

1 **A Taxonomy for Learning with Perturbation and Algorithms**

2
3 RUJING YAO, Department of Information Resources Management, Nankai University; Center for Applied Mathe-
4
5 matics, Tianjin University, China

6 OU WU*, Center for Applied Mathematics, Tianjin University, China
7

8 Weighting strategy prevails in machine learning. For example, a common approach in robust machine learning is to exert low weights
9 on samples which are likely to be noisy or quite hard. This study summarizes another less-explored strategy, namely, perturbation.
10 Various incarnations of perturbation have been utilized but it has not been explicitly revealed. Learning with perturbation is called
11 perturbation learning and a systematic taxonomy is constructed for it in this study. In our taxonomy, learning with perturbation
12 is divided on the basis of the perturbation targets, directions, inference manners, and granularity levels. Many existing learning
13 algorithms including some classical ones can be understood with the constructed taxonomy. Alternatively, these algorithms share
14 the same component, namely, perturbation in their procedures. Furthermore, a family of new learning algorithms can be obtained
15 by varying existing learning algorithms with our taxonomy. Specifically, three concrete new learning algorithms are proposed for
16 robust machine learning. Extensive experiments on image classification and text sentiment analysis verify the effectiveness of the
17 three new algorithms. Learning with perturbation can also be used in other various learning scenarios, such as imbalance learning,
18 clustering, regression, and so on. The source code is available at <https://github.com/RujingYao/Learning-with-Perturbation>.
19

20 Additional Key Words and Phrases: Sample weighting, Perturbation, Robust machine learning, Learning taxonomy.
21

22 **ACM Reference Format:**

23 Rujing Yao and Ou Wu. 2022. A Taxonomy for Learning with Perturbation and Algorithms. In . ACM, New York, NY, USA, 36 pages.
24
25 <https://doi.org/XXXXXXX.XXXXXXXX>
26

27 **1 INTRODUCTION**
28

29 In supervised learning, a loss function is defined on the training set, and the training goal is to seek optimal models by
30 minimizing the training loss. According to the degree of training difficulty, samples can be divided into easy, medium,
31 hard, and noisy samples. Generally, easy and medium samples are indispensable and positively influence the training.
32 The whole training procedure can significantly benefit from medium samples if appropriate learning manners are
33 leveraged. However, the whole training procedure is vulnerable to noisy and partial quite hard samples.
34

35 A common practice is to introduce the sample weighting strategy if hard and noisy samples exist. Low weights are
36 assigned to noisy and quite hard samples to reduce their negative influences during loss minimization. This strategy
37 usually infers the weights and subsequently conducts training on the basis of the weighted loss [49]. Wang et al. [78]
38 proposed a Bayesian method to infer the sample weights as latent variables. Kumar et al. [37] proposed a self-paced
39 learning (SPL) manner that combines the two steps as a whole by using an added regularizer. Meta-learning [42, 63, 81]
40 is introduced to alternately infer weights and seek model parameters with an additional validation set.
41

42
43 *Corresponding author.
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
5532210
5532211
5532212
5532213
5532214
5532215
5532216
5532217
5532218
5532219
5532220
5532221
5532222
5532223
5532224
5532225
5532226
5532227
5532228
5532229
55322210
55322211
55322212
55322213
55322214
55322215
55322216
55322217
55322218
55322219
55322220
55322221
55322222
55322223
55322224
55322225
55322226
55322227
55322228
55322229
553222210
553222211
553222212
553222213
553222214
553222215
553222216
553222217
553222218
553222219
553222220
553222221
553222222
553222223
553222224
553222225
553222226
553222227
553222228
553222229
5532222210
5532222211
5532222212
5532222213
5532222214
5532222215
5532222216
5532222217
5532222218
5532222219
5532222220
5532222221
5532222222
5532222223
5532222224
5532222225
5532222226
5532222227
5532222228
5532222229
55322222210
55322222211
55322222212
55322222213
55322222214
55322222215
55322222216
55322222217
55322222218
55322222219
55322222220
55322222221
55322222222
55322222223
55322222224
55322222225
55322222226
55322222227
55322222228
55322222229
553222222210
553222222211
553222222212
553222222213
553222222214
553222222215
553222222216
553222222217
553222222218
553222222219
553222222220
553222222221
553222222222
553222222223
553222222224
553222222225
553222222226
553222222227
553222222228
553222222229
5532222222210
5532222222211
5532222222212
5532222222213
5532222222214
5532222222215
5532222222216
5532222222217
5532222222218
5532222222219
5532222222220
5532222222221
5532222222222
5532222222223
5532222222224
5532222222225
5532222222226
5532222222227
5532222222228
5532222222229
55322222222210
55322222222211
55322222222212
55322222222213
55322222222214
55322222222215
55322222222216
55322222222217
55322222222218
55322222222219
55322222222220
55322222222221
55322222222222
55322222222223
55322222222224
55322222222225
55322222222226
55322222222227
55322222222228
55322222222229
553222222222210
553222222222211
553222222222212
553222222222213
553222222222214
553222222222215
553222222222216
553222222222217
553222222222218
553222222222219
553222222222220
553222222222221
553222222222222
553222222222223
553222222222224
553222222222225
553222222222226
553222222222227
553222222222228
553222222222229
5532222222222210
5532222222222211
5532222222222212
5532222222222213
5532222222222214
5532222222222215
5532222222222216
5532222222222217
5532222222222218
5532222222222219
5532222222222220
5532222222222221
5532222222222222
5532222222222223
5532222222222224
5532222222222225
5532222222222226
5532222222222227
5532222222222228
5532222222222229
55322222222222210
55322222222222211
55322222222222212
55322222222222213
55322222222222214
55322222222222215
55322222222222216
55322222222222217
55322222222222218
55322222222222219
55322222222222220
55322222222222221
55322222222222222
55322222222222223
55322222222222224
55322222222222225
55322222222222226
55322222222222227
55322222222222228
55322222222222229
553222222222222210
553222222222222211
553222222222222212
553222222222222213
553222222222222214
553222222222222215
553222222222222216
553222222222222217
553222222222222218
553222222222222219
553222222222222220
553222222222222221
553222222222222222
553222222222222223
553222222222222224
553222222222222225
553222222222222226
553222222222222227
553222222222222228
553222222222222229
5532222222222222210
5532222222222222211
5532222222222222212
5532222222222222213
5532222222222222214
5532222222222222215
5532222222222222216
5532222222222222217
5532222222222222218
5532222222222222219
5532222222222222220
5532222222222222221
5532222222222222222
5532222222222222223
5532222222222222224
5532222222222222225
5532222222222222226
5532222222222222227
5532222222222222228
5532222222222222229
55322222222222222210
55322222222222222211
55322222222222222212
55322222222222222213
55322222222222222214
55322222222222222215
55322222222222222216
55322222222222222217
55322222222222222218
55322222222222222219
55322222222222222220
55322222222222222221
55322222222222222222
55322222222222222223
55322222222222222224
55322222222222222225
55322222222222222226
55322222222222222227
55322222222222222228
55322222222222222229
553222222222222222210
553222222222222222211
553222222222222222212
553222222222222222213
553222222222222222214
553222222222222222215
553222222222222222216
553222222222222222217
553222222222222222218
553222222222222222219
553222222222222222220
553222222222222222221
553222222222222222222
553222222222222222223
553222222222222222224
553222222222222222225
553222222222222222226
553222222222222222227
553222222222222222228
553222222222222222229
5532222222222222222210
5532222222222222222211
5532222222222222222212
5532222222222222222213
5532222222222222222214
5532222222222222222215
5532222222222222222216
5532222222222222222217
5532222222222222222218
5532222222222222222219
5532222222222222222220
5532222222222222222221
5532222222222222222222
5532222222222222222223
5532222222222222222224
5532222222222222222225
5532222222222222222226
5532222222222222222227
5532222222222222222228
5532222222222222222229
55322222222222222222210
55322222222222222222211
55322222222222222222212
55322222222222222222213
55322222222222222222214
55322222222222222222215
55322222222222222222216
55322222222222222222217
55322222222222222222218
55322222222222222222219
55322222222222222222220
55322222222222222222221
55322222222222222222222
55322222222222222222223
55322222222222222222224
55322222222222222222225
55322222222222222222226
55322222222222222222227
55322222222222222222228
55322222222222222222229
55322

53 Various machine learning methods exist that do not rely on the weighting strategy. For example, the classical method
 54 support vector machine (SVM) [9] introduces slack variables to address possibly noisy or quite hard samples, and ro-
 55 bust clustering [18] introduces additional vectors to cope with noises. However, a unified theory to better explain such
 56 methods and subsequently illuminate more novel methods remains lacking. In this study, another less-explored yet
 57 widely used paradigm¹, namely, perturbation, is summarized and further investigated. Mathematically, the perturba-
 58 tion strategy actually adds² a perturbation term to a feature vector, a logit vector, a loss, etc. Many existing learning
 59 methods including some classical ones can be (partially) understood in the point of the learning-with-perturbation
 60 view. Learning with perturbation is referred to as perturbation learning in the present paper.

61 In this study, we conduct a pilot study to construct a theoretical taxonomy for learning with perturbation. Specifi-
 62 cally, five perturbation targets, three directions, six inference manners, and four granularity levels are defined. Several
 63 existing classical learning methods are used as illustrated examples to demonstrate the reasonableness of our con-
 64 structed taxonomy, and potential research directions are presented. A close connection can be obtained among these
 65 seemingly unrelated methods and new variations of these methods can be naturally obtained. In addition, three con-
 66 concrete perturbation learning algorithms are proposed, namely, logit perturbation with l_1 -regularization (LogPert), mixed
 67 positive and negative perturbation (MixPert), and the meta-learning-based MixPert (Meta-MixPert). Last, the three pro-
 68 posed learning algorithms are evaluated on data corpora from image classification and text sentiment classification.

69 Our main contributions are summarized as follows:

70 1) A less-explored yet widely used learning scheme, namely, perturbation, is summarized and formalized in this
 71 study. A systematic taxonomy is constructed for it, which can establish an intrinsic connection among numerous
 72 seemingly unrelated machine learning methods. In addition to the noisy-label learning mainly referred in this paper,
 73 other learning scenarios, such as imbalance learning, can also benefit from perturbation learning.

74 2) Several typical learning methods are re-explained with the viewpoint of our constructed taxonomy for learning
 75 with perturbation. A close connection can be observed for these methods and new insights can be obtained. Theoreti-
 76 cally, various *new* methods can be generated on the basis of introducing the idea of perturbation into existing methods.
 77 Sections 5 and 6 present examples.

78 3) Three concrete new perturbation learning methods are proposed. Experiments on robust learning on several
 79 benchmark sets verify their effectiveness compared with several existing classical methods.

80 The rest of the paper is organized as follows. Section 2 briefly reviews related studies. Section 3 highlights the signif-
 81 icance of our summarization for existing studies on learning with perturbation. Section 4 introduces our constructed
 82 taxonomy including the construction principles, details, and representative methods. Section 5 describes our proposed
 83 three new methods. Section 6 presents the experimental comparison and discussions of our methods, and conclusions
 84 are given in Section 7.

93 2 RELATED WORK

94 2.1 The Weighting Strategy in Machine Learning

95 Weighting is a widely used machine learning strategy in at least the following five areas: noise-aware learning [58],
 96 curriculum learning [2], crowdsourcing learning [14], cost-sensitive learning [5], and imbalance learning [31]. In noisy-
 97 aware and curriculum learning areas, weights are sample-wise; in cost-sensitive learning, weights can be sample-wise,
 98 category-wise, or mixed; in imbalance learning, weights are usually category-wise.

99 ¹One widely studied topic in current literature, namely, adversarial examples, is a special type of perturbation, which is discussed in Section 4.

100 ²Weighting actually multiplies a term to a feature vector, a logit vector, a loss, etc.

105 Intuitively, the weights of medium and partial hard samples are kept or enlarged; and the weights of quite hard
 106 samples should be kept or reduced. For example, in Focal loss [45], the weights of easy samples are (relatively) reduced
 107 and those of the hard³ samples are (relatively) enlarged. Most existing studies do not assume the above sample division.
 108 Instead, samples are usually divided into easy/non-easy or normal/noisy. For example, in Focal loss and Adaboost [19],
 109 the weights of non-easy samples are gradually increased.
 110

111 In cost-sensitive learning, the weights are associated with misclassified costs. Shen et al. [66] proposed a new cost-
 112 sensitive adversarial learning framework to ensure that some special classes are less vulnerable. Indeed, perturbation
 113 learning can also be utilized in this scenario. In imbalance learning, categories with lower proportions are negatively
 114 affected. Therefore, increasing the weights of samples in the low-proportion categories is a common practice.
 115

116 The perturbation strategy investigated in this study does not intend to eliminate the weighting strategy. Instead,
 117 this study summarizes various existing learning ideas which do not utilize weighting yet. These learning ideas are
 118 systematically investigated to attribute to a unified learning paradigm, namely, learning with perturbation. These two
 119 strategies can be mutually beneficial⁴. Theoretically, each concrete weighting-based learning method may correspond
 120 to a concrete perturbation-based learning method. A solid and deep investigation for the weighting strategy in machine
 121 learning will significantly benefit perturbation learning.
 122

124 2.2 Noise-aware Machine Learning

125 This study investigates perturbation mainly in learning with noisy labels. The weighting strategy is prevailing in this
 126 area. There exist two common technical solutions.
 127

128 In the first solution, noise detection is performed and noisy samples may be assigned lower weights in the successive
 129 model training. Koh and Liang [25] defined an influence function to measure the impact of each sample on the model
 130 training. Samples with higher influence scores are more likely to be noisy. Huang et al. [32] conducted a cyclical pre-
 131 training strategy and recorded the training losses for each sample in the whole cycles. The samples with higher average
 132 training losses are more likely to be noisy.
 133

134 In the second solution, an end-to-end procedure is leveraged to construct a robust model. Reed et al. [62] proposed
 135 a Bootstrapping loss to reduce the negative impact of samples which may be noisy. Goldberger and Ben-Reuven [22]
 136 designed a noise adaptation layer to model the relationship between labels that may be noisy and true latent labels.
 137

138 More specific methods along with the aforementioned two solutions can be found in a recent survey [70]. Perturba-
 139 tion can replace weighting in both above solutions. In this study, only the second solution is referred.
 140

142 2.3 Robust Machine Learning

143 A formal definition for robust machine learning does not exist at present. There are two typical learning scenarios for
 144 robust machine learning. The first scenario refers to the robustness of a learning process, while the second scenario
 145 refers to the robustness of a trained model. In the first scenario, a robust learning method should cope well with training
 146 data that may be noisy [70, 88], imbalance [35], few-shot [11, 80], etc. In the second scenario, a robust trained model
 147 should cope well with adversarial attacks [93]. Both scenarios receive much and increasing attention in recent years.
 148 Both the weighting and the perturbation strategies are widely-used in the first scenario, whereas only the perturbation
 149 strategy is mainly utilized in the second scenario.
 150

151 ³In fact, if the weights of quite hard samples are reduced, the performance will be increased [41].
 152

153 ⁴For example, a sample-level weighting method (e.g., Focal loss) can be transformed into a category-level weighting method (e.g., replace the sample-level
 154 prediction y_i with the category-level average y_c) inspired by our taxonomy for learning with perturbation.
 155

157 3 SIGNIFICANCE FOR THE SUMMARY OF LEARNING WITH PERTURBATION

158 Pure data manipulation without modifying the structure of involved DNNs has been proven to be effective in the
 159 training of DNNs. One main data manipulation strategy is sample weighting, as described in Section 2.1. Meanwhile,
 160 there are numerous other pure data manipulation strategies in previous literature. For instance, data augmentation and
 161 the perturbation of logit vectors have been widely used in imbalanced learning and noisy-label learning. Moreover, in
 162 some learning scenarios such as robust learning, the adversarial perturbations of samples or features are quite useful,
 163 whereas sample weighting is rarely employed.
 164

165 An interesting and meaningful question arises: can a clear roadmap for other data manipulation methods, apart
 166 from weighting, be established from a new perspective? To address this, a taxonomy for learning with perturbation
 167 is summarized in this study. The subsequent section will demonstrate that a large number of learning methods which
 168 are derived from distinct heuristic motivations or theoretical inspirations actually perturb data in training. The con-
 169 struction of such a taxonomy is valuable in the following aspects:
 170

- 171 • Connecting existing methods. Various sample weighting methods can be easily unified mathematically, differ-
 172 ing mainly in the ways they calculate weights. However, numerous data manipulation methods, apart from
 173 sample weighting, are challenging to connect directly. To the best of our knowledge, no study has attempted to
 174 arrange such tremendous methods into a unified framework. This study constructs a taxonomy for a significant
 175 portion of these tremendous methods, which can naturally build a connection among them. The connection
 176 among the seemly unrelated methods can facilitate a better understanding and intersection of these methods.
 177 We also envision a more fundamental and deep theoretical analysis of perturbation learning based on our
 178 taxonomy.
 179
- 180 • Promoting the importance of pure data manipulation. Our constructed taxonomy for learning with perturba-
 181 tion highlights a widely employed yet rarely mentioned strategy, namely, perturbation. Both perturbation and
 182 weighting cover the majority of application scenarios in deep learning. Therefore, our summary study will
 183 further demonstrate the value and importance of pure data manipulation for deep learning, which may attract
 184 more attention in both academical and industrial communities.
 185
- 186 • Inspiring new methods and paradigms. As the application scenarios of perturbation and weighting highly
 187 overlap, their combination may yield more powerful data manipulation techniques. In addition, in terms of
 188 mathematical forms, perturbation is more flexible than weighting. Therefore, it is possible to develop more
 189 sophisticated perturbation learning methods. Section 5 provides three illustrative examples of new learning
 190 with perturbation methods. Moreover, a data manipulation agent can be designed to automatically leverage
 191 data weighting and perturbation operators on the training data of a learning task.
 192

193 The next section will introduce our constructed taxonomy as well as representative methods for each division.
 194

195 4 OUR CONSTRUCTED TAXONOMY

196 This section firstly introduces our principles for the construction of our taxonomy. Each division of the taxonomy is
 197 then elaborated in detail. Finally, several potential research directions are presented.
 198

199 4.1 Principles

200 Perturbation can be used in many learning scenarios. This section leverages classification as the illustrative example.
 201 Given a training set $S = \{x_i, y_i\}$, $i = 1, \dots, N$, where x_i is the i -th sample, and $y_i \in \{1, \dots, c, \dots, C\}$ is its categorical
 202

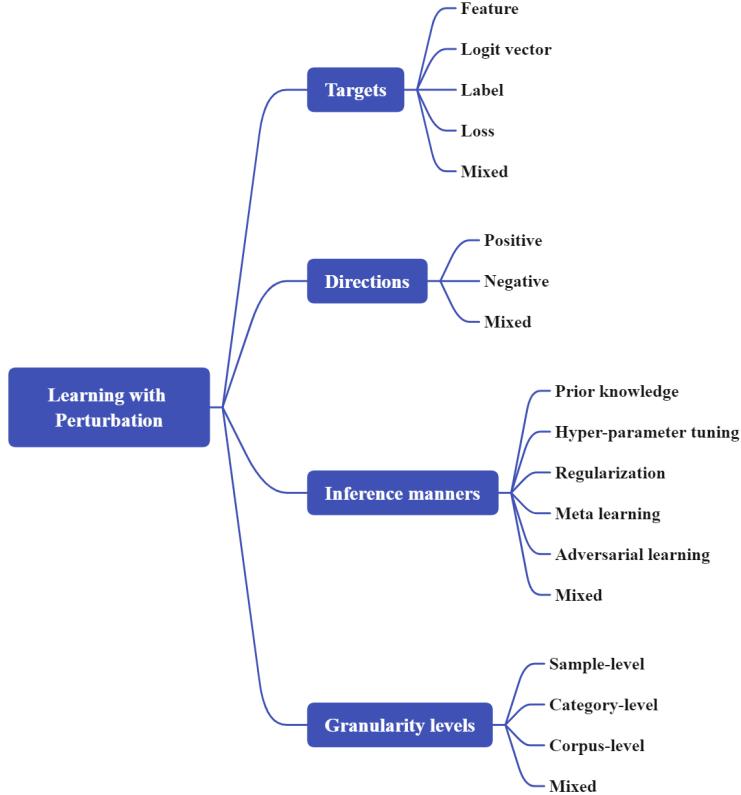


Fig. 1. Taxonomy of learning with perturbation.

label. In a standard supervised deep learning context, let u_i be the logit vector for x_i output using a deep neural network. The training loss can be written as follows:

$$\mathcal{L} = \sum_i l(\mathbb{S}(f(x_i)), y_i) = \sum_i l(\mathbb{S}(u_i), y_i), \quad (1)$$

where $\mathbb{S}(\cdot)$ transforms the logit vector u_i into a soft label p_i , $f(\cdot)$ represents a deep neural network, and $u_i = f(x_i)$.

Our study is firstly motivated by a widely used pure data-oriented technique, namely, weighting. In the weighting strategy, the loss function is usually defined as follows:

$$\mathcal{L} = \sum_i w_i \cdot l(\mathbb{S}(u_i), y_i), \quad (2)$$

where w_i is the weight associated with the sample x_i . In terms of mathematical computation, “weighting” relies on the multiplication operation, whereas “perturbation” relies on adding operation. Let v be a variable. The perturbation for v means the following calculation:

$$v = v + \Delta v, \quad (3)$$

where v is the perturbation. Our taxonomy is constructed according to what to perturb, the direct outcome, and how to infer the perturbation Δv , which are detailed as follows:

- What to perturb. In data weighting, weights are mainly applied to the loss function. In data perturbation, there are more choices for the targets to be perturbed. Organizing different perturbation methods according to the targets facilitates the comparisons and mutual inspiration among these methods. In addition, the granularity is also about what to perturb. Therefore, both the target and its granularity are considered in our taxonomy.
- The direct outcome. It is difficult to summarize the outcomes of different perturbation learning methods into a concise division. Note that one direct outcome is the loss variation. Taking noisy-label learning as an example, a perturbation can be utilized to reduce the loss of a possibly noisy sample, and thus the negative influence of this sample will be reduced. Contrarily, when the influence should be increased for a sample, a perturbation which will increase the loss can be utilized⁵. Therefore, the direction of loss variation incurred by perturbation is chosen as one dimension.
- How to infer. This division is crucial, as the determination of the data perturbation is not a trivial task. Our arrangement along this dimension may shed light on exploring new and more effective perturbation inference methodologies.

According to the three principles listed above, our constructed taxonomy of learning with perturbation is depicted in Fig. 1 encompassing four split items⁶, namely, targets, directions, inference manners, and granularity levels. As an initial attempt for the construction of such a taxonomy, it is challenging to ensure that these four items are exhaustive. For example, perturbation can also be divided into static and dynamic. In static perturbation, perturbations remain unchanged in training, whereas in dynamic perturbation, they are changed in training. Nevertheless, this split plays a trivial role in the understanding of existing methods in current stage, so it is not included in our current taxonomy. This section introduces each item in the taxonomy.

4.2 Perturbation Targets

The perturbation target in this study denotes the variable which is designed to add a perturbation for each sample in DNN training. Eq. (1) contains four different types of variables for each sample, namely, raw feature x_i , logit vector u_i , label y_i , and sample loss $l_i (=l(\mathbb{S}(u_i), y_i))$. Therefore, perturbation targets can be further divided into four categories, namely, feature, logit vector, label, and loss.

4.2.1 Sub-categories.

(1) **Feature perturbation.** In this kind of perturbation, the raw feature vector (x_i) or transformed feature vector (e.g., dense feature output by the involved DNN) of each sample can have a perturbation vector (Δx_i). Eq. (1) becomes

$$\mathcal{L} = \sum_i l(\mathbb{S}(f(x_i + \Delta x_i)), y_i) = \sum_i l(\mathbb{S}(u'_i), y_i). \quad (4)$$

The perturbation vectors for each training sample are not set freely. Instead, they are inferred according to several manners introduced in Section 4.4. Here we provide a simple example to illustrate the usefulness of feature perturbation. Suppose there is a training sample x' with a wrong label. In sample weighting, a small weight can be assigned to this sample to reduce its negative influence in training. Let m be the center of the category of x' . Ideally, if x' is perturbed by $\Delta x' = m - x'$, then the gradient for x' will become quite small. Consequently, the negative impact of x' is also completely reduced. Indeed, the usefulness of feature perturbation is not restricted in noisy-label learning. More details will be introduced in the rest of this paper.

⁵Section 4.3.2 provides a theoretical explanation for this variation.

⁶There is no survey on sample weighting. These four terms can also be used for sample weighting.

313 (2) **Logit perturbation.** In this kind of perturbation, the logit vector (u_i) of each sample can have a perturbation
 314 vector (Δu_i). Eq. (1) becomes
 315

$$316 \quad \mathcal{L} = \sum_i l(\mathbb{S}(u_i + \Delta u_i), y_i). \quad (5)$$

317 Likewise, Δu_i is not set freely. Compared with feature perturbation, logit perturbation receives little attention. Never-
 318 theless, it can play similar roles with feature perturbation. Taking the illustrative task described in feature perturbation
 319 as an example, let u' and m_{log} be the logit vectors of x' and the center vector m , respectively. If u' is perturbed by
 320 $\Delta u = m_{log} - u'$, then noisy samples can also be effectively processed.
 321

322 (3) **Label perturbation.** In this kind of perturbation, the label (y_i) of each sample can have a perturbation label
 323 (Δy_i). Let $p_i = \text{softmax}(u_i)$. Eq. (1) becomes
 324

$$325 \quad \begin{aligned} (i) \quad \mathcal{L} &= \sum_i l(p_i, y_i + \Delta y_i) \quad \text{or} \\ 326 \quad (ii) \quad \mathcal{L} &= \sum_i l(p_i + \Delta y_i, y_i). \end{aligned} \quad (6)$$

328 In Eq. (6-i), Δy_i is added to the true label y_i , while in (ii) Δy_i is added to the predicted label p_i . Considering that
 329 labels after perturbation should be a (soft) label, Δy_i should satisfy the following requirements:
 330

$$331 \quad \sum_c \Delta y_{ic} = 0, y_{ic} + \Delta y_{ic} \geq 0 \quad \text{or} \quad p_{ic} + \Delta y_{ic} \geq 0. \quad (7)$$

333 Indeed, several classical label perturbation methods are usually utilized in noisy label learning.
 334

335 (4) **Loss perturbation.** In this kind of perturbation, the loss of each sample can have a perturbation loss (Δl_i). Eq. (1)
 336 becomes

$$337 \quad \mathcal{L} = \sum_i l(\mathbb{S}(u_i), y_i) + \Delta l_i. \quad (8)$$

338 (5) **Mix-target perturbation.** In this kind of perturbation, two or more of the aforementioned targets can have
 339 their perturbation terms, simultaneously. For example, when both feature and label perturbation are utilized, Eq. (3)
 340 becomes
 341

$$342 \quad \mathcal{L} = \sum_i l(\mathbb{S}(f(x_i + \Delta x_i)), y_i + \Delta y_i), \quad (9)$$

343 where Δx_i and Δy_i are the feature and label perturbations, respectively.⁷
 344

345 The effectiveness of methods in each sub-category has been verified in most typical learning scenarios (e.g., standard
 346 learning, noisy-label learning, and imbalanced learning). Therefore, it is inappropriate to conclude which category is
 347 absolutely superior to others in terms of learning performance. Nevertheless, in most cases, it is relatively easy to
 348 determine the order of the four categories in terms of computational complexity, i.e., feature perturbation \geq logit
 349 perturbation \geq label perturbation \approx loss perturbation. There may exist other perturbation candidates, such as view,
 350 structure (e.g., adjacency matrix in GCN), word embedding, and gradient, which will be explored in our future work.
 351

353 4.2.2 Representative methods.

354 This part discusses a few representative methods in terms of the abovementioned subcategories. The first is robust
 355 clustering (RC) [18]. Let m_c be the cluster center of the c -th cluster. Let ω_{ic} ($\in \{0, 1\}$) denote whether x_i belongs to the
 356 c -th cluster. The optimization form of conventional data clustering can be written as follows:
 357

$$358 \quad \min_{\{m_c\}, \{\omega_{ic}\}} \sum_i \sum_c \omega_{ic} \|x_i - m_c\|_2^2. \quad (10)$$

361
 362
 363 ⁷Lee et al. [39] combine adversarial training and label smoothing, which can be considered as mix-target (feature and label) perturbation.
 364

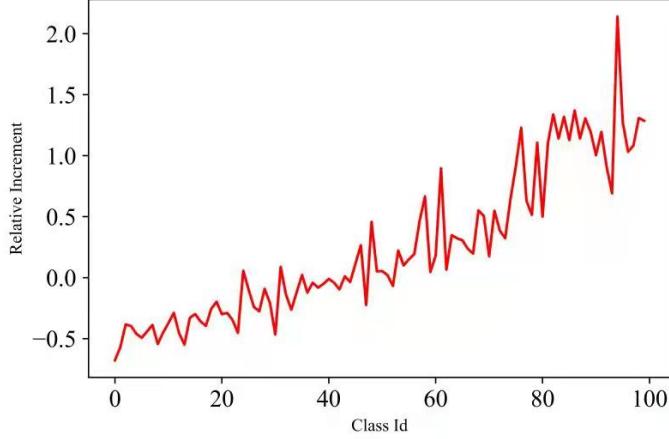


Fig. 2. The relative loss increment $((l' - l)/l)$ for LA. Head categories are in the left and tail ones are in the right. The losses of head categories are mainly decreased, while those of tail ones are increased.

Given that outlier samples may exist, Foreo et al. [18] introduced sample-level feature perturbation (denoted as o_i for x_i) with l_2 -regularization. Then robust clustering is formalized as following:

$$\min_{\{m_c\}, \{\omega_{ic}\}, \{o_i\}} \sum_i \sum_c \omega_{ic} \left(\|(x_i + o_i) - m_c\|_2^2 + \lambda \|o_i\|_2 \right), \quad (11)$$

Obviously, robust clustering belongs to feature perturbation.

Another typical example is logit adjustment [55], which is particularly designed for imbalanced learning. In a multi-category classification problem, let π_c be the proportion of the training samples in the c -th category. Let $\mathbf{g} = [g(\pi_1), \dots, g(\pi_C)]$, $g(\pi_c) = \tau \log(\pi_c)$ ($\tau > 0$). Obviously, $g(\cdot)$ is an increasing function.

Menon et al. [55] defined \mathbf{g} as the logit perturbation vector and then the new cross entropy loss becomes

$$\mathcal{L} = - \sum_i \log \frac{e^{u_{i,y_i} + \tau \log \pi_{y_i}}}{\sum_c e^{u_{i,c} + \tau \log \pi_c}}. \quad (12)$$

In this loss, logit perturbations for each sample are equal.

Label smoothing is a classical noisy-label learning methods which has been proven to be effective in noisy-label learning. It is actually a type of sample-level label perturbation. Its perturbation term for a sample (x_i, y_i) is defined as follows:

$$\Delta y_i = \lambda(I/C - y_i), \quad (13)$$

where I is a C -dimensional vector and each element is equal to 1.

Knowledge distillation is widely used in many deep learning tasks [28]. In knowledge distillation, there are two deep neural networks called teacher and student, respectively. The output of the teacher model for x_i is

$$q_i = \text{softmax}(z_i/T), \quad (14)$$

where z_i is the logit vector from the teacher model and T is the temperature. q_i can be viewed as a prior knowledge about the label perturbation for the student model. Then according to Eq. (7), the training loss of the student model

417 with label perturbation becomes

$$418 \quad 419 \quad \mathcal{L} = \sum_i l(p_i, y_i) + \lambda(l(p_i, q_i) - l(p_i, p'_i)), \quad (15)$$

420 where $p'_i = \text{softmax}(u_i/T)$. Eq. (15) is exactly the loss function of knowledge distillation. Knowledge distillation also
421 belongs to label perturbation.

422 SVM [9] is one of the most classical shallow learning methods. It is based on the following hinge loss:

$$423 \quad 424 \quad 425 \quad l_i = \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)). \quad (16)$$

426 To reduce the negative contributions of noisy or quite hard samples, the loss can be perturbed as follows:

$$427 \quad 428 \quad 429 \quad l'_i = \max(0, l_i - \xi_i) \\ 430 \quad = \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) - \xi_i) \quad (\xi_i \geq 0), \quad (17)$$

431 where ξ_i is a variable for perturbation. Then the whole training loss with max margin and $l1$ -norm for ξ_i becomes

$$432 \quad 433 \quad 434 \quad \mathcal{L} = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_i l'_i + \lambda |\xi_i| \quad (\xi_i \geq 0). \quad (18)$$

435 The minimization of Eq. (18) equals to the following optimization problem:

$$436 \quad 437 \quad 438 \quad \begin{aligned} & \min_{\mathbf{w}, b, \{\xi_i\}} \frac{1}{2} \|\mathbf{w}\|^2 + \lambda \sum_i \xi_i \\ & \text{s.t. } 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b) - \xi_i \leq 0, \\ & \quad \xi_i \geq 0, i = 1, \dots, N \end{aligned} \quad (19)$$

441 which is the standard form of SVM (without kernel). Alternatively, the slack variable can be seen as a loss perturbation
442 for SVM. Naturally, other types of perturbation (e.g., label perturbation) can be considered in SVM⁸.

443 Pereyra et al. [61] perturbed the original loss by adding a hinge function for the confidence penalty, which is defined
444 as follows:

$$445 \quad 446 \quad 447 \quad \mathcal{L} = - \sum_i l(p_i, y_i) - \beta \max(0, \tau - H(p_i)), \quad (20)$$

448 where β and τ are two hyper-parameters; $H(p_i)$ is information entropy of the prediction p_i , which measures the
449 confidence of the prediction by the current model.

452 4.3 Perturbation Directions

453 4.3.1 Sub-categories.

455 Perturbation direction in this study denotes the loss increment or decrement after perturbation. There are two direc-
456 tions according to the loss variations.

457 (1) **Positive perturbation.** If the perturbation reduces the loss, then it is called positive perturbation. The following
458 representative methods will indicate that positive perturbation is usually employed to reduce the influence of noisy
459 and quite hard samples during training.

461 (2) **Negative perturbation.** If the perturbation increases the loss, then it is called negative perturbation. Negative
462 perturbation can enhance the impact of the perturbed samples during training⁹.

464
465 ⁸We conjecture that label perturbation-based SVM may exist in the literature.

466 ⁹As negative perturbation can explicitly or implicitly perform data augmentation, it can enhance the impact of samples including both easy and hard
467 ones.

469 (3) Mix-direction perturbation. If the perturbation increases the losses of some training samples and decreases
 470 the losses of others simultaneously, then it is called mix-direction perturbation. The logit adjustment method actually
 471 leverages this type of perturbation, which will be discussed in Section 4.3.3.
 472

473 4.3.2 Comparison for positive and negative perturbations.

474 The two directions are opposite to each other. Nevertheless, both directions have been explored in previous literature,
 475 and experiments have verified their effectiveness. We first compare them from a regularization perspective. Let $p_i =$
 476 $\mathbb{S}(u_i)$ represent the softmax output be the current model. Taking logit perturbation as an example, the loss in Eq. (5)
 477 can be expanded using the first-order Taylor expansion as follows:
 478

$$479 \quad \ell(\mathbb{S}(u_i + \Delta u_i), y_i) \approx \ell(p_i, y_i) + \left(\frac{\partial \ell}{\partial u}\right)^\top \Delta u = \ell(p_i, y_i) + (p_i - y_i)^\top \Delta u. \quad (21)$$

480 In negative augmentation, $(p_i - y_i)^\top \Delta u > 0$, meaning that negative augmentation can be viewed as adding a regularization
 481 term to the original loss $\ell(p_i, y_i)$. There have been a lot of studies revealing that methods such as perturbation
 482 using Gaussian noise can inherently provide a regularization effect [16]. Regularization is typically utilized to prevent
 483 overfitting. In positive perturbation, $(p_i - y_i)^\top \Delta u < 0$, which can be viewed as adding an anti-regularization
 484 term to the original loss. The concept of anti-regularization has been investigated in previous studies [12, 24, 38] and
 485 is typically utilized in learning cases when over-regularization may occur. Over-regularization means that excessive
 486 regularization is applied. Taking ridge regression as an example, its objective function is $l(X, Y; w) + \lambda \|w\|_2^2$. A large
 487 value of λ will result in over-regularization. If $\lambda \rightarrow +\infty$, then $w \rightarrow \mathbf{0}$, resulting in underfitting. In other words, positive
 488 perturbation can prevent underfitting, while negative perturbation can prevent overfitting.
 489

490 Both directions are useful for certain learning scenarios. We take the learning under feature noise as an illustrative
 491 example. Given a binary training dataset D , assuming it contains a certain proportion (denoted as p) of feature noise,
 492 which is exactly equivalence to an appropriate regularization. In other words, such a proportion of feature noise is
 493 useful. Therefore, if the proportion of feature noise for class '+1' is increased to $2p$ and that for class '-1' is decreased to
 494 $0.5p$, then positive feature perturbation should be exerted on samples of class '+1', and negative feature perturbation
 495 should be exerted on samples of class '-1'. This example illustrates the necessity for both directions as well as their
 496 mixture.
 497

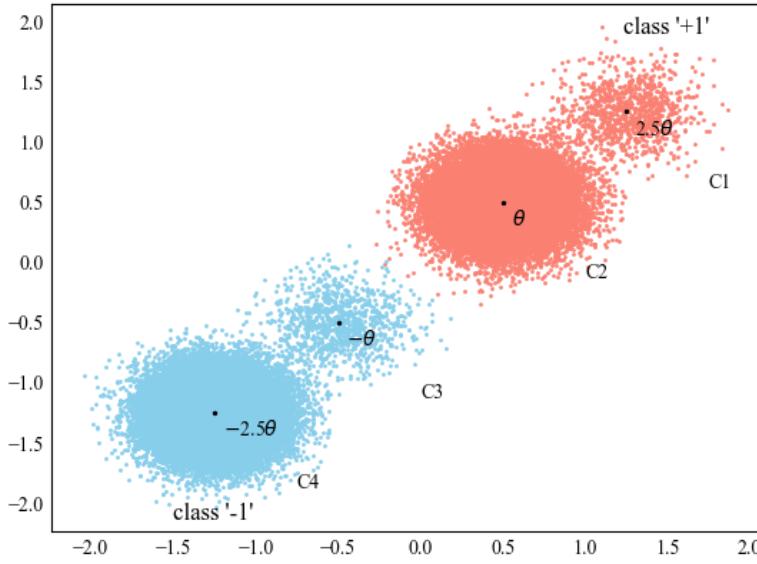
498 We then provide a statistical view to compare the two perturbation directions. It is quite challenging to conduct
 499 universal theoretical analysis for arbitrary distributions. Following some relevant theoretical studies [33, 85], we design
 500 a simple learning case with Gaussian distributions. The binary classification setting established for the theoretical
 501 analysis in [86] is adopted. The data is from two classes $\mathcal{Y} = \{-1, +1\}$ and the data from each class follows a mixture
 502 of two Gaussian distributions. In class '+1', its two distributions are centered on 2.5θ and θ , respectively; in class '-1',
 503 its two distributions are centered on -2.5θ and $-\theta$, respectively. The overall data distribution follows
 504

$$505 \quad y \stackrel{u.a.r}{\sim} \{-1, +1\}, \quad \theta = [\eta, \dots, \eta]^T \in R^d, \\ 506 \quad x \sim \begin{cases} \gamma_1 \mathcal{N}(\theta, \sigma_+^2 I) + (1 - \gamma_1) \mathcal{N}(2.5\theta, \sigma_+^2 I), & \text{if } y = +1 \\ \gamma_2 \mathcal{N}(-\theta, \sigma_-^2 I) + (1 - \gamma_2) \mathcal{N}(-2.5\theta, \sigma_-^2 I), & \text{if } y = -1 \end{cases} \quad (22)$$

507 where γ_1 and γ_2 are two independent discrete random variables; I is an identity matrix; and σ_+^2 and σ_-^2 are two factors.
 508

509 Assuming that $d = 2$, γ_1 and γ_2 are uniformly distributed on $\{0, 1\}$, $\theta = [0.5, 0.5]^T$, and $\sigma_+^2 = \sigma_-^2 = 0.04$. Let D
 510 be a training set which is sampled from the above distribution. Due to possible sampling bias, the proportion of the
 511 samples from the two sub-distributions is 1:30 (C1:C2) for class '+1', and that is still 1:30 (C3:C4) for class '-1', as shown
 512

521 in Fig. 3. Such biased training data would result in a biased classifier. Obviously, sample weighting (e.g., importance
 522 weighting can alleviate this issue. Indeed, feature perturbation can also address this issue. Theoretically, if $\frac{14}{30}$ samples
 523 in C_1 as shown in Fig. 3 are perturbed by 1.5θ (i.e., $\mathbf{x} = \mathbf{x} + 1.5\theta$) and $\frac{14}{30}$ samples in C_4 as shown in Fig. 3 are also
 524 perturbed by 1.5θ , then the distribution on the training data is equal to the ground-truth distribution as described by
 525 (22). Consequently, an unbiased classifier would be learned.
 526



550 Fig. 3. A biased training set whose ground-truth distribution conforms to (22).

551
 552 Obviously, the selected $\frac{14}{30}$ samples in C_1 are performed positive perturbation, whereas the selected $\frac{14}{30}$ ones in C_4
 553 are performed negative perturbation. Several insights can be observed from this example:
 554

- 555 • Perturbation can tune the distribution of training data like weighting.
- 556 • Although positive and negative perturbations are opposite to each other, they can cooperate to obtain better
 557 training performance for a learning task.
- 558 • Positive perturbation can reduce the proportion of hard samples (e.g., samples in C_1), whereas negative pertur-
 559 bation can increase the proportion of hard samples (e.g., samples in C_3). It is inappropriate to simply conclude
 560 that only positive perturbation or only negative perturbation is sufficient for a concrete learning task. Which
 561 direction of perturbation is required depends on the training data and the training object of a learning task.
 562

563 The above theoretical comparison indicates that it is also inappropriate to directly conclude which perturbation
 564 direction is absolutely better than the other, regardless of the involved learning task. The next section will show sev-
 565 eral classical methods that employ mix-direction perturbation, i.e., both positive and negative perturbations in their
 566 approach are adopted simultaneously.
 567

568 4.3.3 Representative methods.

569 We first revisit the three methods listed in Section 4.2.2. If the l_2 -norm distance in Eq. (10) is taken as loss, then the
 570

loss will be reduced by the perturbation o_i . As a result, the feature perturbation in robust clustering belongs to positive perturbation. In logit adjustment, Eq. (12) can be re-written to the following:

$$\mathcal{L} = - \sum_i \log \frac{e^{u_i y_i}}{\sum_c e^{u_{i,c} + \tau \log \frac{\pi_c}{\pi_{y_i}}}}, \quad \tau \geq 0. \quad (23)$$

Note that $\pi_c \leq \pi_1$ and $\pi_c \geq \pi_C$ for all the c th categories. Consequently, the losses for samples in the first head category y_1 are reduced, while the losses for samples in the last tail category y_C are increased. In other words, the first head category performs positive augmentation, while the last tail category performs negative augmentation. Existing studies reveal that overfitting occurs on tail categories [10, 30]. Therefore, negative augmentation (regularization) for tail categories is reasonable. Positive augmentation (anti-regularization) may avoid underfitting on head categories, as there are also studies that reveal that underfitting occurs on head categories [96]. Logit adjustment belongs to mix-direction augmentation. Label smoothing also belongs to mix-direction.

Adversarial samples receive great attention in recent years. It is actually a perturbed sample by the following optimization [53]:

$$\mathbf{x}_{\text{adv}} = \mathbf{x} + \arg \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(f(\mathbf{x} + \boldsymbol{\delta}), y), \quad (24)$$

where \mathbf{x}_{adv} is the adversarial sample generated for \mathbf{x} , $\boldsymbol{\delta}$ is the perturbation term, and ϵ is the perturbation bound. Obviously, adversarial perturbation belongs to negative perturbation as the loss of new sample is larger (at least no small) than the raw sample.

Another example is adversarial label smoothing(ALS) [21]. The perturbation term of label smoothing is manually determined. Inspired by adversarial samples, ALS pursues the label perturbation in label smoothing using

$$\Delta y_i = \lambda(p_i^* - y_i), \quad (25)$$

where

$$p_i^* = \arg \max_{p_i} l(\mathbb{S}(u_i), y_i + \lambda(p_i - y_i)). \quad (26)$$

Eq. (25) has an analytic solution such that p_i^* is the one-hot vector for the category which corresponds to the minimum softmax value in $\mathbb{S}(u_i)$. It is easy to verify that $\ell(x_i, y + \Delta y_i) \geq \ell(x_i, y)$. Therefore, ALS belongs to negative perturbation.

4.4 Perturbation Inference

4.4.1 Sub-categories.

In perturbation learning, perturbation variables in losses in Eqs. (4)–(27) should be inferred during training. There are six typical manners (maybe not exhaustive) to infer their values and optimize the whole loss.

(1) **Inference with prior knowledge.** In this manner, the perturbation variables are inferred on the basis of prior knowledge. Alternatively, the perturbation variables are fixed before the optimizing of training loss.

(2) **Inference with hyper-parameter tuning.** In this manner, the perturbation variable(s) is/are taken as hyper-parameter(s). Consequently, the optimal value is determined according to the manner of hyper-parameter tuning.

(3) **Inference with regularization.** In this manner, a regularization term is added for the perturbation variables. For example, a natural assumption is that the proportion of the samples that require the perturbation variables is small. Therefore, l_1 -norm can be used. Taking the logit perturbation as examples. A loss function is defined as follows:

$$\mathcal{L} = \sum_i l(\mathbb{S}(u_i + \Delta u_i), y_i) + \lambda \text{Reg}(\Delta u_i), \quad (27)$$

625 where λ is a hyper-parameter and $Reg(\cdot)$ is a regularizer. This manner is similar to the self-paced learning [37, 50].
 626 When $\lambda \rightarrow \infty$, no perturbation is allowed and perturbation learning is reduced to conventional learning.
 627

628 (4) **Inference with meta-learning.** In this manner, the perturbation variables are inferred on the basis of another
 629 small clean validation set with meta-learning. Given a clean validation set Ω comprising M clean training samples and
 630 taking loss perturbation as an example. Let κ_i be the loss perturbation variable for x_i ($\in S$). We first define that
 631

$$\mathcal{L} = \sum_{i \in S} l(\mathbb{S}(u_i), y_i : \Theta) + \kappa_i, \quad (28)$$

633 where Θ is the model parameter set to be learned. Given $\kappa = \{\kappa_i\}_{i \in S}$, Θ can be optimized on the training set S by
 634 solving
 635

$$\Theta^*(\kappa) = \arg \min_{\Theta} \sum_{i \in S} l(\mathbb{S}(u_i), y_i : \Theta) + \kappa_i. \quad (29)$$

636 After Θ is obtained, κ can be optimized on the validation set Ω by solving
 637

$$\kappa^* = \arg \min_{\kappa} \sum_{j \in \Omega} l(\mathbb{S}(u_j), y_j : \Theta^*(\kappa)). \quad (30)$$

641 These two optimizations can be performed alternately, and finally Θ^* and κ^* are learned. When either logit or label
 642 perturbation is used, the above optimization procedure can also be utilized with slight variations.
 643

644 The above inference manner is similar with that used in the meta-learning-based weighting strategy for robust
 645 learning [63]. Meta-learning has been widely used in robust learning and many existing meta-learning-based weighting
 646 methods [42, 81] can be leveraged for perturbation learning.
 647

648 (5) **Inference with adversarial learning.** In both feature and logit perturbations, the perturbation term can be
 649 obtained by adversarial learning. Taking feature perturbation as an example, the objective function in negative pertur-
 650 bation is

$$\Delta x_i^* = \arg \max_{\|\Delta x_i\| \leq \epsilon} l(\mathbb{S}(f(x_i + \Delta x_i)), y_i), \quad (31)$$

651 where ϵ is the bound. Likewise, the objective function in positive feature-level perturbation can be
 652

$$\Delta x_i^* = \arg \min_{\|\Delta x_i\| \leq \epsilon} l(\mathbb{S}(f(x_i + \Delta x_i)), y_i). \quad (32)$$

653 (6) **Inference with mixed manners.** Two or more of the above five manners can be combined together to infer
 654 the perturbation term in a learning task.
 655

656 **Remark:** Existing perturbation-based learning methods adopt one of the inference manners listed above. Different
 657 manners have their own merits and defects. The prior knowledge-based manner is heuristic and thus seems quite ad
 658 hoc in some learning cases. When grid search is utilized in hyper-parameter tuning, it results in high time consumption.
 659 Regularization-based manner has good theoretical merits. However, designing a suitable regularizer is also challenging.
 660 Furthermore, as discussed previously, some learning cases may require anti-regularization. Both meta-learning-based
 661 and adversarial learning-based manners employ an optimization approach. Nevertheless, meta-learning requires an
 662 independent high-quality validation dataset, while the adversarial learning-based manner can only produce negative
 663 perturbations.
 664

665 Which inference manner should be employed depends on the training data and learning object of the involved
 666 learning task. Theoretically, the inference manner can be changed from one manner to another and a new method will
 667 subsequently be obtained.
 668

677 **4.4.2 Representative methods.**

678 The methods logit adjustment, label smoothing, and knowledge distillation employs prior knowledge-based inference.
 679 The methods adversarial samples and ALS employs adversarial learning.

680 In contrast with previous data augmentation techniques, Implicit semantic data augmentation (ISDA) [79] does not
 681 produce new samples or features. Instead, it transforms the semantic data augmentation problem into the optimization
 682 of a new loss defined as

$$684 \quad \mathcal{L} = - \sum_i \frac{e^{u_i, y_i}}{\sum_{c=1}^C e^{u_i, c + \frac{\lambda}{2} (\mathbf{w}_c - \mathbf{w}_{y_i})^T \Sigma_{y_i} (\mathbf{w}_c - \mathbf{w}_{y_i})}}, \quad (33)$$

687 where Σ_{y_i} is the covariance matrix for the y_i -th category, \mathbf{w}_c is the model parameter for the logit vectors, and
 688 $u_i, c = \mathbf{w}_c^T \tilde{x}_i$ (\tilde{x}_i is the output of the last feature encoding layer for x_i).

689 In Eq. (39), a logit perturbation term is observed as follows:

$$691 \quad u'_i = u_i + \delta_{y_i}, \quad (34)$$

693 where

$$695 \quad \delta_{y_i} = \frac{\lambda}{2} \begin{bmatrix} (\mathbf{w}_1 - \mathbf{w}_{y_i})^T \Sigma_{y_i} (\mathbf{w}_1 - \mathbf{w}_{y_i}) \\ \vdots \\ (\mathbf{w}_C - \mathbf{w}_{y_i})^T \Sigma_{y_i} (\mathbf{w}_C - \mathbf{w}_{y_i}) \end{bmatrix}. \quad (35)$$

700 Obviously, the perturbation is category-level and determined with prior knowledge. In addition, the perturbation
 701 direction is negative as the loss is increased for each training sample. The term is heavily dependent on the covariance
 702 matrix Σ_{y_i} , which can be further optimized via meta-learning by minimizing the following loss on a validation set Ω :

$$705 \quad \Sigma^* = \arg \min_{\Sigma} \sum_{j \in \Omega} l(\mathbb{S}(u_j), y_j; \Theta^*(\Sigma)), \quad (36)$$

707 which is just the meta implicit data augmentation (MetaSAug) proposed by Li et al. [44]. MetaSAug is quite effective
 708 in long-tail classification.

710 Bootstrapping loss [62] is another classical label perturbation method. Given that for each sample, we can obtain a
 711 predicted label y'_i by the model trained at the previous epoch, the label perturbation can be defined as

$$712 \quad \Delta y_i = \lambda (y'_i - y_i), \quad (37)$$

714 where λ is a hyper-parameter and locates in $[0, 1]$. Δy_i defined in Eq. (37) satisfies the condition given by Eq. (7).
 715 Bootstrapping loss is designed for noisy-label learning and the perturbation is inferred with prior knowledge. If y'_i is
 716 in trust, then it is highly possible that Δy_i approaches to zero if x_i is normal, and it is large if x_i is noisy. The entire
 717 Bootstrapping loss is

$$720 \quad \mathcal{L} = \sum_i l(\mathbb{S}(u_i), y_i + \lambda (y'_i - y_i)) = (1 - \lambda) \sum_i l(\mathbb{S}(u_i), y_i) + \lambda \sum_i l(\mathbb{S}(u_i), y'_i). \quad (38)$$

722 Note that $l(\mathbb{S}(u_i), y'_i) \leq l(\mathbb{S}(u_i), y_i), \forall i$. Then Bootstrapping loss belongs to positive perturbation.

723 Meta adversarial perturbations [89] utilizes meta-learning to infer the adversarial perturbations for each image. In
 724 Eq. (12), the hyper-parameter τ is fixed for all categories. A category-wise setting for τ may be useful. Therefore, a new
 725 logit adjustment with meta optimization on τ is proposed and called Meta logit adjustment (Meta LA). Let Ω be the
 726 validation set for meta optimization. According to Eqs. (28–30) in the paper, the new loss is

$$729 \quad 730 \quad 731 \quad 732 \quad 733 \quad 734 \quad 735 \quad 736 \quad 737 \quad 738 \quad 739 \quad 740 \quad 741 \quad 742 \quad 743 \quad 744 \quad 745 \quad 746 \quad 747 \quad 748 \quad 749 \quad 750 \quad 751 \quad 752 \quad 753 \quad 754 \quad 755 \quad 756 \quad 757 \quad 758 \quad 759 \quad 760 \quad 761 \quad 762 \quad 763 \quad 764 \quad 765 \quad 766 \quad 767 \quad 768 \quad 769 \quad 770 \quad 771 \quad 772 \quad 773 \quad 774 \quad 775 \quad 776 \quad 777 \quad 778 \quad 779 \quad 780$$

$$\mathcal{L} = - \sum_{x_i \in S} \log \frac{e^{u_i, y_i + \tau_{y_i}} \log \pi_{y_i}}{\sum_y e^{u_i, y + \tau_{y_i}} \log \pi_y}. \quad (39)$$

Given a value for $\tau = \{\tau_1, \dots, \tau_C\}$, the network parameter Θ can be obtained by solving

$$\Theta^*(\tau) = \arg \min_{\Theta} - \sum_{x_i \in S} \log \frac{e^{u_i, y_i + \tau_{y_i}} \log \pi_{y_i}}{\sum_y e^{u_i, y + \tau_{y_i}} \log \pi_y}. \quad (40)$$

After $\Theta^*(\tau)$ is obtained, τ can be optimized by solving

$$\tau^* = \arg \min_{\tau} - \sum_{x_i \in \Omega} l(\text{softmax}(f(x_i : \Theta^*(\tau)), y_i)). \quad (41)$$

Eqs. (40) and (41) are solved alternately. The detailed optimization steps are similar to those used in MetaSDA [44], Meta-Weight-Net [68], and other meta optimization studies.

4.5 Perturbation Granularity

4.5.1 Sub-categories.

Perturbation granularity has four levels.

(1) **Sample-level perturbation.** All the perturbation variables discussed above are for samples. Each sample has its own perturbation variable.

(2) **Category-level perturbation.** In this level, samples within the same category share the same perturbation. Taking the logit vector-based perturbation as an example, when category-level perturbation is utilized, the loss in Eq. (5) becomes

$$\mathcal{L} = \sum_i l(\mathbb{S}(u_i + \Delta u_{y_i}), y_i). \quad (42)$$

Category-level perturbation mainly solves the problem when the impact of all the samples of a category should be increased or decreased. For example, in long-tail classification, the tail category should be emphasized in learning.

(3) **Corpus-level perturbation.** In this level, samples within the whole training corpus share the same perturbation. Take the negative perturbation described in Eq. (31) as an example, the objective function becomes

$$\Delta x^* = \arg \max_{\|\Delta x\| \leq \epsilon} l(\mathbb{S}(f(x_i + \Delta x)), y_i), \quad (43)$$

which means that all samples share the same term Δx^* . Δx^* is exactly the universal adversarial perturbation [57].

(4) **Mix-level perturbation.** In this level, more than one of the aforementioned three levels are utilized simultaneously. This case occurs in complex contexts, e.g., when both noisy labels and category imbalance exist. Taking label-based perturbation as an example. The loss in Eq. (6) can be written as

$$\mathcal{L} = \sum_i l(p_i, y_i + \Delta y_i + \Delta y_{y_i}), \quad (44)$$

where Δy_{y_i} is the category-level label perturbation.

Remark: Most methods belong to sample-level, which has been applied in most learning scenarios. Corpus-level is a special case of category-level, and category-level is also a special case of sample-level. Therefore, sample-level should outperform the other granularity levels theoretically. Nevertheless, it is still inappropriate to conclude that which level is absolutely the best choice.

781 4.5.2 Representative methods.

782 Adversarial perturbation introduced previously is in the sample level. Training with adversarial samples (i.e., adversarial training) is proven to be useful in many applications and various methods are proposed [53]. Shafahi et al. [65] 783 proposed universal adversarial training (UAT) which is actually based on a corpus-level negative feature perturbation. 784 The loss on adversarial samples is

$$785 \quad \mathcal{L}_{corpus-adv} = \max_{\|\delta\| \leq \epsilon} \sum_i l(\mathbb{S}(f(x_i + \delta)), y_i). \quad (45)$$

786 Benz et al. [3] observed that universal adversarial perturbation does not attack all classes equally. They proposed a 787 category-wise universal adversarial training (C-UAT) method and the loss on adversarial samples is

$$788 \quad \mathcal{L}_{category-adv} = \max_{\|\delta_{y_i}\| \leq \epsilon} \sum_i l(\mathbb{S}(f(x_i + \delta_{y_i})), y_i), \quad (46)$$

789 which belongs to the category-level negative feature perturbation.

790 Conventional sample-level adversarial samples and the corpus-level UAP are in the two extremes. Nevertheless, 791 both are demonstrated to be quite useful in adversarial training. There are also a large number of studies on UAP [6], 792 which partially reflects that each perturbation level has its own value.

793 Motivated by our taxonomy, mix-level adversarial perturbation can subsequently be generated. A mixed corpus/sample- 794 level adversarial perturbation is described as an example:

$$795 \quad \delta^* = \arg \max_{\delta} \sum_i l(S(f(x_i + \delta)), y_i) \\ 796 \quad \mathcal{L}_{mixed-adv} = \max_{\delta_i} \sum_i l(S(f(x_i + \delta^* + \delta_i)), y_i), \quad (47)$$

797 where δ^* and δ_i are the corpus-level and sample-level perturbations, respectively. A further statistical analysis for the 798 two levels of adversarial perturbations may illuminate us to better understand the adversarial characteristics of the 799 data. Some other variations of adversarial perturbation (e.g., hash adversarial perturbation [87]) can also benefit from 800 our taxonomy for learning with perturbation.

801 Arcface [48] is a classical face recognition loss defined as follows:

$$802 \quad \mathcal{L} = - \sum_i \frac{e^{s_i(\cos(\theta_{i,y_i} + m))}}{e^{s_i(\cos(\theta_{i,y_i} + m))} + \sum_{c \neq y_i} e^{s_i(\cos(\theta_{i,c}))}}, \quad (48)$$

803 where $s_i = \|\mathbf{w}_{y_i}\| \|\tilde{x}_i\|$, $\theta_{i,c}$ is the angle between the weight \mathbf{w}_c and the feature \tilde{x}_i which are defined in the description 804 for ISDA, and m is a hyper-parameter. Indeed, m does not strictly belong to the five perturbation targets in our 805 taxonomy. It is simply placed in the category of logit perturbation in this paper. It is a corpus-level term and determined via 806 hyper-parameter tuning.

807 Wang et al. [76] proposed a new Arcface loss, namely, Balanced loss, with the category-level perturbation. The loss 808 is defined as

$$809 \quad \mathcal{L} = - \sum_i \frac{e^{s_i(\cos(\theta_{i,y_i} + m_{g_i}))}}{e^{s_i(\cos(\theta_{i,y_i} + m_{g_i}))} + \sum_{c \neq y_i} e^{s_i(\cos(\theta_{i,c}))}}, \quad (49)$$

810 where g_i is the skin-tone category of the j -th sample. Obviously, m_{g_i} is a category-level term. It can be optimized via 811 meta-learning:

$$812 \quad m_g^* = \arg \min_{\{m_{g_j}\}} \sum_{j \in \Omega} l(\Theta(m_{g_j})), \quad (50)$$

813 which is proven to be quite effective in the experiments conducted by Wang et al. [76].

833 4.6 Several potential directions for perturbation learning

834 There are numerous open problems for learning with perturbation. This part casts a vision toward the future, contem-
 835 plating the promising research directions deserving further investigation listed below:
 836

- 837 • **Deep representation of training characteristics.** Training characteristics of a sample denotes the static
 838 or dynamic quantities that can characterize information such as distribution, geometry, and neighborhood
 839 of the sample. For example, the categorical proportion, margin, loss, and gradient norm are typical training
 840 characteristics. In most existing perturbation learning methods, the perturbation direction, granularity, and
 841 inference manner (especially the manner with prior knowledge) heavily depend on the quantification of the
 842 training characteristics of training samples. Nevertheless, existing methods utilize no more than three raw
 843 training characteristics. A deep representation for the overall training characteristics of a training sample
 844 would be quite useful.
 845
- 846 • **Unified theoretical basis for data perturbation.** Our taxonomy summarizes a wide range of methods which
 847 are based on distinct heuristic observation or theoretical inspirations. Constructing a unified theoretical basis
 848 for perturbation learning can establish a more fundamental connection among these seemingly irrelevant meth-
 849 ods. This connection will contribute to answering the question of which target, direction, inference manner,
 850 or granularity level should be employed when facing a concrete learning task.
 851
- 852 • **Data perturbation agent.** AI agent is a hot topic in current AI community. If the training characteristics of
 853 samples can be well represented and the theoretical basis is well constructed, then automatic data perturbation
 854 may be achieved. Indeed, it is feasible to compile more than thousands of learning tasks and train a data
 855 perturbation agent with a proper learning procedure.
 856
- 857 • **Theoretical comparison with data weighting.** The weighting strategy is straightforward and quite intuitive;
 858 hence, it has been widely used in the machine learning community. Perturbation does not seem as straight-
 859 forward as weighting. However, the former can play the same/similar role as weighting in machine learning.
 860 They both have their own merits. Perturbation is more flexible than weighting, while weighting is usually more
 861 efficient than perturbation. A theoretical comparison between them is beneficial for both strategies and their
 862 cooperation.
 863

864 5 THREE NEW LEARNING METHOD EXAMPLES

865 In addition to the representative methods mentioned in the previous section, there are also other numerous typical
 866 methods such as Robust nonrigid ICP (RNICP) [29], D2L [51], DAC [73], Deep self-learning (DSL) [26], LDAM [4],
 867 MRFL [94], Robust regression (RR) [69], MAT [56], MSLC [83], PD-UA [47], AKD [8], Mixup [92], MetaMixup [54],
 868 MetaDistil [95], ZLA [7], Adaptive Face loss (AFL) [48], Robust LASSO (RLASSO) [60], Bootstrapping loss [62], online
 869 label smoothing (OLS) [91], AutoBalance [43], PolyLoss [40], DEFENSE_GEN [59], v -SVM [64], and RLR [17] can also be
 870 explained with perturbation learning. For example, Wang et al. [75] formulated the adversarial attack in object detection
 871 as a p -norm optimization problem, which can be seen as a regularization-based perturbation (called RegPert for brevity).
 872 Table 1 shows the coordinates of these methods according to our constructed taxonomy. The perturbation direction
 873 is not presented due to space limitation. The arrangement of numerous typical machine learning methods leveraging
 874 a general learning with perturbation taxonomy facilitates better understanding these methods and enlightens new
 875 inspirations for the design of more effective methods.
 876

Table 1. The coordinates of several typical methods according to our constructed taxonomy.

Target	Prior knowledge			Hyper-parameter tuning			Regularization			Meta learning			Adversarial learning				
	Sample	Category	Corpus	Sample	Category	Corpus	Sample	Category	Corpus	Sample	Category	Corpus	Sample	Category	Corpus		
Feature	Mixup [92]						RC [18], RegPert [75], RR [69], RNCP [29], DEFENSE_GEN [59]	MRFL [94]	PD-UA [47]	MetaMixUp [54]				MAT [56]	AT [53]	C-UAT [3]	UAT [65]
Logit	ZLA [7]	ISDA [79], LDAM [4]	LA [55]		Areface [48]		AFL [48]			MetaSAug [44], Balanced loss [76], Meta LA		AutoBalance [43]					
Label	LS [71], Bootstrapping loss [62], D2L [51], Mixup [92]	OLS [91]					RRLR [17], RLASSO [60]			MetaMixUp [54], MSLC [83]			ALS [21]				
Loss	KD [28], DSL [26], DAC [73], PolyLoss [40]				v-SVM [64]	SVM [9]				MetaDistil [95]			AKD [8]				

The empty lattices of Table 1 inspire us to explore new learning with perturbation methods¹⁰. In addition, our theoretical analysis shows that the combination of positive and negative augmentation has theoretical merits. To this end, this section shows three examples¹¹. The first is the lattice for intersection of logit, sample, and regularization. The second is the mixed positive and negative perturbation. The third is the meta-learning version of the second one.

5.1 Sample-level Logit Perturbation

According to Table 1, sample-level logit perturbation receives litter attention in previous literature¹². An example is given to explain how logit perturbation works. Assume that the inferred logit vector of a noisy sample x_i and its (noisy) label y_i are as follows:

$$\begin{aligned} u_i &= [3.0, 0.8, 0.2]^T \\ y_i &= [0, 1, 0]^T. \end{aligned} \quad (51)$$

The cross-entropy loss incurred by this training sample is $-\log[e^{0.8}/(e^{3.0} + e^{0.8} + e^{0.2})] = 2.36$. This loss negatively affects training because y_i is noisy. To reduce the negative influence, if a perturbation vector (e.g., $[-1, 2, 0]^T$) is added, then the new logit vector becomes $[2.0, 2.8, 0.2]^T$. Consequently, the new loss of x_i is $-\log[e^{2.8}/(e^{2.0} + e^{2.8} + e^{0.2})] = 0.42$, which is much lower than 2.36¹³. The negative influence of this noisy sample will be reduced significantly.

In actual learning tasks, samples with noisy labels are inevitable in the corresponding training corpora. However, which samples are truly noisy is unknown during training. Motivated by robust clustering (RC) [18] and robust LASSO [60], a regularized logit perturbation learning method is proposed with the following new loss:

$$\mathcal{L} = \sum_i l(\mathbb{S}(u_i + v_i), y_i) + \lambda \text{Reg}(v_i), \quad (52)$$

where v_i is the logit perturbation vector for the i -th training sample and λ is a hyper-parameter. v_i is trainable during training. According to our taxonomy for learning with perturbation, the perturbation target, direction, inference manner, and granularity are logit, positive, regularization, and sample level, respectively, for the new loss. Naturally, extensions such as category-level logit perturbation and meta logit perturbation can be generated based on the proposed algorithm. We leave these new extensions as our future work.

When l_1 -norm is used, the training loss becomes

$$\mathcal{L} = \sum_i l(\mathbb{S}(u_i + v_i), y_i) + \lambda \|v_i\|_1. \quad (53)$$

¹⁰It is worth noting that the empty lattices of Table 1 by no means indicate that there are no corresponding methods for each empty lattice in previous literature, as some studies may be not covered in our literature summary

¹¹A family of new learning algorithms can be obtained by plugging the perturbation learning into existing learning algorithms with our constructed taxonomy by introducing the idea of perturbation learning into existing algorithms.

¹²The ZLA method in Table 1 is designed particularly for zero-shot learning.

¹³Indeed, the gradient norm for the new logit vector is also much smaller than that for the original vector.

Following self-paced learning [37], the alternative convex search (ACS) [1], which alternately optimizes the network and v , is used. We found that ACS obtained more stable results in our experiments. Let $\tilde{\mathbf{w}}$ be the model parameters in the current training epoch. v_i is achieved with the following optimization problem:

$$v_i^* = \arg \min_{v_i} l(\mathbb{S}(u_i + v_i), y_i : \tilde{\mathbf{w}}) + \lambda ||v_i||_1 \quad (54)$$

Then, the model parameters are updated with the following optimization problem:

$$\mathbf{w}^* = \arg \min_{\mathbf{w}} l(\mathbb{S}(u_i + v_i^*), y_i : \mathbf{w}) \quad (55)$$

Ideally, if neither noisy nor quite hard samples exist, then λ will be set to a large value. Consequently, v_i will approach to zero for all training samples. This method is called *LogPert* for brevity. The detailed steps are described in Algorithm 1.

Algorithm 1 LogPert

Input: Training set $S = \{x_i, y_i\}$, $i = 1, \dots, N$; hyper-parameters λ ; #Epoch; #Batch; and learning rate.

Output: Model $f(x, \mathbf{w})$.

- 1: **Initialization:** $v = \mathbf{0}$ for each training sample, \mathbf{w} as $\mathbf{w}^{(0)}$;
- 2: **repeat**
- 3: $t = 1, \dots, \text{#Epoch}$
- 4: $k = 1, \dots, \text{#Batch}$
- 5: Generate mini-batch D_k from S ;
- 6: Pursue v_i for each sample in D_k by solving (54);
- 7: Update \mathbf{w} by solving (55) using SGD;
- 8: **until** stable accuracy in the validation set.

5.2 Mixed Positive and Negative Perturbation

We observed that large perturbations (i.e., v_i) concentrate in samples with large losses during the running of LogPert in the experiments. Intuitively, we can only perturb the logit vectors of samples with large losses as the positive perturbations on samples with small losses are useless or even harmful. Let $l_i = l(\mathbb{S}(u_i), y_i)$. Motivated by adversarial training, (53) is modified into the following form

$$\mathcal{L} = \sum_{i: l_i \geq \tau} \min_{\|v_i\| \leq \epsilon} l(\mathbb{S}(u_i + v_i), y_i) + \sum_{i: l_i < \tau} l_i, \quad (56)$$

where ϵ is the perturbation bound and τ is the loss threshold. Compared with (53), (56) has one more hyper-parameter. Nevertheless, (56) is more flexible than (53). The results on image classification show that (56) is better than (53) if appropriate τ and ϵ are used. The discussion part will show that the classical self-paced learning manner [37] can be implemented by (56) with an increasing value of τ .

The proposed LogPert method relies on the positive perturbation to reduce the negative influence of samples which are noisy or quite hard. In our taxonomy, there is another perturbation direction, namely, negative perturbation which increases the losses of training samples. Typical negative perturbation methods such as adversarial training are considered as a useful technique, namely, data augmentation in previous studies. Our theoretical analysis in Section 4.3.2

reveals that the cooperation of positive and negative perturbations may yield better results, so mixed positive (to reduce the influence of noisy samples) and negative (to augment clean samples) perturbations are considered. Fig. 4 illuminates the influence of our proposed mixed positive and negative perturbation on training data.

On the basis of (56), a mixed perturbation is subsequently obtained with the following loss:

$$\mathcal{L} = \sum_{i: l_i \geq \tau} \min_{\|v_i\| \leq \epsilon_1} l(\mathbb{S}(u_i + v_i), y_i) + \sum_{i: l_i < \tau} \max_{\|\delta_i\| \leq \epsilon_2} l(\mathbb{S}(f(x_i + \delta_i)), y_i). \quad (57)$$

The main difference between (57) and the adversarial training loss [53] is that the losses of quite hard (including noisy) samples are not increased any more in (57). Instead, the losses of these samples are reduced as in (57). When $\tau > \max_i \{l_i\}$, only the maximization part exists and the whole loss becomes the adversarial training loss; when $\epsilon_2 = 0$, (57) is reduced to (56).

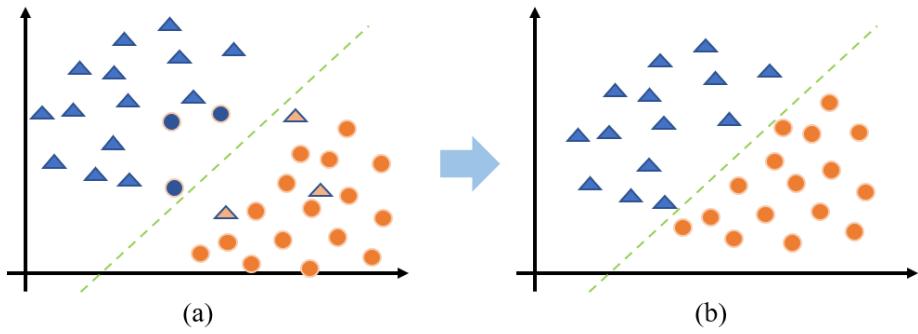


Fig. 4. An illustration of the effects of mixed positive and negative perturbation. The raw training data is shown in (a). The positive perturbation implicitly deletes the six noisy-label samples; while the negative perturbation implicitly pushes the normal training data toward the decision boundary. The perturbed training data, which can be viewed as augmented samples, is shown in (b).

Algorithm 2 MixPert

Input: Training set $S = \{x_i, y_i\}$, $i = 1, \dots, N$; #Epoch; #Batch; learning rate; ϵ_1 ; ϵ_2 ; and τ .

Output: Model $f(x, \mathbf{w})$.

```

1: Initialization:  $\mathbf{w}$  as  $\mathbf{w}^{(0)}$ ;
2: repeat
3:    $t = 1, \dots, \text{#Epoch}$ 
4:    $k = 1, \dots, \text{#Batch}$ 
5:   Generate mini-batch  $D_k$  from  $S$ ;
6:   Infer  $v_i$  according to Eq. (59) for samples with a lower loss than  $\tau$ ;
7:   Infer  $\delta_i$  for the rest samples according to PGD optimization;
8:   Calculate loss based on Eq. (57);
9:   Update  $\mathbf{w}$  using SGD;
10:  until stable accuracy in the validation set.

```

The minimization part in both (56) and (57) can be solved with an optimization approach similar to PGD [53]. This method is called *MixPert* for brevity. The PGD-like optimization for the minimization part in (62) is as follows. First,

1041 we have

$$1042 \frac{\partial l(\mathbb{S}(u_i + v_i), y_i)}{\partial v_i} \Big|_{v_i=0} = \mathbb{S}(u_i) - \hat{y}_i, \quad (58)$$

1043 where \hat{y}_i is the one-hot vector of y_i . Therefore, v_i can be calculated by

$$1045 \quad v_i = \eta(\hat{y}_i - \mathbb{S}(u_i)), \quad (59)$$

1047 where η is a hyper-parameter. Accordingly, the updating of u_i is

$$1049 \quad u'_i = u_i + \eta(\hat{y}_i - \mathbb{S}(u_i)). \quad (60)$$

1051 In our implementation, only one updating step is used. Consequently, if ∞ -norm is used, then we have

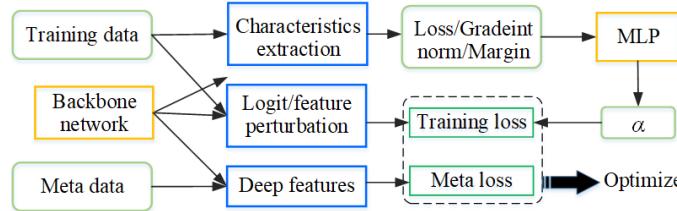
$$1053 \quad |v_i| = |\eta(\mathbb{S}(u_i) - \hat{y}_i)| \leq |\eta|(|\mathbb{S}(u_i) - \hat{y}_i|) \leq \eta. \quad (61)$$

1054 Therefore, we use η to control the bound (i.e., ϵ_1) of v_i . The detailed steps of MixPert are described in Algorithm 2.

1055 Eq. (57) determines which direction of perturbation is performed for a training sample solely based on the loss in
 1056 the current epoch. As introduced in Section 4.6, training loss is a typical quantity for training characteristics. If an
 1057 independent dataset is available, meta-learning can be employed to automatically determine the positive or negative
 1058 direction based on more training characteristics. Let α_i ($\in \{0, 1\}$) be a binary variable to denote the choice of positive
 1059 or negative perturbation for a sample x_i . The loss in Eq. (57) becomes

$$1062 \quad \mathcal{L} = \sum_i \alpha_i \min_{\|v_i\| \leq \epsilon_1} l(\mathbb{S}(u_i + v_i), y_i) + (1 - \alpha_i) \max_{\|\delta_i\| \leq \epsilon_2} l(\mathbb{S}(f(x_i + \delta_i)), y_i), \quad \alpha_i \in \{0, 1\}. \quad (62)$$

1063 If $\alpha_i = 1$ ($l_i \geq \tau$), then (62) becomes (57). Here we employ three widely used training characteristics including training
 1064 loss, gradient norm, and functional margin to infer the value of α_i via meta-learning. Following Meta-Weight-Net [68],
 1065 we employ a multi-layer perceptron (MLP) with 100 hidden nodes, taking the three training characteristics as input.
 1066 The output is α_i , which is transformed into a real number through a Sigmoid function. Similar optimization steps
 1067 with those of Meta-Weight-Net used in [68] are leveraged. This method is called Meta-MixPert. The main pipeline of
 1068 Meta-MixPert is shown in Fig. (5).



1075 Fig. 5. The main pipeline of the proposed Meta-MixPert.
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087

6 EXPERIMENTS

1089 This section evaluates our methods (LogPert, MixPert, and Meta-MixPert) in image classification and text sentiment
 1090 analysis, and experiments when the datasets have noises are also considered.
 1091

1093 6.1 Competing Methods

1094 As our proposed methods belong to the end-to-end noise-aware solution, the following methods are compared: soft/hard
 1095 Bootstrapping [62], label smoothing (LS) [71], online label smoothing (OLS) [91], progressive self label correction (Pro-
 1096 SelfLC) [77], PGD-based adversarial training (PGD-AT) [53], Self-Distillation from Last Mini-Batch (DLB) [67], and
 1097 Margin-based Label Smoothing (MbLS) [46].
 1098

1099 The parameter settings are detailed in the corresponding subsections. All the results are the average values of three
 1100 repeated runs.
 1101

1102 6.2 Image Classification

1103 Four benchmark image classification datasets, namely, CIFAR-10, CIFAR-100 [36], ImageNet [13], and Clothing-1M [84]
 1104 are used. To simulate the noisy-label learning scenario, label noise should be added in the training data ¹⁴. The synthetic
 1105 label noises are simulated on the basis of the two common schemes used in [23, 25, 34]. The first is the random scheme
 1106 in which each training sample is assigned to a uniform random label with a probability p . The second is the pair scheme
 1107 in which each training sample is assigned to the category next to its true category on the basis of the category list with
 1108 a probability p . The value of p is set to 10%, 20%, and 30%.
 1109

1110 6.2.1 *Experiments on CIFAR-10.* CIFAR-10 consists of 50k training images and 10k test images in 10 classes. Resnet-
 1111 20, ResNet-32, ResNet-44, ResNet-56, and ResNet-110 [27] are used as base neural networks to evaluate our proposed
 1112 LogPert and MixPert on the dataset.
 1113

1114 For all the neural networks, the #epochs are set to 300 and batch size is set to 128. SGD is used as the optimizer. The
 1115 initial learning rate is set to 0.1 and decayed by a factor of 0.1 at the 150th and 225th epochs. In LogPert, λ is searched
 1116 in {0.175, 0.35} and the learning rate for the perturbation variable is searched in {1.5, 3, 6, 12}. In MixPert, ϵ_1 (*i.e.*, η)
 1117 is searched in {0.5, 1, 2, 4}, and ϵ_2 is searched in {0, 8/255, 10/255, 12/255}. τ is determined according to the top-*pro*
 1118 percent of ordered losses, and the value of *pro* is searched in {0, 15, 25, 35, 45, 50}. In PGD-AT, ϵ_2 is searched in {8/255,
 1119 10/255, 12/255}. For other competing methods, namely, soft/hard Bootstrapping, LS, OLS, DLB, and MbLS, we follow
 1120 the parameter settings in their original papers.
 1121

1122 The results are shown in Table 2 when ResNet-20 is used as the base neural network. For 0% noise, our proposed
 1123 method LogPert achieves the highest accuracy, and for other noises, our proposed method MixPert achieves the best
 1124 performance. The results of MixPert are obtained when ϵ_2 equals to 0, indicating that only positive perturbation is useful
 1125 for the (clean) accuracy. Indeed, both the hyper-parameters ϵ_2 and τ balance the trade-off between the positive and
 1126 negative perturbations. Comparisons on other base networks, namely, ResNet-32, ResNet-44, ResNet-56, and ResNet-
 1127 110, are also conducted. Tables 3 and 4 present the classification accuracies of the competing methods with the above
 1128 four base networks on partial noisy rates. Our proposed method MixPert achieves the best results.
 1129

1130 When LogPert is used, some original labels with high average perturbation terms are found to be erroneous. Fig. 6
 1131 shows two samples from CIFAR-10. Their labels seem wrong.
 1132

1133 In addition, we plot the distribution of l_1 -norm of perturbed logit vectors when using LogPert on CIFAR-10 dataset
 1134 without label noises (0%). The results are shown in Fig. 7. The distribution curve shows a long-tail trend, which is quite
 1135 reasonable.
 1136

1137 To verify the performance of the Meta-MixPert algorithm we proposed and to ensure fair evaluation, the settings
 1138 in [74, 81] are followed. We randomly select 1000 images in training set as the small clean validation set for CIFAR-10.
 1139

1140 ¹⁴If label noises are added into the training data, then performance will drop seriously for conventional learning methods. Accordingly, noisy-label
 1141 learning methods are designed to reduce the serious performance drop.
 1142

Table 2. Classification accuracies (%) and standard deviations on CIFAR-10 (ResNet-20).

	0%	Random noise			Pair noise		
		10%	20%	30%	10%	20%	30%
Base (ResNet-20)	91.79±0.31	88.78±0.33	87.55±0.32	85.85±0.37	90.32±0.19	89.28±0.14	87.06±0.23
Soft Bootstrapping	91.83±0.12	89.37±0.18	87.52±0.37	85.59±0.33	90.44±0.23	89.16±0.22	87.08±0.25
Hard Bootstrapping	92.06±0.10	89.61±0.20	88.07±0.32	86.37±0.26	90.34±0.18	89.54±0.25	86.86±0.19
Label Smoothing	92.12±0.14	90.15±0.09	88.54±0.18	86.82±0.16	90.63±0.22	90.12±0.06	88.28±0.42
Online Label Smoothing	92.18±0.15	89.84±0.14	88.19±0.15	86.08±0.22	90.65±0.18	89.52±0.08	87.68±0.16
ProSelFLC	91.80±0.16	89.90±0.16	88.84±0.22	86.78±0.31	90.40±0.23	89.76±0.17	87.11±0.20
PGD-AT	89.90±0.08	87.56±0.13	86.87±0.13	84.80±0.17	88.90±0.15	88.38±0.07	86.79±0.13
DLB	91.87±0.13	89.59±0.21	87.92±0.26	85.90±0.28	90.35±0.20	89.32±0.19	87.13±0.28
MbLS	92.20±0.12	90.18±0.14	88.93±0.21	86.89±0.22	90.63±0.18	90.10±0.12	88.31±0.17
LogPert	93.04±0.07	91.07±0.05	90.42±0.13	88.86±0.16	91.74±0.10	91.29±0.07	89.95±0.11
MixPert	92.94±0.06	91.09±0.11	90.63±0.12	88.98±0.15	92.18±0.06	91.41±0.08	90.01±0.16

Table 3. Classification accuracies (%) and standard deviations on CIFAR-10 (0% noise) when using different base neural networks.

	ResNet-32	ResNet-44	ResNet-56	ResNet-110
Base	92.50±0.26	92.82±0.15	93.03±0.34	93.51±0.18
Soft Bootstrapping	92.40±0.17	92.83±0.16	93.43±0.27	94.08±0.29
Hard Bootstrapping	92.19±0.23	92.94±0.11	93.38±0.25	94.02±0.23
Label Smoothing	92.75±0.24	92.89±0.18	93.05±0.23	93.92±0.43
Online Label Smoothing	92.61±0.19	92.93±0.34	93.41±0.20	93.54±0.18
ProSelFLC	92.87±0.22	92.98±0.28	93.21±0.19	93.58±0.37
PGD-AT	90.66±0.16	91.31±0.19	91.80±0.22	91.98±0.15
DLB	92.51±0.24	92.85±0.27	93.44±0.26	94.04±0.22
MbLS	92.90±0.19	93.01±0.22	93.48±0.27	94.09±0.24
LogPert	93.71±0.10	94.07±0.07	94.39±0.15	94.91±0.11
MixPert	93.95±0.14	94.15±0.13	94.52±0.14	95.14±0.10

Table 4. Classification accuracies (%) and standard deviations on CIFAR-10 (20% pair noise) when using different base neural networks.

	ResNet-32	ResNet-44	ResNet-56	ResNet-110
Base	89.66±0.32	89.83±0.25	90.11±0.31	90.55±0.27
Soft Bootstrapping	89.79±0.28	89.98±0.24	90.17±0.25	90.59±0.30
Hard Bootstrapping	89.94±0.29	90.06±0.27	90.21±0.23	90.66±0.33
Label Smoothing	90.52±0.15	90.83±0.19	91.05±0.22	91.31±0.24
Online Label Smoothing	90.65±0.13	90.81±0.16	90.95±0.21	91.16±0.20
ProSelFLC	90.58±0.17	91.01±0.19	91.16±0.24	91.48±0.27
PGD-AT	89.07±0.12	89.37±0.15	89.94±0.17	90.41±0.22
DLB	90.01±0.26	90.19±0.25	90.38±0.19	91.01±0.19
MbLS	90.68±0.26	91.03±0.29	91.15±0.25	91.51±0.22
LogPert	91.74±0.12	92.04±0.14	92.26±0.13	92.79±0.16
MixPert	91.87±0.13	92.13±0.12	92.44±0.15	93.16±0.11

If the compared methods do not rely on the small clean validation set, both the training and the small clean validation sets are merged as training set. MbLS [46], which performed better in the aforementioned experiments, is used for comparison. ResNet-56 and ResNet-110 are used as the base neural networks. The results are shown in Table 5. When employing meta-learning strategies, our proposed MixPert shows further improvement, and Meta-MixPert achieves the best results.

Fig. 6. Samples with high average perturbation terms whose labels seem erroneous.

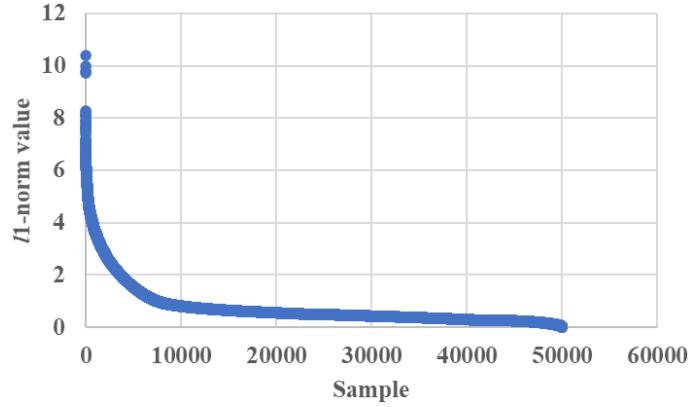
Fig. 7. Distribution of l_1 -norm of perturbed logit vectors on CIFAR-10.

Table 5. Classification accuracies (%) and standard deviations on CIFAR-10 (ResNet-56 and ResNet-110).

	ResNet-56		ResNet-110	
	0%	20% pair noise	0%	20% pair noise
Base	93.03 \pm 0.34	90.13 \pm 0.28	93.51 \pm 0.18	90.60 \pm 0.26
MbLS	93.48 \pm 0.27	91.20 \pm 0.33	94.09 \pm 0.24	91.46 \pm 0.19
MixPert	94.52 \pm 0.14	92.47 \pm 0.16	95.14 \pm 0.10	93.22 \pm 0.20
Meta-MixPert	95.19\pm0.17	93.86\pm0.11	95.83\pm0.13	94.80\pm0.18

6.2.2 *Experiments on CIFAR-100.* CIFAR-100 consists of 50k training images and 10k test images in 100 classes. ResNet-20, ResNet-32, ResNet-44, ResNet-56, and ResNet-110 are also used as base neural networks. Training details are the same as the experiments on CIFAR-10. In addition, Wide-ResNet-28-10 (WRN-28-10) [90] is also employed. We follow the same experimental setting as [79].

The experimental results on CIFAR-100 are shown in Tables 6, 7, 8, and 9. LogPert and MixPert outperform all competing methods. Compared with the base neural network ResNet20, the maximum improvement of the LogPert is 6.01%, and the minimum improvement is 1.53%. The maximum improvement of the MixPert is 7.81%, and the minimum

improvement is 1.32%. In 20% pair noise experiments, compared with ResNet-32, ResNet-44, ResNet-56, and ResNet-110, MixPert improves the accuracy by 4.68%, 6.34%, 5.98%, and 4.35%, respectively. Compared with the base neural network WRN-28-10, the maximum improvement of the LogPert is 3.72%, and the minimum improvement is 2.15%. The maximum improvement of the MixPert is 4.10%, and the minimum improvement is 2.26%. All the experimental results show that our proposed methods significantly improve the classification performance. In addition, ResNet-110 and WRN-28-10 are used as the base neural networks to evaluate our proposed Meta-MixPert method. The experimental results are shown in Tables 10. Our proposed Meta-MixPert achieves the best results.

Table 6. Classification accuracies (%) on CIFAR-100 (ResNet-20).

	0%	Random noise			Pair noise		
		10%	20%	30%	10%	20%	30%
Base (ResNet-20)	67.81 \pm 0.08	63.67 \pm 0.29	60.63 \pm 0.33	57.82 \pm 0.35	63.94 \pm 0.29	61.22 \pm 0.03	55.74 \pm 0.22
Soft Bootstrapping	68.38 \pm 0.24	64.01 \pm 0.23	60.66 \pm 0.28	57.97 \pm 0.23	64.29 \pm 0.31	60.71 \pm 0.23	56.27 \pm 0.26
Hard Bootstrapping	67.62 \pm 0.29	64.28 \pm 0.33	60.32 \pm 0.22	58.09 \pm 0.19	63.96 \pm 0.26	60.69 \pm 0.29	56.18 \pm 0.17
Label Smoothing	67.54 \pm 0.10	65.04 \pm 0.18	61.84 \pm 0.27	59.06 \pm 0.08	65.43 \pm 0.24	62.71 \pm 0.24	58.92 \pm 0.19
Online Label Smoothing	67.80 \pm 0.19	64.55 \pm 0.15	61.53 \pm 0.22	59.19 \pm 0.13	64.70 \pm 0.28	62.54 \pm 0.19	57.44 \pm 0.25
ProSelFLC	68.37 \pm 0.22	64.64 \pm 0.28	62.14 \pm 0.17	58.93 \pm 0.24	65.36 \pm 0.18	62.57 \pm 0.16	59.08 \pm 0.27
PGD-AT	64.37 \pm 0.17	60.39 \pm 0.24	57.38 \pm 0.21	54.23 \pm 0.16	60.41 \pm 0.20	58.08 \pm 0.13	54.37 \pm 0.22
DLB	68.33 \pm 0.19	64.30 \pm 0.33	61.02 \pm 0.27	58.05 \pm 0.24	64.33 \pm 0.25	61.41 \pm 0.15	57.09 \pm 0.19
MbLS	68.40 \pm 0.27	65.09 \pm 0.15	62.17 \pm 0.28	59.21 \pm 0.22	65.39 \pm 0.17	62.76 \pm 0.14	59.22 \pm 0.21
LogPert	69.34\pm0.08	65.63 \pm 0.12	62.64 \pm 0.14	59.70 \pm 0.13	66.59 \pm 0.17	64.81 \pm 0.09	61.75 \pm 0.15
MixPert	69.13 \pm 0.12	65.79\pm0.14	62.76\pm0.20	60.17\pm0.12	66.81\pm0.16	64.83\pm0.11	63.55\pm0.13

Table 7. Classification accuracies (%) and standard deviations on CIFAR-100 (0% noise) when using different base neural networks.

	ResNet-32	ResNet-44	ResNet-56	ResNet-110
Base	69.16 \pm 0.19	70.02 \pm 0.19	70.38 \pm 0.34	73.18 \pm 0.12
Soft Bootstrapping	69.76 \pm 0.25	70.76 \pm 0.34	71.01 \pm 0.40	74.19 \pm 0.24
Hard Bootstrapping	69.37 \pm 0.24	70.06 \pm 0.29	70.26 \pm 0.31	73.35 \pm 0.18
Label Smoothing	69.91 \pm 0.27	70.52 \pm 0.51	71.49 \pm 0.29	74.01 \pm 0.44
Online Label Smoothing	69.53 \pm 0.22	70.05 \pm 0.79	71.06 \pm 0.26	73.59 \pm 0.19
ProSelFLC	69.54 \pm 0.29	70.39 \pm 0.35	70.49 \pm 0.32	73.42 \pm 0.24
PGD-AT	65.94 \pm 0.18	66.55 \pm 0.26	67.58 \pm 0.29	70.83 \pm 0.17
DLB	69.74 \pm 0.27	70.44 \pm 0.32	70.79 \pm 0.35	73.87 \pm 0.18
MbLS	69.93 \pm 0.26	70.59 \pm 0.31	71.50 \pm 0.25	74.19 \pm 0.23
LogPert	71.55 \pm 0.16	72.01 \pm 0.15	72.79 \pm 0.23	75.72 \pm 0.13
MixPert	71.68\pm0.14	72.18\pm0.19	72.93\pm0.24	75.80\pm0.14

6.2.3 *Experiments on ImageNet*. LogPert, MixPert, and Meta-MixPert are also evaluated on a large-scale dataset ImageNet which consists of 1.2M training images and 50K validation images in 1K categories. Resnet-50 and ResNet-101 [27] are used as base neural networks.

We train all the neural networks for 250 epochs using a batch size of 256. SGD is used as the optimizer. The initial learning rate is 0.1 and decayed by a factor of 0.1 at the 75th, 150th, and 225th epochs. The parameter settings are the same as the settings on CIFAR-10.

Top-1 and top-5 errors are used to assess the classification performance. The experimental results are shown in Tables 11, 12 and 13. MixPert and LogPert still achieve the best and the second-best performance, respectively. The meta-learning strategies further improve the performance of the MixPert. Experiments on ImageNet still demonstrate the effectiveness of our methods LogPert, MixPert and Meta-MixPert.

1301 Table 8. Classification accuracies (%) and standard deviations on CIFAR-100 (20% pair noise) when using different base neural net-
 1302 works.

		ResNet-32	ResNet-44	ResNet-56	ResNet-110
1304	Base	62.46 \pm 0.54	62.73 \pm 0.64	63.37 \pm 0.22	67.51 \pm 0.19
1305	Soft Bootstrapping	63.09 \pm 0.33	63.69 \pm 0.39	64.06 \pm 0.28	67.87 \pm 0.26
1306	Hard Bootstrapping	63.03 \pm 0.41	63.57 \pm 0.32	63.99 \pm 0.34	67.40 \pm 0.23
1307	Label Smoothing	64.45 \pm 0.28	65.72 \pm 0.27	66.50 \pm 0.74	69.43 \pm 0.36
1308	Online Label Smoothing	63.94 \pm 0.66	65.18 \pm 0.70	65.45 \pm 0.52	68.38 \pm 0.34
1309	ProSelfLC	64.04 \pm 0.37	65.04 \pm 0.44	65.48 \pm 0.46	68.86 \pm 0.26
1310	PGD-AT	60.13 \pm 0.31	60.58 \pm 0.28	60.96 \pm 0.29	65.62 \pm 0.20
1311	DLB	63.11 \pm 0.37	64.01 \pm 0.33	64.26 \pm 0.45	68.13 \pm 0.35
1312	MbLS	64.55 \pm 0.24	65.74 \pm 0.29	66.61 \pm 0.37	69.39 \pm 0.26
1313	LogPert	66.67 \pm 0.25	67.16 \pm 0.24	68.69 \pm 0.23	71.83 \pm 0.19
1314	MixPert	67.14\pm0.23	69.07\pm0.26	69.35\pm0.20	71.86\pm0.18

1316 Table 9. Classification accuracies (%) and standard deviations on CIFAR-100 (WRN-28-10).

		Random noise				Pair noise		
		0%	10%	20%	30%	10%	20%	30%
1320	Base (WRN-28-10)	81.53 \pm 0.09	78.51 \pm 0.18	75.84 \pm 0.23	72.95 \pm 0.31	78.92 \pm 0.16	76.37 \pm 0.25	72.31 \pm 0.29
1321	Soft Bootstrapping	81.74 \pm 0.26	78.73 \pm 0.33	75.92 \pm 0.29	72.98 \pm 0.29	78.98 \pm 0.22	76.41 \pm 0.33	72.74 \pm 0.27
1322	Hard Bootstrapping	81.86 \pm 0.34	78.90 \pm 0.29	75.89 \pm 0.32	73.06 \pm 0.28	78.95 \pm 0.18	76.44 \pm 0.25	72.65 \pm 0.24
1323	Label Smoothing	82.07 \pm 0.16	79.03 \pm 0.24	76.77 \pm 0.27	73.54 \pm 0.19	79.34 \pm 0.17	76.82 \pm 0.28	73.11 \pm 0.35
1324	Online Label Smoothing	82.02 \pm 0.23	78.97 \pm 0.19	76.79 \pm 0.22	73.62 \pm 0.21	79.18 \pm 0.24	76.79 \pm 0.33	73.02 \pm 0.31
1325	ProSelfLC	81.95 \pm 0.14	79.12 \pm 0.21	76.81 \pm 0.17	73.31 \pm 0.15	79.52 \pm 0.26	76.79 \pm 0.34	73.27 \pm 0.28
1326	PGD-AT	79.42 \pm 0.12	76.23 \pm 0.19	73.48 \pm 0.24	70.48 \pm 0.17	76.51 \pm 0.25	74.25 \pm 0.20	70.52 \pm 0.24
1327	DLB	82.05 \pm 0.25	79.01 \pm 0.27	76.54 \pm 0.28	73.29 \pm 0.22	79.11 \pm 0.21	76.67 \pm 0.31	72.86 \pm 0.27
1328	MbLS	82.24 \pm 0.23	79.59 \pm 0.24	76.93 \pm 0.25	73.77 \pm 0.27	79.63 \pm 0.17	77.41 \pm 0.29	73.49 \pm 0.23
1329	LogPert	83.32 \pm 0.10	81.05 \pm 0.22	78.01 \pm 0.19	75.11 \pm 0.24	81.07 \pm 0.15	79.20 \pm 0.26	76.03 \pm 0.20
1330	MixPert	83.39\pm0.07	81.14\pm0.15	78.10\pm0.26	75.27\pm0.21	81.29\pm0.11	79.25\pm0.27	76.41\pm0.18

1331 Table 10. Classification accuracies (%) and standard deviations on CIFAR-100 (ResNet-110 and WRN-28-10).

		ResNet-110		WRN-28-10	
		0%	20% pair noise	0%	20% pair noise
1334	Base	73.18 \pm 0.12	67.47 \pm 0.22	81.53 \pm 0.09	76.41 \pm 0.24
1335	MbLS	74.19 \pm 0.23	69.42 \pm 0.21	82.24 \pm 0.23	77.38 \pm 0.27
1336	MixPert	75.80 \pm 0.14	71.88 \pm 0.16	83.39 \pm 0.07	79.30 \pm 0.29
1337	Meta-MixPert	76.55\pm0.15	73.27\pm0.13	83.97\pm0.12	80.42\pm0.25

1338 6.2.4 *Experiments on Clothing 1M.* The experiments are also conducted on Clothing 1M, which is a real-world noisy dataset. The Clothing 1M dataset consists of 1M images with noisy labels and additional 50k, 14k, 10k of clean data for training, validation and testing, respectively.

1339 To evaluate LogPert and MixPert, we follow the same experimental settings as previous studies [42, 72]. The ResNet-
 1340 50 pre-trained on ImageNet is used as the base neural network. We use SGD with a momentum of 0.9 and a weight decay
 1341 of 10^{-3} . The batch size is set to 32. For LogPert, MixPert, and other competing methods, the parameter settings are the
 1342 same as the settings in 6.2.1. The results are shown in Table 14. The proposed MixPert achieves the best results, and
 1343 LogPert achieves the second-best results. Compared with the base neural network, the MixPert and LogPert improved
 1344 by 5.70% and 5.46%, respectively. To evaluate Meta-MixPert, the settings in [81] are followed. The results shown in
 1345 Table 15 demonstrate meta-learning strategies further improve the performance of the MixPert method.

Table 11. Top-1 and Top-5 Errors (%) on ImageNet (0% noise). * denotes the results reported in online label smoothing [91].

	Top-1 Error(%)	Top-5 Error(%)
Base (ResNet-50)	23.68*	7.05*
Soft Bootstrapping	23.49*	6.85*
Hard Bootstrapping	23.85*	7.07*
Label Smoothing	22.82*	6.66*
Online Label Smoothing	22.28*	6.39*
ProSelfLC	23.15	6.74
PGD-AT	24.93	7.33
DLB	23.42	6.79
MbLS	22.26	6.36
LogPert	21.82	6.13
MixPert	21.79	6.10

Table 12. Top-1 and Top-5 Errors (%) on ImageNet (0% noise).* denotes the results reported in online label smoothing [91].

	Top-1 Error(%)	Top-5 Error(%)
Base (ResNet-101)	21.87*	6.29*
Soft Bootstrapping	21.61	6.18
Hard Bootstrapping	21.92	6.30
Label Smoothing	21.27*	5.85*
Online Label Smoothing	20.85*	5.50*
ProSelfLC	21.43	5.97
PGD-AT	22.92	6.53
DLB	21.59	6.15
MbLS	20.83	5.46
LogPert	20.48	5.35
MixPert	20.43	5.31

Table 13. Top-1 and Top-5 Errors (%) on ImageNet.

	ResNet-50		ResNet-101	
	Top-1 Error(%)	Top-5 Error(%)	Top-1 Error(%)	Top-5 Error(%)
Base	23.68	7.05	21.87	6.29
MbLS	22.26	6.36	20.83	5.46
MixPert	21.79	6.10	20.43	5.31
Meta-MixPert	21.42	5.89	20.02	5.14

6.3 Text Sentiment Analysis

A benchmark dataset is used, namely, IMDB [52]. It is a large internet movie dataset for binary classification tasks with 50k labeled reviews. The proportion of training, validation, and test data we used is 4:1:5. Two types of label noises are added. In the first type (symmetric), the labels of the former 5%, 10%, and 20% (according to their indexes in the corpus) training samples are flipped to simulate the label noises; in the second type (asymmetric), the labels of the former 5%, 10%, and 20% (according to their indexes in the corpus) positive samples are flipped to negative.

BiLSTM with attention and BERT-Base are used as base models. For BiLSTM with attention, the 300-D Glove [94] embedding is used; the embedding dropout and the dimension of hidden vectors are set to 0.5 and 100, respectively. The learning rates for BiLSTM with attention and BERT-Base are set to 1e-3 and 2e-5, respectively. For both models, the batch size is set to 64 and the #epochs is set to 6. AdamW is used as the optimizer. In LogPert, the learning rate for the perturbation variable is searched in {0.75, 0.8, 0.85}, and the λ is searched in {0.75, 1}. In MixPert, ϵ_1 (i.e., η)

Table 14. Classification accuracies (%) on Clothing 1M.

	Accuracy
Base(ResNet-50)	69.19
Soft Bootstrapping	70.26
Hard Bootstrapping	70.77
Label Smoothing	71.81
Online Label Smoothing	71.79
ProSelfLC	71.80
PGD-AT	68.02
DLB	71.76
MbLS	72.14
LogPert	74.65
MixPert	74.89

Table 15. Classification accuracies (%) on Clothing 1M.

	Accuracy
Base(ResNet-50)	69.31
MbLS	72.32
MixPert	74.92
Meta-MixPert	75.41

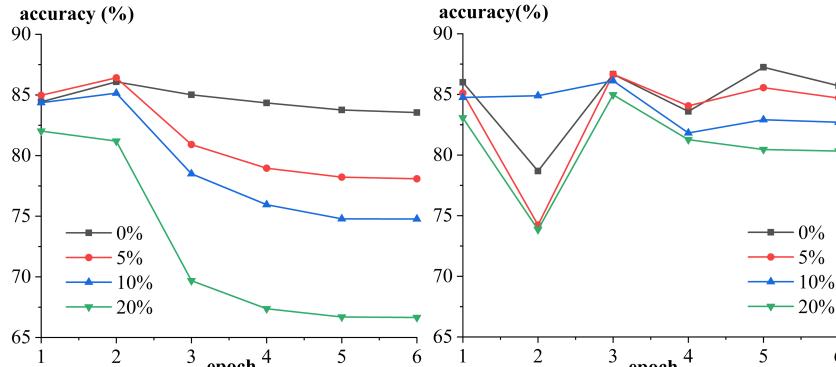
is searched in $\{0, 0.05, 0.1, 0.15\}$, and ϵ_2 is searched in $\{0, 0.005, 0.01, 0.02\}$. τ is determined by the top-*pro* percent of ordered losses, and the value of *pro* is searched in $\{0, 5, 15, 30, 60\}$. In PGD-AT, ϵ_2 is searched in $\{0.005, 0.01, 0.02\}$. For other competing methods, namely, soft/hard Bootstrapping, LS, OLS, DLB, and MbLS, we follow the parameter settings in the original papers.

Table 16. Classification accuracies (%) on IMDB.

	0%	Symmetric noise			Asymmetric noise		
		5%	10%	20%	5%	10%	20%
Base (BiLSTM+attention)	84.39 \pm 0.34	83.04 \pm 0.17	81.90 \pm 0.61	78.13 \pm 0.13	82.35 \pm 0.88	79.53 \pm 2.68	73.74 \pm 1.14
Soft Bootstrapping	84.79 \pm 0.87	83.87 \pm 0.13	81.11 \pm 0.62	79.60 \pm 1.78	83.36 \pm 1.11	80.70 \pm 2.19	73.52 \pm 2.65
Hard Bootstrapping	84.44 \pm 0.93	84.10 \pm 0.54	83.01 \pm 0.70	80.84 \pm 1.07	82.48 \pm 1.72	81.42 \pm 1.55	75.26 \pm 1.02
Label Smoothing	84.62 \pm 0.18	83.14 \pm 0.24	82.41 \pm 0.51	80.73 \pm 0.20	82.75 \pm 0.29	82.28 \pm 0.33	74.70 \pm 0.48
Online Label Smoothing	84.83 \pm 0.51	84.14 \pm 0.37	82.09 \pm 0.54	80.91 \pm 1.17	83.78 \pm 0.77	81.35 \pm 0.92	73.75 \pm 1.38
ProSelfLC	84.79 \pm 0.39	83.21 \pm 0.44	82.17 \pm 0.47	80.42 \pm 0.41	83.22 \pm 0.91	81.58 \pm 0.85	74.96 \pm 3.01
PGD-AT	85.82 \pm 0.10	84.12 \pm 0.37	83.53 \pm 0.44	81.48 \pm 0.18	82.41 \pm 0.98	80.75 \pm 0.73	73.85 \pm 2.33
DLB	84.77 \pm 0.41	83.95 \pm 0.22	83.16 \pm 0.59	80.87 \pm 0.67	83.39 \pm 0.81	81.37 \pm 0.76	75.01 \pm 1.12
MbLS	84.85 \pm 0.26	84.06 \pm 0.17	83.45 \pm 0.31	81.49 \pm 0.46	83.81 \pm 0.29	81.87 \pm 0.33	75.29 \pm 1.09
LogPert	85.91 \pm 0.11	84.57 \pm 0.15	83.81 \pm 0.24	81.75 \pm 0.18	84.64 \pm 0.29	82.43 \pm 0.31	77.16 \pm 0.28
MixPert	85.96\pm0.07	85.21\pm0.12	84.45\pm0.21	82.74\pm0.15	85.37\pm0.22	83.24\pm0.23	77.83\pm0.25

The results of the competing methods on the IMDB for the symmetric and asymmetric label noises are shown in Table 16, when BiLSTM with attention [20] is used as the base network. Our proposed method, MixPert, achieves the overall best results. When no added label noises are present (0%), MixPert and LogPert still outperform the base model BiLSTM with attention by 1.57% and 1.52%, respectively.

1457 On IMDB, the base model is usually converged in the second epoch. However, LogPert is usually converged in the
 1458 third or the fifth epoch. The validation accuracies of the six epochs for the base model and our LogPert are shown in
 1459 Fig. 8. LogPert can decelerate the convergence speed leading that the training data can be more fully trained.
 1460



1474 Fig. 8. The validation accuracies in the six epochs under different proportions of random noises on IMDB when using Base (left) and
 1475 LogPert (right), respectively.

1477 When LogPert is used, some original labels with high average perturbation terms are found to be erroneous. For
 1478 example, the sentence *“this is a great movie. I love the series on tv and so I loved the movie. One of the best things in the*
 1479 *movie is that Helga finally admits her deepest darkest secret to Arnold!!! that was great. i loved it it was pretty funny too.*
 1480 *It’s a great movie! Doy!!!”* is labeled as negative in the original set.

1481 When BERT-Base [15] is used as the base model, we conduct experiments on the IMDB dataset with 0% noise, 10%
 1482 symmetric noise, and 10% asymmetric noise. The experimental results are shown in Table 17. Our proposed method,
 1483 MixPert, still achieves the overall best results. LogPert achieves the second-best results.

1487 Table 17. Classification accuracies (%) on IMDB with BERT.

	0% noise	10% symmetric noise	10% asymmetric noise
Base (BERT)	90.61 \pm 0.04	89.26 \pm 0.20	89.04 \pm 0.37
Soft Bootstrapping	90.72 \pm 0.13	89.47 \pm 0.27	89.28 \pm 0.39
Hard Bootstrapping	90.70 \pm 0.09	89.38 \pm 0.29	89.26 \pm 0.40
Label Smoothing	90.89 \pm 0.11	89.61 \pm 0.17	89.35 \pm 0.21
Online Label Smoothing	90.95 \pm 0.07	89.59 \pm 0.22	89.42 \pm 0.27
ProSelfLC	90.90 \pm 0.08	89.54 \pm 0.19	89.37 \pm 0.18
PGD-AT	91.51 \pm 0.06	89.34 \pm 0.15	89.30 \pm 0.20
DLB	90.77 \pm 0.10	89.49 \pm 0.24	89.32 \pm 0.29
MbLS	91.13 \pm 0.09	89.81 \pm 0.22	89.68 \pm 0.24
LogPert	91.69 \pm 0.05	90.53 \pm 0.14	90.38 \pm 0.18
MixPert	91.83\pm0.04	90.59\pm0.11	90.50\pm0.16

1501 6.4 Ablation Study

1503 6.4.1 *Ablation Study for MixPert.* An ablation study is conducted for MixPert on CIFAR-10 (random noises) as MixPert
 1504 involves both positive and negative perturbations. The results in Table 18 indicate that negative perturbation (i.e.,
 1505 adversarial training) does not improve the performance yet the positive perturbation achieves the best performance.
 1506 Table 19 lists the clean and adversarial accuracies of MixPert under different values of ϵ_2 on the CIFAR-10 (10% random
 1507

1509 noises). The increase of ϵ_2 improves the adversarial accuracies yet reduces the clean accuracies. Although negative
 1510 perturbation in MixPert does not improve the clean accuracies, it benefits the adversarial accuracies.
 1511

1512 Table 18. An ablation study of MixPert on CIFAR-10 (%).
 1513

Random noise	0%	10%	20%	30%
Baseline (ResNet-20)	91.79±0.31	88.78±0.33	87.55±0.32	85.85±0.37
Only pos. pert. ($\epsilon_2 = 0$)	92.94±0.06	91.09±0.11	90.63±0.12	88.98±0.15
Only neg. pert. ($\epsilon_1 = 0$)	91.66±0.12	88.69±0.22	87.33±0.10	85.71±0.31
Both directions	92.02±0.15	90.11±0.27	89.75±0.17	88.17±0.16

1519 Table 19. Performance variations under different values of ϵ_2 .
 1520

	0	2/255	4/255	6/255	8/255
Clean accuracy(%)	91.09±0.11	90.11±0.27	89.77±0.18	88.67±0.15	88.30±0.19
Adversarial accuracy(%)	11.57±0.36	53.38±0.31	64.95±0.24	68.20±0.16	70.25±0.14

1526 An ablation study is also conducted for MixPert on IMDB. The results are shown in Table 20. Each perturbation is
 1527 useful and their combination achieves the best performance.
 1528

1529 Table 20. An ablation study of MixPert on IMDB (%).
 1530

Symmetric noise	0%	5%	10%	20%
Baseline (BiLSTM+attention)	84.39±0.34	83.04±0.17	81.90±0.61	78.13±0.13
Only pos. pert. ($\epsilon_2 = 0$)	85.92±0.16	84.66±0.13	83.86±0.24	81.71±0.23
Only neg. pert. ($\epsilon_1 = 0$)	85.84±0.36	84.87±0.22	83.89±0.27	81.73±0.24
Both directions	85.96±0.07	85.21±0.12	84.45±0.21	82.74±0.15

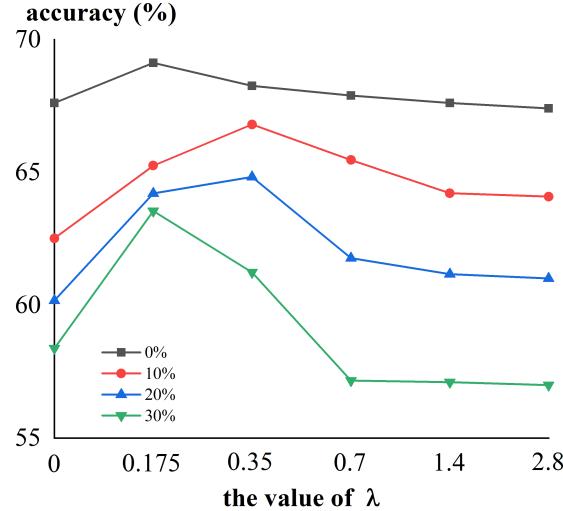
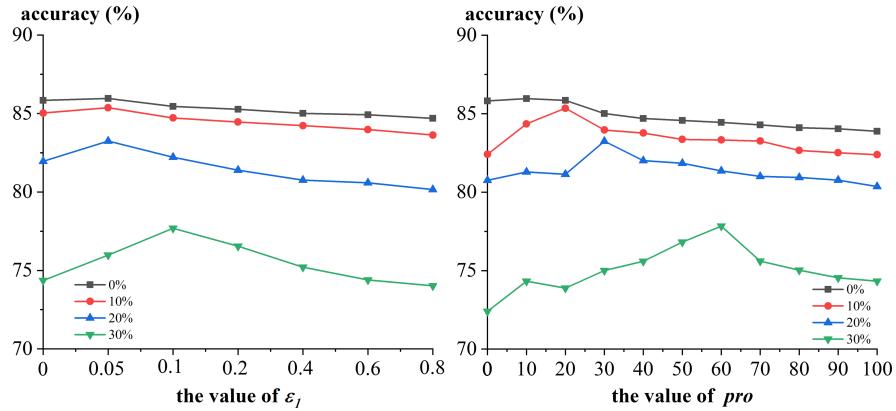
1531 6.4.2 *Ablation Study for Meta-MixPert*. An ablation study is conducted for Meta-MixPert on CIFAR-100. The results
 1532 presented in Table 21 indicate that the training loss, gradient norm, and functional margin all contribute significantly
 1533 to the performance of Meta-MixPert.
 1534

1535 Table 21. An ablation study of Meta-MixPert on CIFAR-100 (%).
 1536

	0%	20% pair noise
Meta-MixPert(WRN-28-10)	83.97±0.12	80.42±0.25
Meta-MixPert without training loss	83.26±0.27	79.43±0.21
Meta-MixPert without gradient norm	83.39±0.18	79.66±0.23
Meta-MixPert without functional margin	83.11±0.13	79.35±0.19

1537 6.4.3 *Impact of Hyper-Parameters*. In LogPert, the effect of λ on the results is analyzed on CIFAT-100 (pair noises),
 1538 and the results are shown in Fig. 9. The best results are obtained when λ is set to 0.175 or 0.35. When the value of λ is
 1539 greater than 0.35, the accuracy gradually decreases. A moderate value of λ can balance the original loss and the degree
 1540 of logit perturbation.
 1541

1542 In MixPert, the effect of ϵ_1 (*i.e.*, η) and τ (the value of *pro*) on the results is analyzed on IMDB (asymmetric noises),
 1543 and the results are shown in Fig. 10. We observe that when ϵ_1 is greater than 0.1, the accuracy gradually decreases. As
 1544 the noise percentage increases, the value of *pro* for the best results is larger.
 1545

Fig. 9. Accuracies under different λ values in LogPert.Fig. 10. Accuracies under different values of ϵ_1 (left) and pro in MixPert.

6.5 Discussion

The results indicate that our proposed two methods LogPert and MixPert achieve competitive performances among the competing methods. MixPert is superior to LogPert in most cases. The reason lies in that LogPert only implements positive perturbation in order to reduce the negative influence of samples with noisy or quite hard labels. However, MixPert can implement both positive and negative perturbations. Its positive perturbation part plays a quite similar role as LogPert, whereas its negative perturbation part plays a role of implicit data augmentation. Further, the extent of negative perturbation is controlled by the value of ϵ_2 . When $\epsilon_2 = 0$, MixPert is approximately reduced to LogPert. Naturally, MixPert can achieve better results than LogPert in real use.

More extensions and new methods can be obtained based on our taxonomy.

(1) The extension of the logit perturbation (described in Eq. (56)). As previously mentioned, each weighting method may correspond to a perturbation method. Self-paced learning (SPL) [37] is a classical sample weighting strategy in

1613 machine learning. The weights are obtained with the following objective function:
 1614

$$1615 \min_{w_i \in \{0,1\}} \sum_i w_i l(\mathbb{S}(u_i), y_i) - \lambda w_i. \quad (63)$$

1616 The solution is
 1617

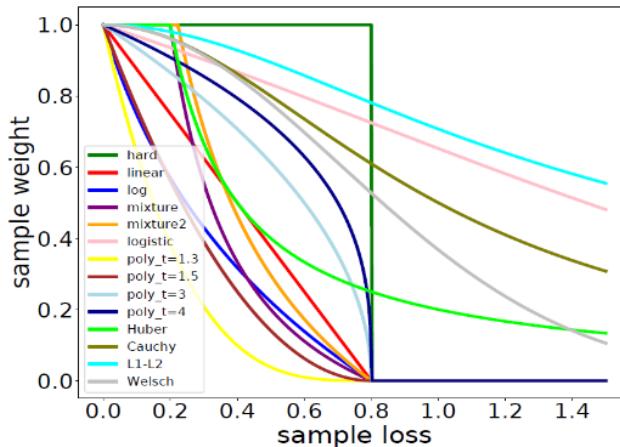
$$1618 \quad 1619 \quad 1620 w_i = \begin{cases} 1 & \text{if } l(\mathbb{S}(u_i), y_i) \leq \lambda \\ 0 & \text{otherwise} \end{cases}, \quad (64)$$

1621 which indicates that the weights of samples with larger losses than λ are set to 0. When the value of λ is increased,
 1622 more samples will participate in the model training.

1623 Fig. 11 shows the curves of weights for the original SPL and its variants. LogPert can be used to implement the SPL
 1624 with (56) and (65) when the hyper-parameters ϵ and τ satisfy the following conditions:
 1625

$$1626 \quad 1627 \quad \tau^{t+1} > \tau^t \text{ and } \epsilon > 2 \max_i \{||u_i||\}, \quad (65)$$

1628 where t is the index of the current epoch. A new method is obtained and can be called self-paced logit perturbation.
 1629



1630
 1631 Fig. 11. The curves of weights under different losses in SPL. “Hard” represents the original SPL [82].
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645

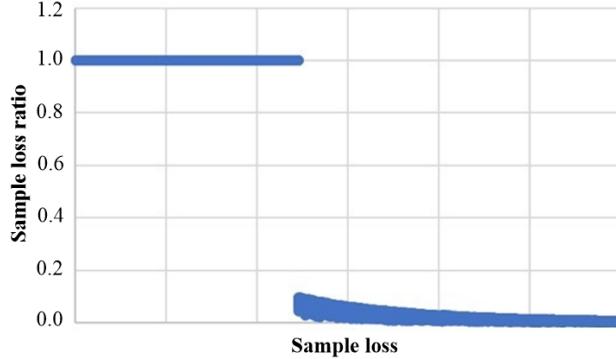
1646 With Eq. (65), similar curves to those of SPL can also be obtained. Fig. 12 shows the curve of loss ratios (perturbed
 1647 loss : original loss) when $\epsilon > 2 \max_i \{||u_i||\}$ on the CIFAR-100 dataset. The curve indicates that our strategy can also
 1648 exert higher weights ($= 1$) to samples with low losses and lower weights (≈ 0) to samples with high losses.
 1649

1650 (2) The extension of MixPert. Indeed, the parameters ϵ_1 and ϵ_2 characterize the extent of positive and negative
 1651 perturbations, respectively. Intuitively, a sample with a larger loss should have a greater positive perturbation; while
 1652 a sample with a lower loss should have a greater negative perturbation. Therefore, the constraints for the perturbation
 1653 terms in (52) can be redefined as follows:
 1654

$$1655 \quad 1656 \quad \|v_i\| \leq \epsilon_1 [1 + (l_i - \tau)/\tau] \text{ and } \|\delta_i\| \leq \epsilon_2 [1 + (\tau - l_i)/\tau]. \quad (66)$$

1657 (3) The extension of Bootstrapping. The Bootstrapping loss and the online label smoothing can be unified into the
 1658 following new loss:
 1659

$$1660 \quad 1661 \quad \mathcal{L} = \sum_i l(p_i, y_i + \alpha(\beta \tilde{p}_{y_i} + (1 - \beta)p_i - y_i)), \quad (67)$$

Fig. 12. Loss ratio curve of self-paced logit perturbation given a fixed η (ϵ) and τ .

where \tilde{p}_{y_i} is the category-level average prediction in the previous epoch; α and β are hyper-parameters and are located in $[0, 1]$. When β equals 0, the above loss becomes the soft Bootstrapping loss. When β equals 1, the loss becomes the online label smoothing loss with a little difference. Specifically, \tilde{p}_{y_i} is defined as follows:

$$\tilde{p}_{y_i} = \frac{1}{Z_{y_i}} \sum_{j:y_j=y_i} (conf_j \times p_j), \quad (68)$$

where $conf_j$ is the prediction confidence of the prediction p_j , and Z_{y_i} is the normalizer. Two typical definitions of $conf_j$ are

$$conf_j = 1 \text{ or} \\ conf_j = \begin{cases} 1 & \text{if the prediction is correct} \\ 0 & \text{otherwise} \end{cases} \quad (69)$$

When the second definition is used and $\beta = 1$, the unified loss becomes the online label smoothing. Nevertheless, in most datasets, the values of \tilde{p}_{y_i} obtained by the above two definitions are close to each other as the index of the current epoch gradually increases according to our observations. The unified new method can be called mixBootstrapping.

7 CONCLUSIONS

This study reveals a widely used yet less-explored machine learning strategy, namely, perturbation. Machine learning methods leveraging or partially leveraging perturbation comprise a new learning paradigm called learning with perturbation. To solidify the theoretical basis of perturbation learning, a systematic taxonomy is constructed on the basis of which to perturb, the direction of loss variation, how to infer, and the granularity. To demonstrate the universality of perturbation learning, several existing learning methods are explained within our constructed taxonomy. Furthermore, three concrete perturbation learning methods (i.e., LogPert, MixPert, and Meta-MixPert) are proposed. Extensive experiments suggest that our proposed methods are effective in robust learning tasks. It is believable that our constructed taxonomy can build intrinsic connections among a large number of seemly unrelated learning methods, enlighten the deep understanding of these methods, and inspire the design of more effective methods.

ACKNOWLEDGEMENT

We thank Mr. Mengyang Li for his useful suggestions on the experiments.

REFERENCES

[1] M. Bazaraa, H. Sherali, and C. Shetty. 1993. *Nonlinear Programming - Theory and Algorithms*. John Wiley and Sons, Inc.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In *ICML*. 41–48.

[3] Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. 2021. Universal adversarial training with class-wise perturbations. In *ICME*. 1–6.

[4] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. 2019. Learning imbalanced datasets with label-distribution-aware margin loss. In *NeurIPS*. 1565–1576.

[5] Kuang-Yu Chang, Chu-Song Chen, and Yi-Ping Hung. 2011. Ordinal hyperplanes ranker with cost sensitivities for age estimation. In *CVPR*. 585–592.

[6] Ashutosh Chaudhary, Nikhil Agrawal, Kavya Barnwal, Keerat K. Guliani, and Pramod Mehta. 2020. Universal Adversarial Perturbations: A Survey. In *arXiv2005.08087*.

[7] Dubing Chen, Yuming Shen, Haofeng Zhang, and Philip HS Torr. 2022. Zero-Shot Logit Adjustment. *arXiv preprint arXiv:2204.11822* (2022).

[8] Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, and Jungwon Lee. 2020. Data-free network quantization with adversarial knowledge distillation. In *CVPR Workshops*. 3047–3057.

[9] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. *Machine learning* 20, 3 (1995), 273–297.

[10] Jiequan Cui, Shu Liu, Zhiyao Tian, Zhisheng Zhong, and Jiaya Jia. 2023. ResLT: Residual Learning for Long-Tailed Recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 45, 3 (2023), 3695–3706.

[11] D. Das and Csg Lee. 2019. A Two-Stage Approach to Few-Shot Learning for Image Recognition. *IEEE Transactions on Image Processing* 29, 99 (2019), 3336–3350.

[12] Antoine de Mathelin, Francois Fleuret, Mathilde Mougeot, and Nicolas Vayatis. 2023. Deep Anti-Regularized Ensembles provide reliable out-of-distribution uncertainty quantification. In *arXiv:2304.04042*.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In *CVPR*. 248–255.

[14] Jia Deng, Jonathan Krause, and Li Fei-Fei. 2013. Fine-grained crowdsourcing for fine-grained recognition. In *CVPR*. 580–587.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In *NAACL-HLT*. 4171–4186.

[16] Oussama Difallah and Yue Lu. 2021. On the Inherent Regularization Effects of Noise Injection During Training. In *ICML*. 2665–2675.

[17] Xiaozhao Fang, Yong Xu, Xuelong Li, Zhihui Lai, Wai Keung Wong, and Bingwu Fang. 2017. Regularized label relaxation linear regression. *IEEE Transactions on neural networks and learning systems* 29, 4 (2017), 1006–1018.

[18] Pedro A Forero, Vassilis Kekatos, and Georgios B Giannakis. 2012. Robust clustering using outlier-sparsity regularization. *IEEE Transactions on Signal Processing* 60, 8 (2012), 4163–4177.

[19] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of computer and system sciences* 55, 1 (1997), 119–139.

[20] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual prediction with LSTM. *Neural Computation* 12, 10 (2000), 2451–2471.

[21] Morgane Goibert and Elvis Dohmatob. 2019. Adversarial robustness via label-smoothing. *arXiv preprint arXiv:1906.11567* (2019).

[22] Jacob Goldberger and Ehud Ben-Reuven. 2017. Training deep neural-networks using a noise adaptation layer. In *ICLR*.

[23] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R Scott, and Dinglong Huang. 2018. Curriculumnet: Weakly supervised learning from large-scale web images. In *ECCV*. 139–154.

[24] Y. Hamamoto, Y. Mitani, H. Ishihara, T. Hase, and S. Tomita. 1996. Evaluation of an anti-regularization technique in neural networks. In *ICPR*. 205–208.

[25] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W Tsang, and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In *NeurIPS*. 8536–8546.

[26] Jiangfan Han, Ping Luo, and Xiaogang Wang. 2019. Deep self-learning from noisy labels. In *ICCV*. 5137–5146.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In *CVPR*. 770–778.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531* (2015).

[29] Hidekata Hontani, Takamiti Matsuno, and Yoshihide Sawada. 2012. Robust nonrigid ICP using outlier-sparsity regularization. In *CVPR*. 174–181.

[30] Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. 2023. Dual Compensation Residual Networks for Class Imbalanced Learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 45, 10 (2023), 11733–11752.

[31] Chen Huang, Yining Li, Chen Change Loy, and Xiaou Tang. 2016. Learning deep representation for imbalanced classification. In *CVPR*. 5375–5384.

[32] Jinchi Huang, Lie Qu, Rongfei Jia, and Binqiang Zhao. 2019. O2u-net: A simple noisy label detection approach for deep neural networks. In *ICCV*. 3325–3333.

[33] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. 2019. Adversarial Examples Are Not Bugs, They Are Features. In *NeurIPS*.

[34] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In *ICML*. 2309–2318.

[35] Justin M Johnson and Taghi M Khoshgoftaar. 2019. Survey on deep learning with class imbalance. *Journal of Big Data* 6, 1 (2019), 1–54.

1769 [36] Alex Krizhevsky and Geoffrey Hinton. 2009. *Learning multiple layers of features from tiny images*. Technical Report.

1770 [37] M Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning for latent variable models. In *NeurIPS*. 1189–1197.

1771 [38] Pablo Lanillos, Daniel Oliva, Anja Philippsen, Yuichi Yamashita, Yukie Nagai, and Gordon Cheng. 2020. A review on neural network models of schizophrenia and autism spectrum disorder. *Neural Networks* 122 (2020), 338–363.

1772 [39] Wonseok Lee, Hanbit Lee, and Sang-goo Lee. 2020. Semantics-Preserving Adversarial Training. *arXiv preprint arXiv:2009.10978* (2020).

1773 [40] Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Jay Shi, Shuyang Cheng, and Dragomir Anguelov. 2021. PolyLoss: A Polynomial Expansion Perspective of Classification Loss Functions. In *ICLR*.

1774 [41] Buyu Li, Yu Liu, and Xiaogang Wang. 2019. Gradient harmonized single-stage detector. In *AAAI*. 8577–8584.

1775 [42] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli. 2019. Learning to learn from noisy labeled data. In *CVPR*. 5051–5059.

1776 [43] Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet Oymak. 2021. AutoBalance: Optimized Loss Functions for Imbalanced Data. *NeurIPS* 34 (2021).

1777 [44] Shuang Li, Kaixiong Gong, Chi Harold Liu, Yulin Wang, Feng Qiao, and Xinjing Cheng. 2021. MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition. In *CVPR*. 5212–5221.

1778 [45] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017. Focal loss for dense object detection. In *ICCV*. 2999–3007.

1779 [46] Bingyuan Liu, Ismail Ben Ayed, Adrian Galdran, and Jose Dolz. 2022. The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration. In *CVPR*. 80–88.

1780 [47] Hong Liu, Rongrong Ji, Jie Li, Baochang Zhang, Yue Gao, Yongjian Wu, and Feiyue Huang. 2019. Universal adversarial perturbation via prior driven uncertainty approximation. In *ICCV*. 2941–2949.

1781 [48] Hao Liu, Xiangyu Zhu, Zhen Lei, and Stan Z Li. 2019. Adaptiveface: Adaptive margin and sampling for face recognition. In *CVPR*. 11947–11956.

1782 [49] Tongliang Liu and Dacheng Tao. 2016. Classification with noisy labels by importance reweighting. *IEEE Transactions on pattern analysis and machine intelligence* 38, 3 (2016), 447–461.

1783 [50] Gengyu Lyu, Songhe Feng, Tao Wang, and Congyan Lang. 2022. A self-paced regularization framework for partial-label learning. *IEEE Transactions on Cybernetics* 52, 2 (2022), 899–911.

1784 [51] Xingjun Ma and et al. 2018. Dimensionality-driven learning with noisy labels. In *ICML*. 3361–3370.

1785 [52] Andrew Maas and et al. 2011. Learning word vectors for sentiment analysis. In *ACL*. 142–150.

1786 [53] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards deep learning models resistant to adversarial attacks. In *ICLR*.

1787 [54] Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin Shen, and Heng Tao Shen. 2021. Metamixup: Learning adaptive interpolation policy of mixup with metalearning. *IEEE Transactions on Neural Networks and Learning Systems* (2021).

1788 [55] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar. 2021. Long-tail learning via logit adjustment. In *ICLR*.

1789 [56] Jan Hendrik Metzen, Nicole Finnie, and Robin Hutmacher. 2021. Meta Adversarial Training against Universal Patches. In *ICML 2021 Workshop on Adversarial Machine Learning*.

1790 [57] Seyed-Mohsen Moosavi-Dezfooli, Omar Fawzi, Alhussein and Fawzi, and Pascal Frossard. 2017. Universal adversarial perturbations. In *CVPR*. 86–94.

1791 [58] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep Ravikumar, and Ambuj Tewari. 2013. Learning with noisy labels. In *NeurIPS*. 1196–1204.

1792 [59] Federico Nesti, Alessandro Biondi, and Giorgio Buttazzo. 2021. Detecting adversarial examples by input transformations, defense perturbations, and voting. *IEEE Transactions on Neural Networks and Learning Systems* (2021).

1793 [60] Nam H Nguyen and Trac D Tran. 2012. Robust lasso with missing and grossly corrupted observations. *IEEE transactions on information theory* 59, 4 (2012), 2036–2058.

1794 [61] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. 2017. Regularizing Neural Networks by Penalizing Confident Output Distributions. In *arXiv:1701.06548*.

1795 [62] Scott Reed and et al. 2015. Training deep neural networks on noisy labels with bootstrapping. In *ICLR*.

1796 [63] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. 2018. Learning to reweight examples for robust deep learning. In *ICML*. 4331–4340.

1797 [64] Bernhard Schölkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett. 2000. New support vector algorithms. *Neural computation* 12, 5 (2000), 1207–1245.

1798 [65] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S Davis, and Tom Goldstein. 2020. Universal adversarial training. In *AAAI*. 5636–5643.

1799 [66] Haojing Shen, Sihong Chen, Ran Wang, and Xizhao Wang. 2022. Adversarial Learning with Cost-Sensitive Classes. *IEEE Transactions on Cybernetics* (2022).

1800 [67] Yiqing Shen, Liwu Xu, Yuzhe Yang, Yaqian Li, and Yandong Guo. 2022. Self-Distillation from the Last Mini-Batch for Consistency Regularization. In *CVPR*. 11943–11952.

1801 [68] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. 2019. Meta-Weight-Net: Learning an explicit mapping For sample weighting. In *NeurIPS*. 1917–1928.

1802 [69] Martin Slawski, Emanuel Ben-David, et al. 2019. Linear regression with sparsely permuted data. *Electronic Journal of Statistics* 13, 1 (2019), 1–36.

1803 [70] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. 2022. Learning from noisy labels with deep neural networks: A survey. *IEEE Transactions on Neural Networks and Learning Systems* (2022).

1821 [71] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for computer
1822 vision. In *CVPR*. 2818–2826.

1823 [72] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2018. Joint optimization framework for learning with noisy labels. In
1824 *Proceedings of the IEEE conference on computer vision and pattern recognition*. 5552–5560.

1825 [73] Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff Bilmes, Gopinath Chenupati, and Jamal Mohd-Yusof. 2019. Combating label noise in deep learning
1826 using abstention. In *ICML*. 6234–6243.

1827 [74] Yuanpeng Tu, Boshen Zhang, Yuxi Li, Liang Liu, Jian Li, Yabiao Wang, Chengjie Wang, and Cai Rong Zhao. 2023. Learning from noisy labels with
1828 decoupled meta label purifier. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 19934–19943.

1829 [75] Derui Wang, Chaoran Li, Sheng Wen, Qing-Long Han, Surya Nepal, Xiangyu Zhang, and Yang Xiang. 2021. Daedalus: Breaking nonmaximum
1830 suppression in object detection via adversarial examples. *IEEE Transactions on Cybernetics* (2021).

1831 [76] Mei Wang, Yaobin Zhang, and Weihong Deng. 2021. Meta Balanced Network for Fair Face Recognition. *IEEE Transactions on Pattern Analysis and
1832 Machine Intelligence* (2021).

1833 [77] Xinshao Wang, Yang Hua, Elyor Kodirov, David A Clifton, and Neil M Robertson. 2021. Proselflc: Progressive self label correction for training
1834 robust deep neural networks. In *CVPR*. 752–761.

1835 [78] Yixin Wang, Alp Kucukelbir, and David M Blei. 2017. Robust probabilistic modeling with bayesian data reweighting. In *ICML*. 3646–3655.

1836 [79] Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Cheng Wu, and Gao Huang. 2019. Implicit semantic data augmentation for deep networks. In
1837 *NeurIPS*. 12614–12623.

1838 [80] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing from a few examples: A survey on few-shot learning. *ACM
1839 Computing Surveys (CSUR)* 53, 3 (2020), 1–34.

1840 [81] Zhen Wang, Guosheng Hu, and Qinghua Hu. 2020. Training noise-robust deep neural networks via meta-Learning. In *CVPR*. 4523–4532.

1841 [82] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. 2021. When Do Curricula Work?. In *ICLR*.

1842 [83] Yichen Wu, Jun Shu, Qi Xie, Qian Zhao, and Deyu Meng. 2021. Learning to purify noisy labels via meta soft label corrector. In *AAAI*. 10388–10396.

1843 [84] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. 2015. Learning from massive noisy labeled data for image classification. In
1844 *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2691–2699.

1845 [85] Han Xu, Xiaorui Liu, Yixin Li, Anil Jain, and Jiliang Tang. 2021. To be Robust or to be Fair: Towards Fairness in Adversarial Training. In *ICML*.
11492–11501.

1846 [86] Han Xu, Xiaorui Liu, Yixin Li, Anil K. Jain, and Jiliang Tang. 2021. To be Robust or to be Fair: Towards Fairness in Adversarial Training. In *ICML*.
11492–11501.

1847 [87] Erkun Yang, Tongliang Liu, Cheng Deng, and Dacheng Tao. 2020. Adversarial examples for hamming space search. *IEEE transactions on cybernetics*
50, 4 (2020), 1473–1484.

1848 [88] J. Yao, J. Wang, I. W. Tsang, Y. Zhang, J. Sun, C. Zhang, and R. Zhang. 2019. Deep Learning From Noisy Image Labels With Quality Embedding.
1849 *IEEE Transactions on Image Processing* 28 (2019), 1909–1922.

1850 [89] Chia-Hung Yuan, Pin-Yu Chen, and Chia-Mu Yu. 2022. Meta Adversarial Perturbations. In *AAAI Workshops*.

1851 [90] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In *Proceedings of the British Machine Vision Conference 2016*. British
1852 Machine Vision Association.

1853 [91] Chang-Bin Zhang, Peng-Tao Jiang, Qibin Hou, Yunchao Wei, Qi Han, Zhen Li, and Ming-Ming Cheng. 2021. Delving deep into label smoothing.
1854 *IEEE Transactions on Image Processing* 30 (2021), 5984–5996.

1855 [92] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2018. mixup: Beyond Empirical Risk Minimization. In *ICLR*.

1856 [93] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. 2020. Adversarial attacks on deep-learning models in natural language
1857 processing: A survey. *ACM Transactions on Intelligent Systems and Technology (TIST)* 11, 3 (2020), 1–41.

1858 [94] Liang Zhao, Tianyang Zhao, Tingting Sun, Zhuo Liu, and Zhikui Chen. 2020. Multi-view robust feature learning for data clustering. *IEEE Signal
1859 Processing Letters* 27 (2020), 1750–1754.

1860 [95] Wangchunshu Zhou, Canwen Xu, and Julian McAuley. 2022. BERT learns to teach: Knowledge distillation with meta learning. In *ACL*. 7037–7049.

1861 [96] B. Zhu, Y. Niu, X.-S. Hua, and H. Zhang. 2022. Cross-Domain Empirical Risk Minimization for Unbiased Long-Tailed Classification. In *CVPR AAAI*.
1862 3589–3597.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872