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Feedback law to stabilize linear infinite-dimensional systems∗

Yaxing Ma† Gengsheng Wang‡ Huaiqiang Yu§

Abstract

We design a new feedback law to stabilize the linear infinite-dimensional control system, where
the state operator generates a C0-group and the control operator is unbounded. Our feedback law
is based on the integration of a mutated Gramian operator-valued function. In the structure of the
aforementioned mutated Gramian operator, we utilize the weak observability inequality in [21, 14]
and borrow some idea used to construct generalized Gramian operators in [11, 23, 24]. Unlike most
related works where the exact controllability is required, we only assume the above-mentioned weak
observability inequality which is equivalent to the stabilizability of the system.
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1 Introduction

1.1 Notation

Let R+ := [0,+∞), N := {0, 1, . . .} and N+ := {1, 2, . . .}. Given a Hilbert space X , we use X ′, ‖ · ‖X
and 〈·, ·〉X to denote its dual space, norm and inner product respectively; write 〈·, ·〉X,X′ for the dual
product between X and X ′; identify X ′′ (the dual space of X ′) with X ; denote by C(R+;X) the space
of all continuous functions from R+ to X ; write I for the identity operator on X . When L is a densely
defined and closed linear operator on a Hilbert space X , we let D(L) := {x ∈ X : Lx ∈ X} and

‖x‖D(L) := (‖x‖2X + ‖Lx‖2X)
1
2 (x ∈ D(L)), which are the domain of L and the graph norm on D(L)

respectively; use L∗ to denote its adjoint operator, i.e., 〈Lx, y〉X,X′ = 〈x, L∗y〉X,X′ (x ∈ D(L), y ∈ D(L∗))
(see [15, Chapter 1, Section 1.10]); use ρ(L) to denote its resolvent set. When X1 and X2 are two Hilbert
spaces, we write L(X1;X2) for the space of all linear and bounded operators from X1 to X2, and further
write L(X1) := L(X1;X1). Given F ∈ L(X1;X2), we use ‖F‖L(X1;X2) and F

∗ ∈ L(X ′
2;X

′
1) to denote its

operator norm and adjoint operator respectively. We use C(· · · ) to denote a constant that depends on
what is enclosed in the brackets.

1.2 Motivation

Stabilization is one of the most important objectives in control theory. There are two important sub-
jects on stabilization for linear control systems: The first one is to find sufficient conditions/equivalent
conditions on stabilizability, such as resolvent conditions (see, for instance, [7, 8, 13, 16]) and weak ob-
servability inequalities (see [14, 21, 26]). The second one is to design feedback laws (see, for instance,
[6, 10, 11, 12, 18, 19, 23, 24, 27]). For the latter, we would like to mention two usual methods: using Riccati
equations (see, for instance, [6, 12, 27]); using Gramian operators (see, for instance, [10, 11, 18, 19, 23, 24]).

∗This work was partially supported by the National Natural Science Foundation of China under grant 11971022.
†School of Mathematics, Tianjin University, Tianjin 300354, China (yaxingma@yeah.net).
‡Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China (wanggs@yeah.net).
§School of Mathematics, Tianjin University, Tianjin 300354, China (huaiqiangyu@tju.edu.cn, huaiqiangyu@yeah.net).

1

http://arxiv.org/abs/2201.06803v2


They all have their own advantages and disadvantages. We aim to design feedback laws by the way using
Gramian operators.

It is well known that when matrices A ∈ Rn×n and B ∈ Rn×m (n,m ∈ N+) satisfy the Kalman

controllability condition, the matrix K = −B⊤G−1
T (where GT :=

∫ T

0 e−AtBB⊤e−A⊤tdt, with T > 0,
is called a Gramian operator) is a feedback law stabilizing the system: y′(t) = Ay(t) + Bu(t), t ≥ 0.
(See, for instance, [20, Chapter 5, Section 5.7].) Such idea has been extended to the infinite-dimensional
settings (see, for instance, [3, 4, 11, 13, 17, 19, 23, 24]). To our best knowledge, all existing papers, which
use Gramian operators to design feedback laws, need the following hypothesis (which is mainly used to
ensure the invertibility of Gramian operators):

(̂H) The system is exactly controllable at some time T > 0.

However, when researching how to design feedback laws, it is more natural to use stabilizability instead
of controllability as an assumption. Indeed, there are many systems which are not controllable but are
stabilizable, even completely stabilizable (see examples in [20, Chapters 5] for finite-dimensional settings
and in [9, 14, 21] for infinite-dimensional settings). On the other hand, the stabilizability of a linear
control system is equivalent to some weak observability inequality for its dual system (see [14, 21]).
These motivate us to design feedback laws via modified Gramian operators, under assumption that the
aforementioned weak observability inequality holds.

1.3 System, hypotheses and definitions

System and hypotheses. Let H and U be two Hilbert spaces. Consider the control system:

x′(t) = Ax(t) +Bu(t), t > 0, (1.1)

where u ∈ L2(R+;U) and the pair (A,B) verifies the following hypotheses:

(H1) The linear operator A : D(A) ⊂ H → H is the generator of a C0-group S(·) on H ;

(H2) The operator B belongs to the space L(U ;D(A∗)′);

(H3) For any T > 0, there is a constant C(T ) > 0 such that

∫ T

0

‖B∗S∗(t)ϕ‖2U ′dt ≤ C(T )‖ϕ‖2H′ for any ϕ ∈ D(A∗). (1.2)

Remark 1.1. Several notes on the above hypotheses and the system are given.

(i) In general, the method by using Gramian operators to design feedback laws works only for the linear
control systems where the state operators generate C0-groups. That is why we make the assumption
(H1).

(ii) The assumption (H2) has appeared in many literature, where some specific examples were given.
(See, for instance, [11, 12, 22]). From this assumption, we have B∗ ∈ L(D(A∗);U ′). (Here, we
identify D(A∗)′′ with D(A∗).) The latter is equivalent to the existence of λ ∈ C and E ∈ L(U ;H)
such that B∗ = E∗(λI +A)∗ (see, for instance, [22, 24]). Indeed, we can choose λ ∈ ρ(−A) and set
E := (B∗((λI+A)−1)∗)∗. From now on, we fix (λ,E) ∈ C×L(U ;H) satisfying B∗ = E∗(λI+A)∗.

(iii) The assumption (H3) is called a regularity property in [4, 12] or an admissibility condition in [22].
With respect to this assumption, we have the following facts:

(iii1) The condition (H3) is equivalent to the existence of T > 0 and C(T ) > 0 so that (1.2) holds
(see [4, Chapter 2, Section 2.3]);
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(iii2) If (H1)-(H3) are true, then for any T > 0, there is C(T ) > 0 so that

∫ T

−T

‖B∗S∗(t)ϕ‖2U ′dt ≤ C(T )‖ϕ‖2H′ for any ϕ ∈ D(A∗). (1.3)

Consequently, the mapping (ϕ ∈ D(A∗)) → (t → B∗S∗(t)ϕ) ∈ L2
loc(R;U

′) can be extended, in

a unique way, to a continuous operator, denoted by B̃∗S∗(·), from H ′ to L2
loc(R;U

′) (see [22,
Chapter 4, Section 4.3]). Here, L2

loc(R;U
′) is regarded as a Fréchet space with the seminorms:

{‖ · ‖L2(−n,n;U ′) : n ∈ N+}.

(iv) The solutions of (1.1) will be defined in the sense of transposition: a function x(·) ∈ C(R+;H) is
called a solution of (1.1), with u ∈ L2(R+;U) and x(0) = x0 ∈ H, if

〈x(t), ϕ〉H,H′ = 〈x0, S
∗(t)ϕ〉H,H′ +

∫ t

0

〈u(s), B∗S∗(t− s)ϕ〉U,U ′ds for any ϕ ∈ D(A∗), t ∈ R+.

It deserves mentioning that under (H1)-(H3), for any x0 ∈ H and u ∈ L2(R+;U), the system (1.1),
with initial condition x(0) = x0, has a unique solution (see, for instance, [11, Lemma 2.1]). We
denote it by x(·;x0, u).

Stabilizability and weak observability inequality. We first recall that the operator A has a unique
extension Ã ∈ L(H ;D(A∗)′) (see [22, Proposition 2.10.4] or [24, Lemma 3.4]), which is defined by

〈ϕ,A∗ψ〉H,H′ = 〈Ãϕ, ψ〉D(A∗)′,D(A∗), ϕ ∈ H,ψ ∈ D(A∗). (1.4)

We now give the definition on the stabilizability for the system (1.1) which is quoted from [14].

Definition 1.2. The system (1.1) is said to be exponentially stabilizable (stabilizable, for simplicity), if
there is a constant ω > 0, a C0-semigroup S(·) on H (with the generator A : D(A) ⊂ H → H) and an
operator K ∈ L(D(A);U) so that

(i) there is a constant C1 ≥ 1 such that ‖S(t)‖L(H) ≤ C1e
−ωt for all t ∈ R+;

(ii) for any x ∈ D(A), Ax = (Ã+BK)x, with Ã given by (1.4);

(iii) there is a constant C2 ≥ 0 so that ‖KS(·)x‖L2(R+;U) ≤ C2‖x‖H for any x ∈ D(A).

The above K and ω are called respectively a feedback law and a stabilization decay rate (a decay rate,
for simplicity). When the above ω, S(·) and K exist, we also say that K is a feedback law stabilizing the
system (1.1) with the decay rate ω.

Remark 1.3. Several notes on Definition 1.2 are as follows:

(i) The above definition comes originally from [6] which shows that the finite cost condition of the
LQ problem: infu∈L2(R+;U)

∫∞

0 [‖x(t;x0, u)‖
2
H + ‖u(t)‖2U ]dt implies the stabilizability in the sense of

Definition 1.2. It deserves mentioning that the above stabilizability is equivalent to the above finite
cost condition (see [14, Proposition 3.9]).

(ii) In general, Ã + BK is not the generator of the semigroup S(·), except for the case B ∈ L(U ;H).
This operator is only a densely defined restriction of such a generator (see [5, 6, 11, 12, 25]). The
detailed explanation is given in the proof of our main theorem.

(iii) It was proved in [21, Section 3.3] (see also [14, Theorem 3.4] for the complete stabilizability) that
the stabilizability of the system (1.1) is equivalent to the following weak observability inequality for
the dual system of (1.1):
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There exists δ ∈ (0, 1), T > 0 and C(δ, T ) ≥ 0 such that

‖S∗(T )ϕ‖2H′ ≤ C(δ, T )

∫ T

0

‖B∗S∗(s)ϕ‖2U ′ds+ δ‖ϕ‖2H′ for any ϕ ∈ D(A∗). (1.5)

On the other hand, (1.5) is equivalent to what follows (see Proposition 5.1 in Section 5.1):

There exists α > 0, C1(α) ≥ 0 and C2(α) ≥ 1 such that

‖S∗(t)ϕ‖2H′ ≤ C1(α)

∫ t

0

‖B∗S∗(s)ϕ‖2U ′ds+ C2(α)e
−αt‖ϕ‖2H′ for any t > 0, ϕ ∈ D(A∗), (1.6)

which is also called a weak observability inequality.

Inspired by the note (iii) in Remark 1.3, we further make the following hypothesis:

(H4) There exists α > 0, C1(α) ≥ 0 and C2(α) ≥ 1 such that (1.6) holds.

1.4 Main result

To state our main result, we need to introduce some operators. First of all, we let J1 : U ′ → U and
J2 : H ′ → H be the canonical isomorphisms given by Riesz-Fréchet representation theorem (see, for
instance, [2, Chapter 5, Section 5.2]). It should be noticed that J1 and J2 are conjugate-linear operators.
Next, we let α > 0, C1(α) ≥ 0 and C2(α) ≥ 1 be given in (H4). Now, for any ε ∈ [0, α), T > 0 and
t ∈ [0, T ], we define an operator Λα,ε,T (t) : H

′ → H by

〈Λα,ε,T (t)ϕ, ψ〉H,H′ = C1(α)e
αT

∫ t

0

e−(α−ε)s〈J1B̃∗S∗(−s)ϕ, B̃∗S∗(−s)ψ〉U,U ′ds

+C2(α)e
−(α−ε)t〈J2S

∗(−t)ϕ, S∗(−t)ψ〉H,H′ for any ϕ, ψ ∈ H ′, (1.7)

where B̃∗S∗(·) is given in (iii2) of Remark 1.1, and then define another operator Πα,ε,T : H ′ → H via

〈Πα,ε,Tϕ, ψ〉H,H′ :=

∫ T

0

〈Λα,ε,T (t)ϕ, ψ〉H,H′ dt for any ϕ, ψ ∈ H ′. (1.8)

It is clear that both Λα,ε,T (t) and Πα,ε,T are conjugate-linear. Moreover, we can show that Λα,ε,T (t) and
Πα,ε,T are bounded, and Π−1

α,ε,T exists (see Lemma 2.1). Finally, for each T satisfying

T ∈ Iα := (α−1 ln[C2(α)],+∞), (1.9)

we write ε̂ := T−1 ln[C2(α)], and then define an operator KT : Πα,ε̂,T [D(A∗)] → U via

KT := −TC1(α)e
αT J1B

∗Π−1
α,ε̂,T

. (1.10)

The main result of this paper is as follows:

Theorem 1.4. Assume that (H1)-(H4) are true. Then for each T satisfying (1.9), the operator KT ,
defined by (1.10), is a feedback law stabilizing the system (1.1) with the decay rate 1

2

(
α− T−1 ln[C2(α)]

)
.

Remark 1.5. Some notes on Theorem 1.4 are given.

(i) Theorem 1.4 gives a family of feedback laws {KT}T∈Iα
stabilizing the system (1.1), and the decay

rate corresponding to each KT has an explicit expression. All coefficients in the weak observability
inequality (1.6) appear in the expression of KT .

(ii) In (1.10), we only need Π−1
α,ε,T with ε := T−1 ln[C2(α)], but in the proof of the main theorem, we

will use the family {Π−1
α,ε,T }ε∈[0,α).

4



(iii) We now explain our design of the feedback law KT as follows: First, based on the weak observability
inequality in (H4), we define an operator Λα,ε,T (t) (given by (1.7)), which can be treated as a
kind of mutated Gramian operator. Thus, when ε is fixed, t → Λα,ε,T (t), t ∈ [0, T ], is a mutated
Gramian operator-valued function. Second, the operator Πα,ε,T (given by (1.8)) can be viewed as
the integration of the aforementioned function. Thus, each Λα,ε,T (t) can be treated as a slice of
Πα,ε,T . Third, the feedback KT (given by (1.10)) is built up with the aid of Πα,ε,T .

It deserves mentioning the following two points: First, our structure is based on the assumption (H4)
quantitatively. However, the feedback laws given in [11, 18, 19, 23, 24] depend on the assumption
of the exact controllability of (1.1) qualitatively. (The latter will be explained in more detail in the
next subsection.) Second, unlike works [11, 18, 19, 23, 24], we are not able to design a feedback
law by only one slice Λα,ε,T (t). The main reason is that our assumption (H4) is weaker than the
assumption of the observability used in [11, 18, 19, 23, 24].

(iv) By the proof of Theorem 1.4, we would obtain a more general result (see Theorem 3.1).

(v) The family {KT}T∈Iα
gives an approximate decay rate α/2, where α has been fixed in (H4). Thus,

it seems that our way to design feedback law can only give a fixed decay rate. Fortunately, this is
not true. Indeed, we will show, in Section 4, what follows: For each µ ∈ (0, ω∗), where

ω∗ := sup{ω ∈ R+ : the system (1.1) is stabilizable with decay rate ω}, (1.11)

we can use our way to design a feedback law stabilizing the system (1.1) with the decay rate µ (see
Theorem 4.2).

1.5 Novelty and comparison with related works

For the studies relevant to our current work, we recall the main results in [11, 23, 24]. The papers [11, 24]
build up, for each ω > 0, a generalized Gramian operator GT,ω : H → H ′ (with T > 0) via

〈GT,ωϕ, ψ〉H,H′ :=

∫ Tω

0

eω(s)〈J1B̃∗S∗(−s)ϕ, B̃∗S∗(−s)ψ〉U,U ′ds for any ϕ, ψ ∈ H ′, (1.12)

where Tω := T + (2ω)−1 and

eω(s) :=

{
e−2ωs, if s ∈ [0, T ],

2ωe−2ωT (Tω − s), if s ∈ [T, Tω],

and prove that K := −J1B
∗G−1

T,ω is a feedback law stabilizing the system (1.1) with the decay rate ω,
where GT,ω satisfies a Riccati equation. The paper [23] designs, for each ω > 0 large enough, a generalized
Gramian operator (which is originally from [18] for some finite-dimensional systems):

〈Gωϕ, ψ〉H,H′ :=

∫ ∞

0

e−2ωs〈J1B̃∗S∗(−s)ϕ, B̃∗S∗(−s)ψ〉U,U ′ds for any ϕ, ψ ∈ H ′, (1.13)

and shows that K := −J1B
∗G−1

ω is a feedback law stabilizing the system (1.1) with the decay rate
(2ω − g(−A)) (where g(−A) := inft>0

1
t
ln ‖S(−t)‖L(H)), where Gω satisfies a Lyapunov equation.

In the above-mentioned papers [11, 23, 24], the assumption (̂H) (i.e., the system (1.1) is exactly con-
trollable at some time T > 0) is necessary to ensure the invertibility of the above generalized Gramian
operators, while the corresponding observability inequality is not fully utilized, more precisely, the coef-
ficients in the observability inequality does not appear in the design of the feedback laws. Besides, either
GT,ω or Gω corresponds to a slice Λα,ε,T (t).

The novelties of this paper are as follows:
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• Our assumption (H4) is more natural and weaker than the above-mentioned (̂H). Since (H4)
cannot ensure the invertibility of the Gramian operators GT,ω and Gω (given by (1.12) and (1.13)
respectively), the method to design feedback laws in [11, 23, 24] does not work for our case.

• Our method to design feedback laws seems to be new from two perspective as follows: First, we
replace the generalized Gramian operator (in [11, 23, 24]) with the integration of a mutated Gramian
operator-valued function. It deserves mentioning that though each slice Λα,ε,T (t) is invertible (see
Lemma 2.1), it does not work to replace Πα,ε,T by one slice Λα,ε,T (t) in (1.10). Second, we use all
information of the weak observability inequality.

• From perspective of stability, our design for feedback laws is reasonable in the sense: When S(·) is

stable, i.e., for some ω > 0 and Ĉ(ω) > 0, ‖S(t)‖L(H) ≤ Ĉ(ω)e−ωt for all t ∈ R+, the feedback law
should be 0. This is consistent with our design. Indeed, in this case, we have (H4) with α = 2ω,

C1(α) = 0 and C2(α) = (Ĉ(ω))2), which, along with (1.10), gives KT = 0.

1.6 Plan of this paper

The rest of the paper is organized as follows: Section 2 shows some preliminaries; Section 3 proves the
main result; Section 4 presents further studies; Section 5 is appendix.

2 Preliminaries

In this section, we suppose that (H1)-(H4) hold and let α > 0, C1(α) ≥ 0 and C2(α) ≥ 1 be given in
(H4).

Lemma 2.1. Given T > 0 and ε ∈ [0, α). Let the operators Λα,ε,T (t) (with t ∈ [0, T ]) and Πα,ε,T , be
defined by (1.7) and (1.8) respectively. Then, the following statements hold:

(i) There is C0(T ) > 0 so that ‖Λα,ε,T (t)‖L(H′;H) ≤ C0(T ) for all t ∈ [0, T ];

(ii) The operator Πα,ε,T is bounded;

(iii) Both Λα,ε,T (t) and Πα,ε,T are invertible. Moreover,

〈Λα,ε,T (t)ϕ, ϕ〉H,H′ ≥ eεt‖ϕ‖2H′ and 〈Πα,ε,Tϕ, ϕ〉H,H′ ≥ T ‖ϕ‖2H′ for all ϕ ∈ H ′. (2.1)

Proof. Arbitrarily fix T > 0 and ε ∈ [0, α). We begin with proving (i). Arbitrarily fix ϕ, ψ ∈ D(A∗) and

t ∈ [0, T ]. Since B̃∗S∗(·) = B∗S∗(·) on D(A∗) (see the note (iii2) in Remark 1.1), it follows from (1.7)
and (1.3) that

|〈Λα,ε,T (t)ϕ, ψ〉H,H′ |

≤ C1(α)e
αT

( ∫ T

0

‖B∗S∗(−s)ϕ‖2U ′ds
) 1

2
(∫ T

0

‖B∗S∗(−s)ψ‖2U ′ds
) 1

2

+ C2(α)‖S
∗(−t)ϕ‖H′‖S∗(−t)ψ‖H′

≤
(
C1(α)e

αTC(T ) + C2(α)
(

sup
s∈[0,T ]

‖S∗(−s)‖L(H′;H′)

)2)
‖ϕ‖H′‖ψ‖H′ .

This, along with the density of D(A∗) in H ′, leads to (i) with

C0(T ) := C1(α)e
αTC(T ) + C2(α)

(
sup

s∈[0,T ]

‖S∗(−s)‖L(H′;H′)

)2
.

To show (ii), we arbitrarily fix ϕ, ψ ∈ H ′. It follows from (1.7) that the function t→ 〈Λα,ε,T (t)ϕ, ψ〉H,H′ ,
t ∈ [0, T ], is continuous, so is integrable. This, along with (1.8) and the property (i) in this lemma, yields

|〈Πα,ε,Tϕ, ψ〉H,H′ | ≤ TC0(T )‖ϕ‖H′‖ψ‖H′ ,
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which leads to (ii).
We now prove (iii). Because S(·) is a group (see (H1)), the inequality (1.6) (which is true by (H4))

is equivalent to

‖ϕ‖2H′ ≤ C1(α)

∫ t

0

‖B∗S∗(−s)ϕ‖2U ′ds+ C2(α)e
−αt‖S∗(−t)ϕ‖2H′ for any t ∈ R+, ϕ ∈ D(A∗).

It follows that when ε ∈ [0, α) and t ∈ [0, T ],

eεt‖ϕ‖2H′ ≤ C1(α)e
αT

∫ t

0

e−(α−ε)s‖B∗S∗(−s)ϕ‖2U ′ds+ C2(α)e
−(α−ε)t‖S∗(−t)ϕ‖2H′ for any ϕ ∈ D(A∗),

which, together with (1.7), yields the first estimate in (2.1) with ϕ ∈ D(A∗). This, along with the density
of D(A∗) in H ′, shows the first estimate in (2.1) with ϕ ∈ H ′. Next, the second estimate in (2.1) follows
from the first one and (1.8). Finally, it follows from (2.1), the claims (i) and (ii), and the Lax-Milgram
theorem that both Λα,ε,T (t) and Πα,ε,T are invertible.

Hence, we complete the proof of Lemma 2.1.

Proposition 2.2. Let T > 0 and ε ∈ [0, α). Then the following conclusions are true:

(i) Let the operator Πα,ε,T be given by (1.8). If let X := Πα,ε,T , then X is a solution of the following
Lyapunov equation:

〈XA∗ϕ, ψ〉H,H′ + 〈Xϕ,A∗ψ〉H,H′ − TC1(α)e
αT 〈J1B

∗ϕ,B∗ψ〉U,U ′

= −(α− ε)〈Xϕ, ψ〉H,H′ − 〈Qα,ε,Tϕ, ψ〉H,H′ for any ϕ, ψ ∈ D(A∗), (2.2)

where the bounded operator Qα,ε,T is defined by

Qα,ε,T := Λα,ε,T (T )− C2(α)J2, with Λα,ε,T (T ) given by (1.7). (2.3)

(ii) When (ε, T ) verifies

{
ε ∈ (0, α) and T ≥ ε−1 ln[C2(α)], if C2(α) > 1,

ε ∈ [0, α) and T > 0, if C2(α) = 1,
(2.4)

the operator Qα,ε,T , given by (2.3), is non-negative in the sense of 〈Qα,ε,Tϕ, ϕ〉H,H′ ≥ 0 for any
ϕ ∈ H ′.

Proof. We begin with showing (i). Let

Âα,ε := A∗ +
1

2
(α− ε)I, with D(Âα,ε) = D(A∗). (2.5)

Write Ŝα,ε(·) for the C0-group generated by Âα,ε. Two observations are given in order: First, since

B̃∗S∗(·) = B∗S∗(·) on D(A∗) (see the note (iii2) in Remark 1.1), it follows by (1.7) that

〈Λα,ε,T (t)ϕ, ψ〉H,H′ = C1(α)e
αT

∫ t

0

〈J1B
∗Ŝα,ε(−s)ϕ,B

∗Ŝα,ε(−s)ψ〉U,U ′

+C2(α)〈J2Ŝα,ε(−t)ϕ, Ŝα,ε(−t)ψ〉H,H′ , ϕ, ψ ∈ D(A∗). (2.6)

Second, by the note (ii) of Remark 1.1 and the first observation above, we see that when ϕ, ψ ∈ D((A∗)2)
and s ∈ [0, T ],

〈J1B
∗Ŝα,ε(−s)ϕ,B

∗Ŝα,ε(−s)ψ〉H,H′ = 〈J1E
∗Ŝα,ε(−s)(λI +A)∗ϕ,E∗Ŝα,ε(−s)(λI +A)∗ψ〉H,H′ ,
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from which, it follows that for any ϕ, ψ ∈ D((A∗)2), the function s→ 〈J1B
∗Ŝα,ε(−s)ϕ,B

∗Ŝα,ε(−s)ψ〉H,H′

is continuously differentiable over [0, T ].
We now arbitrarily fix ϕ, ψ ∈ D((A∗)2). On the one hand, by the second observation above, we find

C1(α)e
αT

∫ t

0

d

ds

(
〈J1B

∗Ŝα,ε(−s)ϕ,B
∗Ŝα,ε(−s)ψ〉U,U ′

)
ds

= C1(α)e
αT

(
〈J1B

∗Ŝα,ε(−t)ϕ,B
∗Ŝα,ε(−t)ψ〉U,U ′ − 〈J1B

∗ϕ,B∗ψ〉U,U ′

)
, t ∈ [0, T ].

On the other hand, it follows from (2.6) that for each t ∈ [0, T ],

C1(α)e
αT

∫ t

0

d

ds

(
〈J1B

∗Ŝα,ε(−s)ϕ,B
∗Ŝα,ε(−s)ψ〉U,U ′

)
ds

= −C1(α)e
αT

(∫ t

0

〈J1B
∗Ŝα,ε(−s)Âα,εϕ,B

∗Ŝα,ε(−s)ψ〉U,U ′ds

+

∫ t

0

〈J1B
∗Ŝα,ε(−s)ϕ,B

∗Ŝα,ε(−s)Âα,εψ〉U,U ′ds

)

= −〈Λα,ε,T (t)Âα,εϕ, ψ〉H,H′ − 〈Λα,ε,T (t)ϕ, Âα,εψ〉H,H′

+C2(α)
(
〈J2Âα,εŜα,ε(−t)ϕ, Ŝα,ε(−t)ψ〉H,H′ + 〈J2Ŝα,ε(−t)ϕ, Âα,εŜα,ε(−t)ψ〉H,H′

)

= −〈Λα,ε,T (t)Âα,εϕ, ψ〉H,H′ − 〈Λα,ε,T (t)ϕ, Âα,εψ〉H,H′

−C2(α)

[
d

ds

(
〈J2Ŝα,ε(−s)ϕ, Ŝα,ε(−s)ψ〉H,H′

)]

s=t

.

The above two equalities imply that for each t ∈ [0, T ],

C1(α)e
αT

(
〈J1B

∗Ŝα,ε(−t)ϕ,B
∗Ŝα,ε(−t)ψ〉U,U ′ − 〈J1B

∗ϕ,B∗ψ〉U,U ′

)

= −〈Λα,ε,T (t)Âα,εϕ, ψ〉H,H′ − 〈Λα,ε,T (t)ϕ, Âα,εψ〉H,H′

−C2(α)

[
d

ds

(
〈J2Ŝα,ε(−s)ϕ, Ŝα,ε(−s)ψ〉H,H′

)]

s=t

.

Integrating the above equality with respect to t over [0, T ] and using (1.8), we obtain

〈Πα,ε,T Âα,εϕ, ψ〉H,H′ + 〈Πα,ε,Tϕ, Âα,εψ〉H,H′ − TC1(α)e
αT 〈J1B

∗ϕ,B∗ψ〉U,U ′

= −C1(α)e
αT

∫ T

0

〈J1B
∗Ŝα,ε(−t)ϕ,B

∗Ŝα,ε(−t)ψ〉U,U ′dt

−C2(α)

∫ T

0

d

dt

(
〈J2Ŝα,ε(−t)ϕ, Ŝα,ε(−t)ψ〉H,H′

)
dt. (2.7)

Meanwhile, it follows from (2.6) that

C2(α)

∫ T

0

d

dt

(
〈J2Ŝα,ε(−t)ϕ, Ŝα,ε(−t)ψ〉H,H′

)
dt

= C2(α)〈J2Ŝα,ε(−T )ϕ, Ŝα,ε(−T )ψ〉H,H′ − C2(α)〈J2ϕ, ψ〉H,H′

= 〈Λα,ε,T (T )ϕ, ψ〉H,H′ − C1(α)e
αT

∫ T

0

〈J1B
∗Ŝα,ε(−t)ϕ,B

∗Ŝα,ε(−t)ψ〉U,U ′dt− C2(α)〈J2ϕ, ψ〉H,H′ .

Replacing the above equality to (2.7), we get

〈Πα,ε,T Âα,εϕ, ψ〉H,H′ + 〈Πα,ε,Tϕ, Âα,εψ〉H,H′ − TC1(α)e
αT 〈J1B

∗ϕ,B∗ψ〉U,U ′

8



= C2(α)〈J2ϕ, ψ〉H,H′ − 〈Λα,ε,T (T )ϕ, ψ〉H,H′ ,

which, together with (2.5) and (2.3), shows that Πα,ε,T verifies the equation (2.2), with ϕ, ψ ∈ D((A∗)2).
This, along with the density of D((A∗)2) in D(A∗), shows that X := Πα,ε,T is a solution of the equation
(2.2).

We next show (ii). Indeed, in the case that C2(α) > 1, we see from (2.1) that for any ε ∈ (0, α) and
T ≥ ε−1 ln[C2(α)],

〈Qα,ε,T ξ, ξ〉H,H′ = 〈Λα,ε,T (T )ξ, ξ〉H,H′ − C2(α)‖ξ‖
2
H′ ≥ (eεT − C2(α))‖ξ‖

2
H′ ≥ 0, ξ ∈ H ′,

while in the case that C2(α) = 1, we use (2.1) to get that for any ε ∈ [0, α) and T > 0,

〈Qα,ε,T ξ, ξ〉H,H′ = 〈Λα,ε,T (T )ξ, ξ〉H,H′ − ‖ξ‖2H′ ≥ 0, ξ ∈ H ′.

These imply that Qα,ε,T , with (ε, T ) satisfying (2.4), is non-negative.
Thus we finish the proof of Proposition 2.2.

Remark 2.3. First, in the proof of Proposition 2.2, we used the weak observability inequality in (H4).
Second, in the proof of Theorem 1.4, Proposition 2.2 plays an important role. Third, in the proof of
Theorem 1.4, we also borrowed another idea, which was widely used in the related works (see, for instance,
[6, 5, 24]) and can be explained as follows: By Proposition 2.2, Πα,ε,T satisfies the Laypunov equation
(2.2), which can be written formally as

Π−1
α,ε,T

(
A− TC1(α)e

αTBJ1B
∗Π−1

α,T

)
Πα,ε,T = −A∗ − Pα,ε,T ,

where
Pα,ε,T := (α − ε)I +Π−1

α,ε,TQα,ε,T . (2.8)

(The existence of Π−1
α,ε,T is ensured by (iii) of Lemma 2.1.) In this sense, the operators −A∗−Pα,ε,T and

A−TC1(α, T )BJ1B
∗Π−1

α,T are “conjugated” each other. Thus one can obtain a C0-group on H generated

by A− TC1(α)e
αTBJ1B

∗Π−1
α,T formally, through using the C0-group on H ′ generated by −A∗ − Pα,ε,T .

Now back to our case. Write Vα,ε,T (·) for the C0-group on H ′, generated by ∆α,ε,T := −A∗ − Pα,ε,T ,
with its domain D(∆α,ε,T ) which is the same as D(A∗). Here, we notice that Pα,ε,T ∈ L(H ′). Then by
the constant variation formula, we have

Vα,ε,T (t)ϕ = S∗(−t)ϕ−

∫ t

0

S∗(s− t)Pα,ε,TVα,ε,T (s)ϕds for any t ∈ R, ϕ ∈ H ′. (2.9)

The next two lemmas will be used in the proof Theorem 1.4. For the first one, we did not find any
exact version in published papers, while for the second one, a similar result was given in [24, Lemma
3.3], however, in its proof, there are some places that we do not understand. So we give their proofs in
Section 5.

Lemma 2.4. Given γ > 0, M ∈ L(H ′) and ϕ ∈ D(A∗), let w(t;ϕ) :=
∫ t

0
S∗(s − t)MVα,ε,T (s)ϕds,

t ∈ [−γ, γ]. Then the following conclusions are true:

(i) For any t ∈ [−γ, γ], w(t;ϕ) ∈ D(A∗);

(ii) There is a constant C(γ) > 0 (independent of M and ϕ but depending on γ) so that
∫ γ

−γ

‖B∗w(t;ϕ)‖2U ′dt ≤ C(γ)
(
‖Mϕ‖2H′ +

∫ γ

−γ

(
‖MVα,ε,T (t)ϕ‖

2
H′ + ‖MVα,ε,T (t)∆α,ε,Tϕ‖

2
H′

)
dt
)
.

(2.10)

Lemma 2.5. For any ϕ, ψ ∈ D(A∗) and t ∈ R,

〈Πα,ε,Tϕ, ψ〉H,H′ = 〈Πα,ε,TVα,ε,T (t)ϕ, S
∗(−t)ψ〉H,H′

+TC1(α)e
αT

∫ t

0

〈J1B
∗Vα,ε,T (s)ϕ,B

∗S∗(−s)ψ〉U,U ′ds. (2.11)
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3 Proof of main theorem

This section is devoted to prove Theorem 1.4.

Proof of Theorem 1.4. Arbitrarily fix (ε, T ) ∈ [0, α) × (0,+∞) satisfying (2.4). Let Vα,ε,T (·) be the
C0-group on H ′ generated by −A∗ − Pα,ε,T , where Pα,ε,T is given by (2.8). Define

Sα,ε,T (t) := Πα,ε,TVα,ε,T (t)Π
−1
α,ε,T , t ∈ R. (3.1)

(The invertibility of Πα,ε,T is ensured by (iii) of Lemma 2.1.) The rest of the proof is organized in several
steps.

Step 1. We have the following conclusions:

(a1) The family {Sα,ε,T (t)}t∈R, given by (3.1), is a C0-group on H;

(a2) The generator of Sα,ε,T (·) is as: Aα,ε,T := Πα,ε,T (−A
∗−Pα,ε,T )Π

−1
α,ε,T , with its domain D(Aα,ε,T ) =

Πα,ε,T [D(A∗)];

(a3) For any t ∈ R+, x ∈ D(Aα,ε,T ) and ϕ ∈ D(A∗),

〈Sα,ε,T (t)x, ϕ〉H,H′ = 〈x, S∗(t)ϕ〉H,H′ − TC1(α)e
αT

∫ t

0

〈J1B
∗Π−1

α,ε,TSα,ε,T (s)x,B
∗S∗(t− s)ψ〉U,U ′ds.

These can be proved by very similar methods used in the proof of [24, Theorem 3.2]. We omit the
proofs.

Step 2. We have

(Ã− TC1(α)e
αTBJ1B

∗Π−1
α,ε,T )x = Aα,ε,Tx for all x ∈ D(Aα,ε,T ),

where Ã ∈ L(H ;D(A∗)′) is the unique extension of A, defined by (1.4).
The very similar result has been proved in [24, Theorem 3.3] by using the conclusions in Step 1. Thus,

we omit its proof.

Step 3. We prove that for any ϕ, ψ ∈ D(A∗) and t ∈ R,

〈Πα,ε,Tϕ, ψ〉H,H′ = TC1(α)e
αT

∫ t

0

〈J1B
∗Vα,ε,T (s)ϕ,B

∗Vα,ε,T (s)ψ〉U,U ′ds (3.2)

+〈Πα,ε,TVα,ε,T (t)ϕ,Vα,ε,T (t)ψ〉H,H′ +

∫ t

0

〈Vα,ε,T (s)ϕ, Q̂α,ε,TVα,ε,T (s)ψ〉H′,Hds,

where Q̂α,ε,T is defined by

Q̂α,ε,T := Πα,ε,TPα,ε,T . (3.3)

First of all, it follows from (2.9), the assumption (H3) and Lemma 2.4 that the first term on the right
hand of (3.2) makes sense.

We now arbitrarily fix ϕ, ψ ∈ D(A∗) and t ∈ R. Then by Lemma 2.5 and (2.9), we have

〈Πα,ε,Tϕ, ψ〉H,H′ = 〈Πα,ε,TVα,ε,T (t)ϕ,Vα,ε,T (t)ψ〉H,H′

+TC1(α)e
αT

∫ t

0

〈J1B
∗Vα,ε,T (s)ϕ,B

∗Vα,ε,T (s)ψ〉U,U ′ds+W1(t) +W2(t),(3.4)

where



W1(t) :=

〈
Πα,ε,TVα,ε,T (t)ϕ,

∫ t

0 S
∗(s− t)Pα,ε,TVα,ε,T (s)ψds

〉
H,H′

,

W2(t) := TC1(α)e
αT

∫ t

0

〈
J1B

∗Vα,ε,T (s)ϕ,B
∗
∫ s

0 S
∗(σ − s)Pα,ε,TVα,ε,T (σ)ψdσ

〉
U,U ′

ds.
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(It follows by the assumption (H3), Lemma 2.4 and (2.9) that the term W2(t) makes sense.)
Next, we will show

W1(t) =

∫ t

0

〈Vα,ε,T (s)ϕ, Q̂α,ε,TVα,ε,T (s)ψ〉H′,Hds−W2(t). (3.5)

When this is done, (3.2) follows from (3.4) and (3.5) at once.
To show (3.5), we let n∗ ∈ N+ so that when n ≥ n∗, nI−A∗ is invertible. We define, for each n ≥ n∗,

Rn := n(nI −A∗)−1 (3.6)

and

Kn(t) :=
〈
Πα,ε,TVα,ε,T (t)ϕ,

∫ t

0

S∗(s− t)RnPα,ε,TVα,ε,T (s)ψds
〉
H,H′

. (3.7)

By [15, Chapter 1, Theorem 6.3], we can find two positive numbers c1 and c2 such that

‖Rn‖L(H′) ≤
nc1
n− c2

for each n ≥ n∗, (3.8)

while by [15, Chapter 1, Lemma 3.2], we see that when x ∈ H ′,

Rnx ∈ D(A∗) and Rnx→ x in H ′ as n→ +∞. (3.9)

Then by (3.8) and (3.9), we can apply the dominated convergence theorem in (3.7) to get

lim
n→+∞

Kn(t) = W1(t). (3.10)

(Here, we used the definition of W1(t).) Meanwhile, by (2.11) in Lemma 2.5 (where we replace ϕ and ψ
by Vα,ε,T (s)ϕ and RnPα,ε,TVα,ε,T (s)ψ, respectively), we have

Kn(t) =

∫ t

0

〈Πα,ε,TVα,ε,T (t− s)Vα,ε,T (s)ϕ, S
∗(s− t)RnPα,ε,TVα,ε,T (s)ψ〉H,H′ds

= Kn,1(t) +Kn,2(t), (3.11)

where
{
Kn,1(t) :=

∫ t

0
〈Πα,ε,TVα,ε,T (s)ϕ,RnPα,ε,TVα,ε,T (s)ψ〉H,H′ds,

Kn,2(t) := −TC1(α)e
αT

∫ t

0

∫ t−s

0
〈J1B

∗Vα,ε,T (σ + s)ϕ,B∗S∗(−σ)RnPα,ε,TVα,ε,T (s)ψ〉U,U ′dσds.

With respect to Kn,1(t), we obtain, from (3.8), (3.9), (3.3) and the dominated convergence theorem, that

lim
n→+∞

Kn,1(t) =

∫ t

0

〈Vα,ε,T (s)ϕ, Q̂α,ε,TVα,ε,T (s)ψ〉H′,Hds. (3.12)

With respect to Kn,2(t), we will claim

lim
n→+∞

Kn,2(t) = −W2(t). (3.13)

To this end, it suffices to show

∫ t

0

∫ t−s

0

〈J1B
∗Vα,ε,T (σ + s)ϕ,B∗S∗(−σ)RnPα,ε,TVα,ε,T (s)ψ〉U,U ′dσds

=

∫ t

0

〈J1B
∗Vα,ε,T (γ)ϕ,B

∗

∫ γ

0

S∗(s− γ)RnPα,ε,TVα,ε,T (s)ψds〉U,U ′dγ, (3.14)
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and

lim
n→+∞

∫ |t|

−|t|

∥∥∥B∗

∫ γ

0

S∗(s− γ)(Rn − I)Pα,ε,TVα,ε,T (s)ψds
∥∥∥
2

U ′

dγ = 0. (3.15)

When these have been done, (3.13) follows from (3.14), (3.15) and the definitions of Kn,2(t) and W2(t)
at once.

To show (3.14), we first notice that by the note (ii) in Remark 1.1,

B∗Rn = E∗(A+ λI)∗(n(nI −A∗)−1) = nE∗ + (n2 + nλ̄)E∗(nI −A∗)−1, when n ≥ n∗,

(Here λ̄ is the conjugate of λ.) which leads to

B∗Rn ∈ L(H ′) for all n ≥ n∗. (3.16)

Next, since Rn = n
∫ +∞

0
e−ntS∗(t)dt (see the proof Theorem 3.1 in [15, Chapter 1])), we have RnS

∗(·) =
S∗(·)Rn. From this, (3.16), Lemma 2.4 and [1, Lemma 11.45], we find

∫ t

0

∫ t−s

0

〈J1B
∗Vα,ε,T (σ + s)ϕ,B∗S∗(−σ)RnPα,ε,TVα,ε,T (s)ψ〉U,U ′dσds

=

∫ t

0

∫ t

s

〈J1B
∗Vα,ε,T (γ)ϕ,B

∗S∗(s− γ)RnPα,ε,TVα,ε,T (s)ψ〉U,U ′dγds

=

∫ t

0

∫ γ

0

〈J1B
∗Vα,ε,T (γ)ϕ,B

∗RnS
∗(s− γ)Pα,ε,TVα,ε,T (s)ψ〉U,U ′dsdγ

=

∫ t

0

〈J1B
∗Vα,ε,T (γ)ϕ,B

∗Rn

∫ γ

0

S∗(s− γ)Pα,ε,TVα,ε,T (s)ψds〉U,U ′dγ

=

∫ t

0

〈J1B
∗Vα,ε,T (γ)ϕ,B

∗

∫ γ

0

S∗(s− γ)RnPα,ε,TVα,ε,T (s)ψds〉U,U ′dγ,

which leads to (3.14).
To show (3.15), we let zn(γ) :=

∫ γ

0 S
∗(s− γ)(Rn − I)Pα,ε,TVα,ε,T (s)ψds, then, by Lemma 2.4, we can

find C(|t|) > 0 such that

∫ |t|

−|t|

‖B∗zn(γ)‖
2
U ′dγ ≤ C(|t|)

(
‖(Rn − I)Pα,ε,Tψ‖

2
H′ +

∫ |t|

−|t|

‖(Rn − I)Pα,ε,TVα,ε,T (s)ψ‖
2
H′ds

+

∫ |t|

−|t|

‖(Rn − I)Pα,ε,TVα,ε,T (s)∆α,ε,Tψ‖
2
H′

)
ds.

This, together with (3.8), (3.9) and the dominated convergence theorem, leads to (3.15).
Finally, (3.5) follows from (3.13), (3.10), (3.11) and (3.12) at once. This ends the proof of Step 3.

Step 4. We show that when x, y ∈ D(Aα,ε,T ) and t ∈ R,

〈x,Π−1
α,ε,T y〉H,H′

= 〈Sα,ε,T (t)x,Π
−1
α,ε,TSα,ε,T (t)y〉H,H′ +

∫ t

0

〈Π−1
α,ε,TSα,ε,T (s)x, Q̂α,ε,TΠ

−1
α,ε,TSα,ε,T (s)y〉H′,Hds

+TC1(α)e
αT

∫ t

0

〈J1B
∗Π−1

α,ε,TSα,ε,T (s)x,B
∗Π−1

α,ε,TSα,ε,T (s)y〉U,U ′ds. (3.17)

First of all, the third term on the right hand of (3.17) makes sense. The reason is as: it follows by
(a2) in Step 1 that when z ∈ D(Aα,ε,T ), we have Π−1

α,ε,T z ∈ D(A∗). Thus, it follows from (3.1), (2.9) and

Lemma 2.4 that B∗Π−1
α,ε,TSα,ε,T (·)z = B∗Vα,ε,T (·)Π

−1
α,ε,T z ∈ L2

loc(R;U
′).
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Next, we arbitrarily fix x, y ∈ D(Aα,ε,T ) and t ∈ R. Then by the conclusion (a2) in Step 1, we
find Π−1

α,ε,Tx,Π
−1
α,ε,T y ∈ D(A∗). This, along with (3.2) (where ϕ, ψ are replaced by Π−1

α,ε,Tx,Π
−1
α,ε,T y,

respectively) and (3.1), yields (3.17).

Step 5. Let
S(·) := Sα,ε,T (·) and K := −TC1(α)e

αT J1B
∗Π−1

α,ε,T . (3.18)

We show that K is a feedback law stabilizing (1.1) with the decay rate 1
2 (α− ε).

First of all, by the conclusions (a1) and (a2) in Step 1, we see that S(·) is a C0-group with the
generator:

A := Aα,ε,T = Πα,ε,T (−A
∗ − Pα,ε,T )Π

−1
α,ε,T , with its domain D(A) = Πα,ε,T [D(A∗)]. (3.19)

It follows by (3.19), (ii) in Remark 1.1 and the conclusion (a2) in Step 1 that for each x ∈ D(A),
Π−1

α,ε,Tx ∈ D(A∗) and that

‖B∗Π−1
α,ε,Tx‖U ′ = ‖E∗(A∗ + Pα,ε,T )Π

−1
α,ε,Tx+ E∗(λ̄I − Pα,ε,T )Π

−1
α,ε,Tx‖U ′

= ‖E∗Π−1
α,ε,TAx+ E∗(λ̄I − Pα,ε,T )Π

−1
α,ε,Tx‖U ′

≤
(
‖E∗Π−1

α,ε,T ‖L(H;U ′) + ‖E∗(λ̄I − Pα,ε,T )Π
−1
α,ε,T ‖L(H;U ′)

)
‖x‖D(A).

These, along with (3.18) and the conjugate-linearity of J1 and Πα,ε,T , yields K ∈ L(D(A);U).
Next, we will show that S(·) (as well as A) and K verify the conditions (i), (ii) and (iii) in Definition

1.2 (with ω = 1
2 (α− ε)) one by one.

Sub-step 5.1. We prove (i) in Definition 1.2 with ω = 1
2 (α − ε).

We first claim

〈S(t)x,Π−1
α,ε,T S(t)x〉H,H′ ≤ e−(α−ε)t〈x,Π−1

α,ε,Tx〉H,H′ for all x ∈ D(A), t ∈ R+. (3.20)

To this end, we arbitrarily fix x ∈ D(A), t and σ with t ≥ σ ≥ 0. Then by (3.17), we have

〈S(σ)x,Π−1
α,ε,T S(σ)x〉H,H′ = 〈S(t)x,Π−1

α,ε,TS(t)x〉H,H′ +

∫ t

σ

〈Π−1
α,ε,TS(s)x, Q̂α,ε,TΠ

−1
α,ε,TS(s)x〉H′ ,Hds

+TC1(α)e
αT

∫ t

σ

〈J1B
∗Π−1

α,ε,TS(s)x,B
∗Π−1

α,ε,TS(s)x〉U,U ′ds. (3.21)

Meanwhile, by (2.8) and (3.3) (the definitions of Pα,ε,T and Q̂α,ε,T ), we see

Q̂α,ε,TΠ
−1
α,ε,T = (α− ε)I +Qα,ε,TΠ

−1
α,ε,T , (3.22)

where Qα,ε,T is given by (2.3) and is non-negative (which follows from (ii) in Proposition 2.2, since (ε, T )
verifies (2.4)). Now, by (3.22) and the non-negativity of Qα,ε,T , we find

∫ t

σ

〈Π−1
α,ε,TS(s)x, Q̂α,ε,TΠ

−1
α,ε,TS(s)x〉H′ ,Hds

= (α − ε)

∫ t

σ

〈S(s)x,Π−1
α,ε,TS(s)x〉H,H′ds+

∫ t

σ

〈Qα,ε,TΠ
−1
α,ε,TS(s)x,Π

−1
α,ε,TS(s)x〉H,H′ds

≥ (α − ε)

∫ t

σ

〈S(s)x,Π−1
α,ε,TS(s)x〉H,H′ds. (3.23)

From (3.23) and (3.21), it follows that

〈S(σ)x,Π−1
α,ε,T S(σ)x〉H,H′ ≥ 〈S(t)x,Π−1

α,ε,T S(t)x〉H,H′ + (α− ε)

∫ t

σ

〈S(s)x,Π−1
α,ε,TS(s)x〉H,H′ds.
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Since x ∈ D(A) and t ≥ σ ≥ 0 were arbitrarily taken, we can apply the Gronwall inequality (see [11,
Lemma 3.2]) in the above inequality to get (3.20).

We next claim that there exists C(α, ε, T ) > 0 such that

T (C(α, ε, T ))−2‖y‖2H ≤ 〈y,Π−1
α,ε,T y〉H,H′ ≤ T−1‖y‖2H for any y ∈ H. (3.24)

Indeed, according to the second inequality in (2.1) and the boundedness of Πα,ε,T (see Lemma 2.1), there
exists C(α, ε, T ) > 0 such that for all ϕ ∈ H ′,

T ‖ϕ‖2H′ ≤ 〈Πα,ε,Tϕ, ϕ〉H,H′ and ‖Πα,ε,Tϕ‖H ≤ C(α, ε, T )‖ϕ‖H′ .

These lead to (3.24).
Now it follows from (3.24) and (3.20) that

‖S(t)x‖H ≤

(
C(α, ε, T )

T

)2

e−(α−ε)t‖x‖2H for any t ∈ R+, x ∈ D(A).

This, together with the density of D(A) in H , shows

‖S(t)‖L(H) ≤
C(α, ε, T )

T
e−

1
2
(α−ε)t for any t ∈ R+,

i.e., (i) in Definition 1.2 with ω = 1
2 (α− ε) is true.

Sub-step 5.2. We prove (ii) in Definition 1.2 with ω = 1
2 (α− ε).

This follows from (3.18) and the conclusion in Step 2 at once.

Sub-step 5.3. We prove (iii) in Definition 1.2 with ω = 1
2 (α− ε).

In the case that C1(α) = 0, we see from (3.18) that K = 0, thus (iii) holds for this case.
In the case that C1(α) 6= 0, it follows by (3.21), (3.23) (with σ = 0) and (3.18) that when x ∈ D(A),

〈x,Π−1
α,ε,Tx〉H,H′ ≥ 〈S(t)x,Π−1

α,ε,TS(t)x〉H,H′ + (TC1(α)e
αT )−1

∫ t

0

‖KS(s)x‖2U ′ds for each t ∈ R+.

Letting t→ +∞ in the above, using (i) and (3.24), we see

∫ +∞

0

‖KS(s)x‖2U ′ds ≤ C1(α)e
αT ‖x‖2H for any x ∈ D(A),

which leads to (iii) for this case.
In summary, S(·) (as well as A) and K verify the conditions (i), (ii) and (iii) in Definition 1.2 with

ω = 1
2 (α − ε).

Step 6. We finish the proof.
Arbitrarily fix T satisfying (1.9). Let ε̂ := T−1 ln[C2(α)]. Then one can easily check that (ε̂, T )

satisfies (2.4). Thus by the conclusions in Step 5, we complete the proof of Theorem 1.4.

Our proof of Theorem 1.4 shows, indeed, the following more general result:

Theorem 3.1. Assume that (H1)-(H4) are true. Then for each pair (ε, T ) ∈ [0, α)× (0,+∞) verifying
(2.4), the following operator (from Πα,ε,T [D(A∗)] to U) is a feedback law stabilizing the system (1.1) with
the decay rate 1

2 (α − ε):

Kε,T := −TC1(α)e
αT J1B

∗Π−1
α,ε,T ,

where Πα,ε,T is defined by (1.8).
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Remark 3.2. (i) Several facts are given. First, it follows from (3.17) that the operator Π−1
α,ε,T , with

(ε, T ) ∈ [0, α)× (0,+∞), satisfies the following Riccati equation:

〈A∗Px, y〉H′,H + 〈x,A∗Py〉H,H′ − TC1(α)e
αT 〈JB∗Px,B∗Py〉H,H′

= −
〈(

(α− ε)Π−1
α,ε,T +Π−1

α,ε,TQα,ε,TΠ
−1
α,ε,T

)
x, y

〉
H′,H

, x, y ∈ Πα,ε,T [D(A∗)], (3.25)

where Qα,ε,T := Λα,ε,T (T )−C2(α)J2 is a conjugate-linear and bounded operator from H ′ to H. Second, if
Qα,ε,T is non-negative, then the solvability of the equation (3.25) is equivalent to the finite cost condition
of the infinite-horizon LQ problem corresponding to (3.25) (see [6, Theorem 2.2]). Third, the finite cost
condition of the aforementioned LQ problem is equivalent to the stabilizability of the system (1.1) (see
[14, Proposition 3.9]). Finally, we can only show that when (ε, T ) satisfies (2.4), the above Qα,ε,T is
non-negative. These facts explain why the pair (ε, T ) needs to satisfy (2.4) in Theorem 3.1.

(ii) From the discussions in the note (i), we see that our method is to construct directly an operator
which satisfies a Riccati equation (related to an infinite-horizon LQ problem) instead of solving a Riccati
equation (the latter needs to prove the existence of solutions for the corresponding Riccati equation).

4 Further studies

The quantity ω∗ defined in (1.11) is called as the best stabilization decay rate for the system (1.1). It is
the same as that defined by [21, (4)]. When the system (1.1) is stabilizable, we have ω∗ ∈ (0,+∞]. In
particular, when ω∗ = +∞, the system (1.1) is completely stabilizable. Before stating the main result of
this section, we give the next proposition.

Proposition 4.1. Suppose that (H1)-(H3) hold and the system (1.1) is stabilizable. Let ω∗ ∈ (0,+∞]
be given by (1.11). Then for each θ ∈ (0, ω∗), there is C1(θ) ≥ 0 and C2(θ) ≥ 1 so that (1.6) holds for
α = θ, C1(α) = C1(θ) and C2(α) = C2(θ), i.e.,

‖S∗(t)ϕ‖2H′ ≤ C1(θ)

∫ t

0

‖B∗S∗(s)ϕ‖2U ′ds+ C2(θ)e
−2θt‖ϕ‖2H′ , t > 0, ϕ ∈ D(A∗). (4.1)

Proof. First of all, it follows by (1.11) and Definition 1.2 that for any θ ∈ (0, ω∗), there is a C0-semigroup
Sθ(·) on H (with the generator Aθ : D(Aθ) ⊂ H → H) and an operator Kθ ∈ L(D(Aθ);U) so that

(b1) there exists Ĉ1(θ) ≥ 1 such that ‖Sθ(t)‖L(H) ≤ Ĉ1(θ)e
−θt for any t ∈ R+;

(b2) for any x ∈ D(Aθ), Aθx = (Ã+BKθ)x;

(b3) there exists Ĉ2(θ) ≥ 0 such that ‖KθSθ(·)x‖L2(R+;U) ≤ Ĉ2(θ)‖x‖H for any x ∈ D(Aθ).

Arbitrarily fix x ∈ D(Aθ), ϕ ∈ D(A∗) and t > 0. Then it follows by (b2) and (1.4) that

d

ds
〈Sθ(s)x, S

∗(t− s)ϕ〉H,H′

= 〈AθSθ(s)x, S
∗(t− s)ϕ〉H,H′ − 〈Sθ(s)x,A

∗S∗(t− s)ϕ〉H,H′

= 〈(Ã+BKθ)Sθ(s)x, S
∗(t− s)ϕ〉D(A∗)′,D(A∗) − 〈Sθ(s)x,A

∗S∗(t− s)ϕ〉H,H′

= 〈BKθSθ(s)x, S
∗(t− s)ϕ〉D(A∗)′,D(A∗) = 〈KθSθ(s)x,B

∗S∗(t− s)ϕ〉U,U ′ , s ∈ (0, t).

By integrating the above equality with respect to s over [0, t], we get

〈Sθ(t)x, ϕ〉H,H′ − 〈x, S∗(t)ϕ〉H,H′ =

∫ t

0

〈KθSθ(s)x,B
∗S∗(t− s)ϕ〉U,U ′ds.
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This, together with (b1) and (b3), yields

|〈x, S∗(t)ϕ〉H,H′ | ≤ Ĉ2(θ)‖x‖H

(∫ t

0

‖B∗S∗(t− s)ϕ‖2U ′ds

) 1
2

+ Ĉ1(θ)e
−θt‖x‖H‖ϕ‖H′ .

Since t > 0, ϕ ∈ D(A∗) and x ∈ D(Aθ) were arbitrarily taken, the above, along with the density of
D(Aθ) in H , gives

‖S∗(t)ϕ‖2H′ ≤ 2(Ĉ2(θ))
2

∫ t

0

‖B∗S∗(s)ϕ‖2U ′ds+ 2(Ĉ1(θ))
2e−2θt‖ϕ‖2H′ , t > 0, ϕ ∈ D(A∗),

which leads to (4.1) with C1(θ) = 2(Ĉ2(θ))
2 and C2(θ) = 2(Ĉ1(θ))

2. Thus, we complete the proof of
Proposition 4.1.

Theorem 4.2. Assume that (H1)-(H3) are true and the system (1.1) is stabilizable. Let ω∗ ∈ (0,+∞]
be given by (1.11). Let C1(θ) ≥ 0 and C2(θ) ≥ 1, with θ ∈ (0, ω∗), be given by Proposition 4.1. Then for
each µ ∈ (0, ω∗), the following conclusions are true:

(i) If ω∗ ∈ (0,+∞), then for each T satisfying

(ω∗ − µ)−1 ln
[
C2

(
θ
)]
< T < +∞, with θ :=

1

2
(ω∗ + µ), (4.2)

the following operator (from Π2θ,ε,T [D(A∗)] to U) is a feedback law stabilizing the system (1.1) with
the decay rate µ:

Kµ,T := −TC1

(
θ
)
e2θTJ1B

∗Π−1

2θ,ε,T
, (4.3)

where θ is given in (4.2), ε := T−1 ln
[
C2

(
θ
)]

and Π2θ,ε,T is defined by (1.8) with

α = 2θ; ε = ε; C1(α) = C1

(
θ
)
; C2(α) = C2

(
θ
)
.

(ii) If ω∗ = +∞, then for each T satisfying

µ−1 ln
[
C2 (θ

∗)
]
< T < +∞, with θ∗ :=

3µ

2
, (4.4)

the following operator (from Π2θ∗,ε∗,T [D(A∗)] to U) is a feedback law stabilizing the system (1.1)
with the decay rate µ:

K ′
µ,T := −TC1 (θ

∗) e2θ
∗TJ1B

∗Π−1
2θ∗,ε∗,T , (4.5)

where θ∗ is given in (4.4), ε∗ := T−1 ln
[
C2 (θ

∗)
]
and Π2θ∗,ε∗,T is defined by (1.8) with

α = 2θ∗; ε = ε∗; C1(α) = C1 (θ
∗) ;C2(α) = C2 (θ

∗) .

Proof. Arbitrarily fix µ ∈ (0, ω∗). To show the conclusion (i), we arbitrarily fix T satisfying (4.2) and
write θ := 1

2 (ω
∗ + µ). Two observations are given in order. First, it follows from Proposition 4.1 that

(H4) holds for α = 2θ, C1(α) = C1

(
θ
)
and C2(α) = C2

(
θ
)
. Second, by (4.2), one can easily check that

1

2

(
2θ − T−1 ln

[
C2

(
θ
)])

≥ µ and (2θ)−1 ln
[
C2

(
θ
)]
< T < +∞.

From the above two observations and Theorem 1.4, we see that the operator Kµ,T : Π2θ,ε,T [D(A∗)] → U
defined by (4.3) is a feedback law stabilizing the system (1.1) with the decay rate µ. This completes the
proof of (i).
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To show (ii), we arbitrarily fix T satisfying (4.4) and write θ∗ := 3µ
2 . Two facts are given in order:

First, it follows from Proposition 4.1 that (H4) holds for α = 2θ∗, C1(α) = C1 (θ
∗) and C2(α) = C2 (θ

∗).
Second, by (4.4), one can directly verify that

1

2

(
2θ∗ − T−1 ln

[
C2 (θ

∗)
])

≥ µ and (2θ∗)−1 ln
[
C2 (θ

∗)
]
< T < +∞.

From these two facts and Theorem 1.4, we see that the operator K ′
µ,T : Π2θ∗,ε∗,T [D(A∗)] → U defined

by (4.5) is a feedback law stabilizing the system (1.1) with the decay rate µ, i.e., (ii) holds.
Hence, we complete the proof of Theorem 4.2.

5 Appendices

5.1 Appendix A

In this subsection, we present a direct proof for the equivalence of the inequalities (1.5) and (1.6).

Proposition 5.1. The inequalities (1.5) and (1.6) are equivalent.

Proof. We divide the proof by two steps.

Step 1. We first prove (1.6) ⇒ (1.5).

Let α > 0, C1(α) ≥ 0 and C2(α) ≥ 1 be given in (1.6). Then there is T̂ > 0 such that δ̂ :=

C2(α)e
−αT̂ < 1. Thus, by taking t = T̂ in (1.6), we get (1.5) with T = T̂ , C(α, T ) = C1(α) and δ = δ̂.

Step 2. We prove (1.5) ⇒ (1.6).
Let T > 0, δ ∈ (0, 1) and C(δ, T ) ≥ 0 be given in (1.5). We first claim that for any n ∈ N+,

‖S∗(nT )ϕ‖2H′ ≤ C(δ, T )
n−1∑

j=0

δj
∫ nT

0

‖B∗S∗(s)ϕ‖2U ′ds+ δn‖ϕ‖2H′ . (5.1)

Indeed, (1.5) gives (5.1) with n = 1. Suppose that (5.1), with n = k, is true. Then, by (1.5) and the
time-invariance of the system (1.1), we have

‖S∗((k + 1)T )ϕ‖2H′ ≤ C(δ, T )

k−1∑

j=0

δj
∫ (k+1)T

T

‖B∗S∗(s)ϕ‖2U ′ds+ δk‖S∗(T )ϕ‖2H′

≤ C(δ, T )

k∑

j=0

δj
∫ (k+1)T

0

‖B∗S∗(s)ϕ‖2U ′ds+ δk+1‖ϕ‖2H′ ,

which leads to (5.1) with n = k + 1. So by the induction, (5.1) holds for all n ∈ N+.
Next, we let α = −T−1 ln δ (which implies α > 0 and δ = e−αT ). Then by (5.1), we have that for any

n ∈ N+,

‖S∗(nT )ϕ‖2H′ ≤ (1− δ)−1C(δ, T )

∫ nT

0

‖B∗S∗(s)ϕ‖2U ′ds+ δn‖ϕ‖2H′

= (1− e−αT )−1C(e−αT , T )

∫ nT

0

‖B∗S∗(s)ϕ‖2U ′ds+ e−nαT ‖ϕ‖2H′ . (5.2)

We now arbitrarily fix t ∈ R+. Then there is m ∈ N such that

mT ≤ t < (m+ 1)T. (5.3)
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In the case that m = 0 (i.e., t ∈ [0, T )), we have

‖S∗(t)ϕ‖2H′ ≤ Ĉ2(α, T )e
−αt‖ϕ‖2H′ , with Ĉ2(α, T ) :=

(
sup

σ∈[0,T ]

‖S∗(σ)‖L(H′)

)2
eαT . (5.4)

In the case that m ∈ N+, it follows by (5.2) and (5.3) that

‖S∗(t)ϕ‖2H′ = ‖S∗(t−mT )S∗(mT )ϕ‖2H′ ≤
(

sup
σ∈[0,T ]

‖S∗(σ)‖L(H′)

)2
‖S∗(mT )ϕ‖2H′

≤ Ĉ1(α, T )

∫ t

0

‖B∗S∗(s)ϕ‖2U ′ds+ Ĉ2(α, T )e
−αt‖ϕ‖2H′ , (5.5)

where Ĉ2(α, T ) is given in (5.4) and

Ĉ1(α, T ) :=
(

sup
σ∈[0,T ]

‖S∗(σ)‖L(H′)

)2
(1− e−αT )−1C1(e

−αT , T ).

Finally, (5.4) and (5.5) leads to (1.6) with C1(α) = Ĉ1(α, T ) and C2(α) = Ĉ2(α, T ).
Hence, we finish the proof of Proposition 5.1.

5.2 Appendix B

The proof of Lemma 2.4. Arbitrarily fix γ > 0, M ∈ L(H ′) and ϕ ∈ D(A∗). The proof is divided into
two steps.

Step 1. We show that for each t ∈ [−γ, γ], w(t;ϕ) ∈ D(A∗) and

A∗w(t;ϕ) =MVα,ε,T (t)ϕ− S∗(−t)Mϕ−

∫ t

0

S∗(s− t)MVα,ε,T (s)∆α,ε,Tϕds. (5.6)

(Recall that Vα,ε,T (·) and ∆α,ε,T are given in Remark 2.3.)
To this end, we arbitrarily fix t ∈ [−γ, γ]. By the definition of w(·;ϕ), we have that for each h ∈ (0, h0)

(h0 > 0 is fixed arbitrarily),

S(h)− I

h
w(t;ϕ) =

1

h

(∫ t

0

S∗(s+ h− t)MVα,ε,T (s)ϕds−

∫ t

0

S∗(s− t)MVα,ε,T (s)ϕds

)

= I1(h) + I2(h) + I3(h), (5.7)

where 



I1(h) :=
1
h

∫ t+h

t
S∗(s− t)MVα,ε,T (s− h)ϕds,

I2(h) := − 1
h

∫ h

0
S∗(s− t)MVα,ε,T (s− h)ϕds,

I3(h) :=
1
h

∫ t

0 S
∗(s− t)MVα,ε,T (s)(Vα,ε,T (−h)− I)ϕds.

With respect to I1(h), we claim

lim
h→0+

I1(h) =MVα,ε,T (t)ϕ. (5.8)

Indeed, we have the following facts: First, it is obvious that

I1(h) =
1

h

∫ t+h

t

S∗(s− t)M(Vα,ε,T (s− h)− Vα,ε,T (t))ϕds +
1

h

∫ t+h

t

S∗(s− t)MVα,ε,T (t)ϕds. (5.9)

Second, it follows from the strong continuity of S∗(·) that

lim
h→0+

1

h

∫ t+h

t

S∗(s− t)MVα,ε,T (t)ϕds =MVα,ε,T (t)ϕ. (5.10)
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Third, direct computations show
∥∥∥∥∥
1

h

∫ t+h

t

S∗(s− t)M(Vα,ε,T (s− h)− Vα,ε,T (t))ϕds

∥∥∥∥∥
H′

=

∥∥∥∥∥
1

h

∫ t+h

t

S∗(s− t)M

∫ t

s−h

Vα,ε,T (σ)∆α,ε,Tϕdσds

∥∥∥∥∥
H′

≤ h sup
σ∈[0,h0]

‖S∗(σ)‖L(H′)‖M‖L(H′) sup
σ∈[t−h0,t]

‖Vα,ε,T (σ)‖L(H′)‖∆α,ε,Tϕ‖H′ → 0 as h→ 0+.(5.11)

(Here, we used that sups∈[t,t+h] |t− s+ h| = h.) Now, (5.8) follows by (5.9), (5.10) and (5.11) at once.
With respect to I2(h), we can use a very similar way to that used in the proof of (5.8) to find

lim
h→0+

I2(h) = −S∗(−t)Mϕ. (5.12)

With respect to I3(h), we claim

lim
h→0+

I3(h) = −

∫ t

0

S∗(s− t)MVα,ε,T (s)∆α,ε,Tϕds. (5.13)

For this purpose, several facts are given in order: First, since ∆α,ε,T is the generator of the C0-group
Vα,ε,T (·) and ϕ ∈ D(A∗)(= D(∆α,ε,T )), we have

I3(h) = −

∫ t

0

S∗(s− t)MVα,ε,T (s)

(
1

h

∫ 0

−h

Vα,ε,T (σ)∆α,ε,Tϕdσ

)
ds. (5.14)

Second, direct computations show that for each s ∈ [−|t|, |t|],

∥∥∥∥S∗(s− t)MVα,ε,T (s)

(
1

h

∫ 0

−h

Vα,ε,T (σ)∆α,ε,Tϕdσ

)∥∥∥∥
H′

≤ sup
σ∈[−2|t|,2|t|]

‖S∗(σ)‖L(H′)‖M‖L(H′) sup
σ∈[−2|t|−h0,2|t|]

‖Vα,ε,T (σ)‖L(H′)‖∆α,ε,Tϕ‖H′ . (5.15)

Third, the strong continuity of Vα,ε,T (·) leads to

lim
h→0+

1

h

∫ 0

−h

Vα,ε,T (σ)∆α,ε,Tϕdσ = ∆α,ε,Tϕ. (5.16)

Now, by (5.15) and (5.16), we can apply the dominated convergence theorem in (5.14) to get (5.13).
Finally, it follows from (5.7), (5.8), (5.12) and (5.13) that

lim
h→0+

S∗(h)− I

h
w(t;ϕ) exists, i.e., w(t;ϕ) ∈ D(A∗)

(see [15, Chapter 1, Section 1.1]) and that (5.6) holds.

Step 2. We prove (2.10).
By the note (ii) in Remark 1.1 and Step 1, we have

∫ γ

−γ

‖B∗w(t;ϕ)‖2U ′dt =

∫ γ

−γ

‖E∗(λ̄I +A∗)w(t;ϕ)‖2U ′dt

≤ 16‖E∗‖2L(H′;U ′)

∫ γ

−γ

(
|λ|2‖w(t;ϕ)‖2H′ + ‖MVα,ε,T (t)ϕ‖

2
H′ + ‖S∗(−t)Mϕ‖2H′

+

∥∥∥∥
∫ t

0

S∗(s− t)MVα,ε,T (s)∆α,ε,Tϕds

∥∥∥∥
2

H′

)
dt. (5.17)
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(Here, λ̄ is the conjugate of λ.) Since





supt∈[−γ,γ] ‖w(t;ϕ)‖H′ ≤ supσ∈[−γ,γ] ‖S
∗(σ)‖L(H′)

∫ γ

−γ
‖MVα,ε,T (s)ϕ‖H′ds,

supt∈[−γ,γ] ‖S
∗(−t)Mϕ‖H′ ≤ supt∈[−γ,γ] ‖S

∗(t)‖L(H′)‖Mϕ‖H′ ,

supt∈[−γ,γ]

∥∥∥
∫ t

0 S
∗(s− t)MVα,ε,T (s)∆α,ε,Tϕds

∥∥∥
H′

≤ supσ∈[−γ,γ] ‖S
∗(σ)‖L(H′)

∫ γ

−γ
‖MVα,ε,T (s)∆α,ε,Tϕ‖H′ds,

applying the Hölder inequality in (5.17) leads to (2.10).

By Steps 1 and Step 2, we finish the proof of Lemma 2.4.

5.3 Appendix C

The proof of Lemma 2.5. Arbitrarily fix t ∈ R and ϕ, ψ ∈ D(A∗). The proof is divided into two steps.

Step 1. We prove

〈Πα,ε,Tϕ, ψ〉H,H′ − E(t)

= 〈Πα,ε,TVα,ε,T (t)ϕ, S
∗(−t)ψ〉H,H′ + TC1(α)e

αT

∫ t

0

〈J1B
∗Vα,ε,T (s)ϕ,B

∗S∗(−s)ψ〉U,U ′ds,(5.18)

where E(t) = E1(t) + E2(t) + E3(t) + E4(t) with





E1(t) :=
∫ t

0 〈Πα,ε,TS
∗(s− t)Π−1

α,ε,T Q̂α,ε,TVα,ε,T (s)ϕ, S
∗(−t)ψ〉H,H′ds,

E2(t) := TC1(α)e
αT

∫ t

0

〈
J1B

∗
(∫ s

0
S∗(γ − s)Π−1

α,ε,T Q̂α,ε,TVα,ε,T (γ)ϕdγ
)
, B∗S∗(−s)ψ

〉
U,U ′

ds,

E3(t) := −
∫ t

0
〈Q̂α,ε,TVα,ε,T (s)ϕ, S

∗(−s)ψ〉H,H′ds,

E4(t) := −
∫ t

0

〈
Q̂α,ε,T

(∫ s

0 S
∗(γ − s)Π−1

α,ε,T Q̂α,ε,TVα,ε,T (γ)ϕdγ
)
, S∗(−s)ψ

〉
H,H′

ds.

(Here Q̂α,ε,T is defined by (3.3).)

First of all, it is obvious that E1(t), E3(t) and E4(t) are well defined since Π−1
α,ε,T Q̂α,ε,T ∈ L(H ′)

and ϕ, ψ ∈ D(A∗). Second, by Lemma 2.4 and the assumption (H3) that E2(t) is well defined since
ϕ, ψ ∈ D(A∗).

Next, it follows from Proposition 2.2 that for any s ∈ R,

〈Πα,ε,TA
∗S∗(−s)ϕ, S∗(−s)ψ〉H,H′ + 〈Πα,ε,TS

∗(−s)ϕ,A∗S∗(−s)ψ〉H,H′

= TC1(α)e
αT 〈J1B

∗S∗(−s)ϕ,B∗S∗(−s)ψ〉U,U ′ − 〈Q̂α,ε,TS
∗(−s)ϕ, S∗(−s)ψ〉H,H′ . (5.19)

Then, since

〈Πα,ε,TA
∗S∗(−s)ϕ, S∗(−s)ψ〉H,H′ + 〈Πα,ε,TS

∗(−s)ϕ,A∗S∗(−s)ψ〉H,H′

= −

[
d

dγ
〈Πα,ε,TS

∗(−γ)ϕ, S∗(−γ)ψ〉H,H′

]

γ=s

, s ∈ R,

we get, by integrating (5.19) with respect to s over (0, t), that

〈Πα,ε,Tϕ, ψ〉H,H′

= 〈Πα,ε,TS
∗(−t)ϕ, S∗(−t)ψ〉H,H′ + TC1(α)e

αT

∫ t

0

〈J1B
∗S∗(−s)ϕ,B∗S∗(−s)ψ〉U,U ′ds

−

∫ t

0

〈Q̂α,ε,TS
∗(−s)ϕ, S∗(−s)ψ〉H,H′ds. (5.20)
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Finally, (5.18) follows from (5.20) and (2.9).

Step 2. We show
E(t) = 0. (5.21)

When this is done, (2.11) follows from (5.21) and (5.18) at once.
The remainder is to show (5.21). Let n∗ ∈ N+ be such that nI − A∗ is invertible for all n ≥ n∗. We

define, for each n ≥ n∗,

Fn(t) :=

∫ t

0

〈Πα,ε,TS
∗(s− t)RnΠ

−1
α,ε,T Q̂α,ε,TVα,ε,T (s)ϕ, S

∗(s− t)S∗(−s)ψ〉H,H′ds,

where {Rn}n≥n∗ are given by (3.6). By (5.20), we find

Fn(t) = Fn,1(t) + Fn,2(t) + Fn,3(t), n ≥ n∗, (5.22)

where




Fn,1(t) :=
∫ t

0
〈Πα,ε,TRnΠ

−1
α,ε,T Q̂α,ε,TVα,ε,T (s)ϕ, S

∗(−s)ψ〉H,H′ds,

Fn,2(t) := −TC1(α)e
αT

∫ t

0

∫ t−s

0 〈J1B
∗S∗(−γ)RnΠ

−1
α,ε,T Q̂α,ε,TVα,ε,T (s)ϕ,B

∗S∗(−(γ + s))ψ〉U,U ′dγds,

Fn,3(t) :=
∫ t

0

∫ t−s

0 〈Q̂α,ε,TS
∗(−γ)RnΠ

−1
α,ε,T Q̂α,ε,TVα,ε,T (s)ϕ, S

∗(−(γ + s))ψ〉H,H′dγds.

Several facts are given in order: First, since {Rn}n≥n∗ is uniformly bounded (see (3.8)), we can use (3.9)
and the dominated convergence theorem to find

lim
n→+∞

Fn(t) = E1(t) and lim
n→+∞

Fn,1(t) = −E3(t). (5.23)

Second, direct computations show that when n ≥ n∗,

Fn,3(t) =

∫ t

0

∫ t

s

〈Q̂α,ε,TS
∗(s− σ)RnΠ

−1
α,ε,T Q̂α,ε,TVα,ε,T (s)ϕ, S

∗(−σ)ψ〉H,H′dσds

=

∫ t

0

∫ σ

0

〈Q̂α,ε,TS
∗(s− σ)RnΠ

−1
α,ε,T Q̂α,ε,TVα,ε,T (s)ϕ, S

∗(−σ)ψ〉H,H′dsdσ.

This, along with (3.9) and the dominated convergence theorem, yields

lim
n→+∞

Fn,3(t) = −E4(t). (5.24)

We now claim
lim

n→+∞
Fn,2(t) = −E2(t). (5.25)

To this end, we define, for each n ≥ n∗,

Hn(t) :=

∫ t

0

〈
J1B

∗

(∫ s

0

S∗(γ − s)RnΠ
−1
α,ε,T Q̂α,ε,TVα,ε,T (γ)ϕdγ

)
, B∗S∗(−s)ψ

〉

U,U ′

ds. (5.26)

Then we have two observations: First, since RnS
∗(·) = S∗(·)Rn and B∗Rn ∈ L(H ′) (see (3.16)), we have

Hn(t) =

∫ t

0

∫ s

0

〈J1B
∗S∗(γ − s)RnΠ

−1
α,εQ̂α,ε,TVα,ε,T (γ)ϕ,B

∗S∗(−s)ψ〉U,U ′dγds, n ≥ n∗.

(See [1, Lemma 11.45].) By using some simple integral transformations in the above, we find

Hn(t) =

∫ t

0

∫ t−γ

0

〈J1B
∗S∗(−σ)RnΠ

−1
α,ε,T Q̂α,ε,TVα,ε,T (γ)ϕ,B

∗S∗(−(γ + σ))ψ〉U,U ′dσdγ, n ≥ n∗,
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which implies
Fn,2(t) = −TC1(α)e

αTHn(t) for each n ≥ n∗. (5.27)

Second, if we let, for each n ≥ n∗,

wn(s) :=

∫ s

0

S∗(γ − s)(Rn − I)Π−1
α,ε,T Q̂α,ε,TVα,ε,T (γ)ϕdγ, (5.28)

then, similar to the proof of (3.15), we can show

lim
n→+∞

∫ |t|

−|t|

‖B∗wn(s)‖
2
U ′ds = 0. (5.29)

Now, it follows by the assumption (H3), (5.26), (5.28) and (5.29) that

lim
n→+∞

Hn(t) =

∫ t

0

〈
J1B

∗

(∫ s

0

S∗(γ − s)Π−1
α,ε,T Q̂α,ε,TVα,ε,T (γ)ϕdγ

)
, B∗S∗(−s)ψ

〉

U,U ′

ds, (5.30)

which, along with the definition of E2(t), (5.27) and (5.30), yields (5.25). Finally, (5.21) follows by (5.22),
(5.23), (5.24) and (5.25).

Thus, we finish the proof of Lemma 2.5.
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