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Abstract

A secondary structure in single-stranded DNA refers to its propensity to
undergo self-folding, leading to functional inactivity and irreparable failures
within DNA storage systems. Consequently, the property of secondary struc-
ture avoidance (SSA) becomes a crucial criterion in the design of single-
stranded DNA sequences for DNA storage, as it prohibits the inclusion of
reverse-complement subsequences that contribute to such structures. This
work is specifically focused on addressing the avoidance of secondary struc-
tures in single-stranded DNA sequences. We propose a novel sequence re-
placement approach, which successfully resolves the SSA problem under con-
ditions where the stem exceeds a length of 2log,n + 2, and the loop is of
length k£ > 4. These parameters have been carefully chosen to closely resem-
ble the real-world scenarios encountered in biochemical processes, enhancing
the practical relevance of our study.

Keywords: DNA data storage, Secondary structure avoidance, Sequence
replacement, DNA codes

1. Introduction

The rapid advancement of information technology and the widespread
use of social networking have led to an exponential surge in data genera-
tion [1]. In response to this challenge, the field of Deoxyribonucleic Acid
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(DNA) storage has emerged, leveraging the progress in DNA synthesis and
sequencing technologies to serve as a promising and ideal medium for storing
vast amounts of digital information [2]. However, it is essential to acknowl-
edge that the methods for synthesizing and sequencing DNA sequences are
far from perfect. If the codewords are not chosen appropriately, unintended
(non-selective) hybridization or errors may occur during the process. To
address these potential issues and ensure the reliability of DNA storage, nu-
merous exceptional error correction methods [3; 4; 5] and DNA clustering
methods [6; 7] have been proposed, which play a crucial role in enhancing
the accuracy and efficiency of DNA storage systems, mitigating errors, and
ensuring the integrity of the stored digital information.

In conventional DNA storage approaches, the utilization of short single-
stranded DNA sequences, also referred to as oligonucleotide sequences, is
common. Each of these sequences represents an oriented word, comprising
four distinct nucleotide bases: Adenine (A), Thymine (T), Cytosine (C), and
Guanine (G). The Watson-Crick complementarity relationships are denoted
as follows: T = A, A =T, C = G, and G = C. These complementary
base pairings play a fundamental role in DNA replication, transcription, and
other essential biological processes.

A secondary structure in the context of DNA storage refers to the exis-
tence of two non-overlapping subsequences that are reverse complements of
each other. This structural arrangement causes the sequence to fold back
onto itself through a complementary base pair, resulting in the formation of
a stem-loop structure as shown in Fig. 1. Such secondary structures have
been identified as a significant source of potential irreparable read-out failures
within DNA storage systems [8]. For example, a large number of read-out
failures in the DNA storage system described in [9] was attributed to the for-
mation of hairpins, a special secondary structure formed by oligonucleotide
sequences. It is necessary to stress the fact that DNA code design must
take secondary structure considerations into account [10]. In the field of
DNA sequence analysis, some researchers have presented rigorous solutions
to avoid secondary structures in DNA codes, both for significantly large [11]
and small [12] stem lengths. However, as of yet, no efficient method has been
devised to address DNA sequences with realistic and appropriately sized
stems. This represents a significant gap in the current state of research,
leaving a critical aspect of DNA analysis unexplored.

In this study, we focus on the construction of DNA codes with a specified
length n, aiming to avoid the formation of secondary structures with stem
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Figure 1: DNA secondary structure model

lengths equal to or greater than a given integer m > 2. It is crucial to note
that we refrain from categorizing m as either excessively large or small, or
limiting the consideration to odd stems. In real-world applications of DNA
storage, biochemists typically address the secondary structure problem with
a stem length of m > 6 and a loop length of at least 4 [12]. As depicted
in Fig. 1, the subsequences “TCGAAC” and “AGCTTG” form a secondary
structure. One of these sequences, either “TCGAAC” or “AGCTTG”, is
referred to as a stem, and its length is indicated as “m”, while the sequence
between them is termed a loop, with its length denoted as “k”. If the stem
length m is chosen to be too large, such as m > 3log,n + 4 as addressed
in [11], several shorter secondary structures may still form, leading to the
emergence of uncorrectable errors in the DNA sequence. On the other hand,
selecting m to be too small, for instance, 2 or 3 as demonstrated in [12], may
cause relatively short palindromic sequences that do not form a secondary
structure, thereby requiring no further processing.
The main contributions of this paper are three-fold:

e We propose a novel secondary structure-avoidance code tailored for
stems of length m > 2log,n + 2 and loops of length £ > 4 within a
specific biological context. Notably, under certain conditions, this code
can be extended to accommodate stems of length m > log, n + 2.

e We put forth the definition of (m, k)-SSA sequence, along with an as-
sociated theorem that incorporates the length of the loop denoted by



(Lk??

e Numerical results indicate the relationship between the length and
quantity of the loops.

2. Preliminary

In this study, we represent the DNA alphabet set as D = {A,T,C,G}.
Given any two sequences x and y, we denote xy as the concatenation of
the two sequences. For a given sequence x of length n, we define a consec-
utive subsequence y of length [ as y = z;x;41... 2,41, where y consists
of consecutive elements from x. Furthermore, if we have two subsequences
Y = TiTiq1 ... Tipg—1 and z = ;%41 ... Tj4s—1 from sequence X, we categorize
y and z as non-overlapping if either of the following conditions is satisfied:
(i)i+l—1<yj,or (ii) ¢ > 7+ s — 1. In other words, for subsequences to be
non-overlapping, there must be a clear separation between their respective
starting and ending positions in the original sequence x.

We investigate the construction of DNA codes with a codeword length
denoted by n, along with two specified integers, namely m > 2log,n + 2
and k > 4. The primary objective is to design DNA codes that effectively
avoid the formation of secondary structures possessing stem lengths equal to
m, as well as loops of a size greater than or equal to k. In the context of
DNA oligonucleotides, it is common for these molecules to exhibit limited
flexibility and are unlikely to form sharp turns or bend over short regions.
Consequently, we introduce a slight refinement to the condition for folding
by stipulating that the reverse-complement subsequences must maintain a
sufficiently large separation between them.

Definition 1. For a DNA sequence x € D", let y = x;Zi11...Ti1—1 and
Z = TjTjq1...Tj1s—1 rEpresent two non-overlapping subsequences of x. We
define y and z as reverse-complement, denoted as'y = RC(z), when x;1; =
Tjrs—1-¢ for every t € [0,s — 1.

Definition 2. Given integers 2 < m <n, a DNA sequence x € D" is said to
be an m-secondary structure avoidance sequence (abbreviated as an m-SSA
sequence), if it does not contain any two non-overlapping reverse-complement
subsequences of length m. A code C C D" is called an m-SSA code if every
codeword in C is an m-SSA sequence.



Unfortunately, the aforementioned studies [13; 11; 12; 14] have not com-
prehensively addressed the influence of the loop size k£ on the formation of
secondary structures. This limitation arises from the recognition that bio-
chemical self-hybridization differs from the simplified sequence encoding used
in these studies. Notably, DNA oligonucleotides typically exhibit a lack of
sharp turns or bending over small regions, making the inclusion of the pa-
rameter k particularly pertinent and meaningful in this context.

3. (m, k)-SSA Sequence

In our work, we extend the concept of m-SSA to the more natural concept
of (m,k)-SSA, we can use data simulation to analyze how many reverse-
complements that are too close which have a very small probability of forming
a secondary structure and do not need to be avoided.

Definition 3. For a DNA sequence x € D™ with'y = x;x;yq1...Ti1—1 and
Z = TjTj41-..Tjps—1, where j > i+ 1 —1, are two non-overlapping subse-
quences of x. We denote d(y,z) £ j —i—1+1 as the “distance” between y
and z. Moreover, if y = RC(z), k = d(y,z) is the length of the loop of the
secondary structure of this reverse-complement.

Definition 4. A DNA sequence x € D" is said to be an (m, k)-SSA sequence
if, for every pair of subsequences y and z within x, where y = RC(z), the fol-
lowing condition holds: either the length of y is less than m (i.e., length(y) <
m), or the distance between them is less than k (i.e., d(y,z) < k). A code
C C D" is referred to as an (m, k)-SSA code when each codeword within C
satisfies the criteria of being an (m,k)-SSA sequence.

Remark 1. Our definition (m, k)-SSA is much “weaker” than m-SSA in
[11]and [12], that is to say, not all (m, k)-SSA sequences are m-SSA, while all
m-SSA sequences have the property of (m, k)-SSA. Since we notice that not
all reverse-complements form a secondary structure, A DNA oligonucleotide
usually does not bend over small regions [15], it would be more natural to
have a coding theoretic solution considering the length of loop “k”.

As shown in Fig. 2, our data, which comprises DNA sequences randomly
generated without consideration of GC content and homopolymer avoidance,
simulates the relationship between the length of the sequence n and the num-
ber of loops when m is set to 6, 8 and 10, respectively. As m increases, the



600
500
400 30
g 300 El
200

100

counts
O F N oW B U o o

0 50 100 150 200 250 0 50 100 150 200 20 0 50 100 150 200
Toop of secondary structure *k* loop of secondary structure “k" loop of secondary structure *k"

(a) m=6 (b) m =8 (c) m=10

Figure 2: The relationship between the length and quantity of the loops of reverse-
complements with different m in 10,000 sequences

probability of finding a corresponding reverse complement decreases signifi-
cantly, and the number of £ is significantly reduced. It’s worth noting that
a substantial proportion of the DNA sequences we analyzed consist of short
loops in their secondary structure, with approximately twenty-five percent of
all sequences having loops shorter than 20. The presence of these short loop
sequences suggests that they are not easily forming secondary structures,
implying that it may be appropriate to retain these reverse-complements in
the sequences.

Definition 5. For a positive integer N, the DNA-representation of N is
the replacement of symbols in the quaternary representation of N over D =
{0,1,2,3} by following rule: 0 <> A, 1+ T, 2+ C, and 3 < G.

Theorem 1. Given m, n and k > 0, if a sequence x € D" is (m, k)-SSA,
then x is (m/, k")-SSA, for allm’ > m, k" > k.

Proof. We establish this theorem through a proof by contradiction. Suppose
there exists values m’ > m and k' > k for which x is not (m/, £’)-SSA. In
such a case, there must be a pair of subsequences y = RC(z) with a length of
m’ and d(y,z) > k' > k. Now, since the lengths of both y and z are m’ > m,
it follows that y must contain a subsequence of length m denoted as y’, and
z must have a subsequence of length m as well, denoted as z’. Importantly,
d(y’,z') > d(y,z) > k, signifying that y’ and z’ are reverse-complements with
a length of m and a loop of length greater than or equal to k. Consequently,
it implies that x is not (m, k)-SSA, leading to a contradiction. ]




4. Constructions of (m, k)-SSA codes for m > 2log, n + 2

Given the conditions: n > m > 2, n > 25 m > 2log, n+2, and k > 4, we
establish a parameter ¢t = 0.5m = log, n+ 1 for later reference. Additionally,
let u € D" ! represent the message DNA sequence, which is the original
sequence before encoding.

4.1. Encoder

Our encoding algorithm can be simply divided into three steps to execute
sequentially:

e Step 1 (prefix): In the encoding process, we initiate by adding the
nucleotide T' as a prefix to the message DNA sequence u € D"
resulting in a sequence x € D" = T'u. Subsequently, we assess whether
the sequence x is already an (m, k)-SSA DNA sequence. If it satisfies
the (m, k)-SSA criteria, the encoder directly outputs the sequence x,
otherwise, it proceeds to the next step in the encoding process. For
more specific information, please refer to Algorithm 1.

e Step 2 (replacing): Next, the encoder conducts a left-to-right scan
of the entire sequence, aiming to identify the earliest occurrence of a
pair of non-overlapping subsequences, denoted as y and z, each with
a length of ¢, that meet the condition z = RC(y). Here, y initiates
at position i, z begins at position j, and the separation between these
starting positions, denoted as 7 — ¢, must be greater than or equal to
t + k. Alternatively, the encoder also looks for the initial occurrence
of a subsequence s within the input x that conforms to the pattern
s = (x122)"?, where 1,15 € D.

— Case 1: If it finds a pair of reverse-complement subsequences y
and z of x, we can write x = X1y X2z X3, where X, X5 and X3
are all subsequences of x. We solve this problem with so-called
“C”-replacement as follows:

j—i—t>k

X1yXs X3 X3 X2X3 — CKO(leXQXg (1)
When multiple secondary structures exist, repeating this process
is straightforward, as outlined in Eq. (2). In this case, we have
two pairs of reverse-complements: y; and zq, as well as y5 and z,.



These pairs are defined with y; and z; starting at positions ¢; and
J1, and yo and zy starting at positions iy and 7js.

Je—iz—t>k
==

X X3 X3 X4 X5 X111 Xo X3X4X5—>

Ji—i1—t>k

CKy00CKy o X1 Xoya X3 Xy X5 (2)

The encoder establishes a pointer denoted as P = CKa. This
pointer functions as a prefix that encodes information about the
loop size and the reverse-complement position. Specifically, C rep-
resents a single nucleotide that denotes the reverse complement,
K stands for the DNA-encoded representation of the length of
loop k, and « represents the DNA-encoded representation of the
position ¢ at which the sequence y begins. It is worth noting
that we define the starting index of z as j. Both K and i have
a length of log, n. Consequently, the pointer P is of a length of
1+ 2logyn = 1+ logyn. Following this, the encoder proceeds
to remove the sequence z from x and adds the prefix P to the
beginning of x.

Remark 2. The subsequence z that has been removed has a
length of t = 0.5m = 1+ log,n. The pointer P that has been
added at the beginning also has a length of 1 + log, n. Notably,
if m > 2+ 2log, n, the length of the insertion pointer P is either
less than or equal to the length of the subsequence z that was re-
moved. Thus, this specific method of sequence replacement, which
we refer to as “C”-replacement, does not result in an increase in
the overall length of the sequence x.

Case 2: If the encoder finds the subsequence s of x of the form
s = (x122)"?, where 21,25 € D. We can write X = X;sX, =
X1 (z129)/?X,y. In particular, we solve this problem with a so-
called “A”-replacement as follows:

X1 X2 — X1X2 — A[I,’lflfz}gXle. (3)
The encoder sets a pointer () = Axjxs3, where A as a single
nucleotide stands for the repeated patterns of size 2, ;x5 stands

for the repeated words z; and x5, and 3 stands for the DNA-
representation of ¢ which is the position where s starts.

8



Remark 3. Given that g has a length of log, n, the pointer @
is1+2+logyn =3+ %log2n in length. Consequently, when
we calculate 1 4 logyn — (3 4+ 0.5log, n), it results in %log2 n —
2. Importantly, this quantity is greater than 1 when n > 26
Therefore, the replacement reduces the length of the sequence x

by more than one symbol, specifically % log, m — 2, when n exceeds
64 (i.e., n > 2°).

e Step 3 (adding suffix): The encoder repeats these scanning and se-
quence replacing steps until the sequence x no longer contains any
reverse-complement pairs, and s = (z,25)"? has a length greater than
or equal to ¢t = 0.5m. Importantly, as our sequence replacement method
consistently reduces the length of the sequence, this process is guaran-
teed to eventually terminate. In our sequence replacement strategy,
the encoder aims to reduce the length of the current sequence x while
preserving its (m, k)-SSA properties. When the length of the current
sequence is denoted as n/, where n’ < n, the encoder appends a suffix
of length ny = n — n’ to extend the sequence to the desired length n.

In selecting unpaired nucleotides as a suffix, we consider the potential
benefits of maintaining a GC content closer to 50%, To ensure that the gen-
erated suffix complies with the (m, k)-SSA condition, preserving the integrity
and effectiveness of our output codeword, we employ a suitable and efficient
method as follows:

e If the length of the suffix n, is even, we append r = (GT)™/2 to the
end of the current sequence x.

e If the length of the suffix n, is odd, we append r = (GT)M~1/2(G to the
end of the current sequence x.

Remark 4. In our work, we only delete part of the whole subsequence that
is exactly m in length, and keep the rest (see Fig. 3), because they are not
long enough to form a secondary structure (see Fig. 4). The reduced length
of the pruned subsequence helps to reduce the number of operations and
improve the success rate of decoding, and makes it possible to handle sizes of
m that are closer to biochemical needs (2log, n + 2). Even if our operations
form new secondary structures or repeated patterns, since our algorithm
keeps repeating, eventually all (old, new) secondary structures and repeated
patterns of size 2 will be processed.
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We denote the encoder as Enc that x = Enc(u), when x is the sequence
after u is encoded.

Theorem 2. x = Enc(u) is (m, k)-SSA for allu € D" 1.

Proof. Suppose x = x1x2 = Enc(u) € D" is the output of our encoder,
where x; and xo are subsequences of x. x; is (¢, k)-SSA and the length of
the repeated patterns(mentioned in the step 3 in Encoder algorithm) of size
2 in x; is of length at most ¢ = log, n + 1, and x2 is the generated suffix of
x7 at the suffix adding phase. Consider an arbitrary subsequence of length
m,y = y1ys2, where y; is the subsequence of x; and ys is the subsequence
of Xa.

As depicted in Fig. 5, we consider the following cases due to possible
different positions of y in z as follows:

e Case 1: If y; is of length more than or equal to ¢t = 0.5m (particularly
including the case that y; is of length m which means y is totally a
subsequence of x7), since x; is (¢, k)-SSA, y; cannot find its reverse-
complement whose loop is of length more than or equal to k£ and stem
of length more than or equal to t in x;, and since x5 is of the form
“GTGT ..., there are no such repeated patterns of size two of length
more than or equal to ¢ in X; due to the construction of our encoder,
the same for y; because y; is its subsequence. Thus, y; cannot find
its reverse-complement in both x; and xs.

e Case 2: If the length of y; is less than ¢ = 0.5m (partically including
the case where y; has length 0, indicating that y completely constitutes
a subsequence of Xg). Simultaneously, the length of y,, which consists
of repetitive patterns of size 2, exceeds t, leading to the inability to
identify its reverse-complement within x; due to the constraints of the
encoder’s design. Furthermore, the reverse-complement of y, cannot
be located within x5 either, as instances such as “GTGT ...” do not
possess a viable reverse-complement, where 7" and G do not conform
to the Watson-Crick complementarities.

]

11



Figure 5: Positions of y in x

Algorithm 1: Framework of m-SSA Encoding.

Input: Message DNA sequence: u; Stem length: m; Loop length: k.
Output: (m, k)-SSA codeword: x.

x="Tu
while x is not (m, k)-SSA do

while x has a reverse-complement pair of subsequnce do
| “C”-replacement

while x has subsequence s = (x175)*? do
| “A”-replacement

x adds the suffix GT'...

return x

4.2. Decoder

Given a received DNA sequence x with a length of n, our decoding pro-
cedure involves a sequential scan of the sequence from left to right. During
this scanning process, the decoder examines the first symbol in the sequence.
In the event that the first symbol corresponds to “T”, it serves as a signal
that the subsequent n — 1 symbols collectively form a (m, k)-SSA sequence.
Under this circumstance, the decoder promptly removes the terminal sym-

12



bol T, and proceeds to identify the ensuing n — 1 symbols as the message
DNA sequence. This identified message DNA sequence is then extracted and
outputted by the decoder.

e Case 1: If the first symbol corresponds to “T”, it serves as a signal that
the subsequent n — 1 symbols collectively form a (m, k)-SSA sequence.
Under this circumstance, the decoder promptly removes the terminal
symbol T', and proceeds to identify the ensuing n — 1 symbols as the
message DNA sequence. This identified message DNA sequence is then
extracted and outputted by the decoder.

e Case 2: If the first symbol is “C”, the decoder scans from left to right
and takes the prefix of length 1 + log,n as the pointer P, which is
prepended to the sequence after the “C”-replacement. We consider the
pointer P to be of the form C'K«a. The decoder calculates the positive
integers whose DNA representation is K, and «, and sets k and ¢ to
be these two integers, they are the length of the loop of secondary
structure and the start of y which is RC(z). Thus, the decoder removes
the pointer P = C K« and inserts z = RC(y) to sequence x at index
i+k+m.

C}(&leXng — X3 X2X3 — XyX, X3. (4)

e Case 3: If the received sequence starts with A, the decoder scans from
left to right and takes the prefix of length 3 4 0.5log, n as the pointer
(), which is prepended to the sequence after the “C”-replacement. We
consider the pointer () to be of the form Ax x5, where x; and x5 are
the two symbols in the repeated patterns of size 2 and ( is the DNA
representation of where the repeated patterns “(zyz,)?” was. The
decoder calculates the positive integer “;”7 whose DNA-representation
is 3, and then removes the pointer Q = Az 253 and inserts (z,z)/?
to x at index j.

Axle“gXlXQ = X1Xo > X4 Xo. (5)

e Case 4: In the event that the received sequence initiates with the
nucleotide G, which deviates from our intended design expectations,
the decoder promptly identifies and reports errors. Subsequently, the
decoder leverages error-correcting codes to rectify these errors.

13



The decoding process concludes when the initial symbol in the sequence
corresponds to the symbol “T”, which serves as a terminal marker. At this
point, the decoder considers the subsequent (n — 1) symbols in the sequence,
disregarding any additional symbols and suffixes that might have been intro-
duced during the encoding stage. These (n — 1) symbols are then recognized
and treated as the message data, containing the essential information in-
tended for extraction and interpretation from the decoded sequence.

Remark 5. If the length of the cycle £ is given or has already been traversed
during the search for a palindrome sequence, then it eliminates the necessity
of storing this value in the pointer. Consequently, the pointer representation,
initially expressed as P = C'Ka, can be simplified to P = C'a. This simplifi-
cation does not compromise the generality of our conclusion. Therefore, our
findings can be extended to situations where m satisfies m > log, n+2. This
condition aligns more closely with the practical requirements of biochemi-
cal experiments, providing greater relevance and applicability to real-world
scenarios.

4.3. Numerical Results

Algorithm 2: Calculation of RC pairs reduced rate
Input: Length of message DNA sequence: 2"; Stem length:
m > 2log,n + 2; Loop length: k.

Output: RC pairs reduced rate: (R — R')/R.

140

while ¢ < 10,000 do
Randomly generate a 2" long DNA sequence.
Scan and count the number R of RC pairs.
Encode the DNA sequence.
Scan and count the number R’ of RC pairs again.
1=1+1

return (R — R')/R

We devised an experiment to determine the count of reverse-complementary
sequence pairs with a length of m within randomly generated DNA sequences,
while varying the values of n and adjusting the values of m accordingly.

We randomly generated a total of 60,000 DNA sequences of varying
lengths (128, 256, 512, 1024, 2048, and 4096) with 10,000 sequences for each

14



length category. We then quantified the count of reverse-complementary
sequences under different values of m. In addition, for the scenario where
m = 2log,n + 2, as explored in our study, we applied our encoding scheme
to represent the original random DNA sequences. The encoded sequences
obtained through this method exhibit the property of being (m, k)-SSA. Our
findings reveal that when m is significantly large (such as 3log, n+4 in [11]),
numerical experiments suggest that it becomes exceedingly improbable to
identify such lengthy pairs of reverse-complementary subsequences within a
DNA sequence. However, when m is appropriately adjusted to a smaller but
still substantial value, our encoding scheme proves to be effective, as illus-
trated in Fig. 8. Compared with [11], our work can deal with the secondary
structure caused by the reverse-complementary sequences with smaller values
of m, as shown in Fig. 6.

m:2logn + 2 and 3logn + 4

40 1 —— 2logn +2
3logn + 4 work in [11]

w
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length of DNA sequence: n

Figure 6: The stem length m that both algorithms can handle

The relationship between n, m, and k is illustrated in Fig. 7, where we
select the top 25 values and the top 20% after sorting k in ascending order.
When the stem length m > 2log,n + 2, it becomes highly probable that
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reverse-complementary sequences will emerge. The length of these reverse-
complementary sequences significantly influences the stability of DNA se-
quences.
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Figure 7: The relationship between n, m and k

In Fig. 8, our findings demonstrate that when m = 3log,n + 4, as de-
scribed in [11], DNA sequences exhibit minimal formation of extended reverse
complementary pairs (as indicated by the blue line, which closely aligns with
the x-axis). In such cases, there is no pressing need for specialized encoding
and decoding methods. Conversely, when m = 2log,n + 2, the count of
potential reverse complementary pairs significantly increases (as seen by the
orange line). However, our encoding approach effectively circumvents these
reverse complementary pairings (as represented by the dashed red line).

Next, we conducted numerical experiments using Algorithm 2 to quan-
tify the reduction of reverse-complement pairs in the original DNA sequence
achieved through our encoding process. We compared the count of these
pairs before and after encoding. The experimental results, as visualized in
Fig. 8, clearly demonstrate the effectiveness of our encoding method in elim-
inating all reverse-complement pairs with a “distance” greater than k. This
is because the count R’ of reverse-complement pairs is reduced to zero after
encoding. Essentially, the sequences after encoding are all (m, k)-SSA, and
the reduction rate of reverse-complement pairs, quantified as (R — R')/R, is
equal to 1.

4.4. Homopolymer Avoiding Analysis

Reading and writing of a nucleotide at consecutive positions are one of
the significant causes of insertion and deletion errors[16; 17]. A homopoly-
mer of run-length r is a DNA string with a sub-string of length r, where
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Figure 8: Average number of reverse-complements under different values of both n and m

all nucleotides of the sub-string are the same. For example, the DNA string
CGGGGGATTC has a sub-string GGGGG, and therefore, has a homopoly-
mer of run-length five.

Unfortunately, in our algorithm, adding prefixes and deleting subsequences
may both generate homopolymers. How to reduce or even avoid the influ-
ence of homopolymers is an issue that must be considered, and we take the
homopolymer of run-length five into account.

As said above, adding a prefix C’ K« or deleting subsequence z may gen-
erate homopolymers, we take n = 1024 for example:

e Case 1: Adding prefix C K«a. As mentioned above, C' is an individual
base, K and « are both of length log, n, that is, of length 5. We can

calculate the probability of generating new homopolymers on a case-
4+3+4+3*4*%*2+4*3*4*ﬁ*2 1

45 1024~

by-case basis, and the result is:
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e Case 2: Deleting z. We can also calculate the probability when X, and
Brdr a2+ 4x3adx 242 30
45 T~ 1024°

X3 create new homopolymer:

4.5. Application to Short DNA Strings

Presently, synthesis technology falls short in generating lengthy DNA
strands, with current technologies limited to producing oligonucleotides of
a maximum length of 300. It is pragmatic to conduct research within the
confines of existing science and technology. The proof of Theorem 2, vali-
dating the correctness of our algorithm, is independent of the selection of n.
Whether n is small (e.g., around 100-200 base pairs) or large (up to 4,000
base pairs), the same algorithm is applicable. It’s worth highlighting that
our method also outperforms existing approaches in the context of contempo-
rary DNA synthesis technologies, which often involve shorter sequences (e.g.,
around 100-200 base pairs), as depicted in Fig. 8. Importantly, our work
demonstrates versatility by effectively accommodating short DNA strings as
well. This adaptability underscores the extensive range of applications for
our algorithm.

4.6. Complexity Analysis

The time complexity of both the encoder and the corresponding decoder
for a codeword of length n is linear in n. This is due to the fact that the
number of sequences replacing operations during the encoding process is at
most n — m, which is represented as O(n). Additionally, each replacing
operation, which includes steps like prepending a prefix or converting the
quaternary representation to the DNA representation of an integer, has a
constant time complexity of O(1).

As a result, the overall time complexity of the encoder and decoder op-
erations remains linear with respect to the length of the codeword n. This
linear complexity is advantageous as it ensures efficient and manageable pro-
cessing times for DNA code construction and decoding, making it suitable
for handling large-scale data storage and retrieval tasks.

5. Conclusion

In this study, we have proposed a novel approach to tackle the challenge of
avoiding secondary structure formation during DNA storage. Additionally,
we have put forth a new definition of (m, k)-SSA to describe the secondary
structure. Our method has demonstrated its effectiveness, particularly for
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moderately large values of the parameter m. Meanwhile, for stem lengths
m > 2log,n 42, we have introduced an algorithm that incorporates a single
redundant codeword, thereby achieving linear complexity in the transforma-
tion of regular codewords into secondary structure-avoiding codes. Compared
to previous algorithms, our proposed method exhibits broader applicability
and lower computational complexity. In future work, we aim to reduce the
large value of m and incorporate error correction codewords into the current
algorithm.
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