BOUNDED DIFFERENTIALS ON THE UNIT DISK AND THE ASSOCIATED
GEOMETRY

SONG DAI' AND QIONGLING LI?

ABSTRACT. For a harmonic diffeomorphism between the Poincaré disks, Wan in [Wan92] showed
the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this
paper, we will generalize this result from quadratic differentials to r-differentials. We study the rela-
tionship between bounded holomorphic r-differentials/(r — 1)-differential and the induced curvature
of the associated harmonic maps from the unit disk to the symmetric space SL(r,R)/SO(r) arising
from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of
holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic
affine spheres in R®, maximal surfaces in H*>™ and J-holomorphic curves in H*?. Benoist-Hulin
and Labourie-Toulisse have previously obtained some of these equivalences using different methods.
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1. INTRODUCTION

Consider a harmonic diffeomorphism between the unit disk D equipped with the Poincaré hy-
perbolic metric gp. By the work of Wan [Wan92], the following are equivalent: (i) the harmonic
map is quasi-conformal; (ii) the energy density is bounded; (iii) its Hopf differential is bounded
with respect to gp.

The results of Wan on holomorphic quadratic differentials have been generalized to holomorphic
cubic differentials. Benoist and Hulin [BH14] established that the following conditions are equivalent

for a hyperbolic affine sphere in R?, whose Blaschke metric has conformal type as ID: (i) its Blaschke
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metric has curvature bounded above by a negative constant; (ii) the Blaschke metric is conformally
bounded with respect to gp; (iii) its Pick differential is bounded with respect to gp.

The associated equations in these two settings belong to a type of single vortex equation and
can be dealt with simultaneously. The single vortex equation can be fit into a broader framework
known as the nonabelian Hodge correspondence for Higgs bundles.

Recall that a Higgs bundle on a Riemann surface 3 consists of a pair: a holomorphic vector
bundle E over ¥ and a Higgs field, represented as an End(FE)-valued holomorphic 1-form. A
Hermitian metric h on E is called harmonic if it satisfies the Hitchin equation. A harmonic metric
h gives rise to an equivariant harmonic map from the universal cover of 3 to the symmetric space
GL(r,C)/U(r).

Similar to the case of a compact surface, one can define the Hitchin section consisting of Higgs
bundles over D, denoted as s(q2,-,qn), parametrized by a tuple of differentials ¢2,---,¢q,. The
image of s(0,--+,0,¢,)/s(0,---,0, ¢.-1,0) is referred to as cyclic/subcyclic Higgs bundles in the Hitchin
section. In particular, the two cases discussed at the beginning belong to the category of cyclic
Higgs bundles in the Hitchin section for r = 2,3. For the (sub-)cyclic Higgs bundles, the Hitchin
equation coincides with the (variant) Toda system.

The second author and Mochizuki in [LM20a] showed that for a Higgs bundle over D, the spectral
curve is bounded, i.e., |tr(¢")|g, (4 = 1,++,7) are bounded, if and only if the norm of Higgs field |¢|p 4y
is bounded. This result can be viewed as a generalization of the equivalence between (ii) and (iii)
for rank two and three cyclic Higgs bundles.

Similar to the case for quadratic differentials and cubic differentials, we aim to investigate whether
the following holds: for a Higgs bundle in the Hitchin section, by choosing an appropriate harmonic
metric, it has a bounded spectral curve if and only if the induced curvature of the harmonic map
is bounded above by a negative constant. It is worth noting that this question restricts to the
negative curvature conjecture for compact hyperbolic surface case in [DL19]. We will address this
question for cyclic and subcyclic Higgs bundles in the Hitchin section.

For r > 2, given a holomorphic r-differential ¢ on D, it has been shown by the second author and
Mochizuki [LM20a] that there exists a unique strongly complete solution (see Definition 3.7) to the
Hitchin equation on the cyclic rank r Higgs bundle s(0,--,0,¢). One may also define a similar no-
tion of strongly complete solution to the Hitchin equation for subcyclic rank (r—1) Higgs bundles.
Consequently, one can associate a holomorphic r-differential or a holomorphic (r — 1)-differential
with a harmonic map f from D to the symmetric space N := SL(r,R)/SO(r) arising from the
strongly complete solution.

We would like to investigate the relationship between bounded r-differentials or (r—1)-differentials
with the geometry of harmonic maps. Our main result is the following theorem.

Theorem 1.1 (part of Theorem 4.8). Suppose f: D — ¥ c N = SL(r,R)/SO(r) is a minimal
immersion induced by a holomorphic r-differential q for r >3 or a holomorphic (r — 1)-differential
q for r >4 arising from the strongly complete solution. Then the following are equivalent:

(1) q is bounded with respect to gp.

(2) The induced metric of ¥ is mutually bounded with gp.

(3) There exists a constant § >0 such that KY < -§ for every tangent plane o of .
(4) The induced curvature on X is bounded from above by a negative constant.

Remark 1.2. (1) The equivalence between (1) and (2) follows from the equivalence between the
bounded spectral curve and the bounded norm of the Higgs field in Li-Mochizuki [LM20a].
(2) According to the definition of strongly completeness for both cases, the sectional curvature

Ké,v of the tangent plane o of f satisfies K(],V <0 and the induced curvature is negative.
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We also have a version of Theorem 1.1 dealing with the cyclic case in the case of r = 2, 3, as stated
in Proposition 4.2. For the case of r = 2, Proposition 4.2 corresponds to Wan’s result on harmonic
diffeomorphisms between . In fact, the main technique in our proof of Proposition 4.2 is adapted
from Wan’s proof. Wan’s result has also been generalized to harmonic diffeomorphisms between
pinched Hadamard spaces in [LTW95]. Building upon Wan’s proof, we introduce the key Lemmas
2.2 and 2.5, which will be frequently used in this paper. As a direct corollary of Proposition 4.2
for the case r = 3, we provide an alternative proof of Benoist-Hulin’s theorem [BH14] on hyperbolic
affine spheres in R?. This theorem shows that the Blaschke metric has curvature bounded above
by a negative constant if and only if its Pick differential is bounded with respect to the hyperbolic
metric. Detailed discussions can be found in Section 5 and 6.

Holomorphic quartic differentials and sextic differentials naturally appear in the structure data
of immersed surfaces in pseudo-hyperbolic spaces. We establish results analogous to those for
quadratic and cubic differentials.

For a space-like maximal surface in H*", one can associate with a holomorphic quartic differential.
According to [CTT19], such a maximal surface corresponds to a conformal SOy(2,n + 1)-Higgs
bundle over a domain in C along with a real harmonic metric that is compatible with the group
structure. In Section 7, we prove the following theorem, previously shown in Labourie-Toulisse
[LT23], with the exception of part (i).

Theorem 1.3. (Theorem 7.9) For a complete mazimal surface X in H>™, its induced curvature is
either negative or constantly zero. In the latter case, X is conformal to the complex plane.
Furthermore, assuming that X is conformal to D, the following conditions are equivalent:

(1) The quartic differential is bounded with respect to the hyperbolic metric.
(2) The induced metric is conformally bounded with respect to the hyperbolic metric.
(3) The induced metric has curvature bounded above by a negative constant.

Remark 1.4. Our technique is different from the one in [LT23]. In fact, the method used in [LT23]
shares a similar spirit with the one in [BH14] for affine spheres and cubic differentials.

For space-like J-holomorphic curves in H*? with nonvanishing second fundamental form and a
timelike osculation line, we can associate a holomorphic sextic differential gg. According to [Nie22],
such J-holomorphic curves correspond to subcyclic Higgs bundle with certain harmonic metric. In
Section 8, we prove the following theorem.

Theorem 1.5. (Theorem 8.4) Let X be a complete space-like J-holomorphic curve in H*? such
that its second fundamental form never vanishes and has timelike osculation line. Then, its induced
curvature is either negative or constantly zero. In the latter case, X is conformal to the complex
plane.

Furthermore, assume X is conformal to I, the following are equivalent:

(1) The sextic differential is bounded with respect to the hyperbolic metric.
(2) The induced metric is conformally bounded with respect to the hyperbolic metric.
(3) The induced metric has curvature bounded above by a negative constant.

Regarding Toda equations and related geometry on complex plane or more general Riemann sur-
faces, there is an extensive body of literature on solutions and corresponding geometry. Regarding
harmonic maps between surfaces, see, for example, [SY78, Wol89, WA94, Han96, HTTW95, Gup21].
For hyperbolic affine spheres in R3, see, for example, [Cal72, Lof01, Lab07, BH13, BH14, DW15,
Nie23]. For maximal surfaces in H?", see [CTT19, TW20, LTW20]. For .J-holomorphic curves in
H*2 (or equivalently S>%), see [Barl0, Eva22]. For cyclic Higgs bundles of general rank, see, for
example,[Barl5, GL14, GIL15, Moc, Mocl4, DL19, DL20, LM20b].
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Recall that the universal Teichmiiller space 7 (D) is the space of quasisymmetric homeomor-
phisms of S! fixing three points. Combining Wan’s result with the work of [LT23, Marl7], there
is a bijection between the space of bounded quadratic differentials with the universal Teichmiiller
space. Recent work by Labourie and Toulisse [LT23] constructs an analogue of the universal Te-
ichmiiller space as a subspace of the space of maximal surfaces in H?" that relates to the space of
bounded quartic differentials. Consider a 2-dimensional real vector space denoted as V. Denote
by QS,, the space of quasisymmetric maps from P(V) to 0w H>" equipped with the C° topology,
up to the action of SO(2,n +1). The space QS,, can be viewed as a higher rank analogue of the
universal Teichmiiller space 7 (D). Denote by Hp (D, K*) the space of bounded quartic differentials
on D. They construct a natural map H from QS,, to the product space T (D) x H,?(]D), K%). At the
end of Section 7, we provide a concise proof of the properness of this map H, as posed by Labourie
and Toulisse.

Organization of this paper. Section 2 gathers some useful tools, particularly Lemma 2.2, which
is the key tool. We then present preliminaries on Higgs bundles and the Toda equation in Section 3.
In Section 4, we prove the main Theorem 4.8. In Section 5, we study the application of Proposition
4.2 to harmonic maps between surfaces and bounded quadratic differentials. Section 6 explores
the application of Proposition 4.2 to hyperbolic affine spheres and bounded cubic differentials.
Section 7 is dedicated to the study of maximal surfaces in H?™ and bounded quartic differentials.
We also discuss an analogous universal Teichmiiller space in Section 7. In Section 8, we explore
J-holomorphic curves in H*? and bounded sextic differentials.

Acknowledgements. We want to thank Francois Labourie and Jeremy Toulisse for sending us
their preprint and helpful discussion. The second author thanks Xin Nie for helpful explanations
on the associated Ga-geometry. Li is supported by the National Key R&D Program of China No.
2022YFA1006600, the Fundamental Research Funds for the Central Universities and the Nankai
Zhide foundation. Dai is supported by NSF of China (No.11871283, No0.11971244 and No.12071338).

2. MAIN TOOLS

In this section, we introduce several useful lemmas. We begin by recalling the following mean-
value inequality, which is used to establish the key Lemma 2.2.

Proposition 2.1. (Mean-value inequality, [CT90, Lemma 2.5]) Let (M,g) be a complete Rie-
mannian manifold of dimension n. Consider constants ¢ > 0, Ry > 0, and xg € M. Assume that
(1) the Poincaré and Sobolev inequalities hold with constant ¢, and cs for functions supported in
By(zo,Ro); and (ii) Vol(Bg(zo,7)) < car™, for all v < Ry, where ¢y is a positive constant. Then
there exist constants py = po(n,c, Ry, cp,cs,¢2) > 0 and C = C(n,c, Ro,cp,cs,c2) > 0 such that,
for any nonnegative W42 supersolution u satisfying Agu < cu in By(zo, Ro) and p € (0,po), the
following inequality holds:

1
inf u(z) > C uPdV,)r.
zeBgy(xo,R0/4) () ( Bgy(x0,R0/2) g)

In particular, there exist constants C >0 and 0 < p <1 such that

1
u(xzg) > C f uPdVy,)r.
(702 O ooy ™ V)

The following is the key lemma we will use in this paper. It follows from the proof in Wan [Wan92,
Theorem 13], where he showed that bounded quadratic differentials correspond to quasi-conformal
maps between the unit disk.
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Lemma 2.2. Let g be a Riemannian metric on D satisfying (i) g is equivalent to the hyperbolic
metric gp, i.e. Cylg < gp < C1g for some constant Cy > 1; (i) the Gaussian curvature K, of g
satisfies —H < K4 < 0 for some positive constant H. Let u be a smooth function on D satisfying
—CglKg <u<-CoK,y for some constant Cy > 1.
Assume that u satisfies
Agu L cu

for some positive constant c, then there exist a positive constant &, depending on C1, H,Cs, and c,
such that u>6 and K, < -C5'6.

Proof. Since g is equivalent to gp, noting that gp has exponential volume growth and is homoge-
neous, there exist constants €, 7, M > 0, depending only on C1, such that Vol(By(z,r)) > ee™ - M for
every ball By(z,r) with respect to the metric g. Therefore, there exists a positive constant R, de-

pending on C1, such that for every = € D, there exists r € (0, R) satisfying %Vol(Bg(x, r)) >2m+1.
Since K, <0, and D is simply connected, the exponential map is a diffeomorphism. Then,
T Nol(B,(2,1)) = 108, (1)) kyd
—Vo x,r))=— x,r)) = s
dr? g dr g 0By (z,r) g
where L is the length functional and k, is the geodesic curvature of B, (x,r) with respect to the
metric g. By the Gauss-Bonnet-Chern formula, we have

2

d
WVOI(BQ(J‘,’I“)) =27 - ~[Bg(x,r) K,dVy,.

Thus, for every x € D, there is a constant r € (0, R) such that fBg(m - -K,dVy > 1. Since u > —C’Q_IKQ,

we have
udVy > Cy*.
Lg(x,r) g 2

Now we apply Proposition 2.1 to obtain the L? estimate of u. In fact, let Ry = 2R, where R
is defined above depending on C. Since g is equivalent to gp, there is a positive constant co,
depending on C4, such that Vol(By(z,r)) < cor™, Vr < Ry, Va € D. Since K, > —H, from [Lil2,
Theorem 5.9], the Poincaré inequality holds for a constant ¢, depending on H. To see the Sobolev
constant, since it is equivalent to the isoperimetric constant and g is equivalent to gp, we see that
the Sobolev inequality holds for a constant c¢s depending on C. It follows from Proposition 2.1
that there exist constants C' >0, 0 < p < 1 depending on C7, H, Cs, ¢ such that for every x € D,

u(x)zC(fB( R)updVg)%.
g\Z,

From the assumption, 0 < u < CoH and thus u? > (CoH)P 1y for 0 < p < 1. Together with the L!
estimate we obtained above, there exist a positive constant §, depending only on C4, H,Cs, and c,
such that

1 p1 1 po1 1
u(x) > C( By (o) uPdVy)r > C-(CoH) » (.[Bg(x,R) udV,)v > C-(CoH) 7 -Cy? = 6.

Since u < —Cy K, then K, < ~C5'6. This concludes the proof. O

The next lemma is the Cheng-Yau maximum principle, which allows us to deal with complete
Riemannian manifolds whose curvature is bounded from below.

Lemma 2.3 (Cheng-Yau Maximum Principle [CY75]). Suppose (M, g) is a complete manifold with
Ricci curvature bounded from below. Let u be a C*-function defined on M such that Agu > f(u),
where f:R - R is a function. Suppose there is a continuous positive function h(t) : [a,0) = R,
such that

(i) h is non-decreasing;



(i) Hm nf 55 > 0;

(i) [,° ([at h(T)dT)_%dt < o0, for some b > a.
Then the function u is bounded from above. Furthermore, if f is lower semi-continuous, f(supu) <
0.

In particular, for a > 1 and a positive constant ¢y, one can check if f(t) > cot® for ¢ large enough,
h(t) = t* satisfy the above three conditions (i)(ii)(iii).

Lemma 2.4. Let gg and g be two conformal Riemannian metrics on a Riemann surface 3. Assume
that go is complete and there ewist two positive constants a and b such that K4 < -b and Ky, > —a.
Then, g < 9o-

Proof. Regard go as a Hermitian metric, locally, denote gg = §odz ® dZ and g = gg - €%,

2
-b> Kg = —Té?z@g log(eugo).
€790

Then,
—— Dgou+ —Kg <-b
So
Dgou > ée“ + Koo > ée“ _e
2 2 2 2
Then, by the Cheng-Yau maximum principle, e < . O

Combining Lemmas 2.2, 2.3, and 2.4, we show the following lemma, which will be used frequently
throughout this paper.

Lemma 2.5. Suppose (X,g) is a complete surface with curvature bounded from below. Suppose
there exist positive constants ¢ and d such that:

(1) D Ky > cKy (K, +d).

Then K,<0 or K,=0, in which case 3 is parabolic.
When ¥ is hyperbolic, let gny, be the unique complete conformal hyperbolic metric. If g < Cgpyp
for some positive constant C, then there exists a positive constant § such that K, < —0.

Proof. Since g is complete and K, has a lower bound, the background metric is enough to ap-
ply the Cheng-Yau maximum principle. Since the right hand side of the equation has quadrat-
ic growth, from the Cheng-Yau maximum principle (Lemma 2.3), K, has an upper bound, and
csup Kg(sup Ky + d) < 0. Therefore, sup K, < 0. By the strong maximum principle, either K, <0
or K,=0.

From Lemma 2.4, we have g > C1gp,, for some positive constant ;. Together with the assump-
tion g < Cghyp, g is equivalent to gp,,. Now, lift (X, g) to the cover (X 2D,7), § is equivalent to
gp. we can apply Lemma 2.2 to

A'gv(—K’gV) < —CK’gV(qu“ + d) < —CdK'gV.
As a result, we conclude that K3 < -6 for some positive constant ¢. The same conclusion holds for
K,. O
3. PRELIMINARIES ON HIGGS BUNDLES

In this section, we will review some facts on Higgs bundles used in this article. For more detailed
information, readers may refer to [Lil19].
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3.1. Higgs bundles over Riemann surfaces. Let ¥ be a Riemann surface and K denote the
canonical line bundle of X.

Definition 3.1. A Higgs bundle over a Riemann surface 3 is a pair (E,®) where E is a holomor-
phic bundle over 3 of rank r, and ¢ : E - F ® K is a holomorphic bundle map. Additionally, an
SL(r,C)-Higgs is a Higgs bundle with det E = O and tr¢ = 0.

Now, let h be a Hermitian metric on the bundle . We will also use h to denote the induced
Hermitian metric on End(FE).

Definition 3.2. A Hermitian metric h on a Higgs bundle is called harmonic if it satisfies the
Hitchin equation

F(h)+[¢,0™"] =0,
where F(h) is the curvature of the Chern connection YV with respect to h, ¢*" is the adjoint of ¢
with respect to the metric h, and the bracket [, ] is the Lie bracket on End(E)-valued 1-forms.

Locally, ¢ = fdz for a local holomorphic section f of End(FE). We have the following inequality
as a slight modification of [Moc16].

Lemma 3.3. For a holomorphic section s of End(FE), locally, we have

|[5af*h]|i - |[87f]|%L

d,0-log |s[2 > 5
|S|h

Proof. We start by denoting 0, j, as the (1,0) part of the Chern connection on End(E) with respect
to h. Since s is holomorphic, we can write: 8Z(9;]s|,2l =10, ns*+h(s,0:0. s). This allows us to derive:

0:0:|sly _ :lslj, Ozlsliy _ h(s,0:0:05)  |0-ps” _ Dlsly elsly
sl sl Islf sl Isly  Isl; sl

0,03 log|s|i =

We also have:
O:\sly, - Ozlsly = |9:1s[3I* = 110 n5, ) <10z s - s[5
Therefore,
h(s, azaz,hs) h(s, (aéaz,h - 8z,h82)8)
SR P |

By the Hitchin equation, locally we have F'(h) + [¢,¢*"] = F(h) + [f, f**]dz AdzZ = 0. So, we can
write

9,0z log|s[? >

(8282,11 - az,hai)s = [[f: f*h]a 3]'
This leads to
h(s [Lf /] 1) _ h(s, LF L5 s1D) - hGs [ Lo s]D)
|s[7 Bl s[5

. _ . : . 2 o s -1, 117
Using the formula h(u, [v,w]) = h([v*",u],w), we obtain 0.0z log|s[; > Is2 : O
h

0,05 log|s|% >

The Hitchin equation, together with the holomorphicity of ¢, gives a p-equivariant harmonic
map. This map, denoted as f: ¥ - N := SL(r,C)/SU(r), is defined on the universal cover of X,
and p represents the holonomy representation of the flat connection D =V + ¢ + ¢*h.

We consider a Kéhler metric g = gdz ® dz on X. The Kahler form w is given by w = @ gdzndZz
with respect to Re(g) = %(g + 7). (Notice that in some literature the Kéhler form w is to g + g.)

We also regard the Kihler metric ¢ as a Hermitian metric on K~'. Respectively, the Laplacian
7



with respect to g, the Gaussian curvature of Re(g), and the square norm of ¢ with respect to g are
locally given by:

1 2 .
Dg==0.0;, Ky=--0.0:logg.
g g

Let ¢ be a holomorphic k-differential ¢. Locally, it is of the form ¢(z)dz*. Then ¢ defines a
singular flat metric, denoted as ]q|%, locally of the form ]q(z)\%\dz\Q The square norm of ¢ with

respect to g is denoted by \q\g, locally given by 2(2)a(z)

The Hopf differential of f is Hopf(f) = 2rtr(¢?) and the energy density of f is e(f) = 2rtr(¢¢*)/g.

3.2. Toda system. The cyclic Higgs bundles in the Hitchin component have the following form:
q

E-K7eK5 e-0K7 oK%, ¢-= 1

where ¢ is a holomorphic r-differential on X.
The Hermitian metric g induces the Hermitian metrics (g~1)®(+1-20/2 on K(+1-20/2 and a

T .
diagonal Hermitian metric @ (g~!)®(r+1-20/2
i=1

we define a Hermitian metric on F,

on E. For any R-valued function w = (wq,...,w,),

h(g, w) . éewi (g—l)@(r+1—2i)/2‘
i=1
Remark 3.4. For a smooth function f on %, consider another Kdhler metric ¢' = efg. Let
w'=(wy + 5, wp + 55 ). Then h(g,w) = h(g',w’).

Through direct calculation, it can be shown that the Hermitian metric h(g,w) is harmonic if
and only if it satisfies the Toda system. One may refer to [LM20a].

Proposition 3.5. The real Hermitian metric h(g,w) is harmonic if and only if w satisfies the
following Toda system:

2 wi-w wa—w r—1
Agw1:|q|ge 17Wr _ W27 1 K,,
s o T+ 1-=2¢
(2) Agw; =PVl Wm0 i=2,...,7r—1
g 4 g ) )
1-r
_ Wp—Wp_1 2 wi-w
Agwy = e — glret T — 1 K,.

,

and Y, w; = 0. In particular, in the case r = 2, the Hermitian metric h(g,w) is harmonic if and
i=1

only if w = (w1, —w) satisfies

1
(3) Agwy = |q2e®™ — e 2 - L
Definition 3.6. A solution (wi,---,w,) to the Toda system (2) is said to be real if w; + wyi1-; =0
fori=1,-r.
8



Denote n = [5]. A real solution to the Toda system satisfies

-1
Agwy = €2w1|Q|g - L 1 Ky,
+1-2
A gwy = e~ Wn-1+Wn _ 6—(2n+2—r)wn T . an
We also consider the subcyclic Higgs bundles in the Hitchin component, which have the form:
qg O
1 q
r-1 r=3 3-r 1-r
EFE=K2eK?2 90Kz 0K2, ¢= 1 ,

1

where ¢ is a holomorphic (r — 1)-differential on . Similar to the cyclic case, the diagonal harmonic
metric h(g,w) gives a variant Toda system as follows:

- r—1
Agwy = ew1+w2|q|§ — e Wrtw2 4 1 Ky,
w1tw2 2 —w1+w?2 —w2+w3 r- 3
Agwy =€ laly +e —-e *— Ky,
—ws L witws r+1-2 )
(5) Agqwi=e Wi-1+Wi _ o= WitWirl 4 —K,, 3<i<r-2,
4
A _ o~ Wr_2+Wro1 _ w1+w2| |2 _ o Wr-itwr 3 - TK
gWr-1=¢€ € qlg — ¢ 4 g»
1-r
_ —We_1tw wi+wsa| |2
Dgw, =e T —e |q|g+TKg.
If the solution is real, i.e., w; + wy41-; =0 for ¢ = 1,---,r, then the variant Toda system becomes
r—1
_ witwa 2 —w1+wsa
Aqwy =€ |q|g—e 7 K,
A _ witwa 2 —w1+wsa —wo+ws3 r- 3K
gw2 =¢€ |Q|g+e —-€ - g
(6) .
—w, C tws r+1-2¢ )
A gw; = e Wil T _ T Wi TKQ, 3<i1<n -1,
Agwn = g Wn-1FWn _ 6—(2n+2—r)wn _ r+1- 2an
— K

For both the systems (2) and (5), denote
g(h)i:e_wi-'—w”lgv izl?"'ar_l'
We consider the strongly complete solution to the systems (2) or (5) in the following sense.

Definition 3.7. o A solution (wy, -, wy,) to the system (2) is said to be strongly complete if
the following holds:
— The metrics g(h);, i = 1,---,;r =1, are complete and mutually bounded.
— It is real.
— Set wg = —w; — log |q|§, Wps1 = —(2n+1-71)w,. Then

e~ Wi-1+W;

———<1,i=1,-,n.
e~ WitWit1

o A solution (wq,-+, w,) to the system (5) is said to be strongly complete if the following holds:
9



— The metrics g(h);, i = 1,---,7 =1, are complete and mutually bounded.
— It is real.
— Set wy = —wq - log |q|§, Wn+1 = —(2n+1-r)w,. Then

e Wi-1+W;

—wo+twi +€—w1+w2 < e—w2+’w3
e~ WitWit1 - ’

<1l,i=1,-n, ande

Remark 3.8. Let 3 be a Riemann surface with a Kdahler metric g.

(1) By [LM20a], for any holomorphic r-differential ¢ on 3, there exists a unique strongly com-
plete solution to the system (2). In fact, the uniqueness holds for a weaker condition.

(2) Before the first draft of this paper, Nathaniel Sagman emailed to the second author a note
showing that for any holomorphic (r—1)-differential ¢ on X, there uniquely exists a strongly
complete solution to the system (5). The note uses a similar technique as in [LM20a].

4. BOUNDED DIFFERENTIALS AND HARMONIC MAPS

4.1. Single equation. We will first consider the case of a single equation. For the geometric
applications, we will consider a slightly broader class of equations than (3). Let ¥ be a Riemann
surface with a K&hler metric g. Let r > 2 be a positive integer. We investigate the following
equation for a smooth function w on X:

w —\r—41)w 1
(7) Agw = k(e —e (r-1) |q|§) + §Kg.

Here, x is a positive function on X satisfying C < k < Cy for two positive constants C7 < Cs.

Lemma 4.1. Let w be a solution to Equation (7). Then Kewg has a lower bound.

Assume eV g is complete, then either \q@e‘”" <1,Kewg <0 or |q|ge‘”” =1,Kewy = 0. In the latter

case, Y is parabolic.
Furthermore, if K, < —C3 for some positive constant C3, then w is bounded from below.

Proof. Denote g = §(z)dz ® dz. The curvature of the metric e“g is
-2 . 2 K,
Ke“’g = %azai log(ewg) = e_w(Agw - 7)

-2 —(r=1)w) |2 2 -
= 22 (e - D) = 2m(1 - g2 ™)
> -2k > -2C%.

Now, we assume that e”g is complete. Notice that for a Riemannian metric ¢ and a smooth
function f,

(8) Agef:ef(Agf+|ng|3) > ef Ag f.
Then, outside the zeros of ¢, we have
2
Ag(|Q|§ef) = AgeerlogMg 2 |Q|§ef(Agf + Aglog|Q|3)

r
2 |Q|§€f(Agf + §Kg)

10



outside the zeros of ¢q. Since both sides of the above equation are smooth functions, by the continuity,
the equation holds everywhere. So for u = |q|£2]e‘“” -1,

Dgu=04(afge™™)

> |q|§e‘rw(—r Agw+ gKg)

_ (o 1 r
= lql2e ™ (=r(r(e” ~ lglie™ D) + §Kg) + §Kg)

- rifqle ™ (lqf2e ™ - e
=rrkeu(u+1)
implying that
(9) Agwgu > rCru(u+1).
Since e¥g is complete and has curvature bounded from below, the Cheng-Yau maximum principle

(Lemma 2.3) implies that u < 0. By the strong maximum principle, we have two possibilities: either
u <0 or u =0. The curvature of ¢“g is given as follows:

(10) Kewg =-2k(1 - |q|§e_rw) = 2KU.
If u =0, then €“g is a complete flat metric, implying that X is parabolic. If u < 0, then Kew, =
2ku < 0.

To show that w has a lower bound, consider the equation:

1 1 C
Bevg(-w) = ——5 Bgw = —r(1- lalye ™) - g™ 2 736_“’ - Ca.

Using the Cheng-Yau maximum principle (Lemma 2.3), we conclude that —w has an upper bound.
O

Wan [Wan92] showed that the function w is bounded above by a negative constant for the
equation (3) in the case where r = 2 and k = 1. For our geometric applications, we are concerned
with Equation (7). The proof is similar. For the convenience of our readers, we include the proof
here. We will discuss the geometric applications in Section 5 and Section 6.

Proposition 4.2. Let (X,g) be a complete hyperbolic surface and w be a solution to Equation (7).
Assuming that e¥g is complete, then the following statements are equivalent:

(1) |glg is bounded.

(2) |w| is bounded.

(8) There ezists a positive constant C' such that |q|§e‘(r‘1)w +ev<C.

(4) There exists a positive constant § such that the curvature of the metric e g satisfies Kewg < —0.
(5) There ezists a positive constant 0 such that |q|§e_rw <1-96.

Proof. (1)=(4): Let u = |q|§e_”" -1, and from (9), we have:
Agwgu > rCru(u+1).
From Lemma 2.5, we obtain K.wy < -4 for some § > 0.

(4)=(5): This is evident from formula (10).

(5)=(2): We only need to show w has an upper bound. In fact,
1

1
Agw=rk(eV - |q|§6_(7‘_1)w) —52 Cr0e” - 3

Then, from the Cheng-Yau maximum principle, w has an upper bound.
(2)=(3): It follows from Lemma 4.1 that |g[Ze™™* < 1. Then |q|§e’(’"’1)“’ +e <2e" <C.

(3)=(1): From the assumption, we have |q|§e_(r_1)w <C,e?”<C. So |q|§ is bounded. O
11



4.2. Equation system. We now consider the Toda system (4) and the variant Toda system (6).
Since for lower values of r, the formulae cannot be written in a general form, we calculate the
formulae case by case.

For the Toda system (4), set
fo=Fr=elals fize (=1, 1)

Note that &4log|q|? = 5K,
For r = 2,3, the Toda system (4) implies:

1
Nglog fo=2fo—2f1 + §Kg’ outside the zeros of ¢

1 2, forr=2
Aglog fi=a(fi-fo)+ =K, a=1"
glog f1 =a(f1- fo) 5Kg @ {1’ for o3

For r > 4, the Toda system (4) implies:
1
Aglog fo=2fg—2f1+ §Kg’ outside the zeros of ¢,

1 .
Nglog fi =2fi = fi-1 = fisn + §ng t=1,-7r -1

For the variant Toda system (6), set
fo=1fr= €w1+w2|Q|§, fi=e T (=1, r = 1),
For r = 3, the variant Toda system (6) implies:
1
Aglog fo=fo—f1+ EKg’ outside the zeros of ¢
1
Bglogfi=fi=fo+ 5Ky
For r = 4,5, the variant Toda system (6) implies:
1
Aglog fo=2fg— fo+ §Kg, outside the zeros of ¢
1
Aglog fi=2f1 - fa+ 7 Ka:

2, forr=4

1
AN 1 = — — —K =
glog fa=a(f2- fo fl)+2 g @ {1, for =5

For r > 6, the variant Toda system (6) implies:
Aglog fo=2fg— fo+ %Kg, outside the zeros of ¢
Dglog f1=2f1 - fa+ %Km
Aglog fa=2fa—fo—f1—fa+ %Km

1 .
Aglogfi:2fi_fi—l_fi+l+§Kga Z=3,”‘,’I"—1.

Notice that for both (4) and (6), f; = fr—;, for 0<i<r.
12



Lemma 4.3. For the Toda system (4) and the variant Toda system (6), let (w1,--,w,) be a real
solution. Denote g(h); = e”™Wirlg 4 = 1,.-.;r — 1. Then the curvature Kgyy,,i = 1,--,7 1, are
bounded from below.

Moreover, there exist positive constants c¢; and co (which may be different in each case) such
that:

A gy Kg(hyn 2 1K gy, (Kgny, +c2) forr=2,31n (4), r=3,4,5 in (6).
A g1 Kgmynor 2 1K gy (Kg(n),_, +c2) forr=41in (4), r="71in (6).
Assume in addition (wy,---,w,) is strongly complete. Then:
A gy Kgnyn 2 1K gy, (Kgeny, +c2) forr>2in (4), r>3 in (6).
Aoy Kg(hyny 2 clKg(h)n—l(Kg(h)n—l +cg) forr>4,r+5in (4), r>6 in (6).
Proof. Locally, denote g = g(z)dz ® dz. We first consider the Toda system (4).
For r =2, 3,

2 ~
Kgny, = _Eazaz log(f19) = QG(% -

Jo

Bgn)1 Kg(hyy =20 B gny, E

> 2a% Dy(h), log% outside the zeros of ¢

2a(a+2) g(fO f1) = a2 Kyny, (Kgeny, +2a).

Since ¢ is holomorphic, its zeros are discrete. Then from the continuity of functions on both sides
of the above equation, the inequality holds everywhere.
For r = 4, notice that f5 = fi,

Koy, =

g 2 5.0, log(f19) = 2(

fd
fo fo
B Kgnyy =2 Bg(n), (f o

f1 "2

> 2(% A g(h) log% + % A g(h), log%)
‘2( (3f0 4f1+f2)+E( =3fi+3f2- f1))
= 2(3fo —dfofi+ fof2—Afifa+ 313+ fof2)l 7
> 2(2(fo + f2)° = 4(fo + f2) 1)/ 17
g1 (Bg(n), +4)-
Now, we consider the variant Toda system (6) similarly.

For r = 3,

Koy, = Y 2 9.0, log(f19) = 2(— -1).

fo

fo _,fo fo
Bgny Kogny, =2 g(hnf 2f g(hnlgf —%(fo—fl)=Kg<h>1(Kg<h>1+2)'

13



For r=4,5,

Ko = =572 2_9.0:1og(f23) = 2a(fof1 1).

fo fi
By Kg(nys = 2a Bg(ny, (f2 + f_)

2 QCL( B g(h)s log :; ; %)
- 2a(f—2((2 ca)fo+afi—(a+ 1) f2) + (24 a)fi— (a+ 1) fo+afo))
2 2

=2a((2+a)fg +2afof1 - (a+1) fofo + (2+a) ff - (a+1)fif2)/f3
>2a((a+1)(fo+ f1)> = (a+1)(fo+ f1) f2)] f3

g(h)2 log

a+1
= g(h)z( (h)2 + 2&).
Kg(h)l - f ~8 0z log(flg) 2(__2)
Aoy Kooy =2 A fayof2 log 22 — 9 2 1
g1 By =2 B 72 2% A g(h), 08 —( afo—(2+a)fi+(a+1)f2).

Suppose the solution is strongly complete, then fo > f1 + fo. Therefore,

f2 1
Ag(nyi Kg(n) 2 2f—12(—2f1 +f2) = 5 Koy (Kgny, +4)-

For r = 6,7,
Ky(ny, = f ~0.0;1og(f29) = 2(f‘)+tj;;+f3 -2).
Bg(n)aKg(hye =2 Bg(n): (§0 + % + E)
> 2(?0 (s logjz ; (s log; ; o 1og%)

= 2(—2(3fo +fi+ f3-3f2) + f—é(?’fl =3fa+ fo+ f3) + %(fo + f1=3f2+3f3- f1))
2 2 2

=2(3f3 +3f7 +2fof1 +2fofs + 2f1.f3 = 3fof2 = 3f1f2 +3f5 = 3fafs— f3f1)] f3
=202f2 + 2fE+ (fo+ f1)2+2(fo + fL) fa=3(fo + f1 + f3) fo + 3f2 — fafa) ] f3
=202f2 +2fF+2f3+ (fo+ i+ f3)2 =3(fo+ fi + f3) fo— f3fa) | f3

223 o+ fu+ Jo) =30+ i+ ) o 13 - Fo )l f3

3 f3=faka
= 3 Koy (Kg(ny, +4) + 25— 72

For r = 6, we have fy = fo. Assume (wq, -+, w,) is strongly complete, fo < f3. Therefore,

3
A gn) Kg(ny, 2 ZKg(h)z(Kg(h)z +4).
14



For r =7, we have f4 = f3. So

3
B2 Kgnyz = 3 Koo (Kg@ny, +4)-

For r =6,7,8,9, assume the solution is strongly complete, then fo+ f1 < fo and f; > f5. Therefore,
fa+ fa
Kg(h)3 = f ~8 8 log(fgg) 2( 2).

f3
fa  fa
By(nysKgnys =2 Dgnys (4 T f—)

2 2(% Bg(h)s log;— * % Ag(h); 108 %)
_o(f2 (fo—f1+3f2—3f3+f4)— ‘;(—f2+3f3—3f4+f5>)

2 2(2f2 +3f1 +2faf1-3fafs - 3f4f3 ~ fafs)/ 13
_ B 2+ fi-fifs fat fa
R A LR Sy oy

5 _
((f2+f4) 375 - 2J:;f4 fi f§4f5

3
2 Koy (Kgnys +4).

Finally, we study the remaining cases where r >4, 2<i<r—2 for (4) and r > 8, 4 <i <r—4 for (6).

1 fi— +fi+
Kg(ny, = fﬁ .0z log(fig) = _EA glog fi+ fz- 2(%_2).
Loy Kgny =2 By, (f; + %)

using inequality (8)
B g(h),; 10g f} f}:l By(n), 10g f}:l )
( (< fia + B 3fi + fon) f”l( Jiot + 35— 3fie1 + fir2))

= 2(3fi_1 +3f2, +2fi 1fi+1 =3ficnfi- 3fi+1fi ~ ficafio1 = fis1 fin2) [ f7

_ A , VR fR +fR - ficafior = i five . fior + fin
= 2(fz—1 + fz+1 3fz fz i le + fl =" le ) fZQ

3. . N e + f21 = fimafic1 = firtfiray fic1 + fin
22(§(f1—1+f1+1) 3f1+ fz 1 +fz+1 ) fZQ

3 1,'2 fz f’L Zf’L f’i+1f’i+2
= ZKg(h)i(Kg(h)i +4)+2 H 72

For i = n, assume that the solution is strongly complete, then f,,_1 > f,,—2 and f,+1 > fn+2. Therefore,

5 72l fn fn an 1- fn 1fn 2
gy gmyn 2 3 Koy (Kg(ny, +4) +2 17 Jnel E 1fns

~Kgny, (Ky(ny, +4).
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Fori=n-1,r>61in (4), r > 10 in (6), assume the solution is strongly complete, then f,_o > f,_3
and f,, > fni1. Therefore,

3 oot fa = faafn2 = fafan
B g Koty = Ty Kgny, -y +4) + 27 2 -

n—1

1Koy (Kg(ny,y +4)-
Lastly, the lower bounds of K, are obvious from their formulae. O

For the rest of this section, assume 3 is hyperbolic and denote by g the unique complete hyper-
bolic metric on 3.

Recall from Section 3 that a solution to the Toda system (4) or the variant Toda system (6)
gives an equivariant harmonic map f: D - N = SL(r,C)/SU(r). (In fact, the image of f lies in
SL(r,R)/SO(r), which is a totally geodesic submanifold in SL(r,C)/SU(r).) If we assume r >3
in (4) and r >4 in (6), then f is both immersed and conformal. We denote ef as the energy density,
gy as the pullback metric, and K C],V as the sectional curvature of a tangent plane o in TN, where o
is the image of the tangent map at a point on ID. By a direct calculation (or see [DL19]), we have
the formulae:

Lemma 4.4.

r—1
efg=gy =2 2 9(h:

1 Z(fl 1— f1)2
Sla T for (4),
(X fi)?
Ké—V: =1 r—2
. 2(fo—f1)2+2(fo+f1—fz)2+_ZS(fifl—fi)Q for (6)
_1 - i= or (6).
2 (Elfi—l)2

In the case of r >3 in (4) orr >4 in (6), f is conformal and thus g¢ = ef-g.

For the variant Toda system, we obtain an estimate of E under a weaker completeness condition.
Lemma 4.5. Let r >4 in (6). If g(h)1 is complete, then either fo <1 or f“ =

Proof. Away from zeros of g, Aglog(%) =2(fo-f1),

fo fo
Bg(77) 2 () Aglo g( ) 2( )(f()_fl)
fi fi
Since both sides are smooth, the equation extends to the Whole surface. So we have

Ag(hh(jﬁj) lo< )>2< >< ),

Applying the Cheng-Yau maximum principle and the assumptlon that g(h)y is complete, we obtain

;0 < 1. By the strong maximum principle, either foctor f—‘l) =1 O

fi

Now we study the boundedness of the geometric objects about the harmonic map. In [LM20a],
Li-Mochizuki showed that for any Higgs bundle with a harmonic metric, the boundedness of the
spectrum of the Higgs field is equivalent to the upper boundedness of the energy density of the
corresponding harmonic map. Applying this theorem to the equation system (4) and (6), we obtain
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Theorem 4.6. ([LM20a, Proposition 3.12]) Consider the Toda system (4) for r > 2 and the variant
Toda system (6) for r >3 on a complete hyperbolic surface (X,g). Then, q is bounded with respect

r—1 r—1
to g if and only if the energy density ey = Y. g(h)i/g= Y fi is bounded from above.
i=0 i=0

For the lower bound of the energy density, we have the following estimate.

Lemma 4.7. Consider the Toda system (4) for r > 2 and the variant Toda system (6) for r >3
on a complete hyperbolic surface (X,q). Suppose g(h)i, is complete for some ig € {1,---,n}. Then
there exists a positive constant C' such that g(h);, > Cg and thus ef > C.

Proof. From Lemma 4.3, the curvature Kg(h)ig is bounded from below. By Lemma 2.4 and the
assumption that g(h);, is complete, we obtain g(h);, > C - g. O

Now we proceed to prove our main theorem.

Theorem 4.8. Consider the Toda system (4) for r > 3 and the variant Toda system (6) for r >4
on a complete hyperbolic surface (3,g). Let (w1, wy) be a strongly complete solution. Then for
each i € {1,---,n}, there exists a constant C >0 such that g(h); > Cg. Moreover, the following are
equivalent:

(1) q is bounded with respect to g.

(2) |wi|, i=1,--,n, are bounded.

(3) There ezists a constant C >0 such that g(h); < Cg for every i e {1,---,n}.

(4) There ezists a constant C >0 such that g < Cyg.

(5) The Gaussian curvature Ky, of the pullback metric gy is bounded above by a negative constant.

(6) The sectional curvature K~ is bounded above by a negative constant.

(7) The curvature Ky, is bounded above by a negative constant.

(8) There exists a positive constant § such that g(h)i,-1 < (1 -0)g(h)i, for some ig € {1,--,n},
in the variant Toda system (6) g(h)1 < (1-39)g(h)2 is replaced by g(h)o+g(h)1 < (1-0)g(h)s.

(9) There exists a positive constant 6 such that g(h)i,—1 < (1 =39)g(h)s, for every ig € {1,--,n},
in the variant Toda system (6) g(h)1 < (1-06)g(h)2 is replaced by g(h)o + g(h)1 < (1-08)g(h)s.

(10) Forr>4,r#5 in (4), r 26 in (6), the curvature Ky, | is bounded above by a negative
constant.

Proof. Note that in our case f is conformal, so gy = ef-g. From Lemma 4.7 and the assumption
that (w1, -, wy,) is strongly complete, we have f; = e”"i*Wix1 =1 ... n is bounded from below by
a positive constant. Therefore, g(h); and gy are bounded below by C'- g for some positive constant
C. From the lower bound of f, = e~ (2421w we have the upper bound of wy,. By induction, we
obtain the upper bound of all w;, i =1,---,n.

Step 1: We show (1)(2)(3)(4) are equivalent.

By the same argument as in the beginning, the upper boundedness of all f;, i = 1,---,n, implies
the lower boundedness of all w;, ¢ = 1,---;n. Then by Proposition 4.6 and the assumption of strongly
completeness, (1)(2)(3)(4) are equivalent.

Step 2: We show (7)=(6)=(5)=(4), (8)=(6)=(5)=(4).
(7)=(6), (8)=(6): Note that
fact fust gy 2(&=1 ~ 1) ris odd and fui = fo
fn - 4(% -1) riseven and fp-1 = fns1
So (8) is a restatement of (7) for the case iy = n. Therefore, it is enough to show (7)=(6). Recall

from the assumption of strongly completeness, f;(i = 1,---,7—1) are mutually bounded and fy < fj.
17
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For (4),

eV LT - f)? L B (=) 1 (fer—fa)®
7w (ELfi)r T 20 1 SxC 2 T

For (6), the proof is similar.

(6)=(5): From the Gauss equation, K, = KXY + det(II), where IT is the second fundamental
form. Since f is harmonic and conformal, f is minimal. So det(II) < 0. So KXY < —§ implies
Kg, < -0.

(5)=(4): Since f is conformal, the upper bound of g follows from Lemma 2.4. From the argu-
ment in the beginning of the proof, the lower bound of g already follows from the assumption of
strongly completeness.

Step 3: We show (2)=(9)=(8) and (2)=(9)=(7).

Again since (7) is a restatement of (8) for the case igp = n and (8) is obvious from (9), it is enough
to show (2)=(9). For each i € {1,---,n}, define the metric g; = e_ﬁwig. Since |wj;| is bounded, g;
is complete. We calculate the curvature of g;, denote g = gdz ® dz,

2 .
Kgi = _2—8282 log(e_ r+1272iw1§)

e i Wi

g

2 )
= —Qer+i-2i Wi (—

2

r+1-2¢
2

r+1-2¢
Then for (4) and (6), except i =2 in (6), we have

Agw;+ Aglog )

| 1
= —2erim Yi(— Bgwi+3).

2 .
4erri-2i Wi

9 = (e7WintTWi _ TWiTWiL) | ] <G < .

r+1-2¢
For =2 in (6),
452
2" r_3
Since (w1, -, wy,) is strongly complete, K, < 0. From the assumption of (2), g; is equivalent to g.
Now set

w; =1 — e WinlTWi [emWitWint 11 < < except ug = 1 — (70T 4 e WITW2) [TV for (6).

—wo+ —w1+ — W2 +W:
(ew0w1+ew1w2_ew2w5)'

Then w; > 0. From the assumption (2), |w;| are bounded and thus u; is mutually bounded by —K|,
To apply Lemma 2.2, we calculate the Bochner formula for w;, i = 1,---, n.
For (4), from the formula (8) in Lemma 4.1, we obtain

it

_ T
Aguy £ —edw w2|(l|§ Bg (Bwy —ws - 5),

Agu; < —e Wir1+2Wim Wit Ay (—wi_l + 2w; — ’U)Z‘+1), 2<1<n.
Then

Agup < e3w1_w2|q|§(36_w1+w2u1 —e Wy,

—Wi—1+2W; ~Wi+1 (_e—wi—l +w; —WitWisl,,

ui_1+2e U; e~ Wit1TWit2

Dgu;<e Uir1), 2<i<n.

From the assumption, |w;|’s and then |q|3 are bounded. So we obtain that there is a constant ¢ >0
depending on C such that

2 .
Agup=eri2i Agu; <cuy,  i=1,0m.
18



Then Lemma 2.2 implies u; > ¢ for some constant 0 > 0 depending on C, which means g(h);-1 <
(1-0)g(h);.
For (6), similarly,

.
Aguy < =e*qf2 &g (2wy - 5

AgUQ < _ew1+2w2—w3|q|§

r
Ag (’Ujl + QT,UQ - w3 — 5)

— e TWi1t2wamwy Ay (—wr + 2w — w3),
A < I Ay (—wi—1 +2w; —wis1), 2<i<n.

Then

r—1
2 )

_ _ r—1 _ _
AgUQ < €w1+2w2 w3|q|§(e w1+w2ul _ 7 + % w2+w3u2 _ 26w1+w2|q|§ —e w3+w4u3)

Aguy < e2w1|q|§D(26_w1+w2u1 -

+ €—w1+2w2—w3 (_6—w1+w2 uy + 2€—w2+’w3u2 _ 26w1+’w2 |q|§ _ 6—w3+’w4u3)

< (e |q|§ — TV RW2TWS T2y g

—wo+2ws3—wyq w1 twa2 2 —w1tws2 —w2+tws —w3+wy —wW4+twWs
Aguz<e (e lal; +e -e +2e us —e ug),

Agui < e—wi—1+2wi—wi+1 (_e—wi—1+wiui_1 + 2e—wi+wi+lui _ 6—’LUz'+1+1Uz'+2ui+1)7 4<i<n.
Assume the solution is strongly complete, then
ew1+w2|q|§ < 67w1+w2, ew1+w2|q|g +€7w1+w2 < 67w2+w3.

Therefore, we obtain A u; < cu;, i =1,---,n. Then Lemma 2.2 implies the desired results.

Step 4: We show (10)<(3) .
(3)=>(10): From the conditions in (3), g(h),-1 is complete and upper bounded by C'-g. Applying
the equation of Ky, , in Lemma 4.3 to Lemma 2.5, we obtain the estimate.

(10)=(3): By Lemma 2.4, g(h),1 is upper bounded by C'- g for some positive constant C'. Since
g(h)i’s are mutually bounded, we obtain the statement in (3). O

Notice that in Lemma 4.3, in some lower rank cases, to obtain the Bochner formula for curvatures,

we only need the completeness of g(h), or g(h),-1, but not the strongly completeness of the whole
solution.

Theorem 4.9. For the Toda system (4) of rank r, let (ig,7) be (1,4); for the variant Toda system
(6) of rank r, let (ig,r) be (2,4),(2,5), or (2,7). Consider these two systems over a complete
hyperbolic surface (X,g). Let (w1, -, w,) be a real solution with g(h):, is complete. Then there

exists a constant C > 1 such that for every i € {0, -, [%]},

Cg(h)i < g(h)ip, g(h)i, 2 Cy.

Moreover, the following are equivalent:

(1) q is bounded with respect to g.

(2) There is a constant C >0 such that gr < Cyg.

(3) The curvature Ky, of the pullback metric gy is bounded above by a negative constant.
(4) The curvature Kév 18 bounded above by a megative constant.

(5) There is a constant C >0 such that g(h);, < Cg.

(6) The curvature Kg(h)io s bounded above by a negative constant.
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Proof. Since g(h);, is complete and has curvature bounded from below, by Lemma 2.4, we obtain
g(h)i, > Cg.

We then claim that for 4 € {0,--,[5]}, g(h); < Cg(h);, for some constant C > 0.

For the Toda system: (ip,7) = (1,4). By the equation of g(h); in Lemma 4.3 and use the
assumption g(h); is complete, we obtain that Ky, <0. Therefore, g(h)o + g(h)2 <2g(h)1.

For the variant Toda system:
Case 1: (ig,r) = (2,4),(2,5). Then we only have g(h)o,g(h)1,9(h)2. By the equation of g(h)o
in Lemma 4.3 and use the assumption g(h)s is complete, we obtain that Kg(ny, < 0. Therefore,
g(h)o +g(h)1 < g(h)2.
Case 2: (ig,r) = (2,7). Then we only have g(h)o,g(h)1,9(h)2,9(h)s. By the equation of g(h)s
in Lemma 4.3 and use the assumption g(h)s is complete, we obtain that Ky(ny, < 0. Therefore,
g(h)o+g(h)1+g(h)z < 2g(h)2.

So we finish proving the claim.

1)< (2) again follows from Theorem 4.6.
4)=(3)=(2) is identical to the proof of (6)=(5)=>(4) in Theorem 4.8.
5)<>(2) is obvious since gy is a linear combination of g(h)o,g(h)1,g(h)2.
(6)«=(5): (6)=(5) follows from Lemma 2.4. (5)=(6) follows from applying Lemma 2.5 to the
equation for Kg(h)io in Lemma 4.3.

~~ N~

(5)=(4): From the claim, f;, j =0,1,2, are bounded by C f;, for some positive constant C. Using
the formula of K¥ in Lemma 4.4, we have:
For the Toda system (4): (ig,r) = (1,4). The condition in (5) implies % -1<-94.

N 1 2(fo- f1)2+2(f1 - f2)? 1 (fo-f1)? ;
R ™ orzhe e S we g S

For the variant Toda system (6):
Case 1: (ig,7) = (2,4). The condition in (5) implies % -1<-94.
N o1 2(fo- W +2(fo+fi-F) 1 (Jorhi-f) Y
g 2r (fo + 2f1 + f2)2 - 2rC f22 - ’

Case 2: (i9,7) = (2,5). The condition in (5) implies % -1<-6.

KN_—iQ(fO_f1)2+2(f0+f1_f2)2<_ 1 (f0+f1_f2)2<_6/
L (fo+2f1+2f2)? T uC 2 =70

Case 3: (40,7) = (2,7). The condition in (5) implies W -2<-9.

1 2(fo-f1)PH2(fo+ fi - f2)P +2(fo - f)°

KN =
’ 2r (fo+2f1+2f2)?
< 1 (fo+fi- )%+ (f2- f3)?
<o 7
< _L (fo+f1+f3—2f2)? <5
Cll f22
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5. HARMONIC MAPS BETWEEN SURFACES AND BOUNDED QUADRATIC DIFFERENTIALS

In this section, we discuss the Toda system for r = 2, which corresponds to the harmonic map
equation between surfaces. First, we recall some calculations in [SY78]. Let (X,g = o(2)|dz[*)
and (M, h = p(u)|dul?) be two Riemann surfaces with Kihler metrics. Let f be a harmonic map
between X and M.

We define H = |8u|37h = |u.[*£ and L = |g“|§,h = |uz[*£. The Hopf differential is the (2,0)-part of
the pullback metric Hopf(f) = u,u,udz ® dz, denoted as q. So |q|§ =HL. We denote K, and K},
as the Gaussian curvature of 3 and M, respectively. Then at nonzero point of H, (our 4, differs
from the notation in [SY78] by a factor of 4)

A0,logH = 2K, H + 2K, L + 2K,

Let w = —% log H, and the above equation becomes
K _
(1) By === (g2 ey - =2

which coincides with Equation (3) for ¥ = M =D, g = 4h = gp.

The Jacobian J(f) = H - L =e2¥ ~ |q|§e2w. The map f is called orientation-preserving if the
Jacobian J(f) > 0. The map f is called quasi-conformal if % = |q|_(2}e4w < k for some constant k < 1.
The energy density e(f) := %|df|§7h =H+L=e2"+ |q|§ezw. Let |0f* =H - g.

Wan [Wan92] showed that for a given holomorphic quadratic differential ¢, there exists a unique
orientation-preserving harmonic map f : D — I such that [0f[? is complete. Moreover, he showed
the following theorem.

Theorem 5.1. ([Wan92|) Let f: D - DD be an orientation-preserving harmonic map such that the
metric |0f|? is complete. Then the following are equivalent:
(a) the Hopf differential is bounded with respect to gp.
(b) f is quasi-conformal.
(c) the energy density of f is bounded.
In such case, f is a diffeomorphism.

The universal Teichmiiller space is the space of quasi-symmetric homeomorphism equipped with
CY topology between S' that fix three points. According to the work of [LT93] and [Marl7],
equivalently, the universal Teichmiiller space 7 (D) is in bijection with the space of harmonic quasi-
conformal homeomorphisms between D, up to a PSL(2,R)-action. Therefore, by Theorem 5.1,
there exists a bijection between the space of bounded quadratic differentials with the universal
Teichmiiller space T (D).

Li, Tam and Wang in [LTW95] generalized Wan'’s result to hyperbolic Hadamard surfaces using
a similar technique. The hyperbolic Hadamard surfaces are characterized as complete, simply
connected Riemannian surfaces with Gaussian curvature K satisfying —«x < K < 0 for some constant
£ >0 and they have positive lower bounds for their spectra. It is shown in [LTW95] that the metric
of a hyperbolic Hadamard surface is equivalent to the uniformization hyperbolic metric, i.e. the
conformal factor is bounded away from 0 and oo.

Theorem 5.2. ([LTW95]) Let S1 and S be two hyperbolic Hadamard surfaces. Let f :S1 — S be
a harmonic diffeomorphism. Then the following are equivalent:

(a) The Hopf differential is bounded with respect to the uniformization hyperbolic metric.

(b) f is quasi-conformal.

(¢) The energy density of f is bounded.

In Theorem 5.2, the specific assumption of the domain is not essential since the harmonicity
depends solely on the conformal structure. In fact, we only need to consider D.
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From [Sch93], f being a diffeomorphism implies the metric |0f|* being complete. In fact, The
assumption regarding the diffeomorphism in Theorem 5.2 can be replaced by the completeness of
the metric [0f]%.

Theorem 5.3. Consider two Riemannian surfaces (X, g) and (M,h). Suppose g is conformal and
mutually bounded by a hyperbolic metric. Suppose the curvature of h satisfies —C1 < Ky < -Cy for
some constants C1 > Co > 0. Let f be a harmonic map from (X,g) to (M,h) such that |0f]? is
complete. Then f is a harmonic immersion.

Moreover, the following are equivalent:
(a) The Hopf differential is bounded with respect to the uniformization hyperbolic metric.
(b) f is quasi-conformal.
(c) The energy density of f is bounded.

Proof. The harmonic Equation (11), taking the form of Equation (7), fulfills the assumptions
stated in Lemma 4.1, implying that J(f) > 0. Since ¢ is conformal and mutually bounded by
the hyperbolic metric, we only need to examine the boundedness with respect to the hyperbolic
metric. Consequently, Theorem 5.3 can be deduced from Proposition 4.2. ]

6. HYPERBOLIC AFFINE SPHERES AND BOUNDED CUBIC DIFFERENTIALS

In this section, we discuss the relationship between bounded cubic differentials and hyperbolic
affine spheres in R3. First, we provide some background on hyperbolic affine spheres. For more
details, readers can refer to [Lof01, BH14, DW15].

Consider a non-compact, simply connected 2-manifold M. Let f: M — R3 be a locally strictly
convex immersed hypersurface. Affine differential geometry associates a transversal vector field &,
known as the affine normal, to such a locally convex hypersurface. An affine spherical immersion is
characterized by its affine normals intersecting at a single point, known as the center. By applying a
translation, the center of the affine sphere can be relocated to the origin and express £(p) = —Hp for
all pe f(M) c R3, where H is a constant representing the affine curvature. When H is negative, we
refer to the affine spherical immersion as hyperbolic. After renormalization, we obtain a hyperbolic
affine spherical immersion centered at 0 with affine curvature —1, which is called a normalized
hyperbolic affine sphere.

We can decompose the standard connection D of R? into the tangent direction of f(M) and the
affine normal components:

DxY =VxY + h(X,Y)E, VX,Y €Ty, f(M).

The second fundamental form h of the image f(M), relative to the affine normal &, defines a
Riemannian metric h on M. This metric is known as the Blaschke metric. This metric induces a
complex structure on M. Additionally, the decomposition defines an induced connection V on T M.
Let V" be the Levi-Civita connection of the Blaschke metric h, and the Pick form A(X,Y,Z) =
h((V - V") xY,Z) is a 3-tensor that uniquely determines a cubic differential ¢ = ¢(2)dz> such that
Req = A, which is referred to as the Pick differential.

An affine sphere is said to be complete if its Blaschke metric is complete. The work of Cheng-
Yau [CY77, CY86] and An-Min Li [Li92] establishes a correspondence between properly convex
domains in RP? and complete hyperbolic affine spheres. An open subset ¢ RP? is properly
convex if, when restricted to an affine chart, it corresponds to a bounded convex domain in RZ.
For a properly convex domain € c RP?, denote C(Q) as one of the two open convex cones above
Q. Given a properly convex domain € ¢ RP?, there exists a unique normalized hyperbolic affine
sphere asymptotic to the boundary of the cone C'(€2). Moreover, the Blaschke metric on the affine
sphere is complete. Conversely, every normalized complete hyperbolic affine sphere is asymptotic
to the boundary of a cone above a properly convex subset of RP?.
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In this discussion, we focus on the affine spherical immersions where (M, h) is conformal to the
hyperbolic disk (D, gp = 0(z)|dz|?). In this case, the hyperbolic affine spherical immersion can be
reparametrized as f : D — R3. Write the Blaschke metric h = e® - gp and ¢ = ¢(2)dz>. According to
Wang [Wan91] and Simon-Wang [SW93], the condition of f being an affine spherical immersion is
equivalent to ¢ being holomorphic and (w, q) satisfying the equation:

(12) Agw =2e" - 4|q|§De_2w -2.

Up to a change of constants, this equation coincides with the Toda equation in the case of r = 3 for
a real solution. The curvature of the Blaschke metric h = e - gp is given by

1 _
kp = 5 Apw=-1+ 2|q|§De Sw,
Then Lemma 4.1 implies that the curvature of the Blaschke metric of a complete affine sphere
is non-positive, a result originally proven by Calabi [Cal72].
As a direct corollary of Proposition 4.2 applied to r = 3, we can recover the following theorem
shown by Benoist and Hulin.

Theorem 6.1. (Benoist-Hulin [BH14]) For a complete hyperbolic affine spherical immersion f :
D — R3, the following are equivalent:

(a) The Pick differential is bounded with respect to the hyperbolic metric.

(b) The Blaschke metric has curvature bounded above by a negative constant.

(¢) The Blaschke metric is conformally bounded with respect to the hyperbolic metric.

Remark 6.2. We briefly explain the original proof from (c) to (b) in Benoist-Hulin [BH14]. On
a properly conver domain, one can also define the Hilbert metric. Their proof is by adding the
following three equivalent conditions:

(d) Q equipped with the Blaschke metric is Gromov hyperbolic.

(e) Q equipped with the Hilbert metric is Gromov hyperbolic.

(f) the closure of the orbit SL(3,R)-Q does not contain the projective triangle.

Using these three equivalent conditions, the authors in [BH14] show that for a properly convex
domain €2, the Pick differential is bounded with respect to the hyperbolic metric if and only if Q is
Gromov hyperbolic with respect to the Hilbert metric. One may view the moduli space of Gromov
hyperbolic convex sets, in Hilbert metric or Blaschke metric, as a generalization of the universal
Teichmiiller space to rank 3.

The proof of (c)=(b) in [BH14] involves showing (c)=(d)=(e)=(f)=(b), which relies on the
following two facts:

(i) Benzécri’s compactness, [Ben60]: consider £ the set of pairs (x,Q) where Q c RP? is a properly
convex domain and x is a point in . The natural action of SL(3,R) on the space of €, equipped
with the Hausdorff topology is cocompact.

(ii) Continuity dependence of the curvature function: the curvature of the Blaschke metric depends
continuously on the pair (x,Q) € £, due to Benoist-Hulin [BH13].

(c) = (d) follows from the fact that quasi-isometry preserves Gromov hyperbolicity.

(d) = (e): It uses the fact that the densities [ippert and [hBlaschie aTe uniformly bounded with
respect to each other.

(e) = (f) follows from the fact that the limit of a sequence of Gromov §-hyperbolic spaces is still
Gromov §-hyperbolic.

(f) = (b): It uses Benzécri’s compactness and the continuity dependence of the curvature func-
tion.

Note that our proof here for Theorem 6.1 bypasses Benzécri’s compactness and the continuity
dependence of the curvature function, relying solely on Wang’s equation.
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7. MAXIMAL SURFACES IN H?*" AND BOUNDED QUARTIC DIFFERENTIALS

7.1. Maximal surfaces in H>". In this section, we investigate the relationship between bounded
quartic differentials and complete maximal surfaces in H?". First, we provide some background
on maximal surfaces in H>" and their relationships with SOg(2,n + 1)-Higgs bundles developed in
[CTT19].

Let E be an (n + 3)-dimensional real vector space equipped with a quadratic form of signature
(2,n+1), denoted by Q. The pseudo-hyperbolic space is defined as follows:

H>" = {z € E,Q(x) = -1} /{+Id}.

Here, the group SO(2,n + 1) acts isometrically on H>". A space-like surface in H*" is defined as
an immersion of a connected 2-dimensional manifold into H?"™ whose induced metric is positive
definite.

Let ¥ be a Riemann surface with the fundamental group 71, and let ¥ be its universal cover.
Consider a representation p: 7 - SOy(2,n +1). Now, let f: % — H?" be a space-like, conformal,
and p-equivariant immersion. We also consider the trivial bundle 3 x R%"*1. At each point pe 3,
the immersion f provides a decomposition into three components: R%"*+! =T f(p) @ [ 1) Y F(p)-

Here Tf(p) is the tangent space of f(X) at f(p), lf(p) is the position line R- f(p), and Nf(p) is the
normal space of f (E) in Tf(p)H2 ™ at f(p). Since f is p-equivariant, the fundamental group 7 also

acts on and preserves the decomposition YxR2 ! =TagleN. Consequently, the decomposition

of the vector bundle over Z~ des§ends to ¥ and is denoted as T @ [ @ N. Notice that T is -

equivariantly isomorphic to [ ® T'>. Therefore, we construct a vector bundle over X, which is given

by TeleN=(e®T%L)®l®N. Denote by I € Q' (3, Hom(T, N)) the second fundamental form.
Let’s introduce some definitions.

Definition 7.1. (1) A space-like surface in H2" is called complete if its induced metric is complete.
(2) A space-like surface in H*™ is called mazimal if try IT= 0 where g is the induced metric.

Remark 7.2. As shown in [LTW20, Proposition 3.10], a complete mazximal space-like surface is
an entire graph.

Now, we relate maximal surfaces in H2" to SOy(2,n + 1)-Higgs bundles.

Definition 7.3. An SOy(2,n + 1)-Higgs bundle over ¥ is a tuple (U, qu,V,qy,n) where

o U,V are holomorphic vector bundles of rank 2 and n+1 over X, respectively, and they have
trivial determinant line bundles, i.e., N2U = O, A"V = O,

e qu,qy are non-degenerate holomorphic sections of Sym?(U*) and Sym?(V*).

e 1) is a holomorphic section of Hom(U,V) ® K.

f
The associated SL(n + 3,C)-Higgs bundle is denoted as (€,¢), with E=UV and ¢ = (7(; %) :

UV —» (U V)® K, where n' =g, on* oqy e H'(Hom(V,U) ® K).

A Higgs bundle is said to be conformal if the corresponding harmonic map is conformal. Ac-
cording to the work in [CTT19], a maximal conformal SOy(2,n+1)-Higgs bundle is determined by
the tuple (I, Vo, qy,, ), where

. L (01 1 0) ({1 0
(U7QU7V7QV)77)_(IK®IK ’(]_ 0)’I®VO’(O QV0)7(0 ﬁ))’

with I as a holomorphic line bundle satisfying I2 = O, V, as a holomorphic vector bundle of
rank n satisfying A"Vy = I, qy, as a non-degenerate holomorphic section of Symz(V{f ), and f €
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HY(Z,Hom(IK %, Vy) ® K). The original definition for “maximal Higgs bundles” was for com-
pact Riemann surface of genus g > 2. Here, we adopt this definition for general (possibly non-
compact) Riemann surfaces. When expressed as an SL(n + 3,C)-Higgs bundle, the conformal
maximal SO(2,n + 1)-Higgs bundle takes the following form:

000 g
-1
(13) E=IKoIK oloW, ¢:(?868)’
080 0

where 8t = g% o qv,- We consider the Hermitian metric solving the Hitchin equation in the form:
h = diag(hrxc, hige, hr, b, )-
The Hitchin equation simplifies to:
Fpye + BT A (B #1510 A1 =0
Fhyy +BA(B)™" + (87" At =0,

Now, let ¥ be a maximal surface in H>". Based on the previous discussion, we construct a vector
bundle T'® [l @® N over X, and we denote their induced metrics by gr, g;, and gn. We also consider
the complexification of the vector bundle, denoted as TC @ [C @ NC. Let g%,g}c,g%,h;r,hl, hy be
the complex linear extensions and Hermitian extensions of gr,¢g;,gn. The data of Higgs bundles
are organized as follows: T 21 ®@ T, TCY = KloeK ' and K12 K by the Hermitian metric.

° (lc, (V;C)(O’l), hl) gives (I, 5[, h[).
o (T, (vS)OD g€ hr) gives the orthogonal Hermitian bundle

s o1
(IKeIK 1,(81®8K)€B(31®3K1),(1 0)7h1K€B1K1)'

e (NC, (V%)(O’l),g%, hy) gives the orthogonal Hermitian bundle (Vy, dyy, qy,, by, )-

e The (1,0)-part of the second fundamental form IT gives £3.
The maximality of surfaces implies the holomorphicity of the Higgs field ¢. Furthermore, we have
the standard connection D€ = Vj, + ¢ + ¢*», where V}, is the Chern connection.

Denote by g4 the holomorphic quartic differential 513 = qv, (B, ). Through direct calculation,
we deduce that tr(¢’) =0 if j # 0(mod4) and tr(¢*') = 4¢). Hence, q}(j = 1+, [%42]) capture all
spectral data of ¢.

We now consider the induced metric and its curvature derived from the p-equivariant maximal
surface f : ¥ - H%". Due to the p-equivariance, these quantities can be descended to 3. We abuse
the notation g and k for short when there is no ambiguity.

We first prove the following proposition ([LT23, Proposition 4.5 and Equation (20)]).

Proposition 7.4. ([LT23, Proposition 4.5 and Equation (20)]) Let X be a mazimal surface in
H2". Let g and k be the induced metric and its curvature. Then,
1

(14) k:—1+|61%7g:—1+§||H||22—1.
(15) Dok > k(k+1).

Here is a remark regarding the proof:
Remark 7.5. The original proof in [LT23] uses the Gauss equation of a mazimal surface and the
Bochner formula. Here, we derive these two equations in terms of Higgs bundles for its own sake.
Once we establishes the explicit correspondence between the standard connection in the Higgs bundle

and the harmonic metric, these two methods are essentially equivalent.
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Proof. Suppose that, locally with respect to a holomorphic frame ey, e, -+, €43 of E/, where ey, s, €3
are frames of IK, K ™', I respectively, and they are related by e; -0/0z = e3 = eadz. The remaining
frames, denoted as {e4, -, ens3}, form a frame of Vy. Consequently, ¢ = fdz and 5 = ydz, which

implies:
000~f 0 0 1*» 0
f — 0010 f*h — 0 0 0 »Y*h
1000 | 0 1*» 0 0 .
0v00 (H* 0 0 0

Here, 1: IK — I indicates the contraction with %. Then, the induced metric |1[2 = h(%, %), and
the induced Riemannian metric g = h + h = 2|1[7|dz[*.

Now, we apply Lemma 3.3 to a local holomorphic section s; = (

. 1*hol 0 1
[ s1] = SEN & [f,s1] =
This leads us to the following equation:

R A R A e U e A el
ao)  oostoghp - Lo BB R
h h

We should clarify why it is equality and not inequality. Notice that in Lemma 3.3, the inequality

only occurs at the point where |h(9, 48, )|* < |0..15[3|s|2. Therefore, we only need to demonstrate

that (0,4)a s = As for some scalar function A on X. Recall 0, represents the (1,0) part of
Oz

the Chern connection Vj, on F = IK @ IK™' ® I ®V,. As both the complex structure and the
Hermitian metric are diagonal, the Chern connection Vj, and consequently 0, j, are also diagonal.
Since Hom(I K, I) is 1-dimensional, it follows that (0,) o s = As for a certain function A on X.

Oz

Considering that g = 2|1|2|dz[* and |dz|§ = #, we obtain
h

k=-—29 dzlog2[1]; = -1+ bl _ ~1+|8[}
2 " 11 o

Since S represents the (1,0)-part of the second fundamental form II, we have |B|%L7g = 3||][%. Thus,
we have established the first equation.

0000
Next, we apply Lemma 3.3 to a local holomorphic section sg = (8 99 8) . Locally, we have:
0700
0 o 0~4fy 0 0
= () = (38 4)
—yy*h 0 0 -v010
This leads to
sz, /115 = 1052, [l 2te(yy*myy*) = [YIls — v o 13
9,0z log |y[7 > . h - Sl h
(17) |52|h |7|h
20l =R DR e e
= 5 2 Yl = 1,
|'Y’h

where the last inequality follows from the Cauchy-Schwarz inequality [y |5 < |[yln - [YT|n = 713
By combining Equations (16) and (17), we conclude locally that:

8.0z log =2 > 2(]4[7 - [1]3).
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Globally, we obtain:

b _ 1 bl o bl
Aglog =5 = ——=0,0zlog — > —= -1 = k.
T T St 1T T
Then, away from zeros of v, we have
bl bl iz
Nk=0,—2>—2. A log—2>k(k+1).
T A T AR T A

Since the equation is continuous on both sides, the equation holds over the entire surface. Thus,
we have proven the second equation. O

Now, let us proceed to the following theorem, which is the curvature rigidity theorem in [LT23,
Theorem A]. While the original proof in [LT23] relies on a compactness result, this proof will
provide an alternative approach using the curvature formula mentioned above:

Proposition 7.6. Let X be a complete mazimal surface in H>™. Then the intrinsic curvature k
satisfies either k < 0 or identically zero (k =0). Equivalently, in terms of Higgs bundles, |ﬁ|}2lg <1
2 —_ 9,

or |Bl,, = 1.

As a result, the induced metric g satisfies either g > 2|q4]% org= 2|q4\%.
Proof. By applying Lemma 2.5 to Equation (15) in Proposition 7.4, we can obtain either k < 0 or
k = 0. Then, from Equation (14), we obtain that either |ﬂ|,219 <1or \,B|ig = 1. This implies, as

discussed in the proof of Proposition 7.4, that |y|; < |1| and ¢4 = ¢(2)dz* = 876 = ~T~d22.
Consider go = [1[3dz ® dz. We have

2 T2 4
g " bl

< <—heq
Ll A

a1l =

Then g = 2|12|dz|* > 2|q4|%. The rigidity follows from the one of k. O

We now present a different proof of the following theorem, originally shown by Labourie-Toulisse
in [LT23)].

Theorem 7.7. (Labourie-Toulisse [LT23]) Consider a complete mazimal surface X in H>™ that is
conformal to D. The following conditions are equivalent:

(a) The induced metric has curvature bounded above by a negative constant;

(b) The induced metric is conformally bounded with respect to the hyperbolic metric.

Proof. For the “only if” direction, we apply Lemma 2.5 to Equation (15) in Proposition 7.4, which
yields k < - for a positive constant 9.

For the “if” direction, since the induced metric has curvature satisfying -1 < k < -4, according
to Lemma 2.4, we have gp < g < Cgp for some constant C' = C(d) > 0. O

Remark 7.8. The proof from (b) to (a) is the same as in [LT23], while the proof from (a) to (b)
differs from the one in [LT23]. Let us briefly explain the original proof from (b) to (a) in Labourie-
Toulisse [LT23]. Their proof involves adding the following two equivalent conditions, which were
their main focus:

(c) The induced metric is Gromov hyperbolic.

(d) ¥ is quasiperiodic, meaning that the orbit closure SOy(2,n+1)-X in M(n) does not contain
the Barbot surface, in which case the induced metric is flat.

The proof of (b)= (a) proceeds by showing (b)=(c)=(d)=(a), relying on the following two facts:
(i) Compactness: Consider M(n) as the set of pairs (z,X), where X is a complete mazimal surface
in H>"™ and x is a point on X. The natural action of SOy(2,n) on the space of M(n), equipped
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with the Hausdorff topology, is cocompact, as proved in [LTW20].
(ii) Continuity: The curvature kx(x) depends continuously on the pair (z,X) € M(n).

(b) = (c) follows from the fact that quasi-isometry preserves Gromouv hyperbolicity.

(c) = (d) follows from the fact that the limit of a sequence of Gromouv d-hyperbolic spaces is still
Gromov 6-hyperbolic.

(d) = (a) uses the compactness as in (ii) above.

Note that our proof here for Theorem 7.7 bypasses the need for cocompactness and instead derives
directly from the equation itself.

For a maximal surface X in H?", we associate a holomorphic quartic differential ¢4 = gn (3, 3),

or equivalently, we can define g4 = % for the corresponding Higgs bundle (E, ¢).

Theorem 7.9. For a complete mazimal surface X in H>", assuming that X is conformal to D,
the following conditions are equivalent:

(1) The quartic differential is bounded with respect to the hyperbolic metric.
(2) The induced metric has curvature bounded above by a negative constant.
(3) The induced metric is conformally bounded with respect to the hyperbolic metric.

Proof. According to Theorem 7.7, conditions (2) and (3) are equivalent.
(3)=(1) follows from the fact that g > 2|Q4|% as stated in Proposition 7.6.

(1)=(3): If the quartic differential g4 = % is bounded with respect to the hyperbolic metric
gD, the spectra of the Higgs field ¢ are bounded with respect to gp. Proposition 3.12 in [LM20a]
states that || 4, < C. Since the Hermitian metric » on E is diagonal (as shown in Equation (13)),
we have |¢‘f2l,gﬂ) = 2|B],2179D +2|1\,2l,gD. Therefore, |1|i7g1[D < C. Consequently, we obtain g < C'gp for some
constant C. 0

7.2. An analogue of the universal Teichmiiller space. In the work of F. Labourie and J.
Toulisse, they introduce an analogue of the universal Teichmiiller space OQS,,. They define a natural
map from 9S8, to the product of the universal Teichmiiller space and the space of bounded quartic
differentials. Let’s briefly explain their construction in [LT23].

Consider a 2-dimensional real vector space denoted as V. For any quadruple of pairwise distinct
points (z,y, z,w) in P(V)*, let’s denote its cross ratio as [z, y, z,w] . Recall that a homeomorphism
¢ of P(V') is quasisymmetric if there exist constants A and B, both greater than 1, such that for
any quadruple of pairwise distinct points in P(V), if A~ < |[z,y, z,t]| < A, then

B <|[¢(x), ¢(y), d(2), 6(1)]| < B.

Now, let @Sy be the group of quasisymmetric homeomorphisms of P(V'). The group PSL(V') acts
on @Sy by post-composition, and the quotient is defined to be the universal Teichmiiller space,
denoted as 7 (H?).

The Einstein universe is the quadric associated to the quadratic form g¢:

Do H™ := {x e P(E), q(x) = 0}.

The group SOy(2,n + 1) acts transitively on JoH>". There is a natural generalization of the
definition of cross ratio on 0w, H?™. Specifically, for a map ¢ from P(V) to 0oH?*" and a pair of
constants A, B, both greater than 1, the map & is considered (A, B)-quasisymmetric if it is positive
and for all quadruples (z,y,z,t) e P(V)*, if A™' <|[z,y,2,t]| < A, then

B <|[6(2), (). £(2),&(w)]| < B.

Let QS,, be the space of quasisymmetric maps from P(V) to 0oH?", equipped with the C°
topology. The quotient QS,, := QS,/S00(2,n + 1) forms a Hausdorff topological space. Note that
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QS corresponds to T(H2). The space QS,, serves as an analogue of the universal Teichmiiller
space.

According to [LT23, Theorem B], a maximal surface ¥ is quasiperiodic if and only if the boundary
map is quasisymmetric. Additionally, [LT23, Theorem 7.1] establishes that for any element £ € QS,,,
there exists a unique reparametrization & eper € QS, of the image of . Moreover, if the image of
¢ bounds a maximal surface with induced curvature bounded above by —c¢, then & eper is (A, B)-
quasisymmetric, where the constants (A4, B) depend solely on ¢. The space 7 (H?) acts on QS,, by
post-composition. They define a continuous map w2 : QS,, - T (H?) by setting mp2(€) = ¢, where
¢ is such that £ o ¢ = §repar-

When ¥ is quasiperiodic, as shown in Theorem 6.3 in [LT23], the uniformization gives a biLip-
schitz map between H? and ¥, resulting in ¢4 is bounded with respect to the hyperbolic metric.
Denote by H. l? (H?, K*) the vector space of holomorphic quartic differentials on H? that are bounded
with respect to the hyperbolic metric.

In summary, we obtain a map:

Hyz : S, — T(H?) x H)(H? K*)
£ = (mr2(£),4(8))-

As posed by F. Labourie and J. Toulisse, we aim to prove that this map is proper.
Theorem 7.10. The map Hyz is proper.

Proof. Suppose (¢, q) € T(H?)xH)(H?, K*) satisfies that ¢ is (A4, B)-quasisymmetric and |g|g, < M.
It is enough to show & € Hys(¢,q) is (A”, B”)-quasisymmetric, where (A”, B") only depends on
A, B, M. The properness follows from the cocompactness of the action of PSL(V') x SOg(2,n+ 1)
on the space of (A, B)-quasisymmetric maps, as shown in Theorem 3.12 in [LT23].

Given |g|g, < M, the induced curvature on ¥ is bounded from above by a constant —c for ¢ = ¢(M)
as per Theorem 7.9. Therefore, 3 is quasiperiodic according to Theorem B in [LT23], which is
discussed in Remark 7.8. By Theorem 7.1 in [LT23], since (z,Y) is a quasiperiodic surface with
curvature bounded above by —¢, & epar is (A', B')-quasisymmetric, where (A’, B") = (A", B")(¢) > 1.

Since ¢ is (A, B)-quasisymmetric, then ¢! is also (A4, B)-quasisymmetric. Therefore, £ = & cpar©
¢~ 1 is of (A", B")-quasisymmetric, where (A", B") only depends on A, B, M. This completes the
poof of properness of Hype. O

8. J-HOLOMORPHIC CURVE IN H*2? AND BOUNDED SEXTIC DIFFERENTIALS

In this section, we explore the relationship between bounded sextic differentials and .J-holomorphic
curves in H*?2.

We begin by considering the split octonion, represented by Q. The automorphism group of Q’,
denoted as G = Aut(Q') c SOy(3,4), is a subgroup of SOy(3,4) known as the split real G. The
imaginary split octonion JO', equipped with a natural quadratic form ¢, can be identified with R34,
On R34, there exists a cross product defined as x x y := J(2y), which induces an almost complex
structure J on the pseudosphere given by:

524 = {z e R¥q(x,2) = 1}
as follows:
J(X)=xxX,
where z € $%*, X € T,,5%% = zt.
The pseudo-hyperbolic space H*? is the counter part of the pseudosphere 5%

H*? = {z e R*®|q(z,x) = -1},
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There is an obvious diffeomorphism H*? = $?4 identifying the metric of the former with —1 times
that of the latter.

In an almost complex manifold (M, J), a J-holomorphic curve is an immersed surface ¥ whose
tangent bundle T c T M is preserved by J.

Baraglia [Barl0] discovered that a subcyclic rank 7 Higgs bundle in the Hitchin section over
a domain Q c C, together with a harmonic metric h = diag(h, ho, h3, 1,h§1,h§1,h11) satisfying
hi = 2hohg, gives rise to a J-holomorphic (also known as almost-complex) curve v : Q — 524 The
explicit relationship between the resulting surface and Higgs bundles has been further developed
in Evans [Eva22] using harmonic sequences.

For a J-holomorphic curve, the osculation line is defined as the J-complex line in a normal space
formed by the images of the second fundamental form. Nie [Nie22] showed that subcyclic Higgs
bundles in the Hitchin section, together with a real harmonic metric diag(hy, he, hs, 1, hgl, hy L hgl)
satisfying hi = 2hghs, are characterized as space-like J-holomorphic curves in H*? with nowhere
vanishing second fundamental forms and timelike osculation lines. The holomorphic sextic differ-
ential ¢ can be retrieved from the data of the structure equation of the immersion.

The induced Hermitian metric on the J-holomorphic curve is h = |1|%Ldz ® dz = h3'dz ® dz, and
the induced Riemannian metric is g = h + h = 2h3' (dz? + dy?)(see [Eva22, Section 3.1]).

Definition 8.1. We call a space-like J-holomorphic curve in HY? complete if its induced metric is
complete.

Remark 8.2. (1) It is not clear if the completeness condition implies the surface is a proper
embedding or entire.

(2) One may construct plenty of examples of complete metrics which do not necessarily come from
a strongly complete solution for the variant Toda system.

Lemma 8.3. Let ¥ be a space-like J-holomorphic curve in H*? with a nowhere vanishing sec-
ond fundamental form and a timelike osculation line. Let g and k be the induced metric and its
curvature, respectively, of .. Then k > —1. If ¥ is complete, then

(18) Agk > 3k(k +1).

Proof. The surface data correspond to the Higgs bundle s(0,-+,0,¢g,0) together with a diagonal
harmonic metric

diag(hi, ha, hs, 1,hg" byt hiY)

satisfying hy = 2hohs.
Let go = godz ® dz be a background Kéahler metric on . We employ the concepts introduced in
4.2. Let h; = ewigf{‘l, where i =1,---,7. Set

fO _ 6w1+w2|Q|§,f1 _ €_w1+w2,f2 _ €_w2+w3,f3 = e W3,

From the relation hy = 2hohg, we have 2f; = f3.
As in Section 4.2, from the Hitchin equation, we obtain the following system

1
Dy log fo=2fo - fa+ §Kgo away from zero of ¢

1
Dgolog f1=2f1 - fa+ 5Kg0
1
Dgolog fo=2fa— fo—fi—fa+ §Kg0

1
Dgolog f3 = f3— fo+ §Kgo
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Note that h3' = f3-go and g = f3-2Re(go) = Re(2f3 - jodz ® fzZ). The Gaussian curvature k of g is

2 1
k=--——-0.0:10g(2f330) = ~——=0.0:(log f3 + 1log §o)
21390 f390
1 _ 1
= __(Ago logf?) + Ago logQO) = __(fS - f2)
13 f3
= é -1>-1.
3

Now we assume ¢ is complete, that is, fs-go is complete. Since 2f; = f3, we have g(h)1 = f1 - g0
is also complete. By Lemma 4.5, we obtain fy < fi.
Therefore,

LA L, 2.0

fo
LN P N | RN T
2fs 7 2fy P fy f20 0 f

PG fo- -2
3
using 2f; = fo and fo < fi
> 21 -3)
f3
= 3k(k +1).

Agk

Similar to the case of maximal surfaces in H**, we show the following result.

Theorem 8.4. Let X be a complete space-like J-holomorphic curve in H*? with nowhere vanishing
second fundamental form and a timelike osculation line. Let q be its associated holomorphic sextic
differential. Then, its induced curvature is either strictly negative or constantly zero. Consequently,
the induced metric satisfies either g > 2\/§|q|% or g = 2\/§|q|%

Next, assume (X, g) is conformal to D. Then, g > gp. Moreover, the following statements are
equivalent:

(1) q is bounded with respect to the hyperbolic metric.
(2) The induced metric on ¥ is conformally bounded with respect to the hyperbolic metric.
(3) The induced curvature on ¥ is bounded from above by a negative constant.

Proof. Applying Lemma 2.5 to the equation of curvature k in Lemma 8.3 and using the fact k& > -1,
we obtain k<0 or k£ =0.

Since k <0, we obtain fo < f3. Moreover, using the same notions in the proof of Lemma 8.3, we
obtain fy < fi. Also note that 2f; = f3. Thus we obtain

_ _ _ 1
|q|§0 _ |q|3062w1 '62( w1 +w2) '62( wa+w3) Ce~2ws _ f0f12f22f3 < gf??

2

1
Therefore, V/2|q|3, < f3. Since locally g = 2f3go|dz> and |q|$2]0 = la2)l

%6

, we obtain

1 1 1
3 =g(2)|3]dz]* < ——g.
lal3 =1q(2)[3|dz] Vol
The rigidity follows from the one of k.
Next, g > gp follows from the fact k > -1, the assumption g is complete, and Lemma 2.4.
Finally, we show the equivalence between (1)(2)(3).
(1)=(2) follows from Theorem 4.6.
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(2)=(1) follows from %|q|é <g.
(2)=(3): Applying Lemma 2.5 to the equation of k£ in Lemma 8.3, we have k < -4 for a positive
constant 9.
(3)=(2): It follows from Lemma 2.4. O
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