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Abstract

DNA holds immense potential as an emerging data storage medium. How-
ever, the recovery of information in DNA storage systems faces challenges
posed by various errors, including IDS errors, strand breaks, and rearrange-
ments, inevitably introduced during synthesis, amplification, sequencing, and
storage processes. Sequence reconstruction, crucial for decoding, involves in-
ferring the DNA reference from a cluster of erroneous copies. While most
methods assume equal contributions from all reads within a cluster as noisy
copies of the same reference, they often overlook the existence of contami-
nated sequences caused by DNA breaks, rearrangements, or mis-clustering
reads. To address this issue, we propose RobuSeqNet, a robust multi-read re-
construction neural network specifically designed to robustly reconstruct mul-
tiple reads, accommodating noisy clusters with strand breakage, rearrange-
ments, and mis-clustered strands. Leveraging the attention mechanism and
an elaborate network design, RobuSeqNet exhibits resilience to highly-noisy
clusters and effectively deals with in-strand IDS errors. The effectiveness
and robustness of the proposed method are validated on three representative
next-generation sequencing datasets. Results demonstrate that RobuSeqNet
maintains high sequence reconstruction success rates of 99.74%, 99.58%, and
96.44% across three datasets, even in the presence of noisy clusters con-
taining up to 20% contaminated sequences, outperforming known sequence

∗Corresponding author.
Email address: fei.zhu@tju.edu.cn (Fei Zhu)

Preprint submitted to Computational and Structural Biotechnology Journal February 17, 2024



reconstruction models. Additionally, in scenarios without contaminated se-
quences, it exhibits comparable performance to existing models, achieving
success rates of 99.88%, 99.82%, and 97.68% across the three datasets.
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DNA storage, Sequence reconstruction, Robust method, Attention
mechanism, Deep neural network.

1. Introduction

In the contemporary era, the proliferation of information has resulted
in the creation of vast datasets, presenting formidable challenges to conven-
tional storage systems like mobile hard disks, USB flash memory, and inte-
grated circuits. The utilization of these storage media gives rise to inherent
issues, encompassing inadequate storage longevity, elevated energy consump-
tion, and environmental pollution [1]. Meanwhile, the Deoxyribonucleic Acid
(DNA) molecule has emerged as a promising storage medium, attributed to
its theoretically high storage density and prolonged storage term, aligning
with the necessity of accommodating vast amounts of data [2, 3, 4]. As il-
lustrated in Figure 1, the workflow of a DNA storage system mainly consists
of five stages: encoding, synthesis, storage, sequencing, and decoding.

In the context of DNA storage, the process typically involves initially
encoding a binary stream into alphabet strings {A, T, C, G}, followed by
the chemical synthesis of short DNA oligos, referred to as references. Subse-
quently, these references are then stored either in vitro or in vivo. To read
the information using next-generation sequencing, the references should be
extracted from a large, unordered collection of error-prone reads. This neces-
sity arises due to the inherent introduction of insertion-deletion-substitution
(IDS) errors during both DNA strand synthesis and sequencing in DNA
storage. The error rate ranges from 1%-2% in mainstream next-generation
sequencing to up to 10% for Nanopore sequencers [5]. During sequencing
by Polymerase Chain Reaction (PCR), each reference outputs an uncertain
number of noisy copies, and the reads corresponding to different references
are gathered without ordering [2, 6]. In the decoding process, clustering is
typically employed on the sequencing file to group noisy reads originating
from the same reference into clusters [7]. Thereafter, the focus of this paper,
multi-read reconstruction, is conducted to deduce the original reference from
a cluster of noisy reads [8].
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During the past ten years, a lot of research has been devoted to the se-
quence reconstruction problem in DNA storage. Broadly, these endeavors
fall into four categories: the consensus methods of Bitwise Majority Align-
ment (BMA) [9, 10, 11, 8], the statistical inference methods [12, 13, 14],
the probability backtracking methods [15, 16], and the recent deep learn-
ing ones [17, 18, 19]. The BMA and its variations are elaborated for IDS
channels and applied to DNA storage systems in [9, 10, 8]. They perform
position-to-position alignment among multiple reads and implement a major-
ity voting strategy. BMA-based techniques prove to be effective, particularly
for datasets characterized by low IDS error rates. However, their perfor-
mance is found to be less satisfactory when applied to datasets with higher
error rates.

The second category is based on statistical inference, where at each po-
sition of the sequence, the maximum a posterior (MAP) probability of all
the possible input symbols are estimated and compared [12, 13, 14]. In [12],
marker codes are inserted into LDPC codes at fixed intervals for error cor-
rection, and the decoder is based on a forward and backward (FB) algorithm
In [13], a drift vector is introduced to model the insertion/deletion errors
in each received word, and a factor graph is derived for joint probability
estimation. Concatenated codes are considered in [14], whose inner codes
and channels are modeled as joint Hidden Markov Models (HMM) and the
BCJR inference is derived. The so-called Trellis BMA marries BMA with
BCJR decoding and achieves a linear complexity in the number of traces [20].
However, due to the computational overhead, the feasible reads number per
cluster can hardly exceed ten when applying these methods in practical DNA
storage systems.

The probability backtracking method aims to refine the decoding re-
sults by incorporating probability information and likelihood rules. Two
prominent encoding-decoding methods in this domain are HEDGES [15] and
SPIDER-WEB [16]. In HEDGES [15], the encoding is based on plaintext
auto-key, hashing each bit with strand ID, bit index, and several previous
bits to correct errors. The corresponding decoding performs a greedy search
on an expanding hypothesis tree and finally backtracks and outputs the best
hypothesis. SPIDER-WEB [16] initially encodes DNA sequences based on
a graph-based encoding technique. Following decoding, it employs a path-
based error correction to rectify the DNA sequences. However, the limitation
is that decoding can only be compatible with the associated encoding scheme.

With the emergence of deep learning, a few lately works have attempted
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to exploit deep neural networks (DNN) to address the multi-read reconstruc-
tion [17], as well as single read reconstruction [18] in DNA storage systems.
Similar in spirit of this work, the central concept involves training a DNN
model with robust error correction capabilities, enabling it to map a cluster
of noisy reads to the corresponding DNA reference. Given that this work is
specifically focused on multi-read reconstruction using DNN, relevant stud-
ies [17, 18, 19] will be introduced in detail in Section 2.

It is noteworthy that in all the aforementioned methods, each strand
within a cluster contributes equally to the reconstruction of the reference
strand. This assumption is reasonable only when dealing with the clusters
consisting of noisy copies originating from the same reference. However,
achieving perfect clustering is not always feasible due to the inherent char-
acteristics of current DNA storage systems. On one hand, as sequencing
exhibit bias towards strands with specific properties, existing perfect clus-
tering methods (e.g., [7, 21, 22]) have the risk of losing references rarely
sequenced [17, 23], potentially leading to inaccurate cluster assignments. On
the other hand, in cases where the sequencing file includes contaminated
reads resulting from DNA breaks and rearrangements, as detailed subse-
quently, clustering algorithms struggle to form clusters that align appropri-
ately with the underlying DNA references.

In practical DNA storage, system stability and robustness are threat-
ened by the presence of contaminated sequences that arise at various stages.
Unlike noisy reads, which deviate from their references by only a few IDS
errors, the contaminated sequences , as referred to in this paper, exhibit a
considerably greater edit distance from the original DNA references. Sev-
eral factors contribute to the occurrence of contaminated sequences. Firstly,
in long-term storage and under certain conditions, DNA strands become
vulnerable to degradation, resulting in strand breaks and loss [23]. In ad-
dition, unspecific amplification inevitably causes frequent DNA breaks and
rearrangements, with oligos are fragmented and rejoined to new ones, a phe-
nomenon investigated by one of the authors (Song et al. in [24]), as shown in
Figure 2. Furthermore, contaminated sequences encompass not only various
forms of damage but also the complementary strands of the references pro-
duced during sequencing [25]. Lastly, considering the security issues in DNA
storage, intentionally introduced contaminated DNA molecules carrying false
information are utilized for data encryption in studies such as [26, 27, 28].
Clearly, the presence of contaminated sequences further complicates the al-
ready challenging reconstruction problem [23, 24].
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This paper proposes RobuSeqNet, a robust multi-read reconstruction
method based on DNN by differentiating the sequence quality and reliability
within the cluster, in the context of sequence reconstruction for DNA storage.
To our knowledge, no method currently exists to differentiate sequence qual-
ity and reliability within clusters, specifically within the context of the DNA
storage sequence reconstruction problem. This represents the primary advan-
tage of our proposed method over existing approaches. Note that the pro-
posed method differs from encoding-decoding systems like HEDGES [15] and
SPIDER-WEB [16] as it is a general approach to multi-sequence reconstruc-
tion, independent of encoding methods. To ensure resilience to noisy clusters
with contaminated sequences, including DNA breaks, rearrangements, and
noisy reads with IDS errors, our proposed model strategically utilizes the
attention mechanism and the Conformer block. The main contributions are
as follows:

• Integration of sequence quality through attention mechanism.
This innovative approach to multi-read reconstruction prioritizes se-
quence reliability within the cluster. Leveraging an attention module,
each strand is scored based on its sequence quality, enabling varying
degrees of contribution to the reconstruction process. This dynamic
allocation of attention allows for effective suppression of the influence
of diverse types of contaminated sequences.

• Error correction capacity of IDS errors within clusters. The
proposed model realizes the error correction of IDS errors within the
cluster. The Conformer-Encoder demonstrates robust feature extrac-
tion capabilities, intelligently integrating local features from the con-
volutional layers and global features from the attention module. The
resulting features are high-level and representative, such that the un-
derlying reference of the noisy cluster can be well recovered by a single-
layer long short-term memory (LSTM) decoder.

• Sequence reconstruction network accommodating varying clus-
ter sizes. The network is trained directly from clusters of different
sizes, rather than summing up the reads within a cluster to form a
structured input format [17]. Thereby, it is compatible with the input
cluster of varying sizes at the testing stage.

• Network with less parameters. The proposed neural network has a
small structure (≈ 2.5 M parameters) with good generalization ability.
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This helps to mitigate the overfitting issue caused by the shortage of
training data, when using DNN to address the sequence reconstruction
problem in DNA storage.

Figure 1: Overview of the DNA storage system.

Figure 2: Illustration of strands breaks and rearrangements in DNA data storage [24]
and the proposed RobuSeqNet for dealing with them in sequence reconstruction.

The rest of this paper is organized as follows. The related work is reviewed
in Section 2. In Section 3, we present the proposed multi-read reconstruction
model. Experimental results and analysis are given in Section 4. Finally,
Section 5 concludes the paper.

2. Related Work

We succinctly review several deep learning-based sequence reconstruc-
tion methods in DNA storage. The most relevant literature to this paper
is the so-called DNAformer, a scalable and robust solution for the DNA se-
quence reconstruction recently proposed in [17]. The model is based on DNN,
and is well adapted to imperfect but fast clustering of copies. Leveraging con-
volution, Xception, and Transformer, the model demonstrates a good ability
to correct IDS errors, particularly substitutions, within the cluster. Despite
sharing dissimilar network designs, our approach distinguishes itself from
DNAformer in the following aspects.

1. The input of DNAformer is formed by the element-wise sum of multiple
copies, implying equal importance of each sequence within a cluster to
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the reconstruction. However, it neglects to account for differences in
sequence quality arising from the presence of contaminated sequences.
On the contrary, our method scores every sequence within the clus-
ter, and accordingly, the strands contribute to the reconstruction at
different levels.

2. To overcome the shortage of training data, DNAformer applies the
Synthetic Data Generator (SDG) [29] to generate sufficient DNA se-
quences for training the model, with the sequence error rates estimated
by SOLQC [30]. Alternatively, our method circumvents this issue by
designing a small but efficient network, which can be trained with much
fewer labeled samples.

Nahum et al. [18] developed a single-read reconstruction model for DNA-
based storage systems with the goal of comprehending error patterns from
only a single sequence through a global, context-aware approach. The model
uses an encoder-decoder Transformer architecture composed of two paired
BERT models. The error correction is regarded as a self-supervised sequence-
to-sequence task, and the network is trained using synthetic sequences gen-
erated by SDG [29].

In the context of Nanopore sequencing data recovery, Lv et al. [19] in-
troduced an integration method that combines Viterbi error correction with
a recurrent neural network (RNN). This approach involves reconstructing
the reference directly from multiple records of the raw signal, bypassing the
inference from highly noisy basecalled reads. Notably, this innovative strat-
egy achieves a threefold reduction in reading cost when compared to prior
methodologies.

3. The Proposed Model

The multi-read reconstruction problem in DNA storage presents sig-
nificant challenges due to the complexity of decoding multiple erroneous
sequences accurately, especially in the presence of DNA breakage and re-
arrangements. Overcoming this challenge is crucial for maximizing data
storage capacity and ensuring reliable retrieval in DNA-based storage sys-
tems, thus paving the way for scalable and durable long-term data storage.
In this section, we formulate the multi-read reconstruction problem mathe-
matically and then describe the proposed robust multi-read reconstruction
network (RobuSeqNet) in detail.
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Figure 3: Illustration of the multi-read reconstruction problem defined in this paper.
Binary files are encoded as DNA references. Multi-read reconstruction starts from a
noisy cluster containing the erroneous copies originating from the original reference and
the contaminated sequences occurring at different stages of DNA storage. The proposed
reconstruction method aims at finding a mapping (characterized by a neural network),
that minimizes the distance between the cluster and the original reference.

3.1. Problem Statement

Use Σ = {A,C,G, T} to represent four DNA nucleotides. Let C ∈ (Σ∗)N

be a noisy cluster, which contains p erroneous reads y1, y2, ..., yp originating
from the same reference x ∈ ΣL, and q contaminated sequences z1, z2, ..., zq
introduced at various stages of the DNA storage process, with N = p + q.
Based on this assumption, the DNA multi-read reconstruction algorithm is
a mapping:

F : C → ΣL,

which receives N sequences and outputs x̂, an estimate of x, as shown in
Figure 3. In this work, we focus on deploying a DNN model to find such a
mapping F that the distance between x̂ and x can be minimized.

3.2. Model Overview

Our objective is to address the sequence reconstruction problem as defined
in Section 3.1 through the application of deep learning techniques. The pro-
posed RobuSeqNet, illustrated in Figure 4, is built upon an encoder-decoder
architecture and consists of three key components: the Attention Module,
Conformer-Encoder, and LSTM-Decoder. Located at the forefront of our
model, the Attention Module evaluates the quality of each sequence within
the input cluster, generating a high-level feature weighted by an average
score. This implementation incorporates an attention mechanism [31] to ad-
dress the impact of contaminated sequences, dynamically allocating weights

8



Figure 4: Model architecture. The proposed RobuSeqNet is composed of Attention
Module, Conformer-Encoder, and LSTM-Decoder, which correspond to the three colored
regions in the figure, respectively.

to different segments of the input. This non-uniform weighting strategy em-
powers the model to selectively prioritize the most relevant information, en-
hancing its adaptability and effectiveness for the given task. The Conformer-
Encoder is expected to understand the IDS error patterns within a cluster,
taking into account its powerful feature extraction ability. It interactively
combines the local features extracted by the convolution with the global
features generated by the attention module. The decoder is a single-layer
LSTM, which outputs the predicted reference of the input cluster. Next, we
present the sequence embedding and three model components in detail, as
well as the loss function.

3.2.1. Sequence Embedding

The model input is a cluster of a non-fixed number of DNA sequences
with varying lengths. Before being fed to the network, each sequence is
represented by the one-hot encoding to a prefixed, uniform length L, where
zeros are padded to short strands. Here, L represents the maximum sequence
length in the dataset. In this way, every sequence is converted to a matrix of
size 4× L, each column being a one-hot vector indicating the corresponding
base at that index position.
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3.2.2. Attention Module

As illustrated in Figure 5, the attention module consists of the convo-
lutional layer followed by an attention mechanism [31]. For every strand
feature, we perform two successive 1D convolution operations with kernel
sizes of 3 and 5 to model the position shifts from synchronization errors,
while reducing the number of feature channels from 4 to 2 and finally to 1.
The resulting one-dimensional vectors are scored by the attention mechanism
in a similar way as in [32].

Let yi ∈ RL×4 be the input feature of the i-th strand in cluster, and ỹi ∈
RL be the corresponding vector after convolution. The attention mechanism
is applied as

ei = vTf(Wỹi + b) + k. (1)

Here, the linear transformation with parameters W and b serves to project
the vector into a lower-dimensional space, thereby reducing the parameter
count of the network. The nonlinear activation function f introduces nonlin-
earity to the model, allowing it to capture complex relationships within the
data. Additionally, v and k are learnable parameters employed for scaling
and shifting the attention scores, respectively, enabling the model to dynam-
ically adjust the importance of each sequence within the cluster during the
attention calculation process.

After the nonlinear activation layer f , the feature is transformed to a
sequence-wise attention score ei via a linear layer (parameterized by v and
k). By applying the softmax function, the scalar ei is normalized over all the
strands within the cluster as

αi =
exp(ei)∑N
i=1 exp(ei)

, (2)

where N is the cluster size, and αi is the final attention score of the i-th
sequence. Obviously, the attention score reflects the importance of each
strand within the cluster. As a result, the weight-averaged feature for the
given cluster becomes

y =
N∑
i=1

αiyi. (3)

Here, every sequence contributes to the representation differently according
to sequence quality, with the importance of high-quality reads amplified and
the effect of low-scored strands suppressed automatically. After the attention
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module, the linear layer and convolution upsampling is applied to represent
the feature (3) in an enlarged feature space. As a 4-dimensional representa-
tion is not enough to characterize a position in the sequence, we expand the
feature dimension from L× 4 to L× 128 in the experiments.

Figure 5: Attention Module. Each noisy copy is converted to a two-dimensional matrix
by one-hot encoding and zero-padding. After convolution, each feature is transformed into
a one-dimensional vector, and is fed to the attention mechanism to estimate a scalar score.
Finally, the weight-averaged feature for the given cluster is generated.

3.2.3. Conformer-Encoder

Concerning the encoder, we adopt the convolution-augmented Trans-
former (Conformer), which is proposed for speech recognition and outper-
formed the CNN and Transformer-based models with SOTA results [33].
The Conformer combines convolution and self-attention to effectively cap-
ture both local features and global dependencies in sequential data. The
convolutional module learns relative-offset-based local interactions caused
by deletion or insertion errors. The utilization of self-attention layers is in-
tended to address the global dependencies within sequences, dynamically
focusing on different positions to better model long-term dependencies in the
sequence. As shown in Figure 4, the Conformer-Encoder consists of multi-
head self-attention layers and convolution layers sandwiched between two
feed-forward modules with shortcut connections, where layer normalization
is always applied at the junction of two modules.

The multi-head attention module (MHSA) [31] is computed by scaled-dot
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product with

Attention(Q,K, V ) = Softmax(
QK>√
dk

)V, (4)

where Q,K, V denote the input matrix and dk is the scaling factor that equal
to the dimension of Q and K.

In this work, we employ h = 8 parallel attention heads, namely the
concatenation of h scaled-dot product attention results, yielding

MHSA(X) = Concat(head1, head2, ..., headh)W, (5)

headi = Attention(XWQ
i , XW

K
i , XW

V
i ), (6)

where X ∈ RL×d is the input to MHSA, WQ
i ,W

K
i ,W

V
i ∈ Rd×dk . W ∈ Rhdk×d

maps the concatenated feature back to the original dimension d. In practice,
we have d = 128 and dk = d/h = 16.

As for the convolution module (Conv), we perform two pointwise convo-
lutions and a 1-D depthwise convolution with kernal size 32 to capture local
correlations among sequence positions. Each feed-forward module (FFN) has
two linear layers, which firstly double and then restore the original feature
dimension.

Mathematically, for x input to Conformer-Encoder, the output y is:

x
′
= x+

1

2
FFN(x), (7)

x
′′

= x
′
+ MHSA(x

′
), (8)

x
′′′

= x
′′

+ Conv(x
′′
), (9)

y = x
′′′

+
1

2
FFN(x

′′′
). (10)

3.2.4. LSTM-Decoder

As an advanced variant of RNN, LSTM can model long-range depen-
dencies well for chronological data [34]. Due to processes such as encoding,
synthesis, and sequencing, sequences in DNA storage commonly exhibit a
complex long-range dependency structure. The memory units and gating
mechanisms of LSTM enable it to more effectively capture and leverage these
long-term dependencies, thereby enhancing its modeling capability for DNA
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sequences. In practice, we employ a single-layer LSTM decoder. Although
simple, it is sufficient for the reconstruction task, owing to the powerful
feature extraction ability of the Conformer-Encoder. The decoder reduces
the feature dimension back to 4, outputting for each position the estimated
probabilities for each base.

The proposed RobuSeqNet model is trained using a cross-entropy loss
function defined as

L = −
L∑
l=1

xl log f(yl), (11)

where L is the sequence length, yl is one-hot label vector indicating the base
category for the l-th position, and f(xl) represents the predicted probability
vector by the proposed neural network. The cross-entropy loss function is
widely used in classification tasks. During the evaluation of the model’s
performance on the testing set, our primary metric of assessment was the
success rate, as defined in Equation (12).

Table 1: Data description.

Dataset Erlich et al.[35] Organick et al.[36] Chandak et al.[37]

Num. of reference 72000 607150 11710
Sequence length 152 150 150

Synthesis Twist Bioscience Twist Bioscience CustomArray
Sequencing Ilumina miSeq Ilumina NextSeq Illumina iSeq

Num. of reference aligned to reads 72000 596669 11710
Missing clusters 0 10481 0

Num. of reads aligned to reference 13328870 14486345 1065117

Table 2: Statistics of the training and testing set.

Dataset Erlich et al. [35] Organick et al. [36] Chandak et al. [37]

Training
Cluster number 36000 296317 5857

Cluster size 5-30 5-30 5-30
Num. of reads 628875 5587728 101643

Testing
Cluster number 36000 296325 5853

Cluster size 5-30 5-30 5-30
Num. of reads 630945 5586351 102744

4. Experimental Results
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4.1. Data Preparation and Training details
We use three well-known datasets for DNA-based storage provided in

Erlich et al.[35], Organick et al.[36], and Chandak et al.[37]. Dataset de-
scriptions are given in Table 1. These three datasets exhibit distinct data
scales and varying error rates, thereby serving as representative instances
of complex and diverse DNA storage scenarios in reality. Each dataset com-
prises two key files for sequence reconstruction, one containing the disordered
collection of the noisy reads and the other recording all the original refer-
ences. As no ground-truth clusters are available in practice, we first apply
Burrows-Wheeler-Alignment Tool (BWA) [38] on both files, and take the se-
quence alignment results as perfect clusters, where each read is matched to
its closest reference.

In the experiments, we set the cluster scale to be 5∼30, a modest range
for the sequence reconstruction task, by randomly picking reads from each
previously-obtained cluster. This approach is justified by the large number
of reads in the original sequencing files, leading to the typically substantial
size of clusters and considerable information redundancy (e.g., the average
number of copies per reference is approximately 185 in dataset Erlich et
al.[35], Table 1).

To further intensify the challenge of multi-read reconstruction and simu-
late scenarios involving contamination sequences, we introduce a certain pro-
portion of such sequences into each cluster. These contaminated sequences
are produced from: 1) DNA fragments: Simulating DNA breakages and
rearrangements encountered in DNA storage and PCR amplification-based
DNA strand replication, as analyzed in [24]; 2) Misclustered reads: Occur-
ring when clustering is imperfect and sequences are assigned to the wrong
cluster; 3) Reverse complementary strands: As sequencing process gener-
ates reverse complementary sequences for DNA, strands in opposite orders
may end up in the same cluster [25]; 4) Random sequences: Introduced to
simulate intentionally added false information in [26]. To demonstrate the
effectiveness of the proposed model under different contamination levels, we
inject contaminated sequences into each cluster, with equal probability for
every candidate reason. The contamination level is defined as the proportion
of injected contaminated sequences relative to the cluster size, calculated by
dividing the number of contaminated sequences by the total number of se-
quences in a cluster. It is distinguished from the error rate, which is specific
to the DNA storage dataset and is typically quantified as the IDS error rate
estimated using tools such as SOLQC [30].
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More precisely, on each of the three datasets, five simulations with con-
tamination levels ranging within the set {0%, 5%, 10%, 15%, 20%} are per-
formed by using the proposed method as well as the comparative sequence
reconstruction approaches. Here, 0% denotes the case without extra added
contaminated sequences, i.e., the clusters are composed of the reads from the
original sequencing file.

Table 2 reports the training and testing set on three datasets. For each
experiment, the proportion of training data to test data is set to 1:1. In the
training phase, the dataset is initially sorted based on the cluster sizes. Clus-
ters with equal size are grouped, forming mini batches for training. Shuffling
is performed both between and within groups at the beginning of each epoch
to ensure the randomness of the training dataset. This approach enables
our network to handle clusters of different sizes effectively. The training and
testing are performed on a single NVIDIA GeForce RTX 2080 Ti GPU. We
set the batch size to 64 and the initial learning rate to 0.005. The Adam
optimizer is applied with parameter values β1 = 0.9 and β2 = 0.98. The
coefficient of L2 regularization is chosen as 1e− 4 to prevent overfitting.

4.2. Evaluation metric and Comparative methods

The multi-read reconstruction performance is evaluated by the success
rate, defined by

success rate =
#{ predicted sequence = input reference }

#{ input reference }
. (12)

In this formula, a sequence will contribute to the success rate only if it is
perfectly reconstructed without error at every index position. We apply the
success rate as it is the most widely used in DNA sequence reconstruction
tasks [17, 18]. This indicator is more stringent compared to other distance-
based metrics, such as edit error rate or Hamming error rate, as only perfectly
reconstructed sequences are counted. In real DNA storage scenarios, success-
fully reconstructed sequences convey specific information fragments. There-
fore, the success rate effectively reflects the overall effectiveness of sequence
reconstruction for a dataset, providing a stringent evaluation criterion.

The effectiveness of the proposed method is assessed by benchmarking it
against three SOTA sequence reconstruction methods. We specifically chose
these comparison methods because they are recognized as SOTA solutions in
the multi-read sequence reconstruction domain. Notably, like our proposed
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(a) Erlich et al.[35]

(b) Organick et al.[36]

(c) Chandak et al.[37]

Figure 6: Changes of reconstruction success with respect to the contamination level
ranging from 0% to 20% using the proposed RobuSeqNet, on three datasets.
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(a) Erlich et al.[35]

(b) Organick et al.[36]

(c) Chandak et al.[37]

Figure 7: Frequency histograms of the edit distance measured between the wrong pre-
diction and the corresponding cluster reference.
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approach, these methods are designed to operate independently of the en-
coding scheme applied. This characteristic allows them to be directly applied
to noisy read clusters generated from the sequencing file without considering
the specific encoding method used in the dataset.

• Iterative Reconstruction [8]: This algorithm uses multiple methods
to revise strands from clusters and return the candidate sequence most
likely to be the original reference. The error vectors majority algorithm
is used to correct insertion and substitution errors, while the pattern-
path algorithm is applied to correct deletion errors.

• BMA divider [8]: This BMA-based algorithm divides the received
clusters into three sub-clusters by their lengths. The majority voting
is applied to the sequences of the correct length. Then deletion and in-
sertion error corrections are performed on the sub-clusters with shorter
and larger sequence lengths, respectively.

• BMA Lookahead [9]: This is an improved algorithm of the BMA
method. For sequences whose current symbol does not match the ma-
jority of symbols, a “prior window” looking at the next two (or more)
symbols is used.

4.3. Results anaysis

We report the reconstruction success rates of the proposed RobuSeqNet
at different contamination levels {0%, 5%, 10%, 15%, 20%} on the testing set
for all the three datasets, as shown in Figure 6. The horizontal axis of Fig-
ure 6 represents the contamination level and the vertical axis represents the
success rate. For Erlich et al.[35], the success rates reach 99.86%, 99.78%,
99.78%, 99.76%, and 99.74%, corresponding to 51, 78, 79, 87, and 93 wrong
predictions out of 36000 clusters. The success rates are 99.82%, 99.70%,
99.53%, 99.52%, and 99.58% with 540, 897, 1391, 1408, and 1230 wrong pre-
dictions out of 296325 clusters for Organick et al. [36]. On the third dataset
Chandak et al.[37], the numbers are 97.68%, 97.37%, 97.06%, 96.77%, and
96.45% with 136, 154, 172, 189, and 208 wrong predictions out of 5853 test-
ing clusters. On all three datasets, the performance of RobuSeqNet remains
stable with only a slight decrease in success rate, even when the proportion
of contaminated strands reaches 20%. Notice that the success rates are rel-
atively low on the third dataset at all the contamination levels. It is due to
the higher IDS error rates, as well as the mismatch in sequence lengths.
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These results have significant implications for real-world DNA storage
systems. They demonstrate the robustness and stability of the proposed
RobuSeqNet model across varying levels of contamination. This resilience is
crucial for real-world DNA storage systems, where challenges like IDS errors
and contaminated sequences, including DNA breaks and rearrangements, are
unavoidable due to factors such as synthesis errors and storage conditions.
By enabling accurate information recovery, the resilience in multi-read re-
construction enhances the reliability of DNA storage systems.

4.3.1. Wrong prediction analysis

The frequency histograms of the edit distance, as shown in 7, illustrate the
differences between the incorrectly predicted sequences and their correspond-
ing cluster references. The analysis indicates that a majority of erroneous
predictions have a relatively small edit distance to their original references.
This observation suggests that the proposed model accurately predicts most
sequence positions, even when the cluster reconstruction is not entirely per-
fect. Future modeling efforts should prioritize sequences that, despite not
being successfully reconstructed, have a low edit distance from the reference
sequence.

4.3.2. Inference time comparison

Once well-trained on a specified dataset, RobuSeqNet can be directly
used for sequence reconstruction on that same dataset. Table 3 reports the
inference time of our method compared to three other methods, with each
batch containing 64 noisy clusters for reconstruction. While the inference
time of RobuSeqNet is slightly higher than that of BMA divider [8] and BMA
Lookahead [9], it is significantly lower than that of Iterative Reconstruction
[8].

Table 3: Inference time comparison to SOTA methods

RobuSeqNet Iterative
Reconstruction [8]

BMA divider [8] BMA Lookahead [9]

Inference time 1s/batch 100s/batch 0.45s/batch 0.41s/batch

4.3.3. Impact of cluster size

We investigate how the smallest cluster size k in a dataset affects the
reconstruction success rate, under varying contamination conditions. The
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Figure 8: Changes of the success rate in terms of the smallest cluster size k, namely the
cluster size of the dataset ranges from k to 30, on dataset Organick et al.[36].

results are given in Figure 8. As observed, for all contamination rates, the
success rate increases with the increase of the smallest cluster size k in a
dataset. This is attributed to the fact that the more sequences there are in
a cluster, the greater the variety of error types the model can learn, thereby
enhancing the modeling capability. With k = 20, the success rates achieves
99.98%, 99.96%, and 99.89% under the contamination levels 0%, 10% and
20%, respectively.

4.4. Comparative study

Figure 9 reports the success rate obtained on all three datasets at varying
contamination levels, by using the proposed RobuSeqNet, and other three
sequence reconstruction strategies.

It is worth noting that the proposed RobuSeqNet consistently outper-
forms the alternatives on the third dataset Chandak et al. [37], across all
contamination levels. This is attributed to the dataset’s characteristic of con-
taining reads longer than the original reference, which leads to a higher IDS
error rate. The Conformer-Encoder module in RobuSeqNet effectively cap-
tures these IDS error patterns, making it resilient to position shifts within
the strands. Notably, the BMA divider [8] performs inadequately on this
dataset.
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In uncontaminated datasets, our method demonstrates comparable recon-
struction results to SOTA methods. More precisely, on the first two datasets,
the success rates by RobuSeqNet are slightly lower than that of Iterative Re-
construction [8] and BMA Lookahead [9], but slightly higher than in BMA
divider [8].

The advantages of the proposed RobuSeqNet become increasingly evi-
dent as the proportion of contaminated sequences gradually augments in
the dataset. For example, when the contamination proportion is increased
to 10% in Erlich et al. [35] data, the performance decreases in RobuSe-
qNet, Iterative Reconstruction[8], BMA divider [8], and BMA Lookahead [9]
are 0.1%, 0.15%, 0.37% and 0.22%, respectively. Compared to its coun-
terparts, the proposed method is least affected by cluster contamination.
With a 10% contamination rate, RobuSeqNet is second only to Iterative Re-
construction [8] by a marginal 0.06% on Erlich et al. [35] dataset and trails
BMA Lookahead [9] by a similarly slight 0.07% on the second dataset. When
the contamination proportion reaches 15%, RobuSeqNet surpasses all other
methods in terms of success rates across all three datasets. With further
increases in contamination, these advantages over other methods in terms of
success rates become even more pronounced.

The results show RobuSeqNet’s effectiveness in addressing various forms
of contamination, such as strand breaks, rearrangements, and IDS errors
within clusters, particularly in scenarios with high contamination levels.
These findings imply that RobuSeqNet has the potential to enhance data
retrieval and information recovery in real-world DNA storage scenarios by
effectively tackling the challenges posed by contaminated sequences and IDS
errors within clusters.

4.4.1. Robustness analysis

To assess the robustness of RobuSeqNet against three other models, we
designed a composite score to measure the model’s resilience to varying levels
of contamination, primarily by referring to the formula for model robustness
proposed in [39]. The specific formula we employed is

Robustness Score =
1

t

t∑
s=1

RRf
s,c, (13)

where f denotes the model, c indicates the dataset, s represents different
contamination levels, and RRf

s,c refers to the reconstruction rate for a specific
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(a) Contamination level: 0%

(b) Contamination level: 10%

22



(c) Contamination level: 15%

(d) Contamination level: 20%

Figure 9: Comparison of success rate using the proposed RobuSeqNet, iterative recon-
struction [8], BMA divider [8] and BMA Lookahead [9], on three datasets at contamination
levels 0%, 10%, 15% and 20%.
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contamination level, dataset, and model. It is noteworthy that the metric
in [39] typically measures the average value of corruption errors of a model
across different corruption levels. However, in our study, we adapted this
metric to reflect the average reconstruction rate, aligning it more closely
with the objectives of multi-sequence reconstruction in DNA storage.

The robustness score represents the average performance of each model
across varying levels of contamination within individual datasets. As de-
picted in Table 4, these scores offer a holistic evaluation of each method’s
ability to handle contaminated sequences within specific datasets. Remark-
ably, our model consistently outperforms the other methods across all three
datasets, indicating its superior resilience in real-world scenarios.

Table 4: Model robustness score.

Method Robustness score

Erlich et al. [35] Organick et al. [36] Chandak et al. [37]
Our model 99.79% 99.71% 96.96%

Iterative Reconstruction 99.74% 99.49% 72.66%
BMA divider 99.14% 99.68% -

BMA Lookahead 99.43% 99.68% 60.45%

4.5. Ablation Study

Table 5: Ablation Study.

Model Success rate

Erlich et al. [35] Organick et al. [36] Chandak et al. [37]

0% 10% 20% 0% 10% 20% 0% 10% 20%

RobuSeqNet 99.86% 99.78% 99.74% 99.82% 99.53% 99.58% 97.68% 97.06% 96.44%
-Atten. 70.72% 63.76% 43.45% 80.65% 72.49% 57.53% 67.89% 65.98% 62.79%

-Atten.+Norm. 99.21% 98.56% 96.34% 99.81% 99.12% 97.51% 97.68% 95.33% 90.12%
-FFN-Conv 99.57% 99.32% 99.00% 99.15% 99.12% 98.47% 97.45% 96.78% 96.28%

The ablation study is designed to demonstrate the necessity of the Atten-
tion Module and the effectiveness of the Conformer-Encoder. To this end, we
first remove the attention mechanism in attention module and directly feed
the model with the summation of all the input sequences within a cluster.
As shown in Table 5, the resulting model performs poorly on all datasets
with varying contamination levels. This may be attributed to significant
differences in the scales of the input data. The removal of the attention
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mechanism is equivalent to omitting the normalization operation, leading
to training instability and hindering the model’s ability to learn meaningful
representations.

We further impose an equal, normalized weight on every input strand. As
seen from Figure 5, the resulting reconstruction performance is always inferior
to our proposed model, especially when severe contamination is present in the
dataset. The gaps in success rate between the two models are up to 3.4%,
2.07%, and 6.32% on three datasets when the contamination rate reaches
20%. In the case without additional contamination sequences, this model
achieves similar results compared to our model.

Finally, we remove the feed-forward module and the convolution mod-
ule from the Conformer block to simulate a Transformer-Encoder that relies
entirely on the multi-head attention mechanism, while the encoder in Trans-
former [31] is composed of a multi-head attention module and a feed-forward
module consisting of two linear layers, each performing residual concatena-
tion and layer normalization. As shown in Table 5, the performance of the
latter model is satisfactory but inferior to our model, demonstrating the
effectiveness of the proposed Conformer-Encoder. When compared to the
removal of other modules, the decrease in model performance was least no-
ticeable when the feed-forward and convolution modules were removed. This
suggests that in future model designs, alternatives for these specific compo-
nents could be explored, considering their relatively minor influence during
ablative analysis.

5. Conclusion

In this paper, we proposed a DNN-based multi-read reconstruction
model for DNA storage, which is robust to noisy reads with IDS errors, and
more importantly resilient to the contaminated sequences introduced during
the DNA storage process. The proposed network has an encoder-decoder ar-
chitecture with three pivotal components. The Attention Module suppresses
the effect of contaminated sequences on the reconstruction, by automati-
cally scoring the strands within the cluster and generating a representative,
weight-averaged feature for subsequent tasks. The Conformer-Encoder has
a sandwich structure and tackles most of the IDS errors within a cluster
thanks to its advanced feature extraction capacity. The single-layer LSTM-
decoder finally predicts the reference DNA of the input cluster. We prove
the effectiveness and robustness of the proposed RobuSeqNet on three next-
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generation sequencing datasets through a series of comparative experiments,
where different levels of contamination caused by various factors during the
process of DNA storage are simulated. The ablation study is also provided
to verify the necessity of the attention mechanism and the Conformer block
in the proposed model. Future works will focus on adapting the proposed
sequence reconstruction model to the Nanopore sequencing data with higher
error rates. On the other hand, due to the limited availability of real DNA
storage data, transfer learning strategies and data augmentation can be em-
ployed to mitigate potential overfitting issues caused by the scarcity of train-
ing data for deep neural networks.

Code Availability

The proposed RobuSeqNet was implemented using Python and Pytorch.
The source code is available at: https://github.com/qinyunnn/RobuSeqNet.
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