's thesis [9], he established a Coifman-Fefferman

2020 Mathematics Subject Classification. 42B20, 42B25.

Key words and phrases. Bilinear Calderón-Zygmund operators, weighted inequalities, weak type estimate.

type inequality to prove that the exponent of the $A_{\vec{P}}$ constant for the weak type estimate can be $1 + 1/p$.

In this paper, we show that the exponent in weak $A_{\vec{P}}$ estimate for bilinear Calderón-Zygmund operators can be less than 1 for certain \vec{P} . Specifically, we prove the following theorem.

Theorem 1.1. *Let T be a bilinear Calderón-Zygmund operator, $\vec{P} = (p_1, p_2)$ with $1/p_1 + 1/p_2 = 1/p$ and $1 < p, p_1, p_2 < \infty$. Suppose $\vec{w} = (w_1, w_2) \in A_{\vec{P}}$, then*

$$(1.2) \quad \|T(\vec{f})\|_{L^{p,\infty}(\vec{v}_{\vec{w}})} \leq C_{m,n,\vec{P},T} [\vec{w}]_{A_{\vec{P}}}^\alpha \|f_1\|_{L^{p_1}(w_1)} \|f_2\|_{L^{p_2}(w_2)},$$

where

$$\alpha = \min\{\beta, \gamma\}, \beta = \frac{1}{p} + \max\left\{\min\left\{\frac{1}{p'_1}, \frac{1}{p'_1} \frac{p'_2}{p}\right\}, \min\left\{\frac{1}{p'_2}, \frac{1}{p'_2} \frac{p'_1}{p}\right\}\right\}, \gamma = \max\left\{1, \frac{p'_1}{p}, \frac{p'_2}{p}\right\}.$$

It should be noted that the exponent γ in the theorem comes from the strong type estimate (1.1), so we only need to prove estimate (1.2) with exponent $\alpha = \beta$.

Remark 1.2. Note that $\beta \leq \max\left\{\frac{1}{p} + \frac{1}{p'_1}, \frac{1}{p} + \frac{1}{p'_2}\right\} < 1 + \frac{1}{p}$, so our results improve the one from [9].

Remark 1.3. We can apply the extrapolation techniques demonstrated in [12, Theorem 4.1], to generalize Theorem 1.1 to the case of $p < 1$. In particular, if we use $\vec{P} = (p_1, p_2)$ with $2 < p_1 = p_2 < \sqrt{2} + 1$ as the starting point, we can obtain better results than the strong type estimate (1.1), and further details are left for interested readers.

2. PRELIMINARIES

2.1. Bilinear Calderón-Zygmund operators. We call T a *bilinear Calderón-Zygmund operator* if it is originally defined on the product of Schwartz spaces and takes values in tempered distributions, meanwhile, for some $1 < q_1, q_2 < \infty$, it can be extended to a bounded bilinear operator from $L^{q_1}(\mathbb{R}^n) \times L^{q_2}(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, where $1/q_1 + 1/q_2 = 1/q$, and if there exists a function $K(y_0, y_1, y_2)$, defined off the diagonal $y_0 = y_1 = y_2$ in $(\mathbb{R}^n)^3$ that satisfies

$$T(f_1, f_2)(y_0) = \int_{(\mathbb{R}^n)^2} K(y_0, y_1, y_2) f_1(y_1) f_2(y_2) dy_1 dy_2, \quad \forall y_0 \notin \text{supp } f_1 \cap \text{supp } f_2;$$

$$|K(y_0, y_1, y_2)| \leq \frac{C}{(|y_0 - y_1| + |y_0 - y_2|)^{2n}};$$

and for some $A, \varepsilon > 0$, whenever $|h| \leq \frac{1}{2} \max\{|y_0 - y_1|, |y_0 - y_2|\}$,

$$\begin{aligned} & |K(y_0 + h, y_1, y_2) - K(y_0, y_1, y_2)| + |K(y_0, y_1 + h, y_2) - K(y_0, y_1, y_2)| \\ & \quad + |K(y_0, y_1, y_2 + h) - K(y_0, y_1, y_2)| \\ & \leq \frac{1}{(|y_0 - y_1| + |y_0 - y_2|)^{2n}} \omega\left(\frac{|h|}{|y_0 - y_1| + |y_0 - y_2|}\right), \end{aligned}$$

where ω is the modulus of Dini-continuity, i.e., an increasing function satisfies $\omega(0) = 0$, $\omega(t+s) \leq \omega(t) + \omega(s)$, and

$$\|\omega\|_{\text{Dini}} := \int_0^1 \omega(t) \frac{dt}{t} < \infty.$$

In [2], Damián, Hormozi, and Li proved that bilinear Calderón-Zygmund operators can be pointwise controlled by sparse operators, which will be introduced in section 2.3.

2.2. Multiple $A_{\vec{p}}$ weight. Recall that in the linear case, a *weight* is a non-negative locally integrable function. When $1 < p < \infty$, The set A_p is composed of weights that satisfy

$$[w]_{A_p} := \sup_{Q: \text{cube in } \mathbb{R}^n} \langle w \rangle_Q \langle w^{1-p'} \rangle_Q^{p-1} < \infty,$$

where $\langle w \rangle_Q := w(Q)/|Q|$. When $p = \infty$, $A_\infty := \bigcup_{1 < p < \infty} A_p$ and the A_∞ constant $[w]_{A_\infty}$ is defined by

$$[w]_{A_\infty} := \sup_Q \frac{1}{w(Q)} \int_Q M(w\chi_Q),$$

where M denotes the Hardy-Littlewood maximal function. Meanwhile, for any $w \in A_p$, we have $[w]_{A_\infty} \leq [w]_{A_p}$.

As is well known, in [8], Lerner, Ombrosi, Pérez, Torres, and Trujillo-González extended the above definition to the multilinear case, and defined *multiple $A_{\vec{p}}$ weights* as follows. Let $\vec{P} = (p_1, \dots, p_m)$ with $1 < p_1, \dots, p_m < \infty$ and $1/p_1 + \dots + 1/p_m = 1/p$. Given $\vec{w} = (w_1, \dots, w_m)$, set

$$v_{\vec{w}} = \prod_{i=1}^m w_i^{p/p_i}.$$

The $A_{\vec{P}}$ constant is defined by

$$[\vec{w}]_{A_{\vec{P}}} := \sup_Q \langle v_{\vec{w}} \rangle_Q \prod_{i=1}^m \langle \sigma_i \rangle_Q^{p/p_i},$$

where $\sigma_i = w_i^{1-p_i}$. We say that \vec{w} satisfies the multilinear $A_{\vec{P}}$ condition if $[\vec{w}]_{A_{\vec{P}}} < \infty$. Particularly, in Theorem 3.6 of the aforementioned paper, they proved that

$$(2.1) \quad [v_{\vec{w}}]_{A_{mp}} \leq [\vec{w}]_{A_{\vec{P}}}, [\sigma_i]_{A_{mp_i'}} \leq [\vec{w}]_{A_{\vec{P}}}^{p_i'/p}, \quad \forall \vec{w} \in A_{\vec{P}}.$$

2.3. Dyadic cubes system, sparse operators and stopping time argument. The *dyadic cubes system* \mathcal{D} is a family of cubes with the following properties:

- (1) for any $Q \in \mathcal{D}$, its sides are parallel to the coordinate axes and its sidelength is of the form of 2^k ;
- (2) $Q \cap R \in \{Q, R, \emptyset\}$, for any $Q, R \in \mathcal{D}$;
- (3) the cubes of fixed sidelength 2^k form a partition of \mathbb{R}^n .

A collection $\mathcal{S} \subset \mathcal{D}$ is called *sparse* if for each $Q \in \mathcal{S}$, there exists a subset $E_Q \subset Q$ such that $|E_Q| \geq \frac{1}{2}|Q|$ and the sets $\{E_Q\}_{Q \in \mathcal{S}}$ are pairwise disjoint. For a sparse family \mathcal{S} , we can define the *sparse operator* $A_{\mathcal{D}, \mathcal{S}}$ as follows:

$$A_{\mathcal{D}, \mathcal{S}}(\vec{f}) = \sum_{Q \in \mathcal{S}} \langle f_1 \rangle_Q \langle f_2 \rangle_Q \chi_Q,$$

where $\vec{f} = (f_1, f_2)$.

Below, we will introduce the main technique of this paper, stopping time argument, which was introduced by Li and Sun in [11], and further improved by Damián, Hormozi, and Li in [2].

Let w be a weight and $f \in L^p(w)$ for some $0 < p < \infty$. Suppose that the sparse family \mathcal{S} has a collection of maximal cubes, in other words, there exists a collection of disjoint cubes $\{Q_i\}_{i \in \Lambda} \subset \mathcal{S}$, such that for any cube $Q \in \mathcal{S}$, there exists $i \in \Lambda$ such that $Q \subset Q_i$. Now we construct the *stopping time family* \mathcal{F} from the pair (f, w) . Let $\mathcal{F}_0 := \{Q_i\}_{i \in \Lambda}$ and

$$\mathcal{F}_k := \bigcup_{F \in \mathcal{F}_{k-1}} \{F' \subset F : F' \text{ is the maximal cube in } \mathcal{S} \text{ that satisfies } \langle f \rangle_{F'}^w > 2 \langle f \rangle_F^w\},$$

where $\langle f \rangle_Q^w := \int_Q f w \, dx / w(Q)$, then the stopping time family is $\mathcal{F} := \bigcup_{k=0}^{\infty} \mathcal{F}_k$. It is easy to deduce from the construction above that

$$(2.2) \quad \sum_{F \in \mathcal{F}} (\langle f \rangle_F^w)^p w(F) \lesssim \|M_{\mathcal{D}}^w(f)\|_{L^p(w)}^p \lesssim \|f\|_{L^p(w)}^p,$$

where $M_{\mathcal{D}}^w(f)(x) := \sup_{x \in Q, Q \in \mathcal{D}} \langle f \rangle_Q^w$. We use $\pi_{\mathcal{F}}(Q)$ to represent the *stopping parents* of Q , that is, the minimal cube containing Q in \mathcal{F} . According to the definition, we have $\langle f \rangle_Q^w \leq 2 \langle f \rangle_{\pi_{\mathcal{F}}(Q)}^w$.

3. PROOF OF THE MAIN RESULTS

In order to prove the main theorem, we need the following lemmas.

Lemma 3.1. ([10, lemma 3.1]) *Let $\vec{P} = (p_1, p_2)$ with $1/p_1 + 1/p_2 = 1/p$ and $1 < p, p_1, p_2 < \infty$, $\vec{w} = (w_1, w_2) \in A_{\vec{P}}$. Then $\vec{w}^1 := (v_{\vec{w}}^{1-p'}, w_2) \in A_{\vec{P}^1}$, with $\vec{P}^1 = (p', p_2)$ and*

$$[\vec{w}^1]_{A_{\vec{P}^1}} = [\vec{w}]_{A_{\vec{P}}}^{p_1'/p}.$$

Lemma 3.2. ([11, lemma 4.5]) *Let $\vec{P} = (p_1, p_2)$ with $1/p_1 + 1/p_2 = 1/p$ and $1 < p, p_1, p_2 < \infty$, $\vec{w} = (w_1, w_2) \in A_{\vec{P}}$. Suppose that \mathcal{D} is a dyadic cubes system and \mathcal{S} is a sparse family in \mathcal{D} . Then the following assertions are equivalent.*

- (1) $\|A_{\mathcal{D}, \mathcal{S}}(|f_1| \sigma_1, |f_2| \sigma_2)\|_{L^{p, \infty}(\vec{w})} \leq C \prod_{i=1}^2 \|f_i\|_{L^{p_i}(\sigma_i)}.$
- (2) $\int_Q A_{\mathcal{D}, \mathcal{S}}(|f_1| \sigma_1 \chi_Q, |f_2| \sigma_2 \chi_Q) v_{\vec{w}} \, dx \leq C \prod_{i=1}^2 \|f_i\|_{L^{p_i}(\sigma_i)} v_{\vec{w}}(Q)^{1/p'} \text{ for all dyadic cubes } Q \in \mathcal{S} \text{ and all functions } f_i \in L^{p_i}(\sigma_i), i = 1, 2.$

A careful read of [11, lemma 4.5] reveals that the constants C appearing in Lemma 3.2 are comparable.

Lemma 3.3. *Let $\vec{P} = (p_1, p_2)$ with $1/p_1 + 1/p_2 = 1/p$ and $1 < p, p_1, p_2 < \infty$, $\vec{w} = (w_1, w_2) \in A_{\vec{P}}$. Suppose that \tilde{Q} is a dyadic cube and $\text{supp } f_2 \subset \tilde{Q}$, then*

$$\begin{aligned} \|\chi_{\tilde{Q}} A_{\mathcal{D}, \mathcal{S}}(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2)\|_{L^p(\vec{w})} &\lesssim \max \left\{ \min \{[\sigma_1]_{A_{\infty}}, [\sigma_2]_{A_{\infty}}\}^{1/p}, \min \{[\sigma_1]_{A_{\infty}}, [v_{\vec{w}}]_{A_{\infty}}\}^{1/p_2'} \right\} \\ &\quad \times [\vec{w}]_{A_{\vec{P}}}^{1/p} \|f_2\|_{L^{p_2}(\sigma_2)} \sigma_1(\tilde{Q})^{1/p_1}. \end{aligned}$$

Suppose Lemma 3.3 is proven, referring to the method in [11], we can directly prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Using Lemma 3.1 and Lemma 3.3, for each $Q \in \mathcal{S}$, we have

$$v_{\vec{w}}(Q)^{-1/p'} \int_Q A_{\mathcal{D}, \mathcal{S}}(|f_1| \sigma_1 \chi_Q, |f_2| \sigma_2 \chi_Q) v_{\vec{w}} \, dx$$

$$\begin{aligned}
&= v_{\vec{w}}(Q)^{-1/p'} \int_Q A_{\mathcal{D}, \mathcal{S}}(v_{\vec{w}} \chi_Q, |f_2| \sigma_2 \chi_Q) |f_1| \sigma_1 \, dx \\
&\leq v_{\vec{w}}(Q)^{-1/p'} \left(\int_Q (A_{\mathcal{D}, \mathcal{S}}(v_{\vec{w}} \chi_Q, |f_2| \sigma_2 \chi_Q))^{p'_1} \sigma_1 \, dx \right)^{1/p'_1} \left(\int_Q |f_1|^{p_1} \sigma_1 \, dx \right)^{1/p_1} \\
&\lesssim \max \left\{ \min \{[v_{\vec{w}}]_{A_\infty}, [\sigma_2]_{A_\infty}\}^{\frac{1}{p'_1}}, \min \{[v_{\vec{w}}]_{A_\infty}, [\sigma_1]_{A_\infty}\}^{\frac{1}{p'_2}} \right\} [\vec{w}^1]_{A_{\vec{P}}}^{\frac{1}{p'_1}} \|f_1\|_{L^{p_1}(\sigma_1)} \|f_2\|_{L^{p_2}(\sigma_2)} \\
&\stackrel{(2.1)}{\leq} [\vec{w}]_{A_{\vec{P}}}^{\frac{1}{p} + \max \left\{ \min \left\{ \frac{1}{p'_1}, \frac{1}{p'_1} \frac{p'_2}{p} \right\}, \min \left\{ \frac{1}{p'_2}, \frac{1}{p'_2} \frac{p'_1}{p} \right\} \right\}} \|f_1\|_{L^{p_1}(\sigma_1)} \|f_2\|_{L^{p_2}(\sigma_2)}.
\end{aligned}$$

Finally, according to Lemma 3.2, we get the desired result. This finishes the proof. \square

To prove Lemma 3.3, we need the following lemma.

Lemma 3.4. ([2, lemma 4.15]) *Let $\vec{P} = (p_1, p_2)$ with $1/p_1 + 1/p_2 = 1/p$ and $1 < p, p_1, p_2 < \infty$, $\vec{w} = (w_1, w_2) \in A_{\vec{P}}$. Then for any sparse family \mathcal{S} , we have*

$$(3.1) \quad \left\| \sum_{Q \in \mathcal{S}} \langle \sigma_1 \rangle_Q \langle \sigma_2 \rangle_Q \chi_Q \right\|_{L^p(v_{\vec{w}})} \lesssim [\vec{w}]_{A_{\vec{P}}}^{1/p} \left(\sum_{Q \in \mathcal{S}} \langle \sigma_1 \rangle_Q^{p/p_1} \langle \sigma_2 \rangle_Q^{p/p_2} |Q| \right)^{1/p},$$

$$(3.2) \quad \left\| \sum_{Q \in \mathcal{S}} \langle \sigma_1 \rangle_Q \langle v_{\vec{w}} \rangle_Q \chi_Q \right\|_{L^{p'_2}(\sigma_2)} \lesssim [\vec{w}]_{A_{\vec{P}}}^{1/p} \left(\sum_{Q \in \mathcal{S}} \langle \sigma_1 \rangle_Q^{p'_2/p_1} \langle v_{\vec{w}} \rangle_Q^{p'_2/p'} |Q| \right)^{1/p'_2}.$$

Proof of Lemma 3.3. In the first half of the proof, we will use a method similar to that in [2] and [11]. Since $\text{supp } f_2 \subset \tilde{Q}$, we have

$$\begin{aligned}
A_{\mathcal{D}, \mathcal{S}}(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2) &= \sum_{\substack{Q \in \mathcal{S} \\ Q \cap \tilde{Q} \neq \emptyset}} \langle \sigma_1 \chi_{\tilde{Q}} \rangle_Q \langle |f_2| \sigma_2 \rangle_Q \chi_Q \\
&= \sum_{\substack{Q \in \mathcal{S} \\ \tilde{Q} \subset Q}} \langle \sigma_1 \chi_{\tilde{Q}} \rangle_Q \langle |f_2| \sigma_2 \rangle_Q \chi_Q + \sum_{\substack{Q \in \mathcal{S} \\ Q \subset \tilde{Q}}} \langle \sigma_1 \rangle_Q \langle |f_2| \sigma_2 \rangle_Q \chi_Q \\
&:= A_{\mathcal{D}, \mathcal{S}}^1(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2) + A_{\mathcal{D}, \mathcal{S}}^2(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2).
\end{aligned}$$

For $A_{\mathcal{D}, \mathcal{S}}^1(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2)$, the calculation is not difficult,

$$\begin{aligned}
\left\| \chi_{\tilde{Q}} A_{\mathcal{D}, \mathcal{S}}^1(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2) \right\|_{L^p(v_{\vec{w}})} &= \left\| \sum_{\tilde{Q} \subset Q} \frac{\sigma_1(Q \cap \tilde{Q}) \int_{\tilde{Q}} f_2(y_2) \sigma_2 \, dy_2}{|Q|^2} \chi_{\tilde{Q}} \right\|_{L^p(v_{\vec{w}})} \\
&\lesssim \left\| \frac{\sigma_1(\tilde{Q}) \int_{\tilde{Q}} f_2(y_2) \sigma_2 \, dy_2}{|\tilde{Q}|^2} \chi_{\tilde{Q}} \right\|_{L^p(v_{\vec{w}})} \\
&\leq \frac{\sigma_1(\tilde{Q}) \|f_2\|_{L^{p_2}(\sigma_2)} \sigma_2(\tilde{Q})^{1/p'_2}}{|\tilde{Q}|^2} v_{\vec{w}}(\tilde{Q})^{1/p} \\
&\leq [\vec{w}]_{A_{\vec{P}}}^{1/p} \|f_2\|_{L^{p_2}(\sigma_2)} \sigma_1(\tilde{Q})^{1/p_1}.
\end{aligned}$$

It remains to estimate $A_{\mathcal{D}, \mathcal{S}}^2(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2)$. By duality, we have

$$\begin{aligned} \left\| A_{\mathcal{D}, \mathcal{S}}^2(\sigma_1 \chi_{\tilde{Q}}, |f_2| \sigma_2) \right\|_{L^p(v_{\vec{w}})} &= \left\| \sum_{Q \subset \tilde{Q}} \langle f_2 \rangle_Q^{\sigma_2} \langle \sigma_1 \rangle_Q \langle \sigma_2 \rangle_Q \chi_Q \right\|_{L^p(v_{\vec{w}})} \\ &= \sup_{\|h\|_{L^{p'}(v_{\vec{w}})}=1} \sum_{Q \subset \tilde{Q}} \langle f_2 \rangle_Q^{\sigma_2} \langle \sigma_1 \rangle_Q \langle \sigma_2 \rangle_Q \int_Q h \, dv_{\vec{w}} \\ &= \sup_{\|h\|_{L^{p'}(v_{\vec{w}})}=1} \sum_{Q \subset \tilde{Q}} \langle f_2 \rangle_Q^{\sigma_2} \langle h \rangle_Q^{v_{\vec{w}}} \langle \sigma_1 \rangle_Q \langle \sigma_2 \rangle_Q v_{\vec{w}}(Q). \end{aligned}$$

Let $\mathcal{S}' = \mathcal{S} \cap \tilde{Q}$, then \tilde{Q} is the maximal cube in the sparse family \mathcal{S}' and we can use the stopping time argument mentioned above. Let \mathcal{F}_2 and \mathcal{H} represent the stopping time family constructed by (f_2, σ_2) and $(h, v_{\vec{w}})$ respectively, and write $\pi_{\mathcal{F}_2}(Q) = F_2$, and $\pi_{\mathcal{H}}(Q) = H$ together as $\pi(Q) = (F_2, H)$. Then,

$$\begin{aligned} \sum_{Q \in \mathcal{S}'} \langle f_2 \rangle_Q^{\sigma_2} \langle h \rangle_Q^{v_{\vec{w}}} \langle \sigma_1 \rangle_Q \langle \sigma_2 \rangle_Q v_{\vec{w}}(Q) &= \sum_{F_2 \in \mathcal{F}_2} \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2}} \sum_{\substack{Q \in \mathcal{S}' \\ \pi(Q) = (F_2, H)}} \langle f_2 \rangle_Q^{\sigma_2} \langle h \rangle_Q^{v_{\vec{w}}} \lambda_Q \\ &\quad + \sum_{H \in \mathcal{H}} \sum_{\substack{F_2 \in \mathcal{F}_2 \\ F_2 \subset H}} \sum_{\substack{Q \in \mathcal{S}' \\ \pi(Q) = (F_2, H)}} \langle f_2 \rangle_Q^{\sigma_2} \langle h \rangle_Q^{v_{\vec{w}}} \lambda_Q \\ &:= I_1 + I_2, \end{aligned}$$

where $\lambda_Q = \langle \sigma_1 \rangle_Q \langle \sigma_2 \rangle_Q v_{\vec{w}}(Q)$.

For I_1 , we have

$$\begin{aligned} I_1 &\leq 4 \sum_{F_2 \in \mathcal{F}_2} \langle f_2 \rangle_{F_2}^{\sigma_2} \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2}} \langle h \rangle_H^{v_{\vec{w}}} \sum_{\substack{Q \in \mathcal{S}' \\ \pi(Q) = (F_2, H)}} \lambda_Q \\ &\lesssim \sum_{F_2 \in \mathcal{F}_2} \langle f_2 \rangle_{F_2}^{\sigma_2} \int_{F_2} \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2}} \langle h \rangle_H^{v_{\vec{w}}} \sum_{\substack{Q \in \mathcal{S}' \\ \pi(Q) = (F_2, H)}} \frac{\lambda_Q \chi_Q}{v_{\vec{w}}(Q)} \, dv_{\vec{w}} \\ &\lesssim \sum_{F_2 \in \mathcal{F}_2} \langle f_2 \rangle_{F_2}^{\sigma_2} \int_{F_2} \left(\sup_{\substack{H' \in \mathcal{H} \\ \pi_{\mathcal{F}_2}(H') = F_2}} \langle h \rangle_{H'}^{v_{\vec{w}}} \chi_{H'} \right) \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2}} \sum_{\substack{Q \in \mathcal{S}' \\ \pi(Q) = (F_2, H)}} \frac{\lambda_Q \chi_Q}{v_{\vec{w}}(Q)} \, dv_{\vec{w}} \\ &\lesssim \sum_{F_2 \in \mathcal{F}_2} \langle f_2 \rangle_{F_2}^{\sigma_2} \left\| \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2}} \sum_{\substack{Q \in \mathcal{S}' \\ \pi(Q) = (F_2, H)}} \frac{\lambda_Q \chi_Q}{v_{\vec{w}}(Q)} \right\|_{L^p(v_{\vec{w}})} \left\| \sup_{\substack{H' \in \mathcal{H} \\ \pi_{\mathcal{F}_2}(H') = F_2}} \langle h \rangle_{H'}^{v_{\vec{w}}} \chi_{H'} \right\|_{L^{p'}(v_{\vec{w}})} \\ &\leq \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^p \left\| \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2}} \sum_{\substack{Q \in \mathcal{S}' \\ \pi(Q) = (F_2, H)}} \frac{\lambda_Q \chi_Q}{v_{\vec{w}}(Q)} \right\|_{L^p(v_{\vec{w}})}^p \right)^{\frac{1}{p}} \\ &\quad \times \left(\sum_{F_2 \in \mathcal{F}_2} \sum_{\substack{H' \in \mathcal{H} \\ \pi_{\mathcal{F}_2}(H') = F_2}} \left(\langle h \rangle_{H'}^{v_{\vec{w}}} \right)^{p'} v_{\vec{w}}(H') \right)^{\frac{1}{p'}} \end{aligned}$$

$$\lesssim \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^p \left\| \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2 \\ \pi(Q) = (F_2, H)}} \sum_{Q \in \mathcal{S}'} \frac{\lambda_Q \chi_Q}{v_{\vec{w}}(Q)} \right\|_{L^p(v_{\vec{w}})}^p \right)^{\frac{1}{p}}.$$

The last inequality is due to (2.2). By (3.1), we have

$$\begin{aligned} \left\| \sum_{\substack{H \in \mathcal{H} \\ H \subset F_2 \\ \pi(Q) = (F_2, H)}} \sum_{Q \in \mathcal{S}'} \frac{\lambda_Q \chi_Q}{v_{\vec{w}}(Q)} \right\|_{L^p(v_{\vec{w}})} &= \left\| \sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \frac{\lambda_Q \chi_Q}{v_{\vec{w}}(Q)} \right\|_{L^p(v_{\vec{w}})} \\ &\lesssim [\vec{w}]_{A_{\vec{P}}}^{\frac{1}{p}} \left(\sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_1 \rangle_Q^{\frac{p}{p_1}} \langle \sigma_2 \rangle_Q^{\frac{p}{p_2}} |Q| \right)^{\frac{1}{p}}. \end{aligned}$$

Let $\varepsilon = \frac{1}{2^{11+d}[\sigma_1]_{A_\infty}}$. Hytönen and Pérez [5] proved the reverse Hölder inequality

$$\langle \sigma_1^{1+\varepsilon} \rangle_Q \lesssim \langle \sigma_1 \rangle_Q^{1+\varepsilon}, \quad \forall Q \subset \mathbb{R}^n.$$

Let $\gamma := \frac{p}{p_1} \frac{1}{1+\varepsilon}$, $\eta := \frac{p}{p_2}$, $\frac{1}{r} := \gamma + \eta$, $\frac{1}{s} := \gamma + \frac{1}{2}(1 - \frac{1}{r})$, $\frac{1}{s'} := 1 - \frac{1}{s}$. We have

$$\begin{aligned} I_1 &\lesssim [\vec{w}]_{A_{\vec{P}}}^{\frac{1}{p}} \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^p \sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_1 \rangle_Q^{\frac{p}{p_1}} \langle \sigma_2 \rangle_Q^{\frac{p}{p_2}} |Q| \right)^{\frac{1}{p}} \\ &\leq [\vec{w}]_{A_{\vec{P}}}^{\frac{1}{p}} \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^p \sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_1^{1+\varepsilon} \rangle_Q^\gamma \langle \sigma_2 \rangle_Q^\eta |Q| \right)^{\frac{1}{p}} \\ &\leq [\vec{w}]_{A_{\vec{P}}}^{\frac{1}{p}} \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^p \left(\sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_1^{1+\varepsilon} \rangle_Q^{s\gamma} |Q| \right)^{\frac{1}{s}} \left(\sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_2 \rangle_Q^{s'\eta} |Q| \right)^{\frac{1}{s'}} \right)^{\frac{1}{p}} \\ &\leq [\vec{w}]_{A_{\vec{P}}}^{\frac{1}{p}} \left(\sum_{F_2 \in \mathcal{F}_2} \sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_1^{1+\varepsilon} \rangle_Q^{s\gamma} |Q| \right)^{\frac{1}{sp}} \times \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^{s'p} \sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_2 \rangle_Q^{s'\eta} |Q| \right)^{\frac{1}{s'p}} \\ &:= [\vec{w}]_{A_{\vec{P}}}^{\frac{1}{p}} J_1 \times J_2. \end{aligned}$$

Since \mathcal{S}' is sparse, for J_1 , we have

$$\begin{aligned} J_1 &\lesssim \left(\sum_{F_2 \in \mathcal{F}_2} \sum_{\substack{Q \in \mathcal{S}' \\ \pi_{\mathcal{F}_2}(Q) = F_2}} \langle \sigma_1^{1+\varepsilon} \rangle_Q^{s\gamma} |E_Q| \right)^{\frac{1}{sp}} \\ &\leq \left(\int_{\tilde{Q}} (M(\sigma_1^{1+\varepsilon} \chi_{\tilde{Q}}))^{s\gamma} dx \right)^{\frac{1}{sp}} \\ &= \|M(\sigma_1^{1+\varepsilon} \chi_{\tilde{Q}})\|_{L^{s\gamma}(\frac{dx}{|Q|})}^{\frac{\gamma}{p}} |\tilde{Q}|^{\frac{1}{sp}} \end{aligned}$$

$$\begin{aligned} &\leq [\sigma_1]_{A_\infty}^{\frac{1}{sp}} \left\| M(\sigma_1^{1+\varepsilon} \chi_{\tilde{Q}}) \right\|_{L^{1,\infty}\left(\frac{dx}{|\tilde{Q}|}\right)}^{\frac{\gamma}{p}} |\tilde{Q}|^{\frac{1}{sp}} \\ &\lesssim [\sigma_1]_{A_\infty}^{\frac{1}{sp}} \langle \sigma_1^{1+\varepsilon} \rangle_{\tilde{Q}}^{\frac{\gamma}{p}} |\tilde{Q}|^{\frac{1}{sp}} \lesssim [\sigma_1]_{A_\infty}^{\frac{1}{sp}} \langle \sigma_1 \rangle_{\tilde{Q}}^{\frac{1}{p_1}} |\tilde{Q}|^{\frac{1}{sp}}. \end{aligned}$$

The third inequality in the estimate above is due to Kolmogorov's inequality, that is, for any cube Q in \mathbb{R}^n and $f \in L^{1,\infty}(Q)$,

$$\|f\|_{L^p\left(\frac{dx}{|Q|}\right)} \leq \left(\frac{1}{p} + \frac{1}{1-p}\right)^{\frac{1}{p}} \|f\|_{L^{1,\infty}\left(\frac{dx}{|Q|}\right)}, \quad 0 < p < 1.$$

Specifically,

$$\left(\frac{1}{s\gamma} + \frac{1}{1-s\gamma}\right)^{\frac{1}{sp}} = \left(\frac{1}{1 - \frac{s\gamma}{2} \frac{\varepsilon}{1+\varepsilon} \frac{p_1}{p}} + \frac{2}{s} \frac{1+\varepsilon}{\varepsilon} \frac{p_1}{p}\right)^{\frac{1}{sp}} \lesssim [\sigma_1]_{A_\infty}^{\frac{1}{sp}}.$$

For J_2 , using the same method as for J_1 and (2.2), we obtain

$$\begin{aligned} J_2 &\lesssim \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^{s'p} [\sigma_1]_{A_\infty} \langle \sigma_2 \rangle_{F_2}^{s'\eta} |F_2| \right)^{\frac{1}{s'p}} \\ &\leq [\sigma_1]_{A_\infty}^{\frac{1}{s'p}} \left(\sum_{F_2 \in \mathcal{F}_2} \left(\langle f_2 \rangle_{F_2}^{\sigma_2} \right)^{p_2} \langle \sigma_2 \rangle_{F_2} |F_2| \right)^{\frac{1}{p_2}} \left(\sum_{F_2 \in \mathcal{F}_2} |F_2| \right)^{\frac{1}{s'p} - \frac{1}{p_2}} \\ &\lesssim [\sigma_1]_{A_\infty}^{\frac{1}{s'p}} \|f_2\|_{L^{p_2}(\sigma_2)} |\tilde{Q}|^{\frac{1}{s'p} - \frac{1}{p_2}}. \end{aligned}$$

If we apply the reverse Hölder inequality for σ_2 , we can obtain another bound similarly. Therefore, we get

$$I_1 \lesssim [\tilde{w}]_{A_\tilde{P}}^{1/p} \min\{[\sigma_1]_{A_\infty}, [\sigma_2]_{A_\infty}\}^{1/p} \sigma_1(\tilde{Q})^{1/p_1} \|f_2\|_{L^{p_2}(\sigma_2)}.$$

The estimation of I_2 is similar to I_1 , only by replacing formula (3.1) with (3.2). By combining the above estimates of I_1 and I_2 , we conclude the proof of the theorem. \square

At the end of this section, we use Python to draw a graph to compare the weak type estimate we obtained with the sharp strong type estimate (1.1). In particular, we show that when $p \geq \frac{3+\sqrt{5}}{2}$ or $\min\{p_1, p_2\} > 4$, the exponent we obtained is smaller than 1.

Without loss of generality, we assume $p_1 \leq p_2$ in the following calculations.

- When $p \geq \frac{3+\sqrt{5}}{2}$, it is obvious that $p'_1 \leq p$. In this case, the exponent in Theorem 1.1 is $\frac{1}{p} + \frac{1}{p'_2} \frac{p'_1}{p}$. If it is greater than or equal to 1, we obtain

$$\frac{1}{p} + \frac{1}{p'_2} \frac{p'_1}{p} \geq 1 \Rightarrow \frac{p'_1}{p'_2} \geq p-1 \Rightarrow p'_1 \geq p-1 \Rightarrow \frac{1}{p_1} \geq \frac{p-2}{p-1}.$$

Since $p \geq \frac{3+\sqrt{5}}{2}$, we have $\frac{p-2}{p-1} \geq \frac{1}{p}$, which leads to a contradiction.

- When $\min\{p_1, p_2\} > 4$, we can also obtain $p'_1 \leq p$, thus,

$$\frac{1}{p} + \frac{1}{p'_2} \frac{p'_1}{p} = \frac{p'_1}{p} \left(2 - \frac{1}{p}\right) < 1 \Leftrightarrow \frac{2}{p} - \frac{1}{p^2} < \frac{1}{p'_1},$$

and this holds automatically since the left-hand side is always less than $\frac{3}{4}$, while the right-hand side is greater than it.

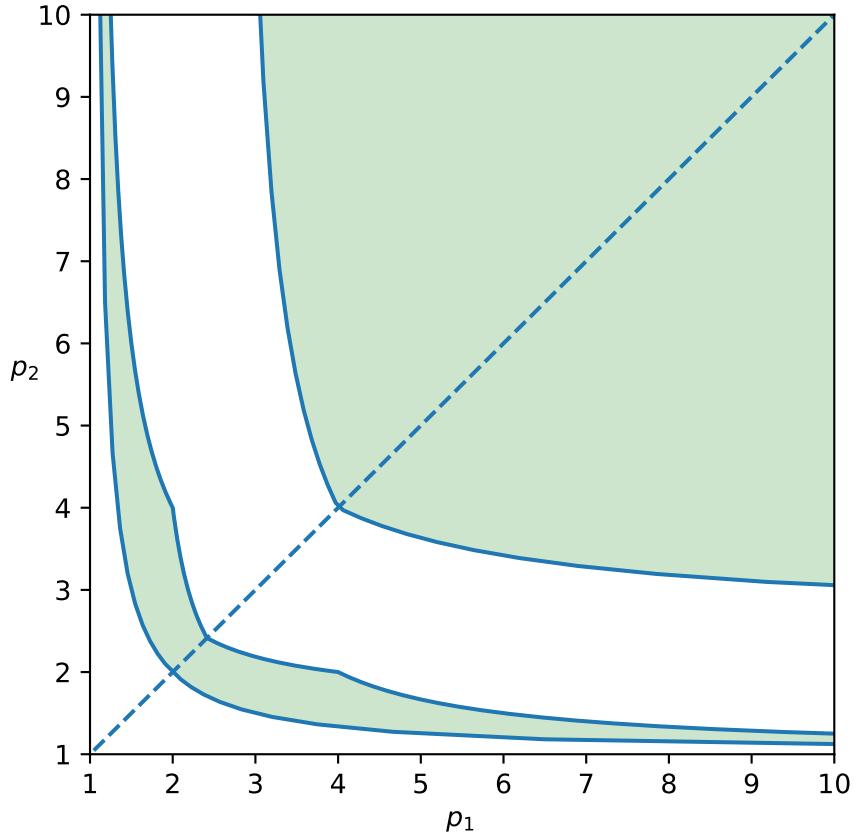


FIGURE 1. Compared to the sharp strong type estimate, our results are better in shaded areas.

4. ACKNOWLEDGEMENTS

The author thanks Professor Kangwei Li for suggesting this project, carefully reading the manuscript and providing many valuable suggestions, which greatly improved the quality of this article. Thanks also to Professor Sheldy Ombrosi for making some helpful comments on the paper. Additionally, the author would like to thank the anonymous referee for his/her careful reading that helped improving the presentation of the paper.

REFERENCES

- [1] J.M. Conde-Alonso and G. Rey. A pointwise estimate for positive dyadic shifts and some applications. *Math. Ann.*, 365(3-4):1111–1135, 2016.
- [2] W. Damián, M. Hormozi, and K. Li. New bounds for bilinear Calderón-Zygmund operators and applications. *Rev. Mat. Iberoam.*, 34(3):1177–1210, 2018.
- [3] T. Hytönen. The sharp weighted bound for general Calderón-Zygmund operators. *Ann. of Math.* (2), 175(3):1473–1506, 2012.
- [4] T. Hytönen, M.T. Lacey, H. Martikainen, T. Orponen, M.C. Reguera, E.T. Sawyer, and I. Uriarte-Tuero. Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on A_p weighted spaces. *J. Anal. Math.*, 118(1):177–220, 2012.
- [5] T. Hytönen and C. Pérez. Sharp weighted bounds involving A_∞ . *Anal. PDE*, 6(4):777–818, 2013.

- [6] A.K. Lerner. On an estimate of Calderón-Zygmund operators by dyadic positive operators. *J. Anal. Math.*, 121:141–161, 2013.
- [7] A.K. Lerner and F. Nazarov. Intuitive dyadic calculus: the basics. *Expo. Math.*, 37(3):225–265, 2019.
- [8] A.K. Lerner, S. Ombrosi, C. Pérez, R.H. Torres, and R. Trujillo-González. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. *Adv. Math.*, 220(4):1222–1264, 2009.
- [9] B. Li. Some results on sparse operators. *Master's thesis, Tianjin University*, 2023.
- [10] K. Li, K. Moen, and W. Sun. The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators. *J. Fourier Anal. Appl.*, 20(4):751–765, 2014.
- [11] K. Li and W. Sun. Weak and strong type weighted estimates for multilinear Calderón-Zygmund operators. *Adv. Math.*, 254:736–771, 2014.
- [12] Z. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes. *Math. Ann.*, 375(1–2):453–507, 2019.

CENTER FOR APPLIED MATHEMATICS, TIANJIN UNIVERSITY, WEIJIN ROAD 92, 300072 TIANJIN, CHINA
Email address: linfei_zheng@tju.edu.cn