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Abstract. For a harmonic diffeomorphism between the Poincaré disks, Wan in [Wan92] showed
the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this
paper, we will generalize this result from quadratic differentials to r-differentials. We study the rela-
tionship between bounded holomorphic r-differentials/(r−1)-differential and the induced curvature
of the associated harmonic maps from the unit disk to the symmetric space SL(r,R)/SO(r) arising
from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of
holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic
affine spheres in R3, maximal surfaces in H2,n and J-holomorphic curves in H4,2. Benoist-Hulin
and Labourie-Toulisse have previously obtained some of these equivalences using different methods.
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1. Introduction

Consider a harmonic diffeomorphism between the unit disk D equipped with the Poincaré hy-
perbolic metric gD. By the work of Wan [Wan92], the following are equivalent: (i) the harmonic
map is quasi-conformal; (ii) the energy density is bounded; (iii) its Hopf differential is bounded
with respect to gD.

The results of Wan on holomorphic quadratic differentials have been generalized to holomorphic
cubic differentials. Benoist and Hulin [BH14] established that the following conditions are equivalent
for a hyperbolic affine sphere in R3, whose Blaschke metric has conformal type as D: (i) its Blaschke
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metric has curvature bounded above by a negative constant; (ii) the Blaschke metric is conformally
bounded with respect to gD; (iii) its Pick differential is bounded with respect to gD.

The associated equations in these two settings belong to a type of single vortex equation and
can be dealt with simultaneously. The single vortex equation can be fit into a broader framework
known as the nonabelian Hodge correspondence for Higgs bundles.

Recall that a Higgs bundle on a Riemann surface Σ consists of a pair: a holomorphic vector
bundle E over Σ and a Higgs field, represented as an End(E)-valued holomorphic 1-form. A
Hermitian metric h on E is called harmonic if it satisfies the Hitchin equation. A harmonic metric
h gives rise to an equivariant harmonic map from the universal cover of Σ to the symmetric space
GL(r,C)/U(r).

Similar to the case of a compact surface, one can define the Hitchin section consisting of Higgs
bundles over D, denoted as s(q2,⋯, qn), parametrized by a tuple of differentials q2,⋯, qr. The
image of s(0,⋯,0, qr)/s(0,⋯,0, qr−1,0) is referred to as cyclic/subcyclic Higgs bundles in the Hitchin
section. In particular, the two cases discussed at the beginning belong to the category of cyclic
Higgs bundles in the Hitchin section for r = 2,3. For the (sub-)cyclic Higgs bundles, the Hitchin
equation coincides with the (variant) Toda system.

The second author and Mochizuki in [LM20a] showed that for a Higgs bundle over D, the spectral
curve is bounded, i.e., ∣ tr(φi)∣gD(i = 1,⋯, r) are bounded, if and only if the norm of Higgs field ∣φ∣h,gD
is bounded. This result can be viewed as a generalization of the equivalence between (ii) and (iii)
for rank two and three cyclic Higgs bundles.

Similar to the case for quadratic differentials and cubic differentials, we aim to investigate whether
the following holds: for a Higgs bundle in the Hitchin section, by choosing an appropriate harmonic
metric, it has a bounded spectral curve if and only if the induced curvature of the harmonic map
is bounded above by a negative constant. It is worth noting that this question restricts to the
negative curvature conjecture for compact hyperbolic surface case in [DL19]. We will address this
question for cyclic and subcyclic Higgs bundles in the Hitchin section.

For r ≥ 2, given a holomorphic r-differential q on D, it has been shown by the second author and
Mochizuki [LM20a] that there exists a unique strongly complete solution (see Definition 3.7) to the
Hitchin equation on the cyclic rank r Higgs bundle s(0,⋯,0, q). One may also define a similar no-
tion of strongly complete solution to the Hitchin equation for subcyclic rank (r − 1) Higgs bundles.
Consequently, one can associate a holomorphic r-differential or a holomorphic (r − 1)-differential
with a harmonic map f from D to the symmetric space N ∶= SL(r,R)/SO(r) arising from the
strongly complete solution.

We would like to investigate the relationship between bounded r-differentials or (r−1)-differentials
with the geometry of harmonic maps. Our main result is the following theorem.

Theorem 1.1 (part of Theorem 4.8). Suppose f ∶ D → Σ ⊂ N = SL(r,R)/SO(r) is a minimal
immersion induced by a holomorphic r-differential q for r ≥ 3 or a holomorphic (r − 1)-differential
q for r ≥ 4 arising from the strongly complete solution. Then the following are equivalent:

(1) q is bounded with respect to gD.
(2) The induced metric of Σ is mutually bounded with gD.
(3) There exists a constant δ > 0 such that KN

σ ≤ −δ for every tangent plane σ of Σ.
(4) The induced curvature on Σ is bounded from above by a negative constant.

Remark 1.2. (1) The equivalence between (1) and (2) follows from the equivalence between the
bounded spectral curve and the bounded norm of the Higgs field in Li-Mochizuki [LM20a].

(2) According to the definition of strongly completeness for both cases, the sectional curvature
KN
σ of the tangent plane σ of f satisfies KN

σ < 0 and the induced curvature is negative.
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We also have a version of Theorem 1.1 dealing with the cyclic case in the case of r = 2,3, as stated
in Proposition 4.2. For the case of r = 2, Proposition 4.2 corresponds to Wan’s result on harmonic
diffeomorphisms between D. In fact, the main technique in our proof of Proposition 4.2 is adapted
from Wan’s proof. Wan’s result has also been generalized to harmonic diffeomorphisms between
pinched Hadamard spaces in [LTW95]. Building upon Wan’s proof, we introduce the key Lemmas
2.2 and 2.5, which will be frequently used in this paper. As a direct corollary of Proposition 4.2
for the case r = 3, we provide an alternative proof of Benoist-Hulin’s theorem [BH14] on hyperbolic
affine spheres in R3. This theorem shows that the Blaschke metric has curvature bounded above
by a negative constant if and only if its Pick differential is bounded with respect to the hyperbolic
metric. Detailed discussions can be found in Section 5 and 6.

Holomorphic quartic differentials and sextic differentials naturally appear in the structure data
of immersed surfaces in pseudo-hyperbolic spaces. We establish results analogous to those for
quadratic and cubic differentials.

For a space-like maximal surface in H2,n, one can associate with a holomorphic quartic differential.
According to [CTT19], such a maximal surface corresponds to a conformal SO0(2, n + 1)-Higgs
bundle over a domain in C along with a real harmonic metric that is compatible with the group
structure. In Section 7, we prove the following theorem, previously shown in Labourie-Toulisse
[LT23], with the exception of part (i).

Theorem 1.3. (Theorem 7.9) For a complete maximal surface X in H2,n, its induced curvature is
either negative or constantly zero. In the latter case, X is conformal to the complex plane.

Furthermore, assuming that X is conformal to D, the following conditions are equivalent:

(1) The quartic differential is bounded with respect to the hyperbolic metric.
(2) The induced metric is conformally bounded with respect to the hyperbolic metric.
(3) The induced metric has curvature bounded above by a negative constant.

Remark 1.4. Our technique is different from the one in [LT23]. In fact, the method used in [LT23]
shares a similar spirit with the one in [BH14] for affine spheres and cubic differentials.

For space-like J-holomorphic curves in H4,2 with nonvanishing second fundamental form and a
timelike osculation line, we can associate a holomorphic sextic differential q6. According to [Nie22],
such J-holomorphic curves correspond to subcyclic Higgs bundle with certain harmonic metric. In
Section 8, we prove the following theorem.

Theorem 1.5. (Theorem 8.4) Let X be a complete space-like J-holomorphic curve in H4,2 such
that its second fundamental form never vanishes and has timelike osculation line. Then, its induced
curvature is either negative or constantly zero. In the latter case, X is conformal to the complex
plane.

Furthermore, assume X is conformal to D, the following are equivalent:

(1) The sextic differential is bounded with respect to the hyperbolic metric.
(2) The induced metric is conformally bounded with respect to the hyperbolic metric.
(3) The induced metric has curvature bounded above by a negative constant.

Regarding Toda equations and related geometry on complex plane or more general Riemann sur-
faces, there is an extensive body of literature on solutions and corresponding geometry. Regarding
harmonic maps between surfaces, see, for example, [SY78, Wol89, WA94, Han96, HTTW95, Gup21].
For hyperbolic affine spheres in R3, see, for example, [Cal72, Lof01, Lab07, BH13, BH14, DW15,
Nie23]. For maximal surfaces in H2,n, see [CTT19, TW20, LTW20]. For J-holomorphic curves in
H4,2 (or equivalently S2,4), see [Bar10, Eva22]. For cyclic Higgs bundles of general rank, see, for
example,[Bar15, GL14, GIL15, Moc, Moc14, DL19, DL20, LM20b].
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Recall that the universal Teichmüller space T (D) is the space of quasisymmetric homeomor-
phisms of S1 fixing three points. Combining Wan’s result with the work of [LT23, Mar17], there
is a bijection between the space of bounded quadratic differentials with the universal Teichmüller
space. Recent work by Labourie and Toulisse [LT23] constructs an analogue of the universal Te-
ichmüller space as a subspace of the space of maximal surfaces in H2,n that relates to the space of
bounded quartic differentials. Consider a 2-dimensional real vector space denoted as V . Denote
by QSn the space of quasisymmetric maps from P(V ) to ∂∞H2,n equipped with the C0 topology,
up to the action of SO(2, n + 1). The space QSn can be viewed as a higher rank analogue of the
universal Teichmüller space T (D). Denote by H0

b (D,K4) the space of bounded quartic differentials
on D. They construct a natural map H from QSn to the product space T (D)×H0

b (D,K4). At the
end of Section 7, we provide a concise proof of the properness of this map H, as posed by Labourie
and Toulisse.

Organization of this paper. Section 2 gathers some useful tools, particularly Lemma 2.2, which
is the key tool. We then present preliminaries on Higgs bundles and the Toda equation in Section 3.
In Section 4, we prove the main Theorem 4.8. In Section 5, we study the application of Proposition
4.2 to harmonic maps between surfaces and bounded quadratic differentials. Section 6 explores
the application of Proposition 4.2 to hyperbolic affine spheres and bounded cubic differentials.
Section 7 is dedicated to the study of maximal surfaces in H2,n and bounded quartic differentials.
We also discuss an analogous universal Teichmüller space in Section 7. In Section 8, we explore
J-holomorphic curves in H4,2 and bounded sextic differentials.

Acknowledgements. We want to thank Francois Labourie and Jeremy Toulisse for sending us
their preprint and helpful discussion. The second author thanks Xin Nie for helpful explanations
on the associated G2-geometry. Li is supported by the National Key R&D Program of China No.
2022YFA1006600, the Fundamental Research Funds for the Central Universities and the Nankai
Zhide foundation. Dai is supported by NSF of China (No.11871283, No.11971244 and No.12071338).

2. Main tools

In this section, we introduce several useful lemmas. We begin by recalling the following mean-
value inequality, which is used to establish the key Lemma 2.2.

Proposition 2.1. (Mean-value inequality, [CT90, Lemma 2.5]) Let (M,g) be a complete Rie-
mannian manifold of dimension n. Consider constants c ≥ 0, R0 > 0, and x0 ∈ M . Assume that
(i) the Poincaré and Sobolev inequalities hold with constant cp and cs for functions supported in
Bg(x0,R0); and (ii) Vol(Bg(x0, r)) ≤ c2r

n, for all r ≤ R0, where c2 is a positive constant. Then
there exist constants p0 = p0(n, c,R0, cp, cs, c2) > 0 and C = C(n, c,R0, cp, cs, c2) > 0 such that,
for any nonnegative W 1,2 supersolution u satisfying △gu ≤ cu in Bg(x0,R0) and p ∈ (0, p0), the
following inequality holds:

inf
x∈Bg(x0,R0/4)

u(x) ≥ C(∫
Bg(x0,R0/2)

updVg)
1
p .

In particular, there exist constants C > 0 and 0 < p < 1 such that

u(x0) ≥ C(∫
Bg(x0,R0/2)

updVg)
1
p .

The following is the key lemma we will use in this paper. It follows from the proof in Wan [Wan92,
Theorem 13], where he showed that bounded quadratic differentials correspond to quasi-conformal
maps between the unit disk.
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Lemma 2.2. Let g be a Riemannian metric on D satisfying (i) g is equivalent to the hyperbolic
metric gD, i.e. C−1

1 g ≤ gD ≤ C1g for some constant C1 ≥ 1; (ii) the Gaussian curvature Kg of g
satisfies −H ≤ Kg ≤ 0 for some positive constant H. Let u be a smooth function on D satisfying
−C−1

2 Kg ≤ u ≤ −C2Kg for some constant C2 ≥ 1.
Assume that u satisfies

△gu ≤ cu
for some positive constant c, then there exist a positive constant δ, depending on C1,H,C2, and c,
such that u ≥ δ and Kg ≤ −C−1

2 δ.

Proof. Since g is equivalent to gD, noting that gD has exponential volume growth and is homoge-
neous, there exist constants ε, η,M > 0, depending only on C1, such that Vol(Bg(x, r)) ≥ εeηr−M for
every ball Bg(x, r) with respect to the metric g. Therefore, there exists a positive constant R, de-

pending on C1, such that for every x ∈ D, there exists r ∈ (0,R) satisfying d2

dr2
Vol(Bg(x, r)) ≥ 2π+1.

Since Kg ≤ 0, and D is simply connected, the exponential map is a diffeomorphism. Then,

d2

dr2
Vol(Bg(x, r)) =

d

dr
L(∂Bg(x, r)) = ∫

∂Bg(x,r)
kgdsg,

where L is the length functional and kg is the geodesic curvature of ∂Bg(x, r) with respect to the
metric g. By the Gauss-Bonnet-Chern formula, we have

d2

dr2
Vol(Bg(x, r)) = 2π − ∫

Bg(x,r)
KgdVg.

Thus, for every x ∈ D, there is a constant r ∈ (0,R) such that ∫Bg(x,r) −KgdVg ≥ 1. Since u ≥ −C−1
2 Kg,

we have

∫
Bg(x,r)

udVg ≥ C−1
2 .

Now we apply Proposition 2.1 to obtain the Lp estimate of u. In fact, let R0 = 2R, where R
is defined above depending on C1. Since g is equivalent to gD, there is a positive constant c2,
depending on C1, such that Vol(Bg(x, r)) ≤ c2r

n, ∀r ≤ R0,∀x ∈ D. Since Kg ≥ −H, from [Li12,
Theorem 5.9], the Poincaré inequality holds for a constant cp depending on H. To see the Sobolev
constant, since it is equivalent to the isoperimetric constant and g is equivalent to gD, we see that
the Sobolev inequality holds for a constant cs depending on C1. It follows from Proposition 2.1
that there exist constants C > 0, 0 < p < 1 depending on C1,H,C2, c such that for every x ∈ D,

u(x) ≥ C(∫
Bg(x,R)

updVg)
1
p .

From the assumption, 0 ≤ u ≤ C2H and thus up ≥ (C2H)p−1u for 0 < p < 1. Together with the L1

estimate we obtained above, there exist a positive constant δ, depending only on C1,H,C2, and c,
such that

u(x) ≥ C(∫
Bg(x,R)

updVg)
1
p ≥ C ⋅ (C2H)

p−1
p (∫

Bg(x,R)
udVg)

1
p ≥ C ⋅ (C2H)

p−1
p ⋅C

− 1
p

2 =∶ δ.

Since u ≤ −C2Kg, then Kg ≤ −C−1
2 δ. This concludes the proof. �

The next lemma is the Cheng-Yau maximum principle, which allows us to deal with complete
Riemannian manifolds whose curvature is bounded from below.

Lemma 2.3 (Cheng-Yau Maximum Principle [CY75]). Suppose (M,g) is a complete manifold with
Ricci curvature bounded from below. Let u be a C2-function defined on M such that △gu ≥ f(u),
where f ∶ R → R is a function. Suppose there is a continuous positive function h(t) ∶ [a,∞) → R+
such that
(i) h is non-decreasing;
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(ii) lim inf
t→+∞

f(t)
h(t) > 0;

(iii) ∫ ∞b (∫ ta h(τ)dτ)−
1
2dt < ∞, for some b ≥ a.

Then the function u is bounded from above. Furthermore, if f is lower semi-continuous, f(supu) ≤
0.

In particular, for α > 1 and a positive constant c0, one can check if f(t) ≥ c0t
α for t large enough,

h(t) = tα satisfy the above three conditions (i)(ii)(iii).

Lemma 2.4. Let g0 and g be two conformal Riemannian metrics on a Riemann surface Σ. Assume
that g0 is complete and there exist two positive constants a and b such that Kg ≤ −b and Kg0 ≥ −a.
Then, g ≤ a

b g0.

Proof. Regard g0 as a Hermitian metric, locally, denote g0 = g̃0dz ⊗ dz̄ and g = g0 ⋅ eu,

−b ≥Kg = −
2

eug̃0
∂z∂z̄ log(eug̃0).

Then,

− 2

eu
△g0 u +

1

eu
Kg0 ≤ −b.

So

△g0u ≥
b

2
eu + Kg0

2
≥ b

2
eu − a

2
.

Then, by the Cheng-Yau maximum principle, eu ≤ a
b . �

Combining Lemmas 2.2, 2.3, and 2.4, we show the following lemma, which will be used frequently
throughout this paper.

Lemma 2.5. Suppose (Σ, g) is a complete surface with curvature bounded from below. Suppose
there exist positive constants c and d such that:

(1) △gKg ≥ cKg(Kg + d).
Then Kg < 0 or Kg ≡ 0, in which case Σ is parabolic.

When Σ is hyperbolic, let ghyp be the unique complete conformal hyperbolic metric. If g ≤ Cghyp
for some positive constant C, then there exists a positive constant δ such that Kg ≤ −δ.

Proof. Since g is complete and Kg has a lower bound, the background metric is enough to ap-
ply the Cheng-Yau maximum principle. Since the right hand side of the equation has quadrat-
ic growth, from the Cheng-Yau maximum principle (Lemma 2.3), Kg has an upper bound, and
c supKg(supKg + d) ≤ 0. Therefore, supKg ≤ 0. By the strong maximum principle, either Kg < 0
or Kg ≡ 0.

From Lemma 2.4, we have g ≥ C1ghyp for some positive constant C1. Together with the assump-

tion g ≤ Cghyp, g is equivalent to ghyp. Now, lift (Σ, g) to the cover (Σ̃ ≅ D, g̃), g̃ is equivalent to
gD. we can apply Lemma 2.2 to

△g̃(−Kg̃) ≤ −cKg̃(Kg̃ + d) ≤ −cdKg̃.

As a result, we conclude that Kg̃ ≤ −δ for some positive constant δ. The same conclusion holds for
Kg. �

3. Preliminaries on Higgs bundles

In this section, we will review some facts on Higgs bundles used in this article. For more detailed
information, readers may refer to [Li19].
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3.1. Higgs bundles over Riemann surfaces. Let Σ be a Riemann surface and K denote the
canonical line bundle of Σ.

Definition 3.1. A Higgs bundle over a Riemann surface Σ is a pair (E,φ) where E is a holomor-
phic bundle over Σ of rank r, and φ ∶ E → E ⊗K is a holomorphic bundle map. Additionally, an
SL(r,C)-Higgs is a Higgs bundle with detE = O and trφ = 0.

Now, let h be a Hermitian metric on the bundle E. We will also use h to denote the induced
Hermitian metric on End(E).

Definition 3.2. A Hermitian metric h on a Higgs bundle is called harmonic if it satisfies the
Hitchin equation

F (h) + [φ,φ∗h] = 0,

where F (h) is the curvature of the Chern connection ∇ with respect to h, φ∗h is the adjoint of φ
with respect to the metric h, and the bracket [, ] is the Lie bracket on End(E)-valued 1-forms.

Locally, φ = fdz for a local holomorphic section f of End(E). We have the following inequality
as a slight modification of [Moc16].

Lemma 3.3. For a holomorphic section s of End(E), locally, we have

∂z∂z̄ log ∣s∣2h ≥
∣[s, f∗h]∣2h − ∣[s, f]∣2h

∣s∣2h
.

Proof. We start by denoting ∂z,h as the (1,0) part of the Chern connection on End(E) with respect

to h. Since s is holomorphic, we can write: ∂z∂z̄ ∣s∣2h = ∣∂z,hs∣2+h(s, ∂z̄∂z,hs). This allows us to derive:

∂z∂z̄ log ∣s∣2h =
∂z∂z̄ ∣s∣2h

∣s∣2h
− ∂z ∣s∣

2
h

∣s∣2h
∂z̄ ∣s∣2h
∣s∣2h

= h(s, ∂z̄∂z,hs)∣s∣2h
+ ∣∂z,hs∣2

∣s∣2h
− ∂z ∣s∣

2
h

∣s∣2h
∂z̄ ∣s∣2h
∣s∣2h

.

We also have:

∂z ∣s∣2h ⋅ ∂z̄ ∣s∣2h = ∣∂z̄ ∣s∣2h∣2 = ∣h(∂z,hs, s)∣2 ≤ ∣∂z,hs∣2h ⋅ ∣s∣2h.
Therefore,

∂z∂z̄ log ∣s∣2h ≥
h(s, ∂z̄∂z,hs)

∣s∣2h
= h(s, (∂z̄∂z,h − ∂z,h∂z̄)s)∣s∣2h

.

By the Hitchin equation, locally we have F (h) + [φ,φ∗h] = F (h) + [f, f∗h]dz ∧ dz̄ = 0. So, we can
write

(∂z̄∂z,h − ∂z,h∂z̄)s = [[f, f∗h], s].
This leads to

∂z∂z̄ log ∣s∣2h ≥
h(s, [[f, f∗h], s])

∣s∣2h
= h(s, [f, [f

∗h , s]])
∣s∣2h

− h(s, [f
∗h , [f, s]])
∣s∣2h

.

Using the formula h(u, [v,w]) = h([v∗h , u],w), we obtain ∂z∂z̄ log ∣s∣2h ≥
∣[s,f∗h ]∣2h−∣[s,f]∣

2
h

∣s∣2
h

. �

The Hitchin equation, together with the holomorphicity of φ, gives a ρ-equivariant harmonic
map. This map, denoted as f ∶ Σ̃ → N ∶= SL(r,C)/SU(r), is defined on the universal cover of Σ,
and ρ represents the holonomy representation of the flat connection D = ∇ + φ + φ∗h .

We consider a Kähler metric g = g̃dz ⊗ dz̄ on Σ. The Kähler form ω is given by ω =
√
−1
2 g̃dz ∧ dz̄

with respect to Re(g) = 1
2(g + ḡ). (Notice that in some literature the Kähler form ω is to g + ḡ.)

We also regard the Kähler metric g as a Hermitian metric on K−1. Respectively, the Laplacian
7



with respect to g, the Gaussian curvature of Re(g), and the square norm of q with respect to g are
locally given by:

△g =
1

g̃
∂z∂z̄, Kg = −

2

g̃
∂z∂z̄ log g̃.

Let q be a holomorphic k-differential q. Locally, it is of the form q(z)dzk. Then q defines a

singular flat metric, denoted as ∣q∣ 2k , locally of the form ∣q(z)∣ 2k ∣dz∣2. The square norm of q with

respect to g is denoted by ∣q∣2g, locally given by
q(z)q̄(z)

g̃r .

The Hopf differential of f is Hopf(f) = 2rtr(φ2) and the energy density of f is e(f) = 2rtr(φφ∗)/g.

3.2. Toda system. The cyclic Higgs bundles in the Hitchin component have the following form:

E =K
r−1
2 ⊕K

r−3
2 ⊕⋯⊕K

3−r
2 ⊕K

1−r
2 , φ =

⎛
⎜⎜⎜⎜⎜
⎝

q
1

1
⋱

1

⎞
⎟⎟⎟⎟⎟
⎠

,

where q is a holomorphic r-differential on Σ.
The Hermitian metric g induces the Hermitian metrics (g−1)⊗(r+1−2i)/2 on K(r+1−2i)/2, and a

diagonal Hermitian metric
r

⊕
i=1

(g−1)⊗(r+1−2i)/2 on E. For any R-valued function w = (w1, . . . ,wr),
we define a Hermitian metric on E,

h(g,w) ∶=
r

⊕
i=1

ewi(g−1)⊗(r+1−2i)/2.

Remark 3.4. For a smooth function f on Σ, consider another Kähler metric g′ = efg. Let
w′ = (w1 + r−1

2 f, . . . ,wr + 1−r
2 f). Then h(g,w) = h(g′,w′).

Through direct calculation, it can be shown that the Hermitian metric h(g,w) is harmonic if
and only if it satisfies the Toda system. One may refer to [LM20a].

Proposition 3.5. The real Hermitian metric h(g,w) is harmonic if and only if w satisfies the
following Toda system:

(2)

△gw1 = ∣q∣2gew1−wr − ew2−w1 − r − 1

4
Kg,

△gwi = ewi−wi−1 − ewi+1−wi − r + 1 − 2i

4
Kg, i = 2, . . . , r − 1

△gwr = ewr−wr−1 − ∣q∣2gew1−wr − 1 − r
4

Kg.

and
r

∑
i=1
wi = 0. In particular, in the case r = 2, the Hermitian metric h(g,w) is harmonic if and

only if w = (w1,−w1) satisfies

(3) △gw1 = ∣q∣2ge2w1 − e−2w1 − 1

4
Kg.

Definition 3.6. A solution (w1,⋯,wr) to the Toda system (2) is said to be real if wi +wr+1−i = 0
for i = 1,⋯, r.
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Denote n = [ r2]. A real solution to the Toda system satisfies

(4)

△gw1 = e2w1 ∣q∣2g − e−w1+w2 − r − 1

4
Kg,

△gwi = e−wi−1+wi − e−wi+wi+1 − r + 1 − 2i

4
Kg, 2 ≤ i ≤ n − 1,

△gwn = e−wn−1+wn − e−(2n+2−r)wn − r + 1 − 2n

4
Kg.

We also consider the subcyclic Higgs bundles in the Hitchin component, which have the form:

E =K
r−1
2 ⊕K

r−3
2 ⊕⋯⊕K

3−r
2 ⊕K

1−r
2 , φ =

⎛
⎜⎜⎜⎜⎜
⎝

q 0
1 q

1
⋱

1

⎞
⎟⎟⎟⎟⎟
⎠

,

where q is a holomorphic (r−1)-differential on Σ. Similar to the cyclic case, the diagonal harmonic
metric h(g,w) gives a variant Toda system as follows:

(5)

△gw1 = ew1+w2 ∣q∣2g − e−w1+w2 + r − 1

4
Kg,

△gw2 = ew1+w2 ∣q∣2g + e−w1+w2 − e−w2+w3 + r − 3

4
Kg,

△gwi = e−wi−1+wi − e−wi+wi+1 + r + 1 − 2i

4
Kg, 3 ≤ i ≤ r − 2,

△gwr−1 = e−wr−2+wr−1 − ew1+w2 ∣q∣2g − e−wr−1+wr + 3 − r
4

Kg,

△gwr = e−wr−1+wr − ew1+w2 ∣q∣2g +
1 − r

4
Kg.

If the solution is real, i.e., wi +wr+1−i = 0 for i = 1,⋯, r, then the variant Toda system becomes

(6)

△gw1 = ew1+w2 ∣q∣2g − e−w1+w2 − r − 1

4
Kg,

△gw2 = ew1+w2 ∣q∣2g + e−w1+w2 − e−w2+w3 − r − 3

4
Kg,

△gwi = e−wi−1+wi − e−wi+wi+1 − r + 1 − 2i

4
Kg, 3 ≤ i ≤ n − 1,

△gwn = e−wn−1+wn − e−(2n+2−r)wn − r + 1 − 2n

4
Kg.

For both the systems (2) and (5), denote

g(h)i = e−wi+wi+1g, i = 1,⋯, r − 1.

We consider the strongly complete solution to the systems (2) or (5) in the following sense.

Definition 3.7. ● A solution (w1,⋯,wr) to the system (2) is said to be strongly complete if
the following holds:

– The metrics g(h)i, i = 1,⋯, r − 1, are complete and mutually bounded.
– It is real.
– Set w0 = −w1 − log ∣q∣2g, wn+1 = −(2n + 1 − r)wn. Then

e−wi−1+wi

e−wi+wi+1
≤ 1, i = 1,⋯, n.

● A solution (w1,⋯,wr) to the system (5) is said to be strongly complete if the following holds:
9



– The metrics g(h)i, i = 1,⋯, r − 1, are complete and mutually bounded.
– It is real.
– Set w0 = −w2 − log ∣q∣2g, wn+1 = −(2n + 1 − r)wn. Then

e−wi−1+wi

e−wi+wi+1
≤ 1, i = 1,⋯, n, and e−w0+w1 + e−w1+w2 ≤ e−w2+w3 .

Remark 3.8. Let Σ be a Riemann surface with a Kähler metric g.

(1) By [LM20a], for any holomorphic r-differential q on Σ, there exists a unique strongly com-
plete solution to the system (2). In fact, the uniqueness holds for a weaker condition.

(2) Before the first draft of this paper, Nathaniel Sagman emailed to the second author a note
showing that for any holomorphic (r−1)-differential q on Σ, there uniquely exists a strongly
complete solution to the system (5). The note uses a similar technique as in [LM20a].

4. Bounded differentials and harmonic maps

4.1. Single equation. We will first consider the case of a single equation. For the geometric
applications, we will consider a slightly broader class of equations than (3). Let Σ be a Riemann
surface with a Kähler metric g. Let r ≥ 2 be a positive integer. We investigate the following
equation for a smooth function w on Σ:

△gw = κ(ew − e−(r−1)w∣q∣2g) +
1

2
Kg.(7)

Here, κ is a positive function on Σ satisfying C1 ≤ κ ≤ C2 for two positive constants C1 < C2.

Lemma 4.1. Let w be a solution to Equation (7). Then Kewg has a lower bound.
Assume ewg is complete, then either ∣q∣2ge−rw < 1,Kewg < 0 or ∣q∣2ge−rw ≡ 1,Kewg ≡ 0. In the latter

case, Σ is parabolic.
Furthermore, if Kg ≤ −C3 for some positive constant C3, then w is bounded from below.

Proof. Denote g = g̃(z)dz ⊗ dz̄. The curvature of the metric ewg is

Kewg =
−2

ewg̃
∂z∂z̄ log(ewg̃) = −2

ew
(△gw − Kg

2
)

= −2

ew
κ(ew − e−(r−1)w∣q∣2g) = −2κ(1 − ∣q∣2ge−rw)

≥ −2κ ≥ −2C2.

Now, we assume that ewg is complete. Notice that for a Riemannian metric g and a smooth
function f ,

△ge
f = ef(△gf + ∣∇gf ∣2g) ≥ ef △g f.(8)

Then, outside the zeros of q, we have

△g(∣q∣2gef) = △ge
f+log ∣q∣2g ≥ ∣q∣2gef(△gf +△g log ∣q∣2g)

≥ ∣q∣2gef(△gf +
r

2
Kg)

10



outside the zeros of q. Since both sides of the above equation are smooth functions, by the continuity,
the equation holds everywhere. So for u = ∣q∣2ge−rw − 1,

△gu = △g(∣q∣2ge−rw)

≥ ∣q∣2ge−rw(−r△g w + r
2
Kg)

= ∣q∣2ge−rw(−r(κ(ew − ∣q∣2ge−(r−1)w) + 1

2
Kg) +

r

2
Kg)

= rκ∣q∣2ge−rw(∣q∣2ge−rw − 1)ew

= rκewu(u + 1)
implying that

(9) △ewgu ≥ rC1u(u + 1).
Since ewg is complete and has curvature bounded from below, the Cheng-Yau maximum principle

(Lemma 2.3) implies that u ≤ 0. By the strong maximum principle, we have two possibilities: either
u < 0 or u ≡ 0. The curvature of ewg is given as follows:

Kewg = −2κ(1 − ∣q∣2ge−rw) = 2κu.(10)

If u ≡ 0, then ewg is a complete flat metric, implying that Σ is parabolic. If u < 0, then Kewg =
2κu < 0.

To show that w has a lower bound, consider the equation:

△ewg(−w) = − 1

ew
△g w = −κ(1 − ∣q∣2ge−rw) −

1

2
Kge

−w ≥ C3

2
e−w −C2.

Using the Cheng-Yau maximum principle (Lemma 2.3), we conclude that −w has an upper bound.
�

Wan [Wan92] showed that the function u is bounded above by a negative constant for the
equation (3) in the case where r = 2 and κ = 1. For our geometric applications, we are concerned
with Equation (7). The proof is similar. For the convenience of our readers, we include the proof
here. We will discuss the geometric applications in Section 5 and Section 6.

Proposition 4.2. Let (Σ, g) be a complete hyperbolic surface and w be a solution to Equation (7).
Assuming that ewg is complete, then the following statements are equivalent:
(1) ∣q∣g is bounded.
(2) ∣w∣ is bounded.

(3) There exists a positive constant C such that ∣q∣2ge−(r−1)w + ew ≤ C.
(4) There exists a positive constant δ such that the curvature of the metric ewg satisfies Kewg ≤ −δ.
(5) There exists a positive constant δ such that ∣q∣2ge−rw ≤ 1 − δ.
Proof. (1)⇒(4): Let u = ∣q∣2ge−rw − 1, and from (9), we have:

△ewgu ≥ rC1u(u + 1).
From Lemma 2.5, we obtain Kewg ≤ −δ for some δ > 0.

(4)⇒(5): This is evident from formula (10).
(5)⇒(2): We only need to show w has an upper bound. In fact,

△gw = κ(ew − ∣q∣2ge−(r−1)w) − 1

2
≥ C1δe

w − 1

2
.

Then, from the Cheng-Yau maximum principle, w has an upper bound.
(2)⇒(3): It follows from Lemma 4.1 that ∣q∣2ge−rw ≤ 1. Then ∣q∣2ge−(r−1)w + ew ≤ 2ew ≤ C.
(3)⇒(1): From the assumption, we have ∣q∣2ge−(r−1)w ≤ C, ew ≤ C. So ∣q∣2g is bounded. �
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4.2. Equation system. We now consider the Toda system (4) and the variant Toda system (6).
Since for lower values of r, the formulae cannot be written in a general form, we calculate the
formulae case by case.

For the Toda system (4), set

f0 = fr = e2w1 ∣q∣2g, fi = e−wi+wi+1(i = 1,⋯, r − 1).

Note that △g log ∣q∣2g = r
2Kg.

For r = 2,3, the Toda system (4) implies:

△g log f0 = 2f0 − 2f1 +
1

2
Kg, outside the zeros of q

△g log f1 = a(f1 − f0) +
1

2
Kg, a =

⎧⎪⎪⎨⎪⎪⎩

2, for r = 2

1, for r = 3

For r ≥ 4, the Toda system (4) implies:

△g log f0 = 2f0 − 2f1 +
1

2
Kg, outside the zeros of q,

△g log fi = 2fi − fi−1 − fi+1 +
1

2
Kg, i = 1,⋯, r − 1.

For the variant Toda system (6), set

f0 = fr = ew1+w2 ∣q∣2g, fi = e−wi+wi+1(i = 1,⋯, r − 1).

For r = 3, the variant Toda system (6) implies:

△g log f0 = f0 − f1 +
1

2
Kg, outside the zeros of q

△g log f1 = f1 − f0 +
1

2
Kg.

For r = 4,5, the variant Toda system (6) implies:

△g log f0 = 2f0 − f2 +
1

2
Kg, outside the zeros of q

△g log f1 = 2f1 − f2 +
1

2
Kg,

△g log f2 = a(f2 − f0 − f1) +
1

2
Kg, a =

⎧⎪⎪⎨⎪⎪⎩

2, for r = 4

1, for r = 5

For r ≥ 6, the variant Toda system (6) implies:

△g log f0 = 2f0 − f2 +
1

2
Kg, outside the zeros of q

△g log f1 = 2f1 − f2 +
1

2
Kg,

△g log f2 = 2f2 − f0 − f1 − f3 +
1

2
Kg,

△g log fi = 2fi − fi−1 − fi+1 +
1

2
Kg, i = 3,⋯, r − 1.

Notice that for both (4) and (6), fi = fr−i, for 0 ≤ i ≤ r.
12



Lemma 4.3. For the Toda system (4) and the variant Toda system (6), let (w1,⋯,wr) be a real
solution. Denote g(h)i = e−wi+wi+1g, i = 1,⋯, r − 1. Then the curvature Kg(h)i , i = 1,⋯, r − 1, are
bounded from below.

Moreover, there exist positive constants c1 and c2 (which may be different in each case) such
that:

△g(h)nKg(h)n ≥ c1Kg(h)n(Kg(h)n + c2) for r = 2,3 in (4), r = 3,4,5 in (6).

△g(h)n−1Kg(h)n−1 ≥ c1Kg(h)n−1(Kg(h)n−1 + c2) for r = 4 in (4), r = 7 in (6).

Assume in addition (w1,⋯,wr) is strongly complete. Then:

△g(h)nKg(h)n ≥ c1Kg(h)n(Kg(h)n + c2) for r ≥ 2 in (4), r ≥ 3 in (6).

△g(h)n−1Kg(h)n−1 ≥ c1Kg(h)n−1(Kg(h)n−1 + c2) for r ≥ 4, r ≠ 5 in (4), r ≥ 6 in (6).

Proof. Locally, denote g = g̃(z)dz ⊗ dz̄. We first consider the Toda system (4).
For r = 2,3,

Kg(h)1 = −
2

f1g̃
∂z∂z̄ log(f1g̃) = 2a(f0

f1
− 1).

△g(h)1Kg(h)1 = 2a△g(h)1
f0

f1

≥ 2a
f0

f1
△g(h)1 log

f0

f1
outside the zeros of q

= 2a(a + 2) f0

f2
1

(f0 − f1) =
a + 2

2a
Kg(h)1(Kg(h)1 + 2a).

Since q is holomorphic, its zeros are discrete. Then from the continuity of functions on both sides
of the above equation, the inequality holds everywhere.

For r = 4, notice that f3 = f1,

Kg(h)1 = −
2

f1g̃
∂z∂z̄ log(f1g̃) = 2(f0 + f2

f1
− 2).

△g(h)1Kg(h)1 = 2△g(h)1 (f0

f1
+ f2

f1
)

≥ 2(f0

f1
△g(h)1 log

f0

f1
+ f2

f1
△g(h)1 log

f2

f1
)

= 2( f0

f2
1

(3f0 − 4f1 + f2) +
f2

f2
1

(f0 − 3f1 + 3f2 − f1))

= 2(3f2
0 − 4f0f1 + f0f2 − 4f1f2 + 3f2

2 + f0f2)/f2
1

≥ 2(2(f0 + f2)2 − 4(f0 + f2)f1)/f2
1

=Kg(h)1(Kg(h)1 + 4).

Now, we consider the variant Toda system (6) similarly.
For r = 3,

Kg(h)1 = −
2

f1g̃
∂z∂z̄ log(f1g̃) = 2(f0

f1
− 1).

△g(h)1Kg(h)1 = 2△g(h)1
f0

f1
≥ 2

f0

f1
△g(h)1 log

f0

f1
= 4

f0

f2
1

(f0 − f1) =Kg(h)1(Kg(h)1 + 2).
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For r = 4,5,

Kg(h)2 = −
2

f2g̃
∂z∂z̄ log(f2g̃) = 2a(f0 + f1

f2
− 1).

△g(h)2Kg(h)2 = 2a△g(h)2 (f0

f2
+ f1

f2
)

≥ 2a(f0

f2
△g(h)2 log

f0

f2
+ f1

f2
△g(h)2 log

f1

f2
)

= 2a( f0

f2
2

((2 + a)f0 + af1 − (a + 1)f2) +
f1

f2
2

((2 + a)f1 − (a + 1)f2 + af0))

= 2a((2 + a)f2
0 + 2af0f1 − (a + 1)f0f2 + (2 + a)f2

1 − (a + 1)f1f2)/f2
2

≥ 2a((a + 1)(f0 + f1)2 − (a + 1)(f0 + f1)f2)/f2
2

= a + 1

2a
Kg(h)2(Kg(h)2 + 2a).

Kg(h)1 = −
2

f1g̃
∂z∂z̄ log(f1g̃) = 2(f2

f1
− 2).

△g(h)1Kg(h)1 = 2△g(h)1
f2

f1
≥ 2

f2

f1
△g(h)1 log

f2

f1
= 2

f2

f2
1

(−af0 − (2 + a)f1 + (a + 1)f2).

Suppose the solution is strongly complete, then f2 ≥ f1 + f0. Therefore,

△g(h)1Kg(h)1 ≥ 2
f2

f2
1

(−2f1 + f2) =
1

2
Kg(h)1(Kg(h)1 + 4).

For r = 6,7,

Kg(h)2 = −
2

f2g̃
∂z∂z̄ log(f2g̃) = 2(f0 + f1 + f3

f2
− 2).

△g(h)2Kg(h)2 = 2△g(h)2 (f0

f2
+ f1

f2
+ f3

f2
)

≥ 2(f0

f2
△g(h)2 log

f0

f2
+ f1

f2
△g(h)2 log

f1

f2
+ f3

f2
△g(h)2 log

f3

f2
)

= 2( f0

f2
2

(3f0 + f1 + f3 − 3f2) +
f1

f2
2

(3f1 − 3f2 + f0 + f3) +
f3

f2
2

(f0 + f1 − 3f2 + 3f3 − f4))

= 2(3f2
0 + 3f2

1 + 2f0f1 + 2f0f3 + 2f1f3 − 3f0f2 − 3f1f2 + 3f2
3 − 3f2f3 − f3f4)/f2

2

= 2(2f2
0 + 2f2

1 + (f0 + f1)2 + 2(f0 + f1)f3 − 3(f0 + f1 + f3)f2 + 3f2
3 − f3f4)/f2

2

= 2(2f2
0 + 2f2

1 + 2f2
3 + (f0 + f1 + f3)2 − 3(f0 + f1 + f3)f2 − f3f4)/f2

2

≥ 2(3

2
(f0 + f1 + f3)2 − 3(f0 + f1 + f3)f2 + f2

3 − f3f4)/f2
2

= 3

4
Kg(h)2(Kg(h)2 + 4) + 2

f2
3 − f3f4

f2
2

For r = 6, we have f4 = f2. Assume (w1,⋯,wr) is strongly complete, f2 ≤ f3. Therefore,

△g(h)2Kg(h)2 ≥
3

4
Kg(h)2(Kg(h)2 + 4).
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For r = 7, we have f4 = f3. So

△g(h)2Kg(h)2 ≥
3

4
Kg(h)2(Kg(h)2 + 4).

For r = 6,7,8,9, assume the solution is strongly complete, then f0 + f1 ≤ f2 and f4 ≥ f5. Therefore,

Kg(h)3 = −
2

f3g̃
∂z∂z̄ log(f3g̃) = 2(f2 + f4

f3
− 2).

△g(h)3Kg(h)3 = 2△g(h)3 (f2

f3
+ f4

f3
)

≥ 2(f2

f3
△g(h)3 log

f2

f3
+ f4

f3
△g(h)3 log

f4

f3
)

= 2( f2

f2
3

(−f0 − f1 + 3f2 − 3f3 + f4) −
f4

f2
3

(−f2 + 3f3 − 3f4 + f5))

≥ 2(2f2
2 + 3f2

4 + 2f2f4 − 3f2f3 − 3f4f3 − f4f5)/f2
3

= 2(f2 + f4 − 3f3 +
f2

2 + f2
4

f2 + f4
+ f

2
4 − f4f5

f2 + f4
) ⋅ f2 + f4

f2
3

≥ 2(3

2
(f2 + f4) − 3f3) ⋅

f2 + f4

f2
3

+ f
2
4 − f4f5

f2
3

≥ 3

4
Kg(h)3(Kg(h)3 + 4).

Finally, we study the remaining cases where r ≥ 4, 2 ≤ i ≤ r−2 for (4) and r ≥ 8, 4 ≤ i ≤ r−4 for (6).

Kg(h)i = −
2

fig̃
∂z∂z̄ log(fig̃) = −

2

fi
△g log fi +

1

fi
Kg = 2(fi−1 + fi+1

fi
− 2).

△g(h)iKg(h)i = 2△g(h)i (
fi−1

fi
+ fi+1

fi
)

using inequality (8)

≥ 2(fi−1

fi
△g(h)i log

fi−1

fi
+ fi+1

fi
△g(h)i log

fi+1

fi
)

= 2(fi−1

f2
i

(−fi−2 + 3fi−1 − 3fi + fi+1) −
fi+1

f2
i

(−fi−1 + 3fi − 3fi+1 + fi+2))

= 2(3f2
i−1 + 3f2

i+1 + 2fi−1fi+1 − 3fi−1fi − 3fi+1fi − fi−2fi−1 − fi+1fi+2)/f2
i

= 2(fi−1 + fi+1 − 3fi +
f2
i−1 + f2

i+1

fi−1 + fi+1
+ f

2
i−1 + f2

i+1 − fi−2fi−1 − fi+1fi+2

fi−1 + fi+1
) ⋅ fi−1 + fi+1

f2
i

≥ 2(3

2
(fi−1 + fi+1) − 3fi +

f2
i−1 + f2

i+1 − fi−2fi−1 − fi+1fi+2

fi−1 + fi+1
) ⋅ fi−1 + fi+1

f2
i

= 3

4
Kg(h)i(Kg(h)i + 4) + 2

f2
i−1 + f2

i+1 − fi−2fi−1 − fi+1fi+2

f2
i

For i = n, assume that the solution is strongly complete, then fn−1 ≥ fn−2 and fn+1 ≥ fn+2. Therefore,

△g(h)nKg(h)n ≥ 3

4
Kg(h)n(Kg(h)n + 4) + 2

f2
n−1 + f2

n+1 − fn−2fn−1 − fn+1fn+2

f2
n

≥ 3

4
Kg(h)n(Kg(h)n + 4).
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For i = n − 1, r ≥ 6 in (4), r ≥ 10 in (6), assume the solution is strongly complete, then fn−2 ≥ fn−3

and fn ≥ fn+1. Therefore,

△g(h)n−1Kg(h)n−1 ≥
3

4
Kg(h)n−1(Kg(h)n−1 + 4) + 2

f2
n−2 + f2

n − fn−3fn−2 − fnfn+1

f2
n−1

≥ 3

4
Kg(h)n−1(Kg(h)n−1 + 4).

Lastly, the lower bounds of Kg(h)i are obvious from their formulae. �

For the rest of this section, assume Σ is hyperbolic and denote by g the unique complete hyper-
bolic metric on Σ.

Recall from Section 3 that a solution to the Toda system (4) or the variant Toda system (6)
gives an equivariant harmonic map f ∶ D → N = SL(r,C)/SU(r). (In fact, the image of f lies in
SL(r,R)/SO(r), which is a totally geodesic submanifold in SL(r,C)/SU(r).) If we assume r ≥ 3
in (4) and r ≥ 4 in (6), then f is both immersed and conformal. We denote ef as the energy density,

gf as the pullback metric, and KN
σ as the sectional curvature of a tangent plane σ in TN , where σ

is the image of the tangent map at a point on D. By a direct calculation (or see [DL19]), we have
the formulae:

Lemma 4.4.

ef ⋅ g = g1,1
f = 2r

r−1

∑
i=0

g(h)i,

KN
σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2r

r

∑
i=1

(fi−1−fi)2

(
r

∑
i=1

fi)2
for (4),

− 1
2r

2(f0−f1)2+2(f0+f1−f2)2+
r−2
∑
i=3

(fi−1−fi)2

(
r

∑
i=1

fi−1)2
for (6).

In the case of r ≥ 3 in (4) or r ≥ 4 in (6), f is conformal and thus gf = ef ⋅ g.

For the variant Toda system, we obtain an estimate of f0f1 under a weaker completeness condition.

Lemma 4.5. Let r ≥ 4 in (6). If g(h)1 is complete, then either f0
f1

< 1 or f0
f1

≡ 1.

Proof. Away from zeros of q, △g log(f0f1 ) = 2(f0 − f1),

△g(
f0

f1
) ≥ (f0

f1
) ⋅ △g log(f0

f1
) = 2(f0

f1
)(f0 − f1).

Since both sides are smooth, the equation extends to the whole surface. So we have

△g(h)1(
f0

f1
) = △g⋅f1 log(f0

f1
) ≥ 2(f0

f1
)(f0

f1
− 1),

Applying the Cheng-Yau maximum principle and the assumption that g(h)1 is complete, we obtain
f0
f1

≤ 1. By the strong maximum principle, either f0
f1

< 1 or f0
f1

≡ 1. �

Now we study the boundedness of the geometric objects about the harmonic map. In [LM20a],
Li-Mochizuki showed that for any Higgs bundle with a harmonic metric, the boundedness of the
spectrum of the Higgs field is equivalent to the upper boundedness of the energy density of the
corresponding harmonic map. Applying this theorem to the equation system (4) and (6), we obtain
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Theorem 4.6. ([LM20a, Proposition 3.12]) Consider the Toda system (4) for r ≥ 2 and the variant
Toda system (6) for r ≥ 3 on a complete hyperbolic surface (Σ, g). Then, q is bounded with respect

to g if and only if the energy density ef =
r−1

∑
i=0
g(h)i/g =

r−1

∑
i=0
fi is bounded from above.

For the lower bound of the energy density, we have the following estimate.

Lemma 4.7. Consider the Toda system (4) for r ≥ 2 and the variant Toda system (6) for r ≥ 3
on a complete hyperbolic surface (Σ, g). Suppose g(h)i0 is complete for some i0 ∈ {1,⋯, n}. Then
there exists a positive constant C such that g(h)i0 ≥ Cg and thus ef ≥ C.
Proof. From Lemma 4.3, the curvature Kg(h)i0 is bounded from below. By Lemma 2.4 and the

assumption that g(h)i0 is complete, we obtain g(h)i0 ≥ C ⋅ g. �

Now we proceed to prove our main theorem.

Theorem 4.8. Consider the Toda system (4) for r ≥ 3 and the variant Toda system (6) for r ≥ 4
on a complete hyperbolic surface (Σ, g). Let (w1,⋯,wn) be a strongly complete solution. Then for
each i ∈ {1,⋯, n}, there exists a constant C > 0 such that g(h)i ≥ Cg. Moreover, the following are
equivalent:

(1) q is bounded with respect to g.
(2) ∣wi∣, i = 1,⋯, n, are bounded.
(3) There exists a constant C > 0 such that g(h)i ≤ Cg for every i ∈ {1,⋯, n}.
(4) There exists a constant C > 0 such that gf ≤ Cg.
(5) The Gaussian curvature Kgf of the pullback metric gf is bounded above by a negative constant.

(6) The sectional curvature KN
σ is bounded above by a negative constant.

(7) The curvature Kg(h)n is bounded above by a negative constant.
(8) There exists a positive constant δ such that g(h)i0−1 ≤ (1 − δ)g(h)i0 for some i0 ∈ {1,⋯, n},

in the variant Toda system (6) g(h)1 ≤ (1 − δ)g(h)2 is replaced by g(h)0 + g(h)1 ≤ (1 − δ)g(h)2.
(9) There exists a positive constant δ such that g(h)i0−1 ≤ (1 − δ)g(h)i0 for every i0 ∈ {1,⋯, n},

in the variant Toda system (6) g(h)1 ≤ (1 − δ)g(h)2 is replaced by g(h)0 + g(h)1 ≤ (1 − δ)g(h)2.
(10) For r ≥ 4, r ≠ 5 in (4), r ≥ 6 in (6), the curvature Kg(h)n−1 is bounded above by a negative

constant.

Proof. Note that in our case f is conformal, so gf = ef ⋅ g. From Lemma 4.7 and the assumption
that (w1,⋯,wn) is strongly complete, we have fi = e−wi+wi+1 , i = 1,⋯, n, is bounded from below by
a positive constant. Therefore, g(h)i and gf are bounded below by C ⋅ g for some positive constant

C. From the lower bound of fn = e−(2n+2−r)wn , we have the upper bound of wn. By induction, we
obtain the upper bound of all wi, i = 1,⋯, n.

Step 1: We show (1)(2)(3)(4) are equivalent.
By the same argument as in the beginning, the upper boundedness of all fi, i = 1,⋯, n, implies

the lower boundedness of all wi, i = 1,⋯, n. Then by Proposition 4.6 and the assumption of strongly
completeness, (1)(2)(3)(4) are equivalent.

Step 2: We show (7)⇒(6)⇒(5)⇒(4), (8)⇒(6)⇒(5)⇒(4).
(7)⇒(6), (8)⇒(6): Note that

Kg(h)n = 2(fn−1 + fn+1

fn
− 2) =

⎧⎪⎪⎨⎪⎪⎩

2(fn−1fn
− 1) r is odd and fn+1 = fn

4(fn−1fn
− 1) r is even and fn−1 = fn+1

So (8) is a restatement of (7) for the case i0 = n. Therefore, it is enough to show (7)⇒(6). Recall
from the assumption of strongly completeness, fi(i = 1,⋯, r− 1) are mutually bounded and f0 ≤ f1.
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For (4),

KN
σ = − 1

2r

∑ri=1(fi−1 − fi)2

(∑ri=1 fi)2
≤ − 1

2rC

∑ri=1(fi−1 − fi)2

f2
i0

≤ − 1

2rC

(fi0−1 − fi0)2

f2
i0

≤ −δ′.

For (6), the proof is similar.
(6)⇒(5): From the Gauss equation, Kgf = KN

σ + det(II), where II is the second fundamental

form. Since f is harmonic and conformal, f is minimal. So det(II) ≤ 0. So KN
σ ≤ −δ implies

Kgf ≤ −δ.
(5)⇒(4): Since f is conformal, the upper bound of gf follows from Lemma 2.4. From the argu-

ment in the beginning of the proof, the lower bound of gf already follows from the assumption of
strongly completeness.

Step 3: We show (2)⇒(9)⇒(8) and (2)⇒(9)⇒(7).
Again since (7) is a restatement of (8) for the case i0 = n and (8) is obvious from (9), it is enough

to show (2)⇒(9). For each i ∈ {1,⋯, n}, define the metric gi = e−
2

r+1−2iwig. Since ∣wi∣ is bounded, gi
is complete. We calculate the curvature of gi, denote g = g̃dz ⊗ dz̄,

Kgi = −
2

e−
2

r+1−2iwi g̃
∂z∂z̄ log(e−

2
r+1−2iwi g̃)

= −2e
2

r+1−2iwi(− 2

r + 1 − 2i
△g wi +△g log g̃)

= −2e
2

r+1−2iwi(− 2

r + 1 − 2i
△g wi +

1

2
).

Then for (4) and (6), except i = 2 in (6), we have

Kgi =
4e

2
r+1−2iwi

r + 1 − 2i
(e−wi−1+wi − e−wi+wi+1), 1 ≤ i ≤ n.

For i = 2 in (6),

Kg2 =
4e

2
r−3w2

r − 3
(e−w0+w1 + e−w1+w2 − e−w2+w3).

Since (w1,⋯,wn) is strongly complete, Kgi ≤ 0. From the assumption of (2), gi is equivalent to g.
Now set

ui = 1 − e−wi−1+wi/e−wi+wi+1 , 1 ≤ i ≤ n except u2 = 1 − (e−w0+w1 + e−w1+w2)/e−w2+w3 for (6).
Then ui ≥ 0. From the assumption (2), ∣wi∣ are bounded and thus ui is mutually bounded by −Kgi .

To apply Lemma 2.2, we calculate the Bochner formula for ui, i = 1,⋯, n.
For (4), from the formula (8) in Lemma 4.1, we obtain

△gu1 ≤ −e3w1−w2 ∣q∣2g △g (3w1 −w2 −
r

2
),

△gui ≤ −e−wi−1+2wi−wi+1 △g (−wi−1 + 2wi −wi+1), 2 ≤ i ≤ n.
Then

△gu1 ≤ e3w1−w2 ∣q∣2g(3e−w1+w2u1 − e−w2+w3u2),
△gui ≤ e−wi−1+2wi−wi+1(−e−wi−1+wiui−1 + 2e−wi+wi+1ui − e−wi+1+wi+2ui+1), 2 ≤ i ≤ n.

From the assumption, ∣wi∣’s and then ∣q∣2g are bounded. So we obtain that there is a constant c > 0
depending on C such that

△giui = e
2

r+1−2iwi △g ui ≤ cui, i = 1,⋯, n.
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Then Lemma 2.2 implies ui ≥ δ for some constant δ > 0 depending on C, which means g(h)i−1 ≤
(1 − δ)g(h)i.
For (6), similarly,

△gu1 ≤ −e2w1 ∣q∣2g △g (2w1 −
r

2
),

△gu2 ≤ −ew1+2w2−w3 ∣q∣2g △g (w1 + 2w2 −w3 −
r

2
)

− e−w1+2w2−w3 △g (−w1 + 2w2 −w3),
△gui ≤ −e−wi−1+2wi−wi+1 △g (−wi−1 + 2wi −wi+1), 2 ≤ i ≤ n.

Then

△gu1 ≤ e2w1 ∣q∣2gD(2e
−w1+w2u1 −

r − 1

2
),

△gu2 ≤ ew1+2w2−w3 ∣q∣2g(e−w1+w2u1 −
r − 1

4
+ 2e−w2+w3u2 − 2ew1+w2 ∣q∣2g − e−w3+w4u3)

+ e−w1+2w2−w3(−e−w1+w2u1 + 2e−w2+w3u2 − 2ew1+w2 ∣q∣2g − e−w3+w4u3)
≤ (ew1 ∣q∣2g − e−w1)e2w2−w3e−w1+w2u1 + cu2,

△gu3 ≤ e−w2+2w3−w4(ew1+w2 ∣q∣2g + e−w1+w2 − e−w2+w3 + 2e−w3+w4u3 − e−w4+w5u4),
△gui ≤ e−wi−1+2wi−wi+1(−e−wi−1+wiui−1 + 2e−wi+wi+1ui − e−wi+1+wi+2ui+1), 4 ≤ i ≤ n.

Assume the solution is strongly complete, then

ew1+w2 ∣q∣2g ≤ e−w1+w2 , ew1+w2 ∣q∣2g + e−w1+w2 ≤ e−w2+w3 .

Therefore, we obtain △gui ≤ cui, i = 1,⋯, n. Then Lemma 2.2 implies the desired results.

Step 4: We show (10)⇔(3) .
(3)⇒(10): From the conditions in (3), g(h)n−1 is complete and upper bounded by C ⋅g. Applying

the equation of Kg(h)n−1 in Lemma 4.3 to Lemma 2.5, we obtain the estimate.
(10)⇒(3): By Lemma 2.4, g(h)n−1 is upper bounded by C ⋅g for some positive constant C. Since

g(h)i’s are mutually bounded, we obtain the statement in (3). �

Notice that in Lemma 4.3, in some lower rank cases, to obtain the Bochner formula for curvatures,
we only need the completeness of g(h)n or g(h)n−1, but not the strongly completeness of the whole
solution.

Theorem 4.9. For the Toda system (4) of rank r, let (i0, r) be (1,4); for the variant Toda system
(6) of rank r, let (i0, r) be (2,4), (2,5), or (2,7). Consider these two systems over a complete
hyperbolic surface (Σ, g). Let (w1,⋯,wr) be a real solution with g(h)i0 is complete. Then there
exists a constant C > 1 such that for every i ∈ {0,⋯, [ r2]},

C−1g(h)i ≤ g(h)i0 , g(h)i0 ≥ Cg.
Moreover, the following are equivalent:
(1) q is bounded with respect to g.
(2) There is a constant C > 0 such that gf ≤ Cg.
(3) The curvature Kgf of the pullback metric gf is bounded above by a negative constant.

(4) The curvature KN
σ is bounded above by a negative constant.

(5) There is a constant C > 0 such that g(h)i0 ≤ Cg.
(6) The curvature Kg(h)i0 is bounded above by a negative constant.
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Proof. Since g(h)i0 is complete and has curvature bounded from below, by Lemma 2.4, we obtain
g(h)i0 ≥ Cg.

We then claim that for i ∈ {0,⋯, [ r2]}, g(h)i ≤ Cg(h)i0 for some constant C > 0.
For the Toda system: (i0, r) = (1,4). By the equation of g(h)1 in Lemma 4.3 and use the

assumption g(h)1 is complete, we obtain that Kg(h)1 < 0. Therefore, g(h)0 + g(h)2 ≤ 2g(h)1.
For the variant Toda system:

Case 1: (i0, r) = (2,4), (2,5). Then we only have g(h)0, g(h)1, g(h)2. By the equation of g(h)2

in Lemma 4.3 and use the assumption g(h)2 is complete, we obtain that Kg(h)2 < 0. Therefore,
g(h)0 + g(h)1 ≤ g(h)2.
Case 2: (i0, r) = (2,7). Then we only have g(h)0, g(h)1, g(h)2, g(h)3. By the equation of g(h)2

in Lemma 4.3 and use the assumption g(h)2 is complete, we obtain that Kg(h)2 < 0. Therefore,
g(h)0 + g(h)1 + g(h)3 ≤ 2g(h)2.

So we finish proving the claim.

(1)⇔(2) again follows from Theorem 4.6.
(4)⇒(3)⇒(2) is identical to the proof of (6)⇒(5)⇒(4) in Theorem 4.8.
(5)⇔(2) is obvious since gf is a linear combination of g(h)0, g(h)1, g(h)2.
(6)⇔(5): (6)⇒(5) follows from Lemma 2.4. (5)⇒(6) follows from applying Lemma 2.5 to the

equation for Kg(h)i0 in Lemma 4.3.

(5)⇒(4): From the claim, fj , j = 0,1,2, are bounded by Cfi0 for some positive constant C. Using

the formula of KN
σ in Lemma 4.4, we have:

For the Toda system (4): (i0, r) = (1,4). The condition in (5) implies f0
f1
− 1 ≤ −δ.

KN
σ = − 1

2r

2(f0 − f1)2 + 2(f1 − f2)2

(f0 + 2f1 + f2)2
≤ − 1

2rC

(f0 − f1)2

f2
1

≤ −δ′.

For the variant Toda system (6):

Case 1: (i0, r) = (2,4). The condition in (5) implies f0+f1
f2

− 1 ≤ −δ.

KN
σ = − 1

2r

2(f0 − f1)2 + 2(f0 + f1 − f2)2

(f0 + 2f1 + f2)2
≤ − 1

2rC

(f0 + f1 − f2)2

f2
2

≤ −δ′.

Case 2: (i0, r) = (2,5). The condition in (5) implies f0+f1
f2

− 1 ≤ −δ.

KN
σ = − 1

2r

2(f0 − f1)2 + 2(f0 + f1 − f2)2

(f0 + 2f1 + 2f2)2
≤ − 1

2rC

(f0 + f1 − f2)2

f2
2

≤ −δ′.

Case 3: (i0, r) = (2,7). The condition in (5) implies f0+f1+f3
f2

− 2 ≤ −δ.

KN
σ = − 1

2r

2(f0 − f1)2 + 2(f0 + f1 − f2)2 + 2(f2 − f3)2

(f0 + 2f1 + 2f2)2

≤ − 1

C ′
(f0 + f1 − f2)2 + (f2 − f3)2

f2
2

≤ − 1

C ′′
(f0 + f1 + f3 − 2f2)2

f2
2

≤ −δ′.
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5. Harmonic maps between surfaces and bounded quadratic differentials

In this section, we discuss the Toda system for r = 2, which corresponds to the harmonic map
equation between surfaces. First, we recall some calculations in [SY78]. Let (Σ, g = σ(z)∣dz∣2)
and (M,h = µ(u)∣du∣2) be two Riemann surfaces with Kähler metrics. Let f be a harmonic map
between Σ and M .

We define H = ∣∂u∣2g,h = ∣uz ∣2 µσ and L = ∣∂̄u∣2g,h = ∣uz̄ ∣2 µσ . The Hopf differential is the (2,0)-part of

the pullback metric Hopf(f) = uzūzµdz ⊗ dz, denoted as q. So ∣q∣2g = HL. We denote Kg and Kh

as the Gaussian curvature of Σ and M , respectively. Then at nonzero point of H, (our △g differs
from the notation in [SY78] by a factor of 4)

4△g logH = −2KhH + 2KhL + 2Kg.

Let w = −1
2 logH, and the above equation becomes

(11) △gw = −Kh

4
(∣q∣2ge2w − e−2w) − Kg

4
,

which coincides with Equation (3) for Σ =M = D, g = 4h = gD.
The Jacobian J(f) = H − L = e−2w − ∣q∣2ge2w. The map f is called orientation-preserving if the

Jacobian J(f) ≥ 0. The map f is called quasi-conformal if LH = ∣q∣2ge4w ≤ k for some constant k < 1.

The energy density e(f) ∶= 1
2 ∣df ∣

2
g,h = H +L = e−2w + ∣q∣2ge2w. Let ∣∂f ∣2 = H ⋅ g.

Wan [Wan92] showed that for a given holomorphic quadratic differential q, there exists a unique
orientation-preserving harmonic map f ∶ D → D such that ∣∂f ∣2 is complete. Moreover, he showed
the following theorem.

Theorem 5.1. ([Wan92]) Let f ∶ D→ D be an orientation-preserving harmonic map such that the
metric ∣∂f ∣2 is complete. Then the following are equivalent:
(a) the Hopf differential is bounded with respect to gD.
(b) f is quasi-conformal.
(c) the energy density of f is bounded.

In such case, f is a diffeomorphism.

The universal Teichmüller space is the space of quasi-symmetric homeomorphism equipped with
C0 topology between S1 that fix three points. According to the work of [LT93] and [Mar17],
equivalently, the universal Teichmüller space T (D) is in bijection with the space of harmonic quasi-
conformal homeomorphisms between D, up to a PSL(2,R)-action. Therefore, by Theorem 5.1,
there exists a bijection between the space of bounded quadratic differentials with the universal
Teichmüller space T (D).

Li, Tam and Wang in [LTW95] generalized Wan’s result to hyperbolic Hadamard surfaces using
a similar technique. The hyperbolic Hadamard surfaces are characterized as complete, simply
connected Riemannian surfaces with Gaussian curvature K satisfying −κ ≤K ≤ 0 for some constant
κ > 0 and they have positive lower bounds for their spectra. It is shown in [LTW95] that the metric
of a hyperbolic Hadamard surface is equivalent to the uniformization hyperbolic metric, i.e. the
conformal factor is bounded away from 0 and ∞.

Theorem 5.2. ([LTW95]) Let S1 and S2 be two hyperbolic Hadamard surfaces. Let f ∶ S1 → S2 be
a harmonic diffeomorphism. Then the following are equivalent:
(a) The Hopf differential is bounded with respect to the uniformization hyperbolic metric.
(b) f is quasi-conformal.
(c) The energy density of f is bounded.

In Theorem 5.2, the specific assumption of the domain is not essential since the harmonicity
depends solely on the conformal structure. In fact, we only need to consider D.
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From [Sch93], f being a diffeomorphism implies the metric ∣∂f ∣2 being complete. In fact, The
assumption regarding the diffeomorphism in Theorem 5.2 can be replaced by the completeness of
the metric ∣∂f ∣2.

Theorem 5.3. Consider two Riemannian surfaces (Σ, g) and (M,h). Suppose g is conformal and
mutually bounded by a hyperbolic metric. Suppose the curvature of h satisfies −C1 ≤ Kh ≤ −C2 for
some constants C1 ≥ C2 > 0. Let f be a harmonic map from (Σ, g) to (M,h) such that ∣∂f ∣2 is
complete. Then f is a harmonic immersion.

Moreover, the following are equivalent:
(a) The Hopf differential is bounded with respect to the uniformization hyperbolic metric.
(b) f is quasi-conformal.
(c) The energy density of f is bounded.

Proof. The harmonic Equation (11), taking the form of Equation (7), fulfills the assumptions
stated in Lemma 4.1, implying that J(f) > 0. Since g is conformal and mutually bounded by
the hyperbolic metric, we only need to examine the boundedness with respect to the hyperbolic
metric. Consequently, Theorem 5.3 can be deduced from Proposition 4.2. �

6. Hyperbolic affine spheres and bounded cubic differentials

In this section, we discuss the relationship between bounded cubic differentials and hyperbolic
affine spheres in R3. First, we provide some background on hyperbolic affine spheres. For more
details, readers can refer to [Lof01, BH14, DW15].

Consider a non-compact, simply connected 2-manifold M . Let f ∶M → R3 be a locally strictly
convex immersed hypersurface. Affine differential geometry associates a transversal vector field ξ,
known as the affine normal, to such a locally convex hypersurface. An affine spherical immersion is
characterized by its affine normals intersecting at a single point, known as the center. By applying a
translation, the center of the affine sphere can be relocated to the origin and express ξ(p) = −Hp for
all p ∈ f(M) ⊂ R3, where H is a constant representing the affine curvature. When H is negative, we
refer to the affine spherical immersion as hyperbolic. After renormalization, we obtain a hyperbolic
affine spherical immersion centered at 0 with affine curvature −1, which is called a normalized
hyperbolic affine sphere.

We can decompose the standard connection D of R3 into the tangent direction of f(M) and the
affine normal components:

DXY = ∇XY + h(X,Y )ξ, ∀X,Y ∈ Tf(p)f(M).
The second fundamental form h of the image f(M), relative to the affine normal ξ, defines a
Riemannian metric h on M . This metric is known as the Blaschke metric. This metric induces a
complex structure on M . Additionally, the decomposition defines an induced connection ∇ on TM .
Let ∇h be the Levi-Civita connection of the Blaschke metric h, and the Pick form A(X,Y,Z) =
h((∇ −∇h)XY,Z) is a 3-tensor that uniquely determines a cubic differential q = q(z)dz3 such that
Re q = A, which is referred to as the Pick differential.

An affine sphere is said to be complete if its Blaschke metric is complete. The work of Cheng-
Yau [CY77, CY86] and An-Min Li [Li92] establishes a correspondence between properly convex
domains in RP 2 and complete hyperbolic affine spheres. An open subset Ω ⊂ RP 2 is properly
convex if, when restricted to an affine chart, it corresponds to a bounded convex domain in R2.
For a properly convex domain Ω ⊂ RP 2, denote C(Ω) as one of the two open convex cones above
Ω. Given a properly convex domain Ω ⊂ RP 2, there exists a unique normalized hyperbolic affine
sphere asymptotic to the boundary of the cone C(Ω). Moreover, the Blaschke metric on the affine
sphere is complete. Conversely, every normalized complete hyperbolic affine sphere is asymptotic
to the boundary of a cone above a properly convex subset of RP 2.
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In this discussion, we focus on the affine spherical immersions where (M,h) is conformal to the
hyperbolic disk (D, gD = σ(z)∣dz∣2). In this case, the hyperbolic affine spherical immersion can be
reparametrized as f ∶ D→ R3. Write the Blaschke metric h = ew ⋅ gD and q = q(z)dz3. According to
Wang [Wan91] and Simon-Wang [SW93], the condition of f being an affine spherical immersion is
equivalent to q being holomorphic and (w, q) satisfying the equation:

(12) △gDw = 2ew − 4∣q∣2gDe
−2w − 2.

Up to a change of constants, this equation coincides with the Toda equation in the case of r = 3 for
a real solution. The curvature of the Blaschke metric h = ew ⋅ gD is given by

kh = −
1

2
△h w = −1 + 2∣q∣2gDe

−3w.

Then Lemma 4.1 implies that the curvature of the Blaschke metric of a complete affine sphere
is non-positive, a result originally proven by Calabi [Cal72].

As a direct corollary of Proposition 4.2 applied to r = 3, we can recover the following theorem
shown by Benoist and Hulin.

Theorem 6.1. (Benoist-Hulin [BH14]) For a complete hyperbolic affine spherical immersion f ∶
D→ R3, the following are equivalent:
(a) The Pick differential is bounded with respect to the hyperbolic metric.
(b) The Blaschke metric has curvature bounded above by a negative constant.
(c) The Blaschke metric is conformally bounded with respect to the hyperbolic metric.

Remark 6.2. We briefly explain the original proof from (c) to (b) in Benoist-Hulin [BH14]. On
a properly convex domain, one can also define the Hilbert metric. Their proof is by adding the
following three equivalent conditions:
(d) Ω equipped with the Blaschke metric is Gromov hyperbolic.
(e) Ω equipped with the Hilbert metric is Gromov hyperbolic.

(f) the closure of the orbit SL(3,R) ⋅Ω does not contain the projective triangle.
Using these three equivalent conditions, the authors in [BH14] show that for a properly convex

domain Ω, the Pick differential is bounded with respect to the hyperbolic metric if and only if Ω is
Gromov hyperbolic with respect to the Hilbert metric. One may view the moduli space of Gromov
hyperbolic convex sets, in Hilbert metric or Blaschke metric, as a generalization of the universal
Teichmüller space to rank 3.

The proof of (c)⇒(b) in [BH14] involves showing (c)⇒(d)⇒(e)⇒(f)⇒(b), which relies on the
following two facts:
(i) Benzécri’s compactness, [Ben60]: consider E the set of pairs (x,Ω) where Ω ⊂ RP 2 is a properly
convex domain and x is a point in Ω. The natural action of SL(3,R) on the space of E, equipped
with the Hausdorff topology is cocompact.
(ii) Continuity dependence of the curvature function: the curvature of the Blaschke metric depends
continuously on the pair (x,Ω) ∈ E, due to Benoist-Hulin [BH13].

(c) ⇒ (d) follows from the fact that quasi-isometry preserves Gromov hyperbolicity.
(d) ⇒ (e): It uses the fact that the densities µHilbert and µBlaschke are uniformly bounded with

respect to each other.
(e) ⇒ (f) follows from the fact that the limit of a sequence of Gromov δ-hyperbolic spaces is still

Gromov δ-hyperbolic.
(f) ⇒ (b): It uses Benzécri’s compactness and the continuity dependence of the curvature func-

tion.
Note that our proof here for Theorem 6.1 bypasses Benzécri’s compactness and the continuity

dependence of the curvature function, relying solely on Wang’s equation.
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7. Maximal surfaces in H2,n and bounded quartic differentials

7.1. Maximal surfaces in H2,n. In this section, we investigate the relationship between bounded
quartic differentials and complete maximal surfaces in H2,n. First, we provide some background
on maximal surfaces in H2,n and their relationships with SO0(2, n+ 1)-Higgs bundles developed in
[CTT19].

Let E be an (n + 3)-dimensional real vector space equipped with a quadratic form of signature
(2, n + 1), denoted by Q. The pseudo-hyperbolic space is defined as follows:

H2,n ∶= {x ∈ E,Q(x) = −1}/{±Id}.
Here, the group SO(2, n + 1) acts isometrically on H2,n. A space-like surface in H2,n is defined as
an immersion of a connected 2-dimensional manifold into H2,n whose induced metric is positive
definite.

Let Σ be a Riemann surface with the fundamental group π1, and let Σ̃ be its universal cover.
Consider a representation ρ ∶ π1 → SO0(2, n + 1). Now, let f ∶ Σ̃ → H2,n be a space-like, conformal,

and ρ-equivariant immersion. We also consider the trivial bundle Σ̃ ×R2,n+1. At each point p ∈ Σ̃,
the immersion f provides a decomposition into three components: R2,n+1 = T̃f(p) ⊕ l̃f(p) ⊕ Ñf(p).

Here T̃f(p) is the tangent space of f(Σ̃) at f(p), l̃f(p) is the position line R ⋅ f(p), and Ñf(p) is the

normal space of f(Σ̃) in Tf(p)H2,n at f(p). Since f is ρ-equivariant, the fundamental group π1 also

acts on and preserves the decomposition Σ̃ ×R2,n+1 = T̃ ⊕ l̃ ⊕ Ñ . Consequently, the decomposition
of the vector bundle over Σ̃ descends to Σ and is denoted as T ⊕ l ⊕ N. Notice that T̃ is π1-
equivariantly isomorphic to l̃⊗T Σ̃. Therefore, we construct a vector bundle over Σ, which is given
by T ⊕ l ⊕N ≅ (l ⊗ TΣ) ⊕ l ⊕N. Denote by Π ∈ Ω1(Σ,Hom(T,N)) the second fundamental form.

Let’s introduce some definitions.

Definition 7.1. (1) A space-like surface in H2,n is called complete if its induced metric is complete.
(2) A space-like surface in H2,n is called maximal if trg Π = 0 where g is the induced metric.

Remark 7.2. As shown in [LTW20, Proposition 3.10], a complete maximal space-like surface is
an entire graph.

Now, we relate maximal surfaces in H2,n to SO0(2, n + 1)-Higgs bundles.

Definition 7.3. An SO0(2, n + 1)-Higgs bundle over Σ is a tuple (U , qU ,V, qV , η) where

● U ,V are holomorphic vector bundles of rank 2 and n+ 1 over Σ, respectively, and they have
trivial determinant line bundles, i.e., ∧2U ≅ O,∧n+1V ≅ O.

● qU , qV are non-degenerate holomorphic sections of Sym2(U∗) and Sym2(V∗).
● η is a holomorphic section of Hom(U ,V) ⊗K.

The associated SL(n + 3,C)-Higgs bundle is denoted as (E , φ), with E = U ⊕ V and φ = (0 η†

η 0
) ∶

U ⊕ V → (U ⊕ V) ⊗K, where η† = q−1
U ○ η∗ ○ qV ∈H0(Hom(V,U) ⊗K).

A Higgs bundle is said to be conformal if the corresponding harmonic map is conformal. Ac-
cording to the work in [CTT19], a maximal conformal SO0(2, n+1)-Higgs bundle is determined by
the tuple (I,V0, qV0 , β), where

(U , qU ,V, qV , η) = (IK ⊕ IK−1,(0 1
1 0

) , I ⊕ V0,(
1 0
0 qV0

) ,(1 0
0 β

)),

with I as a holomorphic line bundle satisfying I2 = O, V0 as a holomorphic vector bundle of
rank n satisfying ∧nV0 = I, qV0 as a non-degenerate holomorphic section of Sym2(V∗0 ), and β ∈
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H0(Σ,Hom(IK−1,V0) ⊗ K). The original definition for “maximal Higgs bundles” was for com-
pact Riemann surface of genus g ≥ 2. Here, we adopt this definition for general (possibly non-
compact) Riemann surfaces. When expressed as an SL(n + 3,C)-Higgs bundle, the conformal
maximal SO(2, n + 1)-Higgs bundle takes the following form:

(13) E = IK ⊕ IK−1 ⊕ I ⊕ V0, φ = (
0 0 0 β†

0 0 1 0
1 0 0 0
0 β 0 0

) ,

where β† = β∗ ○ qV0 . We consider the Hermitian metric solving the Hitchin equation in the form:

h = diag(hIK , h−1
IK , hI , hV0).

The Hitchin equation simplifies to:

FhIK + β† ∧ (β†)∗h + 1∗h ∧ 1 = 0

FhV0 + β ∧ (β)∗h + (β†)∗h ∧ β† = 0.

Now, let Σ̃ be a maximal surface in H2,n. Based on the previous discussion, we construct a vector
bundle T ⊕ l ⊕N over Σ, and we denote their induced metrics by gT , gl, and gN . We also consider
the complexification of the vector bundle, denoted as TC ⊕ lC ⊕NC. Let gCT , g

C
l , g

C
N , hT , hl, hN be

the complex linear extensions and Hermitian extensions of gT , gl, gN . The data of Higgs bundles

are organized as follows: T ≅ l ⊗ TΣ, TCΣ ≅K−1 ⊕K−1, and K−1 ≅K by the Hermitian metric.

● (lC, (∇C
l )(0,1), hl) gives (I, ∂̄I , hI).

● (TC, (∇C
T )(0,1), gCT , hT ) gives the orthogonal Hermitian bundle

(IK ⊕ IK−1, (∂̄I ⊗ ∂̄K) ⊕ (∂̄I ⊗ ∂̄K−1),(0 1
1 0

) , hIK⊕IK−1).

● (NC, (∇C
N)(0,1), gCN , hN) gives the orthogonal Hermitian bundle (V0, ∂̄V0 , qV0 , hV0).

● The (1,0)-part of the second fundamental form Π gives β.

The maximality of surfaces implies the holomorphicity of the Higgs field φ. Furthermore, we have
the standard connection DC = ∇h + φ + φ∗h , where ∇h is the Chern connection.

Denote by q4 the holomorphic quartic differential β†β = qV0(β,β). Through direct calculation,

we deduce that tr(φj) = 0 if j ≠ 0(mod4) and tr(φ4j) = 4qj4. Hence, qj4(j = 1,⋯, [n+3
4 ]) capture all

spectral data of φ.
We now consider the induced metric and its curvature derived from the ρ-equivariant maximal

surface f ∶ Σ̃→ H2,n. Due to the ρ-equivariance, these quantities can be descended to Σ. We abuse
the notation g and k for short when there is no ambiguity.

We first prove the following proposition ([LT23, Proposition 4.5 and Equation (20)]).

Proposition 7.4. ([LT23, Proposition 4.5 and Equation (20)]) Let X be a maximal surface in
H2,n. Let g and k be the induced metric and its curvature. Then,

k = −1 + ∣β∣2h,g = −1 + 1

2
∣∣Π∣∣2 ≥ −1.(14)

△gk ≥ k(k + 1).(15)

Here is a remark regarding the proof:

Remark 7.5. The original proof in [LT23] uses the Gauss equation of a maximal surface and the
Bochner formula. Here, we derive these two equations in terms of Higgs bundles for its own sake.
Once we establishes the explicit correspondence between the standard connection in the Higgs bundle
and the harmonic metric, these two methods are essentially equivalent.
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Proof. Suppose that, locally with respect to a holomorphic frame e1, e2,⋯, en+3 of E, where e1, e2, e3

are frames of IK, IK−1, I respectively, and they are related by e1 ⋅∂/∂z = e3 = e2dz. The remaining
frames, denoted as {e4,⋯, en+3}, form a frame of V0. Consequently, φ = fdz and β = γdz, which
implies:

f = (
0 0 0 γ†

0 0 1 0
1 0 0 0
0 γ 0 0

) , f∗h =
⎛
⎝

0 0 1∗h 0
0 0 0 γ∗h
0 1∗h 0 0

(γ†)∗h 0 0 0

⎞
⎠
.

Here, 1 ∶ IK → I indicates the contraction with ∂
∂z . Then, the induced metric ∣1∣2h = h( ∂

∂z ,
∂
∂z ), and

the induced Riemannian metric g = h + h̄ = 2∣1∣2h∣dz∣2.

Now, we apply Lemma 3.3 to a local holomorphic section s1 = (
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

) . Locally, we have:

[f∗h , s1] = (
1∗h○1

0
−1○1∗h

0

) , [f, s1] = (
0 0 0 0

1○1 0 0 0
0 0 0 −1○γ†

0 0 0 0

) .

This leads us to the following equation:

∂z∂z̄ log ∣1∣2h =
∣[s1, f

∗h]∣2h − ∣[s1, f]∣2h
∣s1∣2h

= 2∣1∣4h − ∣1∣4h − ∣1∣2h ⋅ ∣γ†∣2h
∣1∣2h

= ∣1∣2h − ∣γ∣2h.(16)

We should clarify why it is equality and not inequality. Notice that in Lemma 3.3, the inequality
only occurs at the point where ∣h(∂z,hs, s)∣2 ≤ ∣∂z,hs∣2h∣s∣2h. Therefore, we only need to demonstrate
that (∂z,h) ∂

∂z
s = λs for some scalar function λ on X. Recall ∂z,h represents the (1,0) part of

the Chern connection ∇h on E = IK ⊕ IK−1 ⊕ I ⊕ V0. As both the complex structure and the
Hermitian metric are diagonal, the Chern connection ∇h, and consequently ∂z,h are also diagonal.
Since Hom(IK, I) is 1-dimensional, it follows that (∂z,h) ∂

∂z
s = λs for a certain function λ on X.

Considering that g = 2∣1∣2h∣dz∣2 and ∣dz∣2g = 1
∣1∣2

h

, we obtain

k = − 2

2∣1∣2h
∂z∂z̄ log 2∣1∣2h = −1 + ∣γ∣2h

∣1∣2h
= −1 + ∣β∣2h,g.

Since β represents the (1,0)-part of the second fundamental form Π, we have ∣β∣2h,g = 1
2 ∣∣Π∣∣2. Thus,

we have established the first equation.

Next, we apply Lemma 3.3 to a local holomorphic section s2 = (
0 0 0 0
0 0 0 0
0 0 0 0
0 γ 0 0

) . Locally, we have:

[f∗h , s2] = (
0
γ∗hγ

0
−γγ∗h

) , [f, s2] = (
0 γ†γ 0 0
0 0 0 0
0 0 0 0
0 0 −γ○1 0

) .

This leads to

(17)

∂z∂z̄ log ∣γ∣2h ≥
∣[s2, f

∗h]∣2h − ∣[s2, f]∣2h
∣s2∣2h

= 2tr(γγ∗hγγ∗h) − ∣γ†γ∣2h − ∣γ ○ 1∣2h
∣γ∣2h

= 2∣γ∣4h − ∣γ†γ∣2h − ∣1∣2h ⋅ ∣γ∣2h
∣γ∣2h

≥ ∣γ∣2h − ∣1∣2h,

where the last inequality follows from the Cauchy-Schwarz inequality ∣γ†γ∣h ≤ ∣γ∣h ⋅ ∣γ†∣h = ∣γ∣2h.
By combining Equations (16) and (17), we conclude locally that:

∂z∂z̄ log
∣γ∣2h
∣1∣2h

≥ 2(∣γ∣2h − ∣1∣2h).
26



Globally, we obtain:

△g log
∣γ∣2h
∣1∣2h

= 1

2∣1∣2h
∂z∂z̄ log

∣γ∣2h
∣1∣2h

≥ ∣γ∣2h
∣1∣2h

− 1 = k.

Then, away from zeros of γ, we have

△gk = △g
∣γ∣2h
∣1∣2h

≥ ∣γ∣2h
∣1∣2h

⋅ △g log
∣γ∣2h
∣1∣2h

≥ k(k + 1).

Since the equation is continuous on both sides, the equation holds over the entire surface. Thus,
we have proven the second equation. �

Now, let us proceed to the following theorem, which is the curvature rigidity theorem in [LT23,
Theorem A]. While the original proof in [LT23] relies on a compactness result, this proof will
provide an alternative approach using the curvature formula mentioned above:

Proposition 7.6. Let X be a complete maximal surface in H2,n. Then the intrinsic curvature k
satisfies either k < 0 or identically zero (k ≡ 0). Equivalently, in terms of Higgs bundles, ∣β∣2h,g < 1

or ∣β∣2h,g ≡ 1.

As a result, the induced metric g satisfies either g > 2∣q4∣
1
2 or g ≡ 2∣q4∣

1
2 .

Proof. By applying Lemma 2.5 to Equation (15) in Proposition 7.4, we can obtain either k < 0 or
k ≡ 0. Then, from Equation (14), we obtain that either ∣β∣2h,g < 1 or ∣β∣2h,g ≡ 1. This implies, as

discussed in the proof of Proposition 7.4, that ∣γ∣h ≤ ∣1∣h and q4 = q(z)dz4 = β†β = γ†γdz2.
Consider g0 = ∣1∣2hdz ⊗ dz̄. We have

∣q4∣2g0 =
∣q(z)∣2
∣1∣4h

≤ ∣γ†γ∣2h
∣1∣4h

≤ ∣γ∣4h
∣1∣4h

≤ 1.

Then g = 2∣1∣2h∣dz∣2 ≥ 2∣q4∣
1
2 . The rigidity follows from the one of k. �

We now present a different proof of the following theorem, originally shown by Labourie-Toulisse
in [LT23].

Theorem 7.7. (Labourie-Toulisse [LT23]) Consider a complete maximal surface X in H2,n that is
conformal to D. The following conditions are equivalent:
(a) The induced metric has curvature bounded above by a negative constant;
(b) The induced metric is conformally bounded with respect to the hyperbolic metric.

Proof. For the “only if” direction, we apply Lemma 2.5 to Equation (15) in Proposition 7.4, which
yields k ≤ −δ for a positive constant δ.

For the “if” direction, since the induced metric has curvature satisfying −1 ≤ k ≤ −δ, according
to Lemma 2.4, we have gD ≤ g ≤ CgD for some constant C = C(δ) > 0. �

Remark 7.8. The proof from (b) to (a) is the same as in [LT23], while the proof from (a) to (b)
differs from the one in [LT23]. Let us briefly explain the original proof from (b) to (a) in Labourie-
Toulisse [LT23]. Their proof involves adding the following two equivalent conditions, which were
their main focus:
(c) The induced metric is Gromov hyperbolic.

(d) Σ is quasiperiodic, meaning that the orbit closure SO0(2, n + 1) ⋅X in M(n) does not contain
the Barbot surface, in which case the induced metric is flat.

The proof of (b)⇒ (a) proceeds by showing (b)⇒(c)⇒(d)⇒(a), relying on the following two facts:
(i) Compactness: ConsiderM(n) as the set of pairs (x,X), where X is a complete maximal surface
in H2,n and x is a point on X. The natural action of SO0(2, n) on the space of M(n), equipped
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with the Hausdorff topology, is cocompact, as proved in [LTW20].
(ii) Continuity: The curvature kX(x) depends continuously on the pair (x,X) ∈ M(n).

(b) ⇒ (c) follows from the fact that quasi-isometry preserves Gromov hyperbolicity.
(c) ⇒ (d) follows from the fact that the limit of a sequence of Gromov δ-hyperbolic spaces is still

Gromov δ-hyperbolic.
(d) ⇒ (a) uses the compactness as in (ii) above.
Note that our proof here for Theorem 7.7 bypasses the need for cocompactness and instead derives

directly from the equation itself.

For a maximal surface X in H2,n, we associate a holomorphic quartic differential q4 = gN(β,β),
or equivalently, we can define q4 = tr(φ4)

4 for the corresponding Higgs bundle (E,φ).

Theorem 7.9. For a complete maximal surface X in H2,n, assuming that X is conformal to D,
the following conditions are equivalent:

(1) The quartic differential is bounded with respect to the hyperbolic metric.
(2) The induced metric has curvature bounded above by a negative constant.
(3) The induced metric is conformally bounded with respect to the hyperbolic metric.

Proof. According to Theorem 7.7, conditions (2) and (3) are equivalent.

(3)⇒(1) follows from the fact that g ≥ 2∣q4∣
1
2 as stated in Proposition 7.6.

(1)⇒(3): If the quartic differential q4 = tr(φ4)
4 is bounded with respect to the hyperbolic metric

gD, the spectra of the Higgs field φ are bounded with respect to gD. Proposition 3.12 in [LM20a]
states that ∣φ∣h,gD ≤ C. Since the Hermitian metric h on E is diagonal (as shown in Equation (13)),

we have ∣φ∣2h,gD = 2∣β∣2h,gD +2∣1∣2h,gD . Therefore, ∣1∣2h,gD ≤ C. Consequently, we obtain g ≤ CgD for some
constant C. �

7.2. An analogue of the universal Teichmüller space. In the work of F. Labourie and J.
Toulisse, they introduce an analogue of the universal Teichmüller space QSn. They define a natural
map from QSn to the product of the universal Teichmüller space and the space of bounded quartic
differentials. Let’s briefly explain their construction in [LT23].

Consider a 2-dimensional real vector space denoted as V . For any quadruple of pairwise distinct
points (x, y, z,w) in P(V )4, let’s denote its cross ratio as [x, y, z,w] . Recall that a homeomorphism
φ of P(V ) is quasisymmetric if there exist constants A and B, both greater than 1, such that for
any quadruple of pairwise distinct points in P(V ), if A−1 ≤ ∣[x, y, z, t]∣ ≤ A, then

B−1 ≤ ∣[φ(x), φ(y), φ(z), φ(t)]∣ ≤ B.
Now, let QS0 be the group of quasisymmetric homeomorphisms of P(V ). The group PSL(V ) acts
on QS0 by post-composition, and the quotient is defined to be the universal Teichmüller space,
denoted as T (H2).

The Einstein universe is the quadric associated to the quadratic form q:

∂∞H2,n ∶= {x ∈ P(E), q(x) = 0}.
The group SO0(2, n + 1) acts transitively on ∂∞H2,n. There is a natural generalization of the
definition of cross ratio on ∂∞H2,n. Specifically, for a map ξ from P(V ) to ∂∞H2,n and a pair of
constants A,B, both greater than 1, the map ξ is considered (A,B)-quasisymmetric if it is positive
and for all quadruples (x, y, z, t) ∈ P(V )4, if A−1 ≤ ∣[x, y, z, t]∣ ≤ A, then

B−1 ≤ ∣[ξ(x), ξ(y), ξ(z), ξ(w)]∣ ≤ B.
Let QSn be the space of quasisymmetric maps from P(V ) to ∂∞H2,n, equipped with the C0

topology. The quotient QSn ∶= QSn/SO0(2, n + 1) forms a Hausdorff topological space. Note that
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QS0 corresponds to T (H2). The space QSn serves as an analogue of the universal Teichmüller
space.

According to [LT23, Theorem B], a maximal surface Σ is quasiperiodic if and only if the boundary
map is quasisymmetric. Additionally, [LT23, Theorem 7.1] establishes that for any element ξ ∈ QSn,
there exists a unique reparametrization ξrepar ∈ QSn of the image of ξ. Moreover, if the image of
ξ bounds a maximal surface with induced curvature bounded above by −c, then ξrepar is (A,B)-
quasisymmetric, where the constants (A,B) depend solely on c. The space T (H2) acts on QSn by
post-composition. They define a continuous map πH2 ∶ QSn → T (H2) by setting πH2(ξ) = φ, where
φ is such that ξ ○ φ = ξrepar.

When Σ is quasiperiodic, as shown in Theorem 6.3 in [LT23], the uniformization gives a biLip-
schitz map between H2 and Σ, resulting in q4 is bounded with respect to the hyperbolic metric.
Denote by H0

b (H2,K4) the vector space of holomorphic quartic differentials on H2 that are bounded
with respect to the hyperbolic metric.

In summary, we obtain a map:

HH2 ∶ QSn → T (H2) ×H0
b (H2,K4)

ξ ↦ (πH2(ξ), q(ξ)).
As posed by F. Labourie and J. Toulisse, we aim to prove that this map is proper.

Theorem 7.10. The map HH2 is proper.

Proof. Suppose (φ, q) ∈ T (H2)×H0
b (H2,K4) satisfies that φ is (A,B)-quasisymmetric and ∣q∣gD ≤M .

It is enough to show ξ ∈ H−1
H2(φ, q) is (A′′,B′′)-quasisymmetric, where (A′′,B′′) only depends on

A,B,M . The properness follows from the cocompactness of the action of PSL(V ) × SO0(2, n + 1)
on the space of (A,B)-quasisymmetric maps, as shown in Theorem 3.12 in [LT23].

Given ∣q∣gD ≤M , the induced curvature on Σ is bounded from above by a constant −c for c = c(M)
as per Theorem 7.9. Therefore, Σ is quasiperiodic according to Theorem B in [LT23], which is
discussed in Remark 7.8. By Theorem 7.1 in [LT23], since (x,Σ) is a quasiperiodic surface with
curvature bounded above by −c, ξrepar is (A′,B′)-quasisymmetric, where (A′,B′) = (A′,B′)(c) > 1.

Since φ is (A,B)-quasisymmetric, then φ−1 is also (A,B)-quasisymmetric. Therefore, ξ = ξrepar ○
φ−1 is of (A′′,B′′)-quasisymmetric, where (A′′,B′′) only depends on A,B,M . This completes the
poof of properness of HH2 . �

8. J-holomorphic curve in H4,2 and bounded sextic differentials

In this section, we explore the relationship between bounded sextic differentials and J-holomorphic
curves in H4,2.

We begin by considering the split octonion, represented by O′. The automorphism group of O′,
denoted as G′

2 = Aut(O′) ⊂ SO0(3,4), is a subgroup of SO0(3,4) known as the split real G′
2. The

imaginary split octonion IO′, equipped with a natural quadratic form q, can be identified with R3,4.
On R3,4, there exists a cross product defined as x × y ∶= I(xy), which induces an almost complex
structure J on the pseudosphere given by:

S2,4 = {x ∈ R3,4∣q(x,x) = 1}
as follows:

J(X) ∶= x ×X,
where x ∈ S2,4,X ∈ TxS2,4 ≅ x⊥.

The pseudo-hyperbolic space H4,2 is the counter part of the pseudosphere S2,4:

H4,2 = {x ∈ R4,3∣q(x,x) = −1}.
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There is an obvious diffeomorphism H4,2 ≅ S2,4 identifying the metric of the former with −1 times
that of the latter.

In an almost complex manifold (M,J), a J-holomorphic curve is an immersed surface Σ whose
tangent bundle TΣ ⊂ TM is preserved by J .

Baraglia [Bar10] discovered that a subcyclic rank 7 Higgs bundle in the Hitchin section over
a domain Ω ⊂ C, together with a harmonic metric h = diag(h1, h2, h3,1, h

−1
3 , h−1

2 , h−1
1 ) satisfying

h1 = 2h2h3, gives rise to a J-holomorphic (also known as almost-complex) curve ν ∶ Ω → Ŝ2,4. The
explicit relationship between the resulting surface and Higgs bundles has been further developed
in Evans [Eva22] using harmonic sequences.

For a J-holomorphic curve, the osculation line is defined as the J-complex line in a normal space
formed by the images of the second fundamental form. Nie [Nie22] showed that subcyclic Higgs
bundles in the Hitchin section, together with a real harmonic metric diag(h1, h2, h3,1, h

−1
3 , h−1

2 , h−1
3 )

satisfying h1 = 2h2h3, are characterized as space-like J-holomorphic curves in H4,2 with nowhere
vanishing second fundamental forms and timelike osculation lines. The holomorphic sextic differ-
ential q can be retrieved from the data of the structure equation of the immersion.

The induced Hermitian metric on the J-holomorphic curve is h = ∣1∣2hdz ⊗ dz̄ = h−1
3 dz ⊗ dz̄, and

the induced Riemannian metric is g = h + h̄ = 2h−1
3 (dx2 + dy2)(see [Eva22, Section 3.1]).

Definition 8.1. We call a space-like J-holomorphic curve in H4,2 complete if its induced metric is
complete.

Remark 8.2. (1) It is not clear if the completeness condition implies the surface is a proper
embedding or entire.
(2) One may construct plenty of examples of complete metrics which do not necessarily come from
a strongly complete solution for the variant Toda system.

Lemma 8.3. Let Σ be a space-like J-holomorphic curve in H4,2 with a nowhere vanishing sec-
ond fundamental form and a timelike osculation line. Let g and k be the induced metric and its
curvature, respectively, of Σ. Then k ≥ −1. If Σ is complete, then

(18) △gk ≥ 3k(k + 1).

Proof. The surface data correspond to the Higgs bundle s(0,⋯,0, q6,0) together with a diagonal
harmonic metric

diag(h1, h2, h3,1, h
−1
3 , h−1

2 , h−1
1 )

satisfying h1 = 2h2h3.
Let g0 = g̃0dz ⊗ dz̄ be a background Kähler metric on Σ. We employ the concepts introduced in

4.2. Let hi = ewigi−4
0 , where i = 1,⋯,7. Set

f0 = ew1+w2 ∣q∣2g, f1 = e−w1+w2 , f2 = e−w2+w3 , f3 = e−w3 .

From the relation h1 = 2h2h3, we have 2f1 = f3.
As in Section 4.2, from the Hitchin equation, we obtain the following system

△g0 log f0 = 2f0 − f2 +
1

2
Kg0 away from zero of q

△g0 log f1 = 2f1 − f2 +
1

2
Kg0

△g0 log f2 = 2f2 − f0 − f1 − f3 +
1

2
Kg0

△g0 log f3 = f3 − f2 +
1

2
Kg0
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Note that h−1
3 = f3 ⋅ g0 and g = f3 ⋅ 2 Re(g0) = Re(2f3 ⋅ g̃0dz ⊗ fzz̄). The Gaussian curvature k of g is

k = − 2

2f3g̃0
∂z∂z̄ log(2f3g̃0) = −

1

f3g̃0
∂z∂z̄(log f3 + log g̃0)

= − 1

f3
(△g0 log f3 +△g0 log g̃0) = −

1

f3
(f3 − f2)

= f2

f3
− 1 ≥ −1.

Now we assume g is complete, that is, f3 ⋅ g0 is complete. Since 2f1 = f3, we have g(h)1 = f1 ⋅ g0

is also complete. By Lemma 4.5, we obtain f0 ≤ f1.
Therefore,

△gk =
1

2f3
△g0 k =

1

2f3
△g0

f2

f3
= f2

f2
3

△g0 log
f2

f3

= f2

f2
3

(3f2 − f0 − f1 − 2f3)

using 2f1 = f2 and f0 ≤ f1

≥ f2

f2
3

(3f2 − 3f3)

= 3k(k + 1).
�

Similar to the case of maximal surfaces in H2,4, we show the following result.

Theorem 8.4. Let Σ be a complete space-like J-holomorphic curve in H4,2 with nowhere vanishing
second fundamental form and a timelike osculation line. Let q be its associated holomorphic sextic
differential. Then, its induced curvature is either strictly negative or constantly zero. Consequently,

the induced metric satisfies either g > 2
√

2∣q∣ 13 or g ≡ 2
√

2∣q∣ 13 .
Next, assume (Σ, g) is conformal to D. Then, g ≥ gD. Moreover, the following statements are

equivalent:

(1) q is bounded with respect to the hyperbolic metric.
(2) The induced metric on Σ is conformally bounded with respect to the hyperbolic metric.
(3) The induced curvature on Σ is bounded from above by a negative constant.

Proof. Applying Lemma 2.5 to the equation of curvature k in Lemma 8.3 and using the fact k ≥ −1,
we obtain k < 0 or k ≡ 0.

Since k ≤ 0, we obtain f2 ≤ f3. Moreover, using the same notions in the proof of Lemma 8.3, we
obtain f0 ≤ f1. Also note that 2f1 = f3. Thus we obtain

∣q∣2g0 = ∣q∣2g0e
2w1 ⋅ e2(−w1+w2) ⋅ e2(−w2+w3) ⋅ e−2w3 = f0f

2
1 f

2
2 f3 ≤

1

8
f6

3 .

Therefore,
√

2∣q∣
1
3
g0 ≤ f3. Since locally g = 2f3g̃0∣dz∣2 and ∣q∣2g0 =

∣q(z)∣2
g̃0

6 , we obtain

∣q∣
1
3 = ∣q(z)∣

1
3 ∣dz∣2 ≤ 1

2
√

2
g.

The rigidity follows from the one of k.
Next, g ≥ gD follows from the fact k ≥ −1, the assumption g is complete, and Lemma 2.4.
Finally, we show the equivalence between (1)(2)(3).
(1)⇒(2) follows from Theorem 4.6.
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(2)⇒(1) follows from 1√
2
∣q∣ 13 ≤ g.

(2)⇒(3): Applying Lemma 2.5 to the equation of k in Lemma 8.3, we have k ≤ −δ for a positive
constant δ.

(3)⇒(2): It follows from Lemma 2.4. �
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