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ABSTRACT. In this paper, we investigate the boundedness of bilinear Calderén-Zygmund
operators T' from LP* (wy) x LP? (wz) to LP*° (vg) with the stopping time method, where
1/p=1/p1+1/p2,1 < p1,p2 < co and @ is a multiple A 5 weight. Specifically, we study
the exponent « of Az constant in formula

HT(f)||LP=°°(vm) < Cm77z,ﬁ,T[w](2}5' HfIHLPI(wl) HfQHLPz(UQ) :
Surprisingly, we show that when p > 3+T‘/5 or min{p;,p2} > 4, the exponent « in the

above estimate can be less than 1, which is different from the linear scenario.

1. INTRODUCTION AND MAIN RESULTS

In recent years, the theory of Calderén-Zygmund operators has attracted widespread
attention. There have been many advances in the optimal control of weighted operator
norms with A, weights.

In the linear case, in 2012, Hytonen proved the A, conjecture in [3] and obtained
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Just one year later, in [6], Lerner proved that Calderén-Zygmund operators can be con-
trolled by sparse operators and provided an alternative proof of the A, theorem. We
recommend interested readers to learn about the history of A theorem in the above two
papers and the references therein.

For the weak weighted operator norms of Calderén-Zygmund operators, in [4], Hyto-

nen, Lacey, Martikainen, Orponen, Reguera, Sawyer, and Uriarte-Tuero obtained

1T ()| oeowy S [wla, 1Nl o) -

In the multilinear case, in [10], Li, Moen, and Sun proved that when 1 < p, p1,p2 < o0,
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and they provided a beautiful example to show that their result is optimal. When p < 1,
the estimate (1.1) still holds since the Calderén-Zygmund operators can be controlled by
sparse operators pointwise, as shownin [1, 7, 2]. For weak norms, it is generally believed
that the optimal exponent in A 5 estimate is 1, which is the same as the linear case. Li and
Sun gave a mixed A, — A estimate in [11], just in terms of the A5 constant, with the
exponent larger than 1. In Li’s master’s thesis [9], he established a Coifman-Fefferman

Hf1||LP1 (w1) ||f2”Lz’2(w2) )
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type inequality to prove that the exponent of the A 5 constant for the weak type estimate
canbe 1+ 1/p.

In this paper, we show that the exponent in weak A 5 estimate for bilinear Calderén-
Zygmund operators can be less than 1 for certain P. Specifically, we prove the following
theorem.

Theorem 1.1. Let T be a bilinear Calderén-Zygmund operator, P = (p1,p2) with 1/p +1 /p2 =
I/pand 1 < p,p1,p2 < 0o. Suppose i = (w1, wz) € Ap, then

—

(1.2) 1T ()| 2roe ey < Cppn 5.2 WA 5 11 o1 gy 172l o2 (a0
where
, 1 ool 1phy 1 1) Py Py
a=min{g,v},6=—-+max{min|y—, —=—=}, miny —, —— 1 r,v = max{l, —, == }.
Bahb=3 { {p’lp’lp} p’gp’gp}} )

It should be noted that the exponent v in the theorem comes from the strong type
estimate (1.1), so we only need to prove estimate (1.2) with exponent oo = .
Remark 1.2. Note that 8 < max {% i, % + é} <1+ %, so our results improve the one
from [9].
Remark 1.3. We can apply the extrapolation techniques demonstrated in [12, Theorem
4.1], to generalize Theorem 1.1 to the case of p < 1. In particular, if we use P= (p1,p2)

with 2 < p; = ps < V2 + 1 as the starting point, we can obtain better results than the
strong type estimate (1.1), and further details are left for interested readers.

2. PRELIMINARIES

2.1. Bilinear Calderén-Zygmund operators. We call T a bilinear Calderén-Zygmund op-
erator if it is originally defined on the product of Schwartz spaces and takes values in
tempered distributions, meanwhile, for some 1 < ¢;,¢2 < o0, it can be extended to a
bounded bilinear operator from L% (R") x L% (R"™) to LI(R"™), where 1/¢1 + 1/q2 = 1/q,
and if there exists a function K (yo, y1, y2), defined off the diagonal yp = y; = y2 in (R™)3
that satisfies

T(f1, f2)(y0) = /(]Rn)2 K(yo,y1,y2) f1(y1) f2(y2) dy1 dy2,  Vyo & supp f1 N supp fo;

C .
lyo — y1| + [yo — y2[)2™
and for some A, e > 0, whenever |h| < 1 max{|yo — v1, [yo — ¥2|},
|K (Yo + hyy1,y2) — K (Yo, 91, 92)| + [K (Yo, y1 + hyy2) — K(yo, y1,y2)|
+ [ K (Yo, y1,y2 + h) — K(yo, y1, y2)|

’K(Z/07@/1>y2)| < (

~ w )
(lyo — y1l + o — v21)?* ~ \Jyo — y1| + |yo — v2|
where w is the modulus of Dini-continuity, i.e., an increasing function satisfies w(0) = 0,
w(t+s) <w(t) +w(s), and

! dt
HwHDjm = w(t)T < 00.
0
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In [2], Damian, Hormozi, and Li proved that bilinear Calderén-Zygmund operators can
be pointwise controlled by sparse operators, which will be introduced in section 2.3.

2.2. Multiple A5 weight. Recall that in the linear case, a weight is a non-negative locally
integrable function. When 1 < p < oo, The set A, is composed of weights that satisfy

[wla, = sup  (w)ow" )5 < oo,
Q: cube in R™

where (w)q = w(Q)/|Q|. When p = 00, As 1= ;<o Ap and the A constant [w]a,,
is defined by

1
where M denotes the Hardy-Littlewood maximal function. Meanwhile, for any w € A,
we have [w]a,, < [w]a,.
As is well known, in [8], Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzélez ex-
tended the above definition to the multilinear case, and defined multiple A; weights as

follows. Let P = (p1,-+ ,pm) wWith 1 < py1,....pm < occand 1/p; + -+ 1/pm = 1/p.

Given @ = (wy, -+ ,wy,), set
m

Vg = H w? /pi,
i=1
The A5 constant is defined by

@4, :=sup(valo [Tey™,
=1

where o; = wil P, We say that  satisfies the multilinear A p condition if [w]4, < oo.
Particularly, in Theorem 3.6 of the aforementioned paper, they proved that

(2.1) (vl Ay, < (WA, (034,

P

, < [w]{'gl/j, Vi € A
2.3. Dyadic cubes system, sparse operators and stopping time argument. The dyadic
cubes system 9 is a family of cubes with the following properties:

(1) for any @ € 2, its sides are parallel to the coordinate axes and its sidelength is of
the form of 2%;

2)QNRe{Q,R,0},forany Q,R € Z;

(3) the cubes of fixed sidelength 2* form a partition of R".

A collection S C Z is called sparse if for each ) € S, there exists a subset Ey C @ such
that |Eg| > 1|Q| and the sets {E}qecs are pairwise disjoint. For a sparse family S, we
can define the sparse operator Ay s as follows:

Ags(F) =D (Maelf)exa

Qes

where f = (f1, f2).
Below, we will introduce the main technique of this paper, stopping time argument,

which was introduced by Li and Sun in [11], and further improved by Damian, Hormozi,
and Li in [2].
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Let w be a weight and f € L”(w) for some 0 < p < oo. Suppose that the sparse family
S has a collection of maximal cubes, in other words, there exists a collecion of disjoint
cubes {Q;}ien C S, such that for any cube @ € S, there exists i € A such that Q C Q;.
Now we construct the stopping time family .% from the pair (f, w). Let %y := {Q; }ien and

F = U {F' C F: F' is the maximal cube in S that satisfies (f)% > 2 (f)%},
FeF,_1
where ()¢ = fQ fwdz/w(Q), then the stopping time family is . := | J;2 , F%. Itis easy
to deduce from the construction above that
(2.2) - UNPPwF) SUMGN oy S 1 1)
Fez

where M¢(f)(z) := sup,cq geg (f)g- We use m y(Q) to represent the stopping parents of
@, that is, the minimal cube containing () in .#. According to the definition, we have

(No<2{rz0-
3. PROOF OF THE MAIN RESULTS
In order to prove the main theorem, we need the following lemmas.

Lemma 3.1. ([10, lemma 3.1]) Let P = (p1,p2) with1/p1+1/py = 1/pand 1 < p,p1,p2 < o0,
@ = (w1, w2) € Ap. Then @' := (vl ¥ wo) € Ap,, with P' = (p/, po) and

W]Aﬁl Gy

Lemma 3.2. ([11, lemma 4.5]) Let P = (p1,p2) with1/p1+1/py = 1/pand 1 < p,p1,p2 < 00,
W = (wi,w2) € Ap. Suppose that 9 is a dyadic cubes system and S is a sparse family in 9.
Then the following assertions are equivalent

(Wl Ag,s(| filors | foloz) ]| ros wg) < CTTE 1Hfz!\m(gl :

2) [ Az.s(|filoixq, [ f2loexg)ve dz < CTL, 1fill 1o () V(@ Q)" for all dyadic cubes
Q € S and all functions f; € LP (0;), 1 =1,2.

A careful read of [11, lemma 4.5] reveals that the constants C' appearing in Lemma 3.2
are comparable.

Lemma 3.3. Let ]3~: (p1,p2) with 1/p1 4+ 1/p2 = 1£pand 1< p,p1,p2 <00, W= (wy,ws) €
Ap. Suppose that Q is a dyadic cube and supp fo C Q, then

IXgA2.5(01X5: £2102) | Lo (vg) S max { min {[o1] 4., [02] 4 } /7, min {[o1] 4., [Vl 4 /72 }
1 ~
X ()42 1 foll oz ) o1(@) 7

Suppose Lemma 3.3 is proven, referring to the method in [11], we can directly prove
Theorem 1.1 as follows.

Proof of Theorem 1.1. Using Lemma 3.1 and Lemma 3.3, for each ) € S, we have

0 (Q) 1V /Q Aus(filorxo, | faloaxo)vs do
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=vs(Q) /P /Q Ag s(vaxqQ, | f2lo2x)| filo1 d

/ ’ 1/p/1 1/pl
ng(Q)*l/p (/Q (A@,g(’uu-;XQ, |f2’02XQ))p1 o1 dl') </ ‘f1|p10'1 dx)

1

1
Smax { min {[vg] 4., [02] 4 P min {[vala [01]a} M3, 1l s (o) 12l o)
(21) _ L+max { min ,,%—2} 1.1 ”1}}
<[l G o el -
Finally, according to Lemma 3.2, we get the desired result. This finishes the proof. O

To prove Lemma 3.3, we need the following lemma.

Lemma 3.4. ([2,lemma 4.15]) Let P = (p1,p2) with 1/p1+1/pe = 1/pand 1 < p,p1,p2 < o0,
W = (w1, ws) € Ap. Then for any sparse family S, we have

—1/p p/P1 p/p2 e
<@ (S ey eymal)
QES

(3.1) H Z 01 02 QXQ

Qes Lr(vg)

/ ;o 1/p'2
Salls( S wagial)

5
QeS

(3.2) H Z 1) {va)QXQ

QeS L"2(02)

Proof of Lemma 3.3. In the first half of the proof, we will use a method similar to that in
[2] and [11]. Since supp f2 C @, we have

Ags(oixg | felo) = Y (oxglallfloz)axe

Qes
QNQ#D

=Y (oxglallflooxe + Y (on)ell foloz)axa
QeS QeS
QCQ QCQ

= Ay s(01xg, | f2lo2) + A s(01xg, | f2l02).

For AIQ sloix & | f2|o2), the calculation is not difficult,

01(QN Q) f5 fa(y2)o2 dys

Hxé%,g(mx@,\fﬂ@) ( ): > O X5 .
LP(v,= ~ Le(v,+
w QCQ w
< U1(@)f@]?(y2)02dyzxé
QI LP(vg)
_ _—
- o1(Q) Hf2\|Lpi(g2) 72(Q)1/72 oa(G)VP
QI
< LT 12l o o 1 (Q) /7.
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It remains to estimate AQ9 5(01 X5 | f2|o2). By duality, we have

HA/S crle,|f2|02) Lo( H D ()& (e)qlo2)exq
QCQ

= sup Z(f2>62(01)Q<02)Q/ hdvg
||h||LP/(vu7):1 QC@ Q

= sw Y (RIG I o1dela)eua(Q).
s )= o

LP(vg)

Let ' = §NQ, then Q is the maximal cube in the sparse family S’ and we can use
the stopping time argument mentioned above. Let .7, and J# represent the stopping
time family constructed by (f2,02) and (h, v) respectively, and write 7.z, (Q) = F, and
T (Q) = H together as 7(Q) = (Fz, H). Then,

Y ()G G (o) (o2 =D > D, (GG

Qes’ PeFy HeX — QeS'
HCF 7r(Q) (F2,H)

T Y (RIGmg A

HeH FoeFy QS
FaCH n(Q)=(F2,H)

=0 + I,

where \g = (01)g(02)Quz(Q).
For I;, we have

L<4 Y (7Y WF D, X

Fre %y Hex QeS’
HCF> m(Q)=(Fy,H)
, v AQXQ
S D (R / > > oa(@) 17
ey 2 gew Qes’ v
HCF, 7(Q)=(F2,H)
< Z <f2>Fz/ ( s/up H/XH/> Z Z v?(Cf) dvg
FreFy P H'e / Hen Qes’ “
7r92(H) Fy HCF2 z(Q ) (F»,H)
)\ .
<Y (o) e, Wiar]l
FreFs Hex  Qes' v Lr(va) ™ H(E;?{;F H)
HCF; n(Q ) (Fu,H) Fal e
A P »
<< S () Aexe )
Fres HEJf ES/ vw(Q) Lr(vg)

FeFy  H'ewx
Ty (H')=F;
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(., () o)

FreFy

AQXQ
5(Q)

<

Hex Qes’
HCF2 m(Q ) (F2,H)

The last inequality is due to (2.2). By (3.1), we have

H AQXQ _“ 3 AQXQ
Hex es’ v (Q) LP(vg) Qes’ v (@) LP(vg)
HCBw@ =(F,H) Ty (Q)=Fs
1 P P P
s, (X wheafial)
QeS’
7T92(Q):F2

Lete = m. Hytonen and Pérez [5] proved the reverse Holder inequality
(017%)q S ()g"", YQ CR™

Lety:= Doz, =0, p=7+n 5 =7+3(1—7), 5 :=1- Wehave

FreFy Qes’
W?Q(Q)fFQ
1
L p P
<, (X (#m) T @)
FreFy Qes’
W?Q(Q) Fy
1 P 1 L, 1
1 s s s p
<, (X (wn) (X @ge)( X wde))
Fae T Qes’ Qes’
g, (Q)=F2 7, (Q)=F2

<wh (S X wege) (3 (wr)” X eie)”

Redy  Qes’ FreFy Qes’
W?Q(Q):FQ W?Q(Q):FQ

1
= ['LU]Zﬁjl X JQ.

Since &’ is sparse, for J;, we have

1

Ji < ( >y <0'11+6>3|EC;>|>‘sp

Fye Ty Qes’
7T92 (Q):FQ

< </~(M(011+6X@))87 dx) ”

Q
Q|
()

)
= M Xl
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'Y

<, Mo xg)|?

NIk
=)
<o, <all+€>f°|@\sp<[oﬂ (o >lrcz|sp

The third inequality in the estimate above is due to Kolmogorov’s inequality, that is,
for any cube Q in R” and f € Lb*°(Q),

Lhee(

1 1
17y < (5 +1—) e gy O <P <L

Ql

1 1
1 1 sp 1 21+e¢ P =
<+ > ( o+ pl) <ol
sy 1—sy _imﬁ s € p >

For J,, using the same method as for J; and (2.2), we obtain

(X (2) " nlateyin) ™

Specifically,

Fye Ty
% p2 g/ L
<l (X ()" enlpl) (X 18)7
ey Fae,

£ ~ 1 _ 1
S o3 1 foll pra(oa) Q17 P2

If we apply the reverse Holder inequality for o2, we can obtain another bound similarly.
Therefore, we get

I 5 @) min{[o1]as [02]a0 Y7701 (@) foll o2 o)

The estimation of I5 is similar to I3, only by replacing formula (3.1) with (3.2). By com-
bining the above estimates of I; and I, we conclude the proof of the theorem. O

At the end of this section, we use Python to draw a graph to compare the weak type
estimate we obtained with the sharp strong type estimate (1.1). In particular, we show

that when p > 3+‘[ or min{pi,p2} > 4, the exponent we obtained is smaller than 1.
Without loss of generality, we assume p; < p in the following caculations.

e When p > 3+2*/5, it is obvious that p} < p. In this case, the exponent in Theorem
1.1is l + i,p—l. If it is greater than or equal to 1, we obtain

L 1p) / 1 -2
T T B RN A (LA kel
P Dy p ) pr- p—1

‘[ , we have i ? > %, which leads to a contradiction.

e When mln{pl,pg} > 4, we can also obtain p} < p, thus,

1 19 / 1 2 1 1
+7&:ﬁ@ ><1@7——<7,

p PP p p p P

and this holds automatically since the left-hand side is always less than 2, while

the right-hand side is greater than it.
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FIGURE 1. Compared to the sharp strong type estimate, our results are
better in shaded areas.
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