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ABSTRACT. In this paper, we investigate the boundedness of bilinear Calderón-Zygmund
operators T from Lp1 (w1)×Lp2 (w2) to Lp,∞ (vw⃗) with the stopping time method, where
1/p = 1/p1 + 1/p2 , 1 < p1, p2 < ∞ and w⃗ is a multiple AP⃗ weight. Specifically, we study
the exponent α of AP⃗ constant in formula

∥T (f⃗)∥Lp,∞(vw⃗) ⩽ Cm,n,P⃗ ,T [w⃗]αA
P⃗
∥f1∥Lp1 (w1)

∥f2∥Lp2 (w2)
.

Surprisingly, we show that when p ⩾ 3+
√
5

2
or min{p1, p2} > 4, the exponent α in the

above estimate can be less than 1, which is different from the linear scenario.

1. INTRODUCTION AND MAIN RESULTS

In recent years, the theory of Calderón-Zygmund operators has attracted widespread
attention. There have been many advances in the optimal control of weighted operator
norms with Ap weights.

In the linear case, in 2012, Hytönen proved the A2 conjecture in [3] and obtained

∥T (f)∥Lp(w) ≲ [w]
max{1, p

′
p
}

Ap
∥f∥Lp(w) .

Just one year later, in [6], Lerner proved that Calderón-Zygmund operators can be con-
trolled by sparse operators and provided an alternative proof of the A2 theorem. We
recommend interested readers to learn about the history of A2 theorem in the above two
papers and the references therein.

For the weak weighted operator norms of Calderón-Zygmund operators, in [4], Hytö-
nen, Lacey, Martikainen, Orponen, Reguera, Sawyer, and Uriarte-Tuero obtained

∥T (f)∥Lp,∞(w) ≲ [w]Ap ∥f∥Lp(w) .

In the multilinear case, in [10], Li, Moen, and Sun proved that when 1 < p, p1, p2 < ∞,

(1.1) ∥T (f⃗)∥Lp(vw⃗) ≲ [w⃗]
max{1, p

′
1
p
,
p′2
p
}

A
P⃗

∥f1∥Lp1 (w1)
∥f2∥Lp2 (w2)

,

and they provided a beautiful example to show that their result is optimal. When p < 1,
the estimate (1.1) still holds since the Calderón-Zygmund operators can be controlled by
sparse operators pointwise, as shown in [1, 7, 2]. For weak norms, it is generally believed
that the optimal exponent in AP⃗ estimate is 1, which is the same as the linear case. Li and
Sun gave a mixed Ap − A∞ estimate in [11], just in terms of the AP⃗ constant, with the
exponent larger than 1. In Li’s master’s thesis [9], he established a Coifman-Fefferman
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type inequality to prove that the exponent of the AP⃗ constant for the weak type estimate
can be 1 + 1/p.

In this paper, we show that the exponent in weak AP⃗ estimate for bilinear Calderón-
Zygmund operators can be less than 1 for certain P⃗ . Specifically, we prove the following
theorem.

Theorem 1.1. Let T be a bilinear Calderón-Zygmund operator, P⃗ = (p1, p2) with 1/p1+1/p2 =
1/p and 1 < p, p1, p2 < ∞. Suppose w⃗ = (w1, w2) ∈ AP⃗ , then

(1.2) ∥T (f⃗)∥Lp,∞(vw⃗) ⩽ Cm,n,P⃗ ,T [w⃗]
α
A

P⃗
∥f1∥Lp1 (w1)

∥f2∥Lp2 (w2)
,

where

α = min {β, γ}, β =
1

p
+max

{
min

{ 1

p′1
,
1

p′1

p′2
p

}
,min

{ 1

p′2
,
1

p′2

p′1
p

}}
, γ = max{1, p

′
1

p
,
p′2
p
}.

It should be noted that the exponent γ in the theorem comes from the strong type
estimate (1.1), so we only need to prove estimate (1.2) with exponent α = β.

Remark 1.2. Note that β ⩽ max
{
1
p + 1

p′1
, 1p + 1

p′2

}
< 1 + 1

p , so our results improve the one
from [9].

Remark 1.3. We can apply the extrapolation techniques demonstrated in [12, Theorem
4.1], to generalize Theorem 1.1 to the case of p < 1. In particular, if we use P⃗ = (p1, p2)

with 2 < p1 = p2 <
√
2 + 1 as the starting point, we can obtain better results than the

strong type estimate (1.1), and further details are left for interested readers.

2. PRELIMINARIES

2.1. Bilinear Calderón-Zygmund operators. We call T a bilinear Calderón-Zygmund op-
erator if it is originally defined on the product of Schwartz spaces and takes values in
tempered distributions, meanwhile, for some 1 < q1, q2 < ∞, it can be extended to a
bounded bilinear operator from Lq1(Rn) × Lq2(Rn) to Lq(Rn), where 1/q1 + 1/q2 = 1/q,
and if there exists a function K(y0, y1, y2), defined off the diagonal y0 = y1 = y2 in (Rn)3

that satisfies

T (f1, f2)(y0) =

ˆ
(Rn)2

K(y0, y1, y2)f1(y1)f2(y2) dy1 dy2, ∀y0 /∈ supp f1 ∩ supp f2;

|K(y0, y1, y2)| ⩽
C

(|y0 − y1|+ |y0 − y2|)2n
;

and for some A, ε > 0, whenever |h| ⩽ 1
2 max{|y0 − y1|, |y0 − y2|},

|K(y0 + h, y1, y2)−K(y0, y1, y2)|+ |K(y0, y1 + h, y2)−K(y0, y1, y2)|
+ |K(y0, y1, y2 + h)−K(y0, y1, y2)|

⩽
1

(|y0 − y1|+ |y0 − y2|)2n
ω

(
|h|

|y0 − y1|+ |y0 − y2|

)
,

where ω is the modulus of Dini-continuity, i.e., an increasing function satisfies ω(0) = 0,
ω(t+ s) ⩽ ω(t) + ω(s), and

∥ω∥Dini :=

ˆ 1

0
ω(t)

dt

t
< ∞.
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In [2], Damián, Hormozi, and Li proved that bilinear Calderón-Zygmund operators can
be pointwise controlled by sparse operators, which will be introduced in section 2.3.

2.2. Multiple Ap⃗ weight. Recall that in the linear case, a weight is a non-negative locally
integrable function. When 1 < p < ∞, The set Ap is composed of weights that satisfy

[w]Ap := sup
Q: cube inRn

⟨w⟩Q⟨w1−p′⟩p−1
Q < ∞,

where ⟨w⟩Q := w(Q)/|Q|. When p = ∞, A∞ :=
⋃

1<p<∞Ap and the A∞ constant [w]A∞

is defined by

[w]A∞ := sup
Q

1

w(Q)

ˆ
Q
M (wχQ) ,

where M denotes the Hardy-Littlewood maximal function. Meanwhile, for any w ∈ Ap,
we have [w]A∞ ⩽ [w]Ap .

As is well known, in [8], Lerner, Ombrosi, Pérez, Torres, and Trujillo-González ex-
tended the above definition to the multilinear case, and defined multiple Ap⃗ weights as
follows. Let P⃗ = (p1, · · · , pm) with 1 < p1, . . . , pm < ∞ and 1/p1 + · · · + 1/pm = 1/p.
Given w⃗ = (w1, · · · , wm), set

vw⃗ =

m∏
i=1

w
p/pi
i .

The AP⃗ constant is defined by

[w⃗]A
P⃗
:= sup

Q
⟨vw⃗⟩Q

m∏
i=1

⟨σi⟩
p/p′i
Q ,

where σi = w
1−p′i
i . We say that w⃗ satisfies the multilinear AP⃗ condition if [w⃗]A

P⃗
< ∞.

Particularly, in Theorem 3.6 of the aforementioned paper, they proved that

(2.1) [vw⃗]Amp ⩽ [w⃗]A
P⃗
, [σi]Amp′

i
⩽ [w⃗]

p′i/p
A

P⃗
, ∀w⃗ ∈ AP⃗ .

2.3. Dyadic cubes system, sparse operators and stopping time argument. The dyadic
cubes system D is a family of cubes with the following properties:

(1) for any Q ∈ D , its sides are parallel to the coordinate axes and its sidelength is of
the form of 2k;

(2) Q ∩R ∈ {Q,R, ∅}, for any Q,R ∈ D ;
(3) the cubes of fixed sidelength 2k form a partition of Rn.
A collection S ⊂ D is called sparse if for each Q ∈ S, there exists a subset EQ ⊂ Q such

that |EQ| ⩾ 1
2 |Q| and the sets {EQ}Q∈S are pairwise disjoint. For a sparse family S, we

can define the sparse operator AD ,S as follows:

AD ,S(f⃗) =
∑
Q∈S

⟨f1⟩Q⟨f2⟩QχQ,

where f⃗ = (f1, f2).
Below, we will introduce the main technique of this paper, stopping time argument,

which was introduced by Li and Sun in [11], and further improved by Damián, Hormozi,
and Li in [2].
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Let w be a weight and f ∈ Lp(w) for some 0 < p < ∞. Suppose that the sparse family
S has a collection of maximal cubes, in other words, there exists a collecion of disjoint
cubes {Qi}i∈Λ ⊂ S, such that for any cube Q ∈ S, there exists i ∈ Λ such that Q ⊂ Qi.
Now we construct the stopping time family F from the pair (f, w). Let F0 := {Qi}i∈Λ and

Fk :=
⋃

F∈Fk−1

{F ′ ⊂ F : F ′ is the maximal cube inS that satisfies ⟨f⟩wF ′ > 2 ⟨f⟩wF },

where ⟨f⟩wQ :=
´
Q fw dx/w(Q), then the stopping time family is F :=

⋃∞
k=0 Fk. It is easy

to deduce from the construction above that

(2.2)
∑
F∈F

(⟨f⟩wF )
pw(F ) ≲ ∥Mw

D(f)∥
p
Lp(w) ≲ ∥f∥pLp(w) ,

where Mw
D(f)(x) := supx∈Q,Q∈D ⟨f⟩wQ. We use πF (Q) to represent the stopping parents of

Q, that is, the minimal cube containing Q in F . According to the definition, we have
⟨f⟩wQ ⩽ 2 ⟨f⟩wπF (Q).

3. PROOF OF THE MAIN RESULTS

In order to prove the main theorem, we need the following lemmas.

Lemma 3.1. ([10, lemma 3.1]) Let P⃗ = (p1, p2) with 1/p1+1/p2 = 1/p and 1 < p, p1, p2 < ∞,
w⃗ = (w1, w2) ∈ AP⃗ . Then w⃗1 := (v1−p′

w⃗ , w2) ∈ AP⃗ 1 , with P⃗ 1 = (p′, p2) and

[w⃗1]A
P⃗1

= [w⃗]
p′1/p
A

P⃗
.

Lemma 3.2. ([11, lemma 4.5]) Let P⃗ = (p1, p2) with 1/p1+1/p2 = 1/p and 1 < p, p1, p2 < ∞,
w⃗ = (w1, w2) ∈ AP⃗ . Suppose that D is a dyadic cubes system and S is a sparse family in D .
Then the following assertions are equivalent.

(1)∥AD ,S(|f1|σ1, |f2|σ2)∥Lp,∞(vw⃗) ⩽ C
∏2

i=1 ∥fi∥Lpi (σi)
.

(2)
´
QAD ,S(|f1|σ1χQ, |f2|σ2χQ)vw⃗ dx ⩽ C

∏2
i=1 ∥fi∥Lpi (σi)

vw⃗(Q)1/p
′ for all dyadic cubes

Q ∈ S and all functions fi ∈ Lpi (σi), i = 1, 2.

A careful read of [11, lemma 4.5] reveals that the constants C appearing in Lemma 3.2
are comparable.

Lemma 3.3. Let P⃗ = (p1, p2) with 1/p1+1/p2 = 1/p and 1 < p, p1, p2 < ∞, w⃗ = (w1, w2) ∈
AP⃗ . Suppose that Q̃ is a dyadic cube and supp f2 ⊂ Q̃, then

∥χ
Q̃
AD ,S(σ1χQ̃

, |f2|σ2)∥Lp(vw⃗) ≲max
{
min {[σ1]A∞ , [σ2]A∞}1/p,min {[σ1]A∞ , [vw⃗]A∞}1/p

′
2
}

× [w⃗]
1/p
A

P⃗
∥f2∥Lp2 (σ2)

σ1(Q̃)1/p1 .

Suppose Lemma 3.3 is proven, referring to the method in [11], we can directly prove
Theorem 1.1 as follows.

Proof of Theorem 1.1. Using Lemma 3.1 and Lemma 3.3, for each Q ∈ S, we have

vw⃗(Q)−1/p′
ˆ
Q
AD ,S(|f1|σ1χQ, |f2|σ2χQ)vw⃗ dx
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=vw⃗(Q)−1/p′
ˆ
Q
AD ,S(vw⃗χQ, |f2|σ2χQ)|f1|σ1 dx

⩽vw⃗(Q)−1/p′
(ˆ

Q

(
AD ,S(vw⃗χQ, |f2|σ2χQ)

)p′1 σ1 dx)1/p′1
(ˆ

Q
|f1|p1σ1 dx

)1/p1

≲max
{
min {[vw⃗]A∞ , [σ2]A∞}

1
p′1 ,min {[vw⃗]A∞ , [σ1]A∞}

1
p′2
}
[w⃗1]

1
p′1
A

P⃗1
∥f1∥Lp1 (σ1)

∥f2∥Lp2 (σ2)

(2.1)

⩽ [w⃗]

1
p
+max

{
min

{
1
p′1

, 1
p′1

p′2
p

}
,min

{
1
p′2

, 1
p′2

p′1
p

}}
A

P⃗
∥f1∥Lp1 (σ1)

∥f2∥Lp2 (σ2)
.

Finally, according to Lemma 3.2, we get the desired result. This finishes the proof. □

To prove Lemma 3.3, we need the following lemma.

Lemma 3.4. ([2, lemma 4.15]) Let P⃗ = (p1, p2) with 1/p1+1/p2 = 1/p and 1 < p, p1, p2 < ∞,
w⃗ = (w1, w2) ∈ AP⃗ . Then for any sparse family S, we have

(3.1)
∥∥∥∥ ∑
Q∈S

⟨σ1⟩Q⟨σ2⟩QχQ

∥∥∥∥
Lp(vw⃗)

≲ [w⃗]
1/p
A

P⃗

( ∑
Q∈S

⟨σ1⟩p/p1Q ⟨σ2⟩p/p2Q |Q|
)1/p

,

(3.2)
∥∥∥∥ ∑
Q∈S

⟨σ1⟩Q⟨vw⃗⟩QχQ

∥∥∥∥
Lp′2 (σ2)

≲ [w⃗]
1/p
A

P⃗

( ∑
Q∈S

⟨σ1⟩
p′2/p1
Q ⟨vw⃗⟩

p′2/p
′

Q |Q|
)1/p′2

.

Proof of Lemma 3.3. In the first half of the proof, we will use a method similar to that in
[2] and [11]. Since supp f2 ⊂ Q̃, we have

AD ,S(σ1χQ̃
, |f2|σ2) =

∑
Q∈S

Q∩Q̃ ̸=∅

⟨σ1χQ̃
⟩Q⟨|f2|σ2⟩QχQ

=
∑
Q∈S
Q̃⊂Q

⟨σ1χQ̃
⟩Q⟨|f2|σ2⟩QχQ +

∑
Q∈S
Q⊂Q̃

⟨σ1⟩Q⟨|f2|σ2⟩QχQ

:= A1
D ,S(σ1χQ̃

, |f2|σ2) +A2
D ,S(σ1χQ̃

, |f2|σ2).

For A1
D ,S(σ1χQ̃

, |f2|σ2), the calculation is not difficult,∥∥∥∥χQ̃
A1

D ,S(σ1χQ̃
, |f2|σ2)

∥∥∥∥
Lp(vw⃗)

=

∥∥∥∥ ∑
Q̃⊂Q

σ1(Q ∩ Q̃)
´
Q̃
f2(y2)σ2 dy2

|Q|2
χ
Q̃

∥∥∥∥
Lp(vw⃗)

≲

∥∥∥∥∥σ1(Q̃)
´
Q̃
f2(y2)σ2 dy2

|Q̃|2
χ
Q̃

∥∥∥∥∥
Lp(vw⃗)

⩽
σ1(Q̃) ∥f2∥Lp2 (σ2)

σ2(Q̃)1/p
′
2

|Q̃|2
vw⃗(Q̃)1/p

⩽ [w⃗]
1/p
A

P⃗
∥f2∥Lp2 (σ2)

σ1(Q̃)1/p1 .
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It remains to estimate A2
D ,S(σ1χQ̃

, |f2|σ2). By duality, we have∥∥∥A2
D ,S(σ1χQ̃

, |f2|σ2)
∥∥∥
Lp(vw⃗)

=

∥∥∥∥ ∑
Q⊂Q̃

⟨f2⟩σ2
Q ⟨σ1⟩Q⟨σ2⟩QχQ

∥∥∥∥
Lp(vw⃗)

= sup
∥h∥

Lp′ (vw⃗)
=1

∑
Q⊂Q̃

⟨f2⟩σ2
Q ⟨σ1⟩Q⟨σ2⟩Q

ˆ
Q
hdvw⃗

= sup
∥h∥

Lp′ (vw⃗)
=1

∑
Q⊂Q̃

⟨f2⟩σ2
Q ⟨h⟩vw⃗Q ⟨σ1⟩Q⟨σ2⟩Qvw⃗(Q).

Let S ′
= S ∩ Q̃, then Q̃ is the maximal cube in the sparse family S ′

and we can use
the stopping time argument mentioned above. Let F2 and H represent the stopping
time family constructed by (f2, σ2) and (h, vw⃗) respectively, and write πF2(Q) = F2, and
πH (Q) = H together as π(Q) = (F2, H). Then,∑

Q∈S′

⟨f2⟩σ2
Q ⟨h⟩vw⃗Q ⟨σ1⟩Q⟨σ2⟩Qvw⃗(Q) =

∑
F2∈F2

∑
H∈H
H⊂F2

∑
Q∈S′

π(Q)=(F2,H)

⟨f2⟩σ2
Q ⟨h⟩vw⃗Q λQ

+
∑
H∈H

∑
F2∈F2
F2⊂H

∑
Q∈S′

π(Q)=(F2,H)

⟨f2⟩σ2
Q ⟨h⟩vw⃗Q λQ

:=I1 + I2,

where λQ = ⟨σ1⟩Q⟨σ2⟩Qvw⃗(Q).
For I1, we have

I1 ⩽ 4
∑

F2∈F2

⟨f2⟩σ2
F2

∑
H∈H
H⊂F2

⟨h⟩vw⃗H
∑
Q∈S′

π(Q)=(F2,H)

λQ

≲
∑

F2∈F2

⟨f2⟩σ2
F2

ˆ
F2

∑
H∈H
H⊂F2

⟨h⟩vw⃗H
∑
Q∈S′

π(Q)=(F2,H)

λQχQ

vw⃗(Q)
dvw⃗

≲
∑

F2∈F2

⟨f2⟩σ2
F2

ˆ
F2

(
sup

H′∈H
πF2

(H′)=F2

⟨h⟩vw⃗H′χH′

) ∑
H∈H
H⊂F2

∑
Q∈S′

π(Q)=(F2,H)

λQχQ

vw⃗(Q)
dvw⃗

≲
∑

F2∈F2

⟨f2⟩σ2
F2

∥∥∥∥ ∑
H∈H
H⊂F2

∑
Q∈S′

π(Q)=(F2,H)

λQχQ

vw⃗(Q)

∥∥∥∥
Lp(vw⃗)

∥∥∥∥ sup
H′∈H

πF2
(H′)=F2

⟨h⟩vw⃗H′χH′

∥∥∥∥
Lp′ (vw⃗)

⩽

( ∑
F2∈F2

(
⟨f2⟩σ2

F2

)p
∥∥∥∥ ∑

H∈H
H⊂F2

∑
Q∈S′

π(Q)=(F2,H)

λQχQ

vw⃗(Q)

∥∥∥∥p
Lp(vw⃗)

) 1
p

×
( ∑

F2∈F2

∑
H′∈H

πF2
(H′)=F2

(
⟨h⟩vw⃗H′

)p′
vw⃗

(
H ′)) 1

p′
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≲

( ∑
F2∈F2

(
⟨f2⟩σ2

F2

)p
∥∥∥∥ ∑

H∈H
H⊂F2

∑
Q∈S′

π(Q)=(F2,H)

λQχQ

vw⃗(Q)

∥∥∥∥p
Lp(vw⃗)

) 1
p

.

The last inequality is due to (2.2). By (3.1), we have∥∥∥∥ ∑
H∈H
H⊂F2

∑
Q∈S′

π(Q)=(F2,H)

λQχQ

vw⃗(Q)

∥∥∥∥
Lp(vw⃗)

=

∥∥∥∥ ∑
Q∈S′

πF2
(Q)=F2

λQχQ

vw⃗(Q)

∥∥∥∥
Lp(vw⃗)

≲ [w⃗]
1
p

A
P⃗

( ∑
Q∈S′

πF2
(Q)=F2

⟨σ1⟩
p
p1
Q ⟨σ2⟩

p
p2
Q |Q|

) 1
p

.

Let ε = 1
211+d[σ1]A∞

. Hytönen and Pérez [5] proved the reverse Hölder inequality

⟨σ1+ε
1 ⟩Q ≲ ⟨σ1⟩1+ε

Q , ∀Q ⊂ Rn.

Let γ := p
p1

1
1+ε , η := p

p2
, 1
r := γ + η, 1

s := γ + 1
2(1−

1
r ),

1
s′ := 1− 1

s . We have

I1 ≲ [w⃗]
1
p

A
P⃗

( ∑
F2∈F2

(
⟨f2⟩σ2

F2

)p ∑
Q∈S′

πF2
(Q)=F2

⟨σ1⟩
p
p1
Q ⟨σ2⟩

p
p2
Q |Q|

) 1
p

⩽ [w⃗]
1
p

A
P⃗

( ∑
F2∈F2

(
⟨f2⟩σ2

F2

)p ∑
Q∈S′

πF2
(Q)=F2

⟨σ11+ε⟩γQ⟨σ2⟩
η
Q|Q|

) 1
p

⩽ [w⃗]
1
p

A
P⃗

( ∑
F2∈F2

(
⟨f2⟩σ2

F2

)p
( ∑

Q∈S′

πF2
(Q)=F2

⟨σ11+ε⟩sγQ |Q|
) 1

s
( ∑

Q∈S′

πF2
(Q)=F2

⟨σ2⟩s
′η
Q |Q|

) 1
s′
) 1

p

⩽ [w⃗]
1
p

A
P⃗

( ∑
F2∈F2

∑
Q∈S′

πF2
(Q)=F2

⟨σ11+ε⟩sγQ |Q|
) 1

sp

×
( ∑

F2∈F2

(
⟨f2⟩σ2

F2

)s′p ∑
Q∈S′

πF2
(Q)=F2

⟨σ2⟩s
′η
Q |Q|

) 1
s′p

:= [w⃗]
1
p

A
P⃗
J1 × J2.

Since S ′ is sparse, for J1, we have

J1 ≲

( ∑
F2∈F2

∑
Q∈S′

πF2
(Q)=F2

⟨σ11+ε⟩sγQ |EQ|
) 1

sp

⩽
(ˆ

Q̃
(M(σ1

1+εχ
Q̃
))sγ dx

) 1
sp

= ∥M(σ1
1+εχ

Q̃
)∥

γ
p

Lsγ

(
dx

|Q̃|

)|Q̃|
1
sp
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⩽ [σ1]
1
sp

A∞

∥∥∥M(σ1
1+εχ

Q̃
)
∥∥∥ γ

p

L1,∞
(

dx

|Q̃|

) |Q̃|
1
sp

≲ [σ1]
1
sp

A∞
⟨σ11+ε⟩

γ
p

Q̃
|Q̃|

1
sp ≲ [σ1]

1
sp

A∞
⟨σ1⟩

1
p1

Q̃
|Q̃|

1
sp .

The third inequality in the estimate above is due to Kolmogorov’s inequality, that is,
for any cube Q in Rn and f ∈ L1,∞(Q),

∥f∥
Lp

(
dx
|Q|

) ⩽
(1
p
+

1

1− p

) 1
p ∥f∥

L1,∞
(

dx
|Q|

), 0 < p < 1.

Specifically, (
1

sγ
+

1

1− sγ

) 1
sp

=

(
1

1− s
2

ε
1+ε

p
p1

+
2

s

1 + ε

ε

p1
p

) 1
sp

≲ [σ1]
1
sp

A∞
.

For J2, using the same method as for J1 and (2.2), we obtain

J2 ≲
( ∑

F2∈F2

(
⟨f2⟩σ2

F2

)s′p
[σ1]A∞⟨σ2⟩s

′η
F2

|F2|
) 1

s′p

⩽ [σ1]
1

s′p
A∞

( ∑
F2∈F2

(
⟨f2⟩σ2

F2

)p2
⟨σ2⟩F2 |F2|

) 1
p2

( ∑
F2∈F2

|F2|
) 1

s′p−
1
p2

≲ [σ1]
1

s′p
A∞

∥f2∥Lp2 (σ2)|Q̃|
1

s′p−
1
p2 .

If we apply the reverse Hölder inequality for σ2, we can obtain another bound similarly.
Therefore, we get

I1 ≲ [w⃗]
1/p
A

P⃗
min{[σ1]A∞ , [σ2]A∞}1/pσ1(Q̃)1/p1∥f2∥Lp2 (σ2).

The estimation of I2 is similar to I1, only by replacing formula (3.1) with (3.2). By com-
bining the above estimates of I1 and I2, we conclude the proof of the theorem. □

At the end of this section, we use Python to draw a graph to compare the weak type
estimate we obtained with the sharp strong type estimate (1.1). In particular, we show
that when p ⩾ 3+

√
5

2 or min{p1, p2} > 4, the exponent we obtained is smaller than 1.
Without loss of generality, we assume p1 ⩽ p2 in the following caculations.

• When p ⩾ 3+
√
5

2 , it is obvious that p′1 ⩽ p. In this case, the exponent in Theorem

1.1 is 1
p + 1

p′2

p′1
p . If it is greater than or equal to 1, we obtain

1

p
+

1

p′2

p′1
p

⩾ 1 ⇒ p′1
p′2

⩾ p− 1 ⇒ p′1 ⩾ p− 1 ⇒ 1

p1
⩾

p− 2

p− 1
.

Since p ⩾ 3+
√
5

2 , we have p−2
p−1 ⩾ 1

p , which leads to a contradiction.
• When min{p1, p2} > 4, we can also obtain p′1 ⩽ p, thus,

1

p
+

1

p′2

p′1
p

=
p′1
p

(
2− 1

p

)
< 1 ⇔ 2

p
− 1

p2
<

1

p′1
,

and this holds automatically since the left-hand side is always less than 3
4 , while

the right-hand side is greater than it.
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FIGURE 1. Compared to the sharp strong type estimate, our results are
better in shaded areas.
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