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Abstract

Efficient computation or approximation of Levenshtein dis-
tance, a widely-used metric for evaluating sequence simi-
larity, has attracted significant attention with the emergence
of DNA storage and other biological applications. Sequence
embedding, which maps Levenshtein distance to a conven-
tional distance between embedding vectors, has emerged as
a promising solution. In this paper, a novel neural network-
based sequence embedding technique using Poisson regres-
sion is proposed. We first provide a theoretical analysis of the
impact of embedding dimension on model performance and
present a criterion for selecting an appropriate embedding di-
mension. Under this embedding dimension, the Poisson re-
gression is introduced by assuming the Levenshtein distance
between sequences of fixed length following a Poisson dis-
tribution, which naturally aligns with the definition of Lev-
enshtein distance. Moreover, from the perspective of the dis-
tribution of embedding distances, Poisson regression approx-
imates the negative log likelihood of the chi-squared distri-
bution and offers advancements in removing the skewness.
Through comprehensive experiments on real DNA storage
data, we demonstrate the superior performance of the pro-
posed method compared to state-of-the-art approaches.

Introduction
The Levenshtein distance (Levenshtein et al. 1966) (also
known as the edit distance) between two sequences is de-
fined as the minimum number of insertions, deletions, or
substitutions required to modify one sequence into another.
The dynamic programming algorithm introduced in (Wag-
ner and Fischer 1974) is commonly employed for accu-
rate calculation of the Levenshtein distance. However, this
method has a computational complexity of O(mn) for
two strings of length m and n. According to Theorem 1
from (Backurs and Indyk 2015),

Theorem 1. Given two sequences of length n, the Leven-
shtein distance can’t be computed in timeO(n2−δ),∀δ > 0,
otherwise the Strong Exponential Time Hypothesis would be
violated.
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a method of calculating Levenshtein distance in linear com-
plexity is not reachable. The computational complexity of
the Levenshtein distance poses limitations on its applica-
tion at a large scale, particularly in the field of DNA stor-
age (Rashtchian et al. 2017; Dong et al. 2020).

The applications of the Levenshtein distance encompass a
wide range of domains, including optical character recogni-
tion (Haldar and Mukhopadhyay 2011), text plagiarism de-
tection (Su et al. 2008), entity linking (Jiang et al. 2014),
etc. In the field of bioinformatics, where nucleic acids and
proteins are represented as sequences of their basic build-
ing blocks, the Levenshtein distance finds widespread ap-
plications. It is utilized in tasks such as multiple sequence
alignment (Li and Homer 2010), biological database re-
trieval (Berger, Waterman, and Yu 2020), sequence hierar-
chical clustering (Sberro et al. 2019), etc. In recent years,
the rapid development of DNA storage (Goldman et al.
2013; Church, Gao, and Kosuri 2012; Grass et al. 2015) has
introduced numerous applications of the Levenshtein dis-
tance, including sequence clustering (Rashtchian et al. 2017;
Zorita, Cuscó, and Filion 2015; Qu, Yan, and Wu 2022; Lo-
gan et al. 2022), sequence alignment (Li and Homer 2010;
Corso et al. 2021), synchronization channel coding (Press
et al. 2020; Bar-Lev, Etzion, and Yaakobi 2023; Welzel et al.
2023), etc. However, as the scale of information stored by
DNA molecules continues to grow, the computational com-
plexity of the Levenshtein distance becomes a significant
challenge for the aforementioned applications.

To address the challenge of high computational complex-
ity, various methods have been proposed to approximate the
Levenshtein distance. For example, in (Ostrovsky and Ra-
bani 2007), the authors utilized `1 distance to approximate
the Levenshtein distance of 0, 1-words with low distortion.
Another approach, the CGK algorithm (Chakraborty, Gold-
enberg, and Kouckỳ 2016), maps the Levenshtein distance to
Hamming distance through a randomized injective embed-
ding. Both of these methods use low-complexity distances
as approximations for the Levenshtein distance.

Neural network-based methods have also been explored.
The gated recurrent unit (GRU) (Cho et al. 2014) has been
adopted to embed the Levenshtein distance into Euclidean
space (Zhang, Yuan, and Indyk 2019), preserving the rel-
ative order between the sequences. In (Dai et al. 2020),
a CNN-based embedding pipeline for the Levenshtein dis-



tance was proposed. The authors provided theoretical evi-
dence for employing a convolutional neural network (CNN)
as the embedding model. In (Corso et al. 2021), a frame-
work for embedding biological sequences in geometric vec-
tor spaces was proposed. In their work, the DNA sequences
are embedded into hyperbolic space instead of Euclidean
space to capture the implicit hierarchical structure from bio-
logical relations between the sequences (Chami et al. 2020).
Additionally, squared Euclidean distance has also been used
to embed the Levenshtein distance (Guo, Liang, and Hou
2022). This work established connections between the Lev-
enshtein distance and degree of freedom with the output
distribution of the embedding model, and proposed the so-
called chi-square regression.

In this paper, a neural network-based Levenshtein dis-
tance embedding algorithm is proposed with the Poisson re-
gression. We first demonstrate that the choice of embedding
dimension has a theoretical impact on the distribution of the
approximation, which in turn affects the approximation pre-
cision. Leveraging these theoretical analyses, we introduce
a method to determine the appropriate embedding dimen-
sion for a given dataset and embedding network. Once the
embedding dimension is determined, we employ Poisson re-
gression to train the embedding model. The Poisson regres-
sion offers two significant advantages. Firstly, it naturally
aligns with the definition of Levenshtein distance. When the
Levenshtein distance is small, it can be approximately inter-
preted as counting the event of edit operations from a fixed
interval. Secondly, it approximates the negative log likeli-
hood of the chi-squared distribution and shows advances in
removing the skewness. Experimental results in real-world
scenarios validate the efficacy of the theoretical analysis on
the choice of embedding dimension. Through experiments
conducted on DNA storage data, it is demonstrated that the
proposed method outperforms state-of-the-art approaches.

Framework of the Embedding Method

In this section, we provide a brief overview of the embed-
ding method framework and highlight some of the assump-
tions that have been previously validated in (Guo, Liang, and
Hou 2022).

Most of the sequence embedding methods explictly (Guo,
Liang, and Hou 2022; Zheng et al. 2019) or implicitly (Cho
et al. 2014; Dai et al. 2020) adopt the framework of Siamese
neural network (Bromley et al. 1993; He et al. 2020). In
this framework, the embedding network f(·; θ) maps a se-
quence s to its corresponding embedding vector u = f(s; θ)
using parameter θ. The embedding network f(·; θ) is op-
timized by training two identical branches in the Siamese
neural network. Let ((s, t), d) be a sample from the train-
ing data, where the s and t are two sequences, and d rep-
resents the groundtruth Levenshtein distance between them.
The parameter θ is trained by minimizing the difference be-
tween the groundtruth Levenshtein distance and the approx-

imation, as shown in the following equation:

θ̂ = arg min
θ
L(d, d̂; θ)

= arg min
θ

∑
L(d,∆(f(s; θ), f(t; θ))). (1)

Here, the L is a predefined loss function, and the ∆(u,v)
denotes the distance between embedding vectors u and v
in the embedding space. During the testing phase, the se-
quences s and t are mapped to their respective embedding
vectors u = f(s; θ̂) and v = f(t; θ̂) with the optimized
parameter θ̂. The distance ∆(u,v) between the embedding
vectors is then used as an approximation of the Levenshtein
distance between the sequences s and t.

In previous work, it has been shown that the squared Eu-
clidean distance, defined as:

d`22(u,v) = ||u− v||22 =
∑
i

(ui − vi)2, (2)

can effectively approximate the Levenshtein distance (Guo,
Liang, and Hou 2022). Although the squared Euclidean dis-
tance is not a true metric, the application of squared Eu-
clidean distance not only offers good approximation preci-
sion, but also establishes a connection between the Leven-
shtein distance and the degree of freedom with the differ-
ence of the embedding vectors. Specifically, under certain
assumptions, it was derived that for pairs of sequences with
a consistent Levenshtein distance d, the distribution of the
embedding vector u−v has a degree d of freedom. To align
with their work, we briefly describe these assumptions as
follows:
A1 By deploying a batch normalization layer, each element

ui of the embedding vector u follows the standard nor-
mal distribution N(0, 1);

A2 The embedding vector u has no information redun-
dancy. In other words, if i 6= j, the embedding elements
ui and uj of u are independent of each other;

A3 Embedding vectors of non-related sequences are inde-
pendent of each other.

These assumptions allow for theoretical analysis and facil-
itate the connection between the Levenshtein distance and
the squared Euclidean distance.

Embedding Dimension and Approximation
Precision

Why Large Embedding Dimension Improves the
Approximation Precision?
The average of the groundtruth Levenshtein distance be-
tween the independent sequences is a statistic feature of the
dataset. A good embedding method should ensure that the
expectation of predicted distance between independent em-
bedding vectors matches the average of groundtruth Lev-
enshtein distance on pairs of independent sequences. To
achieve this, a scale factor can be utilized to help the model
satisfy this requirement. Let s and t be two independent se-
quences from a fixed dataset, and u = f(s) and v = f(t)



be their corresponding embedding vectors of length n. The
embedding method (Guo, Liang, and Hou 2022)empirically
selects 80 as the length of embedding vectors, and the corre-
sponding scale factor is set to be

√
2/2. To adapt this frame-

work to arbitrary dimension n, we use a scale factor r(n)
with respect to the embedding dimension n to calculate the
approximated distance as follows:

d̂(s, t) = d`22(r(n)u, r(n)v) = r2(n)

n∑
i=1

(ui − vi)2. (3)

Based on the three assumptions mentioned earlier, where ui
and vi independently follow N(0, 1), it can be inferred that
ui − vi follows N(0, 2), and 1

2 (ui − vi)
2 follows χ2(1).

Therefore, the approximated distance between the indepen-
dent sequences s and t follows a chi-squared distribution
with n degree of freedom

1

2r2(n)
d̂(s, t) ∼ χ2(n). (4)

The expectation of d̂(s, t) can be easily calculated as:

E[d̂(s, t)] = 2nr2(n). (5)
Let M be the average Levenshtein distance between inde-
pendent sequences over the specific dataset. In order to sat-
isfy Equation (5), the scale factor can be set as:

r(n) =

√
M

2n
. (6)

Thus ensuring that the expected distance between indepen-
dent embedding vectors aligns with the average Levenshtein
distance between independent sequences in the dataset.

An embedding method primarily focuses on approximat-
ing the Levenshtein distance between correlated sequences.
We will now demonstrate how the embedding dimension n
affects the distribution of the approximation for such pairs of
sequences. Consider two correlated sequences s and t with a
groundtruth Levenshtein distance of d. Using a slight abuse
of notation, let ũ = r(n)u and ṽ = r(n)v denote the re-
spective scaled embedding vectors. It is assumed that the
difference ũ− ṽ has a degree of freedom proportional to the
groundtruth distance d, which can be expressed as follows:

ũ− ṽ = yP = (y1, y2..., ym, 0..., 0)

√
M

n
P (7)

where the non-zero elements yi of y are independently and
identically distributed (i.i.d.) random variables following the
standard normal distribution N(0, 1), the matrix P is an or-
thogonal matrix, and m is called the degree of freedom with
ũ − ṽ and equals nd/M . Note that under assumptions A2
and A3, when d = M , we have m equal to the embedding
dimension n. Although m is rarely an integer, Equation (7)
is considered acceptable if the model can learn to approxi-
mate integers close to m.

Now, let’s calculate the squared Euclidean distance be-
tween the embedding vectors ũ and ṽ:

dl22(ũ, ṽ) = (ũ− ṽ)(ũ− ṽ)T =
M

n
yPP T yT

=
M

n
yyT =

M

n

m∑
i=1

y2i . (8)

This formula shows that the distribution of the approximated
distance dl22(ũ, ṽ) for a correlated pair of sequences with
Levenshtein distance d follows the chi-squared distribution:

n

M
dl22(ũ, ṽ) ∼ χ2(m) = χ2(

n

M
d). (9)

It can be observed that the expected value of the approxi-
mated distribution for correlated pairs is equal to their Lev-
enshtein distance, which serves as the learning target for the
model. In order to simplify the notations, let’s introduce a
new variable k = n/M . Consequently, the Equation (9) is
rewrited as

kdl22(ũ, ṽ) ∼ χ2(kd), k =
n

M
. (10)

Given a sequence pair (s, t) with a groundtruth Leven-
shtein distance d, it is evident that the precision of the ap-
proximation is affected by the variance in the distribution.
Referring to Equation (10), the variance of approximations
can be calculated as:

Var[dl22(ũ, ṽ)] =
2d

k
=

2dM

n
. (11)

When an embedding network f(·, θ̂) is well-trained, one can
deduce from Equation (11) that a larger embedding dimen-
sion n leads to smaller variance in the approximations, re-
sulting in higher precision. It is worth noting that, based on
Equation (11), regardless of the choice of k or the embed-
ding dimension n, sequences with smaller Levenshtein dis-
tance exhibit higher approximation precision.

Deciding the Appropriate Embedding Dimension
The embedding dimension n is a critical hyperparameter. As
we discussed previously, there exists a relationship between
the variance of approximated distances and the embedding
dimension, indicating that a larger n leads to a decrease in
variance and higher theoretical approximation precision for
the learned model. Therefore, the learned model has higher
theoretical approximation precision with a larger n. How-
ever, it is important to note that this assertion may not hold
universally due to a potential violation of assumption A2.
Referring to Equation (10), the degree of freedom with ũ−ṽ
is nd/M . Consequently, increasing the embedding dimen-
sion n results in a higher degree of freedom with ũ−ṽ. For a
pair of sequences from a specific dataset, the information ca-
pacity is limited since these sequences are discrete and pos-
sess finite lengths. Hence, in the context of non-generative
neural networks, the degree of freedom with the difference
between the embedding vectors ũ − ṽ does not reach in-
finity. Additionally, different network architectures possess
varying abilities in feature extraction, which can further re-
strict the expressiveness of the degree of freedom. There-
fore, the attainable degree of freedom may be constrained
by both the dataset’s inherent information limitations and
the specific network architecture employed. In summary, we
propose the following assumption as a supplementary
A4 On a fixed dataset and network architecture, there is an

upper bound n0 on the embedding dimension n. When
n ≤ n0, it is possible to achieve full freedom (n degrees



of freedom) in the embedding ũ − ṽ, when n > n0,
the embedding ũ − ṽ can have at most n0 degrees of
freedom.

The relationship between the embedding dimension n and
the variance of approximations in Equation (11) suggests
that a larger embedding dimension can potentially improve
the theoretical approximation precision, while according to
the assumption A4, an embedding dimension beyond n0
would be unnecessary and may even hinder the method’s
performance. Therefore, it is worth to determine the appro-
priate upper bound n0 and utilize it as the embedding di-
mension.

Embedding Dimension Searching
To determine the appropriate embedding dimension n0, one
could start by considering assumption A4 and Equation (7).
Given an embedding dimension n and a fully trained embed-
ding network f(·; θ̂), collect a set of mutually non-related
sequences {si} along with their corresponding embedding
vectors {ui} = f(si; θ̂). According to assumption A4, if
n ≤ n0, the difference between the embedding vectors can
be expressed as a linear combination of n independent stan-
dard normal variables, regarding the scale factor. This can
be expressed as:

ui − uj = (y1, y2, . . . , yn)P (i 6= j), (12)

where yis are i.i.d. and follow the standard normal distribu-
tion N(0, 1), and the matrix P is an orthogonal matrix. On
the other hand, when n > n0, the expression becomes:

ui − uj = (y1, y2, . . . , yn0 , 0, . . . , 0)P (i 6= j). (13)

This leads to consider that the spectral decomposition of the
covariance matrix cov(ui − uj ,ui − uj), which is also
a key step in naive principal component analysis (PCA).
When n ≤ n0, the eigenvalues of the covariance matrix are
around 1, when n > n0, the sorted eigenvalues exhibit a
steep decline, reaching close to zero. Therefore, by grad-
ually increasing the embedding dimension and monitoring
the decreasing pattern of the sorted eigenvalues, we can de-
termine the appropriate embedding dimension n0. We refer
to this value of n0 as the early-stopping dimension (ESD),
and adopt it as our choice for the suitable embedding dimen-
sion.

Poisson Regression
In previous studies on Levenshtein distance embedding,
the mean square error (MSE), the mean absolute error
(MAE), or a combination of both losses have often been em-
ployed to optimize the model. However, these losses penal-
ize the predicted distance d̂ symmetrically with respect to its
groundtruth d. This disregards the fact that the distribution
of the predicted distance d̂ exhibits a clear bias when d is
small. In (Guo, Liang, and Hou 2022), they introduced the
so-called chi-squared regression to address this issue. The
negative log-likelihood loss of chi-squared distribution

REχ2(d̂, d) = d̂− (d− 2) ln d̂ (14)

is used as their loss function. It can be observed from Equa-
tion (14) that this loss function is minimized at d̂ = d − 2
rather than d̂ = d. To overcome the drawbacks of these ex-
isting losses, we propose the adoption of Poisson regression
from two different perspectives.

Poisson Regression: Interpreting Levenshtein
Distance with Poisson Distribution
The Poisson distribution represents the distribution of events
occurring within a fixed interval in constant mean rate. The
probability mass function of Poisson distribution with ex-
pectation λ is:

P (k;λ) =
λke−λ

k!
, k = 0, 1, 2, . . .. (15)

In the context of Levenshtein distance, which measures the
minimum number of deletions, insertions, and substitutions
needed to transform one sequence into another, we can ap-
proximate the Levenshtein distance as a Poisson-distributed
random variable when the distance is significantly smaller
than the length of the sequences. This approximation treats
the sequence as a fixed interval and the operations as random
events occurring within this interval. In Poisson regression,
the model parameter θ is estimated based on the maximum
likelihood of Poisson distribution. The optimization target is
typically the negative log-likelihood loss with the Poisson
distribution (PNLL) of the groundtruth:

PNLL(d̂, d) = d̂− d ln d̂+ ln d!. (16)

Omitting the terms that that do not contribute to the gradi-
ents, the PNLL loss can be rewritten as:

PNLL(d̂, d)
·
= d̂− d ln d̂. (17)

In Poisson regression, the loss defined in Equation (17)
reaches its minimum value when d̂ = d, and also derives
asymmetric penalization on d̂ around its groundtruth value
d.

Poisson Regression: an Asymptotic Chi-Squared
Regression
Recall that the approximation of Levenshtein distance theo-
retically follows a chi-squared distribution in Equation (10)
under the discussed assumptions. In contrast, the proposed
Poisson regression utilizes a Poisson distribution, which dif-
fers from the chi-squared distribution in Equation (10). This
raises concerns about the potential impact on the perfor-
mance of the proposed method. However, the following dis-
cussion aims to address and alleviate such doubts by provid-
ing another explaination on Poisson regression.

The PNLL in Equation (17) can be viewed as an approxi-
mation of the negative log-likelihood of distribution in Equa-
tion (10) when k is sufficiently large. Recall that the distribu-
tion of approximations follows Equation (10) with a param-
eter k. Note that the probability density function of χ2(d)
is

p(x; d) = (2
d
2 Γ (d/2))−1x

d
2−1e−

x
2 (18)



where Γ(·) is the Gamma function. One step further, the
probability density function p(x; k, d) of Equation (10) is
calculated as

p(x; k, d) =
k

2
kd
2 Γ
(
kd
2

) (kx)
kd
2 −1e−

kx
2 . (19)

By Equation (19), we can compute the negative log-
likelihood of a predicted d̂ from the chi-squared distribution
in Equation (10) as

− ln p(d̂; k, d) =
kd̂

2
− (

kd

2
− 1) ln(kd̂)

− ln k +
kd

2
ln 2 + ln Γ

(
kd

2

)
. (20)

By omitting terms that contribute zero to the gradients and
rescaling the equation by multiplying 2/k, the negative log-
likelihood loss is

− ln p(d̂; k, d)
·
= d̂− (d− 2

k
) ln d̂. (21)

It is evident that when k → +∞, the PNLL in Equation (17)
is the limit of Equation (21). This observation suggests that
the PNLL is an approximation of the negative log-likelihood
of the chi-squared distribution in Equation (10). It is worth
noting that as k increases, the Equation (21) converges to
Equation (17), and the minimum point of the loss in Equa-
tion (21) converges to the groundtruth d.

As mentioned above, the chosen embedding dimension
n (proportional to k) is selected to be as large as possible
within the limit of n0. Considering the above discussion, the
choice of Poisson regression preserves the advantage of chi-
squared regression in terms of asymmetric penalization and
addresses the concern of skewness in the chi-squared distri-
bution.

Experiments
Dataset The experiments are conducted using the DNA
storage data introduced in (Guo, Liang, and Hou 2022). This
data1 was originally provided by a research called DNA-
Fountain (Erlich and Zielinski 2017), which is a milestone
in DNA storage. Each data sample from the DNA storage
dataset can be represented as a tuple ((s, t), d), where (s, t)
is a pair of DNA sequences and d is the groundtruth Lev-
enshtein distance between these sequences. The DNA se-
quences in the dataset are strings composed of oligonu-
cleotides and sequencing failure bases, denoted by the alpha-
bet {A,T,G,C,N}. The samples can be categorized into
two classes of homologous and non-homologous samples.
In a homologous sample ((s, t), d), the sequences s and t
belong to the same cluster obtained from the DNA-storage
pipeline and have a small Levenshtein distance d. On the
other hand, in a non-homologous sample ((s, t), d), the se-
quences s and t belong to different clusters and can be con-
sidered as independent sequences with a large Levenshtein

1The data can be accessed through https://github.com/
TeamErlich/dna-fountain and https://www.ebi.ac.uk/ena/data/
view/PRJEB19305.

distance d. The length of the DNA sequences in the dataset is
approximately 152, and they are padded to a fixed length of
160 before being fed into the embedding network. To ensure
the separation of data for training and testing, the training
and testing sets of the DNA storage data are divided by a
partition on the clusters of the retrieved DNA sequences.

Metric Two metrics are used to evaluate the performance
of the model, as they are, the global approximation error
(AEg) and the homologous approximation error (AEh). The
AEg is calculated as the mean absolute error over the testing
set Te

AEg =
1

#Te

∑
((s,t),d)∈Te

|d̂− d|, (22)

while the AEh is the mean absolute error over the homolo-
gous samples Teh from the testing set

AEh =
1

#Teh

∑
((s,t),d)∈Teh

|d− d̂|, (23)

where the #Te and #Teh are the number of samples in Te
and Teh, respectively. The values of AEg and AEh provide
insights into the overall approximation error and the specific
performance on homologous samples, respectively. In gen-
eral, the Levenshtein distance between two completely un-
related sequences is considered of lesser importance. There-
fore, the AEh is a more important metric than AEg in this
study.

Models In the experiments, we employ a variety of neu-
ral network structures as the embedding network, including
the commonly used CNN-5, CNN-10, and GRU networks as
utilized in previous studies (Zhang, Yuan, and Indyk 2019;
Dai et al. 2020; Guo, Liang, and Hou 2022). Additionally,
to explore the impact of network depth and width on the
ESD and model performance, we also use wider embedding
networks, denoted as CNN-5-w and CNN-10-w. The only
difference between CNN-∗-w and CNN-∗ is that the CNN-
∗-w has more convolution channels. These models are the
1D versions from their original model. Further details can
be found in the Appendices2.

The Early-Stopping Dimension
It has been analyzed that there exists an appropriate embed-
ding dimension called the ESD n0, with the fixed dataset and
network architecture. The theoretical approximation preci-
sion improves as the embedding dimension n increases, up
to the point where n reaches the ESD n0.

Specifically, there exists the ESD n0. When the embed-
ding dimension n is less than or equal to n0, the eigen-
values of cov(ui − uj ,ui − uj), (i 6= j) are approxi-
mately equal to 1. When n exceeds n0, the sorted eigen-
values gradually decrease to 0 after reaching n0. To verify
this phenomenon, we train embedding networks with dif-
ferent embedding dimensions, and plot the sorted eigenval-
ues of cov(ui − uj ,ui − uj), (i 6= j). The results for the
embedding network of CNN-5 are plotted in Figure 1. It is

2Please refer to https://arxiv.org/abs/2312.07931 for the Appen-
dices.



(a) n = 40 (b) n = 60 (c) n = 80 (d) n = 100

(e) n = 120 (f) n = 140 (g) n = 160 (h) n = 180

Figure 1: The sorted eigenvalues of cov(ui−uj ,ui−uj), (i 6= j) are plotted for different choices of the embedding dimension
n in the CNN-5 embedding network. When n is small, the eigenvalues are distributed around 1, as in (a)–(d). Increasing the
embedding dimension n, the sorted eigenvalues decrease to 0 after some dimension, as in (e)–(h).

suggested that, when the embedding dimension n is small,
the eigenvalues are distributed around 1, indicating that n is
smaller than the ESD n0. As the embedding dimension in-
creases, the sorted eigenvalues sharply decrease to 0 after a
certain dimension. And regardless of how large the embed-
ding dimension n is, the number of non-zero eigenvalues
remains relatively constant. This observation suggests that
the embedding dimension exceeds the value of n0. Based on
the results shown in Figure 1, we determine that the ESD
n0 for the engaged dataset and the CNN-5 is approximately
n0 = 120.

It is worth noting that, when using the CNN-5-w or CNN-
10-w as the embedding network, the phenomenon of sud-
den vanishing eigenvalues along increasing embedding di-
mension becomes more evident. Furthermore, the curves of
approximation errors are more stable on the embedding net-
works CNN-5-w and CNN-10-w. For more details, please
refer to the Appendices.

To verify the claim that the performance improves as the
embedding dimension n increases until reaching the ESD
n0, the approximation precision of the CNN-5 model with
different embedding dimension is plotted in Figure 2. This
figure suggests that increasing the embedding dimension
leads to a decrease in the approximation error when the em-
bedding dimension n is less than the ESD n0 = 120. When
the embedding dimension n exceeds the ESD n0 = 120, the
improvement in approximation precision becomes negligi-
ble, and the standard deviation of the approximation error
across different runs grows. This indicates that the stability
of the embedding network in training phase is compromised.

In the Appendices, we provide similar figures to those in
Figure 1 and Figure 2 for the CNN-10, CNN-5-w, CNN-10-
w, and GRU embedding networks used in this study. The
ESD values corresponding to these four networks are CNN-
10: n0 = 120, CNN-5-w: n0 = 140, CNN-10-w: n0 = 140,

(a) AEg (b) AEh

Figure 2: The global approximation error and homologous
approximation error are shown against the embedding di-
mension in (a) and (b), respectively. The curves are plotted
based on the mean and standard deviation over 5 runs. The
approximation errors decrease alongwith increase the em-
bedding dimension n until the ESD n0, which is 120 for
CNN-5. When the n > n0, there is no gain of the perfor-
mance on a larger n, but the model performance becomes
unstable with a larger standard deviation.

and GRU: n0 = 140. Considering those figures and the re-
sults in the comparative experiments, we may speculate that
the width of the network plays a more significant role than
the depth of the network in improving the approximation
precision.

The Comparative Experiments
We conduct experiments using different combinations of
embedding networks, loss functions, and embedding dimen-
sions. The embedding networks include CNN-5, CNN-10,
CNN-5-w, CNN-10-w, and GRU. The loss functions used in
the experiments are MSE, MAE, REχ2 from (Guo, Liang,
and Hou 2022), and the proposed PNLL. The choices of
embedding dimensions are an empirical fixed dimension of



Embedding
Network

Metric
Objective Function

MSE MAE REχ2 PNLL

CNN-5(80)
AEg 4.06±0.07 4.00±0.02 4.32±0.01 4.09±0.04
AEh 0.83±0.02 0.68±0.02 0.85±0.00 0.62±0.02

CNN-5(120)
AEg 3.48±0.02 3.52±0.07 4.15±0.07 3.57±0.04
AEh 0.82±0.02 0.64±0.03 0.83±0.01 0.58±0.02

CNN-10(80)
AEg 3.78±0.02 3.76±0.08 4.24±0.05 3.90±0.02
AEh 0.72±0.02 0.61±0.01 0.87±0.00 0.58±0.01

CNN-10(120)
AEg 3.27±0.04 3.44±0.04 4.00±0.04 3.35±0.05
AEh 0.72±0.02 0.64±0.03 0.84±0.01 0.55±0.01

CNN-5-w(80)
AEg 3.84±0.01 3.85±0.01 4.45±0.04 3.95±0.02
AEh 0.69±0.01 0.59±0.00 0.85±0.00 0.54±0.01

CNN-5-w(140)
AEg 2.98±0.01 3.08±0.02 4.17±0.04 3.11±0.03
AEh 0.67±0.00 0.56±0.00 0.82±0.01 0.50±0.00

CNN-10-w(80)
AEg 3.70±0.01 3.74±0.01 4.63±0.03 3.76±0.01
AEh 0.65±0.01 0.56±0.01 0.87±0.01 0.48±0.01

CNN-10-w(140)
AEg 2.90±0.01 3.14±0.02 4.50±0.05 3.00±0.02
AEh 0.62±0.00 0.54±0.00 0.84±0.00 0.47±0.00

GRU(80)
AEg 4.08±0.01 4.12±0.01 5.81±0.10 4.34±0.02
AEh 0.79±0.00 0.73±0.00 0.85±0.00 0.61±0.00

GRU(140)
AEg 3.49±0.02 3.55±0.01 6.99±0.05 4.54±0.04
AEh 0.91±0.01 0.80±0.00 0.84±0.01 0.64±0.00

Table 1: Results of the experiments on DNA storage data. Contains all combinations of models, dimensions and losses. The
results are reported in the format “mean± std” of the mean value and the standard deviation over 5 runs of the experiments.

80 and the ESDs corresponding to the engaged embedding
networks. The results of these experimental settings are pre-
sented in Table 1. It is worth noting that, unlike in (Guo,
Liang, and Hou 2022), we utilize a learnable scaling factor
instead of a predefined fixed one. As a result, the obtained
results may differ from those reported in (Guo, Liang, and
Hou 2022), even though the overall setting appears similar.

As shown in Table 1, the proposed Poisson regression and
PNLL achieve the best performance in terms of the metric
AEh across all the embedding networks. Although the per-
formance of PNLL in AEg is slightly behind the best perfor-
mance, the relative difference is not significant. Moreover, as
mentioned earlier, the AEh is a more crucial metric of inter-
est than AEg in the experiments. These results indicate that
the proposed Poisson regression outperforms other objective
functions.

It can be also observed that increasing the embedding di-
mension from 80 to the ESD of the respective embedding
network leads to better performance in both AEh and AEg ,
especially a significant improvement in AEg . This finding
highlights the effectiveness of the proposed ESD. However,
for the GRU model, increasing the embedding dimension re-
sults in worse performance. It is speculated that the assump-
tion A4 may not hold for the GRU model, as discussed in
the Appendices. Overall, it is evident from Table 1 that the
combination of the proposed PNLL and the proposed ESD
yields the best performance.

Comparing models with different numbers of layers in the
convolutional network, the improvement resulting from in-
creasing the number of layers is found to be negligible. How-
ever, increasing the number of channels in the model leads to
improved performance across most of the convolutional em-
bedding networks. Furthermore, increasing the depth of the

model results in a higher ESD, indicating that the model has
a greater capacity to capture and express features from its
input. Based on these observations, we can infer that width
(number of channels) plays a more crucial role than depth
(number of layers) in the task of Levenshtein distance em-
bedding.

Readers may be concerned about computational over-
head. Given that changes in embedding dimensions only af-
fect the neural network’s embedding top, the experimental
time complexities are similar across different choices of em-
bedding dimensions. Calculating the loss functions, as out-
lined in Equation (14) and Equation (17), is not computa-
tionally intensive. Therefore, the differences in time com-
plexities due to the engaged loss functions are negligible.

In summary, the CNN-10-w embedding network, with an
ESD embedding dimension of n0 = 140 and optimized
by the Poisson regression reports the highest performance
among all the models.

Conclusion
Deep embedding is an effective way for fast approxima-
tion of Levenshtein distance. We propose a deep Leven-
shtein distance embedding algorithm based on Poisson re-
gression. The implementation of our algorithm is based on
two key points: embedding vector dimension and model
training method. The adaptation of Poisson distribution to
Levenshtein distance was theoretically analyzed under rea-
sonable assumptions. Our method achieves a more accurate
approximation on DNA storage data. Moreover, the pro-
posed algorithm is robust to different embedding models and
all show positive results. We hope our method will be useful
with other approximate tasks that involve discrete labels.
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Details on the Embedding Networks
Five models, namely CNN-5, CNN-10, CNN-5-w, CNN-10-
w, and GRU are utilized as the embedding networks in this
study, following the architecture settings described in (Guo,
Liang, and Hou 2022; Dai et al. 2020). The CNN-5 consists
of five 1D-convolutional layers, while the CNN-10 has ten
1D-convolutional layers. Each 1D-convolutional layer has
output channels of 64, a kernel size of 3, a stride of 1, and
a padding size of 1. Average pooling layers with a kernel
size of 2 and ReLU activation function are also applied. To
generate the embedding vector, two fully connected layers
and a final batch normalization layer are employed on top of
the convolutional layers. The CNN-5-w and CNN-10-w are
the wide versions of CNN-5 and CNN-10, respectively. The
main difference between the wide versions and their origi-
nal counterparts is that the number of channels in the con-
volutional layers is four times larger (256 vs. 64). The GRU
model consists of two bidirectional recurrent layers with a
hidden size of 64. Similar to the convolutional models, the
GRU model also includes two fully connected layers and a
final batch normalization layer at the top of the model.

It is important to note that in the original work (Guo,
Liang, and Hou 2022), the final batch normalization layer
used a default parameter of ε = 1e − 5 in PyTorch. This
setting did not affect the normality of the elements of the
embedding vectors in their study. However, by using the
learnable scaling factor and increasing the embedding di-
mension, the normality is compromised. We discovered that
the value of ε = 1e−5 is too large, and the model learns fea-
tures with the same order of magnitude as ε. Consequently,
the guarantee of the embedding elements following N(0, 1)
was no longer valid. To address this issue, a smaller value of
ε = 1e − 9 for the final batch normalization layers is used
in this research. This adjustment can be easily verified in the
experiments. Since it is not our main focus, the details are
not presented.

The Early Stopping Dimension for the
Engaged Embedding Networks

In this appendix, we provide the sorted eigenvalues of
cov(ui − uj ,ui − uj), (i 6= j) for different embedding
dimensions. We also plot the approximation errors with re-
spect to the embedding dimensions. These figures allow us
to estimate the ESD values for the embedding networks
CNN-10, CNN-5-w, CNN-10-w, and GRU.

CNN-10. For the embedding network CNN-10, the cor-
responding figures, namely Figures 3 and 4, exhibit similar
patterns to those observed for CNN-5 in Figures 1 and 2.
The estimated ESD is about n0 = 120. The approxima-
tion error decreases as the embedding dimension increases
until reaching the ESD n0. The only difference between
CNN-10 and CNN-5 is that the embedding network of CNN-
10 demonstrates a lower standard deviation across different
runs. Hence, we may infer that the embedding network of
CNN-10 is more stable during the training phase compared
to CNN-5.

CNN-5-w. The results obtained from CNN-5-w are de-
picted in Figures 5 and 6. In comparison to Figure 1, it is

(a) n = 60 (b) n = 80 (c) n = 100

(d) n = 120 (e) n = 140 (f) n = 160

Figure 3: CNN-10. The sorted eigenvalues of cov(ui −
uj ,ui − uj), (i 6= j) are plotted for different choices of
the embedding dimension n for the CNN-10 embedding
network. When n is small, the eigenvalues are distributed
around 1, as in (a)–(c). Increasing the embedding dimension
n, the sorted eigenvalues decrease to 0 after some dimen-
sion, as in (d)–(f).

(a) AEg (b) AEh

Figure 4: CNN-10. The AEg and AEh are shown against
the embedding dimension in (a) and (b), respectively. The
curves are plotted based on the mean and standard devia-
tion over 5 runs. The approximation errors decrease along-
with increase the embedding dimension n until the ESD n0,
which is 120 for CNN-10. When n > n0, there is no gain of
the performance on a larger n.

observed that the zero eigenvalues of cov(ui − uj ,ui −
uj), (i 6= j) starts to appear when the embedding dimension
reaches 140 rather than 120. Based on this, the estimated
ESD is about n0 = 140. In Figure 6, the AEg continues to
decrease slightly after n0, while the AEh changes negligibly
after n0.

CNN-10-w. As suggested in Figures 7 and 8, the esti-
mated ESD for the CNN-10-w engaged in this paper is ap-
proximately n0 = 140. Similar to the difference between
CNN-5 and CNN-5-w, the ESD n0 of embedding network
CNN-10-w exceeds that of the plain CNN-10.

GRU. As shown in Figure 9, the estimated ESD for the
GRU embedding network is approximately n0 = 140. How-
ever, unlike the sharp decline observed in the sorted eigen-
values of the convolutional networks, the sorted eigenvalues
produced by the GRU embedding network exhibit a grad-
ual decrease towards 0. This observation suggests that the



(a) n = 80 (b) n = 100 (c) n = 120

(d) n = 140 (e) n = 160 (f) n = 180

Figure 5: CNN-5-w. The sorted eigenvalues of cov(ui −
uj ,ui − uj), (i 6= j) are plotted for different choices of
the embedding dimension n for the CNN-5-w embedding
network. When n is small, the eigenvalues are distributed
around 1, as in (a)–(c). Increasing the embedding dimension
n, the sorted eigenvalues decrease to 0 after some dimen-
sion, as in (d)–(f).

(a) AEg (b) AEh

Figure 6: CNN-5-w. The AEg and AEh are shown against
the embedding dimension in (a) and (b), respectively. The
curves are plotted based on the mean and standard devia-
tion over 5 runs. The approximation errors decrease along-
with increase the embedding dimension n until the ESD n0,
which is 140 for CNN-5-w. When n > n0, the improvement
in performance with a larger n is not significant, particularly
for AEh.

assumption stated in A4 may not hold for the GRU embed-
ding network. Furthermore, Figure 10 demonstrates that the
global approximation error reaches its minimum point be-
fore reaching the ESD n0 = 140, while the homologous
approximation error remains relatively stable with respect
to the embedding dimension. It is also shown that the GRU
does not provide a competitive performance, as in Figure 10
and Table 1. This suggests that the GRU may not be an op-
timal choice of embedding network.

When comparing the results of CNN-5, CNN-10, CNN-
5-w, and CNN-10-w, as shown in Figures 1, 3, 5 and 7, it is
observed that increasing the number of layers in the embed-
ding network has little impact on enlarging the ESD, while
enlarging the convolutional channels lead to a larger ESD.
This indicates that a wider embedding network has a greater
capacity to capture and express features from its input in the

(a) n = 80 (b) n = 100 (c) n = 120

(d) n = 140 (e) n = 160 (f) n = 180

Figure 7: CNN-10-w. The sorted eigenvalues of cov(ui −
uj ,ui − uj), (i 6= j) are plotted for different choices of
the embedding dimension n for the CNN-10-w embedding
network. When n is small, the eigenvalues are distributed
around 1, as in (a)–(c). Increasing the embedding dimension
n, the sorted eigenvalues decrease to 0 after some dimen-
sion, as in (d)–(f).

(a) AEg (b) AEh

Figure 8: CNN-10-w. The global approximation error and
homologous approximation error are shown against the em-
bedding dimension in (a) and (b), respectively. The curves
are plotted based on the mean and standard deviation over 5
runs. The approximation errors decrease alongwith increase
the embedding dimension n until the ESD n0, which is 140
for CNN-10-w. When n > n0, the improvement in perfor-
mance with a larger n is not significant, particularly for AEh.

Levenshtein distance embedding job.

A Glimpse of Failed Sequences
Certain kinds of sequences with low cardinality may pose
challenges to the model, either due to their inherent prop-
erty or imbalanced training samples. To investigate if there
are sequences that consistently predict biased distances,
we calculated the averaged predicted distance for each se-
quence s with a variable sequence t as meand(s) =

mean{d̂(s, t)| d(s, t) = d}, and plotted the distribution of
meand(s) over s for d = 1, 2, 3, as shown in Figure 11(a).
In this figure, we found no evidence of such outlier se-
quences. We also printed and examined sequence pairs (s, t)
leading to failed approximations. However, due to the length
of the DNA sequences (around 150 nt) engaged in the ex-



(a) n = 80 (b) n = 100 (c) n = 120

(d) n = 140 (e) n = 160 (f) n = 180

Figure 9: GRU. The sorted eigenvalues of cov(ui−uj ,ui−
uj), (i 6= j) are plotted for different choices of the embed-
ding dimension n for the GRU embedding network. When
n is small, the eigenvalues are distributed around 1, as in
(a)–(c). Increasing the embedding dimension n, the sorted
eigenvalues decrease to 0 after some dimension, as in (d)–
(f).

(a) AEg (b) AEh

Figure 10: GRU. The AEg and AEh are shown against
the embedding dimension in (a) and (b), respectively. The
curves are plotted based on the mean and standard devia-
tion over 5 runs. The global approximation error reaches its
minimal around embedding dimension n = 100 which is
less than the ESD n0 = 140. Meanwhile the homologous
approximation error is relative stable with the embedding
dimension.

periments, identifying clear patterns is challenging. To ad-
dress this, we conducted experiments using shorter random
sequences. The corresponding distribution of meand(s) on
a random dataset of sequence length 7 is also shown in Fig-
ure 11(b), which similarly indicates no evidence of outlier
sequences. Focusing on sequence pairs that give outlier ap-
proximations with Levenshtein distance 1, we observed a
pattern, specifically, when insertion or deletion occurs at the
beginning of a sequence with an extended homopolymer run
(repeated letters), the predicted distance tends to be less ac-
curate, as demonstrated in Table 2. Intuitively, we specu-
late that advanced network architectures, positional encod-
ing, and bidirectional padding may help alleviate this issue.

Figure 11: Distribution of meand(s). (a) the distribution is
plotted using the DNA-storage dataset; (b) the distribution is
plotted using a random dataset of sequences with length 7.

seq. pair d̂ seq. pair d̂

2 0 3 3 3 3 1 4 1.54 2 3 3 3 3 3 3 4 1.520 3 3 3 3 1 4 4 3 3 3 3 3 3 4 4

1 1 3 1 3 3 3 4 1.51 0 0 0 3 0 3 3 4 1.601 1 1 3 3 3 4 4 0 0 0 0 3 3 4 4

2 1 3 3 3 3 3 4 1.54 0 2 2 2 2 2 2 4 1.551 3 3 3 3 3 4 4 1 0 2 2 2 2 2 2

0 2 0 0 0 0 2 4 1.52 2 1 3 3 3 3 2 4 1.552 0 0 0 0 2 4 4 1 3 3 3 3 2 4 4

2 0 3 3 3 3 0 4 1.57 2 0 2 2 2 2 2 4 1.520 3 3 3 3 0 4 4 0 2 2 2 2 2 4 4

0 1 0 0 0 0 1 4 1.56 1 3 3 3 3 0 0 4 1.521 0 0 0 0 1 4 4 2 1 3 3 3 3 0 0

2 3 1 1 1 1 1 4 1.543 1 1 1 1 1 4 4

Table 2: Outlier pairs with Levenshtein distance 1 from a
random dataset of sequences with length 7. The boldface
letters indicate the inserted or deleted letters; the italic let-
ters show the extended homopolymer runs; the letter ‘4’ is
for the padding letter.

Assumption Verification
Primarily concerned assumptions are the assumptions: A1,
A2, and A4. Among these, the A4 is a revision of A2. In
Figures 1, 3, 5 and 7, the validation of A4 is confirmed.
When the embedding dimension is below the early stop di-
mension n0, the covariance matrices have eigenvalues close
to 1, which indicates the embedding elements tend to be in-
dependent; when the embedding dimension exceeds n0, the
sorted eigenvalues exhibit a sharp decline to 0. This phe-
nomenon verifies the A4 to some extent.

To show whether A1 holds when the embedding dimen-
sion varies, we plotted the statistical distributions of the first
several embedding elements, as illustrated in Figure 12. This
figure suggested that the embedding dimension has minimal
impact on the normality of embedding elements ui.



(a) n = 40 (b) n = 80 (c) n = 120 (d) n = 160 (e) n = 200

Figure 12: The distribution of the first 4 embedding elements
by CNN-10-w. (a)-(e) correspond to different choices of em-
bedding dimension from n = 40 to n = 200.


