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Weighting strategy prevails in machine learning. For example, a common approach in robust machine learning is to exert low weights
on samples which are likely to be noisy or quite hard. This study summarizes another less-explored strategy, namely, perturbation.
Various incarnations of perturbation have been utilized but it has not been explicitly revealed. Learning with perturbation is called
perturbation learning and a systematic taxonomy is constructed for it in this study. In our taxonomy, learning with perturbation
is divided on the basis of the perturbation targets, directions, inference manners, and granularity levels. Many existing learning
algorithms including some classical ones can be understood with the constructed taxonomy. Alternatively, these algorithms share
the same component, namely, perturbation in their procedures. Furthermore, a family of new learning algorithms can be obtained
by varying existing learning algorithms with our taxonomy. Specifically, three concrete new learning algorithms are proposed for
robust machine learning. Extensive experiments on image classification and text sentiment analysis verify the effectiveness of the
three new algorithms. Learning with perturbation can also be used in other various learning scenarios, such as imbalance learning,
clustering, regression, and so on. The source code is available at https://github.com/RujingYao/Learning-with-Perturbation.
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1 INTRODUCTION

In supervised learning, a loss function is defined on the training set, and the training goal is to seek optimal models by
minimizing the training loss. According to the degree of training difficulty, samples can be divided into easy, medium,
hard, and noisy samples. Generally, easy and medium samples are indispensable and positively influence the training.
The whole training procedure can significantly benefit from medium samples if appropriate learning manners are
leveraged. However, the whole training procedure is vulnerable to noisy and partial quite hard samples.

A common practice is to introduce the sample weighting strategy if hard and noisy samples exist. Low weights are
assigned to noisy and quite hard samples to reduce their negative influences during loss minimization. This strategy
usually infers the weights and subsequently conducts training on the basis of the weighted loss [49]. Wang et al. [78]
proposed a Bayesian method to infer the sample weights as latent variables. Kumar et al. [37] proposed a self-paced
learning (SPL) manner that combines the two steps as a whole by using an added regularizer. Meta-learning [42, 63, 81]
is introduced to alternately infer weights and seek model parameters with an additional validation set.
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Variousmachine learningmethods exist that do not rely on theweighting strategy. For example, the classical method
support vector machine (SVM) [9] introduces slack variables to address possibly noisy or quite hard samples, and ro-
bust clustering [18] introduces additional vectors to cope with noises. However, a unified theory to better explain such
methods and subsequently illuminate more novel methods remains lacking. In this study, another less-explored yet
widely used paradigm1, namely, perturbation, is summarized and further investigated. Mathematically, the perturba-
tion strategy actually adds2 a perturbation term to a feature vector, a logit vector, a loss, etc. Many existing learning
methods including some classical ones can be (partially) understood in the point of the learning-with-perturbation
view. Learning with perturbation is referred to as perturbation learning in the present paper.

In this study, we conduct a pilot study to construct a theoretical taxonomy for learning with perturbation. Specifi-
cally, five perturbation targets, three directions, six inference manners, and four granularity levels are defined. Several
existing classical learning methods are used as illustrated examples to demonstrate the reasonableness of our con-
structed taxonomy, and potential research directions are presented. A close connection can be obtained among these
seemingly unrelated methods and new variations of these methods can be naturally obtained. In addition, three con-
crete perturbation learning algorithms are proposed, namely, logit perturbationwith 𝑙1-regularization (LogPert), mixed
positive and negative perturbation (MixPert), and the meta-learning-basedMixPert (Meta-MixPert). Last, the three pro-
posed learning algorithms are evaluated on data corpora from image classification and text sentiment classification.

Our main contributions are summarized as follows:
1) A less-explored yet widely used learning scheme, namely, perturbation, is summarized and formalized in this

study. A systematic taxonomy is constructed for it, which can establish an intrinsic connection among numerous
seemly unrelated machine learning methods. In addition to the noisy-label learning mainly referred in this paper,
other learning scenarios, such as imbalance learning, can also benefit from perturbation learning.

2) Several typical learning methods are re-explained with the viewpoint of our constructed taxonomy for learning
with perturbation. A close connection can be observed for these methods and new insights can be obtained. Theoreti-
cally, various new methods can be generated on the basis of introducing the idea of perturbation into existing methods.
Sections 5 and 6 present examples.

3) Three concrete new perturbation learning methods are proposed. Experiments on robust learning on several
benchmark sets verify their effectiveness compared with several existing classical methods.

The rest of the paper is organized as follows. Section 2 briefly reviews related studies. Section 3 highlights the signif-
icance of our summarization for existing studies on learning with perturbation. Section 4 introduces our constructed
taxonomy including the construction principles, details, and representative methods. Section 5 describes our proposed
three new methods. Section 6 presents the experimental comparison and discussions of our methods, and conclusions
are given in Section 7.

2 RELATEDWORK

2.1 The Weighting Strategy in Machine Learning

Weighting is a widely used machine learning strategy in at least the following five areas: noise-aware learning [58],
curriculum learning [2], crowdsourcing learning [14], cost-sensitive learning [5], and imbalance learning [31]. In noisy-
aware and curriculum learning areas, weights are sample-wise; in cost-sensitive learning, weights can be sample-wise,
category-wise, or mixed; in imbalance learning, weights are usually category-wise.
1One widely studied topic in current literature, namely, adversarial examples, is a special type of perturbation, which is discussed in Section 4.
2Weighting actually multiplies a term to a feature vector, a logit vector, a loss, etc.
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Intuitively, the weights of medium and partial hard samples are kept or enlarged; and the weights of quite hard
samples should be kept or reduced. For example, in Focal loss [45], the weights of easy samples are (relatively) reduced
and those of the hard3 samples are (relatively) enlarged. Most existing studies do not assume the above sample division.
Instead, samples are usually divided into easy/non-easy or normal/noisy. For example, in Focal loss and Adaboost [19],
the weights of non-easy samples are gradually increased.

In cost-sensitive learning, the weights are associated with misclassified costs. Shen et al. [66] proposed a new cost-
sensitive adversarial learning framework to ensure that some special classes are less vulnerable. Indeed, perturbation
learning can also be utilized in this scenario. In imbalance learning, categories with lower proportions are negatively
affected. Therefore, increasing the weights of samples in the low-proportion categories is a common practice.

The perturbation strategy investigated in this study does not intend to eliminate the weighting strategy. Instead,
this study summarizes various existing learning ideas which do not utilize weighting yet. These learning ideas are
systematically investigated to attribute to a unified learning paradigm, namely, learning with perturbation. These two
strategies can be mutually beneficial4. Theoretically, each concrete weighting-based learning method may correspond
to a concrete perturbation-based learningmethod. A solid and deep investigation for the weighting strategy inmachine
learning will significantly benefit perturbation learning.

2.2 Noise-aware Machine Learning

This study investigates perturbation mainly in learning with noisy labels. The weighting strategy is prevailing in this
area. There exist two common technical solutions.

In the first solution, noise detection is performed and noisy samples may be assigned lower weights in the successive
model training. Koh and Liang [25] defined an influence function to measure the impact of each sample on the model
training. Samples with higher influence scores are more likely to be noisy. Huang et al. [32] conducted a cyclical pre-
training strategy and recorded the training losses for each sample in the whole cycles.The samples with higher average
training losses are more likely to be noisy.

In the second solution, an end-to-end procedure is leveraged to construct a robust model. Reed et al. [62] proposed
a Bootstrapping loss to reduce the negative impact of samples which may be noisy. Goldberger and Ben-Reuven [22]
designed a noise adaptation layer to model the relationship between labels that may be noisy and true latent labels.

More specific methods along with the aforementioned two solutions can be found in a recent survey [70]. Perturba-
tion can replace weighting in both above solutions. In this study, only the second solution is referred.

2.3 Robust Machine Learning

A formal definition for robust machine learning does not exist at present. There are two typical learning scenarios for
robust machine learning. The first scenario refers to the robustness of a learning process, while the second scenario
refers to the robustness of a trainedmodel. In the first scenario, a robust learningmethod should copewell with training
data that may be noisy [70, 88], imbalance [35], few-shot [11, 80], etc. In the second scenario, a robust trained model
should cope well with adversarial attacks [93]. Both scenarios receive much and increasing attention in recent years.
Both the weighting and the perturbation strategies are widely-used in the first scenario, whereas only the perturbation
strategy is mainly utilized in the second scenario.

3In fact, if the weights of quite hard samples are reduced, the performance will be increased [41].
4For example, a sample-level weightingmethod (e.g., Focal loss) can be transformed into a category-level weightingmethod (e.g., replace the sample-level
prediction 𝑦𝑖 with the category-level average 𝑦𝑐 ) inspired by our taxonomy for learning with perturbation.
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3 SIGNIFICANCE FOR THE SUMMARY OF LEARNINGWITH PERTURBATION

Pure data manipulation without modifying the structure of involved DNNs has been proven to be effective in the
training of DNNs. One main data manipulation strategy is sample weighting, as described in Section 2.1. Meanwhile,
there are numerous other pure data manipulation strategies in previous literature. For instance, data augmentation and
the perturbation of logit vectors have been widely used in imbalanced learning and noisy-label learning. Moreover, in
some learning scenarios such as robust learning, the adversarial perturbations of samples or features are quite useful,
whereas sample weighting is rarely employed.

An interesting and meaningful question arises: can a clear roadmap for other data manipulation methods, apart
from weighting, be established from a new perspective? To address this, a taxonomy for learning with perturbation
is summarized in this study. The subsequent section will demonstrate that a large number of learning methods which
are derived from distinct heuristic motivations or theoretical inspirations actually perturb data in training. The con-
struction of such a taxonomy is valuable in the following aspects:

• Connecting existing methods. Various sample weighting methods can be easily unified mathematically, differ-
ing mainly in the ways they calculate weights. However, numerous data manipulation methods, apart from
sample weighting, are challenging to connect directly. To the best of our knowledge, no study has attempted to
arrange such tremendous methods into a unified framework.This study constructs a taxonomy for a significant
portion of these tremendous methods, which can naturally build a connection among them. The connection
among the seemly unrelated methods can facilitate a better understanding and intersection of these methods.
We also envision a more fundamental and deep theoretical analysis of perturbation learning based on our
taxonomy.

• Promoting the importance of pure data manipulation. Our constructed taxonomy for learning with perturba-
tion highlights a widely employed yet rarely mentioned strategy, namely, perturbation. Both perturbation and
weighting cover the majority of application scenarios in deep learning. Therefore, our summary study will
further demonstrate the value and importance of pure data manipulation for deep learning, which may attract
more attention in both academical and industrial communities.

• Inspiring new methods and paradigms. As the application scenarios of perturbation and weighting highly
overlap, their combination may yield more powerful data manipulation techniques. In addition, in terms of
mathematical forms, perturbation is more flexible than weighting. Therefore, it is possible to develop more
sophisticated perturbation learning methods. Section 5 provides three illustrative examples of new learning
with perturbation methods. Moreover, a data manipulation agent can be designed to automatically leverage
data weighting and perturbation operators on the training data of a learning task.

The next section will introduce our constructed taxonomy as well as representative methods for each division.

4 OUR CONSTRUCTED TAXONOMY

This section firstly introduces our principles for the construction of our taxonomy. Each division of the taxonomy is
then elaborated in detail. Finally, several potential research directions are presented.

4.1 Principles

Perturbation can be used in many learning scenarios. This section leverages classification as the illustrative example.
Given a training set 𝑆 = {𝑥𝑖 , 𝑦𝑖 }, 𝑖 = 1, . . . , 𝑁 , where 𝑥𝑖 is the 𝑖-th sample, and 𝑦𝑖 ∈ {1, . . . , 𝑐, . . . ,𝐶} is its categorical

4
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Fig. 1. Taxonomy of learning with perturbation.

label. In a standard supervised deep learning context, let𝑢𝑖 be the logit vector for 𝑥𝑖 output using a deep neural network.
The training loss can be written as follows:

L =
∑

𝑖
𝑙 (S(𝑓 (𝑥𝑖 )), 𝑦𝑖 ) =

∑
𝑖
𝑙 (S(𝑢𝑖 ), 𝑦𝑖 ), (1)

where S(·) transforms the logit vector 𝑢𝑖 into a soft label 𝑝𝑖 , 𝑓 (·) represents a deep neural network, and 𝑢𝑖 = 𝑓 (𝑥𝑖 ).
Our study is firstly motivated by a widely used pure data-oriented technique, namely, weighting. In the weighting

strategy, the loss function is usually defined as follows:

L =
∑

𝑖
𝑤𝑖 ·𝑙 (S(𝑢𝑖 ), 𝑦𝑖 ), (2)

where𝑤𝑖 is the weight associated with the sample 𝑥𝑖 . In terms of mathematical computation, “weighting” relies on the
multiplication operation, whereas “perturbation” relies on adding operation. Let v be a variable. The perturbation for
v means the following calculation:

v = v + Δv, (3)

where v is the perturbation. Our taxonomy is constructed according to what to perturb, the direct outcome, and how
to infer the perturbation Δv, which are detailed as follows:

5
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• What to perturb. In data weighting, weights are mainly applied to the loss function. In data perturbation, there
are more choices for the targets to be perturbed. Organizing different perturbation methods according to the
targets facilitates the comparisons and mutual inspiration among these methods. In addition, the granularity
is also about what to perturb. Therefore, both the target and its granularity are considered in our taxonomy.

• The direct outcome. It is difficult to summarize the outcomes of different perturbation learning methods into a
concise division. Note that one direct outcome is the loss variation. Taking noisy-label learning as an example,
a perturbation can be utilized to reduce the loss of a possibly noisy sample, and thus the negative influence of
this sample will be reduced. Contrarily, when the influence should be increased for a sample, a perturbation
which will increase the loss can be utilized5. Therefore, the direction of loss variation incurred by perturbation
is chosen as one dimension.

• How to infer. This division is crucial, as the determination of the data perturbation is not a trivial task. Our
arrangement along this dimension may shed light on exploring new and more effective perturbation inference
methodologies.

According to the three principles listed above, our constructed taxonomy of learning with perturbation is depicted
in Fig. 1 encompassing four split items6, namely, targets, directions, inference manners, and granularity levels. As an
initial attempt for the construction of such a taxonomy, it is challenging to ensure that these four items are exhaustive.
For example, perturbation can also be divided into static and dynamic. In static perturbation, perturbations remain
unchanged in training, whereas in dynamic perturbation, they are changed in training. Nevertheless, this split plays
a trivial role in the understanding of existing methods in current stage, so it is not included in our current taxonomy.
This section introduces each item in the taxonomy.

4.2 Perturbation Targets

The perturbation target in this study denotes the variable which is designed to add a perturbation for each sample in
DNN training. Eq. (1) contains four different types of variables for each sample, namely, raw feature 𝑥𝑖 , logit vector 𝑢𝑖 ,
label 𝑦𝑖 , and sample loss 𝑙𝑖 (=𝑙 (S(𝑢𝑖 ), 𝑦𝑖 )). Therefore, perturbation targets can be further divided into four categories,
namely, feature, logit vector, label, and loss.

4.2.1 Sub-categories.

(1) Feature perturbation. In this kind of perturbation, the raw feature vector (𝑥𝑖 ) or transformed feature vector (e.g.,
dense feature output by the involved DNN) of each sample can have a perturbation vector (Δ𝑥𝑖 ). Eq. (1) becomes

L =
∑

𝑖
𝑙 (S(𝑓 (𝑥𝑖+Δ𝑥𝑖 )), 𝑦𝑖 ) =

∑
𝑖
𝑙 (S(𝑢′𝑖 ), 𝑦𝑖 ) . (4)

The perturbation vectors for each training sample are not set freely. Instead, they are inferred according to several
manners introduced in Section 4.4. Herewe provide a simple example to illustrate the usefulness of feature perturbation.
Suppose there is a training sample 𝑥 ′ with a wrong label. In sample weighting, a small weight can be assigned to this
sample to reduce its negative influence in training. Let𝑚 be the center of the category of 𝑥 ′. Ideally, if 𝑥 ′ is perturbed by
Δ𝑥 ′ =𝑚 –𝑥 ′, then the gradient for𝑥 ′ will become quite small. Consequently, the negative impact of𝑥 ′ is also completely
reduced. Indeed, the usefulness of feature perturbation is not restricted in noisy-label learning. More details will be
introduced in the rest of this paper.

5Section 4.3.2 provides a theoretical explanation for this variation.
6There is no survey on sample weighting. These four terms can also be used for sample weighting.
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(2) Logit perturbation. In this kind of perturbation, the logit vector (𝑢𝑖 ) of each sample can have a perturbation
vector (Δ𝑢𝑖 ). Eq. (1) becomes

L =
∑

𝑖
𝑙 (S(𝑢𝑖+Δ𝑢𝑖 ), 𝑦𝑖 ). (5)

Likewise, Δ𝑢𝑖 is not set freely. Compared with feature perturbation, logit perturbation receives little attention. Never-
theless, it can play similar roles with feature perturbation. Taking the illustrative task described in feature perturbation
as an example, let 𝑢′ and 𝑚𝑙𝑜𝑔 be the logit vectors of 𝑥 ′ and the center vector 𝑚, respectively. If 𝑢′ is perturbed by
Δ𝑢 =𝑚𝑙𝑜𝑔 − 𝑢′, then noisy samples can also be effectively processed.

(3) Label perturbation. In this kind of perturbation, the label (𝑦𝑖 ) of each sample can have a perturbation label
(Δ𝑦𝑖 ). Let 𝑝𝑖 = softmax(𝑢𝑖 ). Eq. (1) becomes

(i) L =
∑
𝑖 𝑙 (𝑝𝑖 , 𝑦𝑖+Δ𝑦𝑖 ) or

(ii) L =
∑
𝑖 𝑙 (𝑝𝑖+Δ𝑦𝑖 , 𝑦𝑖 ) .

(6)

In Eq. (6-i), Δ𝑦𝑖 is added to the true label 𝑦𝑖 , while in (ii) Δ𝑦𝑖 is added to the predicted label 𝑝𝑖 . Considering that
labels after perturbation should be a (soft) label, Δ𝑦𝑖 should satisfy the following requirements:∑

𝑐
Δ𝑦𝑖𝑐 = 0, 𝑦𝑖𝑐 + Δ𝑦𝑖𝑐 ≥ 0 or 𝑝𝑖𝑐 + Δ𝑦𝑖𝑐 ≥ 0. (7)

Indeed, several classical label perturbation methods are usually utilized in noisy label learning.
(4) Loss perturbation. In this kind of perturbation, the loss of each sample can have a perturbation loss (Δ𝑙𝑖 ). Eq. (1)

becomes
L =

∑
𝑖
𝑙 (S(𝑢𝑖 ), 𝑦𝑖 )+Δ𝑙𝑖 . (8)

(5) Mix-target perturbation. In this kind of perturbation, two or more of the aforementioned targets can have
their perturbation terms, simultaneously. For example, when both feature and label perturbation are utilized, Eq. (3)
becomes

L =
∑

𝑖
𝑙 (S(𝑓 (𝑥𝑖+Δ𝑥𝑖 )), 𝑦𝑖 + Δ𝑦𝑖 ), (9)

where Δ𝑥𝑖 and Δ𝑦𝑖 are the feature and label perturbations, respectively7.
The effectiveness of methods in each sub-category has been verified in most typical learning scenarios (e.g., standard

learning, noisy-label learning, and imbalanced learning). Therefore, it is inappropriate to conclude which category is
absolutely superior to others in terms of learning performance. Nevertheless, in most cases, it is relatively easy to
determine the order of the four categories in terms of computational complexity, i.e., feature perturbation ≥ logit
perturbation ≥ label perturbation ≈ loss perturbation. There may exist other perturbation candidates, such as view,
structure (e.g., adjacency matrix in GCN), word embedding, and gradient, which will be explored in our future work.

4.2.2 Representative methods.

This part discusses a few representative methods in terms of the abovementioned subcategories. The first is robust
clustering (RC) [18]. Let𝑚𝑐 be the cluster center of the 𝑐-th cluster. Let 𝜔𝑖𝑐 (∈ {0, 1}) denote whether 𝑥𝑖 belongs to the
𝑐-th cluster. The optimization form of conventional data clustering can be written as follows:

min
{𝑚𝑐 },{𝜔𝑖𝑐 }

∑
𝑖

∑
𝑐
𝜔𝑖𝑐 ∥𝑥𝑖 −𝑚𝑐 ∥22 . (10)

7Lee et al. [39] combine adversarial training and label smoothing, which can be considered as mix-target (feature and label) perturbation.
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Fig. 2. The relative loss increment ((𝑙 ′ − 𝑙 )/𝑙 ) for LA. Head categories are in the left and tail ones are in the right. The losses of head
categories are mainly decreased, while those of tail ones are increased.

Given that outlier samples may exist, Foreo et al. [18] introduced sample-level feature perturbation (denoted as 𝑜𝑖
for 𝑥𝑖 ) with 𝑙2-regularization. Then robust clustering is formalized as following:

min
{𝑚𝑐 },{𝜔𝑖𝑐 },{𝑜𝑖 }

∑
𝑖

∑
𝑐
𝜔𝑖𝑐

(
∥(𝑥𝑖 + 𝑜𝑖 ) −𝑚𝑐 ∥22 + 𝜆∥𝑜𝑖 ∥2

)
, (11)

Obviously, robust clustering belongs to feature perturbation.
Another typical example is logit adjustment [55], which is particularly designed for imbalanced learning. In a

multi-category classification problem, let 𝜋𝑐 be the proportion of the training samples in the 𝑐-th category. Let g =

[𝑔 (𝜋1) , . . . , 𝑔 (𝜋𝐶 )], 𝑔 (𝜋𝑐 ) = 𝜏 log (𝜋𝑐 ) (𝜏 > 0). Obviously, 𝑔(·) is an increasing function.
Menon et al. [55] defined g as the logit perturbation vector and then the new cross entropy loss becomes

L = −
∑

𝑖
log

𝑒𝑢𝑖,𝑦𝑖 +𝜏 log𝜋𝑦𝑖∑
𝑐 𝑒

𝑢𝑖,𝑐+𝜏 log𝜋𝑐
. (12)

In this loss, logit perturbations for each sample are equal.
Label smoothing is a classical noisy-label learning methods which has been proven to be effective in noisy-label

learning. It is actually a type of sample-level label perturbation. Its perturbation term for a sample (𝑥𝑖 , 𝑦𝑖 ) is defined as
follows:

Δ𝑦𝑖 = 𝜆(𝐼/𝐶 − 𝑦𝑖 ), (13)

where 𝐼 is a 𝐶-dimensional vector and each element is equal to 1.
Knowledge distillation is widely used in many deep learning tasks [28]. In knowledge distillation, there are two

deep neural networks called teacher and student, respectively. The output of the teacher model for 𝑥𝑖 is

𝑞𝑖 = softmax(𝑧𝑖/𝑇 ), (14)

where 𝑧𝑖 is the logit vector from the teacher model and 𝑇 is the temperature. 𝑞𝑖 can be viewed as a prior knowledge
about the label perturbation for the student model. Then according to Eq. (7), the training loss of the student model

8
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with label perturbation becomes

L =
∑

𝑖
𝑙 (𝑝𝑖 , 𝑦𝑖 ) + 𝜆(𝑙 (𝑝𝑖 , 𝑞𝑖 ) − 𝑙 (𝑝𝑖 , 𝑝′𝑖 )), (15)

where 𝑝′𝑖 = softmax(𝑢𝑖/𝑇 ). Eq. (15) is exactly the loss function of knowledge distillation. Knowledge distillation also
belongs to label perturbation.

SVM [9] is one of the most classical shallow learning methods. It is based on the following hinge loss:

𝑙𝑖 = max(0, 1 − 𝑦𝑖 (w𝑇 𝑥𝑖 + 𝑏)) . (16)

To reduce the negative contributions of noisy or quite hard samples, the loss can be perturbed as follows:

𝑙 ′𝑖 = max(0, 𝑙𝑖−𝜉𝑖 )

= max(0, 1 − 𝑦𝑖 (wT𝑥𝑖 + 𝑏)−𝜉𝑖 ) (𝜉𝑖 ≥ 0)
, (17)

where 𝜉𝑖 is a variable for perturbation. Then the whole training loss with max margin and 𝑙1-norm for 𝜉𝑖 becomes

L =
1
2
∥w∥2 +

∑
𝑖
𝑙 ′𝑖+𝜆 |𝜉𝑖 | (𝜉𝑖 ≥ 0). (18)

The minimization of Eq. (18) equals to the following optimization problem:

min
w,𝑏,{𝜉𝑖 }

1
2 ∥w∥2 + 𝜆

∑
𝑖 𝜉𝑖

s.t. 1 − 𝑦𝑖 (w𝑇 𝑥𝑖 + 𝑏)−𝜉𝑖 ≤ 0

𝜉𝑖 ≥ 0, 𝑖 = 1, · · · , 𝑁

, (19)

which is the standard form of SVM (without kernel). Alternatively, the slack variable can be seen as a loss perturbation
for SVM. Naturally, other types of perturbation (e.g., label perturbation) can be considered in SVM8.

Pereyra et al. [61] perturbed the original loss by adding a hinge function for the confidence penalty, which is defined
as follows:

L = −
∑
𝑖

𝑙 (𝑝𝑖 , 𝑦𝑖 ) − 𝛽 max(0, 𝜏 − 𝐻 (𝑝𝑖 )), (20)

where 𝛽 and 𝜏 are two hyper-parameters; 𝐻 (𝑝𝑖 ) is information entropy of the prediction 𝑝𝑖 , which measures the
confidence of the prediction by the current model.

4.3 Perturbation Directions

4.3.1 Sub-categories.

Perturbation direction in this study denotes the loss increment or decrement after perturbation. There are two direc-
tions according to the loss variations.

(1) Positive perturbation. If the perturbation reduces the loss, then it is called positive perturbation.The following
representative methods will indicate that positive perturbation is usually employed to reduce the influence of noisy
and quite hard samples during training.

(2) Negative perturbation. If the perturbation increases the loss, then it is called negative perturbation. Negative
perturbation can enhance the impact of the perturbed samples during training 9.

8We conjecture that label perturbation-based SVM may exist in the literature.
9As negative perturbation can explicitly or implicitly perform data augmentation, it can enhance the impact of samples including both easy and hard
ones.

9
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(3) Mix-direction perturbation. If the perturbation increases the losses of some training samples and decreases
the losses of others simultaneously, then it is called mix-direction perturbation. The logit adjustment method actually
leverages this type of perturbation, which will be discussed in Section 4.3.3.

4.3.2 Comparison for positive and negative perturbations.

The two directions are opposite to each other. Nevertheless, both directions have been explored in previous literature,
and experiments have verified their effectiveness. We first compare them from a regularization perspective. Let 𝑝𝑖 =
S(𝑢𝑖 ) represent the softmax output be the current model. Taking logit perturbation as an example, the loss in Eq. (5)
can be expanded using the first-order Taylor expansion as follows:

ℓ (S(𝑢𝑖+Δ𝑢𝑖 ), 𝑦𝑖 ) ≈ ℓ (𝑝𝑖 , 𝑦𝑖 ) + ( 𝜕ℓ
𝜕𝒖

)⊤Δ𝒖 = ℓ (𝒑𝒊, 𝒚𝒊) + (𝑝𝑖 − 𝑦𝑖 )⊤Δ𝒖 . (21)
In negative augmentation, (𝑝𝑖 − 𝑦𝑖 )⊤Δ𝒖 > 0, meaning that negative augmentation can be viewed as adding a regular-
ization term to the original loss ℓ (𝑝𝑖 , 𝑦𝑖 ). There have been a lot of studies revealing that methods such as perturbation
using Gaussian noise can inherently provide a regularization effect [16]. Regularization is typically utilized to pre-
vent overfitting. In positive perturbation, (𝑝𝑖 − 𝑦𝑖 )⊤Δ𝒖 < 0, which can be viewed as adding an anti-regularization
term to the original loss. The concept of anti-regularization has been investigated in previous studies [12, 24, 38] and
is typically utilized in learning cases when over-regularization may occur. Over-regularization means that excessive
regularization is applied. Taking ridge regression as an example, its objective function is 𝑙 (𝑋,𝑌 ;𝑤) + 𝜆 | |𝑤 | |22. A large
value of 𝜆 will result in over-regularization. If 𝜆 → +∞, then𝑤 → 0, resulting in underfitting. In other words, positive
perturbation can prevent underfitting, while negative perturbation can prevent overfitting.

Both directions are useful for certain learning scenarios. We take the learning under feature noise as an illustrative
example. Given a binary training dataset 𝐷 , assuming it contains a certain proportion (denoted as 𝑝) of feature noise,
which is exactly equivalence to an appropriate regularization. In other words, such a proportion of feature noise is
useful. Therefore, if the proportion of feature noise for class ‘+1’ is increased to 2𝑝 and that for class ‘-1’ is decreased to
0.5𝑝 , then positive feature perturbation should be exerted on samples of class ‘+1’, and negative feature perturbation
should be exerted on samples of class ‘-1’. This example illustrates the necessity for both directions as well as their
mixture.

We then provide a statistical view to compare the two perturbation directions. It is quite challenging to conduct
universal theoretical analysis for arbitrary distributions. Following some relevant theoretical studies [33, 85], we design
a simple learning case with Gaussian distributions. The binary classification setting established for the theoretical
analysis in [86] is adopted. The data is from two classes Y = {−1, +1} and the data from each class follows a mixture
of two Gaussian distributions. In class ‘+1’, its two distributions are centered on 2.5𝜽 and 𝜽 , respectively; in class ‘-1’,
its two distributions are centered on −2.5𝜽 and −𝜽 , respectively. The overall data distribution follows

𝑦
𝑢.𝑎.𝑟∼ {−1, +1}, 𝜽 = [𝜂, . . . , 𝜂]𝑇 ∈ 𝑅𝑑 ,

𝒙 ∼
{

𝛾1N
(
𝜽 , 𝜎2+𝑰

)
+ (1 − 𝛾1)N

(
2.5𝜽 , 𝜎2+𝑰

)
, if 𝑦 = +1

𝛾2N
(
−𝜽 , 𝜎2− 𝑰

)
+ (1 − 𝛾2)N

(
−2.5𝜽 , 𝜎2− 𝑰

)
, if 𝑦 = −1

, (22)

where 𝛾1 and 𝛾2 are two independent discrete random variables; 𝐼 is an identity matrix; and 𝜎2+ and 𝜎2− are two factors.
Assuming that 𝑑 = 2, 𝛾1 and 𝛾2 are uniformly distributed on {0, 1}, 𝜃 = [0.5, 0.5]𝑇 , and 𝜎2+ = 𝜎2− = 0.04. Let 𝐷

be a training set which is sampled from the above distribution. Due to possible sampling bias, the proportion of the
samples from the two sub-distributions is 1:30 (C1:C2) for class ‘+1’, and that is still 1:30 (C3:C4) for class ‘-1’, as shown

10
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in Fig. 3. Such biased training data would result in a biased classifier. Obviously, sample weighting (e.g., importance
weighting can alleviate this issue. Indeed, feature perturbation can also address this issue. Theoretically, if 14

30 samples
in 𝐶1 as shown in Fig. 3 are perturbed by 1.5𝜽 (i.e., 𝒙 = 𝒙 + 1.5𝜽 ) and 14

30 samples in 𝐶4 as shown in Fig. 3 are also
perturbed by 1.5𝜽 , then the distribution on the training data is equal to the ground-truth distribution as described by
(22). Consequently, an unbiased classifier would be learned.

Fig. 3. A biased training set whose ground-truth distribution conforms to (22).

Obviously, the selected 14
30 samples in 𝐶1 are performed positive perturbation, whereas the selected 14

30 ones in 𝐶4

are performed negative perturbation. Several insights can be observed from this example:

• Perturbation can tune the distribution of training data like weighting.
• Although positive and negative perturbations are opposite to each other, they can cooperate to obtain better

training performance for a learning task.
• Positive perturbation can reduce the proportion of hard samples (e.g., samples in C1), whereas negative pertur-

bation can increase the proportion of hard samples (e.g., samples in C3). It is inappropriate to simply conclude
that only positive perturbation or only negative perturbation is sufficient for a concrete learning task. Which
direction of perturbation is required depends on the training data and the training object of a learning task.

The above theoretical comparison indicates that it is also inappropriate to directly conclude which perturbation
direction is absolutely better than the other, regardless of the involved learning task. The next section will show sev-
eral classical methods that employ mix-direction perturbation, i.e., both positive and negative perturbations in their
approach are adopted simultaneously.

4.3.3 Representative methods.

We first revisit the three methods listed in Section 4.2.2. If the 𝑙2-norm distance in Eq. (10) is taken as loss, then the
11
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loss will be reduced by the perturbation 𝑜𝑖 . As a result, the feature perturbation in robust clustering belongs to positive
perturbation. In logit adjustment, Eq. (12) can be re-written to the following:

L = −
∑

𝑖
log

𝑒𝑢𝑖,𝑦𝑖∑
𝑐 𝑒

𝑢𝑖,𝑐+𝜏 log 𝜋𝑐
𝜋𝑦𝑖

, 𝜏 ≥ 0. (23)

Note that 𝜋𝑐 ≤ 𝜋1 and 𝜋𝑐 ≥ 𝜋𝐶 for all the 𝑐th categories. Consequently, the losses for samples in the first head
category 𝑦1 are reduced, while the losses for samples in the last tail category 𝑦𝐶 are increased. In other words, the first
head category performs positive augmentation, while the last tail category performs negative augmentation. Existing
studies reveal that overfitting occurs on tail categories [10, 30]. Therefore, negative augmentation (regularization) for
tail categories is reasonable. Positive augmentation (anti-regularization) may avoid underfitting on head categories,
as there are also studies that reveal that underfitting occurs on head categories [96]. Logit adjustment belongs to
mix-direction augmentation. Label smoothing also belongs to mix-direction.

Adversarial samples receive great attention in recent years. It is actually a perturbed sample by the following opti-
mization [53]:

𝒙adv = 𝒙 + arg max
∥𝜹 ∥≤𝜖

ℓ (𝑓 (𝒙 + 𝜹), 𝑦), (24)

where 𝒙adv is the adversarial sample generated for 𝒙 , 𝜹 is the perturbation term, and 𝜖 is the perturbation bound.
Obviously, adversarial perturbation belongs to negative perturbation as the loss of new sample is larger (at least no
small) than the raw sample.

Another example is adversarial label smoothing(ALS) [21]. The perturbation term of label smoothing is manually
determined. Inspired by adversarial samples, ALS pursues the label perturbation in label smoothing using

Δ𝑦𝑖 = 𝜆(𝑝∗𝑖 − 𝑦𝑖 ), (25)

where

𝑝∗𝑖 = argmax
𝑝𝑖

𝑙 (S(𝑢𝑖 ), 𝑦𝑖 + 𝜆(𝑝𝑖 − 𝑦𝑖 )) . (26)

Eq. (25) has an analytic solution such that 𝑝∗𝑖 is the one-hot vector for the category which corresponds to the minimum
softmax value in S(𝑢𝑖 ). It is easy to verify that ℓ (𝑥𝑖 , 𝑦+Δ𝑦𝑖 ) ≥ ℓ (𝑥𝑖 , 𝑦). Therefore, ALS belongs to negative perturbation.

4.4 Perturbation Inference

4.4.1 Sub-categories.

In perturbation learning, perturbation variables in losses in Eqs. (4)–(27) should be inferred during training. There are
six typical manners (maybe not exhaustive) to infer their values and optimize the whole loss.

(1) Inference with prior knowledge. In this manner, the perturbation variables are inferred on the basis of prior
knowledge. Alternatively, the perturbation variables are fixed before the optimizing of training loss.

(2) Inference with hyper-parameter tuning. In this manner, the perturbation variable(s) is/are taken as hyper-
parameter(s). Consequently, the optimal value is determined according to the manner of hyper-parameter tuning.

(3) Inference with regularization. In this manner, a regularization term is added for the perturbation variables.
For example, a natural assumption is that the proportion of the samples that require the perturbation variables is small.
Therefore, 𝑙1-norm can be used. Taking the logit perturbation as examples. A loss function is defined as follows:

L =
∑

𝑖
𝑙 (S(𝑢𝑖 + Δ𝑢𝑖 ), 𝑦𝑖 ) + 𝜆𝑅𝑒𝑔(Δ𝑢𝑖 ), (27)
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where 𝜆 is a hyper-parameter and 𝑅𝑒𝑔(·) is a regularizer. This manner is similar to the self-paced learning [37, 50].
When 𝜆 → ∞, no perturbation is allowed and perturbation learning is reduced to conventional learning.

(4) Inference with meta-learning. In this manner, the perturbation variables are inferred on the basis of another
small clean validation set with meta-learning. Given a clean validation set Ω comprising𝑀 clean training samples and
taking loss perturbation as an example. Let 𝜅𝑖 be the loss perturbation variable for 𝑥𝑖 (∈ 𝑆). We first define that

L =
∑

𝑖∈𝑆 𝑙 (S(𝑢𝑖 ), 𝑦𝑖 : Θ)+𝜅𝑖 , (28)

where Θ is the model parameter set to be learned. Given 𝜿 = {𝜅𝑖 }𝑖∈𝑆 , Θ can be optimized on the training set 𝑆 by
solving

Θ∗ (𝜿) = argmin
Θ

∑
𝑖∈𝑆 𝑙 (S(𝑢𝑖 ), 𝑦𝑖 : Θ)+𝜅𝑖 . (29)

After Θ is obtained, 𝜿 can be optimized on the validation set Ω by solving

𝜿∗ = argmin
𝜿

∑
𝑗∈Ω 𝑙 (S(𝑢 𝑗 ), 𝑦 𝑗 : Θ∗ (𝜿)) . (30)

These two optimizations can be performed alternately, and finally Θ∗ and 𝜿∗ are learned. When either logit or label
perturbation is used, the above optimization procedure can also be utilized with slight variations.

The above inference manner is similar with that used in the meta-learning-based weighting strategy for robust
learning [63]. Meta-learning has beenwidely used in robust learning andmany existingmeta-learning-basedweighting
methods [42, 81] can be leveraged for perturbation learning.

(5) Inference with adversarial learning. In both feature and logit perturbations, the perturbation term can be
obtained by adversarial learning. Taking feature perturbation as an example, the objective function in negative pertur-
bation is

Δ𝑥∗𝑖 = arg max
∥Δ𝑥𝑖 ∥≤𝜖

𝑙 (S(𝑓 (𝑥𝑖+Δ𝑥𝑖 )), 𝑦𝑖 ), (31)

where 𝜖 is the bound. Likewise, the objective function in positive feature-level perturbation can be

Δ𝑥∗𝑖 = arg min
∥Δ𝑥𝑖 ∥≤𝜖

𝑙 (S(𝑓 (𝑥𝑖+Δ𝑥𝑖 )), 𝑦𝑖 ). (32)

(6) Inference with mixed manners. Two or more of the above five manners can be combined together to infer
the perturbation term in a learning task.

Remark: Existing perturbation-based learning methods adopt one of the inference manners listed above. Different
manners have their own merits and defects. The prior knowledge-based manner is heuristic and thus seems quite ad
hoc in some learning cases.When grid search is utilized in hyper-parameter tuning, it results in high time consumption.
Regularization-basedmanner has good theoretical merits. However, designing a suitable regularizer is also challenging.
Furthermore, as discussed previously, some learning cases may require anti-regularization. Both meta-learning-based
and adversarial learning-based manners employ an optimization approach. Nevertheless, meta-learning requires an
independent high-quality validation dataset, while the adversarial learning-based manner can only produce negative
perturbations.

Which inference manner should be employed depends on the training data and learning object of the involved
learning task. Theoretically, the inference manner can be changed from one manner to another and a new method will
subsequently be obtained.
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4.4.2 Representative methods.

The methods logit adjustment, label smoothing, and knowledge distillation employs prior knowledge-based inference.
The methods adversarial samples and ALS employs adversarial learning.

In contrast with previous data augmentation techniques, Implicit semantic data augmentation (ISDA) [79] does not
produce new samples or features. Instead, it transforms the semantic data augmentation problem into the optimization
of a new loss defined as

L= −
∑

𝑖

𝑒𝑢𝑖,𝑦𝑖

𝐶∑
𝑐=1

𝑒𝑢𝑖,𝑐+
𝜆
2 (w𝑐 −w𝑦𝑖 )

𝑇 Σ𝑦𝑖 (w𝑐−w𝑦𝑖 )
, (33)

where Σ𝑦𝑖 is the covariance matrix for the 𝑦𝑖 -th category, w𝑐 is the model parameter for the logit vectors, and
𝑢𝑖,𝑐 =wc

𝑇 𝑥𝑖 (𝑥𝑖 is the output of the last feature encoding layer for 𝑥𝑖 ).
In Eq. (39), a logit perturbation term is observed as follows:

𝑢′𝑖 = 𝑢𝑖 + 𝛿𝑦𝑖 , (34)

where

𝛿𝑦𝑖=
𝜆

2


(w1 −w𝑦𝑖 )𝑇 Σ𝑦𝑖 (w1 −w𝑦𝑖 )

...

(w𝐶 −w𝑦𝑖 )𝑇 Σ𝑦𝑖 (w𝐶 −w𝑦𝑖 )

 . (35)

Obviously, the perturbation is category-level and determined with prior knowledge. In addition, the perturbation
direction is negative as the loss is increased for each training sample. The term is heavily dependent on the covariance
matrix Σ𝑦𝑖 , which can be further optimized via meta-learning by minimizing the following loss on a validation set Ω:

Σ∗ = argmin
Σ

∑
𝑗∈Ω

𝑙
(
S
(
𝑢 𝑗

)
, 𝑦 𝑗 ;Θ

∗ (Σ)
)
, (36)

which is just the meta implicit data augmentation (MetaSAug) proposed by Li et al. [44]. MetaSAug is quite effective
in long-tail classification.

Bootstrapping loss [62] is another classical label perturbation method. Given that for each sample, we can obtain a
predicted label 𝑦′𝑖 by the model trained at the previous epoch, the label perturbation can be defined as

Δ𝑦𝑖=𝜆(𝑦′𝑖 − 𝑦𝑖 ), (37)

where 𝜆 is a hyper-parameter and locates in [0, 1]. Δ𝑦𝑖 defined in Eq. (37) satisfies the condition given by Eq. (7).
Bootstrapping loss is designed for noisy-label learning and the perturbation is infereed with prior knowledge. If 𝑦′𝑖 is
in trust, then it is highly possible that Δ𝑦𝑖 approaches to zero if 𝑥𝑖 is normal, and it is large if 𝑥𝑖 is noisy. The entire
Bootstrapping loss is

L =
∑

𝑖
𝑙 (S(𝑢𝑖 ), 𝑦𝑖+𝜆(𝑦′𝑖 − 𝑦𝑖 )) = (1 − 𝜆)

∑
𝑖
𝑙 (S(𝑢𝑖 ), 𝑦𝑖 ) + 𝜆

∑
𝑖
𝑙 (S(𝑢𝑖 ), 𝑦′𝑖 ). (38)

Note that 𝑙 (S(𝑢𝑖 ), 𝑦′𝑖 ) ≤ 𝑙 (S(𝑢𝑖 ), 𝑦𝑖 ),∀𝑖 . Then Bootstrapping loss belongs to positive perturbation.
Meta adversarial perturbations [89] utilizes meta-learning to infer the adversarial perturbations for each image. In

Eq. (12), the hyper-parameter 𝜏 is fixed for all categories. A category-wise setting for 𝜏 may be useful. Therefore, a new
logit adjustment with meta optimization on 𝜏 is proposed and called Meta logit adjustment (Meta LA). Let Ω be the
validation set for meta optimization. According to Eqs. (28–30) in the paper, the new loss is
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L = −
∑
𝑥𝑖 ∈𝑆

log
𝑒𝑢𝑖,𝑦𝑖 +𝜏𝑦𝑖 log𝜋𝑦𝑖∑
𝑦 𝑒

𝑢𝑖,𝑦+𝜏𝑦𝑖 log𝜋𝑦
. (39)

Given a value for 𝜏 = {𝜏1, , 𝜏𝐶 }, the network parameter Θ can be obtained by solving

Θ∗ (𝜏) = argmin
Θ

−
∑
𝑥𝑖 ∈𝑆

log
𝑒𝑢𝑖,𝑦𝑖 +𝜏𝑦𝑖 log𝜋𝑦𝑖∑
𝑦 𝑒

𝑢𝑖,𝑦+𝜏𝑦𝑖 log𝜋𝑦
. (40)

After Θ∗ (𝜏) is obtained, 𝜏 can be optimized by solving

𝜏∗ = argmin
𝜏

−
∑
𝑥𝑖 ∈Ω

𝑙
(
softmax

(
𝑓
(
𝑥𝑖 : Θ

∗ (𝜏)
)
, 𝑦𝑖

) )
. (41)

Eqs. (40) and (41) are solved alternately. The detailed optimization steps are similar to those used in MetaSDA [44],
Meta-Weight-Net [68], and other meta optimization studies.

4.5 Perturbation Granularity

4.5.1 Sub-categories.

Perturbation granularity has four levels.
(1) Sample-level perturbation. All the perturbation variables discussed above are for samples. Each sample has

its own perturbation variable.
(2) Category-level perturbation. In this level, samples within the same category share the same perturbation.

Taking the logit vector-based perturbation as an example, when category-level perturbation is utilized, the loss in
Eq. (5) becomes

L =
∑

𝑖
𝑙 (S(𝑢𝑖+Δ𝑢𝑦𝑖 ), 𝑦𝑖 ). (42)

Category-level perturbation mainly solves the problem when the impact of all the samples of a category should be
increased or decreased. For example, in long-tail classification, the tail category should be emphasized in learning.

(3)Corpus-level perturbation. In this level, samples within the whole training corpus share the same perturbation.
Take the negative perturbation described in Eq. (31) as an example, the objective function becomes

Δ𝑥∗ = arg max
∥Δ𝑥 ∥≤𝜖

𝑙 (S(𝑓 (𝑥𝑖+Δ𝑥)), 𝑦𝑖 ), (43)

which means that all samples share the same term Δ𝑥∗. Δ𝑥∗ is exactly the universal adversarial perturbation [57].
(4) Mix-level perturbation. In this level, more than one of the aforementioned three levels are utilized simul-

taneously. This case occurs in complex contexts, e.g., when both noisy labels and category imbalance exist. Taking
label-based perturbation as an example. The loss in Eq. (6) can be written as

L =
∑

𝑖
𝑙 (𝑝𝑖 , 𝑦𝑖+Δ𝑦𝑖+Δ𝑦𝑦𝑖 ), (44)

where Δ𝑦𝑦𝑖 is the category-level label perturbation.
Remark:Most methods belong to sample-level, which has been applied in most learning scenarios. Corpus-level is

a special case of category-level, and category-level is also a special case of sample-level. Therefore, sample-level should
outperform the other granularity levels theoretically. Nevertheless, it is still inappropriate to conclude that which level
is absolutely the best choice.
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4.5.2 Representative methods.

Adversarial perturbation introduced previously is in the sample level. Training with adversarial samples (i.e., adver-
sarial training) is proven to be useful in many applications and various methods are proposed [53]. Shafahi et al. [65]
proposed universal adversarial training (UAT) which is actually based on a corpus-level negative feature perturbation.
The loss on adversarial samples is

L𝑐𝑜𝑟𝑝𝑢𝑠−𝑎𝑑𝑣 = max
∥𝛿 ∥≤𝜖

∑
𝑖
𝑙 (S(𝑓 (𝑥𝑖 + 𝛿)), 𝑦𝑖 ) . (45)

Benz et al. [3] observed that universal adversarial perturbation does not attack all classes equally. They proposed a
category-wise universal adversarial training (C-UAT) method and the loss on adversarial samples is

L𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦−𝑎𝑑𝑣 = max
∥𝛿𝑦𝑖 ∥≤𝜖

∑
𝑖
𝑙
(
S(𝑓 (𝑥𝑖 + 𝛿𝑦𝑖 )), 𝑦𝑖

)
, (46)

which belongs to the category-level negative feature perturbation.
Conventional sample-level adversarial samples and the corpus-level UAP are in the two extremes. Nevertheless,

both are demonstrated to be quite useful in adversarial training. There are also a large number of studies on UAP [6],
which partially reflects that each perturbation level has its own value.

Motivated by our taxonomy,mix-level adversarial perturbation can subsequently be generated. Amixed corpus/sample-
level adversarial perturbation is described as an example:

𝛿∗ = argmax
𝛿

∑
𝑖
𝑙 (𝑆 (𝑓 (𝑥𝑖 + 𝛿)), 𝑦𝑖 )

L𝑚𝑖𝑥𝑒𝑑−𝑎𝑑𝑣 = max
𝛿𝑖

∑
𝑖
𝑙 (𝑆 (𝑓 (𝑥𝑖 + 𝛿∗ + 𝛿𝑖 )), 𝑦𝑖 ),

(47)

where 𝛿∗ and 𝛿𝑖 are the corpus-level and sample-level perturbations, respectively. A further statistical analysis for the
two levels of adversarial perturbations may illuminate us to better understand the adversarial characteristics of the
data. Some other variations of adversarial perturbation (e.g., hash adversarial perturbation [87]) can also benefit from
our taxonomy for learning with perturbation.

Arcface [48] is a classical face recognition loss defined as follows:

L= −
∑

𝑖

𝑒𝑠𝑖 (𝑐𝑜𝑠 (𝜃𝑖,𝑦𝑖 +𝑚) )

𝑒𝑠𝑖 (𝑐𝑜𝑠 (𝜃𝑖,𝑦𝑖 +𝑚) ) +∑
𝑐≠𝑦𝑖 𝑒

𝑠𝑖 (𝑐𝑜𝑠 (𝜃𝑖,𝑐 ) )
, (48)

where 𝑠𝑖 = | |w𝑦𝑖 | | | |𝑥𝑖 | |, 𝜃𝑖,𝑐 is the angle between the weightw𝑐 and the feature 𝑥𝑖 which are defined in the description
for ISDA, and𝑚 is a hyper-parameter. Indeed,𝑚 does not strictly belong to the five perturbation targets in our taxon-
omy. It is simply placed in the category of logit perturbation in this paper. It is a corpus-level term and determined via
hyper-parameter tuning.

Wang et al. [76] proposed a new Arcface loss, namely, Balanced loss, with the category-level perturbation. The loss
is defined as

L= −
∑

𝑖

𝑒𝑠𝑖 (𝑐𝑜𝑠 (𝜃𝑖,𝑦𝑖 +𝑚𝑔𝑖 ) )

𝑒𝑠𝑖 (𝑐𝑜𝑠 (𝜃𝑖,𝑦𝑖 +𝑚𝑔𝑖 ) ) +∑
𝑐≠𝑦𝑖 𝑒

𝑠𝑖 (𝑐𝑜𝑠 (𝜃𝑖,𝑐 ) )
, (49)

where 𝑔𝑖 is the skin-tone category of the 𝑗-th sample. Obviously,𝑚𝑔𝑖 is a category-level term. It can be optimized via
meta-learning:

𝑚∗
𝑔 = arg min

{𝑚𝑔𝑗 }

∑
𝑗 ∈Ω

𝑙 (Θ(𝑚𝑔𝑗 ) ), (50)

which is proven to be quite effective in the experiments conducted by Wang et al. [76].
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4.6 Several potential directions for perturbation learning

There are numerous open problems for learning with perturbation. This part casts a vision toward the future, contem-
plating the promising research directions deserving further investigation listed below:

• Deep representation of training characteristics. Training characteristics of a sample denotes the static
or dynamic quantities that can characterize information such as distribution, geometry, and neighborhood
of the sample. For example, the categorical proportion, margin, loss, and gradient norm are typical training
characteristics. In most existing perturbation learning methods, the perturbation direction, granularity, and
inference manner (especially the manner with prior knowledge) heavily depend on the quantification of the
training characteristics of training samples. Nevertheless, existing methods utilize no more than three raw
training characteristics. A deep representation for the overall training characteristics of a training sample
would be quite useful.

• Unified theoretical basis for data perturbation. Our taxonomy summarizes a wide range of methods which
are based on distinct heuristic observation or theoretical inspirations. Constructing a unified theoretical basis
for perturbation learning can establish amore fundamental connection among these seemingly irrelevantmeth-
ods. This connection will contribute to answering the question of which target, direction, inference manner,
or granularity level should be employed when facing a concrete learning task.

• Data perturbation agent. AI agent is a hot topic in current AI community. If the training characteristics of
samples can be well represented and the theoretical basis is well constructed, then automatic data perturbation
may be achieved. Indeed, it is feasible to compile more than thousands of learning tasks and train a data
perturbation agent with a proper learning procedure.

• Theoretical comparisonwith dataweighting.Theweighting strategy is straightforward and quite intuitive;
hence, it has been widely used in the machine learning community. Perturbation does not seem as straight-
forward as weighting. However, the former can play the same/similar role as weighting in machine learning.
They both have their ownmerits. Perturbation is more flexible than weighting, while weighting is usually more
efficient than perturbation. A theoretical comparison between them is beneficial for both strategies and their
cooperation.

5 THREE NEW LEARNING METHOD EXAMPLES

In addition to the representative methods mentioned in the previous section, there are also other numerous typical
methods such as Robust nonrigid ICP (RNICP) [29], D2L [51], DAC [73], Deep self-learning (DSL) [26], LDAM [4],
MRFL [94], Robust regression (RR) [69], MAT [56], MSLC [83], PD-UA [47], AKD [8], Mixup [92], MetaMixup [54],
MetaDistil [95], ZLA [7], Adaptive Face loss (AFL) [48], Robust LASSO (RLASSO) [60], Bootstrapping loss [62], online
label smoothing (OLS) [91], AutoBalance [43], PolyLoss [40], DEFENSE_GEN [59], 𝑣-SVM [64], and RLR [17] can also be
explainedwith perturbation learning. For example,Wang et al. [75] formulated the adversarial attack in object detection
as a 𝑝-norm optimization problem,which can be seen as a regularization-based perturbation (called RegPert for brevity).
Table 1 shows the coordinates of these methods according to our constructed taxonomy. The perturbation direction
is not presented due to space limitation. The arrangement of numerous typical machine learning methods leveraging
a general learning with perturbation taxonomy facilitates better understanding these methods and enlightens new
inspirations for the design of more effective methods.
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Table 1. The coordinates of several typical methods according to our constructed taxonomy.

Target Prior knowledge Hyper-parameter tuning Regularization Meta learning Adversarial learning
Sample Category Corpus Sample Category Corpus Sample Category Corpus Sample Category Corpus Sample Category Corpus

Feature Mixup [92]

RC [18],
RegPert [75],

RR [69],
RNICP [29],

DEFENSE_GEN [59]

MRFL [94] PD-UA [47] MetaMixUp [54] MAT [56] AT [53] C-UAT [3] UAT [65]

Logit ZLA [7] ISDA [79],
LDAM [4] LA [55] Arcface [48] AFL [48]

MetaSAug [44],
Balanced loss [76],

Meta LA
AutoBalance [43]

Label

LS [71],
Bootstrapping loss [62],

D2L [51],
Mixup [92]

OLS [91] RLR [17],
RLASSO [60]

MetaMixUp [54],
MSLC [83] ALS [21]

Loss

KD [28],
DSL [26],
DAC [73],

PolyLoss [40]

𝑣-SVM [64] SVM [9] MetaDistil [95] AKD [8]

The empty lattices of Table 1 inspire us to explore new learning with perturbation methods10. In addition, our
theoretical analysis shows that the combination of positive and negative augmentation has theoretical merits. To this
end, this section shows three examples11. The first is the lattice for intersection of logit, sample, and regularization.
The second is the mixed positive and negative perturbation. The third is the meta-learning version of the second one.

5.1 Sample-level Logit Perturbation

According to Table 1, sample-level logit perturbation receives litter attention in previous literature12. An example is
given to explain how logit perturbation works. Assume that the inferred logit vector of a noisy sample 𝑥𝑖 and its (noisy)
label 𝑦𝑖 are as follows:

𝑢𝑖 = [3.0, 0.8, 0.2]𝑇

𝑦𝑖 = [0, 1, 0]𝑇 .
(51)

The cross-entropy loss incurred by this training sample is −𝑙𝑜𝑔[𝑒0.8/(𝑒3.0 + 𝑒0.8 + 𝑒0.2)] = 2.36. This loss negatively
affects training because 𝑦𝑖 is noisy. To reduce the negative influence, if a perturbation vector (e.g., [−1, 2, 0]𝑇 ) is added,
then the new logit vector becomes [2.0, 2.8, 0.2]𝑇 . Consequently, the new loss of 𝑥𝑖 is−𝑙𝑜𝑔[𝑒2.8/(𝑒2.0+𝑒2.8+𝑒0.2)] = 0.42,
which is much lower than 2.3613. The negative influence of this noisy sample will be reduced significantly.

In actual learning tasks, samples with noisy labels are inevitable in the corresponding training corpora. However,
which samples are truly noisy is unknown during training. Motivated by robust clustering (RC) [18] and robust
LASSO [60], a regularized logit perturbation learning method is proposed with the following new loss:

L =
∑

𝑖
𝑙 (S(𝑢𝑖 + 𝑣𝑖 ), 𝑦𝑖 ) + 𝜆𝑅𝑒𝑔(𝑣𝑖 ), (52)

where 𝑣𝑖 is the logit perturbation vector for the 𝑖-th training sample and 𝜆 is a hyper-parameter. 𝑣𝑖 is trainable dur-
ing training. According to our taxonomy for learning with perturbation, the perturbation target, direction, inference
manner, and granularity are logit, positive, regularization, and sample level, respectively, for the new loss. Naturally,
extensions such as category-level logit perturbation and meta logit perturbation can be generated based on the pro-
posed algorithm. We leave these new extensions as our future work.

When 𝑙1-norm is used, the training loss becomes

L =
∑

𝑖
𝑙 (S(𝑢𝑖 + 𝑣𝑖 ), 𝑦𝑖 ) + 𝜆 | |𝑣𝑖 | |1 . (53)

10It is worth noting that the empty lattices of Table 1 by no means indicate that there are no corresponding methods for each empty lattice in previous
literature, as some studies may be not covered in our literature summary
11A family of new learning algorithms can be obtained by plugging the perturbation learning into existing learning algorithms with our constructed
taxonomy by introducing the idea of perturbation learning into existing algorithms.
12The ZLA method in Table 1 is designed particularly for zero-shot learning.
13Indeed, the gradient norm for the new logit vector is also much smaller than that for the original vector.
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Following self-paced learning [37], the alternative convex search (ACS) [1], which alternately optimizes the network
and 𝑣 , is used. We found that ACS obtained more stable results in our experiments. Let w̃ be the model parameters in
the current training epoch. 𝑣𝑖 is achieved with the following optimization problem:

𝑣∗𝑖 = argmin
𝑣𝑖

𝑙 (S(𝑢𝑖 + 𝑣𝑖 ), 𝑦𝑖 : w̃) + 𝜆 | |𝑣𝑖 | |1 (54)

Then, the model parameters are updated with the following optimization problem:

w∗ = argmin
w

𝑙 (S(𝑢𝑖 + 𝑣∗𝑖 ), 𝑦𝑖 : w) (55)

Ideally, if neither noisy nor quite hard samples exist, then 𝜆 will be set to a large value. Consequently, 𝑣𝑖 will
approach to zero for all training samples. This method is called LogPert for brevity. The detailed steps are described in
Algorithm 1.

Algorithm 1 LogPert
Input: Training set 𝑆 = {𝑥𝑖 , 𝑦𝑖 }, 𝑖 = 1, · · · , 𝑁 ; hyper-parameters 𝜆; #Epoch; #Batch; and learning rate.
Output: Model 𝑓 (𝑥,w).
1: Initialization: 𝑣 = 0 for each training sample, w as w(0) ;
2: repeat
3: 𝑡 = 1, · · · , #Epoch
4: 𝑘 = 1, · · · , #Batch
5: Generate mini-batch 𝐷𝑘 from 𝑆 ;
6: Pursue 𝑣𝑖 for each sample in 𝐷𝑘 by solving (54);
7: Update w by solving (55) using SGD;
8: until stable accuracy in the validation set.

5.2 Mixed Positive and Negative Perturbation

We observed that large perturbations (i.e., 𝑣𝑖 ) concentrate in samples with large losses during the running of LogPert
in the experiments. Intuitively, we can only perturb the logit vectors of samples with large losses as the positive
perturbations on samples with small losses are useless or even harmful. Let 𝑙𝑖 = 𝑙 (S(𝑢𝑖 ), 𝑦𝑖 ). Motivated by adversarial
training, (53) is modified into the following form

L =
∑
𝑖:𝑙𝑖≥𝜏

min
∥𝑣𝑖 ∥≤𝜖

𝑙 (S (𝑢𝑖 + 𝑣𝑖 ) , 𝑦𝑖 ) +
∑
𝑖:𝑙𝑖<𝜏

𝑙𝑖 , (56)

where 𝜖 is the perturbation bound and 𝜏 is the loss threshold. Compared with (53), (56) has one more hyper-parameter.
Nevertheless, (56) is more flexible than (53). The results on image classification show that (56) is better than (53) if
appropriate 𝜏 and 𝜖 are used. The discussion part will show that the classical self-paced learning manner [37] can be
implemented by (56) with an increasing value of 𝜏 .

The proposed LogPert method relies on the positive perturbation to reduce the negative influence of samples which
are noisy or quite hard. In our taxonomy, there is another perturbation direction, namely, negative perturbation which
increases the losses of training samples. Typical negative perturbation methods such as adversarial training are con-
sidered as a useful technique, namely, data augmentation in previous studies. Our theoretical analysis in Section 4.3.2
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reveals that the cooperation of positive and negative perturbations may yield better results, so mixed positive (to re-
duce the influence of noisy samples) and negative (to augment clean samples) perturbations are considered. Fig. 4
illuminates the influence of our proposed mixed positive and negative perturbation on training data.

On the basis of (56), a mixed perturbation is subsequently obtained with the following loss:

L =
∑
𝑖:𝑙𝑖≥𝜏

min
∥𝑣𝑖 ∥≤𝜖1

𝑙 (S(𝑢𝑖 + 𝑣𝑖 ), 𝑦𝑖 ) +
∑
𝑖:𝑙𝑖<𝜏

max
∥𝛿𝑖 ∥≤𝜖2

𝑙 (S(𝑓 (𝑥𝑖 + 𝛿𝑖 )) , 𝑦𝑖 ) . (57)

The main difference between (57) and the adversarial training loss [53] is that the losses of quite hard (including
noisy) samples are not increased any more in (57). Instead, the losses of these samples are reduced as in (57). When
𝜏 > max

𝑖
{𝑙𝑖 }, only the maximization part exists and the whole loss becomes the adversarial training loss; when 𝜖2 =

0, (57) is reduced to (56).

Fig. 4. An illustration of the effects of mixed positive and negative perturbation. The raw training data is shown in (a). The positive
perturbation implicitly deletes the six noisy-label samples; while the negative perturbation implicitly pushes the normal training
data toward the decision boundary. The perturbed training data, which can be viewed as augmented samples, is shown in (b).

Algorithm 2 MixPert
Input: Training set 𝑆 = {𝑥𝑖 , 𝑦𝑖 }, 𝑖 = 1, · · · , 𝑁 ; #Epoch; #Batch; learning rate; 𝜖1; 𝜖2; and 𝜏 .
Output: Model 𝑓 (𝑥,w).
1: Initialization: w as w(0) ;
2: repeat
3: 𝑡 = 1, · · · , #Epoch
4: 𝑘 = 1, · · · , #Batch
5: Generate mini-batch 𝐷𝑘 from 𝑆 ;
6: Infer 𝑣𝑖 according to Eq. (59) for samples with a lower loss than 𝜏 ;
7: Infer 𝛿𝑖 for the rest samples according to PGD optimization;
8: Calculate loss based on Eq. (57);
9: Update w using SGD;

10: until stable accuracy in the validation set.

The minimization part in both (56) and (57) can be solved with an optimization approach similar to PGD [53]. This
method is called MixPert for brevity. The PGD-like optimization for the minimization part in (62) is as follows. First,
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we have
𝜕𝑙 (S(𝑢𝑖 + 𝑣𝑖 ), 𝑦𝑖 )

𝜕𝑣𝑖

��𝑣𝑖=0 = S(𝑢𝑖 ) − 𝑦𝑖 , (58)

where 𝑦𝑖 is the one-hot vector of 𝑦𝑖 . Therefore, 𝑣𝑖 can be calculated by

𝑣𝑖 = 𝜂 (𝑦𝑖 − S(𝑢𝑖 )), (59)

where 𝜂 is a hyper-parameter. Accordingly, the updating of 𝑢𝑖 is

𝑢′𝑖 = 𝑢𝑖+𝜂 (𝑦𝑖 − S(𝑢𝑖 )) . (60)

In our implementation, only one updating step is used. Consequently, if ∞-norm is used, then we have

|𝑣𝑖 | = |𝜂 (S(𝑢𝑖 ) − 𝑦𝑖 ) | ≤ |𝜂 | | (S(𝑢𝑖 ) − 𝑦𝑖 ) | ≤ 𝜂. (61)

Therefore, we use 𝜂 to control the bound (i.e., 𝜖1) of 𝑣𝑖 . The detailed steps of MixPert are described in Algorithm 2.
Eq. (57) determines which direction of perturbation is performed for a training sample solely based on the loss in

the current epoch. As introduced in Section 4.6, training loss is a typical quantity for training characteristics. If an
independent dataset is available, meta-learning can be employed to automatically determine the positive or negative
direction based on more training characteristics. Let 𝛼𝑖 (∈ {0, 1}) be a binary variable to denote the choice of positive
or negative perturbation for a sample 𝑥𝑖 . The loss in Eq. (57) becomes

L =
∑
𝑖

𝛼𝑖 min
∥𝑣𝑖 ∥≤𝜖1

𝑙 (S(𝑢𝑖 + 𝑣𝑖 ), 𝑦𝑖 ) + (1 − 𝛼𝑖 ) max
∥𝛿𝑖 ∥≤𝜖2

𝑙 (S(𝑓 (𝑥𝑖 + 𝛿𝑖 )) , 𝑦𝑖 ) , 𝛼𝑖 ∈ {0, 1}. (62)

If 𝛼𝑖 = 1(𝑙𝑖 ≥ 𝜏), then (62) becomes (57). Here we employ three widely used training characteristics including training
loss, gradient norm, and functional margin to infer the value of 𝛼𝑖 via meta-learning. Following Meta-Weight-Net [68],
we employ a multi-layer perceptron (MLP) with 100 hidden nodes, taking the three training characteristics as input.
The output is 𝛼𝑖 , which is transformed into a real number through a Sigmoid function. Similar optimization steps
with those of Meta-Weight-Net used in [68] are leveraged. This method is called Meta-MixPert. The main pipeline of
Meta-MixPert is shown in Fig. (5).

Fig. 5. The main pipeline of the proposed Meta-MixPert.

6 EXPERIMENTS

This section evaluates our methods (LogPert, MixPert, and Meta-MixPert) in image classification and text sentiment
analysis, and experiments when the datasets have noises are also considered.
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6.1 Competing Methods

As our proposedmethods belong to the end-to-end noise-aware solution, the followingmethods are compared: soft/hard
Bootstrapping [62], label smoothing (LS) [71], online label smoothing (OLS) [91], progressive self label correction (Pro-
SelfLC) [77], PGD-based adversarial training (PGD-AT) [53], Self-Distillation from Last Mini-Batch (DLB) [67], and
Margin-based Label Smoothing (MbLS) [46].

The parameter settings are detailed in the corresponding subsections. All the results are the average values of three
repeated runs.
6.2 Image Classification

Four benchmark image classification datasets, namely, CIFAR-10, CIFAR-100 [36], ImageNet [13], and Clothing-1M [84]
are used. To simulate the noisy-label learning scenario, label noise should be added in the training data 14.The synthetic
label noises are simulated on the basis of the two common schemes used in [23, 25, 34]. The first is the random scheme
in which each training sample is assigned to a uniform random label with a probability 𝑝 . The second is the pair scheme
in which each training sample is assigned to the category next to its true category on the basis of the category list with
a probability 𝑝 . The value of 𝑝 is set to 10%, 20%, and 30%.

6.2.1 Experiments on CIFAR-10. CIFAR-10 consists of 50k training images and 10k test images in 10 classes. Resnet-
20, ResNet-32, ResNet-44, ResNet-56, and ResNet-110 [27] are used as base neural networks to evaluate our proposed
LogPert and MixPert on the dataset.

For all the neural networks, the #epochs are set to 300 and batch size is set to 128. SGD is uesd as the optimizer. The
initial learning rate is set to 0.1 and decayed by a factor of 0.1 at the 150th and 225th epochs. In LogPert, 𝜆 is searched
in {0.175, 0.35} and the learning rate for the perturbation variable is searched in {1.5, 3, 6, 12}. In MixPert, 𝜖1 (𝑖 .𝑒 ., 𝜂)
is searched in {0.5, 1, 2, 4}, and 𝜖2 is searched in {0, 8/255, 10/255, 12/255}. 𝜏 is determined according to the top-𝑝𝑟𝑜
percent of ordered losses, and the value of 𝑝𝑟𝑜 is searched in {0, 15, 25, 35, 45, 50}. In PGD-AT, 𝜖2 is is searched in {8/255,
10/255, 12/255}. For other competing methods, namely, soft/hard Bootstrapping, LS, OLS, DLB, and MbLS, we follow
the parameter settings in their original papers.

The results are shown in Table 2 when ResNet-20 is used as the base neural network. For 0% noise, our proposed
method LogPert achieves the highest accuracy, and for other noises, our proposed method MixPert achieves the best
performance.The results ofMixPert are obtainedwhen 𝜖2 equals to 0, indicating that only positive perturbation is useful
for the (clean) accuracy. Indeed, both the hyper-parameters 𝜖2 and 𝜏 balance the trade-off between the positive and
negative perturbations. Comparisons on other base networks, namely, ResNet-32, ResNet-44, ResNet-56, and ResNet-
110, are also conducted. Tables 3 and 4 present the classification accuracies of the competing methods with the above
four base networks on partial noisy rates. Our proposed method MixPert achieves the best results.

When LogPert is used, some original labels with high average perturbation terms are found to be erroneous. Fig. 6
shows two samples from CIFAR-10. Their labels seem wrong.

In addition, we plot the distribution of 𝑙1-norm of perturbed logit vectors when using LogPert on CIFAR-10 dataset
without label noises (0%). The results are shown in Fig. 7. The distribution curve shows a long-tail trend, which is quite
reasonable.

To verify the performance of the Meta-MixPert algorithm we proposed and to ensure fair evaluation, the settings
in [74, 81] are followed. We randomly select 1000 images in training set as the small clean validation set for CIFAR-10.

14If label noises are added into the training data, then performance will drop seriously for conventional learning methods. Accordingly, noisy-label
learning methods are designed to reduce the serious performance drop.
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Table 2. Classification accuracies (%) and standard deviations on CIFAR-10 (ResNet-20).

Random noise Pair noise
0% 10% 20% 30% 10% 20% 30%

Base (ResNet-20) 91.79±0.31 88.78±0.33 87.55±0.32 85.85±0.37 90.32±0.19 89.28±0.14 87.06±0.23
Soft Bootstrapping 91.83±0.12 89.37±0.18 87.52±0.37 85.59±0.33 90.44±0.23 89.16±0.22 87.08±0.25
Hard Bootstrapping 92.06±0.10 89.61±0.20 88.07±0.32 86.37±0.26 90.34±0.18 89.54±0.25 86.86±0.19
Label Smoothing 92.12±0.14 90.15±0.09 88.54±0.18 86.82±0.16 90.63±0.22 90.12±0.06 88.28±0.42

Online Label Smoothing 92.18±0.15 89.84±0.14 88.19±0.15 86.08±0.22 90.65±0.18 89.52±0.08 87.68±0.16
ProSelfLC 91.80±0.16 89.90±0.16 88.84±0.22 86.78±0.31 90.40±0.23 89.76±0.17 87.11±0.20
PGD-AT 89.90±0.08 87.56±0.13 86.87±0.13 84.80±0.17 88.90±0.15 88.38±0.07 86.79±0.13
DLB 91.87±0.13 89.59±0.21 87.92±0.26 85.90±0.28 90.35±0.20 89.32±0.19 87.13±0.28
MbLS 92.20±0.12 90.18±0.14 88.93±0.21 86.89±0.22 90.63±0.18 90.10±0.12 88.31±0.17
LogPert 93.04±0.07 91.07±0.05 90.42±0.13 88.86±0.16 91.74±0.10 91.29±0.07 89.95±0.11
MixPert 92.94±0.06 91.09±0.11 90.63±0.12 88.98±0.15 92.18±0.06 91.41±0.08 90.01±0.16

Table 3. Classification accuracies (%) and standard deviations on CIFAR-10 (0% noise) when using different base neural networks.

ResNet-32 ResNet-44 ResNet-56 ResNet-110
Base 92.50±0.26 92.82±0.15 93.03±0.34 93.51±0.18

Soft Bootstrapping 92.40±0.17 92.83±0.16 93.43±0.27 94.08±0.29
Hard Bootstrapping 92.19±0.23 92.94±0.11 93.38±0.25 94.02±0.23
Label Smoothing 92.75±0.24 92.89±0.18 93.05±0.23 93.92±0.43

Online Label Smoothing 92.61±0.19 92.93±0.34 93.41±0.20 93.54±0.18
ProSelfLC 92.87±0.22 92.98±0.28 93.21±0.19 93.58±0.37
PGD-AT 90.66±0.16 91.31±0.19 91.80±0.22 91.98±0.15
DLB 92.51±0.24 92.85±0.27 93.44±0.26 94.04±0.22
MbLS 92.90±0.19 93.01±0.22 93.48±0.27 94.09±0.24
LogPert 93.71±0.10 94.07±0.07 94.39±0.15 94.91±0.11
MixPert 93.95±0.14 94.15±0.13 94.52±0.14 95.14±0.10

Table 4. Classification accuracies (%) and standard deviations on CIFAR-10 (20% pair noise) when using different base neural net-
works.

ResNet-32 ResNet-44 ResNet-56 ResNet-110
Base 89.66±0.32 89.83±0.25 90.11±0.31 90.55±0.27

Soft Bootstrapping 89.79±0.28 89.98±0.24 90.17±0.25 90.59±0.30
Hard Bootstrapping 89.94±0.29 90.06±0.27 90.21±0.23 90.66±0.33
Label Smoothing 90.52±0.15 90.83±0.19 91.05±0.22 91.31±0.24

Online Label Smoothing 90.65±0.13 90.81±0.16 90.95±0.21 91.16±0.20
ProSelfLC 90.58±0.17 91.01±0.19 91.16±0.24 91.48±0.27
PGD-AT 89.07±0.12 89.37±0.15 89.94±0.17 90.41±0.22
DLB 90.01±0.26 90.19±0.25 90.38±0.19 91.01±0.19
MbLS 90.68±0.26 91.03±0.29 91.15±0.25 91.51±0.22
LogPert 91.74±0.12 92.04±0.14 92.26±0.13 92.79±0.16
MixPert 91.87±0.13 92.13±0.12 92.44±0.15 93.16±0.11

If the compared methods do not rely on the small clean validation set, both the training and the small clean validation
sets are merged as training set. MbLS [46], which performed better in the aforementioned experiments, is used for
comparison. ResNet-56 and ResNet-110 are used as the base neural networks. The results are shown in Table 5. When
employing meta-learning strategies, our proposed MixPert shows further improvement, and Meta-MixPert achieves
the best results.
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Fig. 6. Samples with high average perturbation terms whose labels seem erroneous.

Fig. 7. Distribution of 𝑙1-norm of perturbed logit vectors on CIFAR-10.

Table 5. Classification accuracies (%) and standard deviations on CIFAR-10 (ResNet-56 and ResNet-110).

ResNet-56 ResNet-110
0% 20% pair noise 0% 20% pair noise

Base 93.03±0.34 90.13±0.28 93.51±0.18 90.60±0.26
MbLS 93.48±0.27 91.20±0.33 94.09±0.24 91.46±0.19

MixPert 94.52±0.14 92.47±0.16 95.14±0.10 93.22±0.20
Meta-MixPert 95.19±0.17 93.86±0.11 95.83±0.13 94.80±0.18

6.2.2 Experiments on CIFAR-100. CIFAR-100 consists of 50k training images and 10k test images in 100 classes. ResNet-
20, ResNet-32, ResNet-44, ResNet-56, and ResNet-110 are also used as base neural networks. Training details are the
same as the experiments on CIFAR-10. In addition, Wide-ResNet-28-10 (WRN-28-10) [90] is also employed. We follow
the same experimental setting as [79].

The experimental results on CIFAR-100 are shown in Tables 6, 7, 8, and 9. LogPert and MixPert outperform all
competing methods. Compared with the base neural network ResNet20, the maximum improvement of the LogPert is
6.01%, and the minimum improvement is 1.53%.The maximum improvement of the MixPert is 7.81%, and the minimum
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improvement is 1.32%. In 20% pair noise experiments, compared with ResNet-32, ResNet-44, ResNet-56, and ResNet-
110, MixPert improves the accuracy by 4.68%, 6.34%, 5.98%, and 4.35%, respectively. Compared with the base neural
networkWRN-28-10, the maximum improvement of the LogPert is 3.72%, and the minimum improvement is 2.15%.The
maximum improvement of the MixPert is 4.10%, and the minimum improvement is 2.26%. All the experimental results
show that our proposed methods significantly improve the classification performance. In addition, ResNet-110 and
WRN-28-10 are used as the base neural networks to evaluate our proposed Meta-MixPert method. The experimental
results are shown in Tables 10. Our proposed Meta-MixPert achieves the best results.

Table 6. Classification accuracies (%) on CIFAR-100 (ResNet-20).

Random noise Pair noise
0% 10% 20% 30% 10% 20% 30%

Base (ResNet-20) 67.81±0.08 63.67±0.29 60.63±0.33 57.82±0.35 63.94±0.29 61.22±0.03 55.74±0.22
Soft Bootstrapping 68.38±0.24 64.01±0.23 60.66±0.28 57.97±0.23 64.29±0.31 60.71±0.23 56.27±0.26
Hard Bootstrapping 67.62±0.29 64.28±0.33 60.32±0.22 58.09±0.19 63.96±0.26 60.69±0.29 56.18±0.17
Label Smoothing 67.54±0.10 65.04±0.18 61.84±0.27 59.06±0.08 65.43±0.24 62.71±0.24 58.92±0.19

Online Label Smoothing 67.80±0.19 64.55±0.15 61.53±0.22 59.19±0.13 64.70±0.28 62.54±0.19 57.44±0.25
ProSelfLC 68.37±0.22 64.64±0.28 62.14±0.17 58.93±0.24 65.36±0.18 62.57±0.16 59.08±0.27
PGD-AT 64.37±0.17 60.39±0.24 57.38±0.21 54.23±0.16 60.41±0.20 58.08±0.13 54.37±0.22
DLB 68.33±0.19 64.30±0.33 61.02±0.27 58.05±0.24 64.33±0.25 61.41±0.15 57.09±0.19
MbLS 68.40±0.27 65.09±0.15 62.17±0.28 59.21±0.22 65.39±0.17 62.76±0.14 59.22±0.21
LogPert 69.34±0.08 65.63±0.12 62.64±0.14 59.70±0.13 66.59±0.17 64.81±0.09 61.75±0.15
MixPert 69.13±0.12 65.79±0.14 62.76±0.20 60.17±0.12 66.81±0.16 64.83±0.11 63.55±0.13

Table 7. Classification accuracies (%) and standard deviations on CIFAR-100 (0% noise) when using different base neural networks.

ResNet-32 ResNet-44 ResNet-56 ResNet-110
Base 69.16±0.19 70.02±0.19 70.38±0.34 73.18±0.12

Soft Bootstrapping 69.76±0.25 70.76±0.34 71.01±0.40 74.19±0.24
Hard Bootstrapping 69.37±0.24 70.06±0.29 70.26±0.31 73.35±0.18
Label Smoothing 69.91±0.27 70.52±0.51 71.49±0.29 74.01±0.44

Online Label Smoothing 69.53±0.22 70.05±0.79 71.06±0.26 73.59±0.19
ProSelfLC 69.54±0.29 70.39±0.35 70.49±0.32 73.42±0.24
PGD-AT 65.94±0.18 66.55±0.26 67.58±0.29 70.83±0.17
DLB 69.74±0.27 70.44±0.32 70.79±0.35 73.87±0.18
MbLS 69.93±0.26 70.59±0.31 71.50±0.25 74.19±0.23
LogPert 71.55±0.16 72.01±0.15 72.79±0.23 75.72±0.13
MixPert 71.68±0.14 72.18±0.19 72.93±0.24 75.80±0.14

6.2.3 Experiments on ImageNet. LogPert, MixPert, and Meta-MixPert are also evaluated on a large-scale dataset Im-
ageNet which consists of 1.2M training images and 50K validation images in 1K categories. Resnet-50 and ResNet-
101 [27] are used as base neural networks.

We train all the neural networks for 250 epochs using a batch size of 256. SGD is uesd as the optimizer. The initial
learning rate is 0.1 and decayed by a factor of 0.1 at the 75th, 150th, and 225th epochs. The parameter settings are the
same as the settings on CIFAR-10.

Top-1 and top-5 errors are used to assess the classification performance. The experimental results are shown in
Tabels 11, 12 and 13. MixPert and LogPert still achieve the best and the second-best performance, respectively. The
meta-learning strategies further improve the performance of the MixPert. Experiments on ImageNet still demonstrate
the effectiveness of our methods LogPert, MixPert and Meta-MixPert.
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Table 8. Classification accuracies (%) and standard deviations on CIFAR-100 (20% pair noise) when using different base neural net-
works.

ResNet-32 ResNet-44 ResNet-56 ResNet-110
Base 62.46±0.54 62.73±0.64 63.37±0.22 67.51±0.19

Soft Bootstrapping 63.09±0.33 63.69±0.39 64.06±0.28 67.87±0.26
Hard Bootstrapping 63.03±0.41 63.57±0.32 63.99±0.34 67.40±0.23
Label Smoothing 64.45±0.28 65.72±0.27 66.50±0.74 69.43±0.36

Online Label Smoothing 63.94±0.66 65.18±0.70 65.45±0.52 68.38±0.34
ProSelfLC 64.04±0.37 65.04±0.44 65.48±0.46 68.86±0.26
PGD-AT 60.13±0.31 60.58±0.28 60.96±0.29 65.62±0.20
DLB 63.11±0.37 64.01±0.33 64.26±0.45 68.13±0.35
MbLS 64.55±0.24 65.74±0.29 66.61±0.37 69.39±0.26
LogPert 66.67±0.25 67.16±0.24 68.69±0.23 71.83±0.19
MixPert 67.14±0.23 69.07±0.26 69.35±0.20 71.86±0.18

Table 9. Classification accuracies (%) and standard deviations on CIFAR-100 (WRN-28-10).

Random noise Pair noise
0% 10% 20% 30% 10% 20% 30%

Base (WRN-28-10) 81.53±0.09 78.51±0.18 75.84±0.23 72.95±0.31 78.92±0.16 76.37±0.25 72.31±0.29
Soft Bootstrapping 81.74±0.26 78.73±0.33 75.92±0.29 72.98±0.29 78.98±0.22 76.41±0.33 72.74±0.27
Hard Bootstrapping 81.86±0.34 78.90±0.29 75.89±0.32 73.06±0.28 78.95±0.18 76.44±0.25 72.65±0.24
Label Smoothing 82.07±0.16 79.03±0.24 76.77±0.27 73.54±0.19 79.34±0.17 76.82±0.28 73.11±0.35

Online Label Smoothing 82.02±0.23 78.97±0.19 76.79±0.22 73.62±0.21 79.18±0.24 76.79±0.33 73.02±0.31
ProSelfLC 81.95±0.14 79.12±0.21 76.81±0.17 73.31±0.15 79.52±0.26 76.79±0.34 73.27±0.28
PGD-AT 79.42±0.12 76.23±0.19 73.48±0.24 70.48±0.17 76.51±0.25 74.25±0.20 70.52±0.24
DLB 82.05±0.25 79.01±0.27 76.54±0.28 73.29±0.22 79.11±0.21 76.67±0.31 72.86±0.27
MbLS 82.24±0.23 79.59±0.24 76.93±0.25 73.77±0.27 79.63±0.17 77.41±0.29 73.49±0.23
LogPert 83.32±0.10 81.05±0.22 78.01±0.19 75.11±0.24 81.07±0.15 79.20±0.26 76.03±0.20
MixPert 83.39±0.07 81.14±0.15 78.10±0.26 75.27±0.21 81.29±0.11 79.25±0.27 76.41±0.18

Table 10. Classification accuracies (%) and standard deviations on CIFAR-100 (ResNet-110 and WRN-28-10).

ResNet-110 WRN-28-10
0% 20% pair noise 0% 20% pair noise

Base 73.18±0.12 67.47±0.22 81.53±0.09 76.41±0.24
MbLS 74.19±0.23 69.42±0.21 82.24±0.23 77.38±0.27

MixPert 75.80±0.14 71.88±0.16 83.39±0.07 79.30±0.29
Meta-MixPert 76.55±0.15 73.27±0.13 83.97±0.12 80.42±0.25

6.2.4 Experiments on Clothing 1M. The experiments are also conducted on Clothing 1M, which is a real-world noisy
dataset. The Clothing 1M dataset consists of 1M images with noisy labels and additional 50k, 14k, 10k of clean data for
training, validation and testing, respectively.

To evaluate LogPert and MixPert, we follow the same experimental settings as previous studies [42, 72]. The ResNet-
50 pre-trained on ImageNet is used as the base neural network.We use SGDwith amomentum of 0.9 and aweight decay
of 10−3. The batch size is set to 32. For LogPert, MixPert, and other competing methods, the parameter settings are the
same as the settings in 6.2.1. The results are shown in Table 14. The proposed MixPert achieves the best results, and
LogPert achieves the second-best results. Compared with the base neural network, the MixPert and LogPert improved
by 5.70% and 5.46%, respectively. To evaluate Meta-MixPert, the settings in [81] are followed. The results shown in
Table 15 demonstrate meta-learning strategies further improve the performance of the MixPert method.
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Table 11. Top-1 and Top-5 Errors (%) on ImageNet (0% noise). * denotes the results reported in online label smoothing [91].

Top-1 Error(%) Top-5 Error(%)
Base (ResNet-50) 23.68* 7.05*
Soft Bootstrapping 23.49* 6.85*
Hard Bootstrapping 23.85* 7.07*
Label Smoothing 22.82* 6.66*

Online Label Smoothing 22.28* 6.39*
ProSelfLC 23.15 6.74
PGD-AT 24.93 7.33
DLB 23.42 6.79
MbLS 22.26 6.36
LogPert 21.82 6.13
MixPert 21.79 6.10

Table 12. Top-1 and Top-5 Errors (%) on ImageNet (0% noise).* denotes the results reported in online label smoothing [91].

Top-1 Error(%) Top-5 Error(%)
Base (ResNet-101) 21.87* 6.29*
Soft Bootstrapping 21.61 6.18
Hard Bootstrapping 21.92 6.30
Label Smoothing 21.27* 5.85*

Online Label Smoothing 20.85* 5.50*
ProSelfLC 21.43 5.97
PGD-AT 22.92 6.53
DLB 21.59 6.15
MbLS 20.83 5.46
LogPert 20.48 5.35
MixPert 20.43 5.31

Table 13. Top-1 and Top-5 Errors (%) on ImageNet.

ResNet-50 ResNet-101
Top-1 Error(%) Top-5 Error(%) Top-1 Error(%) Top-5 Error(%)

Base 23.68 7.05 21.87 6.29
MbLS 22.26 6.36 20.83 5.46

MixPert 21.79 6.10 20.43 5.31
Meta-MixPert 21.42 5.89 20.02 5.14

6.3 Text Sentiment Analysis

A benchmark dataset is used, namely, IMDB [52]. It is a large internet movie dataset for binary classification tasks with
50k labeled reviews. The proportion of training, validation, and test data we used is 4:1:5. Two types of label noises are
added. In the first type (symmetric), the labels of the former 5%, 10%, and 20% (according to their indexes in the corpus)
training samples are flipped to simulate the label noises; in the second type (asymmetric), the labels of the former 5%,
10%, and 20% (according to their indexes in the corpus) positive samples are flipped to negative.

BiLSTM with attention and BERT-Base are used as base models. For BiLSTM with attention, the 300-𝐷 Glove [94]
embedding is used; the embedding dropout and the dimension of hidden vectors are set to 0.5 and 100, respectively.
The learning rates for BiLSTM with attention and BERT-Base are set to 1e-3 and 2e-5, respectively. For both models,
the batch size is set to 64 and the #epochs is set to 6. AdamW is uesd as the optimizer. In LogPert, the learning rate
for the perturbation variable is searched in {0.75, 0.8, 0.85}, and the 𝜆 is searched in {0.75, 1}. In MixPert, 𝜖1 (𝑖 .𝑒 ., 𝜂)
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Table 14. Classification accuracies (%) on Clothing 1M.

Accuracy
Base(ResNet-50) 69.19

Soft Bootstrapping 70.26
Hard Bootstrapping 70.77
Label Smoothing 71.81

Online Label Smoothing 71.79
ProSelfLC 71.80
PGD-AT 68.02
DLB 71.76
MbLS 72.14
LogPert 74.65
MixPert 74.89

Table 15. Classification accuracies (%) on Clothing 1M.

Accuracy
Base(ResNet-50) 69.31

MbLS 72.32
MixPert 74.92

Meta-MixPert 75.41

is searched in {0, 0.05, 0.1, 0.15}, and 𝜖2 is searched in {0, 0.005, 0.01, 0.02}. 𝜏 is determined by the top-𝑝𝑟𝑜 percent of
ordered losses, and the value of 𝑝𝑟𝑜 is searched in {0, 5, 15, 30, 60}. In PGD-AT, 𝜖2 is is searched in {0.005, 0.01, 0.02}.
For other competing methods, namely, soft/hard Bootstrapping, LS, OLS, DLB, and MbLS, we follow the parameter
settings in the original papers.

Table 16. Classification accuracies (%) on IMDB.

Symmetric noise Asymmetric noise
0% 5% 10% 20% 5% 10% 20%

Base (BiLSTM+attention) 84.39±0.34 83.04±0.17 81.90±0.61 78.13±0.13 82.35±0.88 79.53±2.68 73.74±1.14
Soft Bootstrapping 84.79±0.87 83.87±0.13 81.11±0.62 79.60±1.78 83.36±1.11 80.70±2.19 73.52±2.65
Hard Bootstrapping 84.44±0.93 84.10±0.54 83.01±0.70 80.84±1.07 82.48±1.72 81.42±1.55 75.26±1.02
Label Smoothing 84.62±0.18 83.14±0.24 82.41±0.51 80.73±0.20 82.75±0.29 82.28±0.33 74.70±0.48

Online Label Smoothing 84.83±0.51 84.14±0.37 82.09±0.54 80.91±1.17 83.78±0.77 81.35±0.92 73.75±1.38
ProSelfLC 84.79±0.39 83.21±0.44 82.17±0.47 80.42±0.41 83.22±0.91 81.58±0.85 74.96±3.01
PGD-AT 85.82±0.10 84.12±0.37 83.53±0.44 81.48±0.18 82.41±0.98 80.75±0.73 73.85±2.33
DLB 84.77±0.41 83.95±0.22 83.16±0.59 80.87±0.67 83.39±0.81 81.37±0.76 75.01±1.12
MbLS 84.85±0.26 84.06±0.17 83.45±0.31 81.49±0.46 83.81±0.29 81.87±0.33 75.29±1.09
LogPert 85.91±0.11 84.57±0.15 83.81±0.24 81.75±0.18 84.64±0.29 82.43±0.31 77.16±0.28
MixPert 85.96±0.07 85.21±0.12 84.45±0.21 82.74±0.15 85.37±0.22 83.24±0.23 77.83±0.25

The results of the competing methods on the IMDB for the symmetric and asymmetric label noises are shown in
Table 16, when BiLSTM with attention [20] is used as the base network. Our proposed method, MixPert, achieves the
overall best results. When no added label noises are present (0%), MixPert and LogPert still outperform the base model
BiLSTM with attention by 1.57% and 1.52%, respectively.
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On IMDB, the base model is usually converged in the second epoch. However, LogPert is usually converged in the
third or the fifth epoch. The validation accuracies of the six epochs for the base model and our LogPert are shown in
Fig. 8. LogPert can decelerate the convergence speed leading that the training data can be more fully trained.

Fig. 8. The validation accuracies in the six epochs under different proportions of random noises on IMDB when using Base (left) and
LogPert (right), respectively.

When LogPert is used, some original labels with high average perturbation terms are found to be erroneous. For
example, the sentence “this is a great movie. I love the series on tv and so I loved the movie. One of the best things in the

movie is that Helga finally admits her deepest darkest secret to Arnold‼! that was great. i loved it it was pretty funny too.

It’s a great movie! Doy‼!” is labeled as negative in the original set.
When BERT-Base [15] is used as the base model, we conduct experiments on the IMDB dataset with 0% noise, 10%

symmetric noise, and 10% asymmetric noise. The experimental results are shown in Table 17. Our proposed method,
MixPert, still achieves the overall best results. LogPert achieves the second-best results.

Table 17. Classification accuracies (%) on IMDB with BERT.

0% noise 10% symmetric noise 10% asymmetric noise
Base (BERT) 90.61±0.04 89.26±0.20 89.04±0.37

Soft Bootstrapping 90.72±0.13 89.47±0.27 89.28±0.39
Hard Bootstrapping 90.70±0.09 89.38±0.29 89.26±0.40
Label Smoothing 90.89±0.11 89.61±0.17 89.35±0.21

Online Label Smoothing 90.95±0.07 89.59±0.22 89.42±0.27
ProSelfLC 90.90±0.08 89.54±0.19 89.37±0.18
PGD-AT 91.51±0.06 89.34±0.15 89.30±0.20
DLB 90.77±0.10 89.49±0.24 89.32±0.29
MbLS 91.13±0.09 89.81±0.22 89.68±0.24
LogPert 91.69±0.05 90.53±0.14 90.38±0.18
MixPert 91.83±0.04 90.59±0.11 90.50±0.16

6.4 Ablation Study

6.4.1 Ablation Study for MixPert. An ablation study is conducted for MixPert on CIFAR-10 (random noises) as MixPert
involves both positive and negative perturbations. The results in Table 18 indicate that negative perturbation (i.e.,
adversarial training) does not improve the performance yet the positive perturbation achieves the best performance.
Table 19 lists the clean and adversarial accuracies of MixPert under different values of 𝜖2 on the CIFAR-10 (10% random
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noises). The increase of 𝜖2 improves the adversarial accuracies yet reduces the clean accuracies. Although negative
perturbation in MixPert does not improve the clean accuracies, it benefits the adversarial accuracies.

Table 18. An ablation study of MixPert on CIFAR-10 (%).

Random noise 0% 10% 20% 30%
Baseline (ResNet-20) 91.79±0.31 88.78±0.33 87.55±0.32 85.85±0.37

Only pos. pert. (𝜖2 = 0) 92.94±0.06 91.09±0.11 90.63±0.12 88.98±0.15
Only neg. pert. (𝜖1 = 0) 91.66±0.12 88.69±0.22 87.33±0.10 85.71±0.31

Both directions 92.02±0.15 90.11±0.27 89.75±0.17 88.17±0.16

Table 19. Performance variations under different values of 𝜖2.

0 2/255 4/255 6/255 8/255
Clean accuracy(%) 91.09±0.11 90.11±0.27 89.77±0.18 88.67±0.15 88.30±0.19

Adversarial accuracy(%) 11.57±0.36 53.38±0.31 64.95±0.24 68.20±0.16 70.25±0.14

An ablation study is also conducted for MixPert on IMDB. The results are shown in Table 20. Each perturbation is
useful and their combination achieves the best performance.

Table 20. An ablation study of MixPert on IMDB (%).

Symmetric noise 0% 5% 10% 20%
Baseline (BiLSTM+attention) 84.39±0.34 83.04±0.17 81.90±0.61 78.13±0.13

Only pos. pert. (𝜖2 = 0) 85.92±0.16 84.66±0.13 83.86±0.24 81.71±0.23
Only neg. pert. (𝜖1 = 0) 85.84±0.36 84.87±0.22 83.89±0.27 81.73±0.24

Both directions 85.96±0.07 85.21±0.12 84.45±0.21 82.74±0.15

6.4.2 Ablation Study for Meta-MixPert. An ablation study is conducted for Meta-MixPert on CIFAR-100. The results
presented in Table 21 indicate that the training loss, gradient norm, and functional margin all contribute significantly
to the performance of Meta-MixPert.

Table 21. An ablation study of Meta-MixPert on CIFAR-100 (%).

0% 20% pair noise
Meta-MixPert(WRN-28-10) 83.97±0.12 80.42±0.25

Meta-MixPert without training loss 83.26±0.27 79.43±0.21
Meta-MixPert without gradient norm 83.39±0.18 79.66±0.23

Meta-MixPert without functional margin 83.11±0.13 79.35±0.19

6.4.3 Impact of Hyper-Parameters. In LogPert, the effect of 𝜆 on the results is analyzed on CIFAT-100 (pair noises),
and the results are shown in Fig. 9. The best results are obtained when 𝜆 is set to 0.175 or 0.35. When the value of 𝜆 is
greater than 0.35, the accuracy gradually decreases. A moderate value of 𝜆 can balance the original loss and the degree
of logit perturbation.

In MixPert, the effect of 𝜖1 (𝑖 .𝑒 ., 𝜂) and 𝜏 (the value of 𝑝𝑟𝑜) on the results is analyzed on IMDB (asymmetric noises),
and the results are shown in Fig. 10. We observe that when 𝜖1 is greater than 0.1, the accuracy gradually decreases. As
the noise percentage increases, the value of 𝑝𝑟𝑜 for the best results is larger.
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Fig. 9. Accuracies under different 𝜆 values in LogPert.

Fig. 10. Accuracies under different values of 𝜖1 (left) and 𝑝𝑟𝑜 in MixPert.

6.5 Discussion

The results indicate that our proposed two methods LogPert and MixPert achieve competitive performances among
the competing methods. MixPert is superior to LogPert in most cases. The reason lies in that LogPert only implements
positive perturbation in order to reduce the negative influence of samples with noisy or quite hard labels. However,
MixPert can implement both positive and negative perturbations. Its positive perturbation part plays a quite similar
role as LogPert, whereas its negative perturbation part plays a role of implicit data augmentation. Further, the extent
of negative perturbation is controlled by the value of 𝜖2. When 𝜖2 = 0, MixPert is approximately reduced to LogPert.
Naturally, MixPert can achieve better results than LogPert in real use.

More extensions and new methods can be obtained based on our taxonomy.
(1) The extension of the logit perturbation (described in Eq. (56)). As previously mentioned, each weighting method

may correspond to a perturbation method. Self-paced learning (SPL) [37] is a classical sample weighting strategy in
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machine learning. The weights are obtained with the following objective function:

min
𝑤𝑖 ∈{0,1}

∑
𝑖
𝑤𝑖𝑙 (S(𝑢𝑖 ), 𝑦𝑖 ) − 𝜆𝑤𝑖 . (63)

The solution is

𝑤𝑖 =


1 if 𝑙 (S(𝑢𝑖 ), 𝑦𝑖 ) ⩽ 𝜆

0 otherwise
, (64)

which indicates that the weights of samples with larger losses than 𝜆 are set to 0. When the value of 𝜆 is increased,
more samples will participate in the model training.

Fig. 11 shows the curves of weights for the original SPL and its variants. LogPert can be used to implement the SPL
with (56) and (65) when the hyper-parameters 𝜖 and 𝜏 satisfy the following conditions:

𝜏𝑡+1 > 𝜏𝑡 and 𝜖 > 2max
𝑖

{| |𝑢𝑖 | |}, (65)

where 𝑡 is the index of the current epoch. A new method is obtained and can be called self-paced logit perturbation.

Fig. 11. The curves of weights under different losses in SPL. “Hard” represents the original SPL [82].

With Eq. (65), similar curves to those of SPL can also be obtained. Fig. 12 shows the curve of loss ratios (perturbed
loss : original loss) when 𝜖 > 2max

𝑖
{| |𝑢𝑖 | |} on the CIFAR-100 dataset. The curve indicates that our strategy can also

exert higher weights (= 1) to samples with low losses and lower weights (≈ 0) to samples with high losses.
(2) The extension of MixPert. Indeed, the parameters 𝜖1 and 𝜖2 characterize the extent of positive and negative

perturbations, respectively. Intuitively, a sample with a larger loss should have a greater positive perturbation; while
a sample with a lower loss should have a greater negative perturbation. Therefore, the constrains for the perturbation
terms in (52) can be redefined as follows:

∥𝑣𝑖 ∥ ≤ 𝜖1 [1 + (𝑙𝑖 − 𝜏)/𝜏] and ∥𝛿𝑖 ∥ ≤ 𝜖2 [1 + (𝜏 − 𝑙𝑖 )/𝜏] . (66)

(3) The extension of Bootstrapping. The Bootstrapping loss and the online label smoothing can be unified into the
following new loss:

L =
∑

𝑖
𝑙 (𝑝𝑖 , 𝑦𝑖+𝛼 (𝛽𝑝𝑦𝑖+(1−𝛽)𝑝𝑖 − 𝑦𝑖 )), (67)
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Fig. 12. Loss ratio curve of self-paced logit perturbation given a fixed 𝜂 (𝜖) and 𝜏 .

where 𝑝𝑦𝑖 is the category-level average prediction in the previous epoch; 𝛼 and 𝛽 are hyper-parameters and are located
in [0, 1]. When 𝛽 equals 0, the above loss becomes the soft Bootstrapping loss. When 𝛽 equals 1, the loss becomes the
online label smoothing loss with a little difference. Specifically, 𝑝𝑦𝑖 is defined as follows:

𝑝𝑦𝑖=
1

𝑍𝑦𝑖

∑
𝑗 :𝑦 𝑗=𝑦𝑖

(conf𝑗 × 𝑝 𝑗 ), (68)

where conf𝑗 is the prediction confidence of the prediction 𝑝 𝑗 , and 𝑍𝑦𝑖 is the normalizer. Two typical definitions of conf𝑗
are

conf𝑗 = 1 𝑜𝑟

conf𝑗 =

1 if the prediction is correct

0 otherwise
.

(69)

When the second definition is used and 𝛽 = 1, the unified loss becomes the online label smoothing. Nevertheless, in
most datasets, the values of 𝑝𝑦𝑖 obtained by the above two definitions are close to each other as the index of the current
epoch gradually increases according to our observations. The unified new method can be called mixBootstrapping.

7 CONCLUSIONS

This study reveals a widely used yet less-explored machine learning strategy, namely, perturbation. Machine learn-
ing methods leveraging or partially leveraging perturbation comprise a new learning paradigm called learning with
perturbation. To solidify the theoretical basis of perturbation learning, a systematic taxonomy is constructed on the
basis of which to perturb, the direction of loss variation, how to infer, and the granularity. To demonstrate the uni-
versality of perturbation learning, several existing learning methods are explained within our constructed taxonomy.
Furthermore, three concrete perturbation learning methods (i.e., LogPert, MixPert, and Meta-MixPert) are proposed.
Extensive experiments suggest that our proposed methods are effective in robust learning tasks. It is believable that our
constructed taxonomy can build intrinsic connections among a large number of seemly unrelated learning methods,
enlighten the deep understanding of these methods, and inspire the design of more effective methods.
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