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Abstract—Unsupervised spectral unmixing consists of repre-
senting each observed pixel as a combination of several pure
materials known as endmembers, along with their corresponding
abundance fractions. Beyond the linear assumption, various non-
linear unmixing models have been proposed, with the associated
optimization problems solved either by traditional optimization
algorithms or deep learning techniques. Current deep learning-
based nonlinear unmixing mainly focuses on additive, bilinear-
based formulations. The multilinear mixing model (MLM) offers
a unique perspective by interpreting the reflection process by
discrete Markov chains, allowing it to account for interactions
between endmembers up to infinite order. However, explicitly
simulating the physics of MLM using neural networks has re-
mained a challenging problem. In this paper, we propose a novel
autoencoder-based network for unsupervised unmixing based on
MLM. Leveraging an elaborate network design, this approach
explicitly models the relationships among all model parameters:
endmembers, abundances, and transition probability. The net-
work operates in two modes: MLM-1DAE, which considers only
pixel-wise spectral information, and MLM-3DAE, which explores
spectral-spatial correlations within input patches. Experiments
on both the synthetic and real datasets validate the effectiveness
of the proposed method, demonstrating competitive performance
compared to classic MLM-based solutions. The code is avail-
able at https://github.com/ting-Fang09/Hyperspectral-unmixing-
MLM-AE.

Index Terms—Spectral unmixing (SU), multilinear mixed
model (MLM), convolutional autoencoders, deep neural network.

I. INTRODUCTION

PECTRAL unmixing (SU) has been a hot topic in many

fields related to remote sensing, e.g., mineral exploration
and agriculture over the past decades [lf]. A hyperspectral
image is a three-dimensional data cube, with hundreds of
continuous spectral bands captured across a certain wavelength
range over the same geographic target. Due to the relatively
low spatial resolution, each spectra pixel in the image is
supposed to be a mixture of several pure material signatures,
namely endmembers. SU refers to identifying the endmembers
and to estimating the corresponding fractions for each pixel,
namely abundances [1].

Different assumptions about the physical propagation pro-
cess of photons lead to the categorization of unmixing models
into linear-based and nonlinear-based ones [2f]. Among them,
the linear mixing model (LMM) is the most prevalent due to
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its simplicity in both the mixing process and unmixing strategy
design. It assumes that a photon interacts with only one ma-
terial before reaching the sensors, resulting in each observed
spectrum being a linear combination of the endmembers [3].

However, severe nonlinear effects occur in many scenarios,
thus requiring more sophisticated unmixing models [2]]. Sev-
eral nonlinear, physics-driven unmixing methods have been
devised to explicitly explain the mixing process. They are the
Hapke’s model for intimate unmixing process [4]], the bilinear-
based methods [5]-[7], and the multilinear-based methods
(which are the topic of this paper) [8]-[11]. The bilinear
mixing models hypothesize that each photon interacts with
two endmember materials in series, thus formulated as the
LMM superimposed by a second-order term. Representative
bilinear-based unmixing models, such as Fan model [J5], gener-
alized bilinear model [6] and polynomial postnonlinear mixing
model (PPNMM) [7]], introduce various constraints on model
parameters. More recently, the bilinear models were extended
to incorporate automatic shadow compensation [[12]], or solved
by nonnegative tensor factorization [13].

In contrast to the data-driven SU methods, e.g. the kernel-
based ones [14]-[16]], the aforementioned physics-driven non-
linear unmixing models provide enhanced interpretability by
explicitly accounting for the interactions of light with end-
members before reaching the sensor.

The physics-driven multilinear mixing model (MLM) has
been proposed, for the first time, to consider all degrees of
endmember interactions [§]]. Essentially, the MLM extends
the PPNMM by modeling the second-order nonlinear effects
to the infinite order. In this model, the reflection process
that a single light undergoes before reaching the observer
is elegantly represented using a discrete Markov chain. No-
tably, this model employs only a single pixel-wise transition
probability parameter, which characterizes the possibility of
light undergoing further interactions to effectively quantify
nonlinear intensity. This inherent simplicity of the MLM,
combined with its explicit interpretation in physics, renders it
computationally tractable and effective in real-world scenar-
ios [9], [[10]. The original MLM is established in a supervised
manner, assuming prior knowledge of the endmembers. Subse-
quently, improvements have been made to MLM from different
aspects. In [9], the so-called MLMp is formulated in an
unsupervised manner, which employs a simplified optimization
function to mitigate the parameter under-estimation issue and
to reduce the algorithm complexity. The band-wise nonlinear
unmixing algorithm (BNLSU) [[10] characterizes the transition
probability parameter by a pixel-wise vector defined over the
wavelength range instead of using a single scalar. In [11]],



a graph regularized MLM is proposed, where the underlying
data manifold structure is incorporated by the Laplacian graph
regularizers. [|17]] enhances the robustness of the BNLSU with
a lp 1-norm-based loss function. By far, MLM and its variants
have been tackled using classical optimization methods, such
as Alternating Direction Method of Multipliers (ADMM). In
contrast, the primary motivation driving our research is rooted
in the endeavor to faithfully emulate the unmixing process
inherent in the MLM using deep learning techniques.

Taking advantage of the progress in deep learning, the
autoencoders (AEs) and their variants have been success-
fully applied to SU [18]. The AEs are with an encoder-
decoder architecture, in which neural networks are employed
to find the low-dimensional representation of the input data
by minimizing the reconstruction error [[19]]. The architecture
of the AEs inherently offers a flexible unsuperivsed unmixing
framework, namely the encoder converts the input spectra to
the corresponding abundance vectors, i.e., the outputs of the
hidden layer, and the decoder reconstructs the input from the
compressed representations, with the weights in the last linear
layer interpreted as the endmember matrix. The majority of
the AE-based unmixing networks are based on the LMM
assumption [20]-[23]]. To mitigate the effects of noise in
hyperspectral data, robust unmixing methods were developed,
including the stacked nonnegative sparse autoencoders [24]]
and the part-based denoising autoencoder with I3 ; norm and
denoising constraints [25]. The uDAS [26]] improves the part-
based autoencoders by untying the encoder and decoder. The
adversarial autoencoder in [27]] enhances the model robustness
to outliers and noise by using adversarial training and adding
abundance prior.

Regularization terms were also integrated to the loss func-
tion of AEs from different aspects, e.g., the minimum sim-
plex volume penalty to incorporate the geometry among data
points [24], [28[], [29], and the sparsity augmentation term
on the abundance vectors in the so-called EndNet [30]. The
global-local smooth autoencoder explores the local homogene-
ity and global self-similarity of the hyperspectral image [31]].
In [20]], a CNN-based unmixing network (CNNAEU) is pro-
posed to capture the spectral-spatial correlations within the
hyperspecral data.

Besides AEs, nonnegative matrix factorization (NMF) [32]
has traditionally played a pivotal role in unsupervised SU [33]].
It achieves unmixing by factorizing the hyperspectral matrix
into the product of an unknown nonnegative abundance matrix
and an endmember matrix. More recently, the deep unrolling
network-based SU have emerged [34]-[36]. These networks
emulate the optimization steps in NMF by assigning each
iteration to a separate layer and stacking multiple such layers
to construct a hierarchical network. Compared to AE-based
methods, deep unrolling-based approaches demonstrate accel-
erated convergence in blind unmixing [34]. Additionally, the
associated networks offer good interpretability as it thoroughly
unfolds NMF. Nonetheless, a limitation lies in their challeng-
ing adaptation to mimic physics-driven nonlinear SU models
since NMF inherently operates in a linear fashion.

Addressing the nonlinear SU in the context of deep learning
is a challenging problem. It is because that nonlinear SU mod-

els usually require explicit descriptions of photons’ interac-
tions with the endmembers, while the black box characteristics
of neural networks may lead to unclear mixing process [18]].
A category of nonlinear SU methods by deep learning is
data-driven, and the nonlinearity is generally formulated in
the form of implicit functions. In [37]], a deep autoencoder
network is designed to imitate an implicit nonlinear transform
to the linear mixture, and the nonlinear layer is added to
the decoder accordingly. Other existing nonlinear SU models
are realized by augmenting LMM with an additive nonlinear
mixture part, where the nonlinearity is modeled implicitly [38]],
[39]. Different networks are applied, i.e., a 3D-CNN struc-
ture to capture the spectral-spatial information [38[, and an
LSTM to enhance the spectral correlations [39]. Attempts
have also been made to realize the physics-driven unmixing
models explicitly. Considering the bilinear mixing models, two
deep autoencoders within a multi-task learning framework are
combined, but with the extra computational burden [40]. In a
recent study [41]], a versatile unmixing scheme was designed
to handle a range of nonlinear models, including bilinear-
based and finite-degree interaction models. Two autoencoder
networks were established for Fan model [5] and PPNMM.
For Fan model, they introduced a cross-product layer to
capture endmember interactions and explored incorporating
higher-degree cross-product terms by stacking them beneath
the second-order terms. However, this approach, despite its
computational complexity, had limitations, as it could only
handle endmember interactions up to a finite order, making
it unsuitable for modeling MLM. Additionally, the study
treated pixel-wise nonlinear coefficients as learnable network
parameters rather than features, which limited adaptability for
adjusting parameter quantities or shapes during training based
on varying input data characteristics.

Replicating the physics-driven MLM in blind unmixing by
deep learning is more challenging when compared to additive,
bilinear-based unmixing models. In this paper, we propose
an unsupervised AE-based unmixing network for the MLM
mechanism. Our choice of AEs is motivated by two primary
considerations. Firstly, AEs are well-suited for unsupervised
unmixing tasks, demonstrating the capability to simultaneously
estimate both endmembers and abundances. Secondly, AE
architectures offer a high degree of flexibility and adaptability,
allowing us to carefully design network structures that effec-
tively replicate the nonlinear mixing mechanisms inherent in
MLM. The main contributions are summarized as follows.

1) This work pioneers an AE-based unmixing network
specifically tailored to the physics-driven MLM. Our
focus is on achieving explicit unmixing in accordance
with the MLM mechanism, primarily realized through de-
coder design. The proposed methods faithfully reflect the
MLM’s mixing formula and loss function. The network
incorporates an interpretable design, particularly in the
decoder, by implementing operations on learned features
and specific layers to explicitly model the mathematical
connections between endmembers, abundances, and tran-
sition probabilities.

2) The proposed network achieves blind unmixing by con-



currently estimating all model parameters in the MLM.
Notably, we learn both abundance vector and transition
probability as pixel-wise features, instead of network
parameters, enhancing network adaptability across di-
verse datasets. Moreover, it achieves unsupervised un-
mixing while preserving the intricate complexity of the
underlying MLM model, as opposed to the simplified
optimization function employed in MLMp [9].

3) The proposed unmixing network offers versatility by
two distinct modes: MLM-1DAE and MLM-3DAE. The
first network exclusively considers spectral correlations,
faithfully simulating the original MLM. The MLM-
3DAE incorporates spectral-spatial information through
3D convolutions on image patches, enhancing unmixing
performance in scenarios where spatial context is pivotal.

The remainder of the paper is organized as follows. Sec-

tion [II] revisits the relevant unmixing models. In Section
the proposed autoencoder-based unmixing network for MLM
is presented. Experimental results and analysis are given
in Section Finally, Section [V] concludes the paper.

II. PRELIMINARY

Consider a hyperspectral image containing N pixels, with
E = [ej,es,...,er] € RBX! being the underlying end-
member matrix composed by R signatures over B spectral
bands. Let x € RP*! be an observed pixel, a € RFx!
be the associated abundance vector of the R endmembers,
and ¢ € REB*! is the additive Gaussian noise. The LMM
considers to represent each pixel as a linear combination of
the endmembers, and is formulated by

x = Fa + ¢,
st.a; >0, Vi=1,2,....R (D
1pa =1,

where the non-negative constraint (ANC) and abundance sum-
to-one constraint (ASC) are usually imposed considering the
physical meaning.

A. Multilinear Mixing Model (MLM) [8|]

In [8], the MLM extends the bilinear-based unmixing mod-
els to include all orders of interactions among endmembers.
In this context, a discrete Markov chain is employed to model
the reflection process of a single light ray before reaching
the observer. Note that relevant concept of Dirichlet-Markov
random process has been applied in multi-temporal spectral
unmixing task, where the state variables represent the time-
varying abundance coefficients or endmembers [42], [43[]. The
MLM assumes the following:

o A photon will interact with at least one endmember.

« After each interaction with an endmember, the photon has

a probability P for further interactions, and a probability
(1 — P) of escaping the scenario and being received by
the sensors.

o The probability of interacting with the i-th endmember

is proportional to its corresponding abundance fraction.

e« When scattered by some endmember, the light intensity

will change according to that material’s albedo w €

[0,1]". By neglecting the nuance between the albedo and
the endmember spectrum, the former is approximated by
the latter with w; ~ e;, Vi =1,2,..., R.

Based on the above assumptions, the MLM is expressed by
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where y = Ea represents the linear part with LMM, and © is
the Hadamard element-wise product. Here, P is the transition
probability for further interactions, with its value restricted to
P < 1. When P = 0, the model (2) will degrade to the LMM.
In theory, the above model is also well-defined for P < 0,
although the physical reasoning no longer holds with negative
probability [8]. From (@), it is straightforward that
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As a result, the following optimization problem is considered,

2

. (1-Ply
arg min || — —=—
a,P 17Py 2 (4)
st. a>0 and lgazl
P <1,

where the reconstruction error between the observed pixel and
the reconstructed one is minimized. The unmixing problem
in @]) is formulated in a supervised manner, namely, the
endmembers are supposed to be extracted in prior using some
endmemeber extraction strategy, such as the vertex component
analysis (VCA) [44].

B. Unsupervised MLM (MLMp) [9]

Later in [9], the authors proposed to address the MLM in
as an unsupervised unmixing problem, where the endmember
matrix, the abundance vector, and the transition probability
parameter were estimated collaboratively. To this end, the
reconstruction errors over all the pixels are added up, yielding

2
arg min Z” (1= Py, + Piy; 0 z; — x|,
E{a],P}J 1j=1
st. a; >0 and lgajzl (5)
P<1, Vj=1,2..,N
0<E<LI.

To achieve the unsupervised unmixing with modest computa-
tional complexity, the above optimization simplifies the origi-
nal problem by eliminating the denominator and applying
a block coordinate descent method for problem-solving.
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Fig. 1. Schematic of the proposed autoencoder network for MLM-based unsupervised unmixing. The encoder compresses the observed pixel into the abundance
vector. The decoder is composed by three parts. Decoder Part I represents the linear part, with the network weights interpreted as the endmember matrix.
Decoder Part II estimates the pixel-wise transition probability by concatenating and transforming two relevant features. Decoder Part III reconstructs the pixel

using model parameters and learned features, adhering to MLM model.

Fig. 2. Illustration of feature changes during the encoding process in MLM-3DAE unmixing network, with s = 5, B = 224.

IIT1. PROPOSED METHOD

In this section, we propose to address the MLM-based
unmixing model in (3) in an unsupervised manner, by exploit-
ing an AE-based network. The proposed network explicitly
simulates the MLM mechanism and is capable to estimate
the endmembers, abundance vectors, and pixel-wise, transition
probability parameters jointly.

A. Network overview

As illustrated in Fig. [T} the proposed unmixing network
adopts an encoder-decoder architecture. In both MLM-1DAE
and MLM-3DAE modes, the primary function of the encoder
network is to compress the input pixel data into a lower-
dimensional representation, yielding the abundance vector.

In contrast, the decoder network exhibits greater complexity
and comprises three distinct components. The decoder network
is designed to reconstruct each observed pixel according to (@),
while avoiding introducing unnecessary network parameters.
Decoder Part I handles the LMM using a single linear layer,
where the network weights are interpreted as the endmember

matrix. Decoder Part II is responsible for determining pixel-
wise transition probabilities P, which are constrained to the
interval [0, 1]. To this end, two relevant features influencing P
are concatenated, transformed, and passed through a softmax
layer, yielding a probability score vector in the form of [P, 1—
P]. Decoder Part III is designed to reconstruct the pixel using
network weights and learned features, adhering to the MLM
model defined in (3). This process incorporates operations such
as feature reuse and concatenation.

Regarding training, the network minimizes the average
distance between input pixels and their reconstructions. The
corresponding loss function is in alignment with the original
MLM optimization problem described in (@), with the key
distinction of operating in an unsupervised mode.

B. Encoder

The encoder network f(-), which is shown in the upper part
of Fig. [I] compresses the input data into the R-dimensional
representation. The number of neurons in the encoder bottle-
neck layer is determined based on the number of endmembers
or virtual dimensionality of the hyperspectral dataset being



analyzed. In this study, we assume prior knowledge of the
endmember count R, which can be estimated by the unsu-
pervised hyperspectral dimensionality reduction methods [45]],
[46], such as HySime [47]. This assumption is based on the
low-rank nature of hyperspectral data, leading us to consider
R < B. Given the pixel x, the corresponding output of the
encoder is taken as the estimated abundance vector a, namely

Abundance Estimation : a <+ h = f(x) (6)

To enforce both the ANC and ASC constraints, the output
feature of the encoder is normalized as follows

ehi

Zf:l ehs
where h; denotes the ¢-th entry of the estimated abundance
vector h.

According to whether considering the spatial information,
we employ two encoders with slight differences, resulting
in MLM-1DAE and MLM-3DAE. In general, the encoder
plays a crucial role in acquiring the prior spectral or spectral-
spatial information regarding the correlation between abun-
dances and observed pixels. Its primary function is to estimate
and regularize abundance. Consequently, the encoder exhibits
flexibility, accommodating a diverse choices of structures [48]],
ranging from more complex designs (such as Transformer-
based networks [49]) to simpler alternatives.

1) MLM-1DAE: The first encoder takes the pixel spectrum
x as input, and 1D convolutions operations are performed
across the spectral dimension in the subsequence blocks.
Unmixing with this encoder is consistent with the original
MLM [8], where only the spectral information is exploited
during the unmixing process.

To be precise, the first layer inputs a pixel of size 1 x
1 x B. Three identical blocks, each including a Convolution
layer, a LeakyRelu layer and a MaxPooling layer are followed.
The fourth block has a convolution layer, a BatchNorm layer
and a LeakyRelu layer. Regarding the Convolution layers, the
number of feature maps are 4R, 4R, 2R, and R, and the kernel
sizes are 7, 7, 7, and 5, respectively, where no padding is added
and all strides are set to 1. For the MaxPooling layer, the kernel
size is 3 and the stride is 3, with no padding. We refer to the
unmixing network using the encoder with 1D convolutions as
MLM-1DAE.

2) MLM-3DAE: To explore the rich spectral-spatial infor-
mation of the hyperspectral imagery, we design a second
encoder and refer to the unmixing network with it as MLM-
3DAE. This encoder has a similar network structure as in
MLM-1DAE and mainly utilizes the 3D convolutional layers
to capture the spectral-spatial dependencies. In MLM-3DAE,
the input comprises an image patch X of size s X s x B,
centered at pixel . The aim is to extract the feature vector
of size 1 x 1 x R from X, to form the abundance vector
for the neighborhood center x. To achieve spatial dimension
downsampling from s x s to 1x 1, we set the convolution kernel
size in corresponding dimensions by max(3, odd([s/3])) x
max(3,0dd([s/3])) without padding. Additionally, through
the use of Convolution and MaxPooling layers over the
spectral dimension, this dimension is decreased from B to

h; = Softmax(h;) = , @)

1. Subsequently, R feature maps are concatenated to generate
the abundance vector.

The integration of 3D convolutional layers within MLM-
3DAE equips our model with the ability to capture the
intricate spectral-spatial relationships inherent in hyperspectral
data, contributing to its enhanced unmixing performance. For
illustration purposes, we provide an example with s = 5 and
B = 224 in Fig. [2l In the first block, the convolutional layer
comprises 4R feature maps with 3D convolutional kernels of
size 3 x 3 x 7, employing no padding and a stride of 1 x 1 x 1.
The MaxPooling layer uses a 1 x 1 x 3 kernel with no padding
and a stride of 1 x 1 x 3. The settings for the second block
remain unchanged from the first block. Following this block,
the spatial dimensions are reduced to 1 x 1. The third block
has 2R feature maps with 3D convolution kernels of size
1 x 1 x 7, no padding and stride size 1 x 1 x 1; the kernel
size in MaxPooling layer is 1 x 1 x 3. Finally, the fourth
block produces R feature maps, corresponding to the number
of endmembers, with 3D convolutional kernels of size 1 x1x5
and no padding.

C. Decoder

As depicted in Fig. [I] the decoder consists of three distinct
components designed to reconstruct each pixel following the
MLM mechanism in (3). The encoded feature dimension
undergoes a mapping from R to B to reconstruct the input. It
is important to note that the complexity of decoder is inherent
from the complexity of the MLM itself. The optimization prob-
lem within MLM for unsupervised unmixing is ill-posed and
non-convex, involving the decoupling of various parameters,
namely endmembers, abundances, and transition parameters,
all subject to various constraints. In the following, we provide
a detailed explanation of each decoder part.

1) Decoder Part I: The first layer of the decoder is the fully
connected (FC) layer without bias and activation function,
following the last layer of the encoder. It processes the linear
transformation on the encoder outputs, i.e., abundance vectors,
and is taken as the linear mixture of the LMM model. The
network weights W of the FC layer is interpreted as the
endmember matrix by

Endmember Extraction: £ <+ W.

Here, the layer weights are restricted to the interval [0,1] by
applying ¢(z) = min(1, max(0, z)), considering the physical
meaning of endmembers. In practice, we initialize the weights
of this FC layer using the endmembers extracted by the VCA
technique [44].

2) Decoder Part II: Within the MLM framework, as given
in (2), an observed pixel can be regarded as a combination
of two fundamental components: a linear component ¢y and a
nonlinear part y ® . The balance between these components
is adjusted by the transition probability parameter P.

Derived from this MLM formulation, the design of Decoder
Part II takes shape. Given that both of these components
are influenced by the value of P, we choose to concatenate
two relevant features from the preceding layer. These features
consist of the linear component, denoted as y = Wh, and



the element-wise product of this linear component with the
input data, represented as y @ x. This concatenation results
in a feature representation with an enlarged dimensionality,
specifically 28. Subsequently, this augmented feature is pro-
cessed through a sequence of blocks comprising FC layers,
interleaved with hyperbolic tangent (Tanh) activation func-
tions. These blocks work together to progressively reduce the
dimensionality of the feature from 2B to 2, aiming to extract
high-level information pertaining to the transition probability
parameter from the interconnected features.

3) Decoder Part IIl: The last part of the decoder estimates
the transition probability parameter by a softmax function, and
reconstructs the spectrum according to (3) for MLM model.
The softmax function is applied to the output of the precedent
layer, denoted by z = [z1,29]", and transforms it to the
binomial probability distribution with P = [1 — P, P]T. As a
result, the transition probability is estimated by

exp 22
3ot exp 2

In this manner, the estimated value of P naturally falls within
the interval [0,1], a suitable range for characterizing it as
the probability of a photon undergoing further interactions in
the reflectance process of the MLM model. It is noteworthy
that we maintain the constraint of P within the interval [0,
1], aligning with its interpretation as a probability in the
MLM. This restriction ensures straightforward and physically
meaningful outcomes, distinguishing it from [J8], where the
theoretical possibility of P < 0 is acknowledged but not
incorporated into our current model.

By reusing the acquired features and the network parame-
ters, the rest part of Decoder III reconstructs the input data
x through an the element-wise division operation between
the features (1 — P)g and (1 — Pyg), adhering to the MLM
formula presented in (3).

Probability Estimation : P < P= (8)

D. Loss Function

In the proposed network, we adopt the commonly-used
mean square error (MSE) between the observed pixels and
reconstructed ones as the loss function, which is defined as
follows:

- 12
JMSE($,CE) = ||£I¢—CB||2, )]
where & = % is the reconstructed pixel obtained from
the output of the network. The loss function becomes

| K
L= E’;JMSE(%,@%

(10)

where K is the batch size.

Notice we directly address a nearly identical optimization
problem as in MLM, as given in (@), while in an unsupervised
unmixing setting. This differs from the MLMp algorithm,
which uses a modified loss function to eliminate the de-
nominator, aiming to mitigate high nonlinearity in parameter
estimation and to reduce optimization complexity, as given
in (§), for unsupervised unmixing.

IV. EXPERIMENTS

In this section, we prove the effectiveness of the pro-
posed multilinear-based unmixing networks, MLM-1DAE and
MLM-3DAE, through comprehensive comparative studies
conducted on synthetic images and two real hyperspectral
images. To this end, eight state-of-the-art unmixing methods
were selected for comparison accounting for different aspects.
Regarding traditional unmixing schemes, we have incorpo-
rated the fully constrained least squares (FCLS) [50]], the
polynomial postnonlinear mixing model (PPNMM) [7]], and
two multilinear-based methods, i.e. the supervised multilinear
mixture model (MLM) [8] and the unsupervised multilinear
unmixing (MLMp) [9]. For the deep learning-based unmixing
approaches, we chose the sparse autoencoder network for
endmember extraction and unmixing (EndNet) [30]], the con-
volutional neural network autoencoder unmixing (CNNAEU)
[20], the additive nonlinear unmixing with a 3D-CNN autoen-
coder (3D-NAE) [38]], and the autoencoder for postpolynomial
nonlinear unmixing (PPNMM-AE) [41].

For fairness, VCA [44] is applied in prior for endmember
extraction in all the supervised unmixing methods, namely
FCLS, PPNMM and MLM. The same VCA results are also
applied to initialize the endmembers in all the unsupervised
unmixing methods, namely MLMp, EndNet, CNNAEU, 3D-
NAE, PPNMM-AE and the proposed methods. Note that in
CNNAEU, we selected the version CNNAEU2 over CN-
NAEUI1 for enhanced abundance estimation. In PPNMM-AE,
we employed VCA instead of the original K-means clustering
for endmember initialization.

The endmember estimation is evaluated by using the av-
eraged spectral angle distance (SAD) of all the endmembers,
which is defined by
T’fﬁ,i

R
1 m;
SAD¢g = = E arccos(————
R~ [l [l

) (1D
where m; and m; represent the i-th groundtruth and estimated
endmembers, respectively.

The abundance estimation is evaluated using the root mean
square error (RMSE), given by

N
1 N
RMSEabun = ﬁ Z ||al - a’ng (12)
=1

where a; and a; are the groundturth and estimated abundance
vectors for the i-th pixel.

The transition probabilities obtained by the multilinear-
based unmixing methods are compared by the RMSE, with

2
P - P

N
RMSEp — Jile‘ (13)

where P; and P; represent the groundtruth and the estimated
values, respectively.

On real images, as no ground-truth information is available
for evaluating the estimated endmembers, abundances and



transition probabilities, the pixel SAD is used to assess the
unmixing performance, defined by

x, %,
Z arccos(————),
[EA (PRI P
where x; and &; are the actual and reconstructed pixels. Note
that while pixel SAD serves as an evaluation metric, it may
not necessarily reflect the accuracy of parameter estimation
performance.

(14)

A. Experiments with Synthetic Data

1) Data Generation: A series of synthetic datasets of size
256 x 256 was generated, taking into account three crucial
aspects: the number of endmembers, noise levels, and mixing
mechanisms. We selected R = 4 and R = 8 endmembers
from the United States Geological Survey (USGS) digital
spectral library composed by spectra measured over 224
consecutive bands. The abundance maps were generated using
the Hyperspectral Imagery Synthesis (HYDRA) toolbox [ﬂ
We introduced various noise levels by adding Gaussian white
noise with signal-to-noise ratios (SNR) of 20dB and 30dB,
respectively. The synthetic images were generated according
to three distinct mixing mechanisms: linear-based LMM in (),
bilinear-based PPNMM |[7|], and multilinear-based MLM in
(3). The PPNMM is defined by

z=FEa+vy(Ea)® (Ea)+e¢,

where v € [—0.3,0.3] was drawn from a uniform distribution,
following the original paper [7]. In MLM, the pixel-wise
transition probabilities were randomly generated from a half-
normal distribution with ¢ = 0.3, and the values of P larger
than 1 are set to zero, as did in [8] [9] El

2) Parameter settings: In this series of experiments, the
hyperparameters in the proposed MLM-1DAE and MLM-
3DAE are set as follows.

We employ the Adam optimizer, utilizing varying learning
rate strategies for different parts of the network. Notably, we
adopt a relatively smaller learning rate for the linear decoder
part to mitigate training instability, as did in [39]]. Specifically,
for Decoder Part I, we set learning rates to 10~7 in all cases,
except when dealing with MLM-generated data at SNR=30,
R=4. In this case, the learning rate for Decoder Part I is slightly
adjusted to 5 x 1077. As for the remaining components of
the unmixing networks, we consistently use a learning rate of
10~* for R=4 and 5 x 10~* for R=8. It is noteworthy that the
learning rates may display minor fluctuations when applied to
distinct datasets. The number of training epochs is set to 300.

We tune the batch-size from the candidate value set
[64, 128,256,512, 1024] using MLM-1DAE, on the synthetic
image with SNR=30, R=4 generated using the MLM model.
Fig. 3(a)| reports the resulting errors with respect to three mon-
itoring metrics, namely average endmember SAD, abundance
RMSE, and pixel RE. Accordingly, we choose the batch size
to be 256 in both MLM-1DAE and MLM-3DAE.

5)

Thttp://www.ehu.es/ccwintco/index.php/Hyperspectral Tmagery Synthesis
tools for MATLAB

2For comparison fairness, the P-value in MLMp is constrained to the range
[0,1] in the experiments with synthetic datasets.
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Fig. 3. Changes of average endmember SAD, abundance RMSE, and pixel
RE along with (a) varying batch size using MLM-1DAE; (b) different input
patch size using MLM-3DAE.

Regarding MLM-3DAE, the patch size s X s for the input
subcube is selected from the candidate set [1x1,3%x3,5x5,7x
7,9x9,11x11], and the corresponding changes of the average
endmember SAD, abundance RMSE, and pixel RE are given
in Fig. Here, we apply the MLM-1DAE with 1D convo-
lution in s X s=1 x 1. As observed, modest patch sizes with
5x5, 7x7and 9 x9 can efficiently use the spatial information
of neighboring pixels by 3D convolution operations, yielding
better unmixing performance when compared to merely using
the spectral information with 1 x 1. However, a greater spatial
patch size with 11 x 11 will not only increase the computing
overhead, but also deteriorate the unmixing performance. It
is because of the overfitting issue caused by an increasing
number of network parameters. Considering that increasing
the patch size leads to higher computational complexity, we
maintain a fixed patch size of 5 x 5 in MLM-3DAE for
subsequent experiments.

3) Results Analysis: All the experiments are repeated ten
times. Comparisons of the unmixing performance, including
mean and deviation, across different unmixing methods, are
presented in TABLE [I] for R=4 and in TABLE [M] for R=8,
where best and the second-best results are marked by a circled
number. Unmixing performance is notably influenced by the
compatibility between the data mixing mechanism and the
applied unmixing model, particularly evident when the dataset
involves a smaller number of endmembers with R=4.

For endmember extraction, VCA proves highly effective
by providing small SAD of endmembers, thus serving as a
good endmember initialization, especially for unmixing linear
or bilinear-generated data. However, when faced with MLM-
generated data, improved accuracy in endmember estimation is
achieved by other nonlinear unmixing techniques. Specifically,
on MLM-generated data with varying noise levels and end-
member counts, MLM-1DAE and MLM-3DAE consistently
provide the two best endmember estimation results. There
is one exception in the case of SNR=20 and R=8, where
MLM-1DAE falls slightly short, with 3D-NAE performing
best in endmember estimation. The classic MLMp performs
well in endmember estimation when the data is relatively
clean with SNR=30 and when the model aligns well with the
data. However, for noisy cases with SNR=20, MLMDp struggles
to accurately extracting the endmembers. Fig. 4| shows the
estimated endmembers of the best performing run of all the
comparing methods on MLM-generated data at SNR=30, R=4.



TABLE I
COMPARISON OF UNMIXING RESULTS X102 (MEAN £ STANDARD DEVIATION) ON SYNTHETIC DATA WITH R=4, SNR=20DB AND 30DB, GENERATED
BY LMM, PPNMM AND MLM MODELS, AVERAGED OVER 10 RUNS

Mix. SNR=20 dB SNR=30 dB
Unmix. LMM PPNMM MLM LMM PPNMM MLM
VCA | 1 1.01+0.00 | ® 1.29+£0.00 5.29+£0.00 |  0.26 £0.00 | ( 0.28 £ 0.00 6.06 £ 0.00
MLMp 33.55 £ 0.00 33.83 £ 0.00 30.48 £ 0.00 11.13 £0.00 11.28 £0.00 4.90 £ 0.00
EndNet 1.32£0.01 1.48 £0.01 5.00 £ 0.01 0.62 £0.01 0.73 £0.01 4.72+£0.01
SAD CNNAEU 1.04 £0.01 1.32£0.01 5.16 = 0.01 0.42 £ 0.02 0.48 £0.02 5.65 + 0.01
end 3D-NAE 1.38 £0.37 1.92+0.41 6.02 £ 0.05 0.72+0.31 0.77 £ 0.36 6.04 +0.02
PPNMM-AE | @ 1.02+0.00 | @ 1.29 4+0.00 5.32£0.00 | @ 0.27£0.00 | @ 0.30 £ 0.00 5.77 £ 0.00
MLM-1DAE 1.07£0.04 1.32+£0.05 @ 4.89 +£0.01 0.37 £ 0.09 0.40£0.04 | (O 2.91+£0.03
MLM-3DAE 1.09 +0.01 1.38 +£0.05 (@ 4.90 +0.02 0.40 + 0.06 0.53+0.09 | @ 2.93+0.02
FCLS | () 1.494+0.00 | O 1.73+0.00 9.52+0.00 | M 0.45+0.00 | M 0.52+0.00 9.24 £0.00
MLM 1.81 £0.00 2.01 £ 0.00 5.83 +0.00 0.56 £ 0.00 0.61 £ 0.00 7.30 +0.00
MLMp 2.69 +0.00 3.03 £ 0.00 5.33 +0.00 1.12 £ 0.00 1.21 +£0.00 5.22 £0.00
PPNMM 1.77 £0.00 1.99 £ 0.00 8.37£0.00 | @ 0.55£0.00 | @ 0.60 £ 0.00 10.81 £ 0.00
RMSE EndNet 3.32+£0.03 3.28 £0.02 @ 4.78+0.09 3.15+£0.02 3.13+0.01 7.56 + 0.06
abun CNNAEU 2.08 £ 0.02 2.35 £ 0.02 6.79 £0.04 1.71+£0.01 1.77£0.01 8.59 £ 0.02
3D-NAE 4.04 £1.03 4.02+1.37 13.89 £0.13 2.86 +1.18 2.18 £ 0.91 14.66 £ 0.15
PPNMM-AE 2.02 £ 0.00 2.13 £0.00 9.33 £ 0.00 1.65 £ 0.00 1.66 £ 0.00 9.61 £ 0.00
MLM-1DAE 1.70£0.04 | @ 1.96£0.16 5.39 £0.20 1.11+£0.19 1.124+0.05 | @ 3.654+0.20
MLM-3DAE | (@ 1.62 £ 0.05 2.04 +£0.07 ® 5.23+0.22 1.09 £0.15 1.23+0.21 | O 3.53+0.20
MLM N/A N/A 33.40 £ 0.00 N/A N/A 19.60 £+ 0.00
RMSE MLMp N/A N/A 69.63 £ 0.00 N/A N/A 12.72 +£0.00
P | MLM-1DAE N/A N/A | @ 15.10£0.18 N/A N/A | @ 7.02+0.26
MLM-3DAE N/A N/A | O 14.87£0.33 N/A N/A | @ 6.93£0.29
TABLE I

COMPARISON OF UNMIXING RESULTS X102 (MEAN = STANDARD DEVIATION) ON SYNTHETIC DATA WITH R=8, SNR=20DB AND 30DB, GENERATED
BY LMM, PPNMM AND MLM MODELS, AVERAGED OVER 10 RUNS

Mix. SNR=20 dB SNR=30 dB
Unmix. LMM PPNMM MLM LMM PPNMM MLM

VCA 2.62 +0.00 2.02 £0.00 5.53+0.00 | O 0.75+£0.00 1.00 + 0.00 3.30 £ 0.00
MLMp 30.10 £ 0.00 29.91 £ 0.00 25.37 £0.00 6.08 £ 0.00 6.55 + 0.00 3.03 £ 0.00
EndNet 5.43 +£0.01 4.23£0.01 9.91 +£0.01 3.62 +0.02 3.51+0.03 6.83 +0.02
SAD CNNAEU 2.49 £0.01 1.94+0.01 5.31+£0.01 0.89 £0.01 1.23 £0.03 3.21+0.01
end 3D-NAE 2.51+£0.02 1.954+0.04 | O 4.73+0.02 0.79£0.03 | @ 0.97 £0.02 3.03 £0.03
PPNMM-AE 2.55 +0.00 1.96 £ 0.00 5.23 £ 0.00 0.90 + 0.00 1.14 £0.00 3.12+0.00
MLM-1DAE | (D 2.33£0.03 | @ 1.75£0.04 | ® 4.99+£0.01 | @ 0.77+0.01 | (0 0.97+0.02 | ® 2.93+0.01
MLM-3DAE | @ 2.35+0.02 | (O 1.73£0.04 5.00£0.02 | @ 0.77 £0.01 0.98+£0.03 | (O 2.92+0.01
FCLS 4.22 £0.00 3.80 £ 0.00 11.02 £ 0.00 1.92 £0.00 1.99 £ 0.00 10.24 £ 0.00
MLM 4.94 £+ 0.00 4.56 + 0.00 5.86 = 0.00 2.26 £0.00 2.31+0.00 | O 4.48+£0.00
MLMp 4.59 £0.00 4.26 £0.00 9.51 £ 0.00 2.03 £ 0.00 2.02 £ 0.00 7.66 = 0.00
PPNMM 4.65 £ 0.00 4.35 £ 0.00 9.51 £ 0.00 2.33 £ 0.00 2.34 +0.00 8.25 + 0.00
RMSE EndNet 11.97 £0.03 12.07 £0.02 12.55 £ 0.04 11.97 £ 0.04 12.06 £0.01 12.48 £0.01
abun CNNAEU 5.29+0.17 5.25+0.27 7.72+£1.50 4.41£0.19 3.25+0.44 6.68 + 0.45
3D-NAE 5.04 £ 0.07 4.84 £0.74 11.40 £0.17 4.60 £0.70 4.36 £0.67 11.124+0.15
PPNMM-AE 4.58 + 0.00 3.87 £ 0.00 12.37 £ 0.00 6.90 £+ 0.00 6.46 £+ 0.00 11.92 £ 0.00
MLM-1DAE | @ 3.40+£0.15 | @ 2.72£0.13 | @ 5.27£0.22 | @ 1.80£0.05 | @ 1.77 £ 0.09 5.06 +0.24
MLM-3DAE | () 3.40+0.08 | () 2.67+0.12 | 1) 4.68+0.19 | O 1.77£0.07 | O 1.76£0.08 | @ 4.69 £0.31
MLM N/A N/A 23.95 £ 0.00 N/A N/A 21.69 £ 0.00
RMSE MLMp N/A N/A 69.33 £ 0.00 N/A N/A 12.66 £ 0.00
P | MLM-1DAE N/A N/A | @ 6.75£0.47 N/A N/A | @ 6.91£0.38
MLM-3DAE N/A N/A | © 5.30+0.37 N/A N/A | O 5.81 £0.25
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Fig. 4. Estimated endmembers by different unmixing methods (the best in ten runs) on MLM-generated data at SNR=30 and R=4.
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Fig. 5. Estimated abundance maps on MLM-generated data at SNR=30 and R=4. From left to right: Groundtruth, FCLS, MLM, MLMp, PPNMM, EndNet,

CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE, and MLM-3DAE.
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Fig. 6. Histograms of the transition probability P value obtained using MLM-derived methods, on MLM-generated data at SNR=30 and R=4.

Regarding the estimated abundance RMSEs achieved by
different methods, the proposed techniques demonstrate strong
performance, especially in scenarios with R=8 and on datasets
generated by MLM. They consistently rank among the top
two performers across different noise levels and endmember
counts. Furthermore, it is noteworthy that, in most cases,
MLM-3DAE outperforms MLM-1DAE in abundance estima-
tion. This is attributed to the effective utilization of spectral-
spatial dependencies present in the hyperspectral imagery
in MLM-3DAE. Fig. [5] and Fig. [7] provide the abundance
maps from various methods, specifically on MLM-generated
datasets with SNR=30, R=4, and SNR=20, R=8, respectively.
As observed, the MLM-derived unmixing methods generally
yield abundance maps that visually align closely with the
groundtruth. In the case with SNR=20 and R=8, the proposed
methods exhibit enhanced robustness, yielding visually con-
sistent abundance maps, while the abundance maps generated
by the MLMp counterpart notably deteriorate.

Concerning the estimation of transition probability P us-
ing MLM-derived methods, the proposed MLM-1DAE and
MLM-3DAE consistently outperform both MLLM and MLMp
across different endmember counts and varying noise levels.
Notably, when compared to the primary counterpart MLMp,
the proposed methods demonstrate better robustness in esti-
mating P. This is particularly evident given that MLMDp yields
significantly deteriorated P-estimation results when SNR=20.
Fig. [6] depicts the histogram of the distribution of P using

different MLM-based methods, on data generated by MLM
at SNR=30 and R=4. As observed, MLM-1DAE and MLM-
3DAE offer the closest approximations to the true distribution
of P, visually resembling a skewed half-normal distribution
closely aligned with the ground truth.

B. Experiments with Real Data

1) Samson [20], [|30]: The first real hyperspectral image
is the widely-used Samson data, with a size of 95 x 95
pixels. After removing the noisy bands, 156 spectral bands
are retained for analysis, covering the wavelength range from
401 nm to 889 nm. This dataset consists of three distinct
endmembers, namely Soil, Water, and Tree.

Due to the smaller image scale, a batch size of 64 is
employed for this dataset. The learning rate for the linear
decoder within the Adam optimizer is set to 1075, while
the remaining components of the network maintain a constant
learning rate of 10~%. The epoch number is set to 200.

Fig. [0 visualizes the endmember curves extracted by using
different blind unmixing techniques, as well as the groundtruth
endmembers provided in [51]]. Fig. [I0] depicts the abundance
maps obtained using various unmixing methods on the Samson
dataset, effectively highlighting the separation of three domi-
nant materials achieved by these methods. Fig. [T2] visualizes
the histograms of the estimated transition probability P from
different MLM-derived methods. As observed, both MLMp
and the proposed methods yield very similar P-maps. In areas



Groundtruth FCLS MLM MLMp PPNMM

End#2 End#3 End#4 End#5 End#6 End#7 End#8

End#l1

EndNet

CNNAEU 3D-NAE PPNMM-AE MLM-1DAE MLM-3DAE

=0

Fig. 7. Estimated abundance maps on MLM-generated data at SNR=20 and R=8. From left to right: Groundtruth, FCLS, MLM, MLMp, PPNMM, EndNet,

CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE, and MLM-3DAE.

TABLE 11
COMPARISON OF PIXEL SAD x10~2 (MEAN & STANDARD DEVIATION) ON SAMSON, AVERAGED OVER 10 RUNS

FCLS MLM MLMp PPNMM EndNet

CNNAEU

3D-NAE PPNMM-AE  MLM-1DAE MLM-3DAE

5.97+0.00 4.424+0.00 4.91£0.00 8.51£0.00 5.13+0.32

11.23+1.57

8.46+0.44 5.36+0.00 (4.41+£0.34  (D4.184+0.30

(a) Samson (b) Cuprite (c) Washington DC

Fig. 8. Three real hyperspectral images used in the experiments.

where water and soil intersect and at the boundaries between
soil and trees, the estimated P values tend to be relatively
larger, suggesting a higher degree of nonlinearity in these
specific regions.

As the underlying mixing mechanism and groundtruth abun-

dance are unavailable, we report the pixel SAD values only for
reference in TABLE where the proposed methods achieve
the lowest two values among the algorithms examined. Fig.
visualizes the spatial pixel RMSE maps by various algorithms,
where the pixel RMSE is similarly defined as in (12).

2) Cuprite [30]: The second real data is the Cuprite data,
which was taken over the Cuprite NV, USA, captured by the
AVIRIS. The original image consists of 224 spectral bands,
ranging in wavelengths from 370 nm to 2480 nm, with a spatial
resolution of 20 meters. A sub-image of 250 x 190 pixels is
selected from the original data, and 187 relatively clean bands
are remained for analysis, after removing the ones influenced
by water vapor absorption. A total R=12 prominent materials
are considered for this dataset.

On this dataset, the batch size is set to 512, and the number
of epochs is set to 300. The learning rate of linear decoder in
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Fig. 9. Estimated endmembers by different unsupervised unmixing methods and the corresponding groundtruth (in red) on Samson data. Up to bottom: Water,
Tree, and Soil. Left to right: MLMp, EndNet, CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE, and MLM-3DAE.
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Fig. 10. Estimated abundance maps for different endmembers on Samson data. Up to bottom: Water, Tree, and Soil. Left to right: FCLS, MLM, MLMp,
PPNMM, EndNet, CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE, and MLM-3DAE.
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Fig. 11. Estimated pixel RMSE maps on Samson data. Left to right: FCLS, MLM, MLMp, PPNMM, EndNet, CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE,
and MLM-3DAE.
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TABLE IV
COMPARISON OF PIXEL SAD x10~2 (MEAN £ STANDARD DEVIATION) ON CUPRITE, AVERAGED OVER 10 RUNS

FCLS MLM MLMp PPNMM EndNet CNNAEU 3D-NAE PPNMM-AE  MLM-IDAE  MLM-3DAE
1.964+0.00 1.56+£0.00 1.60£0.00 1.75+0.00 (D1.224+0.06 13.60+2.01  1.96+0.06 8.214+0.00 ®1.46£0.12 1.54+0.13

1 the Adam optimizer is set to 10~? . Meanwhile, we maintained
a constant learning rate of 10~3 for the rest of the network.

In Fig. [T3] the extracted endmembers are compared with
the groundtruh endmembers using various algorithms on
(2 MLM (b) MLMp () MLM-IDAE  (d) MLM-3DAE  the Cuprite dataset. Fig. [T4] visualizes the estimated abundance

Fig. 12. Visualization of transition probability P value by using MLM, maps obtained by different methods on Cuprite, where the pro-
MLMp, MLM-1DAE and MLM-3DAE on Samson data. posed MLM-1DAE and MLM-3DAE provide clear abundance
maps visually similar to other competitors. Fig. [L6] visualizes
P-maps, indicating the presence of nonlinear mixing in com-
plex regions of the Cuprite dataset. TABLE [[V]reports the pixel




TABLE V
COMPARISON OF PIXEL SAD x 1072 (MEAN + STANDARD DEVIATION) ON WASHINGTON DC, AVERAGED OVER 10 RUNS

FCLS MLM MLMp PPNMM EndNet

CNNAEU 3D-NAE PPNMM-AE  MLM-IDAE MLM-3DAE

1.83£0.00 1.61£0.00 1.61+0.00 (11.53+0.00 1.5540.14

2.554+0.07 1.60£0.03 (D1.50£0.00 1.884+0.14 1.88+0.12

SAD by different methods for reference purpose. The proposed
MLM-1DAE results in the second lowest SAD, inferior to
EndNet. Fig. [I3] visualizes the spatial pixel RMSE maps for
different methods, offering insight into the performance of
different methods across the spatial domain.

3) Washington DC [23|]: The third real data is Washington
DC, which was acquired by the HYDICE sensor. The original
image comprises 210 spectral bands, spanning a wavelength
range from 400 nm to 2400 nm. For this study, a subimage
of size 256 x 256 pixels was chosen from the top-left corner.
After eliminating the bands affected by water vapor and noise,
191 bands remain. The five identified endmembers are Grass,
Water, Roof, Road, and Tree.

On this dataset, the batch size is set to 64, with a total of
300 epochs. The learning rate for the linear decoder is 1077,
while a learning rate of 10~* is used for the remaining parts.

In Fig. we compare the extracted endmember curves
obtained through various unmixing techniques with the
groundtruth signatures provided in CyCU-Net [23]. The au-
thors of CyCU-Net proposed a groundtruth estimation for the
Washington DC dataset. In our analysis, we solely utilized
the endmember groundtruth, choosing not to employ the
abundance groundtruth from the paper, given its reliance on
a linear mixing assumption. Fig. [I§] illustrates the estimated
abundance maps produced by different methods, showing that
MLM-1DAE and MLM-3DAE yield abundance maps visually
similar to other competitors. However, it is crucial to note that
the resulting abundance maps for different materials exhibit
challenges in full separation on this complex and large-scale
dataset. Materials with similar endmembers, such as Grass
and Tree, show less sparsity in abundance representations.
This limitation may be attributed to the optimization of the
nonlinear decoder of the proposed nonlinear unmixing net-
work, influencing abundance sparsity. It could be mitigated
by incorporating sparsity-promoting regularization terms into
the current MLM-1DAE and MLM-3D networks. Fig. [I9]
illustrates P-maps, providing a relative nonlinear intensity
distribution within the image. TABLE [V]reports the pixel SAD
by different methods for reference purpose, where the two
PPNMM-based unmixing techniques achieve the best results
in terms of pixel SAD on this dataset.

C. Computational Complexity

We compared the memory consumption and running time
of MLM-1DAE and MLM-3DAE to four existing unmixing
networks: EndNet, CNNAEU, 3D-NAE, and PPNMM-AE.
All experiments were conducted on an NVIDIA GeForce
RTX 2080 Ti GPU. Our methods, CNNAEU, and 3D-NAE
were implemented in PyTorch, while EndNet and PPNMM-
AE were implemented using TensorFlow. TABLE and
TABLE present the parameter scale in megabytes (MB)

and running time, respectively, for each unmixing network
applied to three real images. Despite the inherent complexity
of nonlinear-based methods in comparison to linear-based
ones (such as EndNet and CNNAEU), our proposed methods
exhibit efficient memory usage with moderate parameter scales
but extended running times when contrasted with linear-based
unmixing networks. In particular, when compared to MLM-
3DAE, MLM-1DAE demonstrates low sensitivity to increased
dataset size. It is crucial to note that the running time is
influenced by various factors, including data size, learning rate,
batch size, and the deep learning framework employed.

D. MLM-1DAE v.s. MLM-3DAE

Regarding the network structure, the primary difference
between the two modes lies in the encoders, as explicitly
discussed in Section [II-Bl While MLM-1DAE utilizes 1D
convolution to leverage spectral information, MLM-3DAE
explores spectral-spatial correlations within data patches by
3D convolution. This variance in encoder implies the in-
corporation of different prior information, yielding distinct
regularization effects on the estimated abundances. However,
the price of 3D mode is an increased network scale with
extended runtime, as reported in TABLE [VI| and TABLE
respectively.

As for unmixing performance, both modes exhibit similar
endmember extraction results on synthetic datasets. Neverthe-
less, when it comes to abundance estimation and determining
the transition probability P, MLM-3DAE outperforms MLM-
IDAE in 10 out of the total 12 scenarios for the former
and in all the MLM-generated scenarios for the latter. This
demonstrates the effectiveness of MLM-3DAE in exploring
spatial-spectral information through 3D convolution.

V. CONCLUSION

This paper proposed an autoencoder-based unmixing
method for MLM, where endmembers, abundance vector,
and transition probability parameter were estimated simulta-
neously. Taking advantage of elaborate network design, the
unmixing process of MLM was realized explicitly. The pro-
posed unmixing network had an encoder-decoder architecture:
the encoder compressed the input pixel (image patch) into
the low-dimensional abundance representation; the decoder
successively imitated the linear part and built upon it, the
MLM mechanism. The transition probability parameter was
obtained by using a softmax operation on a high-level feature.
We considered two modes in the proposed method: MLM-
IDAE accounting for only spectral information, and MLM-
3DAE incorporating the spectral-spatial information among
the neighboring pixels. The effectiveness of the proposed
method was proved on both the synthetic and real datasets,



MLMp EndNet CNNAEU 3D-NAE PPNMM-AE MLM-1DAE MLM-3DAE
1 1 1 ' 1 1 1
o]
ER g g g g g g
£ s k] k| k 5 5 5
5 fos gos gos gos §os gos gos
S 5 N O\ | % B N NI & |3
< o o o o o o o
o s 0 10 20 0 s 0 15 20 0 s 0 1 200 0 s 0 10 200 0 s 10 150 200 0 s 0 15 200 0 s 100 150 200
P 1 Bands 1 Bands 1 Bands 1 Bands 1 Bands 1 Bands 1 Bands
E os 08 08 08 08 08 08
S8 8 8 8 8 8 8
o 5os 506 506 506 506 506 506
3 Sos Sos S04 S04 S04 S04 S04
T o 3 < 4 4 < o
= 02 02 02 02 02 02
M
o s 10 10 20 0 s 0 150 20 0 s 10 150 200 0 s 10 150 200 0 s 100 150 200 0 s 10 15 20 0 s 100 150 200
1 Bands 1 Bands 1 Bands 1 Bands 1 Bands 1 Bands f Bands
2
T o8 08 08 08 08 08 08
S 3 8 8 8 8 8 8
E 506 508 506 506 506 506 § 08|
=l s g s g ] g
S 3 g k] 3 g 8 8
g Zos S04 € 04 €04 Lo4 S04 €04
R g & & 2 g &
& ez 02 02 02 02 02 02
o s 0 10 20 0 s 0 15 20 0 s 0 1 20 0 s 10 10 200 0 s 10 15 200 0 s 10 15 200 0 s 100 150 200
1 Bands 1 Bands 1 Bands 1 Bands 1 Bands 1 Bands 1 Bands
2 H ] 2 H s 2
R H 5 5 H H 5
3 ;05 §DS EDS EOS ;05 EDS EDS
< 2 & & & & & &
o s 10 150 200 0 s 0 15 20 0 s 10 150 200 0 so 100 150 200 0 so 100 15 200 0 s 10 15 200 0 s 100 150 200
Bands Bands Bands Bands Bands Bands Bands

Fig. 13. Estimated 4 (out of a

and MLM-3DAE.
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total 12) endmembers by different unsupervised unmixing methods and the corresponding groundtruth (in red) on Cuprite
data. Up to bottom: Andradite, Buddingtonite, Dumortierite, and Alunite. Left to right: MLMp, EndNet, CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE,
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Fig. 14. Estimated abundance maps for 4 (out of a total 12) endmembers on Cuprite data. Up to bottom: Andradite, Buddingtonite, Dumortierite, Alunite.
Left to right: FCLS, MLM, MLMp, PPNMM, EndNet, CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE, and MLM-3DAE.
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Fig. 15. Estimated pixel RMSE maps on Cuprite data. Left to right: FCLS, MLM, MLMp, PPNMM, EndNet, CNNAEU, 3D-NAE, PPNMM-AE, MLM-1DAE,
and MLM-3DAE.



TABLE VI
PARAMETER SCALE IN MEGABYTES (MB) OF THE COMPARING UNMIXING NETWORKS ON SAMSON, CUPRITE, AND WASHINGTON DC DATASETS

EndNet CNNAEU 3D-NAE PPNMM-AE MLM-IDAE MLM-3DAE

Samson 0.0036 0.7320 2.8316 0.0380 0.2515 0.2753

Cuprite 0.0173 1.6742 4.2060 0.1078 0.4170 0.7759

Washington DC ~ 0.0073 1.0726 3.3597 0.0386 0.3833 0.4473
TABLE VII

RUNNING TIME IN SECONDS (S) OF THE COMPARING UNMIXING NETWORKS ON SAMSON, CUPRITE, AND WASHINGTON DC DATASETS

EndNet CNNAEU 3D-NAE PPNMM-AE MLM-1IDAE MLM-3DAE

Samson ~ b5 ~ 70 =~ 301 ~ 81 ~ 317 ~ 324
Cuprite ~ 416 ~ 103 ~~ 3282 ~ 371 ~ 748 =~ 1540
Washington DC = 621 =~ 505 =~ 2717 ~ 223 ~ 1018 = 2003

(a) MLM (6) MLMp  (c) MLM-1DAE (d) MLM-3DAE

Fig. 16. Visualization of transition probability P value by using MLM,
MLMp, MLM-1DAE, and MLM-3DAE on Cuprite data.

through a comparative study with the MLM-based solutions
and other unmixing networks.

In the future, we will extend our transition probability
estimation to cover cases with P < 0 and investigate effi-
cient convolution configurations, including separate 1D and
2D convolutions, to enhance the computational efficiency of
MLM-3DAE in large-scale hyperspectral unmixing tasks.

REFERENCES

[11 N. Dobigeon, J.-Y. Tourneret, C. Richard, J. C. M. Bermudez,
S. McLaughlin, and A. O. Hero, “Nonlinear unmixing of hyperspectral
images: Models and algorithms,” IEEE Signal Proc. Mag., vol. 31, no. 1,
pp. 82-94, 2014.

R. Heylen, M. Parente, and P. Gader, “A review of nonlinear hyper-

spectral unmixing methods,” IEEE J. Sel. Topics Appl. Earth Observ.

Remote Sens., vol. 7, no. 6, pp. 18441868, 2014.

[3] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, 2012.

[4] B. Hapke, “Bidirectional reflectance spectroscopy: 1. Theory,” Journal
of Geophysical Research: Solid Earth, vol. 86, no. B4, pp. 3039-3054,
1981.

[5] W. Fan, B. Hu, J. Miller, and M. Li, “Comparative study between a

new nonlinear model and common linear model for analysing laboratory

simulated-forest hyperspectral data,” Int. J. Remote Sens., vol. 30, no. 11,

pp. 2951-2962, 2009.

A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, “Unmixing

hyperspectral images using the generalized bilinear model,” in Proc.

IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2011, pp. 1886—1889.

[71 Y. Altmann, A. Halimi, N. Dobigeon, and J.-Y. Tourneret, “Supervised
nonlinear spectral unmixing using a postnonlinear mixing model for
hyperspectral imagery,” IEEE Trans. Image Process., vol. 21, no. 6, pp.
3017-3025, 2012.

[8] R.Heylen and P. Scheunders, “A multilinear mixing model for nonlinear
spectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1,
pp. 240-251, 2016.

[91 Q. Wei, M. Chen, J.-Y. Tourneret, and S. Godsill, “Unsupervised
nonlinear spectral unmixing based on a multilinear mixing model,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 45344544, 2017.

[2

—

[6

[t

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

B. Yang and B. Wang, “Band-wise nonlinear unmixing for hyperspectral
imagery using an extended multilinear mixing model,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 11, 2018.

M. Li, F. Zhu, A. J. X. Guo, and J. Chen, “A graph regularized
multilinear mixing model for nonlinear hyperspectral unmixing,” Remote
Sens., vol. 11, no. 19, 2019.

B. Yang, “Supervised nonlinear hyperspectral unmixing with automatic
shadow compensation using multiswarm particle swarm optimization,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-18, 2022.

L. Gao, Z. Wang, L. Zhuang, H. Yu, B. Zhang, and J. Chanussot,
“Using low-rank representation of abundance maps and nonnegative
tensor factorization for hyperspectral nonlinear unmixing,” /IEEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1-17, 2022.

Y. Gu, S. Wang, and X. Jia, “Spectral unmixing in multiple-kernel hilbert
space for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 7, pp. 3968-3981, 2013.

J. Chen, C. Richard, and P. Honeine, “Nonlinear unmixing of hyperspec-
tral data based on a linear-mixture/nonlinear-fluctuation model,” /IEEE
Transactions on Signal Processing, vol. 61, no. 2, pp. 480-492, 2013.
F. Zhu and P. Honeine, “Biobjective nonnegative matrix factorization:
Linear versus kernel-based models,” IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 7, pp. 4012-4022, 2016.

M. Li, B. Yang, and B. Wang, “Spectral-spatial reweighted robust
nonlinear unmixing for hyperspectral images based on an extended
multilinear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 60,
pp. 1-17, 2022.

J. Chen, M. Zhao, X. Wang, C. Richard, and S. Rahardja, “Integration of
physics-based and data-driven models for hyperspectral image unmixing:
A summary of current methods,” IEEE Signal Proc. Mag., vol. 40, no. 2,
pp. 61-74, 2023.

D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” Machine
Learning for Data Science Handbook: Data Mining and Knowledge
Discovery Handbook, pp. 353-374, 2023.

B. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, “Convolutional Au-
toencoder for Spectral-Spatial Hyperspectral Unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 1, pp. 535-549, 2021.

B. Palsson, J. Sigurdsson, J. R. Sveinsson, and M. O. Ulfarsson,
“Hyperspectral unmixing using a neural network autoencoder,” [EEE
Access, vol. 6, pp. 25 646-25 656, 2018.

Z. Han, D. Hong, L. Gao, B. Zhang, M. Huang, and J. Chanussot, “Au-
tonas: Automatic neural architecture search for hyperspectral unmixing,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-14, 2022.

L. Gao, Z. Han, D. Hong, B. Zhang, and J. Chanussot, “Cycu-net: Cycle-
consistency unmixing network by learning cascaded autoencoders,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-14, 2022.

Y. Su, A. Marinoni, J. Li, J. Plaza, and P. Gamba, “Stacked nonnegative
sparse autoencoders for robust hyperspectral unmixing,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 9, pp. 1427-1431, 2018.

Y. Qu, R. Guo, and H. Qi, “Spectral unmixing through part-based non-
negative constraint denoising autoencoder,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), 2017, pp. 209-212.

Y. Qu and H. Qi, “uDAS: An untied denoising autoencoder with sparsity
for spectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 3,
pp. 1698-1712, 2018.



15

MLMp EndNet CNNAEU 3D-NAE PPNMM-AE MLM-1DAE MLM-3DAE
1 1 1 1 1 1 1
=
3
§ 05 05 05 05 O.SW 05 05
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Bands Bands Bands Bands Bands Bands Bands
1 1 1 1 1 1 1
" " ™y )
g 05 05 05 05 05 05 05
~
| | | il |
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Bands Bands Bands Bands Bands Bands Bands
T T T S T T T
In I I \ In I \
Z 0.5] ‘ 05 ‘ 05 ‘ 0.5] ‘ 0.5] 05 ‘ 05 ‘
54 I\ I I\ I\ A / In
&}
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Bands Bands Bands Bands Bands Bands Bands
1 1 1 1 1 1 1
-
8 0.5] 05 05 0.5 0.5] 05 05
& K K v\} ) 0 K i
A /
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 4 100 200
Bands Bands Bands Bands Bands Bands Bands
1 1 1 1 1 1 1
i
@
© T05 05 05 05 05 05 05
=
|
VaN IVaN IVaN I’aN IVaN IVaN
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Bands Bands Bands Bands Bands Bands Bands
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