
Higher order Turán inequalities for the
distinct partition function

Janet J.W. Dong1 and Kathy Q. Ji2

1, 2 Center for Applied Mathematics

Tianjin University

Tianjin 300072, P.R. China

Emails: 1dongjinwei@tju.edu.cn and 2kathyji@tju.edu.cn

Abstract. We prove that the number q(n) of partitions of n with distinct parts is
log-concave for n ≥ 33 and satisfies the third-order Turán inequalities for n ≥ 121
conjectured by Craig and Pun. In doing so, we establish explicit error terms for q(n)
and for q(n−1)q(n+1)/q(n)2 based on Chern’s asymptotic formulas for η-quotients.

Keywords: Log-concavity, the third-order Turán inequalities, partitions into dis-
tinct parts, the first modified Bessel function of the first kind

AMS Classification: 11P82, 05A19, 30A10

1 Introduction

The objective of this paper is to explore the log-concavity and its generalizations
for the distinct partition function. A sequence {αn}n≥0 of real numbers is said to be
log-concave if for n ≥ 1,

α2
n ≥ αn−1αn+1. (1.1)

Note that log-concavity is also known as the Turán inequalities. There are many
generalizations of log-concavity. One prominent generalization involves the theory
of Jensen polynomials, see, for example, [?,?,?,?]. The Jensen polynomials Jd,nα (X)
of degree d and shift n associated to the sequence {αn}n≥0 are defined by

Jd,nα (X) =
d∑
i=0

(
d

i

)
αn+iX

i.

When d = 2 and shift n− 1, the Jensen polynomial J2,n−1
α (X) reduces to

J2,n−1
α (X) = αn−1 + 2αnX + αn+1X

2.

It is clear that {αn}n≥0 is log-concave at n if and only if J2,n−1
α (X) has only real

roots. In general, we say that the sequence {αn}n≥0 satisfies the order d ≥ 3 Turán
inequality at n if and only if Jd,n−1

α (X) has only real roots. In particular, when
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d = 3, the sequence {αn}n≥0 is said to satisfy the third-order Turán inequalities if
for n ≥ 1,

4(α2
n − αn−1αn+1)(α2

n+1 − αnαn+2) ≥ (αnαn+1 − αn−1αn+2)2. (1.2)

It should be noted that the Turán inequalities and its generalizations arise in the
study of the Maclaurin coefficients of real entire functions in Laguerre-Pólya class,
see, for example, [?], [?] and [?]. The Turán inequalities and the third-order Turán
inequalities for the partition function were initially investigated by Chen [?], DeSalvo
and Pak [?] and Nicolas [?]. Recall that a partition of n is a finite list of nondecreas-
ing positive integers λ = (λ1, λ2, . . . , λr) such that λ1 + λ2 + · · ·+ λr = n. Let p(n)
denote the number of partitions of n. DeSalvo and Pak [?] and Nicolas [?] indepen-
dently proved that the partition function p(n) is log-concave for n ≥ 26. Chen [?]
conjectured that p(n) satisfies the third-order Turán inequalities for n ≥ 95, which
was proved by Chen, Jia, and Wang [?]. Chen, Jia, and Wang [?] further conjectured
that for d ≥ 4, there exists a positive integer Np(d) such that p(n) satisfies the order
d Turán inequalities for n ≥ Np(d), that is, the Jensen polynomial Jd,n−1

p (X) asso-
ciated to p(n) has only real roots for n ≥ Np(d). Griffin, Ono, Rolen, and Zagier [?]
showed that for all d ≥ 1, the Jensen polynomial Jd,n−1

p (X) associated to p(n) has
only real roots when n → ∞. More recently, Turán inequalities for other partition
functions have been extensively investigated, see, for example, Bringmann, Kane,
Rolen, and Tripp [?], Dong, Ji, and Jia [?], Engel [?], Liu and Zhang [?], Jia [?] and
Ono, Pujahari, and Rolen [?].

The goal of this paper is to investigate the Turán inequalities and the third-order
Turán inequalities for the distinct partition function. Let q(n) denote the number of
partitions of n with distinct parts. For example, there are eight partitions of 9 with
distinct parts:

(9), (8, 1), (7, 2), (6, 3), (6, 2, 1), (5, 4), (5, 3, 1), (4, 3, 2).

It is known from Euler’s partition theorem that q(n) also counts the number of
partitions of n with odd parts, see Andrews [?, Chapter 1] or Euler [?] .

The generating function for q(n) is given by

∑
n≥0

q(n)qn =
∞∏
j=1

(1 + qj) =
∞∏
j=0

1

1− q2j+1
.

Using the circle method, Hagis [?] and Hua [?] established a Rademacher-type for-
mula for q(n) in terms of Kloosterman sums and Bessel functions. Based on this
formula, Craig and Pun [?] showed that q(n) satisfies the order d Turán inequalities
for sufficiently large n by employing a general result of Griffin, Ono, Rolen, and
Zagier [?]. They also made the following conjecture.

Conjecture 1.1 (Craig-Pun). The function q(n) is log-concave for n ≥ 33 and
satisfies the third-order Turán inequalities for n ≥ 121.
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The main objective of this paper is to confirm Conjecture ??. Instead of using
the Rademacher-type formula for q(n) due to Hagis [?] and Hua [?], we explore the
utility of Chern’s asymptotic formulas for η-quotients [?] in establishing the proof
of Conjecture ??.

Appealing to Chern’s asymptotic formulas, we obtain an asymptotic formula for
q(n) with an effective bound on the error term. To state our bound, we adopt the
following notation:

ν(n) =
π
√

24n+ 1

6
√

2
. (1.3)

We have the following asymptotic formula for q(n).

Theorem 1.2. For ν(n) ≥ 21, or equivalently, n ≥ 135,

q(n) =

√
2π2

12ν(n)
I1(ν(n)) +R(n), (1.4)

where I1(s) is the first modified Bessel function of the first kind defined as

I1(s) =
s

π

∫ 1

−1

(1− t2)
1
2 estdt, (1.5)

and

|R(n)| ≤
√

3π
3
2

6ν(n)
1
2

exp

(
ν(n)

3

)
. (1.6)

Using Theorem ??, we establish an upper bound and a lower bound for q(n)
which are required in the proof of Conjecture ??.

Theorem 1.3. Let

M(n) :=

√
2π2

12ν(n)
I1(ν(n)). (1.7)

For ν(n) ≥ 43,

M(n)

(
1− 1

ν(n)6

)
≤ q(n) ≤M(n)

(
1 +

1

ν(n)6

)
. (1.8)

Let

Q(n) =
q(n− 1)q(n+ 1)

q(n)2
. (1.9)

It is evident from (??) that q(n) is log-concave for n ≥ 33 is equivalent to Q(n) ≤ 1
for n ≥ 33. Using (??), one can check that q(n) satisfies the third order Turán
inequalities for n ≥ 121 whenever

4(1−Q(n))(1−Q(n+ 1))− (1−Q(n)Q(n+ 1))2 ≥ 0 (1.10)

for n ≥ 121. Hence to prove Conjecture ??, it suffices to establish efficient lower and
upper bounds for Q(n). By resorting to Theorem ??, we obtain
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Theorem 1.4. Let

EQ(n) := 1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
. (1.11)

Then for ν(n) ≥ 67,

EQ(n)− 135

ν(n)6
< Q(n) < EQ(n) +

126 + π8

1296

ν(n)6
. (1.12)

Subsequently, we demonstrate that Conjecture ?? can be inferred from Theorem
??. As a result, We arrive at the following consequence.

Theorem 1.5. For n ≥ 121, the cubic polynomial

q(n− 1) + 3q(n)x+ 3q(n+ 1)x2 + q(n+ 2)x3

has only real roots.

The paper is organized as follows. In Section 2, we derive some inequalities in-
volving the first modified Bessel function of the first kind, which are necessary in
the proof of Theorem ??. In Section 3, we first prove Theorem ?? with the aid
of Chern’s asymptotic formulas for η-quotients and then use Theorem ?? to prove
Theorem ??. Section 4 is dedicated to deriving Theorem ?? through the utilization
of Theorem ?? and the inequalities on the first modified Bessel function of the first
kind established in Section 2. In Section 5, we confirm Conjecture ?? with the aid of
Theorem ??. We conclude in Section 6 with some problems for further investigation.

2 Explicit bounds for I1(s)

To apply the inequality stated in Theorem ?? to the proof of Conjecture ??, we
need to establish specific inequalities related to the first modified Bessel function
I1(s) of the first kind. Before doing this, let us first recall the definitions of the
Gamma function Γ(a) and the upper incomplete Gamma function Γ(a, s), see [?,
Chapter 6].

The Gamma function Γ(a) is defined by

Γ(a) =

∫ ∞
0

ta−1e−tdt.

It is known that

Γ(a+ 1) = aΓ(a) and Γ

(
1

2

)
=
√
π,

see [?, pp. 32–34].
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The upper incomplete Gamma function Γ(a, s) is defined by

Γ(a, s) =

∫ ∞
s

ta−1e−tdt.

The following estimate on Γ(a, s) can be derived from the proof of Proposition 2.6
of Pinelis [?] which is required in the proof of Lemma ??. For a ≥ 1 and s ≥ a,

Γ(a, s) ≤ asa−1e−s. (2.1)

The first inequality on I1(s) for the proof of Conjecture ?? is due to Bringmann,
Kane, Rolen, and Tripp [?, Lemma 2.2].

Lemma 2.1 (Bringmann-Kane-Rolen-Tripp). For s ≥ 1,

I1(s) ≤
√

2

πs
es. (2.2)

We also need the further estimate on I1(s).

Lemma 2.2. Let

EI(s) := 1− 3

8s
− 15

128s2
− 105

1024s3
− 4725

32768s4
− 72765

262144s5
. (2.3)

Then for s ≥ 26,

es√
2πs

(
EI(s)−

31

s6

)
≤ I1(s) ≤ es√

2πs

(
EI(s) +

31

s6

)
. (2.4)

Proof. We start with the integral definition (??) of I1(s),

I1(s) =
s

π

∫ 1

0

(1− t2)
1
2 estdt+

s

π

∫ 0

−1

(1− t2)
1
2 estdt. (2.5)

It is clear that ∣∣∣∣ sπ
∫ 0

−1

(1− t2)
1
2 estdt

∣∣∣∣ ≤ s

π
. (2.6)

We next estimate the first integral in (??). Setting u = 1− t, we have

s

π

∫ 1

0

(1− t2)
1
2 estdt =

ses

π

∫ 1

0

(2− u)
1
2u

1
2 e−sudu. (2.7)

Using Taylor’s formula, we find that

(2− u)
1
2 =
√

2− u

2
√

2
− u2

16
√

2
− u3

64
√

2
− 5u4

1024
√

2
− 7u5

4096
√

2
+ c(ξ)u6, (2.8)
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where

c(ξ) =
1

6!

(
d6

du6
(2− u)

1
2

)
u=ξ

= − 21

1024
(2− ξ)−

11
2 for some ξ ∈ (0, 1). (2.9)

Substituting (??) into (??), we obtain

√
2ses

π

∫ 1

0

(
u

1
2 − 1

4
u

3
2 − 1

32
u

5
2 − 1

128
u

7
2 − 5

2048
u

9
2 − 7

8192
u

11
2

)
e−sudu

+
ses

π

∫ 1

0

c(ξ)u
13
2 e−sudu

=

√
2ses

π

(∫ ∞
0

−
∫ ∞

1

)(
u

1
2 − 1

4
u

3
2 − 1

32
u

5
2 − 1

128
u

7
2 − 5

2048
u

9
2 − 7

8192
u

11
2

)
e−sudu

+
ses

π

∫ 1

0

c(ξ)u
13
2 e−sudu := I

(1)
1 (s) + I

(2)
1 (s) + I

(3)
1 (s). (2.10)

Evaluating the first integral I
(1)
1 (s) in (??) yields the main term:

I
(1)
1 (s) =

√
2ses

π

∫ ∞
0

(
u

1
2 − 1

4
u

3
2 − 1

32
u

5
2 − 1

128
u

7
2 − 5

2048
u

9
2 − 7

8192
u

11
2

)
e−sudu

=

√
2es√
sπ

∫ ∞
0

(
(su)

1
2 − 1

4s
(su)

3
2 − 1

32s2
(su)

5
2 − 1

128s3
(su)

7
2

− 5

2048s4
(su)

9
2 − 7

8192s5
(su)

11
2

)
e−sud(su)

=

√
2es√
sπ

(
Γ

(
3

2

)
− 1

4s
Γ

(
5

2

)
− 1

32s2
Γ

(
7

2

)
− 1

128s3
Γ

(
9

2

)
− 5

2048s4
Γ

(
11

2

)
− 7

8192s5
Γ

(
13

2

))
=

es√
2πs

(
1− 3

8s
− 15

128s2
− 105

1024s3
− 4725

32768s4
− 72765

262144s5

)
. (2.11)
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We proceed to evaluate the second integral I
(2)
1 (s) in (??):

I
(2)
1 (s) =−

√
2ses

π

∫ ∞
1

(
u

1
2 − 1

4
u

3
2 − 1

32
u

5
2 − 1

128
u

7
2 − 5

2048
u

9
2 − 7

8192
u

11
2

)
e−sudu

= −
√

2es√
sπ

∫ ∞
s

(
(su)

1
2 − 1

4s
(su)

3
2 − 1

32s2
(su)

5
2 − 1

128s3
(su)

7
2−

− 5

2048s4
(su)

9
2 − 7

8192s5
(su)

11
2

)
e−sud(su)

=

√
2es√
sπ

(
−Γ

(
3

2
, s

)
+

1

4s
Γ

(
5

2
, s

)
+

1

32s2
Γ

(
7

2
, s

)
+

1

128s3
Γ

(
9

2
, s

)
+

5

2048s4
Γ

(
11

2
, s

)
+

7

8192s5
Γ

(
13

2
, s

))
,

(??)

≤
√

2es√
sπ

(
3

2
+

1

4
· 5

2
+

1

32
· 7

2
+

1

128
· 9

2
+

5

2048
· 11

2
+

7

8192
· 13

2

)√
se−s

=
37495

√
2

16384π
for s ≥ 13

2
. (2.12)

It remains to estimate I
(3)
1 (s) in (??). From (??), we see that

|I(3)
1 (s)| =

∣∣∣∣sesπ
∫ 1

0

c(ξ)u
13
2 e−sudu

∣∣∣∣ ≤ 21s−
13
2 es

1024π

∫ ∞
0

(su)
13
2 e−sud(su)

=
21s−

13
2 es

1024π
Γ

(
15

2

)
=

2837835

131072
√
π
s−

13
2 es. (2.13)

Combining (??), (??), (??) and (??), we derive that for s ≥ 13
2

,

I1(s) =
es√
2πs

(
1− 3

8s
− 15

128s2
− 105

1024s3
− 4725

32768s4
− 72765

262144s5

)
+ r(s), (2.14)

where

|r(s)| ≤ s

π
+

37495
√

2

16384π
+

2837835

131072
√
π
s−

13
2 es

=
es√
2πs
· 1

s6

((√
2s√
π

+
37495

8192
√
π

)
s

13
2 e−s +

2837835
√

2

131072

)
.

To prove (??), it suffices to show that for s ≥ 26,

|r(s)| ≤ es√
2πs
· 31

s6
. (2.15)

7



Define

f(s) :=

(√
2s√
π

+
37495

8192
√
π

)
s

13
2 e−s +

2837835
√

2

131072
.

Observe that

f ′(s) = s
11
2 e−s

(
−
√

2√
π
s2 +

5
(
12288

√
2− 7499

)
8192
√
π

s+
487435

16384
√
π

)
.

Since f ′(s) < 0 for s ≥ 8, we deduce that f(s) is decreasing when s ≥ 8. This implies
that when s ≥ 26,

f(s) ≤ f(26) ≈ 30.8068 < 31.

Hence the inequality (??) is valid. Combining (??) and (??), we are led to (??) in
Lemma ??. This completes the proof.

By utilizing Lemma ??, we derive the following inequalities on I1(ν(n−1))I1(ν(n+
1))/I1(ν(n))2, which are essential for establishing Theorem ??.

Lemma 2.3. For ν(n) ≥ 60,

I1(ν(n− 1))I1(ν(n+ 1))

I1(ν(n))2
≥ ν(n)√

ν(n− 1)ν(n+ 1)

(
1− π4

36ν(n)3
− 5π8

2592ν(n)7

)

×
(

1− π4

32ν(n)5
− 129

ν(n)6

)
(2.16)

and

I1(ν(n− 1))I1(ν(n+ 1))

I1(ν(n))2
≤ ν(n)√

ν(n− 1)ν(n+ 1)

(
1− π4

36ν(n)3
+

π8

1296ν(n)6

)

×
(

1− π4

32ν(n)5
+

121

ν(n)6

)
. (2.17)

Proof. Using (??), we find that for ν(n) ≥ 26,

I1(ν(n− 1))I1(ν(n+ 1))

I1(ν(n))2
≥ ν(n)√

ν(n− 1)ν(n+ 1)
eν(n−1)+ν(n+1)−2ν(n)L(n) (2.18)

and

I1(ν(n− 1))I1(ν(n+ 1))

I1(ν(n))2
≤ ν(n)√

ν(n− 1)ν(n+ 1)
eν(n−1)+ν(n+1)−2ν(n)R(n), (2.19)

where ν(n) and EI(s) are defined as (??) and (??) respectively,

L(n) =

(
EI(ν(n− 1))− 31

ν(n−1)6

)(
EI(ν(n+ 1))− 31

ν(n+1)6

)
(
EI(ν(n)) + 31

ν(n)6

)2 (2.20)
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and

R(n) =

(
EI(ν(n− 1)) + 31

ν(n−1)6

)(
EI(ν(n+ 1)) + 31

ν(n+1)6

)
(
EI(ν(n))− 31

ν(n)6

)2 . (2.21)

To obtain (??) and (??), we intend to estimate exp(ν(n− 1) + ν(n+ 1)− 2ν(n)),
L(n) and R(n) in terms of ν(n). From the definition (??) of ν(n), we see that for
ν(n) ≥ 2,

ν(n− 1) =

√
ν(n)2 − π2

3
, ν(n+ 1) =

√
ν(n)2 +

π2

3
. (2.22)

Observe that for ν(n) ≥ 2,

ν(n− 1) = ν(n)− π2

6ν(n)
− π4

72ν(n)3
− π6

432ν(n)5
− 5π8

10368ν(n)7
+O

(
1

ν(n)8

)
and

ν(n+ 1) = ν(n) +
π2

6ν(n)
− π4

72ν(n)3
+

π6

432ν5(n)
− 5π8

10368ν(n)7
+O

(
1

ν(n)8

)
,

so it is readily checked that for ν(n) ≥ 3,

dv(n) <ν(n− 1) < uv(n), (2.23)

d̄v(n) <ν(n+ 1) < ūv(n), (2.24)

where

dv(n) = ν(n)− π2

6ν(n)
− π4

72ν(n)3
− π6

432ν(n)5
− 5π8

5184ν(n)7
,

uv(n) = ν(n)− π2

6ν(n)
− π4

72ν(n)3
− π6

432ν(n)5
,

d̄v(n) = ν(n) +
π2

6ν(n)
− π4

72ν(n)3
+

π6

432ν(n)5
− 5π8

5184ν(n)7
,

ūv(n) = ν(n) +
π2

6ν(n)
− π4

72ν(n)3
+

π6

432ν(n)5
.

(2.25)

With (??) and (??) in hands, we are now in a position to bound exp(ν(n − 1)
+ν(n+ 1)− 2ν(n)), L(n) and R(n) in terms of ν(n).

We first estimate exp(ν(n− 1) + ν(n+ 1)− 2ν(n)). Applying (??) and (??), we
find that for ν(n) ≥ 3,

− π4

36ν(n)3
− 5π8

2592ν(n)7
< ν(n− 1) + ν(n+ 1)− 2ν(n) < − π4

36ν(n)3
.
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It follows that for ν(n) ≥ 3,

exp(ν(n− 1) + ν(n+ 1)− 2ν(n)) < exp

(
− π4

36ν(n)3

)
(2.26)

and

exp(ν(n− 1) + ν(n+ 1)− 2ν(n)) > exp

(
− π4

36ν(n)3
− 5π8

2592ν(n)7

)
. (2.27)

Note that for s < 0,
1 + s < es < 1 + s+ s2.

Hence we derive that

exp

(
− π4

36ν(n)3

)
< 1− π4

36ν(n)3
+

π8

1296ν(n)6
(2.28)

and

exp

(
− π4

36ν(n)3
− 5π8

2592ν(n)7

)
> 1− π4

36ν(n)3
− 5π8

2592ν(n)7
. (2.29)

Combining (??) and (??) yields that for ν(n) ≥ 3,

exp (ν(n− 1) + ν(n+ 1)− 2ν(n)) < 1− π4

36ν(n)3
+

π8

1296ν(n)6
. (2.30)

Using (??) together with (??), we find that for ν(n) ≥ 3,

exp (ν(n− 1) + ν(n+ 1)− 2ν(n)) > 1− π4

36ν(n)3
− 5π8

2592ν(n)7
. (2.31)

Next, we estimate L(n) and R(n). Let

Pl(n) =
1

ν(n− 1)6ν(n+ 1)6

(
ν(n− 1)6 − 3

8
ν(n− 1)4uv(n)− 15

128
ν(n− 1)4

− 105

1024
ν(n− 1)2uv(n)− 4725

32768
ν(n− 1)2 − 72765

262144
uv(n)− 31

)
×
(
ν(n+ 1)6 − 3

8
ν(n+ 1)4ūv(n)− 15

128
ν(n+ 1)4 − 105

1024
ν(n+ 1)2ūv(n)

− 4725

32768
ν(n+ 1)2 − 72765

262144
ūv(n)− 31

)
(2.32)
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and

Pr(n) =
1

ν(n− 1)6ν(n+ 1)6

(
ν(n− 1)6 − 3

8
ν(n− 1)4dv(n)− 15

128
ν(n− 1)4

− 105

1024
ν(n− 1)2dv(n)− 4725

32768
ν(n− 1)2 − 72765

262144
dv(n) + 31

)
×
(
ν(n+ 1)6 − 3

8
ν(n+ 1)4d̄v(n)− 15

128
ν(n+ 1)4 − 105

1024
ν(n+ 1)2d̄v(n)

− 4725

32768
ν(n+ 1)2 − 72765

262144
d̄v(n) + 31

)
. (2.33)

Applying (??) and (??) into (??) and (??), it is not difficult to check that for
ν(n) ≥ 3,

L(n) ≥ Pl(n)(
EI(ν(n)) + 31

ν(n)6

)2 (2.34)

and

R(n) ≤ Pr(n)(
EI(ν(n))− 31

ν(n)6

)2 . (2.35)

To bound L(n) and R(n) in terms of ν(n), we shall show that for ν(n) ≥ 60,

Pl(n)(
EI(ν(n)) + 31

ν(n)6

)2 ≥ 1− π4

32ν(n)5
− 129

ν(n)6

=
32ν(n)6 − π4ν(n)− 4128

32ν(n)6
(2.36)

and

Pr(n)(
EI(ν(n))− 31

ν(n)6

)2 ≤ 1− π4

32ν(n)5
+

121

ν(n)6

=
32ν(n)6 − π4ν(n) + 3872

32ν(n)6
, (2.37)

which are equivalent to showing that for ν(n) ≥ 60,

32ν(n)6Pl(n)−
(
32ν(n)6 − π4ν(n)− 4128

)(
EI(ν(n)) +

31

ν(n)6

)2

≥ 0 (2.38)

and(
32ν(n)6 − π4ν(n) + 3872

)(
EI(ν(n))− 31

ν(n)6

)2

− 32ν(n)6Pr(n) ≥ 0. (2.39)

11



Substituting (??) and (??) into (??) and (??), we find that

32ν(n)6Pl(n)−
(
32ν(n)6 − π4ν(n)− 4128

)(
EI(ν(n)) +

31

ν(n)6

)2

=

∑26
j=0 ajν(n)j

ν(n)14ν(n− 1)6ν(n+ 1)6
(2.40)

and

(
32ν(n)6 − π4ν(n) + 3872

)(
EI(ν(n))− 31

ν(n)6

)2

− 32ν(n)6Pr(n)

=

∑26
j=0 bjν(n)j

ν(n)14ν(n− 1)6ν(n+ 1)6
, (2.41)

where aj and bj are real numbers. Here we just list the values of a24, a25, a26, b24,
b25 and b26:

a24 = 78− 175π4

64
, a25 = −1608− 19π4

16
, a26 = 160− 4π4

3
,

b24 = 102 +
175π4

64
, b25 =

19π4

16
− 1416, b26 =

4π4

3
− 96.

It can be readily checked that for any 0 ≤ j ≤ 23 and ν(n) ≥ 27,

−|aj|ν(n)j ≥ −|a24|ν(n)24

and
−|bj|ν(n)j ≥ −|b24|ν(n)24.

It follows that for ν(n) ≥ 27,

26∑
j=0

ajν(n)j ≥ −
24∑
j=0

|aj| ν(n)j + a25ν(n)25 + a26ν(n)26

≥ −25 |a24| ν(n)24 + a25ν(n)25 + a26ν(n)26

and

26∑
j=0

bjν(n)j ≥ −
24∑
j=0

|bj| ν(n)j + b25ν(n)25 + b26ν(n)26

≥ −25 |b24| ν(n)24 + b25ν(n)25 + b26ν(n)26.

Moreover, one can easily check that for ν(n) ≥ 60,

−25 |a24| ν(n)24 + a25ν(n)25 + a26ν(n)26 ≥ 0

12



and
−25 |b24| ν(n)24 + b25ν(n)25 + b26ν(n)26 ≥ 0.

Hence (??) and (??) hold for ν(n) ≥ 60, and so (??) and (??) hold for ν(n) ≥ 60.
Substituting (??) into (??), we derive that for ν(n) ≥ 60,

L(n) ≥ 1− π4

32ν(n)5
− 129

ν(n)6
. (2.42)

Plugging (??) into (??), we deduce that for ν(n) ≥ 60,

R(n) ≤ 1− π4

32ν(n)5
+

121

ν(n)6
. (2.43)

Applying (??), (??), (??) and (??) into (??) and (??), we are lead to (??) and (??).
This completes the proof.

3 Proofs of Theorem ?? and Theorem ??

To prove Theorem ??, we first derive an asymptotic formula for q(n) with an
explicit bound by specializing an asymptotic formula for η-quotients G(q) due to
Chern [?]. Define

G(q) = G(e2πiτ ) :=
R∏
r=1

(qmr ; qmr)δr∞, (3.1)

where m = (m1, . . . ,mR) is a sequence of R distinct positive integers and δ =
(δ1, . . . , δR) is a sequence of R non-zero integers. Here and throughout this paper,
we have adopted the standard notation on q-series [?].

(a; q)n =
n−1∏
j=0

(1− aqj) and (a; q)∞ =
∞∏
j=0

(1− aqj).

In order to state Chern’s result, we need a few preliminary definitions. Assume
that h and j are positive integers with gcd(h, j) = 1, set

∆1 = −1

2

R∑
r=1

δr, ∆2 =
R∑
r=1

mrδr,

∆3(k) = −
R∑
r=1

δr gcd2(mr, k)

mr

, ∆4(k) =
R∏
r=1

(
mr

gcd(mr, k)

)− δr
2

,

13



Âk(n) =
∑

0≤h<k
gcd(h,k)=1

exp

(
−2πnhi

k
− πi

R∑
r=1

δrs

(
mrh

gcd(mr, k)
,

k

gcd(mr, k)

))
, (3.2)

where s(h, j) is the Dedekind sum defined by

s(h, j) =

j−1∑
r=1

(
r

j
−
[
r

j

]
− 1

2

)(
hr

j
−
[
hr

j

]
− 1

2

)
.

Let L = lcm(m1, . . . ,mR). We divide the set {1, 2 · · · , L} into two disjoint sub-
sets:

L>0 := {1 ≤ l ≤ L : ∆3(l) > 0},

L≤0 := {1 ≤ l ≤ L : ∆3(l) ≤ 0}.

We write
G(q) =

∑
n≥0

g(n)qn.

Chern [?] obtained an asymptotic formula for g(n) with ∆1 ≤ 0.

Define

E∆1(s) :=



1, ∆1 = 0,

2
√
s, ∆1 = −1

2
,

s log(s+ 1), ∆1 = −1,

s−2∆1−1ζ(−∆1), otherwise,

(3.3)

where ζ(·) is Riemann zeta-function.

Theorem 3.1 (Chern). If ∆1 ≤ 0 and the inequality

min
1≤r≤R

(
gcd2(mr, l)

mr

)
≥ ∆3(l)

24
(3.4)

holds for all 1 ≤ l ≤ L, then for positive integers N and n > −∆2

24
, we have

g(n) = E(n)+
∑
l∈L>0

2π∆4(l)

(
24n+ ∆2

∆3(l)

)−∆1+1
2

×
∑

1≤k≤N
k≡Ll

I−∆1−1

(
π
6k

√
∆3(l)(24n+ ∆2)

)
k

Âk(n), (3.5)
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where

|E(n)| ≤ 2−∆1π−1N−∆1+2

n+ ∆2

24

exp

(
2π

(
n+

∆2

24

)
N−2

) ∑
l∈L>0

∆4(l) exp

(
∆3(l)π

3

)

+ 2 exp

(
2π

(
n+

∆2

24

)
N−2

)
E∆1(N)

×

( ∑
1≤l≤L

∆4(l) exp

(
π∆3(l)

24
+

R∑
r=1

|∆r| exp
(
−π gcd2(mr, l)/mr

)(
1− exp

(
−π gcd2(mr, l)/mr

))2

)

−
∑
l∈L>0

∆4(l) exp

(
π∆3(l)

24

) ,

and Iν(s) is the ν-th modified Bessel function of the first kind.

We are now in a position to prove Theorem ?? by means of Theorem ??.

Proof of Theorem ??. Recall that

∞∑
n=0

q(n)qn =
(q2; q2)∞
(q; q)∞

,

so we have m = (1, 2) and δ = (−1, 1). It is straightforward to compute that ∆1 = 0,
and ∆2 = 1. We also have L = 2. The values of ∆3(l) and ∆4(l) for 1 ≤ l ≤ L are
listed in Table ??. Hence L>0 = {1}. It can be readily checked that (??) is always
true for 1 ≤ l ≤ 2.

Table 1: The values of ∆3(l) and ∆4(l) for 1 ≤ l ≤ 2.

l 1 2

∆3(l) 1
2

−1

∆4(l)
√

2
2

1

Hence, by Theorem ??, we have

q(n) = E(n) +

√
2π2

12ν(n)

∑
1≤k≤N

2-k

I1

(
ν(n)

k

)
Âk(n)

k
,
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where ν(n) is defined as in (??), and

|E(n)| ≤ π−1N2

n+ 1
24

exp

(
2π

(
n+

1

24

)
N−2

)
·
√

2

2
exp

(π
6

)
+ 2 exp

(
2π

(
n+

1

24

)
N−2

)

×

{√
2

2
exp

(
π

48
+

exp(−π)

(1− exp(−π))2
+

exp(−π/2)

(1− exp(−π/2))2

)

+ exp

(
− π

24
+

exp(−π)

(1− exp(−π))2
+

exp(−2π)

(1− exp(−2π))2

)
−
√

2

2
exp

( π
48

)}
.

Assume that N = bν(n)c. Observe that

bν(n)c2

ν(n)2
≤ 1 and

ν(n)2

bν(n)c2
<

ν(n)2

(ν(n)− 1)2
< 2 for ν(n) ≥ 4,

we deduce that

|E(n)| ≤
√

2π

6
exp

(
12

π
+
π

6

)

+ 2 exp

(
12

π

){√
2

2
exp

(
π

48
+

exp(−π)

(1− exp(−π))2
+

exp(−π/2)

(1− exp(−π/2))2

)

+ exp

(
− π

24
+

exp(−π)

(1− exp(−π))2
+

exp(−2π)

(1− exp(−2π))2

)
−
√

2

2
exp

( π
48

)}
≤ 173.

Hence, we conclude that for ν(n) ≥ 4,

q(n) = E(n) +

√
2π2

12ν(n)

∑
1≤k≤bν(n)c

2-k

I1

(
ν(n)

k

)
Âk(n)

k
, (3.6)

where |E(n)| ≤ 173.

Observing that Â1(n) = 1, so by (??), we have

q(n) =

√
2π2

12ν(n)
I1(ν(n)) +R(n),

where

R(n) = E(n) +

√
2π2

12ν(n)

∑
3≤k≤bν(n)c

2-k

I1

(
ν(n)

k

)
Âk(n)

k
. (3.7)

Hence, in order to show Theorem ??, it suffices to show that for ν(n) ≥ 21,

|R(n)| ≤
√

3π
3
2

6ν(n)
1
2

exp

(
ν(n)

3

)
. (3.8)

16



By the definition of Âk(n), we derive that for n ≥ 0 and k ≥ 1,

|Âk(n)| ≤ k,

since |e2πsi| = 1 for any s ∈ R. It yields∣∣∣∣∣∣∣∣
√

2π2

12ν(n)

∑
3≤k≤bν(n)c

2-k

I1

(
ν(n)

k

)
Âk(n)

k

∣∣∣∣∣∣∣∣ ≤
√

2π2

12ν(n)

∑
3≤k≤bν(n)c

2-k

I1

(
ν(n)

k

)

≤
√

2π2

12ν(n)

bν(n)c
2

I1

(
ν(n)

3

)

≤
√

2π2

24
I1

(
ν(n)

3

)
.

Invoking (??), we derive that∣∣∣∣∣∣∣∣
√

2π2

12ν(n)

∑
3≤k≤N

2-k

I1

(
ν(n)

k

)
Âk(n)

k

∣∣∣∣∣∣∣∣ ≤
√

3π
3
2

12ν(n)
1
2

exp

(
ν(n)

3

)
. (3.9)

Substituting (??) into (??), we deduce that for ν(n) ≥ 4,

|R(n)| ≤ 173 +

√
3π

3
2

12ν(n)
1
2

exp

(
ν(n)

3

)
. (3.10)

We proceed to show that for ν(n) ≥ 21,

√
3π

3
2

12ν(n)
1
2

exp

(
ν(n)

3

)
> 173. (3.11)

Define

r(s) :=
692
√

3

π
3
2

s
1
2 exp

(
−s

3

)
.

It is evident that

r′(s) =
346

√
3π

3
2 s

1
2

(−2s+ 3) exp
(
−s

3

)
.

Since r′(s) ≤ 0 when s ≥ 3
2
, we deduce that r(s) is decreasing when s ≥ 3

2
. This

implies that
r(ν(n)) ≤ r(21) < 1

for ν(n) ≥ 21. So the inequality (??) is valid. Applying (??) to (??), we are led to
(??). This completes the proof.
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We conclude this section with the proof of Theorem ?? with the aid of Theorem
??.

Proof of Theorem ??. Define

G(n) :=

√
3π

3
2

6ν(n)
1
2

exp
(
ν(n)

3

)
√

2π2

12ν(n)
I1(ν(n))

=

√
6ν(n)

π
·

exp
(
ν(n)

3

)
I1(ν(n))

. (3.12)

Thanks to Theorem ??, we have

M(n)(1−G(n)) ≤ q(n) ≤M(n)(1 +G(n)).

To show (??), it is enough to prove that for ν(n) ≥ 38,

G(n) ≤ 1

ν(n)6
. (3.13)

Using Lemma ??, we find that for s ≥ 26,

I1(s) ≥ es√
2πs

(
1− 3

8s
− 15

128s2
− 105

1024s3
− 4725

32768s4
− 72765

262144s5
− 31

s6

)
.

Note that for s ≥ 4

1

8s
− 15

128s2
− 105

1024s3
− 4725

32768s4
− 72765

262144s5
− 31

s6
≥ 0,

so for s ≥ 26,

I1(s) ≥ es√
2πs

(
1− 1

2s

)
. (3.14)

Substituting (??) into (??), we derive that for ν(n) ≥ 26,

G(n) ≤ 2
√

3ν(n)

1− 1
2ν(n)

exp

(
−2ν(n)

3

)
. (3.15)

Based on the following observation:(
1− 1

2ν(n)

)(
1 +

1

ν(n)

)
= 1 +

1

2ν(n)2
(ν(n)− 1) ≥ 1 for ν(n) ≥ 1,

we find that (??) can be further bounded by

G(n) ≤ 2
√

3ν(n)

(
1 +

1

ν(n)

)
exp

(
−2ν(n)

3

)
. (3.16)

We claim that for ν(n) ≥ 43,

2
√

3 exp

(
−2ν(n)

3

)
≤ 1

2ν(n)7
, (3.17)
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which can be recast as

4
√

3ν(n)7 exp

(
−2ν(n)

3

)
≤ 1.

Define

L(s) := 4
√

3s7 exp

(
−2s

3

)
.

Since for s ≥ 21
2

,

L′(s) = 4
√

3 exp

(
−2s

3

)
s6

(
−2

3
s+ 7

)
≤ 0,

we deduce that L(s) is decreasing when s ≥ 21
2

. It follows that for ν(n) ≥ 43,

L(ν(n)) = 4
√

3ν(n)7 exp

(
−2ν(n)

3

)
≤ L(43) < 1,

and so (??) holds when ν(n) ≥ 43. Hence the claim is verified.

Applying (??) to (??), we derive that for ν(n) ≥ 43,

G(n) ≤ ν(n)

(
1 +

1

ν(n)

)
· 1

2ν(n)7
<

1

ν(n)6
.

This completes the proof.

4 Proof of Theorem ??

In this section, we give a proof of Theorem ?? with the aid of Theorem ?? and
Lemma ??.

Proof of Theorem ??. Recall that

Q(n) =
q(n− 1)q(n+ 1)

q(n)2
.

Define

A(n) =
M(n− 1)M(n+ 1)

M(n)2
, (4.1)

where M(n) is defined as in (??). From Theorem ??, we see that for ν(n) ≥ 43,

A(n)LQ(n) ≤ Q(n) ≤ A(n)RQ(n), (4.2)

where

LQ(n) =

(
1− 1

ν(n−1)6

)(
1− 1

ν(n+1)6

)
(

1 + 1
ν(n)6

)2 (4.3)
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and

RQ(n) =

(
1 + 1

ν(n−1)6

)(
1 + 1

ν(n+1)6

)
(

1− 1
ν(n)6

)2 . (4.4)

To obtain (??), we proceed to estimate A(n), LQ(n) and RQ(n) in terms of ν(n).
We first consider A(n). Substituting (??) into (??), we find that

A(n) =
ν(n)2I1(ν(n− 1))I1(ν(n+ 1))

ν(n− 1)ν(n+ 1)I1(ν(n))2
. (4.5)

Applying Lemma ?? to (??), we deduce that for ν(n) ≥ 60,

A(n) ≥ ν(n)3√
ν(n− 1)3ν(n+ 1)3

(
1− π4

36ν(n)3
− 5π8

2592ν(n)7

)

×
(

1− π4

32ν(n)5
− 129

ν(n)6

)
(4.6)

and

A(n) ≤ ν(n)3√
ν(n− 1)3ν(n+ 1)3

(
1− π4

36ν(n)3
+

π8

1296ν(n)6

)

×
(

1− π4

32ν(n)5
+

121

ν(n)6

)
. (4.7)

We claim that for ν(n) ≥ 8,

1 +
π4

12ν(n)4
+

7π8

864ν(n)8
≤ ν(n)3√

ν(n− 1)3ν(n+ 1)3
≤ 1 +

π4

12ν(n)4
+

π8

123ν(n)8
, (4.8)

which is equivalent to
ν(n)12 − ν(n− 1)6ν(n+ 1)6

(
1 +

π4

12ν(n)4
+

7π8

864ν(n)8

)4

≥ 0,

ν(n)12 − ν(n− 1)6ν(n+ 1)6

(
1 +

π4

12ν(n)4
+

π8

123ν(n)8

)4

≤ 0.

(4.9)

Recall that

ν(n− 1) =

√
ν(n)2 − π2

3
and ν(n+ 1) =

√
ν(n)2 +

π2

3
.

It can be calculated that

ν(n)12 − ν(n− 1)6ν(n+ 1)6

(
1 +

π4

12ν(n)4
+

7π8

864ν(n)8

)4

=
π12

406239826673664ν(n)32

(
1340897918976ν(n)32 + 27935373312π4ν(n)28

+1551965184π8ν(n)24 − 1551965184π12ν(n)20 − 60816096π16ν(n)16

−3873177π20ν(n)12 + 625779π24ν(n)8 + 33957π28ν(n)4 + 2401π32
)

(4.10)
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and

ν(n)12 − ν(n− 1)6ν(n+ 1)6

(
1 +

π4

12ν(n)4
+

π8

123ν(n)8

)4

= − π8

42715740489984ν(n)32

(
4823367264ν(n)36 − 141396118128π4ν(n)32

−2942756919π8ν(n)28 − 175420755π12ν(n)24 + 163918779π16ν(n)20

+6413999π20ν(n)16 + 418192π24ν(n)12 − 66144π28ν(n)8

−3584π32ν(n)4 − 256π36
)
. (4.11)

Note that for ν(n) ≥ 4,

1551965184π8ν(n)24 − 1551965184π12ν(n)20

− 60816096π16ν(n)16 − 3873177π20ν(n)12 ≥ 0, (4.12)

and for ν(n) ≥ 8,
4823367264ν(n)36 − 141396118128π4ν(n)32

− 2942756919π8ν(n)28 − 175420755π12ν(n)24 ≥ 0,

418192π24ν(n)12 − 66144π28ν(n)8 − 3584π32ν(n)4 − 256π36 ≥ 0.

(4.13)

Applying (??) to (??) and applying (??) to (??), we conclude that (??) holds for
ν(n) ≥ 8, which implies (??) holds for ν(n) ≥ 8, and so the claim is verified.
Substituting (??) into (??) and (??), we get that for ν(n) ≥ 60,

A(n) ≥
(

1 +
π4

12ν(n)4
+

7π8

864ν(n)8

)(
1− π4

36ν(n)3
− 5π8

2592ν(n)7

)
×
(

1− π4

32ν(n)5
− 129

ν(n)6

)
(4.14)

and

A(n) ≤
(

1 +
π4

12ν(n)4
+

π8

123ν(n)8

)(
1− π4

36ν(n)3
+

π8

1296ν(n)6

)
×
(

1− π4

32ν(n)5
+

121

ν(n)6

)
. (4.15)

We proceed to show that for ν(n) ≥ 4,

LQ(n) ≥ 1− 5

ν(n)6
and RQ(n) ≤ 1 +

5

ν(n)6
. (4.16)
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Applying (??) into (??) and (??), we find that

LQ(n) =

ν(n)12

((
ν(n)2 + π2

3

)3

− 1

)((
ν(n)2 − π2

3

)3

− 1

)
(ν(n)6 + 1)2 (ν(n)4 − π4

9

)3

and

RQ(n) =

ν(n)12

((
ν(n)2 + π2

3

)3

+ 1

)((
ν(n)2 − π2

3

)3

+ 1

)
(ν(n)6 − 1)2 (ν(n)4 − π4

9

)3 .

Assume that

φ(s) =729s24 − 1215π4s20 + 7290s18 + 81π8s16 − 2187π4s14 +
(
3645− 3π12

)
s12

+ 243π8s10 − 1215π4s8 − 9π12s6 + 135π8s4 − 5π12

and

ψ(s) =729s24 − 1215π4s20 − 7290s18 + 81π8s16 + 2187π4s14 +
(
3645− 3π12

)
s12

− 243π8s10 − 1215π4s8 + 9π12s6 + 135π8s4 − 5π12.

It can be checked that

LQ(n)−
(

1− 5

ν(n)6

)
=

φ (ν(n))

ν(n)6 (9ν(n)4 − π4)3 (ν(n)6 + 1)2 (4.17)

and

RQ(n)−
(

1 +
5

ν(n)6

)
=

−ψ (ν(n))

ν(n)6 (9ν(n)4 − π4)3 (ν(n)6 − 1)2 . (4.18)

Moreover, it is not difficult to show that ψ(s) ≥ 0 for s ≥ 4 and

φ(s)− ψ(s) = 14580s18 − 4374π4s14 + 486π8s10 − 18π12s6 > 0

for s ≥ 2. Hence we derive that for ν(n) ≥ 4,

φ (ν(n)) > ψ (ν(n)) ≥ 0. (4.19)

It follows that (??) is valid.

Substituting (??), (??) and (??) into (??), we derive that for ν(n) ≥ 60,

Q(n) ≥
(

1 +
π4

12ν(n)4
+

7π8

864ν(n)8

)(
1− π4

36ν(n)3
− 5π8

2592ν(n)7

)
×
(

1− π4

32ν(n)5
− 129

ν(n)6

)(
1− 5

ν(n)6

)
(4.20)
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and

Q(n) ≤
(

1 +
π4

12ν(n)4
+

π8

123ν(n)8

)(
1− π4

36ν(n)3
+

π8

1296ν(n)6

)
×
(

1− π4

32ν(n)5
+

121

ν(n)6

)(
1 +

5

ν(n)6

)
. (4.21)

To prove Theorem ??, it is enough to show that for ν(n) ≥ 67,(
1 +

π4

12ν(n)4
+

7π8

864ν(n)8

)(
1− π4

36ν(n)3
− 5π8

2592ν(n)7

)
×
(

1− π4

32ν(n)5
− 129

ν(n)6

)(
1− 5

ν(n)6

)
> 1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
− 135

ν(n)6
(4.22)

and (
1 +

π4

12ν(n)4
+

π8

123ν(n)8

)(
1− π4

36ν(n)3
+

π8

1296ν(n)6

)
×
(

1− π4

32ν(n)5
+

121

ν(n)6

)(
1 +

5

ν(n)6

)

< 1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
+

126 + π8

1296

ν(n)6
. (4.23)

We first show (??). Observe that(
1 +

π4

12ν(n)4
+

7π8

864ν(n)8

)(
1− π4

36ν(n)3
− 5π8

2592ν(n)7

)
×
(

1− π4

32ν(n)5
− 129

ν(n)6

)(
1− 5

ν(n)6

)
−
(

1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
− 135

ν(n)6

)

=
1

71663616ν(n)27

21∑
j=0

cjν(n)j, (4.24)

where cj are real numbers. Here we just list the values of c19, c20, c21:

c19 = 642816π8, c20 = −304128π8, c21 = 71663616.

Clearly,
21∑
j=0

cjν(n)j ≥ −
19∑
j=0

|cj|ν(n)j + c20ν(n)20 + c21ν(n)21.
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Moreover, it can be checked that for 0 ≤ j ≤ 18 and ν(n) ≥ 4,

−|cj|ν(n)j ≥ −|c19|ν(n)19.

On the other hand, It is not difficult to check that for ν(n) ≥ 67,

c21ν(n)2 + c20ν(n)− 20|c19| > 0.

Assembling all these results above, we conclude that for ν(n) ≥ 67,

21∑
j=0

cjν(n)j ≥
(
c21ν(n)2 + c20ν(n)− 20|c19|

)
ν(n)19 > 0.

This proves (??).

Similarly, to justify (??), we first note that(
1 +

π4

12ν(n)4
+

π8

123ν(n)8

)(
1− π4

36ν(n)3
+

π8

1296ν(n)6

)
×
(

1− π4

32ν(n)5
+

121

ν(n)6

)(
1 +

5

ν(n)6

)

−

(
1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
+

126 + π8

1296

ν(n)6

)

= − 1

20404224ν(n)26

19∑
j=0

djν(n)j, (4.25)

where dj are real numbers. Here we also list the values of the last three coefficients:

d17 = 53136π8, d18 = −183600π8, d19 = 47232π8. (4.26)

It is transparent that

19∑
j=0

djν(n)j ≥ −
17∑
j=0

|dj|ν(n)j + d18ν(n)18 + d19ν(n)19. (4.27)

Moreover, it can be checked that for 0 ≤ j ≤ 16 and ν(n) ≥ 2,

−|dj|ν(n)j ≥ −|d17|ν(n)17

and for ν(n) ≥ 7,
d19ν(n)2 + d18ν(n)− 18|d17| > 0.

Hence we conclude that for ν(n) ≥ 67,

19∑
j=0

djν(n)j ≥
(
d19ν(n)2 + d18ν(n)− 18|d17|

)
ν(n)17 > 0,

and so (??) is valid.

Substituting (??) and (??) into (??) and (??), we arrive at (??). This completes
the proof.
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5 Proof of Conjecture ??

In this section, we confirm Conjecture ?? by resorting to Theorem ??. Before
doing this, we need to recall the following lemma given by Jia [?].

Lemma 5.1 (Jia). Let u and v be two positive real numbers such that
√

5−1
2
≤ u <

v < 1. If
u+

√
(1− u)3 > v,

then we have
4(1− u)(1− v)− (1− uv)2 > 0.

Proof of Conjecture ??. We first prove that q(n) is log-concave for n ≥ 33. It is
equivalent to proving that for n ≥ 33,

Q(n) ≤ 1.

By Theorem ??, we see that for ν(n) ≥ 67,

Q(n) < 1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
+

126 + π8

1296

ν(n)6
. (5.1)

It is easy to check that for ν(n) ≥ 44,

− π4

36ν(n)3
+

π4

12ν(n)4
≤ 0

and

− π4

32ν(n)5
+

126 + π8

1296

ν(n)6
≤ 0.

Hence, we conclude that Q(n) < 1 for n ≥ 1365. It can be checked that Q(n) < 1
for 33 ≤ n ≤ 1365. Therefore, we derive that Q(n) < 1 for n ≥ 33, and so q(n) is
log-concave for n ≥ 33.

To prove that q(n) satisfies the third order Turán inequalities for n ≥ 121, it is
equivalent to demonstrating that for n ≥ 121,

4(1−Q(n))(1−Q(n+ 1))− (1−Q(n)Q(n+ 1))2 > 0. (5.2)

It can be directly checked that (??) is true when 121 ≤ n ≤ 1365, so it is enough to
prove that (??) holds for n ≥ 1365. Since Q(n + 1) < 1 for n ≥ 32, and by Lemma
??, we see that it suffices to prove that for n ≥ 1365,

√
5− 1

2
≤ Q(n) < Q(n+ 1) (5.3)

and
Q(n+ 1) < Q(n) +

√
(1−Q(n))3. (5.4)

25



Using Theorem ??, we see that for ν(n) ≥ 67,

Q(n) > 1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
− 135

ν(n)6
.

It is easy to check that for ν(n) ≥ 5,

π4

12ν(n)4
− π4

32ν(n)5
− 135

ν(n)6
> 0

and

1− π4

36ν(n)3
≥ 1− π4

36 · 53
>

√
5− 1

2
.

Hence we deduce that for ν(n) ≥ 67,

Q(n) >

√
5− 1

2
.

Using Theorem ?? again, we find that for ν(n) ≥ 67,

Q(n+ 1)−Q(n) >

(
1− π4

36ν(n+ 1)3
+

π4

12ν(n+ 1)4
− π4

32ν(n+ 1)5
− 135

ν(n+ 1)6

)

−

(
1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
+

126 + π8

1296

ν(n)6

)
. (5.5)

Note that for ν(n) ≥ 3, 

1

ν(n+ 1)3
<

1

ν(n)3
− π2

4ν(n)5
,

1

ν(n+ 1)4
>

1

ν(n)4
− 2π2

3ν(n)6
,

1

ν(n+ 1)5
<

1

ν(n)5
,

1

ν(n+ 1)6
<

1

ν(n)6
.

(5.6)

Applying (??) to (??), we derive that for ν(n) ≥ 67,

Q(n+ 1)−Q(n) >

(
1− π4

36ν(n)3
+

π4

12ν(n)4
+
−π4

32
+ π6

144

ν(n)5
−

π6

18
+ 135

ν(n)6

)

−

(
1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
+

126 + π8

1296

ν(n)6

)

=
π6

144ν(n)5
−

261 + π6

18
+ π8

1296

ν(n)6
.
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It can be checked that for ν(n) ≥ 49,

π6

144ν(n)5
−

261 + π6

18
+ π8

1296

ν(n)6
> 0,

so we get that for ν(n) ≥ 67,

Q(n+ 1)−Q(n) > 0,

and (??) is verified since ν(n) = 67 whenever n = 1365.

To prove (??), using Theorem ?? again, we find that for ν(n) ≥ 67,

Q(n+ 1)−Q(n) <

(
1− π4

36ν(n+ 1)3
+

π4

12ν(n+ 1)4
− π4

32ν(n+ 1)5
+

126 + π8

1296

ν(n+ 1)6

)

−
(

1− π4

36ν(n)3
+

π4

12ν(n)4
− π4

32ν(n)5
− 135

ν(n)6

)
=
π4

36

(
1

ν(n)3
− 1

ν(n+ 1)3

)
− π4

12

(
1

ν(n)4
− 1

ν(n+ 1)4

)

+
π4

32

(
1

ν(n)5
− 1

ν(n+ 1)5

)
+

126 + π8

1296

ν(n+ 1)6
+

135

ν(n)6
. (5.7)

It can be checked that for ν(n) > 0,

1

ν(n)3
− 1

ν(n+ 1)3
<

π2

2ν(n)5
,

1

ν(n+ 1)4
− 1

ν(n)4
< 0,

1

ν(n)5
− 1

ν(n+ 1)5
<

1

ν(n)5
,

(5.8)

and for ν(n) ≥ 55,

126 + π8

1296

ν(n+ 1)6
+

135

ν(n)6
<

126 + π8

1296
+ 135

ν(n)6
<

π2

2ν(n)5
. (5.9)

Applying (??) and (??) to (??), we derive that for ν(n) ≥ 67,

Q(n+ 1)−Q(n) <
π4

36
· π2

2ν(n)5
+
π4

32
· 1

ν(n)5
+

π2

2ν(n)5

=
π6

72
+ π4

32
+ π2

2

ν(n)5
. (5.10)
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It remains to show that for ν(n) ≥ 67,

√
(1−Q(n))3 >

π6

72
+ π4

32
+ π2

2

ν(n)5
. (5.11)

Since for ν(n) ≥ 67,

1−Q(n) >
π4

36ν(n)3
− π4

12ν(n)4
+

π4

32ν(n)5
−

126 + π8

1296

ν(n)6
,

and for ν(n) ≥ 44, it can be checked that

π4

32ν(n)5
−

126 + π8

1296

ν(n)6
> 0

and

− π4

12ν(n)4
> − 1

4ν(n)3
.

Hence we deduce that for ν(n) ≥ 67,

1−Q(n) >
π4

36ν(n)3
− 1

4ν(n)3
=

π4 − 9

36ν(n)3
> 0. (5.12)

It can be easily checked that for ν(n) ≥ 31,√
(π4 − 9)3

216ν(n)
9
2

>
π6

72
+ π4

32
+ π2

2

ν(n)5
. (5.13)

Combining (??) and (??), we obtain (??), and so (??) is valid when ν(n) ≥ 67. This
completes the proof.

6 Concluding Remarks

Let pk(n) denote the number of partitions of n in which none of the parts are
multiples of k. By definition, we see that

∑
n≥0

pk(n)qn =
∞∏
n=1

1− qkn

1− qn
.

When k = 2, this partition function pk(n) reduces to q(n). In [?], Craig and Pun also
conjectured that the minimal number Nk and Mk such that pk(n) is log-concave for
n ≥ Nk and satisfies the third-order Turán inequalities for n ≥Mk, where k = 3, 4, 5.
More precisely, Craig and Pun [?] conjectured that

N3 = 58, N4 = 17, N5 = 42
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and
M3 = 185, M4 = 64, M5 = 137.

Based on Chern’s asymptotic formulas for η-quotients, and using the similar argu-
ment in this paper, we could show that their conjectured values are true. Here we
omit the details. However, our method can not be applied to find the values Nk

and Mk for any fixed k such that pk(n) is log-concave for n ≥ Nk and satisfies the
third-order Turán inequalities for n ≥ Mk. It would be interesting to find a unified
way to determine such Nk and Mk in terms of k.

Last but not least, we would like to mention that while studying the third-
order Turán inequalities for p(n), Chen [?] undertook a comprehensive study on
inequalities pertaining to invariants of a binary form. In particular, he considered
the following three invariants of the quartic binary form

A (a0, a1, a2, a3, a4) = a0a4 − 4a1a3 + 3a2
2,

B (a0, a1, a2, a3, a4) = −a0a2a4 + a3
2 + a0a

2
3 + a2

1a4 − 2a1a2a3,

I (a0, a1, a2, a3, a4) = A (a0, a1, a2, a3, a4)3 − 27B (a0, a1, a2, a3, a4)2 .

Chen [?] conjectured both the partition function p(n) and the spt-function spt(n)
satisfy the inequalities derived from the invariants of the quartic binary form for
large n. For the definition of the spt-function, please see Andrews [?] or Chen [?].
Chen’s conjectured inequalities on the partition function p(n) have recently been
proved by Banerjee [?], Jia and Wang [?] and Wang and Yang [?].

In the same vein, we will present corresponding conjectures on q(n).

Conjecture 6.1. Let an = q(n), then

A (an−1, an, an+1, an+2, an+3) > 0, for n ≥ 230,

B (an−1, an, an+1, an+2, an+3) > 0, for n ≥ 272,

I (an−1, an, an+1, an+2, an+3) > 0, for n ≥ 267.
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National Science Foundation of China.
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