19
20
21
22
23
24
25
26
27
28
29
30

32
33

35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

51
52

A Taxonomy for Learning with Perturbation and Algorithms

RUJING YAO, Department of Information Resources Management, Nankai University; Center for Applied Mathe-
matics, Tianjin University, China

OU WU, Center for Applied Mathematics, Tianjin University, China

Weighting strategy prevails in machine learning. For example, a common approach in robust machine learning is to exert low weights
on samples which are likely to be noisy or quite hard. This study summarizes another less-explored strategy, namely, perturbation.
Various incarnations of perturbation have been utilized but it has not been explicitly revealed. Learning with perturbation is called
perturbation learning and a systematic taxonomy is constructed for it in this study. In our taxonomy, learning with perturbation
is divided on the basis of the perturbation targets, directions, inference manners, and granularity levels. Many existing learning
algorithms including some classical ones can be understood with the constructed taxonomy. Alternatively, these algorithms share
the same component, namely, perturbation in their procedures. Furthermore, a family of new learning algorithms can be obtained
by varying existing learning algorithms with our taxonomy. Specifically, three concrete new learning algorithms are proposed for
robust machine learning. Extensive experiments on image classification and text sentiment analysis verify the effectiveness of the
three new algorithms. Learning with perturbation can also be used in other various learning scenarios, such as imbalance learning,

clustering, regression, and so on. The source code is available at https://github.com/RujingYao/Learning-with-Perturbation.
Additional Key Words and Phrases: Sample weighting, Perturbation, Robust machine learning, Learning taxonomy.

ACM Reference Format:
Rujing Yao and Ou Wu. 2022. A Taxonomy for Learning with Perturbation and Algorithms. In . ACM, New York, NY, USA, 36 pages.
https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

In supervised learning, a loss function is defined on the training set, and the training goal is to seek optimal models by
minimizing the training loss. According to the degree of training difficulty, samples can be divided into easy, medium,
hard, and noisy samples. Generally, easy and medium samples are indispensable and positively influence the training.
The whole training procedure can significantly benefit from medium samples if appropriate learning manners are
leveraged. However, the whole training procedure is vulnerable to noisy and partial quite hard samples.

A common practice is to introduce the sample weighting strategy if hard and noisy samples exist. Low weights are
assigned to noisy and quite hard samples to reduce their negative influences during loss minimization. This strategy
usually infers the weights and subsequently conducts training on the basis of the weighted loss [49]. Wang et al. [78]
proposed a Bayesian method to infer the sample weights as latent variables. Kumar et al. [37] proposed a self-paced
learning (SPL) manner that combines the two steps as a whole by using an added regularizer. Meta-learning [42, 63, 81]

is introduced to alternately infer weights and seek model parameters with an additional validation set.

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

https://doi.org/XXXXXXX.XXXXXXX

53

55

56

58
59
60
61
62
63

64

66

67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

ACM, October, 2022 Yao and Wu

Various machine learning methods exist that do not rely on the weighting strategy. For example, the classical method
support vector machine (SVM) [9] introduces slack variables to address possibly noisy or quite hard samples, and ro-
bust clustering [18] introduces additional vectors to cope with noises. However, a unified theory to better explain such
methods and subsequently illuminate more novel methods remains lacking. In this study, another less-explored yet
widely used paradigm', namely, perturbation, is summarized and further investigated. Mathematically, the perturba-
tion strategy actually adds? a perturbation term to a feature vector, a logit vector, a loss, etc. Many existing learning
methods including some classical ones can be (partially) understood in the point of the learning-with-perturbation
view. Learning with perturbation is referred to as perturbation learning in the present paper.

In this study, we conduct a pilot study to construct a theoretical taxonomy for learning with perturbation. Specifi-
cally, five perturbation targets, three directions, six inference manners, and four granularity levels are defined. Several
existing classical learning methods are used as illustrated examples to demonstrate the reasonableness of our con-
structed taxonomy, and potential research directions are presented. A close connection can be obtained among these
seemingly unrelated methods and new variations of these methods can be naturally obtained. In addition, three con-
crete perturbation learning algorithms are proposed, namely, logit perturbation with /1-regularization (LogPert), mixed
positive and negative perturbation (MixPert), and the meta-learning-based MixPert (Meta-MixPert). Last, the three pro-
posed learning algorithms are evaluated on data corpora from image classification and text sentiment classification.

Our main contributions are summarized as follows:

1) A less-explored yet widely used learning scheme, namely, perturbation, is summarized and formalized in this
study. A systematic taxonomy is constructed for it, which can establish an intrinsic connection among numerous
seemly unrelated machine learning methods. In addition to the noisy-label learning mainly referred in this paper,
other learning scenarios, such as imbalance learning, can also benefit from perturbation learning.

2) Several typical learning methods are re-explained with the viewpoint of our constructed taxonomy for learning
with perturbation. A close connection can be observed for these methods and new insights can be obtained. Theoreti-
cally, various new methods can be generated on the basis of introducing the idea of perturbation into existing methods.
Sections 5 and 6 present examples.

3) Three concrete new perturbation learning methods are proposed. Experiments on robust learning on several
benchmark sets verify their effectiveness compared with several existing classical methods.

The rest of the paper is organized as follows. Section 2 briefly reviews related studies. Section 3 highlights the signif-
icance of our summarization for existing studies on learning with perturbation. Section 4 introduces our constructed
taxonomy including the construction principles, details, and representative methods. Section 5 describes our proposed
three new methods. Section 6 presents the experimental comparison and discussions of our methods, and conclusions

are given in Section 7.

2 RELATED WORK
2.1 The Weighting Strategy in Machine Learning

Weighting is a widely used machine learning strategy in at least the following five areas: noise-aware learning [58],
curriculum learning [2], crowdsourcing learning [14], cost-sensitive learning [5], and imbalance learning [31]. In noisy-
aware and curriculum learning areas, weights are sample-wise; in cost-sensitive learning, weights can be sample-wise,

category-wise, or mixed; in imbalance learning, weights are usually category-wise.

10ne widely studied topic in current literature, namely, adversarial examples, is a special type of perturbation, which is discussed in Section 4.
2Weighting actually multiplies a term to a feature vector, a logit vector, a loss, etc.

2

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

Intuitively, the weights of medium and partial hard samples are kept or enlarged; and the weights of quite hard
samples should be kept or reduced. For example, in Focal loss [45], the weights of easy samples are (relatively) reduced
and those of the hard® samples are (relatively) enlarged. Most existing studies do not assume the above sample division.
Instead, samples are usually divided into easy/non-easy or normal/noisy. For example, in Focal loss and Adaboost [19],
the weights of non-easy samples are gradually increased.

In cost-sensitive learning, the weights are associated with misclassified costs. Shen et al. [66] proposed a new cost-
sensitive adversarial learning framework to ensure that some special classes are less vulnerable. Indeed, perturbation
learning can also be utilized in this scenario. In imbalance learning, categories with lower proportions are negatively
affected. Therefore, increasing the weights of samples in the low-proportion categories is a common practice.

The perturbation strategy investigated in this study does not intend to eliminate the weighting strategy. Instead,
this study summarizes various existing learning ideas which do not utilize weighting yet. These learning ideas are
systematically investigated to attribute to a unified learning paradigm, namely, learning with perturbation. These two
strategies can be mutually beneficial?. Theoretically, each concrete weighting-based learning method may correspond
to a concrete perturbation-based learning method. A solid and deep investigation for the weighting strategy in machine

learning will significantly benefit perturbation learning.

2.2 Noise-aware Machine Learning

This study investigates perturbation mainly in learning with noisy labels. The weighting strategy is prevailing in this
area. There exist two common technical solutions.

In the first solution, noise detection is performed and noisy samples may be assigned lower weights in the successive
model training. Koh and Liang [25] defined an influence function to measure the impact of each sample on the model
training. Samples with higher influence scores are more likely to be noisy. Huang et al. [32] conducted a cyclical pre-
training strategy and recorded the training losses for each sample in the whole cycles. The samples with higher average
training losses are more likely to be noisy.

In the second solution, an end-to-end procedure is leveraged to construct a robust model. Reed et al. [62] proposed
a Bootstrapping loss to reduce the negative impact of samples which may be noisy. Goldberger and Ben-Reuven [22]
designed a noise adaptation layer to model the relationship between labels that may be noisy and true latent labels.

More specific methods along with the aforementioned two solutions can be found in a recent survey [70]. Perturba-

tion can replace weighting in both above solutions. In this study, only the second solution is referred.

2.3 Robust Machine Learning

A formal definition for robust machine learning does not exist at present. There are two typical learning scenarios for
robust machine learning. The first scenario refers to the robustness of a learning process, while the second scenario
refers to the robustness of a trained model. In the first scenario, a robust learning method should cope well with training
data that may be noisy [70, 88], imbalance [35], few-shot [11, 80], etc. In the second scenario, a robust trained model
should cope well with adversarial attacks [93]. Both scenarios receive much and increasing attention in recent years.
Both the weighting and the perturbation strategies are widely-used in the first scenario, whereas only the perturbation

strategy is mainly utilized in the second scenario.

3In fact, if the weights of quite hard samples are reduced, the performance will be increased [41].
4For example, a sample-level weighting method (e.g., Focal loss) can be transformed into a category-level weighting method (e.g., replace the sample-level
prediction y; with the category-level average y.) inspired by our taxonomy for learning with perturbation.

3

157
158
159
160
161
162
163
164
165
166
167
168
169

170

182
183
184
185
186
187
188
189
190
191
192
193

194

196

200
201
202
203
204
205
206
207

208

ACM, October, 2022 Yao and Wu

3 SIGNIFICANCE FOR THE SUMMARY OF LEARNING WITH PERTURBATION

Pure data manipulation without modifying the structure of involved DNNs has been proven to be effective in the
training of DNNs. One main data manipulation strategy is sample weighting, as described in Section 2.1. Meanwhile,
there are numerous other pure data manipulation strategies in previous literature. For instance, data augmentation and
the perturbation of logit vectors have been widely used in imbalanced learning and noisy-label learning. Moreover, in
some learning scenarios such as robust learning, the adversarial perturbations of samples or features are quite useful,
whereas sample weighting is rarely employed.

An interesting and meaningful question arises: can a clear roadmap for other data manipulation methods, apart
from weighting, be established from a new perspective? To address this, a taxonomy for learning with perturbation
is summarized in this study. The subsequent section will demonstrate that a large number of learning methods which
are derived from distinct heuristic motivations or theoretical inspirations actually perturb data in training. The con-

struction of such a taxonomy is valuable in the following aspects:

e Connecting existing methods. Various sample weighting methods can be easily unified mathematically, differ-
ing mainly in the ways they calculate weights. However, numerous data manipulation methods, apart from
sample weighting, are challenging to connect directly. To the best of our knowledge, no study has attempted to
arrange such tremendous methods into a unified framework. This study constructs a taxonomy for a significant
portion of these tremendous methods, which can naturally build a connection among them. The connection
among the seemly unrelated methods can facilitate a better understanding and intersection of these methods.
We also envision a more fundamental and deep theoretical analysis of perturbation learning based on our
taxonomy.

e Promoting the importance of pure data manipulation. Our constructed taxonomy for learning with perturba-
tion highlights a widely employed yet rarely mentioned strategy, namely, perturbation. Both perturbation and
weighting cover the majority of application scenarios in deep learning. Therefore, our summary study will
further demonstrate the value and importance of pure data manipulation for deep learning, which may attract
more attention in both academical and industrial communities.

e Inspiring new methods and paradigms. As the application scenarios of perturbation and weighting highly
overlap, their combination may yield more powerful data manipulation techniques. In addition, in terms of
mathematical forms, perturbation is more flexible than weighting. Therefore, it is possible to develop more
sophisticated perturbation learning methods. Section 5 provides three illustrative examples of new learning
with perturbation methods. Moreover, a data manipulation agent can be designed to automatically leverage

data weighting and perturbation operators on the training data of a learning task.

The next section will introduce our constructed taxonomy as well as representative methods for each division.

4 OUR CONSTRUCTED TAXONOMY

This section firstly introduces our principles for the construction of our taxonomy. Each division of the taxonomy is

then elaborated in detail. Finally, several potential research directions are presented.

4.1 Principles

Perturbation can be used in many learning scenarios. This section leverages classification as the illustrative example.
Given a training set S = {x;,y;}, i = 1,..., N, where x; is the i-th sample, and y; € {1,...,c,...,C} is its categorical
4

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

Feature

Logit vector
Targets Label

Loss

Mixed

Positive

Directions Negative

Learning with Prior knowledge

Perturbation .
Hyper-parameter tuning
Regularization

Inference manners
Meta learning

Adversarial learning

Mixed

Sample-level
Category-level
Granularity levels
Corpus-level
Mixed

Fig. 1. Taxonomy of learning with perturbation.

label. In a standard supervised deep learning context, let u; be the logit vector for x; output using a deep neural network.

The training loss can be written as follows:

L= Sy = Y HS (i) vi), M

where S(-) transforms the logit vector u; into a soft label p;, f(-) represents a deep neural network, and u; = f(x;).
Our study is firstly motivated by a widely used pure data-oriented technique, namely, weighting. In the weighting

strategy, the loss function is usually defined as follows:

L= wil(S),ya), (2)

where w; is the weight associated with the sample x;. In terms of mathematical computation, “weighting” relies on the
multiplication operation, whereas “perturbation” relies on adding operation. Let v be a variable. The perturbation for
v means the following calculation:

vV =v+Av, (3)
where v is the perturbation. Our taxonomy is constructed according to what to perturb, the direct outcome, and how
to infer the perturbation Av, which are detailed as follows:

5

261
262
263
264
265
266
267
268
269
270
271
272
273
274

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

294

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

ACM, October, 2022 Yao and Wu

e What to perturb. In data weighting, weights are mainly applied to the loss function. In data perturbation, there
are more choices for the targets to be perturbed. Organizing different perturbation methods according to the
targets facilitates the comparisons and mutual inspiration among these methods. In addition, the granularity
is also about what to perturb. Therefore, both the target and its granularity are considered in our taxonomy.

o The direct outcome. It is difficult to summarize the outcomes of different perturbation learning methods into a
concise division. Note that one direct outcome is the loss variation. Taking noisy-label learning as an example,
a perturbation can be utilized to reduce the loss of a possibly noisy sample, and thus the negative influence of
this sample will be reduced. Contrarily, when the influence should be increased for a sample, a perturbation
which will increase the loss can be utilized®. Therefore, the direction of loss variation incurred by perturbation
is chosen as one dimension.

e How to infer. This division is crucial, as the determination of the data perturbation is not a trivial task. Our
arrangement along this dimension may shed light on exploring new and more effective perturbation inference
methodologies.

According to the three principles listed above, our constructed taxonomy of learning with perturbation is depicted

in Fig. 1 encompassing four split items®

, namely, targets, directions, inference manners, and granularity levels. As an
initial attempt for the construction of such a taxonomy;, it is challenging to ensure that these four items are exhaustive.
For example, perturbation can also be divided into static and dynamic. In static perturbation, perturbations remain
unchanged in training, whereas in dynamic perturbation, they are changed in training. Nevertheless, this split plays
a trivial role in the understanding of existing methods in current stage, so it is not included in our current taxonomy.

This section introduces each item in the taxonomy.

4.2 Perturbation Targets

The perturbation target in this study denotes the variable which is designed to add a perturbation for each sample in
DNN training. Eq. (1) contains four different types of variables for each sample, namely, raw feature x;, logit vector u;,
label y;, and sample loss ; (=I(S(u;), yi)). Therefore, perturbation targets can be further divided into four categories,

namely, feature, logit vector, label, and loss.

4.2.1 Sub-categories.
(1) Feature perturbation. In this kind of perturbation, the raw feature vector (x;) or transformed feature vector (e.g.,

dense feature output by the involved DNN) of each sample can have a perturbation vector (Ax;). Eq. (1) becomes

L= US(f(etdxi)y) =) 1S W), i) @

The perturbation vectors for each training sample are not set freely. Instead, they are inferred according to several
manners introduced in Section 4.4. Here we provide a simple example to illustrate the usefulness of feature perturbation.
Suppose there is a training sample x” with a wrong label. In sample weighting, a small weight can be assigned to this
sample to reduce its negative influence in training. Let m be the center of the category of x’. Ideally, if x” is perturbed by
Ax’ =m - x’, then the gradient for x” will become quite small. Consequently, the negative impact of x” is also completely
reduced. Indeed, the usefulness of feature perturbation is not restricted in noisy-label learning. More details will be

introduced in the rest of this paper.

SSection 4.3.2 provides a theoretical explanation for this variation.
SThere is no survey on sample weighting. These four terms can also be used for sample weighting.

6

313

314

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

(2) Logit perturbation. In this kind of perturbation, the logit vector (u;) of each sample can have a perturbation

vector (Au;). Eq. (1) becomes
L= 1S (ur+duy), yp). (5)

Likewise, Au; is not set freely. Compared with feature perturbation, logit perturbation receives little attention. Never-
theless, it can play similar roles with feature perturbation. Taking the illustrative task described in feature perturbation
as an example, let u” and my,, be the logit vectors of x” and the center vector m, respectively. If u’ is perturbed by
Au = mj,q — ', then noisy samples can also be effectively processed.

(3) Label perturbation. In this kind of perturbation, the label (y;) of each sample can have a perturbation label
(Ay;). Let p; = softmax(u;). Eq. (1) becomes

() L=2ilpiyi+hy:) or
(i) L= X l(pi+Ayi, yi)-
In Eq. (6-1), Ay; is added to the true label y;, while in (ii) Ay; is added to the predicted label p;. Considering that

(6)

labels after perturbation should be a (soft) label, Ay; should satisfy the following requirements:

ZC Ayic =0,Yic + Ayic 20 or pic+ Ayic > 0. 7)

Indeed, several classical label perturbation methods are usually utilized in noisy label learning.

(4) Loss perturbation. In this kind of perturbation, the loss of each sample can have a perturbation loss (Al;). Eq. (1)

becomes
L= 1(S(w), yi)+Al. (®)

(5) Mix-target perturbation. In this kind of perturbation, two or more of the aforementioned targets can have
their perturbation terms, simultaneously. For example, when both feature and label perturbation are utilized, Eq. (3)
becomes

L= US(f(xi+Ax), yi + Aya), ©)
where Ax; and Ay; are the feature and label perturbations, respectively’.

The effectiveness of methods in each sub-category has been verified in most typical learning scenarios (e.g., standard
learning, noisy-label learning, and imbalanced learning). Therefore, it is inappropriate to conclude which category is
absolutely superior to others in terms of learning performance. Nevertheless, in most cases, it is relatively easy to
determine the order of the four categories in terms of computational complexity, i.e., feature perturbation > logit
perturbation > label perturbation = loss perturbation. There may exist other perturbation candidates, such as view,

structure (e.g., adjacency matrix in GCN), word embedding, and gradient, which will be explored in our future work.

4.2.2 Representative methods.
This part discusses a few representative methods in terms of the abovementioned subcategories. The first is robust
clustering (RC) [18]. Let m, be the cluster center of the c-th cluster. Let w;. (€ {0, 1}) denote whether x; belongs to the

c-th cluster. The optimization form of conventional data clustering can be written as follows:

(i Zi ZC wic |lxi = mell3 . (10)

"Lee et al. [39] combine adversarial training and label smoothing, which can be considered as mix-target (feature and label) perturbation.

7

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

ACM, October, 2022 Yao and Wu

2.01

1.5:

1.0 4

0.5 1

Relative Increment

0.0 1

—0.5 1

0 20 40 60 30 100
Class Id

Fig. 2. The relative loss increment ((I” — 1) /1) for LA. Head categories are in the left and tail ones are in the right. The losses of head
categories are mainly decreased, while those of tail ones are increased.

Given that outlier samples may exist, Foreo et al. [18] introduced sample-level feature perturbation (denoted as o;

for x;) with [2-regularization. Then robust clustering is formalized as following:

i . . A 2 .
om0 3 ore (I + 00 = melf + Aol) (1

Obviously, robust clustering belongs to feature perturbation.

Another typical example is logit adjustment [55], which is particularly designed for imbalanced learning. In a
multi-category classification problem, let 7. be the proportion of the training samples in the c-th category. Let g =
[g(m1),....,9 ()], g (7c) = tlog (xc) (r > 0). Obviously, g(+) is an increasing function.

Menon et al. [55] defined g as the logit perturbation vector and then the new cross entropy loss becomes

iy TTlog my;
L= o8 s g (12
In this loss, logit perturbations for each sample are equal.

Label smoothing is a classical noisy-label learning methods which has been proven to be effective in noisy-label
learning. It is actually a type of sample-level label perturbation. Its perturbation term for a sample (x;, y;) is defined as
follows:

Ay; = M(I/C = yi), (13)
where I is a C-dimensional vector and each element is equal to 1.
Knowledge distillation is widely used in many deep learning tasks [28]. In knowledge distillation, there are two

deep neural networks called teacher and student, respectively. The output of the teacher model for x; is
qi = softmax(z;/T), (14)

where z; is the logit vector from the teacher model and T is the temperature. g; can be viewed as a prior knowledge
about the label perturbation for the student model. Then according to Eq. (7), the training loss of the student model

8

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

456
457
458
459
460
461
462
463
464
465
466
467

468

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

with label perturbation becomes

L= i yi) + 2U(ping) = 1pis), (15)

where p! = softmax(u;/T). Eq. (15) is exactly the loss function of knowledge distillation. Knowledge distillation also
belongs to label perturbation.

SVM [9] is one of the most classical shallow learning methods. It is based on the following hinge loss:
l; = max(0,1 — y;(w” x; +b)). (16)
To reduce the negative contributions of noisy or quite hard samples, the loss can be perturbed as follows:

I'; = max(0, ;&)

=max(0,1 - y;(wix; +b)=&) (£ 20) "

where ¢; is a variable for perturbation. Then the whole training loss with max margin and /1-norm for &; becomes

1
L= lwl+ 3 VidlEl (&2 o), (18)
The minimization of Eq. (18) equals to the following optimization problem:

in wll+AY;&
wf@}ﬂw” 2idi

st. 1-y(wlxj+b)—& <0 > (19)
£>0i=1-- N

which is the standard form of SVM (without kernel). Alternatively, the slack variable can be seen as a loss perturbation
for SVM. Naturally, other types of perturbation (e.g., label perturbation) can be considered in SVM?.
Pereyra et al. [61] perturbed the original loss by adding a hinge function for the confidence penalty, which is defined

as follows:

£L=="1(piys) - Bmax(0,7 = H(py)), (20)

13
where f and 7 are two hyper-parameters; H(p;) is information entropy of the prediction p;, which measures the

confidence of the prediction by the current model.

4.3 Perturbation Directions

4.3.1 Sub-categories.
Perturbation direction in this study denotes the loss increment or decrement after perturbation. There are two direc-
tions according to the loss variations.

(1) Positive perturbation. If the perturbation reduces the loss, then it is called positive perturbation. The following
representative methods will indicate that positive perturbation is usually employed to reduce the influence of noisy
and quite hard samples during training.

(2) Negative perturbation. If the perturbation increases the loss, then it is called negative perturbation. Negative

perturbation can enhance the impact of the perturbed samples during training °.

8We conjecture that label perturbation-based SVM may exist in the literature.
9As negative perturbation can explicitly or implicitly perform data augmentation, it can enhance the impact of samples including both easy and hard
ones.

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

ACM, October, 2022 Yao and Wu

(3) Mix-direction perturbation. If the perturbation increases the losses of some training samples and decreases
the losses of others simultaneously, then it is called mix-direction perturbation. The logit adjustment method actually

leverages this type of perturbation, which will be discussed in Section 4.3.3.

4.3.2 Comparison for positive and negative perturbations.

The two directions are opposite to each other. Nevertheless, both directions have been explored in previous literature,
and experiments have verified their effectiveness. We first compare them from a regularization perspective. Let p; =
S(u;) represent the softmax output be the current model. Taking logit perturbation as an example, the loss in Eq. (5)

can be expanded using the first-order Taylor expansion as follows:

S i),) = (i yi) + (o) Dt = €(piy) + (pi = yi) B 1)
In negative augmentation, (p; — y;) ' Au > 0, meaning that negative augmentation can be viewed as adding a regular-
ization term to the original loss £(p;, y;). There have been a lot of studies revealing that methods such as perturbation
using Gaussian noise can inherently provide a regularization effect [16]. Regularization is typically utilized to pre-
vent overfitting. In positive perturbation, (p; — y;) " Au < 0, which can be viewed as adding an anti-regularization
term to the original loss. The concept of anti-regularization has been investigated in previous studies [12, 24, 38] and
is typically utilized in learning cases when over-regularization may occur. Over-regularization means that excessive
regularization is applied. Taking ridge regression as an example, its objective function is [(X, Y; w) + 4| |w||%. A large
value of A will result in over-regularization. If 1 — +oo, then w — 0, resulting in underfitting. In other words, positive
perturbation can prevent underfitting, while negative perturbation can prevent overfitting.

Both directions are useful for certain learning scenarios. We take the learning under feature noise as an illustrative
example. Given a binary training dataset D, assuming it contains a certain proportion (denoted as p) of feature noise,
which is exactly equivalence to an appropriate regularization. In other words, such a proportion of feature noise is
useful. Therefore, if the proportion of feature noise for class ‘+1° is increased to 2p and that for class -1’ is decreased to
0.5p, then positive feature perturbation should be exerted on samples of class ‘+1’, and negative feature perturbation
should be exerted on samples of class ‘-1’. This example illustrates the necessity for both directions as well as their
mixture.

We then provide a statistical view to compare the two perturbation directions. It is quite challenging to conduct
universal theoretical analysis for arbitrary distributions. Following some relevant theoretical studies [33, 85], we design
a simple learning case with Gaussian distributions. The binary classification setting established for the theoretical
analysis in [86] is adopted. The data is from two classes Y = {—1,+1} and the data from each class follows a mixture
of two Gaussian distributions. In class ‘+1’, its two distributions are centered on 2.50 and 6, respectively; in class -1,

its two distributions are centered on —2.50 and —0, respectively. The overall data distribution follows
y " {-1+1), 0=[n....nT € R,
NN (0, 021) + (1 - y1)N (2.50,021), ify=+1 > (22)
x ~
YN (-6,0%1) + (1 — y2)N (-2.50,021), ify=-1
where y; and y; are two independent discrete random variables; I is an identity matrix; and o2 and o2 are two factors.
Assuming that d = 2, y; and y; are uniformly distributed on {0,1}, 8 = [0.5, O.S]T, and Uer = 02 = 0.04. Let D

be a training set which is sampled from the above distribution. Due to possible sampling bias, the proportion of the
samples from the two sub-distributions is 1:30 (C1:C2) for class ‘+1’, and that is still 1:30 (C3:C4) for class ‘-1’, as shown

10

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

in Fig. 3. Such biased training data would result in a biased classifier. Obviously, sample weighting (e.g., importance
weighting can alleviate this issue. Indeed, feature perturbation can also address this issue. Theoretically, if % samples
in C; as shown in Fig. 3 are perturbed by 1.50 (ie, x = x + 1.50) and é—g samples in C4 as shown in Fig. 3 are also
perturbed by 1.56, then the distribution on the training data is equal to the ground-truth distribution as described by

(22). Consequently, an unbiased classifier would be learned.

20 class '+1'

258

Cl

4
class '-1'
-2.0 -1.5 -1.0 —.5 0.0 0.5 1.0 1.5 20

Fig. 3. A biased training set whose ground-truth distribution conforms to (22).

Obviously, the selected % samples in C; are performed positive perturbation, whereas the selected % ones in Cy4

are performed negative perturbation. Several insights can be observed from this example:

e Perturbation can tune the distribution of training data like weighting.

o Although positive and negative perturbations are opposite to each other, they can cooperate to obtain better
training performance for a learning task.

e Positive perturbation can reduce the proportion of hard samples (e.g., samples in C1), whereas negative pertur-
bation can increase the proportion of hard samples (e.g., samples in C3). It is inappropriate to simply conclude
that only positive perturbation or only negative perturbation is sufficient for a concrete learning task. Which

direction of perturbation is required depends on the training data and the training object of a learning task.

The above theoretical comparison indicates that it is also inappropriate to directly conclude which perturbation
direction is absolutely better than the other, regardless of the involved learning task. The next section will show sev-
eral classical methods that employ mix-direction perturbation, i.e., both positive and negative perturbations in their

approach are adopted simultaneously.

4.3.3 Representative methods.

We first revisit the three methods listed in Section 4.2.2. If the I[2-norm distance in Eq. (10) is taken as loss, then the
11

573

575

576

578

579

581
582

584

585

587
588

590

591

593
594

596
597

599
600
601
602
603

604

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

ACM, October, 2022 Yao and Wu

loss will be reduced by the perturbation o;. As a result, the feature perturbation in robust clustering belongs to positive
perturbation. In logit adjustment, Eq. (12) can be re-written to the following:

u' Yi

— > 0.
L= Z log u,c+flog Ze > r=0 (23)

Note that 7 < m; and n, > n¢ for all the cth categories. Consequently, the losses for samples in the first head
category y; are reduced, while the losses for samples in the last tail category yc are increased. In other words, the first
head category performs positive augmentation, while the last tail category performs negative augmentation. Existing
studies reveal that overfitting occurs on tail categories [10, 30]. Therefore, negative augmentation (regularization) for
tail categories is reasonable. Positive augmentation (anti-regularization) may avoid underfitting on head categories,
as there are also studies that reveal that underfitting occurs on head categories [96]. Logit adjustment belongs to
mix-direction augmentation. Label smoothing also belongs to mix-direction.

Adversarial samples receive great attention in recent years. It is actually a perturbed sample by the following opti-
mization [53]:

Xaqy = X +arg max £(f(x+ 8),y), (24)
I8]l<e

where x,4, is the adversarial sample generated for x, § is the perturbation term, and e is the perturbation bound.
Obviously, adversarial perturbation belongs to negative perturbation as the loss of new sample is larger (at least no
small) than the raw sample.

Another example is adversarial label smoothing(ALS) [21]. The perturbation term of label smoothing is manually

determined. Inspired by adversarial samples, ALS pursues the label perturbation in label smoothing using
Ayi = A(p; = yi)s (25)

where

pr= argrr;)gxl(g(ui),yi + A(pi — yi))- (26)

Eq. (25) has an analytic solution such that p; is the one-hot vector for the category which corresponds to the minimum

softmax value in S(u;). It is easy to verify that £(x;, y+Ay;) > €(x;,y). Therefore, ALS belongs to negative perturbation.

4.4 Perturbation Inference

4.4.1 Sub-categories.
In perturbation learning, perturbation variables in losses in Eqs. (4)—-(27) should be inferred during training. There are
six typical manners (maybe not exhaustive) to infer their values and optimize the whole loss.

(1) Inference with prior knowledge. In this manner, the perturbation variables are inferred on the basis of prior
knowledge. Alternatively, the perturbation variables are fixed before the optimizing of training loss.

(2) Inference with hyper-parameter tuning. In this manner, the perturbation variable(s) is/are taken as hyper-
parameter(s). Consequently, the optimal value is determined according to the manner of hyper-parameter tuning.

(3) Inference with regularization. In this manner, a regularization term is added for the perturbation variables.
For example, a natural assumption is that the proportion of the samples that require the perturbation variables is small.

Therefore, [1-norm can be used. Taking the logit perturbation as examples. A loss function is defined as follows:

L= 1S + Auy), yi) + AReg(Auy), (27)

12

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644

646
647
648
649
650
651
652

653

655

660
661
662
663
664
665
666
667
668
669
670
671
672
673

674

676

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

where A is a hyper-parameter and Reg(-) is a regularizer. This manner is similar to the self-paced learning [37, 50].
When A — oo, no perturbation is allowed and perturbation learning is reduced to conventional learning.

(4) Inference with meta-learning. In this manner, the perturbation variables are inferred on the basis of another
small clean validation set with meta-learning. Given a clean validation set Q comprising M clean training samples and

taking loss perturbation as an example. Let k; be the loss perturbation variable for x; (€ S). We first define that

L= Sw).yi: O)+i, (28)
where © is the model parameter set to be learned. Given ¥ = {k;};cs, © can be optimized on the training set S by
solving

©"(x) = argmin Zies 1(S(ws), yi : ©)+k;. (29)
After © is obtained, x can be optimized on the validation set Q by solving
K* = arg mxin ZjeQ 1(S(uj), yj : ©"(x)). (30)

These two optimizations can be performed alternately, and finally ©* and x* are learned. When either logit or label
perturbation is used, the above optimization procedure can also be utilized with slight variations.

The above inference manner is similar with that used in the meta-learning-based weighting strategy for robust
learning [63]. Meta-learning has been widely used in robust learning and many existing meta-learning-based weighting
methods [42, 81] can be leveraged for perturbation learning.

(5) Inference with adversarial learning. In both feature and logit perturbations, the perturbation term can be
obtained by adversarial learning. Taking feature perturbation as an example, the objective function in negative pertur-

bation is
Ax} =arg| max [(S(f(xi+Ax;)), yi), 31)

[Ax;||<e

where € is the bound. Likewise, the objective function in positive feature-level perturbation can be

Ax] = arg HArIcliilTlSe I(S(f (xi+Axi)), yi). (32)

(6) Inference with mixed manners. Two or more of the above five manners can be combined together to infer
the perturbation term in a learning task.

Remark: Existing perturbation-based learning methods adopt one of the inference manners listed above. Different
manners have their own merits and defects. The prior knowledge-based manner is heuristic and thus seems quite ad
hoc in some learning cases. When grid search is utilized in hyper-parameter tuning, it results in high time consumption.
Regularization-based manner has good theoretical merits. However, designing a suitable regularizer is also challenging.
Furthermore, as discussed previously, some learning cases may require anti-regularization. Both meta-learning-based
and adversarial learning-based manners employ an optimization approach. Nevertheless, meta-learning requires an
independent high-quality validation dataset, while the adversarial learning-based manner can only produce negative
perturbations.

Which inference manner should be employed depends on the training data and learning object of the involved
learning task. Theoretically, the inference manner can be changed from one manner to another and a new method will

subsequently be obtained.

677
678
679
680

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

ACM, October, 2022 Yao and Wu

4.4.2 Representative methods.
The methods logit adjustment, label smoothing, and knowledge distillation employs prior knowledge-based inference.
The methods adversarial samples and ALS employs adversarial learning.

In contrast with previous data augmentation techniques, Implicit semantic data augmentation (ISDA) [79] does not
produce new samples or features. Instead, it transforms the semantic data augmentation problem into the optimization

of a new loss defined as

Uiy,

e bYi

£L=- Zi C A T ’ (33)
Z e“i,c*‘f(wc*"vyi) Zy; (Wc*Wyi)
c=1

where X4, is the covariance matrix for the y;-th category, we is the model parameter for the logit vectors, and
Ui ¢ =w.l %; (% is the output of the last feature encoding layer for x;).

In Eq. (39), a logit perturbation term is observed as follows:
uj = uj + 6y, (34)

where

(w1 - Wyi)szi (W1 =wy,)

8y;= (35)

T
(WC - Wy,-) Zy,— (WC - Wyi)
Obviously, the perturbation is category-level and determined with prior knowledge. In addition, the perturbation
direction is negative as the loss is increased for each training sample. The term is heavily dependent on the covariance

matrix Xy, , which can be further optimized via meta-learning by minimizing the following loss on a validation set Q:

>* =argmin Y 1(S (1)),y;:0°(%)), (36)
z jeQ
which is just the meta implicit data augmentation (MetaSAug) proposed by Li et al. [44]. MetaSAug is quite effective
in long-tail classification.

Bootstrapping loss [62] is another classical label perturbation method. Given that for each sample, we can obtain a

predicted label y] by the model trained at the previous epoch, the label perturbation can be defined as

Ayi=A(y; - yi), (37

where A is a hyper-parameter and locates in [0, 1]. Ay; defined in Eq. (37) satisfies the condition given by Eq. (7).
Bootstrapping loss is designed for noisy-label learning and the perturbation is infereed with prior knowledge. If y; is
in trust, then it is highly possible that Ay; approaches to zero if x; is normal, and it is large if x; is noisy. The entire

Bootstrapping loss is

L= 1Sy h(y] —y) = (1= 1) Y 1S () yi) +A Y, 1S, y)). (38)

Note that I(S(u;),y;) < I(S(u;),y;),Vi. Then Bootstrapping loss belongs to positive perturbation.

Meta adversarial perturbations [89] utilizes meta-learning to infer the adversarial perturbations for each image. In
Eq. (12), the hyper-parameter 7 is fixed for all categories. A category-wise setting for 7 may be useful. Therefore, a new
logit adjustment with meta optimization on 7 is proposed and called Meta logit adjustment (Meta LA). Let Q be the
validation set for meta optimization. According to Eqgs. (28—30) in the paper, the new loss is

14

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

779

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

Ui,y;+7y; log my;

e
= - log ——M8¥ ——. 39
£ Z 08 Zy iyt Ty; log 7y (39)

x;€S
Given a value for 7 = {r1,, ¢}, the network parameter © can be obtained by solving

Uiy, +Ty; log 7y,

e
Ch = min — log ——MM8M8 . 40
(r) = argmi XZS 8 e (40)
After ®*(r) is obtained, 7 can be optimized by solving
" = argmin — Z I (softmax (f (x; : ©* (1)), yi))- (41)
T

x;€Q
Egs. (40) and (41) are solved alternately. The detailed optimization steps are similar to those used in MetaSDA [44],
Meta-Weight-Net [68], and other meta optimization studies.

4.5 Perturbation Granularity

4.5.1 Sub-categories.
Perturbation granularity has four levels.

(1) Sample-level perturbation. All the perturbation variables discussed above are for samples. Each sample has
its own perturbation variable.

(2) Category-level perturbation. In this level, samples within the same category share the same perturbation.
Taking the logit vector-based perturbation as an example, when category-level perturbation is utilized, the loss in
Eq. (5) becomes

L= USQuthuy,).). (42)

Category-level perturbation mainly solves the problem when the impact of all the samples of a category should be
increased or decreased. For example, in long-tail classification, the tail category should be emphasized in learning.

(3) Corpus-level perturbation. In this level, samples within the whole training corpus share the same perturbation.

Take the negative perturbation described in Eq. (31) as an example, the objective function becomes

Ax* = arg chzﬁ);e I(S(f (xi+Ax)), yi), (43)

which means that all samples share the same term Ax*. Ax™ is exactly the universal adversarial perturbation [57].

(4) Mix-level perturbation. In this level, more than one of the aforementioned three levels are utilized simul-
taneously. This case occurs in complex contexts, e.g., when both noisy labels and category imbalance exist. Taking
label-based perturbation as an example. The loss in Eq. (6) can be written as

L= Zi (pi, yi+Ayi+Ayy,), (44)
where Ayy; is the category-level label perturbation.

Remark: Most methods belong to sample-level, which has been applied in most learning scenarios. Corpus-level is
a special case of category-level, and category-level is also a special case of sample-level. Therefore, sample-level should
outperform the other granularity levels theoretically. Nevertheless, it is still inappropriate to conclude that which level

is absolutely the best choice.

ACM, October, 2022 Yao and Wu

781 4.5.2 Representative methods.
782 Adversarial perturbation introduced previously is in the sample level. Training with adversarial samples (i.e., adver-
783

. sarial training) is proven to be useful in many applications and various methods are proposed [53]. Shafahi et al. [65]

785 proposed universal adversarial training (UAT) which is actually based on a corpus-level negative feature perturbation.
786 The loss on adversarial samples is

787

Leorpus-ado = max), L(S(f i +8)).0)- (45)
789

790 Benz et al. [3] observed that universal adversarial perturbation does not attack all classes equally. They proposed a
791 category-wise universal adversarial training (C-UAT) method and the loss on adversarial samples is

792

793 'Ecategory—udv = max Zi ! (S(f(xi +0y,)), yi)’ (46)
- l15y;11<e

795 which belongs to the category-level negative feature perturbation.

70 Conventional sample-level adversarial samples and the corpus-level UAP are in the two extremes. Nevertheless,
797

Jos both are demonstrated to be quite useful in adversarial training. There are also a large number of studies on UAP [6],

799 which partially reflects that each perturbation level has its own value.
800 Motivated by our taxonomy, mix-level adversarial perturbation can subsequently be generated. A mixed corpus/sample-
s level adversarial perturbation is described as an example:
802
803 8" = argmax 2, I(S(f(x; +9)), yi)
804 g ! * (47)
805 Linixed—ado = H?X Z L(S(f (xi + 8 +61)), yi)s
806 ! !
07 where §* and §; are the corpus-level and sample-level perturbations, respectively. A further statistical analysis for the
808 two levels of adversarial perturbations may illuminate us to better understand the adversarial characteristics of the
809 data. Some other variations of adversarial perturbation (e.g., hash adversarial perturbation [87]) can also benefit from
810
. our taxonomy for learning with perturbation.
s12 Arcface [48] is a classical face recognition loss defined as follows:
813 si(cos(0j,y;+m))
e »Yi
814 L=- > (48)
i ,Si 0i,y; i i
s Zl eS (cos(,y1+m)) + thyi es,(cus(gl’c))
816 where s; = [[wy,||||%i], 0. is the angle between the weight w, and the feature X; which are defined in the description
:1; for ISDA, and m is a hyper-parameter. Indeed, m does not strictly belong to the five perturbation targets in our taxon-
819 omy:. It is simply placed in the category of logit perturbation in this paper. It is a corpus-level term and determined via
820 hyper-parameter tuning.
821 Wang et al. [76] proposed a new Arcface loss, namely, Balanced loss, with the category-level perturbation. The loss
:zj is defined as
; Si(CUS(Qi,yi+mgi))
. L= Y ety g Ore)” (49)
- i gsilcos(Oiy;+mg;)) o Tery; esi(cos(6ic))
826 where g; is the skin-tone category of the j-th sample. Obviously, myg, is a category-level term. It can be optimized via
o meta-learning:
828
420 m; = arg {x;llin} Z 1(©(myg;)), (50)
30 97 jeQ
831 which is proven to be quite effective in the experiments conducted by Wang et al. [76].

832 16

833
834

836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

851

853
854
855
856
857

859
860
861
862
863

864

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

884

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

4.6 Several potential directions for perturbation learning

There are numerous open problems for learning with perturbation. This part casts a vision toward the future, contem-

plating the promising research directions deserving further investigation listed below:

o Deep representation of training characteristics. Training characteristics of a sample denotes the static
or dynamic quantities that can characterize information such as distribution, geometry, and neighborhood
of the sample. For example, the categorical proportion, margin, loss, and gradient norm are typical training
characteristics. In most existing perturbation learning methods, the perturbation direction, granularity, and
inference manner (especially the manner with prior knowledge) heavily depend on the quantification of the
training characteristics of training samples. Nevertheless, existing methods utilize no more than three raw
training characteristics. A deep representation for the overall training characteristics of a training sample
would be quite useful.

o Unified theoretical basis for data perturbation. Our taxonomy summarizes a wide range of methods which
are based on distinct heuristic observation or theoretical inspirations. Constructing a unified theoretical basis
for perturbation learning can establish a more fundamental connection among these seemingly irrelevant meth-
ods. This connection will contribute to answering the question of which target, direction, inference manner,
or granularity level should be employed when facing a concrete learning task.

e Data perturbation agent. Al agent is a hot topic in current Al community. If the training characteristics of
samples can be well represented and the theoretical basis is well constructed, then automatic data perturbation
may be achieved. Indeed, it is feasible to compile more than thousands of learning tasks and train a data
perturbation agent with a proper learning procedure.

e Theoretical comparison with data weighting. The weighting strategy is straightforward and quite intuitive;
hence, it has been widely used in the machine learning community. Perturbation does not seem as straight-
forward as weighting. However, the former can play the same/similar role as weighting in machine learning.
They both have their own merits. Perturbation is more flexible than weighting, while weighting is usually more
efficient than perturbation. A theoretical comparison between them is beneficial for both strategies and their

cooperation.

5 THREE NEW LEARNING METHOD EXAMPLES

In addition to the representative methods mentioned in the previous section, there are also other numerous typical
methods such as Robust nonrigid ICP (RNICP) [29], D2L [51], DAC [73], Deep self-learning (DSL) [26], LDAM [4],
MREFL [94], Robust regression (RR) [69], MAT [56], MSLC [83], PD-UA [47], AKD [8], Mixup [92], MetaMixup [54],
MetaDistil [95], ZLA [7], Adaptive Face loss (AFL) [48], Robust LASSO (RLASSO) [60], Bootstrapping loss [62], online
label smoothing (OLS) [91], AutoBalance [43], PolyLoss [40], DEFENSE_GEN [59], v-SVM [64], and RLR [17] can also be
explained with perturbation learning. For example, Wang et al. [75] formulated the adversarial attack in object detection
as a p-norm optimization problem, which can be seen as a regularization-based perturbation (called RegPert for brevity).
Table 1 shows the coordinates of these methods according to our constructed taxonomy. The perturbation direction
is not presented due to space limitation. The arrangement of numerous typical machine learning methods leveraging
a general learning with perturbation taxonomy facilitates better understanding these methods and enlightens new

inspirations for the design of more effective methods.

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

ACM, October, 2022 Yao and Wu

Table 1. The coordinates of several typical methods according to our constructed taxonomy.

Target Prior knowledge Hyper-parameter tuning Regularization Meta learning Adversarial learning
Sample Category | Corpus | Sample | Category | Corpus Sample Category | _Corpus Sample Category Corpus Sample | Category | Corpus
RC[18],
RegPert [75],
Feature Mixup [92] RR [69], MREFL [94] | PD-UA [47] | MetaMixUp [54] MAT [56] AT[53] | C-UAT [3] | UAT [65]
RNICP [29],
DEFENSE_GEN [59]
ISDA [79]. MetaSAug [41],
Logit ZLA[7) " | LA[55) Arcface [48] AFL [48] Balanced loss [76], | AutoBalance [43]

LDAM [4] Meta LA

LS,

Bootstrapping loss [62], RLR [17], MetaMixUp [54],

Label D2L [51], OLs [o1] RLASSO [60] MSLC (3] ALS [21]
Mixup [92]
KD [28],
DSL [26], . S e
Loss DAC [73], 0-SVM [64] SVM [9] MetaDistil [95] AKD [8]
PolyLoss [40]

The empty lattices of Table 1 inspire us to explore new learning with perturbation methods!®. In addition, our
theoretical analysis shows that the combination of positive and negative augmentation has theoretical merits. To this
end, this section shows three examples'!. The first is the lattice for intersection of logit, sample, and regularization.

The second is the mixed positive and negative perturbation. The third is the meta-learning version of the second one.

5.1 Sample-level Logit Perturbation

According to Table 1, sample-level logit perturbation receives litter attention in previous literature!?. An example is
given to explain how logit perturbation works. Assume that the inferred logit vector of a noisy sample x; and its (noisy)

label y; are as follows:

u; = [3.0,0.8,0.2] 7

(51)

yi = [0,1,0]7.

The cross-entropy loss incurred by this training sample is —log[e%8/(e30 + €08 + ¢0-2)] = 2.36. This loss negatively
affects training because y; is noisy. To reduce the negative influence, if a perturbation vector (e.g., [-1,2,0]7) is added,
then the new logit vector becomes [2.0, 2.8,0.2]7. Consequently, the new loss of x; is —log[e%8 /(%0 +¢%8+e02)] = 0.42,

which is much lower than 2.36'3

. The negative influence of this noisy sample will be reduced significantly.
In actual learning tasks, samples with noisy labels are inevitable in the corresponding training corpora. However,
which samples are truly noisy is unknown during training. Motivated by robust clustering (RC) [18] and robust

LASSO [60], a regularized logit perturbation learning method is proposed with the following new loss:

L=) 1(S(ui +01).yi) + AReg (o), (52)

where v; is the logit perturbation vector for the i-th training sample and A is a hyper-parameter. v; is trainable dur-
ing training. According to our taxonomy for learning with perturbation, the perturbation target, direction, inference
manner, and granularity are logit, positive, regularization, and sample level, respectively, for the new loss. Naturally,
extensions such as category-level logit perturbation and meta logit perturbation can be generated based on the pro-
posed algorithm. We leave these new extensions as our future work.

When [;-norm is used, the training loss becomes

L= WS +v1),y0) +Alloills. (53)

107t is worth noting that the empty lattices of Table 1 by no means indicate that there are no corresponding methods for each empty lattice in previous
literature, as some studies may be not covered in our literature summary

1A family of new learning algorithms can be obtained by plugging the perturbation learning into existing learning algorithms with our constructed
taxonomy by introducing the idea of perturbation learning into existing algorithms.

12The ZLA method in Table 1 is designed particularly for zero-shot learning.

3Indeed, the gradient norm for the new logit vector is also much smaller than that for the original vector.

18

937
938
939
940
941
942
943
944
945
946
947
948
949

950

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

Following self-paced learning [37], the alternative convex search (ACS) [1], which alternately optimizes the network
and v, is used. We found that ACS obtained more stable results in our experiments. Let W be the model parameters in

the current training epoch. v; is achieved with the following optimization problem:
v; = argmin [(S(u; +0), yi = W) + Aol (54)

Then, the model parameters are updated with the following optimization problem:
w* = arg m“irnl(S(ui +07),Yi 1 W) (55)
Ideally, if neither noisy nor quite hard samples exist, then A will be set to a large value. Consequently, v; will

approach to zero for all training samples. This method is called LogPert for brevity. The detailed steps are described in
Algorithm 1.

Algorithm 1 LogPert

Input: Training set S = {x;,y;}, i =1,---, N; hyper-parameters A; #Epoch; #Batch; and learning rate.
Output: Model f(x, w).

1: Initialization: v = 0 for each training sample, w as w(®);

2: repeat

3: t=1,---, #Epoch

4 k=1,---, #Batch

5: Generate mini-batch Dy from S;

6: Pursue v; for each sample in Dy by solving (54);
7: Update w by solving (55) using SGD;

8: until stable accuracy in the validation set.

5.2 Mixed Positive and Negative Perturbation

We observed that large perturbations (i.e., v;) concentrate in samples with large losses during the running of LogPert
in the experiments. Intuitively, we can only perturb the logit vectors of samples with large losses as the positive
perturbations on samples with small losses are useless or even harmful. Let [; = [(S(u;), y;). Motivated by adversarial
training, (53) is modified into the following form

L= min [(S(uw+0v),9)+ » L (56)

ill<e
i:liZTllvl”_ i<t

where € is the perturbation bound and 7 is the loss threshold. Compared with (53), (56) has one more hyper-parameter.
Nevertheless, (56) is more flexible than (53). The results on image classification show that (56) is better than (53) if
appropriate 7 and € are used. The discussion part will show that the classical self-paced learning manner [37] can be
implemented by (56) with an increasing value of 7.

The proposed LogPert method relies on the positive perturbation to reduce the negative influence of samples which
are noisy or quite hard. In our taxonomy, there is another perturbation direction, namely, negative perturbation which
increases the losses of training samples. Typical negative perturbation methods such as adversarial training are con-
sidered as a useful technique, namely, data augmentation in previous studies. Our theoretical analysis in Section 4.3.2

19

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

ACM, October, 2022 Yao and Wu

reveals that the cooperation of positive and negative perturbations may yield better results, so mixed positive (to re-
duce the influence of noisy samples) and negative (to augment clean samples) perturbations are considered. Fig. 4
illuminates the influence of our proposed mixed positive and negative perturbation on training data.

On the basis of (56), a mixed perturbation is subsequently obtained with the following loss:

£=)" min I(S(u,-+u,-),y,-)+; max L(S(f (x4 80).w0). (57)

i< i<
o lalize _lsilize,

The main difference between (57) and the adversarial training loss [53] is that the losses of quite hard (including
noisy) samples are not increased any more in (57). Instead, the losses of these samples are reduced as in (57). When
7 > max{l;}, only the maximization part exists and the whole loss becomes the adversarial training loss; when €z =

1

0, (57) is reduced to (56).

b A

AA
a y'S
a
A o A L a
A A A o
A.L.“k ‘. [] PaN VN A
A - as
o
A 5
[) AN AA
- Ao
(a) (b)

Fig. 4. An illustration of the effects of mixed positive and negative perturbation. The raw training data is shown in (a). The positive
perturbation implicitly deletes the six noisy-label samples; while the negative perturbation implicitly pushes the normal training
data toward the decision boundary. The perturbed training data, which can be viewed as augmented samples, is shown in (b).

Algorithm 2 MixPert

Input: Training set S = {x;,y;}, i = 1,---, N; #Epoch; #Batch; learning rate; €;; €2; and 7.
Output: Model f(x, w).

1: Initialization: w as w(o);

2: repeat

3: t=1,---, #Epoch

4 k=1,---,#Batch

5 Generate mini-batch Dy from S;

6: Infer v; according to Eq. (59) for samples with a lower loss than z;
7 Infer §; for the rest samples according to PGD optimization;

8 Calculate loss based on Eq. (57);

9: Update w using SGD;

10: until stable accuracy in the validation set.

The minimization part in both (56) and (57) can be solved with an optimization approach similar to PGD [53]. This
method is called MixPert for brevity. The PGD-like optimization for the minimization part in (62) is as follows. First,
20

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

we have al(S(o)
uj +9;),Y; .
e o = S(w) — i (58)
(73
where g; is the one-hot vector of y;. Therefore, v; can be calculated by
0i =n(Ji — S(ui)), (59)

where 7 is a hyper-parameter. Accordingly, the updating of u; is
uj = u+n(G; — S(u;)). (60)
In our implementation, only one updating step is used. Consequently, if co-norm is used, then we have
loil = In(S(wi) =gl < Inll(S(wi) = gl < . (61)

Therefore, we use 7 to control the bound (i.e., €1) of v;. The detailed steps of MixPert are described in Algorithm 2.

Eq. (57) determines which direction of perturbation is performed for a training sample solely based on the loss in
the current epoch. As introduced in Section 4.6, training loss is a typical quantity for training characteristics. If an
independent dataset is available, meta-learning can be employed to automatically determine the positive or negative
direction based on more training characteristics. Let a; (€ {0, 1}) be a binary variable to denote the choice of positive
or negative perturbation for a sample x;. The loss in Eq. (57) becomes

L= Zaiu min I(S(ui +0i).y:) + (1 - i) max L(S(f (xi+8)).9i), @i €{0.1}. (62)

vill<e 131l <ez

If a; = 1(l; > 1), then (62) becomes (57). Here we employ three widely used training characteristics including training
loss, gradient norm, and functional margin to infer the value of ¢; via meta-learning. Following Meta-Weight-Net [68],
we employ a multi-layer perceptron (MLP) with 100 hidden nodes, taking the three training characteristics as input.
The output is @;, which is transformed into a real number through a Sigmoid function. Similar optimization steps
with those of Meta-Weight-Net used in [68] are leveraged. This method is called Meta-MixPert. The main pipeline of
Meta-MixPert is shown in Fig. (5).

Training data Characteristics |, Loss/Gradeint MLP

extraction norm/Margin
Backbone Logit/feature [ftt—— \ l
network perturbation —'F[anloss]-r— a
I
I
Meta data Deep features Metaloss | jummp Optimize
J

Fig. 5. The main pipeline of the proposed Meta-MixPert.

6 EXPERIMENTS
This section evaluates our methods (LogPert, MixPert, and Meta-MixPert) in image classification and text sentiment
analysis, and experiments when the datasets have noises are also considered.

21

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144

ACM, October, 2022 Yao and Wu

6.1 Competing Methods

As our proposed methods belong to the end-to-end noise-aware solution, the following methods are compared: soft/hard
Bootstrapping [62], label smoothing (LS) [71], online label smoothing (OLS) [91], progressive self label correction (Pro-
SelfLC) [77], PGD-based adversarial training (PGD-AT) [53], Self-Distillation from Last Mini-Batch (DLB) [67], and
Margin-based Label Smoothing (MbLS) [46].

The parameter settings are detailed in the corresponding subsections. All the results are the average values of three
repeated runs.

6.2 Image Classification

Four benchmark image classification datasets, namely, CIFAR-10, CIFAR-100 [36], ImageNet [13], and Clothing-1M [84]
are used. To simulate the noisy-label learning scenario, label noise should be added in the training data !*. The synthetic
label noises are simulated on the basis of the two common schemes used in [23, 25, 34]. The first is the random scheme
in which each training sample is assigned to a uniform random label with a probability p. The second is the pair scheme
in which each training sample is assigned to the category next to its true category on the basis of the category list with
a probability p. The value of p is set to 10%, 20%, and 30%.

6.2.1 Experiments on CIFAR-10. CIFAR-10 consists of 50k training images and 10k test images in 10 classes. Resnet-
20, ResNet-32, ResNet-44, ResNet-56, and ResNet-110 [27] are used as base neural networks to evaluate our proposed
LogPert and MixPert on the dataset.

For all the neural networks, the #epochs are set to 300 and batch size is set to 128. SGD is uesd as the optimizer. The
initial learning rate is set to 0.1 and decayed by a factor of 0.1 at the 150th and 225th epochs. In LogPert, A is searched
in {0.175, 0.35} and the learning rate for the perturbation variable is searched in {1.5, 3, 6, 12}. In MixPert, €; (i.e., 1)
is searched in {0.5, 1, 2, 4}, and €y is searched in {0, 8/255, 10/255, 12/255}. 7 is determined according to the top-pro
percent of ordered losses, and the value of pro is searched in {0, 15, 25, 35, 45, 50}. In PGD-AT, €3 is is searched in {8/255,
10/255, 12/255}. For other competing methods, namely, soft/hard Bootstrapping, LS, OLS, DLB, and MbLS, we follow
the parameter settings in their original papers.

The results are shown in Table 2 when ResNet-20 is used as the base neural network. For 0% noise, our proposed
method LogPert achieves the highest accuracy, and for other noises, our proposed method MixPert achieves the best
performance. The results of MixPert are obtained when €, equals to 0, indicating that only positive perturbation is useful
for the (clean) accuracy. Indeed, both the hyper-parameters e; and 7 balance the trade-off between the positive and
negative perturbations. Comparisons on other base networks, namely, ResNet-32, ResNet-44, ResNet-56, and ResNet-
110, are also conducted. Tables 3 and 4 present the classification accuracies of the competing methods with the above
four base networks on partial noisy rates. Our proposed method MixPert achieves the best results.

When LogPert is used, some original labels with high average perturbation terms are found to be erroneous. Fig. 6
shows two samples from CIFAR-10. Their labels seem wrong.

In addition, we plot the distribution of [1-norm of perturbed logit vectors when using LogPert on CIFAR-10 dataset
without label noises (0%). The results are shown in Fig. 7. The distribution curve shows a long-tail trend, which is quite
reasonable.

To verify the performance of the Meta-MixPert algorithm we proposed and to ensure fair evaluation, the settings

in [74, 81] are followed. We randomly select 1000 images in training set as the small clean validation set for CIFAR-10.

141f label noises are added into the training data, then performance will drop seriously for conventional learning methods. Accordingly, noisy-label
learning methods are designed to reduce the serious performance drop.

22

1145
1146
1147
1148

1149

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

Table 2. Classification accuracies (%) and standard deviations on CIFAR-10 (ResNet-20).

Random noise Pair noise

0% 10% 20% 30% 10% 20% 30%
Base (ResNet-20) 91.79+0.31 88.78+0.33 87.55+0.32 85.85+0.37 90.32+0.19 89.28+0.14 87.06+0.23
Soft Bootstrapping 91.83+0.12 89.37+0.18 87.52+0.37 85.59+0.33 90.44+0.23 89.16+0.22 87.08+0.25
Hard Bootstrapping 92.06+0.10 89.61+0.20 88.07+0.32 86.37+0.26 90.34+0.18 89.54+0.25 86.86+0.19
Label Smoothing 92.12+0.14 90.15+0.09 88.54+0.18 86.82+0.16 90.63+0.22 90.12+0.06 88.28+0.42
Online Label Smoothing | 92.18+0.15 89.84+0.14 88.19+0.15 86.08+0.22 90.65+0.18 89.52+0.08 87.68+0.16
ProSelfL.C 91.80+0.16 89.90+0.16 88.84+0.22 86.78+0.31 90.40+0.23 89.76+0.17 87.11+0.20
PGD-AT 89.90+0.08 87.56+0.13 86.87+0.13 84.80+0.17 88.90+0.15 88.38+0.07 86.79+0.13
DLB 91.87+0.13 89.59+0.21 87.92+0.26 85.90+0.28 90.35+0.20 89.32+0.19 87.13+0.28
MbLS 92.20+0.12 90.18+0.14 88.93+0.21 86.89+0.22 90.63+0.18 90.10+0.12 88.31+0.17
LogPert 93.04+0.07 91.07+0.05 90.42+0.13 88.86+0.16 91.74+0.10 91.29+0.07 89.95+0.11
MixPert 92.94+0.06 | 91.09+0.11 90.63+0.12 88.98+0.15 | 92.18+0.06 91.41+0.08 90.01+0.16

Table 3. Classification accuracies (%) and standard deviations on CIFAR-10 (0% noise) when using different base neural networks.

ResNet-32 ResNet-44 ResNet-56 | ResNet-110

Base 92.50+0.26 92.82+0.15 93.03+0.34 93.51+0.18

Soft Bootstrapping 92.40+0.17 | 92.83+0.16 | 93.43+0.27 | 94.08+0.29
Hard Bootstrapping 92.19+0.23 92.94+0.11 93.38+0.25 94.02+0.23
Label Smoothing 92.75+0.24 92.89+0.18 93.05+0.23 93.92+0.43
Online Label Smoothing | 92.61+0.19 | 92.93+0.34 | 93.41+0.20 | 93.54+0.18
ProSelfLC 92.87+0.22 92.98+0.28 93.21+0.19 93.58+0.37
PGD-AT 90.66+0.16 91.31+0.19 91.80+0.22 91.98+0.15

DLB 92.51+0.24 | 92.85+0.27 | 93.44+0.26 | 94.04+0.22

MbLS 92.90+0.19 93.01+0.22 93.48+0.27 94.09+0.24
LogPert 93.71+0.10 94.07+0.07 94.39+0.15 94.91+0.11
MixPert 93.95+0.14 | 94.15+0.13 | 94.52+0.14 | 95.14+0.10

Table 4. Classification accuracies (%) and standard deviations on CIFAR-10 (20% pair noise) when using different base neural net-
works.

ResNet-32 ResNet-44 ResNet-56 | ResNet-110

Base 89.66+0.32 | 89.83+0.25 | 90.11+0.31 | 90.55+0.27

Soft Bootstrapping 89.79+0.28 89.98+0.24 90.17+0.25 90.59+0.30
Hard Bootstrapping 89.94+0.29 90.06+0.27 90.21+0.23 90.66+0.33
Label Smoothing 90.52+0.15 90.83+0.19 91.05+0.22 91.31+0.24
Online Label Smoothing 90.65+0.13 90.81+0.16 90.95+0.21 91.16+0.20
ProSelfLC 90.58+0.17 91.01£0.19 91.16+£0.24 91.48+0.27
PGD-AT 89.07+0.12 89.37+0.15 89.94+0.17 90.41+0.22

DLB 90.01+0.26 90.19+0.25 90.38+0.19 91.01+0.19

MbLS 90.68+0.26 91.03+0.29 91.15+0.25 91.51+£0.22
LogPert 91.74+0.12 92.04+0.14 92.26+0.13 92.79+0.16
MixPert 91.87+0.13 | 92.13+0.12 | 92.44+0.15 | 93.16+0.11

If the compared methods do not rely on the small clean validation set, both the training and the small clean validation
sets are merged as training set. MbLS [46], which performed better in the aforementioned experiments, is used for
comparison. ResNet-56 and ResNet-110 are used as the base neural networks. The results are shown in Table 5. When
employing meta-learning strategies, our proposed MixPert shows further improvement, and Meta-MixPert achieves
the best results.

23

ACM, October, 2022 Yao and Wu

1197

1198 Original label:
1199 airplane
1200
1201
1202
1203 ID:11734
1204
1 Original label:
1206
1207 ship
1208
1209
1210 1D:18310
1211
1212 Fig. 6. Samples with high average perturbation terms whose labels seem erroneous.
1213
1214
1215 12
1216
10

1217 ;
1218 g 8
1219 g
1220 £ 6
1221 S

=
1222 - 4

=
1223
1224 2
1225 0
12 0 10000 20000 30000 40000 50000 60000
1227
. Sample
1220 Fig. 7. Distribution of /1-norm of perturbed logit vectors on CIFAR-10.
1230
1231 Table 5. Classification accuracies (%) and standard deviations on CIFAR-10 (ResNet-56 and ResNet-110).
1 ResNet-56 ResNet-110
1233 0% 20% pair noise 0% 20% pair noise
1234 Base 93.03£034 90.13£028 | 9351x0.18 90.600.26
1235 MbLS 93.48+0.27 91.20+0.33 94.09+0.24 91.46+0.19
1236 MixPert 94.52+0.14 92.47+0.16 95.14+0.10 93.22+0.20
1237 Meta-MixPert | 95.19+0.17 93.86+0.11 95.83+0.13 94.80+0.18

1238
622 Experiments on CIFAR-100. CIFAR-100 consists of 50k training images and 10k test images in 100 classes. ResNet-
o1 20, ResNet-32, ResNet-44, ResNet-56, and ResNet-110 are also used as base neural networks. Training details are the

1242 same as the experiments on CIFAR-10. In addition, Wide-ResNet-28-10 (WRN-28-10) [90] is also employed. We follow
1243

1240

the same experimental setting as [79].
e The experimental results on CIFAR-100 are shown in Tables 6, 7, 8, and 9. LogPert and MixPert outperform all

1245
126 competing methods. Compared with the base neural network ResNet20, the maximum improvement of the LogPert is
1247 6.01%, and the minimum improvement is 1.53%. The maximum improvement of the MixPert is 7.81%, and the minimum

1248 24

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

improvement is 1.32%. In 20% pair noise experiments, compared with ResNet-32, ResNet-44, ResNet-56, and ResNet-
110, MixPert improves the accuracy by 4.68%, 6.34%, 5.98%, and 4.35%, respectively. Compared with the base neural
network WRN-28-10, the maximum improvement of the LogPert is 3.72%, and the minimum improvement is 2.15%. The
maximum improvement of the MixPert is 4.10%, and the minimum improvement is 2.26%. All the experimental results
show that our proposed methods significantly improve the classification performance. In addition, ResNet-110 and
WRN-28-10 are used as the base neural networks to evaluate our proposed Meta-MixPert method. The experimental

results are shown in Tables 10. Our proposed Meta-MixPert achieves the best results.

Table 6. Classification accuracies (%) on CIFAR-100 (ResNet-20).

Random noise Pair noise

0% 10% 20% 30% 10% 20% 30%
Base (ResNet-20) 67.81+0.08 63.67+0.29 60.63+0.33 57.82+0.35 63.94+0.29 61.22+0.03 55.74+0.22
Soft Bootstrapping 68.38+0.24 64.01+0.23 60.66+0.28 57.97+0.23 64.29+0.31 60.71+0.23 56.27+0.26
Hard Bootstrapping 67.62+0.29 64.28+0.33 60.32+0.22 58.09+0.19 63.96+0.26 60.69+0.29 56.18+0.17
Label Smoothing 67.54+0.10 65.04+0.18 61.84+0.27 59.06+0.08 65.43+0.24 62.71+£0.24 58.92+0.19
Online Label Smoothing 67.80+0.19 64.55+0.15 61.53+0.22 59.19+0.13 64.70+0.28 62.54+0.19 57.44+0.25
ProSelfLC 68.37+0.22 64.64+0.28 62.14+0.17 58.93+0.24 65.36+0.18 62.57+0.16 59.08+0.27
PGD-AT 64.37+0.17 60.39+0.24 57.38+0.21 54.23+0.16 60.41+0.20 58.08+0.13 54.37+0.22
DLB 68.33+0.19 64.30+0.33 61.02+0.27 58.05+0.24 64.33+0.25 61.41+0.15 57.09+0.19
MbLS 68.40+0.27 65.09+0.15 62.17+0.28 59.21+0.22 65.39+0.17 62.76+0.14 59.22+0.21
LogPert 69.34+0.08 | 65.63+0.12 62.64+0.14 59.70+0.13 66.59+0.17 64.81+0.09 61.75+0.15
MixPert 69.13+0.12 | 65.79+0.14 62.76+0.20 60.17+0.12 | 66.81+0.16 64.83+0.11 63.55+0.13

Table 7. Classification accuracies (%) and standard deviations on CIFAR-100 (0% noise) when using different base neural networks.

ResNet-32 ResNet-44 ResNet-56 | ResNet-110

Base 69.16+0.19 70.02+0.19 70.38+0.34 73.18+0.12

Soft Bootstrapping 69.76+0.25 | 70.76+£0.34 | 71.01£0.40 | 74.19+0.24
Hard Bootstrapping 69.37+0.24 70.06+0.29 70.26+0.31 73.35+0.18
Label Smoothing 69.91+0.27 70.52+0.51 71.49+0.29 74.01+0.44
Online Label Smoothing | 69.53+0.22 | 70.05+0.79 | 71.06+0.26 | 73.59+0.19
ProSelfLC 69.54+0.29 70.39+0.35 70.49+0.32 73.42+0.24
PGD-AT 65.94+0.18 66.55+0.26 67.58+0.29 70.83+0.17

DLB 69.74+0.27 | 70.44+0.32 | 70.79+0.35 | 73.87+0.18

MbLS 69.93+0.26 70.59+0.31 71.50+0.25 74.19+0.23
LogPert 71.55+0.16 72.01+0.15 72.79+0.23 75.72+0.13
MixPert 71.68+0.14 | 72.18+0.19 | 72.93+0.24 | 75.80+0.14

6.2.3 Experiments on ImageNet. LogPert, MixPert, and Meta-MixPert are also evaluated on a large-scale dataset Im-
ageNet which consists of 1.2M training images and 50K validation images in 1K categories. Resnet-50 and ResNet-
101 [27] are used as base neural networks.

We train all the neural networks for 250 epochs using a batch size of 256. SGD is uesd as the optimizer. The initial
learning rate is 0.1 and decayed by a factor of 0.1 at the 75th, 150th, and 225th epochs. The parameter settings are the
same as the settings on CIFAR-10.

Top-1 and top-5 errors are used to assess the classification performance. The experimental results are shown in
Tabels 11, 12 and 13. MixPert and LogPert still achieve the best and the second-best performance, respectively. The
meta-learning strategies further improve the performance of the MixPert. Experiments on ImageNet still demonstrate

the effectiveness of our methods LogPert, MixPert and Meta-MixPert.
25

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

1347

ACM, October, 2022 Yao and Wu

Table 8. Classification accuracies (%) and standard deviations on CIFAR-100 (20% pair noise) when using different base neural net-
works.

ResNet-32 ResNet-44 ResNet-56 | ResNet-110

Base 62.46+0.54 62.73+0.64 63.37+0.22 67.51+0.19

Soft Bootstrapping 63.09+0.33 63.69+0.39 64.06+0.28 67.87+0.26
Hard Bootstrapping 63.03+0.41 | 63.57+£0.32 | 63.99+0.34 | 67.40+0.23
Label Smoothing 64.45+0.28 65.72+0.27 66.50+0.74 69.43+0.36
Online Label Smoothing | 63.94+0.66 65.18+0.70 65.45+0.52 68.38+0.34
ProSelfL.C 64.04+0.37 65.04+0.44 65.48+0.46 68.86+0.26
PGD-AT 60.13+0.31 60.58+0.28 60.96+0.29 65.62+0.20

DLB 63.11+0.37 64.01+0.33 64.26+0.45 68.13+0.35

MbLS 64.55+0.24 65.74+0.29 66.61+0.37 69.39+0.26
LogPert 66.67+0.25 67.16+0.24 68.69+0.23 71.83+0.19
MixPert 67.14+0.23 | 69.07+0.26 | 69.35+0.20 | 71.86+0.18

Table 9. Classification accuracies (%) and standard deviations on CIFAR-100 (WRN-28-10).

Random noise Pair noise

0% 10% 20% 30% 10% 20% 30%
Base (WRN-28-10) 81.53+0.09 78.51+0.18 75.84+0.23 72.95+0.31 78.92+0.16 76.37+0.25 72.31+0.29
Soft Bootstrapping 81.74+0.26 78.73+0.33 75.92+0.29 72.98+0.29 78.98+0.22 76.41+0.33 72.74+0.27
Hard Bootstrapping 81.86+0.34 78.90+0.29 75.89+0.32 73.06+0.28 78.95+0.18 76.44+0.25 72.65+0.24
Label Smoothing 82.07+0.16 79.03+0.24 76.77+0.27 73.54+0.19 79.34+0.17 76.82+0.28 73.11+0.35
Online Label Smoothing 82.02+0.23 78.97+0.19 76.79+0.22 73.62+0.21 79.18+0.24 76.79+0.33 73.02+0.31
ProSelfLC 81.95+0.14 79.12+0.21 76.81+0.17 73.31+0.15 79.52+0.26 76.79+0.34 73.27+0.28
PGD-AT 79.42+0.12 76.23+0.19 73.48+0.24 70.48+0.17 76.51+0.25 74.25+0.20 70.52+0.24
DLB 82.05+0.25 79.01+0.27 76.54+0.28 73.29+0.22 79.11+0.21 76.67+0.31 72.86+0.27
MDbLS 82.24+0.23 79.59+0.24 76.93+0.25 73.77+£0.27 79.63+0.17 77.41+0.29 73.49+0.23
LogPert 83.32+0.10 81.05+0.22 78.01+0.19 75.11+0.24 81.07+0.15 79.20+0.26 76.03+0.20
MixPert 83.39+0.07 | 81.14+0.15 78.10+0.26 75.27+0.21 | 81.29+0.11 79.25+0.27 76.41+0.18

Table 10. Classification accuracies (%) and standard deviations on CIFAR-100 (ResNet-110 and WRN-28-10).

ResNet-110 WRN-28-10
0% 20% pair noise 0% 20% pair noise
Base 73.18+0.12 67.47+0.22 81.53+0.09 76.41+0.24
MbLS 74.19+0.23 69.42+0.21 82.24+0.23 77.38+0.27
MixPert 75.80+0.14 71.88+0.16 83.39+0.07 79.30+0.29
Meta-MixPert | 76.55+0.15 73.27+0.13 83.97+0.12 80.42+0.25

6.2.4 Experiments on Clothing TM. The experiments are also conducted on Clothing 1M, which is a real-world noisy
dataset. The Clothing 1M dataset consists of 1M images with noisy labels and additional 50k, 14k, 10k of clean data for
training, validation and testing, respectively.

To evaluate LogPert and MixPert, we follow the same experimental settings as previous studies [42, 72]. The ResNet-
50 pre-trained on ImageNet is used as the base neural network. We use SGD with a momentum of 0.9 and a weight decay
of 1073, The batch size is set to 32. For LogPert, MixPert, and other competing methods, the parameter settings are the
same as the settings in 6.2.1. The results are shown in Table 14. The proposed MixPert achieves the best results, and
LogPert achieves the second-best results. Compared with the base neural network, the MixPert and LogPert improved
by 5.70% and 5.46%, respectively. To evaluate Meta-MixPert, the settings in [81] are followed. The results shown in
Table 15 demonstrate meta-learning strategies further improve the performance of the MixPert method.

26

1353

1354

1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

A Taxonomy for Learning with Perturbation and Algorithms

ACM, October, 2022

Table 11. Top-1 and Top-5 Errors (%) on ImageNet (0% noise). * denotes the results reported in online label smoothing [91].

Top-1 Error(%)

Top-5 Error(%)

Base (ResNet-50)
Soft Bootstrapping
Hard Bootstrapping
Label Smoothing
Online Label Smoothing
ProSelfLC
PGD-AT
DLB
MbLS
LogPert
MixPert

23.68"
23.49*
23.85%
22.82%
22.28*
23.15
24.93
23.42
22.26
21.82
21.79

7.05%
6.85"
7.07*
6.66*
6.39"
6.74
7.33
6.79
6.36
6.13
6.10

Table 12. Top-1 and Top-5 Errors (%) on ImageNet (0% noise).” denotes the results reported in online label smoothing [91].

Top-1 Error(%)

Top-5 Error(%)

Base (ResNet-101)
Soft Bootstrapping
Hard Bootstrapping
Label Smoothing
Online Label Smoothing
ProSelfLC
PGD-AT
DLB
MbLS
LogPert
MixPert

21.87%
21.61
21.92

21.27%

20.85*
21.43
22.92
21.59
20.83
20.48
20.43

6.29*
6.18
6.30
5.85*
5.50*
5.97
6.53
6.15
5.46
5.35
5.31

Table 13. Top-1 and Top-5 Errors (%) on ImageNet.

ResNet-50 ResNet-101
Top-1 Error(%) Top-5 Error(%) | Top-1Error(%) Top-5 Error(%)
Base 23.68 7.05 21.87 6.29
MbLS 22.26 6.36 20.83 5.46
MixPert 21.79 6.10 20.43 5.31
Meta-MixPert 21.42 5.89 20.02 5.14

6.3 Text Sentiment Analysis

A benchmark dataset is used, namely, IMDB [52]. It is a large internet movie dataset for binary classification tasks with

50k labeled reviews. The proportion of training, validation, and test data we used is 4:1:5. Two types of label noises are

added. In the first type (symmetric), the labels of the former 5%, 10%, and 20% (according to their indexes in the corpus)

training samples are flipped to simulate the label noises; in the second type (asymmetric), the labels of the former 5%,

10%, and 20% (according to their indexes in the corpus) positive samples are flipped to negative.
BiLSTM with attention and BERT-Base are used as base models. For BiLSTM with attention, the 300-D Glove [94]

embedding is used; the embedding dropout and the dimension of hidden vectors are set to 0.5 and 100, respectively.

The learning rates for BILSTM with attention and BERT-Base are set to 1e-3 and 2e-5, respectively. For both models,

the batch size is set to 64 and the #epochs is set to 6. AdamW 1is uesd as the optimizer. In LogPert, the learning rate
for the perturbation variable is searched in {0.75, 0.8, 0.85}, and the A is searched in {0.75, 1}. In MixPert, €1 (i.e., n)

27

ACM, October, 2022 Yao and Wu

1405 Table 14. Classification accuracies (%) on Clothing TM.
1400 Accuracy
107 Base(ResNet-50) 69.19
1408 Soft Bootstrapping 70.26
1409 Hard Bootstrapping 70.77
110 Label Smoothing 71.81
e Online Label Smoothing 71.79
e ProSelfL.C 71.80
e PGD-AT 68.02
e DLB 71.76
e MbLS 72.14
1e LogPert 74.65
7 MixPert 74.89
1418

1419

1420 Table 15. Classification accuracies (%) on Clothing 1M.
:i Accuracy

1423 Base(ResNet-50) 69.31

. MbLS 72.32

1425 MixPert 74.92

1496 Meta-MixPert 75.41

1427

1428

1429 js searched in {0, 0.05, 0.1, 0.15}, and €3 is searched in {0, 0.005, 0.01, 0.02}. 7 is determined by the top-pro percent of
1430 ordered losses, and the value of pro is searched in {0, 5, 15, 30, 60}. In PGD-AT, €3 is is searched in {0.005, 0.01, 0.02}.
For other competing methods, namely, soft/hard Bootstrapping, LS, OLS, DLB, and MbLS, we follow the parameter

1431
1432
1433 settings in the original papers.
1434
1435

1436 Table 16. Classification accuracies (%) on IMDB.

1437 Symmetric noise Asymmetric noise
1438 0% 5% 10% 20% 5% 10% 20%
1439 Base (BILSTM-+attention) | 84.39+0.34 | 83.04+0.17 81.90+0.61 78.13+0.13 | 82.35+0.88 79.53+2.68 73.74+1.14
1440 Soft Bootstrapping 84.79+0.87 | 83.87+0.13 81.11+0.62 79.60+1.78 | 83.36+1.11 80.70+2.19 73.52+2.65
1441 Hard Bootstrapping 84.44+0.93 | 84.10+0.54 83.01+0.70 80.84+1.07 | 82.48+1.72 81.42+1.55 75.26%1.02
L2 Label Smoothing 84.62+£0.18 | 83.14+0.24 82.41+0.51 80.73+0.20 | 82.75+0.29 82.28+0.33 74.70+0.48
s Online Label Smoothing | 84.83+0.51 | 84.14+0.37 82.09+0.54 80.91+1.17 | 83.78+0.77 81.35£0.92 73.75+1.38
o ProSelfLC 84.79+0.39 | 83.21+0.44 82.17+047 80.42+0.41 | 83.22+091 81.58+0.85 74.96+3.01
PGD-AT 85.82+£0.10 | 84.12+0.37 83.53+0.44 81.48+0.18 | 82.41+0.98 80.75+0.73 73.85+2.33
1445 DLB 84.77+0.41 | 83.95+£0.22 83.16+0.59 80.87+0.67 | 83.39+0.81 81.37+0.76 75.01+1.12
1446 MbLS 84.85+0.26 | 84.06+0.17 83.45+0.31 81.49+0.46 | 83.81+0.29 81.87+0.33 75.29+1.09
1447 LogPert 85.91+0.11 | 84.57+0.15 83.81+0.24 81.75+0.18 | 84.64+0.29 82.43+031 77.16+0.28
1448 MixPert 85.96+0.07 | 85.21+0.12 84.45+0.21 82.74+0.15 | 85.37+0.22 83.24+0.23 77.83+0.25
1449
1450
1451 The results of the competing methods on the IMDB for the symmetric and asymmetric label noises are shown in

2 Table 16, when BiLSTM with attention [20] is used as the base network. Our proposed method, MixPert, achieves the
1453
s overall best results. When no added label noises are present (0%), MixPert and LogPert still outperform the base model

1455 BILSTM with attention by 1.57% and 1.52%, respectively.
1456 28

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

1508

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

On IMDB, the base model is usually converged in the second epoch. However, LogPert is usually converged in the
third or the fifth epoch. The validation accuracies of the six epochs for the base model and our LogPert are shown in

Fig. 8. LogPert can decelerate the convergence speed leading that the training data can be more fully trained.

accuracy (%) accuracy(%)

90 - 90 -

851 85

80 80+

751 751
—=— 0%
——5%

204 70 ——10%
—v—20%

65 T T T T 65 T T T T)

1 2 4 5 6 1 2 3 4 5 6

3 epoch epoch
Fig. 8. The validation accuracies in the six epochs under different proportions of random noises on IMDB when using Base (left) and
LogPert (right), respectively.

When LogPert is used, some original labels with high average perturbation terms are found to be erroneous. For
example, the sentence “this is a great movie. I love the series on tv and so I loved the movie. One of the best things in the
movie is that Helga finally admits her deepest darkest secret to Arnold!!! that was great. i loved it it was pretty funny too.
It’s a great movie! Doy!!!” is labeled as negative in the original set.

When BERT-Base [15] is used as the base model, we conduct experiments on the IMDB dataset with 0% noise, 10%
symmetric noise, and 10% asymmetric noise. The experimental results are shown in Table 17. Our proposed method,

MixPert, still achieves the overall best results. LogPert achieves the second-best results.

Table 17. Classification accuracies (%) on IMDB with BERT.

0% noise 10% symmetric noise | 10% asymmetric noise
Base (BERT) 90.61+0.04 89.26+0.20 89.04+0.37
Soft Bootstrapping 90.72+0.13 89.47+0.27 89.28+0.39
Hard Bootstrapping 90.70+0.09 89.38+0.29 89.26+0.40
Label Smoothing 90.89+0.11 89.61+0.17 89.35+0.21
Online Label Smoothing | 90.95+0.07 89.59+0.22 89.42+0.27
ProSelfLC 90.90+0.08 89.54+0.19 89.37+0.18
PGD-AT 91.51+0.06 89.34+0.15 89.30+0.20
DLB 90.77+0.10 89.49+0.24 89.32+0.29
MbLS 91.13+0.09 89.81+0.22 89.68+0.24
LogPert 91.69+0.05 90.53+0.14 90.38+0.18
MixPert 91.83+0.04 90.59+0.11 90.50+0.16

6.4 Ablation Study

6.4.1 Ablation Study for MixPert. An ablation study is conducted for MixPert on CIFAR-10 (random noises) as MixPert
involves both positive and negative perturbations. The results in Table 18 indicate that negative perturbation (i.e.,
adversarial training) does not improve the performance yet the positive perturbation achieves the best performance.

Table 19 lists the clean and adversarial accuracies of MixPert under different values of €2 on the CIFAR-10 (10% random
29

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

1537

ACM, October, 2022 Yao and Wu

noises). The increase of €2 improves the adversarial accuracies yet reduces the clean accuracies. Although negative

perturbation in MixPert does not improve the clean accuracies, it benefits the adversarial accuracies.

Table 18. An ablation study of MixPert on CIFAR-10 (%).

Random noise 0% 10% 20% 30%
Baseline (ResNet-20) 91.79+0.31 88.78+0.33 87.55+0.32 85.85+0.37
Only pos. pert. (€2 = 0) | 92.94+0.06 91.09+0.11 90.63+0.12 88.98+0.15
Only neg. pert. (€1 =0) 91.66+0.12 88.69+0.22 87.33+£0.10 85.71+0.31
Both directions 92.02+0.15 90.11+0.27 89.75+0.17 88.17+0.16

Table 19. Performance variations under different values of €;.

0 2/255 4/255 6/255 8/255
Clean accuracy(%) 91.09+0.11 90.11+0.27 89.77+0.18 88.67+0.15 88.30+0.19
Adversarial accuracy(%) | 11.57+£0.36 53.38+0.31 64.95+0.24 68.20+0.16 70.25+0.14

An ablation study is also conducted for MixPert on IMDB. The results are shown in Table 20. Each perturbation is

useful and their combination achieves the best performance.

Table 20. An ablation study of MixPert on IMDB (%).

Symmetric noise 0% 5% 10% 20%
Baseline (BiLSTM+attention) | 84.39+0.34 83.04+0.17 81.90+0.61 78.13+£0.13
Only pos. pert. (€2 = 0) 85.92+0.16 84.66+0.13 83.86+0.24 81.71+0.23
Only neg. pert. (e; = 0) 85.84+0.36 84.87+0.22 83.89+0.27 81.73+0.24
Both directions 85.96+0.07 85.21+0.12 84.45+0.21 82.74+0.15

6.4.2 Ablation Study for Meta-MixPert. An ablation study is conducted for Meta-MixPert on CIFAR-100. The results
presented in Table 21 indicate that the training loss, gradient norm, and functional margin all contribute significantly

to the performance of Meta-MixPert.

Table 21. An ablation study of Meta-MixPert on CIFAR-100 (%).

0% 20% pair noise
Meta-MixPert(WRN-28-10) 83.97+0.12 80.42+0.25
Meta-MixPert without training loss 83.26+0.27 79.43+0.21
Meta-MixPert without gradient norm 83.39+0.18 79.66+0.23
Meta-MixPert without functional margin | 83.11+0.13 79.35+0.19

6.4.3

Impact of Hyper-Parameters. In LogPert, the effect of A on the results is analyzed on CIFAT-100 (pair noises),

and the results are shown in Fig. 9. The best results are obtained when A is set to 0.175 or 0.35. When the value of A is

greater than 0.35, the accuracy gradually decreases. A moderate value of A can balance the original loss and the degree

of logit perturbation.

In MixPert, the effect of €1 (i.e., n) and 7 (the value of pro) on the results is analyzed on IMDB (asymmetric noises),

and the results are shown in Fig. 10. We observe that when € is greater than 0.1, the accuracy gradually decreases. As

the noise percentage increases, the value of pro for the best results is larger.
30

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1612

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

accuracy (%)

65
L
60 1
Y —a— 0%
—o— 10% v
—A—20% N v
—v—30%
55

0 0.175 0.35 0.7 1.4 2.8
the value of A

Fig. 9. Accuracies under different A values in LogPert.

accuracy (%) accuracy (%)
904 90 4
85 ;w SS-M
80-/\‘\\‘“\‘ SO-M
75 _/\\?\ﬁ 75
—=—0% ——0%
——10% ——10%
—A—20% A 20%
30% o
70 +——— + 70
0 0.05 0.1 0.2 0.4 0.6 08 0 10 20 30 40 50 60 70 80 90 100
the value of ¢, the value of pro

Fig. 10. Accuracies under different values of €; (left) and pro in MixPert.

6.5 Discussion

The results indicate that our proposed two methods LogPert and MixPert achieve competitive performances among
the competing methods. MixPert is superior to LogPert in most cases. The reason lies in that LogPert only implements
positive perturbation in order to reduce the negative influence of samples with noisy or quite hard labels. However,
MixPert can implement both positive and negative perturbations. Its positive perturbation part plays a quite similar
role as LogPert, whereas its negative perturbation part plays a role of implicit data augmentation. Further, the extent
of negative perturbation is controlled by the value of €. When e; = 0, MixPert is approximately reduced to LogPert.
Naturally, MixPert can achieve better results than LogPert in real use.

More extensions and new methods can be obtained based on our taxonomy.

(1) The extension of the logit perturbation (described in Eq. (56)). As previously mentioned, each weighting method
may correspond to a perturbation method. Self-paced learning (SPL) [37] is a classical sample weighting strategy in

31

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663

1664

ACM, October, 2022 Yao and Wu

machine learning. The weights are obtained with the following objective function:
min D7 il (S,) = v (63)

The solution is

1 if I(S(uj),y;) <A
wi = (S(u;) yz) , (64)
0 otherwise

which indicates that the weights of samples with larger losses than A are set to 0. When the value of 1 is increased,
more samples will participate in the model training.

Fig. 11 shows the curves of weights for the original SPL and its variants. LogPert can be used to implement the SPL
with (56) and (65) when the hyper-parameters € and 7 satisfy the following conditions:

s ttande > 2max{||u;|}, 3
i

where t is the index of the current epoch. A new method is obtained and can be called self-paced logit perturbation.

1.0 —
0.8
4
=
2 — hard
@D 0.6 e jinear
= —
Q — riixUre
r— mixture2
204 logistic
poly_t=1.3
o Tt
wn — poly t=1.5
poly t=3
0.2 | == paly_t-4 h"‘“‘-th__‘_m-_‘.q_h..__h_‘
s Huber - ——
= Cauchy
L1-L2
0.0 Welsch

00 02 04 06 08 1.0 1.2 1.4
sample loss

Fig. 11. The curves of weights under different losses in SPL. “Hard” represents the original SPL [82].

With Eq. (65), similar curves to those of SPL can also be obtained. Fig. 12 shows the curve of loss ratios (perturbed
loss : original loss) when € > 2max{||u;||} on the CIFAR-100 dataset. The curve indicates that our strategy can also
exert higher weights (= 1) to sam}iles with low losses and lower weights (~ 0) to samples with high losses.

(2) The extension of MixPert. Indeed, the parameters €; and e, characterize the extent of positive and negative
perturbations, respectively. Intuitively, a sample with a larger loss should have a greater positive perturbation; while
a sample with a lower loss should have a greater negative perturbation. Therefore, the constrains for the perturbation

terms in (52) can be redefined as follows:
lloill < e[1+ (i —7)/7] and [|5i]] < e2[1+ (v = Li)/7]. (66)

(3) The extension of Bootstrapping. The Bootstrapping loss and the online label smoothing can be unified into the
following new loss:

L= 1piyira(Bpy+(1-Ppi = yi), (67)

32

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1716

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

1.2

-
S

et
0

Sample loss ratio
o o
E= f=2}

e
&}

0.0 E—

Sample loss

Fig. 12. Loss ratio curve of self-paced logit perturbation given a fixed 7 (¢) and 7.

where py, is the category-level average prediction in the previous epoch; « and f§ are hyper-parameters and are located
in [0, 1]. When f equals 0, the above loss becomes the soft Bootstrapping loss. When f equals 1, the loss becomes the
online label smoothing loss with a little difference. Specifically, p,, is defined as follows:

~ 1
py’:_Z ' Z (confj ij), (68)
Yi jiyi=y;
where conf; is the prediction confidence of the prediction p;, and Zy, is the normalizer. Two typical definitions of conf;

are

confj =1 or

1 if the prediction is correct (69)

conf;
J .
0 otherwise

When the second definition is used and § = 1, the unified loss becomes the online label smoothing. Nevertheless, in
most datasets, the values of p,, obtained by the above two definitions are close to each other as the index of the current

epoch gradually increases according to our observations. The unified new method can be called mixBootstrapping.

7 CONCLUSIONS

This study reveals a widely used yet less-explored machine learning strategy, namely, perturbation. Machine learn-
ing methods leveraging or partially leveraging perturbation comprise a new learning paradigm called learning with
perturbation. To solidify the theoretical basis of perturbation learning, a systematic taxonomy is constructed on the
basis of which to perturb, the direction of loss variation, how to infer, and the granularity. To demonstrate the uni-
versality of perturbation learning, several existing learning methods are explained within our constructed taxonomy.
Furthermore, three concrete perturbation learning methods (i.e., LogPert, MixPert, and Meta-MixPert) are proposed.
Extensive experiments suggest that our proposed methods are effective in robust learning tasks. It is believable that our
constructed taxonomy can build intrinsic connections among a large number of seemly unrelated learning methods,
enlighten the deep understanding of these methods, and inspire the design of more effective methods.

ACKNOWLEDGEMENT

We thank Mr. Mengyang Li for his useful suggestions on the experiments.

33

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

ACM, October, 2022 Yao and Wu

REFERENCES

(1]
(2]
[
[

(9]
[10]

(1]
(12]
(13]
[14]

[15]

(16
[17]

(18]
[19]
[20]
[21]
[22]

[23]

[24]

M. Bazaraa, H. Sherali, and C. Shetty. 1993. Nonlinear Programming - Theory and Algorithms. John Wiley and Sons, Inc.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In ICML. 41-48.

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. 2021. Universal adversarial training with class-wise perturbations. In ICME. 1-6.
Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. 2019. Learning imbalanced datasets with label-distribution-aware margin
loss. In NeurIPS. 1565-1576.

Kuang-Yu Chang, Chu-Song Chen, and Yi-Ping Hung. 2011. Ordinal hyperplanes ranker with cost sensitivities for age estimation. In CVPR. 585-
592.

Ashutosh Chaubey, Nikhil Agrawal, Kavya Barnwal, Keerat K. Guliani, and Pramod Mehta. 2020. Universal Adversarial Perturbations: A Survey.
In arXiv2005.08087.

Dubing Chen, Yuming Shen, Haofeng Zhang, and Philip HS Torr. 2022. Zero-Shot Logit Adjustment. arXiv preprint arXiv:2204.11822 (2022).
Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, and Jungwon Lee. 2020. Data-free network quantization with adversarial knowledge distillation. In
CVPR Workshops. 3047-3057.

Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning 20, 3 (1995), 273-297.

Jiequan Cui, Shu Liu, Zhuotao Tian, Zhisheng Zhong, and Jiaya Jia. 2023. ResLT: Residual Learning for Long-Tailed Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 45, 3 (2023), 3695-3706.

D. Das and Csg Lee. 2019. A Two-Stage Approach to Few-Shot Learning for Image Recognition. IEEE Transactions on Image Processing 29, 99
(2019), 3336-3350.

Antoine de Mathelin, Francois Deheeger, Mathilde Mougeot, and Nicolas Vayatis. 2023. Deep Anti-Regularized Ensembles provide reliable out-of-
distribution uncertainty quantification. In arXiv:2304.04042.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In CVPR. 248-255.
Jia Deng, Jonathan Krause, and Li Fei-Fei. 2013. Fine-grained crowdsourcing for fine-grained recognition. In CVPR. 580-587.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language
understanding. In NAACL-HLT. 4171-4186.

Oussama Dhifallah and Yue Lu. 2021. On the Inherent Regularization Effects of Noise Injection During Training. In ICML. 2665-2675.

Xiaozhao Fang, Yong Xu, Xuelong Li, Zhihui Lai, Wai Keung Wong, and Bingwu Fang. 2017. Regularized label relaxation linear regression. IEEE
Transactions on neural networks and learning systems 29, 4 (2017), 1006-1018.

Pedro A Forero, Vassilis Kekatos, and Georgios B Giannakis. 2012. Robust clustering using outlier-sparsity regularization. IEEE Transactions on
Signal Processing 60, 8 (2012), 4163-4177.

Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of
computer and system sciences 55, 1 (1997), 119-139.

Felix A Gers, Jurgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual prediction with LSTM. Neural Computation 12, 10
(2000), 2451-2471.

Morgane Goibert and Elvis Dohmatob. 2019. Adversarial robustness via label-smoothing. arXiv preprint arXiv:1906.11567 (2019).

Jacob Goldberger and Ehud Ben-Reuven. 2017. Training deep neural-networks using a noise adaptation layer. In ICLR.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R Scott, and Dinglong Huang. 2018. Curriculumnet: Weakly
supervised learning from large-scale web images. In ECCV. 139-154.

Y. Hamamoto, Y. Mitani, H. Ishihara, T. Hase, and S. Tomita. 1996. Evaluation of an anti-regularization technique in neural networks. In ICPR.
205-208.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W Tsang, and Masashi Sugiyama. 2018. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In NeurIPS. 8536-8546.

Jiangfan Han, Ping Luo, and Xiaogang Wang. 2019. Deep self-learning from noisy labels. In ICCV. 5137-5146.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR. 770-778.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).
Hidekata Hontani, Takamiti Matsuno, and Yoshihide Sawada. 2012. Robust nonrigid ICP using outlier-sparsity regularization. In CVPR. 174-181.
Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. 2023. Dual Compensation Residual Networks for Class Imbalanced
Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 10 (2023), 11733-11752.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. 2016. Learning deep representation for imbalanced classification. In CVPR. 5375-5384.
Jinchi Huang, Lie Qu, Rongfei Jia, and Bingiang Zhao. 2019. O2u-net: A simple noisy label detection approach for deep neural networks. In ICCV.
3325-3333.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. 2019. Adversarial Examples Are Not
Bugs, They Are Features. In NeurIPS.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Mentornet: Learning data-driven curriculum for very deep neural
networks on corrupted labels. In ICML. 2309-2318.

Justin M Johnson and Taghi M Khoshgoftaar. 2019. Survey on deep learning with class imbalance. Journal of Big Data 6, 1 (2019), 1-54.

34

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

1820

A Taxonomy for Learning with Perturbation and Algorithms ACM, October, 2022

[36]
(371
[38]

[39]
[40]

[41]
[42]
[43]

[44]

[45]
[46]

[47]

[48]
[49]

[50]
[51]
[52]
(53]
[54]
[55]
[56]

[57]

[58]
[59]

[60]
[61]
[62]
[63]

[64]

[65]
[66]

[67]

[68]

[69]
[70]

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images. Technical Report.

M Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning for latent variable models. In NeurIPS. 1189-1197.

Pablo Lanillos, Daniel Oliva, Anja Philippsen, Yuichi Yamashita, Yukie Nagai, and Gordon Cheng. 2020. A review on neural network models of
schizophrenia and autism spectrum disorder. Neural Networks 122 (2020), 338-363.

Wonseok Lee, Hanbit Lee, and Sang-goo Lee. 2020. Semantics-Preserving Adversarial Training. arXiv preprint arXiv:2009.10978 (2020).

Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Jay Shi, Shuyang Cheng, and Dragomir Anguelov. 2021. PolyLoss: A Polynomial
Expansion Perspective of Classification Loss Functions. In ICLR.

Buyu Li, Yu Liu, and Xiaogang Wang. 2019. Gradient harmonized single-stage detector. In AAAL 8577-8584.

Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli. 2019. Learning to learn from noisy labeled data. In CVPR. 5051-5059.

Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet Oymak. 2021. AutoBalance: Optimized Loss Functions for Imbalanced
Data. NeurIPS 34 (2021).

Shuang Li, Kaixiong Gong, Chi Harold Liu, Yulin Wang, Feng Qiao, and Xinjing Cheng. 2021. MetaSAug: Meta Semantic Augmentation for
Long-Tailed Visual Recognition. In CVPR. 5212-5221.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017. Focal loss for dense object detection. In ICCV. 2999-3007.
Bingyuan Liu, Ismail Ben Ayed, Adrian Galdran, and Jose Dolz. 2022. The Devil is in the Margin: Margin-based Label Smoothing for Network
Calibration. In CVPR. 80-88.

Hong Liu, Rongrong Ji, Jie Li, Baochang Zhang, Yue Gao, Yongjian Wu, and Feiyue Huang. 2019. Universal adversarial perturbation via prior
driven uncertainty approximation. In ICCV. 2941-2949.

Hao Liu, Xiangyu Zhu, Zhen Lei, and Stan Z Li. 2019. Adaptiveface: Adaptive margin and sampling for face recognition. In CVPR. 11947-11956.
Tongliang Liu and Dacheng Tao. 2016. Classification with noisy labels by importance reweighting. IEEE Transactions on pattern analysis and
machine intelligence 38, 3 (2016), 447-461.

Gengyu Lyu, Songhe Feng, Tao Wang, and Congyan Lang. 2022. A self-paced regularization framework for partial-label learning. IEEE Transactions
on Cybernetics 52, 2 (2022), 899-911.

Xingjun Ma and et al. 2018. Dimensionality-driven learning with noisy labels. In ICML. 3361-3370.

Andrew Maas and et al. 2011. Learning word vectors for sentiment analysis. In ACL. 142-150.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards deep learning models resistant to
adversarial attacks. In ICLR.

Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin Shen, and Heng Tao Shen. 2021. Metamixup: Learning adaptive interpolation policy of mixup
with metalearning. IEEE Transactions on Neural Networks and Learning Systems (2021).

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar. 2021. Long-tail learning via
logit adjustment. In ICLR.

Jan Hendrik Metzen, Nicole Finnie, and Robin Hutmacher. 2021. Meta Adversarial Training against Universal Patches. In ICML 2021 Workshop on
Adversarial Machine Learning.

Seyed-Mohsen Moosavi-Dezfooli, Omar Fawzi, Alhussein amd Fawzi, and Pascal Frossard. 2017. Universal adversarial perturbations. In CVPR.
86-94.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep Ravikumar, and Ambuj Tewari. 2013. Learning with noisy labels. In NeurIPS. 1196-1204.
Federico Nesti, Alessandro Biondi, and Giorgio Buttazzo. 2021. Detecting adversarial examples by input transformations, defense perturbations,
and voting. [EEE Transactions on Neural Networks and Learning Systems (2021).

Nam H Nguyen and Trac D Tran. 2012. Robust lasso with missing and grossly corrupted observations. IEEE transactions on information theory 59,
4 (2012), 2036-2058.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hinton. 2017. Regularizing Neural Networks by Penalizing Confident
Output Distributions. In arXiv:1701.06548.

Scott Reed and et al. 2015. Training deep neural networks on noisy labels with bootstrapping. In ICLR.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. 2018. Learning to reweight examples for robust deep learning. In ICML. 4331-4340.
Bernhard Schélkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett. 2000. New support vector algorithms. Neural computation 12, 5
(2000), 1207-1245.

Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S Davis, and Tom Goldstein. 2020. Universal adversarial training. In AAAIL 5636-5643.
Haojing Shen, Sihong Chen, Ran Wang, and Xizhao Wang. 2022. Adversarial Learning with Cost-Sensitive Classes. IEEE Transactions on Cybernetics
(2022).

Yiqing Shen, Liwu Xu, Yuzhe Yang, Yaqian Li, and Yandong Guo. 2022. Self-Distillation from the Last Mini-Batch for Consistency Regularization.
In CVPR. 11943-11952.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. 2019. Meta-Weight-Net: Learning an explicit mapping For
sample weighting. In NeurIPS. 1917-1928.

Martin Slawski, Emanuel Ben-David, et al. 2019. Linear regression with sparsely permuted data. Electronic Journal of Statistics 13, 1 (2019), 1-36.
Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. 2022. Learning from noisy labels with deep neural networks: A survey.

IEEE Transactions on Neural Networks and Learning Systems (2022).
35

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

1872

ACM, October, 2022 Yao and Wu

[71]

[72]

(73]

[74]

[75]

[76]

[77]

[78]
[79]

[80]

[86]

[87]

[88]

(89]
[90]

[91]

[92]
(93]

[94]

[95
[96]

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for computer
vision. In CVPR. 2818-2826.

Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2018. Joint optimization framework for learning with noisy labels. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 5552-5560.

Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff Bilmes, Gopinath Chennupati, and Jamal Mohd-Yusof. 2019. Combating label noise in deep learning
using abstention. In ICML. 6234-6243.

Yuanpeng Tu, Boshen Zhang, Yuxi Li, Liang Liu, Jian Li, Yabiao Wang, Chengjie Wang, and Cai Rong Zhao. 2023. Learning from noisy labels with
decoupled meta label purifier. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 19934-19943.

Derui Wang, Chaoran Li, Sheng Wen, Qing-Long Han, Surya Nepal, Xiangyu Zhang, and Yang Xiang. 2021. Daedalus: Breaking nonmaximum
suppression in object detection via adversarial examples. IEEE Transactions on Cybernetics (2021).

Mei Wang, Yaobin Zhang, and Weihong Deng. 2021. Meta Balanced Network for Fair Face Recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2021).

Xinshao Wang, Yang Hua, Elyor Kodirov, David A Clifton, and Neil M Robertson. 2021. Proselflc: Progressive self label correction for training
robust deep neural networks. In CVPR. 752-761.

Yixin Wang, Alp Kucukelbir, and David M Blei. 2017. Robust probabilistic modeling with bayesian data reweighting. In ICML. 3646-3655.

Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Cheng Wu, and Gao Huang. 2019. Implicit semantic data augmentation for deep networks. In
NeurIPS. 12614-12623.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing from a few examples: A survey on few-shot learning. ACM
Computing Surveys (CSUR) 53, 3 (2020), 1-34.

Zhen Wang, Guosheng Hu, and Qinghua Hu. 2020. Training noise-robust deep neural networks via meta-Learning. In CVPR. 4523-4532.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. 2021. When Do Curricula Work?. In ICLR.

Yichen Wu, Jun Shu, Qi Xie, Qian Zhao, and Deyu Meng. 2021. Learning to purify noisy labels via meta soft label corrector. In AAAIL 10388-10396.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. 2015. Learning from massive noisy labeled data for image classification. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 2691-2699.

Han Xu, Xiaorui Liu, Yaxin Li, Anil Jain, and Jiliang Tang. 2021. To be Robust or to be Fair: Towards Fairness in Adversarial Training. In ICML.
11492-11501.

Han Xu, Xiaorui Liu, Yaxin Li, Anil K. Jain, and Jiliang Tang. 2021. To be Robust or to be Fair: Towards Fairness in Adversarial Training. In ICML.
11492-11501.

Erkun Yang, Tongliang Liu, Cheng Deng, and Dacheng Tao. 2020. Adversarial examples for hamming space search. IEEE transactions on cybernetics
50, 4 (2020), 1473-1484.

J. Yao, J. Wang, I. W. Tsang, Y. Zhang, J. Sun, C. Zhang, and R. Zhang. 2019. Deep Learning From Noisy Image Labels With Quality Embedding.
IEEE Transactions on Image Processing 28 (2019), 1909-1922.

Chia-Hung Yuan, Pin-Yu Chen, and Chia-Mu Yu. 2022. Meta Adversarial Perturbations. In AAAI Workshops.

Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In Procedings of the British Machine Vision Conference 2016. British
Machine Vision Association.

Chang-Bin Zhang, Peng-Tao Jiang, Qibin Hou, Yunchao Wei, Qi Han, Zhen Li, and Ming-Ming Cheng. 2021. Delving deep into label smoothing.
IEEE Transactions on Image Processing 30 (2021), 5984-5996.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2018. mixup: Beyond Empirical Risk Minimization. In ICLR.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. 2020. Adversarial attacks on deep-learning models in natural language
processing: A survey. ACM Transactions on Intelligent Systems and Technology (TIST) 11, 3 (2020), 1-41.

Liang Zhao, Tianyang Zhao, Tingting Sun, Zhuo Liu, and Zhikui Chen. 2020. Multi-view robust feature learning for data clustering. IEEE Signal
Processing Letters 27 (2020), 1750-1754.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley. 2022. BERT learns to teach: Knowledge distillation with meta learning. In ACL. 7037-7049.

B. Zhu, Y. Niu, X.-S. Hua, and H. Zhang. 2022. Cross-Domain Empirical Risk Minimization for Unbiased Long-Tailed Classification. In CVPR AAAL
3589-3597.

36

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Weighting Strategy in Machine Learning
	2.2 Noise-aware Machine Learning
	2.3 Robust Machine Learning

	3 Significance for the summary of learning with perturbation
	4 Our Constructed Taxonomy
	4.1 Principles
	4.2 Perturbation Targets
	4.3 Perturbation Directions
	4.4 Perturbation Inference
	4.5 Perturbation Granularity
	4.6 Several potential directions for perturbation learning

	5 Three New Learning Method Examples
	5.1 Sample-level Logit Perturbation
	5.2 Mixed Positive and Negative Perturbation

	6 Experiments
	6.1 Competing Methods
	6.2 Image Classification
	6.3 Text Sentiment Analysis
	6.4 Ablation Study
	6.5 Discussion

	7 Conclusions
	References

