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Scaling and mechanism of the propagation speed of turbulent fronts in pipe flow with9
the Reynolds number has been a long-standing problem in the past decades. Here,10
we derive an explicit scaling law of the upstream front speed, which approaches to a11
power-law scaling at high Reynolds numbers, and explain the underlying mechanism.12
Our data show that the average wall distance of low-speed streaks at the tip of the13
upstream front, where transition occurs, appears to be constant in local wall units14
in the wide bulk-Reynolds-number range investigated, between 5000 and 60000. By15
further assuming that the axial propagation of velocity fluctuations at the front16
tip, resulting from streak instabilities, is dominated by the advection of the local17
mean flow, the front speed can be derived as an explicit function of the Reynolds18
number. The derived formula agrees well with the measured speed by front tracking.19
Our finding reveals a relationship between the structure and speed of a front, which20
enables to obtain a close approximation of the front speed based on a single velocity21
field without having to track the front over time.22
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1. Introduction25

Front formation and propagation are important processes in nonlinear systems26
involving reaction, diffusion and advection, such as combustion, neural systems,27
epidemics and turbulent flows. In pipe flow, a localized turbulent region expands28
via the propagation of the upstream front (UF) and downstream front (DF) into29
the laminar region, where the flow is stable to infinitesimal perturbations (Meseguer30
& Trefethen 2003; Chen et al. 2022b). See FIG. 1 for an illustration. The front31
speeds determine the expansion rate of the turbulent region and consequently the wall32
friction. Therefore, front speed is an important characteristic of pipe flow turbulence33
and, together with the front structure, has been the subject of many studies in the34
past six decades (Lindgren 1957, 1969; Wygnanski & Champagne 1973; Darbyshire35
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Figure 1: The expansion of a turbulence at Re = 5000. Contours of the magnitude of transverse
velocity (averaged over the pipe cross-section) are plotted in the space (pipe axis) and time
plane. The length unit in space is pipe diameter D and time unit is D/Ub with Ub being the
bulk speed of the flow. The main stream is from left to right, and time is vertically up. Red
color shows highly turbulent and blue color shows laminar regions. Different slopes of the two
red stripes (fronts) indicate different front speeds, i.e. the turbulent region expands.

& Mullin 1995; Shan et al. 1999; Durst & Ünsal 2006; Nishi et al. 2008; van Doorne36
& Westerweel 2008; Duguet et al. 2010; Holzner et al. 2013; Barkley et al. 2015;37
Barkley 2016; Song et al. 2017; Rinaldi et al. 2019; Wang & Goldenfeld 2022; Chen38
et al. 2022a). Yet the mechanism that determines the front speed and the scaling of39
the speed with the Reynolds number (Re) remains largely unclear to date.40

Most relevant studies focused on the narrow regime of transition from localized41
puffs to expanding turbulent states, i.e. slugs, at relatively low Reynolds numbers42
of O(103). Due to difficulties of measuring front speed at high Re (Chen et al.43
2022a), especially for the DF, only Wygnanski & Champagne (1973) and Chen et al.44
(2022a) considered higher Re at O(104). Reasonable agreement has been obtained45
among existing measurements for the UF speed, showing a monotonically decreasing46
trend as Re increases (see Chen et al. (2022a) and Avila et al. (2023) for a latest47
literature review). However, Wygnanski & Champagne (1973) and Chen et al. (2022a)48
reported opposite speed trends above Re ≃ 10000 for the DF. By direct numerical49
simulations (DNS) up to Re = 105, Chen et al. (2022a) reported fits c̃UF = 0.024+50
(Re/1936)−0.528 for the UF and c̃DF = 1.971 − (Re/1925)−0.825 for the DF, and51
argued for the monotonic trends of the two front speeds with Re at high Reynolds52
numbers. Although fitting the measured speeds well, these are pure data fits with53
a prescribed form but the underlying mechanism was left unexplained. In these fits54
and throughout this paper, the reference length and velocity are pipe diameter D55
and bulk speed Ub, respectively. The Reynolds number is defined as Re = UbD/ν56
where ν is the kinematic viscosity. We will only consider the UF speed in this work.57

Other than direct measurements of the front speed by tracking the front along58
the pipe axis, as in most studies, a few theoretical attempts have been made. For59
example, based on an energy flux analysis of the front region, without considering60
the dynamic transition process, Lindgren (1969) predicted an asymptotic speed of61
0.69 as Re → ∞. However, this prediction was questioned by both experimental62
(Wygnanski & Champagne 1973) and numerical (Chen et al. 2022a) measurements,63
which showed much lower speeds than the asymptotic prediction of Lindgren (1969).64
Barkley et al. (2015) and Barkley (2016) used a theoretical model to investigate the65
front in the transitional regime, which captures the large-scale dynamics of the fronts66
successfully. The asymptotic analysis explains the front speed as a combination of67
the advection of the bulk turbulence and a propagation with respect to the bulk68
turbulence (see FIG. 1). However, as a generic model for one-dimensional reaction-69
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diffusion-advection systems, the model does not account for the three dimensionality70
of the transition for pipe flow and does not give an explicit relationship between71
the front speed and Re. Besides, the Re range considered was too narrow for a72
scaling with Re to be established. Similar problems apply to the stochastic prey-73
predator model recently proposed by Wang & Goldenfeld (2022) which nevertheless74
can reproduce the basic phenomenology of the front of pipe flow in the transitional75
regime. In a word, there is still a big gap between experiments and theory.76

In this paper, our goal is to derive a scaling law of the front speed by accounting77
for the transition at the front.78

2. Results79

Our starting point is the observation of our earlier work (Chen et al. 2022a) that80
transition to turbulence continuously occurs at the tip of a front (see supplementary81
movie), maintaining a characteristic propagation speed and a characteristic shape of82
the front against the distortion of the mean shear. For an upstream front, the front83
tip refers to its upstream-most point. We propose that an evaluation of the radial84
position of the transition point at the front tip is crucial for determining the front85
speed. The questions are how to quantitatively determine this position and relate it86
to the front speed.87

Before presenting our results, the setup of the flow system and some notations88
should be explained. The flow is incompressible and constant-mass-flux driven, and89
is solved in cylindrical coordinates, where (r, θ, z) denote radial, azimuthal and axial90
coordinates, respectively, and ur, uθ, and uz denote the respective fluctuating velocity91
components in the three directions. The axial length of the pipe domain is 17.5D for92
Re ⩽ 10000 and 5D for higher Re. The readers are referred to Chen et al. (2022a)93
for more details about the simulation of a front in a short periodic pipe.94

We first show the flow structure at the tip of the UF. In figure 2(a), contours of the95
magnitude of transverse velocity fluctuation in the z− r plane show that turbulence96
is concentrated near the wall and gradually spreads out toward the pipe center while97
going downstream (see the online movie for more details). Figure 2(b) shows the98
distribution of maximum |uz| and |ur| in the r − θ crosssection along the pipe axis.99
These curves also reflect that the flow is nonturbulent on the upstream side of the100
front tip and turbulent on the downstream side. Figure 2(c) shows that the flow101
features nearly straight and streamwise-elongated low-speed (blue) and high-speed102
(red) streaks on the upstream side, whereas the flow structure is less regular on the103
downstream side of the front tip. These plots (especially figure 2b) suggest that the104
tip of the UF should sit in the interval z ∈ (3, 3.5) roughly. Figure 2(d) shows the105
contours of uz in the r − θ plane at z = 3.18. Alternating high-speed (red spots)106
and low-speed streaks (blue spots) can be seen close to the wall, while the flow is107
laminar in the core region of the pipe.108

Although there still lacks a quantitative description of the transition mechanism109
at the UF tip, the consensus seems to be that the transition is caused by instabilities110
of the low-speed streaks (Shimizu & Kida 2009; Duguet et al. 2010; Hof et al.111
2010) (which may consist of more fundamental substructures according to Jiang112
et al. (2020a,b)). The instabilities here possibly coincide with those (either modal or113
nonmodal) proposed for explaining either subcritical transition or the self-sustaining114
mechanism of shear flow turbulence (Swearingen & Blackwelder 1987; Hamilton et al.115
1995; Zikanov 1996; Waleffe 1997; Schoppa & Hussain 1998, 2002; Meseguer 2003).116
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Figure 2: Structure of a UF. (a) The tip part (the upstream-most part) of a UF in a z − r

plane at Re = 40000. Contours of the transverse velocity
√

u2
r + u2

θ are plotted in the z − r
crosssection. The main flow is from left to right, and blue region is low-velocity-fluctuation
region and red region is high-velocity-fluctuation region. (b) The maximum of |ur| and |uz| in
the r − θ crosssection plotted along the pipe axis. (c) Contours of uz in the z − θ plane at
r = 0.47, which show low-speed (blue) and high-speed (red) streaks. (d) Contours of uz in the
r − θ crosssection at z = 3.18. The circle, at r = 0.47, shows the radial position of the z − θ
plane in panel (c). This circle approximately shows the average position of low-speed streaks
(blue spots) at this axial position.

In the following, we will establish a connection between the low-speed streaks and117
the front speed based on a few hypotheses, the first of which reads118

H1 The wall distance of transition point at the front tip, in local wall unit, is119
independent of the Reynolds number statistically.120

This should be reasonable because the transition takes place near the wall so that121
the wall distance of the transition point can be expected to scale with the wall length,122
which is the only length scale that can be derived from viscosity and wall shear. We123
will verify this hypothesis by measuring the wall distance of low-speed streaks as a124
proxy of that of the transition point.125

At a turbulent front, the flow is axially developing so that low speed streaks are126
not parallel to the pipe wall but oblique, i.e. the wall distance varies along a streak.127
Figure 3(a,b) suggest that low-speed streaks are gradually lifted up away from the128
wall while going downstream. To more quantitatively show this variation, we take129
the following approach to determine the wall distance of low-speed streaks at a130
given axial location. In an r − θ cross-section, low-speed streaks can be detected131
by setting a proper threshold in uz, and regions enclosed by contour lines of the132
specified threshold can be considered as (the cross-sections of) low-speed streaks,133
see the magenta contour lines in Fig. 3(a) with a threshold −0.04. See Appendix134
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Figure 3: Axial variation of the low-speed streaks (a-d) and mean velocity profiles near the
front tip (e). The flow field is the same as that shown in FIG. 2. (a) Contours of uz at z = 3.0.
The contour level of −0.04 is plotted in magenta color to highlight the low-speed streaks. (b)
Contours at z = 3.3. (c) The variation of the average wall distance of streaks (bold red) and
max(r,θ) |ur| (thin blue) along the pipe axis. (d) Also at z = 3.3, and the contour level 0.025 of
the transverse velocity

√
u2
r + u2

θ is plotted in magenta color to highlight the transverse velocity
fluctuations. (e) The mean velocity profile at z = 3.3, i.e. U(r) =< ux(r, θ, 3.3) >θ, where < · >θ

means average in the azimuthal direction. The parabolic profile is plotted as a broken line for
comparison. The small window highlights the deviation between the two in the near wall region

.

A for a discussion on the threshold selection. Then, the nominal wall distance of a135
streak can be defined as the wall distance of the minimum of uz within the streak.136
The average wall distance is calculated as the arithmetic mean of the wall distances137
of all the streaks detected in this pipe cross-section. Fig. 3(c) more quantitatively138
shows that the wall distance of streaks increases as going downstream. Therefore, it139
is necessary to determine the axial position of the front tip for finally determining the140
wall distance of the streaks at the front tip. We use max(r,θ) |ur|, which is a function141
of z, as an indicator of the local flow state. This curve is smooth and slowly varying142
in the laminar region and wiggles around in turbulent region, see Fig. 2(b) and Fig.143
3(c). The axial location of the front tip can be estimated by the position separating144
the smooth and wiggling parts of the curve of maxr,θ |ur|. We use an algorithm that145
detects abrupt changes of a curve for this purpose, which is built-in as the function146
findchangepts in MATLAB R2018a (see Appendix B for a brief description of the147
algorithm). The blue dot in Fig. 3(c) shows the separating point determined using148
this algorithm.149

Figure 4(a) shows the average wall distance of streaks y = 0.5− r at the front tip150
in outer units. The larger the Re, the smaller the y, which can be expected. Figure151
4(b) shows y+, the wall distance in local wall length unit

√
ν/τw, where τw is the152

local wall shear stress. Considering that the azimuthally averaged velocity profiles at153
these axial locations are nearly parabolic (see FIG. 3e), τw is simply approximated154
by the value of the parabolic profile. It appears that y+ stays nearly constant in the155
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Figure 4: The average wall-distance of the low-speed streaks at the tip of the UF. (a) The
distance in the outer length unit. (b) The distance in the local wall unit. At each Re, about
10 to 20 velocity snapshots are collected, giving 100 to 200 low-speed streaks approximately for
the statistics. The standard deviation is plotted as the errorbar. The dashed lines are equation
(2.1) by taking A = 16.7, which is the average of y+ over all Re shown in panel (b)

.

wide Re range considered, which supports our hypothesis H1 given the crucial role156
that low-speed streaks play in the transition.157

Assuming this Re-independence, we derive the scaling law of the speed of the UF158
as following. Taking the wall distance of the transition point at the front tip to be159
y+
F = A, where A is independent of Re. Then, in outer units, we have160

yF = y+
F /Reτ = A/Reτ . (2.1)161

The local mean flow speed, i.e. the azimuthally-averaged streamwise velocity at the162
radial position of the transition point, in outer units, can be approximated by the163
local laminar value164

U(yF ) ≈ 2− 8 (0.5− yF )
2
= 8

(
A/Reτ −A2/Re2τ

)
, (2.2)165

given that the mean velocity profile is nearly parabolic at the front tip. As the166
relationship between Re and Reτ is167

Reτ =

√
−dU(r)

dr
|r=0.5Re = 2

√
2Re (2.3)168

for a parabolic velocity profile, we have169

U(yF ) ≈ 2
√
2ARe−0.5 −A2Re−1. (2.4)170

Now it comes to our further hypotheses:171
H2 The wall distance of velocity perturbations at the front tip, resulting from streak172

instabilities, can be closely approximated by the wall distance of the streaks.173
H3 The front speed is determined by the axial propagation speed of these velocity174

perturbations, which approximately equals the local mean flow speed.175
H2 should be reasonable, especially when perturbations appear at the flanks of the176
streaks. In fact, the data seems to support this hypothesis, see FIG. 3(d) where177
most of the strong-perturbation region, enclosed by magenta contour lines, seems178
to be at the flanks of the low-speed streaks. H3 is based on our presumption that179
streak instabilities generate streamwise vortices, which further generate streaks while180
being advected downstream, seeding new transition and closing the self-sustaining181
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Figure 5: Comparison of derived and measured front speeds. The circles show the speeds
measured by front tracking using DNS (Chen et al. 2022a). The solid black line shows the
approximation Eqs. (2.5) with A = 16.7, which is the average of the y+ (black circles in FIG.
4b) over all Re’s. The dashed red line shows the approximation Eqs. (2.6) with A = 16.7 also.
Panel (b) is the same plot in linear scale for the speed where some data sets from the literature
falling in this Re range are also included.

cycle of the dynamics at the front tip. Therefore, the propagation speed of these182
vortices likely determines that of the front tip and consequently the front speed. The183
propagation of vortical structures, at least in fully developed wall turbulence above184
the viscous sublayer, was shown to be dominated by the advection of the local mean185
flow (Del Álamo & Jiménez 2009; Pei et al. 2012; Wu & Moin 2008).186

Following these hypotheses, we finally have an approximation of the front speed187
as188

cUF ≈ U(yF ) ≈ 2
√
2ARe−0.5 −A2Re−1, (2.5)189

and an asymptotic approximation at large Re190

cUF ≈ U(yF ) ≈ 2
√
2ARe−0.5, (2.6)191

where A can be approximated by the wall distance of low-speed streaks at the front192
tip.193

Figure 5 concludes the speed measurements and our derivation. The filled circles194
are the DNS data from Chen et al. (2022a) (up to Re = 60000) and the open symbols195
show the literature data in the Re range investigated here. In order to show that the196
formula is predictive, DNS at Re = 80000 is performed here, and the front speed197
is measured by front tracking and plotted as a filled circle also. The black solid line198
shows our derivation (2.5) by setting A = 16.7, which is the average of y+ of streaks199
at all Re’s as shown in figure 4b. The relative error of the prediction is on the level200
of a few percent compared to the DNS measurement. The red dashed line shows the201
asymptotic speed (2.6) with the same A. Some former experimental measurements202
are also included in the figure. It should be noted that this formula can also be203
considered as a model for the front speed with only one parameter A, which has a204
physical meaning and, more precisely, should be interpreted as the wall distance of205
the transition point at the front tip. This formula can be used for other Re’s after206
calibrating the parameter A at one Re with the measured front speed.207

Now we revisit the fit c̃UF = 0.024 + (Re/1936)−0.528 by Chen et al. (2022a).208
This was obtained by assuming a form of a + bReβ without an explanation of209
the underlying physics. In other words, this form is not unique. Besides, the small210
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constant 0.024 implies that the front speed would not approach zero as Re approaches211
infinity, which was unexplained and seems counter-intuitive. It is probably just a212
result of measurement errors and the specific prescribed form of the fit. In contrast,213
our derivation (2.5) makes no assumption on the specific form of the formula.214
It follows naturally from the dynamics we observed at the front tip with a few215
hypothetical but reasonable assumptions of the physics.216

Our derivation (2.5) may suffer larger errors at lower Re. The low-speed streaks217
would be larger in transverse size at lower Re, therefore, the position of a streak218
estimated simply by the position of the minimum of uz in each streak becomes less219
representative. Besides, the streak position may not exactly coincide with the position220
of velocity fluctuations resulting from the streak instability. But these positions are221
close to each other at sufficiently high Re so that our derivation will be more accurate.222

As for the DF, the front speed is probably determined by the advection of the223
local mean flow at the front tip also. However, transition to turbulence occurs close224
to the pipe center (Chen et al. 2022a) and the transition may not be triggered by225
streak instabilities as known for near-wall turbulence. Therefore, the location of the226
transition point may not scale with the wall length unit, and cannot be explicitly227
related to Re as shown here for the UF at the present. This problem has to be left228
for future studies.229

3. Conclusions230

In summary, the speed of the UF of pipe flow turbulence was derived as an explicit231
function of Re based on the dynamics at the front tip. To our knowledge, this is232
the first of such since the seminal measurements and theoretical analysis of Lindgren233
(1957, 1969) about six decades ago. The agreement with speed measurements (see234
FIG. 5) suggests that the mechanism proposed here captures the core of the physics,235
i.e. the front speed is largely determined by the advection of velocity fluctuations by236
the local mean flow at the front tip where transition takes place. This mechanism237
may also apply to turbulent fronts in other shear flows where turbulence propagates238
into subcritical laminar flow region. Although the local mean flow is different in239
higher dimensions such as planar shear flows (see, e.g. Duguet & Schlatter (2013);240
Tao et al. (2018); Tuckerman et al. (2020); Klotz et al. (2021)), our work will be241
helpful for elucidating the physics of front propagation in those flows.242
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Appendix A. Threshold for detecting streaks251

The results presented in the main text takes the threshold of −0.04. Here we explain252
the selection of this value. Figure 6 shows the contour levels of −0.02, −0.04 and253
−0.06 in the r − θ crosssection at z = 3.18 (the same position as shown in FIG254
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Figure 6: Thresholds for detecting low-speed steaks. Contours of streamwise velocity fluctuation
in the r − θ crosssection for Re = 40000 as also shown in FIG. 2 of the main text. Contour
levels of −0.02, −0.04 and −0.06 are plotted as magenta lines. (d) The average wall distance
of low-speed streaks in wall units determined with thresholds of −0.02 (blue triangles), −0.04
(black circles) and −0.06 (red squares) in uz for detecting the streaks.

2(d) of the main text), plotted as magenta lines. It can be seen that −0.02 cannot255
very well separate adjacent streaks, whereas −0.06 may miss out many streaks. We256
checked multiple velocity snapshots and Reynolds numbers and found it is often the257
case. The threshold −0.04 is a reasonable choice because, in most cases, it separates258
streaks well and is able to detect most of low-speed streaks.259

It can be expected that the value of this threshold will affect the average position260
of the streaks. A higher threshold may drop out weaker streaks and only retain261
stronger streaks. Stronger streaks are often more lifted up away from the wall (can262
be seen in Figure 6), and therefore, a higher threshold will give a larger average263
wall distance of the streaks. Here we measured the average wall distance y+ of the264
streaks determined using thresholds −0.02 and −0.06, see the blue triangles and the265
red squares, respectively, in Figure 6(d). It can be seen that −0.02 gives slightly lower266
and −0.06 gives slightly higher y+ compared to the black circles (with a threshold267
of −0.04 for detecting streaks). But the important point is that the y+ also appears268
to be a constant in the Re range considered using either threshold for detecting the269
streaks.270

Appendix B. The algorithm for determining the axial location of the271
front tip272

In the main text, we use the algorithm that is built in as the function findchangepts273
in MATLAB to detect abrupt changes in a signal sequence [x1, x2, ..., xn]. The key274
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is to minimize the following target function275

J(k) =
k−1∑
i=1

(xi − mean([x1, x2, ..., xk−1]))
2
+

n∑
i=k

(xi − mean([xk, xk+1, ..., xn]))
2

(B 1)276
by modifying the index k. The resulted k is regarded as the separation point of the277
slowly-varying and abruptly varying-parts of the sequence. The data sequence of278
maxr,θ |ur|, containing both the laminar part and turbulent part on the upstream279
and downstream sides of the front tip, respectively, is fed as the input. The output280
will be taken as the point separating the laminar part and turbulent part of the curve,281
which we define as the axial location of the front tip. The readers are referred to the282
documentation of MATLAB (version R2018a) for more details about the algorithm.283
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