
Digital Twin Empowered Task Offloading for
Vehicular Edge Computing

Chaogang Tang∗, Huaming Wu†, Chunsheng Zhu‡, Shuo Xiao∗
∗School of Computer Science and Technology, China University of Mining and Technology, 221116, Xuzhou, China

† Center for Applied Mathematics, Tianjin University, 300072, Tianjin, China
‡College of Big Data and Internet, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China

cg.tang@foxmail.com, whming@tju.edu.cn, chunsheng.tom.zhu@gmail.com, sxiao@cumt.edu.cn

Abstract—Vehicular edge computing (VEC) as a promising
computing paradigm has accelerated the reformation of existing
dominating computing infrastructures, enabling resource provi-
sioning in close proximity to resource requestors. However, sev-
eral challenges still exist, including efficient resource scheduling
and management, dynamic wireless channel state, and limited
bandwidth usage. To address these issues, we introduce the digital
twin (DT) technology into VEC, enabling DTs of physical entities
in VEC to achieve real-time offloading decision-making in the DT
simulation cycle. In particular, we propose a DT-empowered VEC
(DT-VEC) architecture, aiming to achieve efficient task offloading
while considering extra latency incurred by task migration.
We further put forward an efficient algorithm to minimize the
response latency for all the tasks in the optimization period. The
simulation results have proven that our approach outperforms
the other two greedy approaches.

Index Terms—Vehicular edge computing, task offloading, dig-
ital twin, response latency, resource scheduling

I. INTRODUCTION

Vehicular edge computing (VEC) has emerged as a promis-
ing computing paradigm that has expedited the reformation
of existing dominating computing infrastructures for vehicles,
such as vehicular cloud computing [1]. VEC enables com-
puting resources provisioning for vehicular tasks and appli-
cations in a more scalable and adaptive way, by pushing the
computing and caching resources of the cloud center into the
logical edge of vehicular networks, such as roadside units
(RSU) deployed along the road. The benefits of VEC are
at least threefold. Firstly, it significantly fulfills the real-time
requirement of a variety of vehicular tasks, including online in-
car games, navigation-related image rendering tasks, vehicular
media applications, etc. Secondly, VEC can tremendously
relieve the computational pressure of the on-board units (OBU)
of vehicles, particularly in light of the explosive growth of
vehicular applications. Thirdly, through the deployment of
lightweight edge servers at RSUs located in close proximity
to the resource requestors (e.g., vehicles), VEC ensures a
high level of quality of service (QoS) during the service and
resource provisioning process, thereby guaranteeing reliable
and timely delivery of services and resources to the resource
requestors. Additionally, VEC enhances the quality of expe-
rience (QoE) for resource requestors, ensuring that the users’

expectations and satisfaction are met by providing a seamless
and uninterrupted service experience [2].

Despite the aforementioned advantages, the following chal-
lenges revolving around task offloading in VEC are still
not well addressed. The computing and caching capabilities
of RSUs are much weaker than the cloud center, which
requires more efficient and effective service provisioning and
resource management in VEC. Furthermore, the high mobility
of vehicles can not only incur dynamics of vehicular ad hoc
networks (VANET), but also require task migration among
adjacent RSUs. For instance, a vehicle may not receive the
feedback results before leaving the coverage of the current
serving RSU to which its task is offloaded. In this case,
task migration is required, which brings about extra migration
costs on caching, networking and computing power. Last, both
wireless channel state and bandwidth can contribute to the
difficulty in efficiently designing task offloading strategies and
computing resource management schemes in VEC.

The digital twin (DT) technology can offer a promising solu-
tion to the above issues in VEC. DT can be defined as a virtual
model to depict a physical asset by data-driven simulators [3],
[4]. DT is initially introduced to intelligent manufacturing for
real-time controlling, monitoring and optimizing [5]. Similarly,
the DT can benefit VEC by undertaking decision-making roles
in the DT simulation cycle. In particular, DT can efficiently
mirror the physical entities such as the behaviors and topolog-
ical changes, by analyzing and predicting the states of these
entities in real-time [6].

In this paper, we put forward a DT-empowered VEC (DT-
VEC) architecture, with the aim to achieve efficient task
offloading, and further improving the QoS from the perspective
of resource providers (i.e., RSUs or edge servers) and the QoE
from the perspective of resource requestors (i.e., vehicles with
task offloading requests). The contributions in this paper are
threefold.

• We propose a DT-VEC architecture for task offloading
and resource allocation. This architecture comprises two
layers, namely the physical layer and the DT layer.
Specifically, the DT layer is composed of digital replicas
of both RSUs and the entire VEC system.

• An efficient task offloading algorithm is proposed in this



paper to minimize the total response latency for all tasks
within the optimization period. Different from existing
works, the latency incurred by task migration is also
considered in this paper.

• Extensive simulation experiments were conducted to e-
valuate our approach in comparison with two other exist-
ing greedy approaches. The results demonstrate that our
approach achieves a significant improvement in response
latency optimization, demonstrating its effectiveness and
efficiency.

II. RELATED WORKS

Many fields have adopted DT technologies to realize real-
time controlling, monitoring and optimizing. Current works,
in the context of new computing paradigms, try to investigate
and discuss the roles and responsibilities of DTs which can
undertake in various application scenarios.

Considering many works in mobile edge computing (MEC)
that ignore the effects of user mobility and environments,
a DT-enabled edge network was proposed in [3]. In this
architecture, DTs play multiple roles, including the evaluation
of edge servers and the entire MEC system. They attempted
to optimize the response latency using Actor-Critic deep
reinforcement learning and obtain better performance in the
simulation. Schwarz et al. [7] investigated the use of DT in
connected and automated vehicles (CAVs). They stated that
DTs should have direct communication with their counterparts
in physical systems. Therefore, new methods that adopt DT
technologies are required for testing CAVs efficiently, as
shown in their review of vehicular DTs. They also discussed
open gaps and challenges for the sustainable development of
DT applications.

To improve the efficiency of intelligent transportation,
Schwarz et al. [8] have explored the combination of blockchain
with DTs in vehicle management. In particular, considering
the difficulties in predicting pedestrians in reality, they use
DTs to mirror the traffic situation on real roads. In addition,
the blockchain technology is used to secure the interaction
of vehicle data information. They further construct the DTs
of vehicle Ad Hoc networks based on blockchain technology.
Lv et al. [9] combined DT with Artificial Intelligence (AI) to
prevent traffic accidents and guarantee the safety of drivers and
pedestrians. They used the Long-Short Term Memory (LSTM)
network to predict the low-frequency sub-layers. They further
built a double-scale LSTM network prediction model, which
it has a strong power in predicting traffic accidents. Chukhno
et al. [10] attempted to address the issue of DTs placement
at the edge, considering the IoT device mobility, features
of edge network and the corresponding social peculiarities.
They put forward an approximation algorithm to solve the
formulated quadratic assignment problem. Their heuristic rules
guarantee that the proposed algorithm can almost approach
the optimal solution at a low time complexity. Lv et al.
investigated the storage security of edge-fog-cloud computing.

To this end, the DT technology is used to simulate the online
data-driven behaviors of machine manufacturing. Furthermore,
deep learning technology is used to prevent network intrusion.
The simulation results show that their approach has better
performance than other approaches. They are also other works
such as [11]–[13] which focus on the applications of DT
technologies. Owing to space limitations, we do not detail
them anymore.

III. SYSTEM MODEL

A. Architecture for Digital Twin Empowered Vehicular Edge
Computing

The architecture of DT-VEC for task offloading and resource
allocation is presented in Fig. 1, which is composed of two lay-
ers, namely the physical layer and the DT layer. The physical
layer includes the entities involved in the VEC networks, such
as smart vehicles, edge server-enhanced RSUs, and a cloud
center. Vehicles communicate with each other and RSUs via
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
wireless links, respectively. RSUs are inter-connected with
each other using wired links such as high-capacity optical
fibers. A cloud center in this physical layer is responsible
for supplementing computing and caching resources for RSUs,
since the cloud center is much richer in these resources than
RSUs.

Fig. 1. The architecture of DT-VEC for task offloading and resource
allocation.

The proposed DT layer comprises digital replicas of the
physical entities in VEC, with a focus on both individual DTs
of RSUs and the global DT of the entire VEC system. These
DTs are responsible for monitoring and analyzing the states
of physical entities in VEC and making efficient offloading
decisions. For instance, the DTs of RSUs interact with passing
vehicles through V2I communication links to gather and
record information such as destination, velocity, and offloading
requests. Moreover, the DTs of RSUs periodically update
their records of available computing, caching, and networking
resources. It is worth noting that these DTs are located either



on the corresponding RSUs or on other RSUs with abundant
resources.

In the above architecture, we consider one moving vehicle
that has different task offloading requests in the optimization
period T . The optimization period is divided into discrete time
slots T = {1, · · · , T} where T is the number of time slots.
Denote by R = {R1, · · · , RM} a set of RSUs which are
deployed along the road and M is the number of RSUs. The
DT of RSU m can be calculated as:

DTm = Θ(fm,∆fm), (1)

where fm is the estimated computing capability of RSU m,
and ∆fm is an estimated deviation from the true computing
capability of m, since the DTs cannot accurately image the
state of RSUs and thus a deviation always exists.

To simplify the discussion, we assume that the vehicle v
has only one task to offload in each time slot. Denote by
B(t) = (ζ(t), χ(t), γ(t)) the task generated by v in time slot
t, where ζ(t) denotes the task-input size, χ(t) is the number
of computing resources required to accomplish B(t), and γ(t)
is the deadline of the response latency for B(t). As shown
in the figure, vehicle v may be covered by multiple RSUs at
the same time, since RSUs can be densely deployed along the
road. Thus, denote by C(t) the set of RSUs that cover v in time
slot t. In this case, an arbitrary RSU Rm ∈ C(t)(C(t) ⊆ R)
can be a potential candidate to which B(t) can be offloaded.
Let K(t) denote the dwelling time of v within the coverage
of the serving RSU in time slot t, and K(t) can be estimated
based on the coverage area of RSU and the velocity of the
vehicle [14].

B. Task Offloading Model

Offloading B(t) to the corresponding serving RSU Rm

causes the offloading delay, and retrieving the execution results
also causes the feedback delay. In this paper, we assume that
v adopts an orthogonal spectrum for task offloading to get
rid of the co-channel interference. Thus, the data rate for task
offloading can be calculated as:

r(t) = W log

(
1 +

P (t)Gm(t)

δ2

)
, (2)

where W , P (t) and Gm(t) are the uplink channel bandwidth
between v and RSU, transmission power of v in slot t, and
channel gain between v and RSU Rm in slot t, respectively.
δ2 denotes the noise power. Thus, the offloading delay denoted
by Tm

off (t) is:

Tm
off (t) =

ζ(t)

r(t)
. (3)

C. Computation Model

When B(t) is offloaded to Rm, the edge server deployed
at the RSU will create a virtual machine and allocate the
computing resources for accomplishing it. In the DT-VEC
architecture, the state of the edge server such as its processing

frequency can be estimated by its DT. In this case, the
estimated computation latency T̃m

cmp(t) for the task in time
slot t can be calculated as:

T̃m
cmp(t) =

χ(t)

fm
. (4)

Owing to the existence of an estimated deviation from the
true computing capability of RSU, we also need to consider
the computation latency gap during evaluating the computation
latency. The computation latency gap, denoted by Gm

cmp(t),
can be expressed as [3]:

Gm
cmp(t) = − χ(t)∆fm

fm(fm + ∆fm)
. (5)

Accordingly, the actual computation latency for the task
performed at Rm in time slot t can be expressed as:

Tm
cmp(t) = T̃m

cmp(t) +Gm
cmp(t). (6)

Note that the execution results generated by computation-
oriented task offloading and execution at RSUs usually need
to be sent back to the moving vehicles in VEC. However, to
simplify the discussion, many works assume that the data size
of the execution result is much smaller than the task-input data
size, and thus the feedback delay can be ignored [15], [16].
Accordingly, in this paper, we also ignore the feedback delay,
as assumed in these works.

D. Task Migration Model

In this paper, we assume that all tasks must be completed.
However, owing to the stringent latency requirements and high
mobility of smart vehicles, the execution result for a vehicular
task may not be delivered to the vehicle on time before it
leaves the coverage of the RSU. In such cases, task migration
is required to successfully accomplish the task. Task migration
occurs at two levels, i.e., the source code level and computation
result level, respectively. Particularly, the former occurs when
a vehicle, which is moving away from the serving RSU but
has not received the feedback result, re-offloads the unfinished
task to the RSU it is approaching. The latter occurs when
a vehicle, which is moving away from the current RSU but
has not received the feedback result, does not re-offload the
unfinished task to the RSU it is approaching but directly
receives the feedback result from another RSU responsible
for forwarding the result from the serving RSU. Both ways
require the involvement of other RSUs, which act as either the
computing node or the forwarding node in the process of task
migration. The computation result level is usually preferred
over the source code level because it does not recalculate the
offloading delay or computation delay.

Nevertheless, the task migration at the computation result
level still incurs the migration latency in the DT-VEC system
such as latency on re-authentication and result delivery in the
physical layer and latency on state updates for RSUs in the
DT layer. To ease the discussion, let C denote the average
transmission delay for the task migration between two RSUs.



As a result, the latency of task migration for B(t) selecting
Rm as the serving edge in time slot t, denoted by Tm

mgr(t),
can be calculated as

Tm
mgr(t) = C · F{Tm

off (t) + Tm
cmp(t)−K(t)}, (7)

where the function F{·} is a unit-step function, i.e., F{x} = 1
for x ≥ 0, and 0, otherwise. We use this function to denote
the decision for the task migration. For instance, if the sum
of the offloading delay and computation delay is larger than
the estimated dwelling time of v within the coverage of the
serving RSU, the execution result cannot be delivered on time
to v, since v has moved far away from the serving RSU. In
this case, the task migration is required.

Accordingly, the total response latency for B(t) executed at
Rm can be expressed as:

Tm
rl (t) = Tm

cmp(t) + Tm
cmp(t) + Tm

mgr(t). (8)

IV. PROBLEM FORMULATION

Define a binary variable xm(t) to denote whether the task
generated in time slot t (i.e., B(t)) is offloaded to Rm.
xm(t) = 1 indicates that B(t) is offloaded to Rm, and
xm(t) = 0 indicates that B(t) is not offloaded to Rm.

Define the decision variable xm = {xm(t)|t =
1, · · · , T},∀m ∈ {1, · · · ,M} to represent the offloading
decision for Rm along the entire optimization period. Further
define the decision profile x = {xm|m = 1, · · · ,M} for all
the RSUs along the entire optimization period.

Then, the goal of this paper is to minimize the response
latency for the generated tasks by v along the optimization
period with the assistance of DTs. Specifically, the optimiza-
tion problem can be formulated as follows:

P : min
x

T∑
t=1

M∑
m=1

xm(t) · Tm
rl (t),

s.t.

M∑
m=1

xm(t) = 1, ∀t ∈ T , (9)

Tm
rl (t) ≤ γ(t), ∀t ∈ T , (10)
Rm|xm(t)=1 ∈ C(t), ∀t ∈ T , (11)
fm ≤ fmax

m , ∀m ∈ {1, · · · ,M}, (12)
xm(t) ∈ {0, 1}, ∀m ∈ {1, · · · ,M},∀t ∈ T , (13)

where Eq. (9) ensures that the task B(t) can be offloaded to
only one RSU for execution at the same time in each time
slot, which also implies that the task is indivisible in this
paper. However, from the cost-efficient perspective, we allow
for task migration at the computation result level in this paper.
Eq. (10) means that the deadlines for tasks generated in the
optimization period should be strictly satisfied, when making
the offloading decisions in each time slot. Eq. (11) guarantees
that the chosen RSU to serve the offloading request must cover
v for the consequent V2I communications. We also assume that
the computing resources allocated to the offloaded tasks by

the serving RSU are bounded, since the remaining computing
resources can be kept for other purposes. This can be realized
by Eq. (12).

V. ALGORITHM DESIGN

In this paper, we aim to minimize the total response latency
for all the tasks along the optimization period by task offload-
ing and computing resource allocation when the vehicle is
travelling on the road. Actually, it is difficult to obtain the op-
timal solution in reality, owing to the following reasons. First,
the vehicle v has no global information on the surrounding
RSUs (i.e., the edge servers). Frequent interactions between
v and RSUs such as beacon information exchanging not only
incur extra response latency, but also consumes more energy
and networking resources. Second, for security reasons, RSUs
may not be willing to disclose their information such as their
computing capabilities. Such factors may increase the difficul-
ty in the offloading decision-making by v. Last but not least,
realizing optimal task scheduling and possible task migration
for vehicular tasks usually requires a centralized entity that
is responsible for information gathering and decision-making.
Considering the independence and autonomy of RSUs, it may
be challenging to select one leading RSU from them.

In the DT-VEC architecture proposed in this paper, we
can realize almost real-time task offloading and migration
by means of DT technology. For instance, the DT layer can
determine which RSU the task is offloaded to, and which RSU
the task is migrated to if the task is not executed successfully.
Note that the evaluation for the processing frequency requires
the assistance of the DT technology. On the one hand, each
DT of RSUs updates its states. Considering the fact that RSUs
usually keep certain computing resources for other purposes
such as running the individual DTs and global DT, the number
of computing resources used for the vehicular task varies
dynamically in each time slot. Thus, it is necessary for each
DT of RSUs to evaluate the computing resources available in
each time slot. On the other hand, the global DT can reflect
the state of the system by gathering various information from
individual DTs. Thus, it can make globally optimal decisions
on task offloading and migration.

As a matter of fact, various algorithms can be employed
to achieve efficient decision-making on task offloading and
resource allocation in DT-VEC. In this paper, we present a
novel and efficient algorithm with low-time complexity to
solve problem P . We aim to ensure that the time spent on
decision-making greatly caters to the strict response latency
requirement for vehicular tasks. The details of the proposed
algorithm are provided in Alg. 1. In particular, the procedure
of the algorithm can be sketched out as follows:

Step 1 : At the beginning of each time slot, task B(t) is
generated by v. v communicates with the surround-
ings (e.g., RSUs via wireless V2I links). On the
other hand, each individual DT of RSU monitors
their states such as fm and ∆fm. For instance, they



evaluate the maximal allowed amount of computing
resources to accomplish the task in the current time
slot.

Step 2 : The global DT gathers information from individual
DTs. Specifically, a set of RSUs C(t) is built based
on the information (line 5). An arbitrary RSU from
C(t) can be a candidate RSU that undertakes the
computation of B(t). The algorithm checks each
RSU Rm in C(t) and calculates the corresponding
response latency, assuming that the task B(t) is
allocated to Rm (lines 6–8).

Step 3 : The values of Tm
rl (t) m ∈ {1, · · · ,M} are record-

ed. The algorithm selects the RSU Rm that has the
minimal value of Tm

rl (t), m ∈ {1, · · · ,M} (line
10). Then, we check if there is a constraint violation
if B(t) is allocated to Rm (lines 11–15). If there
is no constraint violation, the allocation is feasible.
Otherwise, we ignore (e.g., remove) Rm from C(t),
and continue this process (lines 9–16) until we find a
feasible task allocation scheme. Then the algorithm
makes per-slot task offloading decisions by setting
xm(t) = 1.

Step 4 : At the end, the algorithm will update the task
offloading decision profile x. Given x, the algorithm
will calculate the response latency for all the tasks
along the optimization period.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our approach by conducting a
series of experiments in DT-VEC. The simulation parameters
can be set as follows. The task B(t), t ∈ T at each time slot
is randomly generated by v that moves at a constant speed
along a straight road of the length 10km. The number of
RSUs deployed along the road varies between 20 and 50, and
the communication range of each RSU ranges from 500m to
1000m. Based on the information, we can estimate the dwell
time of vehicle v within the coverage of each RSU.

Intuitively speaking, one RSU is very attractive and pre-
ferred, if it has more computing resources and longer dwelling
time for the passing vehicle. This observation introduces two
greedy rules. That is to say, one rule tends to select the RSU
that has the most powerful computing capacity as the potential
offloading destination, and the other rule tends to select the
RSU that has the longest dwell time for the vehicle as the
potential offloading destination. Accordingly, we adopt the two
greedy heuristic algorithms as benchmarks to compare with
our approach in terms of efficiency and effectiveness. For
simplicity, we call the two algorithms “Processing-optimal”
and “Time-optimal”, respectively.

Fig. 2 presents a comparison of the performance of the
three approaches when the number of tasks is relatively small.
Several conclusions can be drawn from the figure. Firstly, our
approach outperforms the other two approaches regardless of
the number of tasks. It is worth noting that the number of tasks

Algorithm 1: Efficient task offloading algorithm in DT-
VEC (ETOA)

Input: Involved parameters in each time slot, such as
B(t), K(t), C(t)

Output: The optimal value for the response latency
1 for t = 1 to T do
2 Each DTm evaluates and obtains fm and ∆fm;

// Individual DTs can execute above
codes in parallel

3 Global DT gathers information from individual DTs;
// Global DT executes the following

codes
4 Initialize xm(t) = 0, ∀m ∈ {1, · · · ,M};
5 Determine C(t) by V2I communications;
6 for each Rm in C(t) do
7 Given B(t), calculate Tm

rl (t) according to Eq. 8;
8 end
9 while task offloading decision not made do

10 Select one Rm with the minimal value of Tm
rl (t)

currently;
11 if Constraints not violated then
12 Select Rm as the offloading destination;
13 else
14 Ignore Rm in C(t);
15 end
16 end
17 Allocate B(t) to Rm and set xm(t) = 1;
18 end
19 Update x;
20 Calculate and return the response latency based on x;

50 51 52 53 54 55 56 57 58 59
Number of tasks

6.5

7.0

7.5

8.0

8.5

9.0

O
pt

im
al

 re
sp

on
se

 la
te

nc
y

ETOA
Processing-optimal
Time-optimal

Fig. 2. Performance comparison with a small number of vehicular tasks.

is assumed to be equal to the number of time slots in this paper,
and only one task is generated by v in each time slot. Secondly,
there is no consistent pattern between ”Processing-optimal”
and ”Time-optimal.” Sometimes the former outperforms the



latter, and sometimes it does not. Since latency minimization
is the performance metric, the computing power of RSUs is
directly related to the response latency of vehicular tasks. In
most cases, the former performs better than the latter, as also
shown in this figure. Thirdly, since the tasks of v and the
computing resources of RSUs are randomly generated during
the optimization period, the minimal response latency varies
significantly across time slots.

90 91 92 93 94 95 96 97 98 99
Number of tasks

12.0

12.5

13.0

13.5

14.0

14.5

O
pt

im
al

 re
sp

on
se

 la
te

nc
y

ETOA
Processing-optimal
Time-optimal

Fig. 3. Performance comparison with a large number of vehicular tasks.

Fig. 3 compares the performance of the three approaches
when the number of tasks is relatively large (e.g., ranging
from 90 to 100). The observations drawn from this figure are
consistent with those made in Fig. 2, and therefore, we do
not reiterate them. The combination of the insights gleaned
from the two figures leads us to conclude that our approach
outperforms the two greedy approaches, irrespective of the
number of tasks being small or large.

30 32 34 36 38 40 42 44 46 48
Number of RSUs

4.0

4.2

4.4

4.6

4.8

5.0

5.2

O
pt

im
al

 re
sp

on
se

 la
te

nc
y

ETOA
Processing-optimal
Time-optimal

Fig. 4. Performance comparison with the increasing number of RSUs.

Fig. 4 illustrates a performance comparison among the three
approaches when the number of RSUs varies between 30 and
50. Several observations can be made from the results. Firstly,

our proposed approach outperforms the other two approaches
across different numbers of RSUs. Moreover, the total response
latency does not decrease with the increasing number of RSUs,
which may contradict regular expectations. There are several
reasons for this interesting observation. For instance, all the
information related to task and edge servers deployed at RSUs
is generated randomly in each time slot. Thus, the increase in
the number of RSUs does not necessarily lead to an increase
in computing resources. Additionally, other factors such as
the difference in the dwelling time of RSUs covering v can
impact the response latency for all the tasks. Therefore, the
total response latency does not have a clear relationship with
the number of RSUs in the simulation. To summarize, the
simulation results indicate that the proposed approach provides
a better solution for response latency optimization than the
other two approaches across varying numbers of RSUs.

VII. CONCLUSION

Considerable focus has been dedicated to addressing task
offloading and resource allocation challenges in Vehicular
Edge Computing (VEC). However, certain issues remain i-
nadequately tackled, as evidenced by prior research. In this
paper, we propose a novel architecture known as the DT-VEC,
where DTs are utilized to simulate the states of RSUs and the
entire VEC system. In particular, a task offloading algorithm
is put forward to minimize the total response latency for all
tasks within the optimization period with the assistance of DT
technologies. We also evaluate the algorithm in comparison
with other greedy algorithms, and the simulation results reveal
that it can achieve a better effect.

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant Number 62071327,
62271486 and 62071470. Huaming Wu is the corresponding
author.

REFERENCES

[1] C. Tang, W. Chen, C. Zhu, Q. Li, and H. Chen, “When cache meets
vehicular edge computing: Architecture, key issues, and challenges,”
IEEE Wirel. Commun., vol. 29, no. 4, pp. 56–62, 2022.

[2] X. Wang, L. T. Yang, L. Ren, Y. Wang, and M. J. Deen, “A tensor-based
computing and optimization model for intelligent edge services,” IEEE
Network, vol. 36, no. 1, pp. 40–44, 2022.

[3] W. Sun, H. Zhang, R. Wang, and Y. Zhang, “Reducing offloading latency
for digital twin edge networks in 6g,” IEEE Trans. Veh. Technol., vol. 69,
no. 10, pp. 12 240–12 251, 2020.

[4] X. Wang, L. Ren, R. Yuan, L. T. Yang, and M. J. Deen, “Qtt-dlstm:
A cloud-edge-aided distributed lstm for cyber-physical-social big data,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13,
2022.

[5] B. Fan, Y. Wu, Z. He, Y. Chen, T. Q. S. Quek, and C. Xu, “Digital
twin empowered mobile edge computing for intelligent vehicular lane-
changing,” IEEE Netw., vol. 35, no. 6, pp. 194–201, 2021.

[6] Y. Dai and Y. Zhang, “Adaptive digital twin for vehicular edge computing
and networks,” Journal of Communications and Information Networks,
vol. 7, no. 1, pp. 48–59, 2022.

[7] C. Schwarz and Z. Wang, “The role of digital twins in connected and
automated vehicles,” IEEE Intell. Transp. Syst. Mag., vol. 14, no. 6, pp.
41–51, 2022.



[8] H. Feng, D. Chen, and Z. Lv, “Blockchain in digital twins-based vehicle
management in vanets,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10,
pp. 19 613–19 623, 2022.

[9] Z. Lv, J. Guo, A. K. Singh, and H. Lv, “Digital twins based VR
simulation for accident prevention of intelligent vehicle,” IEEE Trans.
Veh. Technol., vol. 71, no. 4, pp. 3414–3428, 2022.

[10] O. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and
A. Molinaro, “Placement of social digital twins at the edge for beyond
5g iot networks,” IEEE Internet Things J., vol. 9, no. 23, pp. 23 927–
23 940, 2022.

[11] Z. Lv, D. Chen, H. Feng, H. Zhu, and H. Lv, “Digital twins in unmanned
aerial vehicles for rapid medical resource delivery in epidemics,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 25 106–25 114, 2022.

[12] S. Wang, C. Tu, and J. Juang, “Automatic traffic modelling for creating
digital twins to facilitate autonomous vehicle development,” Connect.
Sci., vol. 34, no. 1, pp. 1018–1037, 2022.

[13] F. Sanfilippo, E. F. Langås, H. Z. Bukhari, and S. Robstad, “Pervasive
and connected digital twins for edge computing enabled industrial appli-
cations,” in 56th Hawaii International Conference on System Sciences,
HICSS 2023, Maui, Hawaii, USA, January 3-6, 2023, T. X. Bui, Ed.
ScholarSpace, 2023, pp. 6789–6798.

[14] C. Tang, S. Xia, Q. Li, W. Chen, and W. Fang, “Resource pooling in
vehicular fog computing,” J. Cloud Comput., vol. 10, no. 1, p. 19, 2021.

[15] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, 2016.

[16] C. Tang, C. Zhu, H. Wu, Q. Li, and J. J. P. C. Rodrigues, “Toward
response time minimization considering energy consumption in caching-
assisted vehicular edge computing,” IEEE Internet Things J., vol. 9,
no. 7, pp. 5051–5064, 2022.


