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Exploring the Learning Difficulty of Data: Theory and Measure

WEIYAOZHU,OUWU∗, FENGGUANGSU, and YINGJUNDENG,Center for AppliedMathematics,Tianjin

University, China

"Easy/hard sample" is a popular parlance in machine learning. Learning difficulty of samples refers to how easy/hard a sample is during

a learning procedure. An increasing need of measuring learning difficulty demonstrates its importance in machine learning (e.g.,

difficulty-based weighting learning strategies). Previous literature has proposed a number of learning difficulty measures. However, no

comprehensive investigation for learning difficulty is available to date, resulting in that nearly all existing measures are heuristically

defined without a rigorous theoretical foundation. This study attempts to conduct a pilot theoretical study for learning difficulty of

samples. First, influential factors for learning difficulty are summarized. Under various situations conducted by summarized influential

factors, correlations between learning difficulty and two vital criteria of machine learning, namely generalization error and model

complexity, are revealed. Second, a theoretical definition of learning difficulty is proposed on the basis of these two criteria. A

practical measure of learning difficulty is proposed under the direction of the theoretical definition by importing the bias-variance

trade-off theory. Subsequently, the rationality of theoretical definition and the practical measure is respectively demonstrated by

analysis of several classical weighting methods and abundant experiments realized under all situations conducted by summarized

influential factors. The mentioned weighting methods can be reasonable explained under proposed theoretical definition and concerned

propositions. The comparison in these experiments indicates that the proposed measure significantly outperforms the other measures

throughout the experiments.

CCS Concepts: • Computing methodologies→ Instance-based learning.

Additional Key Words and Phrases: Learning difficulty, generalization error, bias-variance trade-off, model complexity.
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1 INTRODUCTION

The learning difficulty of a sample investigated in this study refers to how easy or hard it is to correctly learn the

sample in a given learning task. For example, samples containing label noise or feature noise are less likely to be

correctly classified, therefore they are tagged as hard samples in many works; model can collect more information from

head categories (categories that have much more samples than others) in learning tasks with imbalance-distributed

training data, hence samples from head categories are believed to be easier learned [48]. As an essence of data, learning

difficulty of samples has earned great attention and is widely applied in various learning strategies. Among which, the

partition of training data into different subsets according to their learning difficulties and adoption of separate learning
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2 ZHU and WU, et al.

schemes are proven to be useful in many learning tasks [24, 48, 51, 74]. Although learning difficulty has no formal

and consensus definition, it has been widely discussed and utilized in previous machine learning literature, including

noise-aware, curriculum, and metric learning.

Numerous methods are proposed to measure the learning difficulty of a training sample fitting various learning

tasks. The most common practice is to leverage the training output (e.g., loss and the predicted value on the true

category) of a sample to construct the measurements. In Self-paced Learning (SPL) [29, 74], the training loss is used to

determine whether a sample is easy or not, and easy samples are first learned. We assume that 𝑝𝑖,𝑦𝑖 is the prediction on

the ground-truth category for a training sample 𝑥𝑖 . In object detection, the value of (1 − 𝑝𝑖,𝑦𝑖 ) is used to indicate the

learning difficulty for 𝑥𝑖 [48] . Given that the training output in an epoch may be unreliable, some methods utilize the

average training output of a sample during the training to measure the difficulty. Huang et al. [37] designed a cyclic

training procedure, and the model is trained from under-fitting to over-fitting in one cycle. The average training loss in

the whole cyclic procedure is used as the noisy indicator for a training sample. Feng et al. [23] utilized the magnitude

of the loss gradient to measure the learning difficulty of a training sample. A large gradient magnitude indicates a

high degree of difficulty. Several existing methods focus on measuring learning difficulty by considering either bias or

variance alone. For instance, several previous works [18, 37] use the averaged loss to represent the bias of a model’s

prediction, serving as a measure of learning difficulty. On the other hand, other studies [2, 39] explore the variation of

loss to characterize different samples. Additionally, VoG [2] estimates the learning difficulty of samples by utilizing the

variance of the gradient. However, it has been acknowledged and discussed in recent research that the bias term alone

fails to fully capture the characteristics of a sample. To the best of our knowledge, none of the existing works have

explored the use of both bias and variance as measures to evaluate the learning difficulty of samples.

Due to lack of a theoretical basis, different learning difficultymeasures are based on different heuristic cues or empirical

observations, resulting that each measure usually only suits specific application scenarios. A clearer understanding

of the essence of a sample’s learning difficulty can facilitate designing more effective learning difficulty measures.

However, we are still far from concluding that we have a comprehensive understanding of learning difficulty:

(1) There is no summary of factors which directly affect the learning difficulty of samples. Current understandings

of learning difficulty fail to fully cover all scenarios.

(2) There is no formal definition of the learning difficulty of a sample. Different studies exhibit different under-

standings of learning difficulty. An one-sided understanding usually results in a biased measure.

(3) There is no formal definition of the easy and hard samples. In most existing studies, easy and hard samples are

heuristically judged. Consequently, it is nearly impossible to conduct a theoretical analysis for difficulty-based

strategies with existing heuristic considerations.

(4) There has been few experimental studies particularly on the learning difficulty measure. Most studies only

refer to the noisy learning or uncertainty settings. An extensive empirical evaluation under different settings is

useful for the understanding the learning difficulty.

This study attempts to establish a preliminary theoretical definition for learning difficulty from the angle of the

generalization error and the model complexity. The definitions of easy, medium and hard samples are subsequently

proposed based on our theoretical definition. Based on the theoretical definition, a practical measure of learning difficulty

is given by introducing the basic machine learning theory, namely bias-variance trade-off theory. The theoretical

definition is supported by analysis under difficulty-based weighting learning methods including SPL and Focal loss.

The proposed measure is empirically supported by the results of the extensive experiments.
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Exploring the Learning Difficulty of Data: Theory and Measure 3

Our contributions are summarized as follows:

• A summary of influential factors for learning difficulty of samples is provided. So far, this is the first summary

while several factors have been mentioned separately in previous works.

• An attempt in theoretical definition of learning difficulty is made based on the generalization error and the

model complexity. Formal definitions of easy and hard samples are established. Theoretical analysis of definition

under weighting strategies is provided to support the reasonableness of theoretical definitions. As far as we are

aware, this is the first attempt on this formalization.

• A practical measure of learning difficulty, which incorporates both bias and variance for training data, is proposed

on the basis of theoretical definition by importing bias-variance trade-off theory. Extensive experiments are

realized and our proposed measure significantly exceeds other measures under all scenarios.

2 RELATEDWORK

2.1 Learning Difficulty Measurement

Learning difficulty is considered as an intrinsic property of data in machine learning [51, 81]. Existing measurements

are usually based on heuristic cues or inspirations, and they can be divided into the following main categories:

• Loss-based measurement. This category directly uses the loss as the measure. Most measures fall into this

category because it is simple yet effective in various learning tasks. Some methods [74] directly utilize the loss

in one epoch as the degree of difficulty. Accordingly, the degrees for the same samples vary in different epochs.

Some others utilize the average loss [50] during the partial or whole training procedure for measurement.

• Cross-validation-based measurement. This category adopts a cross-validation strategy [71]. For example, five-

fold cross-validation is performed, and the whole cross-validation is repeated ten times. Consequently, each

training sample receives ten predictions. The value of error predictions is used as the indicator of difficulty.

• Uncertainty-based measurement. This category uses the (model) uncertainty of a sample to measure the difficulty.

D’souza et al. [18] firstly propose a framework that models both the level and source of uncertainty in samples

to identify atypical and noisy samples, which insight us the relationship between uncertainty and label noise.

Aguilar et al. [3] identify hard samples based on the model uncertainty and leveraged the Bayesian Neural

Network [73] to infer the uncertainty.

• Margin-based measurement. This category uses the margin (distance) of a sample to the underlying decision

surface as the measurement. The rationale is that a small margin denotes a large difficulty [47, 74].

• Gradient-based measurement. This category uses the loss gradient of a sample to measure the difficulty. Agarwal

et al. [2] proposed the variance of gradients (VoG) across different epochs to rank data from difficult to easy.

They considered that samples with high VoG values are far more difficult for the model to learn. Santiago et

al. [59] applied the norm of the gradients to measure the difficulty, and high norms indicate large difficulty for

learning.

The above-mentioned categories are highly correlated. For example, margin-based measurement is indeed a loss-based

one when margin-based loss (e.g., hinge loss) is used.

2.2 Noisy-label Learning

Noisy labels are inevitable even in benchmark data sets [31, 37, 38, 45]. Various methods are explored to detect noisy

labels. Existing noise detection methods are usually based on the information used for learning difficulty measurements,
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4 ZHU and WU, et al.

such as loss and gradient, because samples with noisy labels are usually considered as quite hard samples. Some

studies model the generation process of the noisy labels to detect them [21, 43]. Forgetting [39] is a recently recognized

phenomenon that can be used to identify noisy samples. It has been observed that noisy samples are more likely to be

forgotten by the model. The concept of forgetting describes the variation in the model’s prediction for a given sample

and utilizes this variation to characterize noisy samples. VoG [2] uses the variance of the gradient to characterize noisy

samples. A recent survey can be referred to [30].

2.3 Curriculum Learning

Curriculum learning [10] draws lessons from the human learning process, which begins with the simplest and

progresses to more difficult courses. Easier samples should be learned at the beginning of a learning process and

gradually advance towards harder samples. SPL pertains to curriculum learning and the difficulty is measured by loss.

2.4 Uncertainty-aware Learning

Uncertainty in learning mainly refers to aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty is also

called data uncertainty. A related work [4] wisely estimated uncertainty in labeling, which is also recognized as aleatoric

uncertainty, since accurate and consistent labeling has high unsureness in real-world. To reduce the influence of

high-uncertainty samples, they lower the weights of samples with high density and label entropy. Epistemic uncertainty

is also called model uncertainty. It occurs when there is no fixed annotation for a given training sample in some learning

tasks. The predictive entropy [40] and Bayesian Neural Network [73] have been used to measure epistemic uncertainty.

2.5 Model Complexity

The model complexity [65] discussed in this work describes how intricacy a neural network is. For a given learning

task, an optimal model complexity consequentially exists. An oversimplified model is recognized as under-fitted, and a

sophisticated model is recognized as over-fitted. The construction of model complexity varies from task to task, which

leads to an implicit form of model complexity in a general way. Several researches [20, 22, 46] calculate approximately

the model complexity according to their need and learning tasks and do comparisons without fixing the structure of

basic model, which means that they study the complexity of models under different structures. However, there is few

works that explicitly study complexity of a fixed model during a whole learning procedure under general settings.

3 THEORETICAL DEFINITION OF LEARNING DIFFICULTY

Existing learning difficulty measurements mentioned in Section 2.1 are empirically utilized in diverse situations.

Despite the effect emerges under difficulty-based learning schemes, there is still a lot of room of improvement. Because

existing measurements are proposed heuristically without a theoretical basis. Moreover, incentives of difference between

learning difficulty of samples are multifarious. Existing measurements are mainly of unilateral considerations, which

could not cover the majority incentives.

In this section, we summarize influential factors for learning difficulty of samples at first. Accordingly, by considering

summarized influential factors, correlations between learning difficulty and two vital criteria of machine learning,

namely generalization error and model complexity, are respectively disclosed. Subsequently, a theoretical definition

of learning difficulty is given under consideration of above-mentioned correlations. In order to generate a practical

measure based on the theoretical definition, we introduce bias-variance trade-off theory. Finally, a feasible measure is

proposed.
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Exploring the Learning Difficulty of Data: Theory and Measure 5

3.1 Influential Factors for Learning Difficulty

So far, there has been no study that comprehensively summarizes the factors that determine the learning difficulty of

a sample. In machine learning, differences among samples mainly lie in noise level, spacial location, neighbourhood,

and overall distribution. Illuminated by these differences and the heuristic inspirations considered in previous measures

for learning difficulty, the main influential factors are roughly summarized as follows:

• Data quality. Both feature and label noises affect the learning difficulty of samples. Young et al. [77] found that

high signal-to-noise ratio signifies high feature noise level and generates low data quality, which hinders the

optimization of the learning task and is harder to be well learnt. Su et al. [63] revealed that mislabeled images

are low-quality data for the learning task and are of high difficulty.

• Sample margin. The sample margin is defined as the distance between the sample and the true decision boundary.

Huang and Yang [36] considered that samples with small margins are hard to learn.

• Uncertainty. The (model) uncertainty of a sample is usually measured by the information entropy of its

prediction [22]. The higher the information entropy is, the ampler the information is contained by the sample.

Samples with higher uncertainty are more difficult to adequately learn [75].

• Category distribution. Oinar et al. [56] showed that category with fewer samples, which is also called tail

category, is usually more challenging than category with more samples, which is known as head category.

3.2 Generalization Error and Model Complexity

Awell-established theoretical definition should at least cover the majority incentives. The manifestation and variation

of generalization error and model complexity directly correlates to the learning difficulty of samples and basically

reflects the learning difficulty under majority situations.

3.2.1 Notations.

The features and the label of a sample are seen as two random variables, and are denoted as 𝑋 and 𝑌 respectively.

Realizations of 𝑋 and 𝑌 are denoted as x𝑖 and 𝑦𝑖 respectively. Let 𝑇 = {(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1
be a random training set and a

sample (x𝑖 , 𝑦𝑖 ) is denoted as 𝑥𝑖 for convenience. We assume that 𝑋 and 𝑌 conform to the joint distribution 𝑃 (𝑋,𝑌 ),
where (𝑋,𝑌 ) ∈ Ω with Ω = Ω𝑋 × Ω𝑌 = {(𝑋,𝑌 ) |𝑋 ∈ Ω𝑋 , 𝑌 ∈ Ω𝑌 } . Let 𝜆ℎ ∈ 𝑅𝜆 be the hyper-parameter(s), where

𝑅𝜆 is the feasible region
1
. Given a basic learner 𝑓 trained on 𝑇 and a fixed value of 𝜆ℎ , the prediction of sample 𝑥𝑖 is

denoted by 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ)2.

3.2.2 Generalization Error.

The generalization error [48] (also known as the expected risk) of all training samples sampled from Ω is initially

defined in regression tasks in following form:

𝐸𝑟𝑟 (𝜆ℎ) = E𝑥𝑖 ∈ΩE𝑇 [∥𝑦𝑖 − 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ)∥
2

2
] . (1)

Accordingly, the generalization error of a given sample 𝑥𝑖 in regression tasks is given by:

𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) = E𝑇 [∥𝑦𝑖 − 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ)∥2

2
] .

1
Note that the hyper-parameter should locate in a feasible region. For example, if 𝜆ℎ is the learning rate, then 𝜆ℎ < 0 is meaningless.

2
Once the model’s structure is fixed, the parameters of the model trained on the given𝑇 and 𝜆ℎ are fixed. Therefore, different from the common view

which denotes the model as 𝑓 ( ·;𝜃 ) , we use 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ ) instead.
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6 ZHU and WU, et al.

Notation Description

𝑋 the data feature

𝑌 the true label

x𝑖 ,𝑦𝑖 realizations of 𝑋 and 𝑌

(x𝑖 , 𝑦𝑖 ) a sample 𝑥𝑖
𝑁 number of samples

𝑇 = {(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1
a training set

𝑃 (𝑋,𝑌 ) the joint distribution of 𝑋 and 𝑌

Ω𝑋 the feature space

Ω𝑌 the label space

Ω the whole space

𝜆ℎ the hyper-parameter(s)

𝑅𝜆 the feasible region of 𝜆ℎ
𝑓 (·;𝑇, 𝜆ℎ) the model trained on 𝑇 under 𝜆ℎ
𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ) the prediction of sample 𝑥𝑖 given by 𝑓 (·;𝑇, 𝜆ℎ)
𝑓 𝑡
𝑖

the prediction of sample 𝑥𝑖 given by 𝑓 (·;𝑇, 𝜆ℎ) on 𝑡-th epoch

𝑐 the expectation of model complexity on Ω
𝐸𝑟𝑟 the generalization error

𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) the generalization error of sample 𝑥𝑖 under 𝜆ℎ on Ω
𝑔(·) the mapping from 𝜆ℎ to 𝑐

𝑐∗ the optimal model complexity on Ω
𝜆∗
ℎ

the optimal hyper-parameter

𝐸𝑟𝑟 (S, 𝜆ℎ) the generalization error of the set S
LD(𝑥) the theoretical learning difficulty for a sample 𝑥𝑖
LD(S) the theoretical learning difficulty for a set of samples S
LDC(𝑥𝑖 ) the learning difficulty coefficient

𝐵𝑖𝑎𝑠𝑇 (𝜆ℎ) the learning bias

𝑉𝑎𝑟𝑇 (𝜆ℎ) the variance term

𝛿𝑒 the irreducible noise

𝑙 (·, ·) or ℓ the loss

Table 1. Summary of the Notations.

Previous studies
3
reveal correlations between learning difficulty of samples and generalization error. In terms of

data quality, Wang et al. [68] revealed that negative impacts of noisy implicit feedback occurs to the minimization

of generalization error. Castells et al. [14] concluded that noisy samples tend to be harder and injure the model

generalization. In terms of sample margin, Zhang et al. [79] concluded that samples close to boundary, are further

from reaching near-zero generalization error than samples away from boundary. In terms of uncertainty, Pagliardini et

al. [57] improved the model’s generalization by estimating uncertainty quantification and perturbing high uncertain

samples. In terms of category distribution, Gautheron et al. [26] derived a bound of generalization error in metric

learning by involving the proportion of minority examples who throw higher generalization error values.

3.2.3 Model Complexity.

As is mentioned in section 2.5, there is few works directly and precisely give an explicit form for the complexity of

a model under fixed structure during a whole learning procedure. However, compared with studies of models under

3
In fact, existing studies focus on the generalization error over the whole data space rather than a local region or a single sample. Nevertheless, the

positive correlation between learning difficulty and 𝐸𝑟𝑟 ∗𝑥 of a single sample is theoretically verified in our continuous study. The theoretical proofs are

uploaded to Github source repository.
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Exploring the Learning Difficulty of Data: Theory and Measure 7

different structures [20, 22, 46], it is also of great importance to comprehend the changing process of a given model

during training. Hence, we give a general form for the complexity of model under fixed structure.

Given a model 𝑓 (· ;𝑇, 𝜆ℎ) trained on a sampled training set𝑇 with 𝜆ℎ . According, when given a sample 𝑥𝑖 , the model

𝑓 (· ;𝑇, 𝜆ℎ) gives its prediction 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ). Model complexity𝑚(𝑓 (· ;𝑇, 𝜆ℎ)) is a function depends on the given model

𝑓 (· ;𝑇, 𝜆ℎ)4 and𝑚(·) may vary according to various learning tasks. Let 𝑐 be the expectation of the model complexities

𝑚(𝑓 (· ;𝑇, 𝜆ℎ)) over different 𝑇 given 𝜆ℎ . 𝑐 depends on 𝜆ℎ and the distribution of 𝑇 If the distribution of 𝑇 , the structure

of the base network 𝑓 , and the function𝑚 are given, then 𝑐 only depends on 𝜆ℎ , i.e.,

𝑐 = 𝑔(𝜆ℎ) = E𝑥𝑖 ∈ΩE𝑇 [𝑚(𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ))], 𝜆ℎ ∈ 𝑅𝜆, (2)

where the function 𝑔(·) is defined as the mapping from 𝜆ℎ to 𝑐 . In the rest of the paper, the model complexity expectation

is briefly termed as “model complexity”. 𝑐 depends on the base network (e.g., AlexNet, Transformer, and ResNet-34), 𝜆ℎ

(e.g., learning rate and the maximum learning epoch), and the distribution of 𝑇 .

Accordingly, the model complexity of sample 𝑥𝑖 is given by

𝑐𝑥𝑖 = E𝑇 [𝑚(𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ))], 𝜆ℎ ∈ 𝑅𝜆 . (3)

Likewise, there is also a mapping relationship from 𝜆ℎ to 𝑐𝑥𝑖 .

Likewise, the correlation between learning difficulty and model complexity is also discussed in previous literature.

Arpit et al. [6] gave a descriptive definition for easy (as well as hard) samples that “easier examples are explained by

some simple patterns, which are reliably learned within the first epoch of training”. This definition implies that easy

samples can be modeled by simple models, which motivates us to build a theoretical description with model complexity.

Noisy samples, which are generally considered as hard samples, result in a higher model complexity if these samples are

well-learned [58, 61]. To correctly learn a sample in tail categories, strategy such as over-sampling is usually introduced

and leads to a higher model complexity [1, 52]. To well learn the sorts of small-margin samples, which are close to the

true boundary and are recognized as hard samples, the learned boundary turns to be more complex [53, 78]. A more

uncertain sample has a larger variance of prediction. A more complex model is needed to reduce its variance, which is

to correctly classify [4, 5, 20].

3.2.4 Relationship Between Generalization Error and Model Complexity.

The investigation of theoretical definition for learning difficulty of samples starts with revealing the relationship

between generalization error and model complexity.

In this study, the base network 𝑓 is assumed to be fixed. Therefore, both 𝐸𝑟𝑟 and 𝑐 = 𝑔(𝜆ℎ) are the functions of 𝜆ℎ
when𝑚(·) and the distribution of 𝑇 are given. Accordingly, if 𝑔(𝜆ℎ) is reversible, 𝐸𝑟𝑟 can be seen as the function of 𝑐

according to Eqs. (1) and (2), i.e., 𝐸𝑟𝑟 (𝑐) = E𝑥𝑖 ∈ΩE𝑇 [∥𝑦𝑖 − 𝑓 (𝑥𝑖 ;𝑇,𝑔−1 (𝑐)∥2

2
].

The minimum generalization error is achieved when the partial derivatives of generalization error with respect to 𝑐

equal to zero. The optimal hyper-parameter 𝜆∗
ℎ
and the optimal model complexity on the whole space 𝑐∗ are obtained

with

𝜆∗
ℎ
= 𝑎𝑟𝑔min

𝜆ℎ
𝐸𝑟𝑟 (𝜆ℎ) (4)

𝑐∗ = 𝑔(𝜆∗
ℎ𝑦𝑝𝑒𝑟

) . (5)

4
Once the model’s structure is fixed, the model complexity depends on both the training set𝑇 and the hyper-parameters 𝜆ℎ . Therefore, the learned

model’s complexity is influenced by𝑇 and 𝜆ℎ . The expectation of the model complexity is determined by the distribution of𝑇 and 𝜆ℎ .
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3.3 Definition of Learning Difficulty

Eq. (1) is defined on the whole space Ω. 𝑃 (𝑥,𝑦) is often unknown. The mean square error (MSE) used in Eq. (1) is for

regression tasks and is not suitable for classification tasks. Generally, according to Eq. (1), we define the generalization

error of a sample as follows:

Definition 1. Generalization error (or expected risk) of a sample 𝑥𝑖 is in form of

𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) = E𝑇 [𝑙 (𝑦𝑖 , 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ))], (6)

where 𝑙 (·, ·) measures the error between the label 𝑦𝑖 and a prediction 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ).

Accordingly, we define the generalization error of a set of samples as follows:

Definition 2. Generalization error (or expected risk) of a set of samples, noted as S, is in form of

𝐸𝑟𝑟 (S, 𝜆ℎ) = E𝑥𝑖 ∈SE𝑇 [𝑙 (𝑦𝑖 , 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ))] . (7)

We define a theoretical definition for the learning difficulty of a sample.

Definition 3. Given a fixed basic learner5 𝑓 , the theoretical learning difficulty for a sample 𝑥𝑖 is

LD(𝑥) = 𝑐∗𝑥𝑖 = 𝑔(𝜆
∗
ℎ,𝑖
)

𝑠 .𝑡 ., 𝜆∗
ℎ,𝑖

= 𝑎𝑟𝑔min

𝜆ℎ
𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) .

(8)

Accordingly, the learning difficulty for a set of samples can be defined.

Definition 4. Given a fixed basic learner, the theoretical learning difficulty for a set of samples S is

LD(S) = 𝑐∗S = 𝑔(𝜆∗
ℎ
)

𝑠 .𝑡 ., 𝜆∗
ℎ
= 𝑎𝑟𝑔min

𝜆ℎ
𝐸𝑟𝑟 (S, 𝜆ℎ).

(9)

Our definition for learning difficulty of samples is consistent with the descriptive definition given by some other

studies. Charrerjee and Zielinskix [15] observe that easy ImageNet samples are learned earlier and hard ImageNet

samples are learned later. Arpit et al. [6] state that the model complexity will increase with the increasement of training

epoch gradually. Scilicet, an easier sample corresponds to a smaller optimal model complexity, and a harder sample

corresponds to a larger one.

The relative learning difficulty between two samples 𝑥1 and 𝑥2 is obtained according to Definition 3. If LD(𝑥1) >
LD(𝑥2), then 𝑥1 is more difficult than 𝑥2, and vice versa.

An example of non-linear regression learning is utilized to empirically explain the definition for learning difficulty of

samples.

Example 1. 4000 realizations of random variable 𝑥 are sampled uniformly from [0, 5]. The true target value 𝑦 of a

sample 𝑥 is given by the target model 𝑓 (𝑥) = 3 − 𝑠𝑖𝑛(3𝑥)/𝑥 . The target value is then perturbed by Gaussian noise, i.e.,

𝑦 = 𝑦 + 𝜖 = 𝑓 (𝑥) + 𝜖 , where 𝜖 ∼ N (0, 1.2).
A 10-degree polynomial function is used and trained by ridge regression, i.e.,

ˆ𝑓 (𝑥) ∼ O (10). The hyper-parameter 𝜆

in ridge regression is searched in {𝑒−7, 𝑒−6, 𝑒−5, 𝑒−4, 𝑒−3, 𝑒−2, 𝑒−1, 𝑒0, 𝑒1}. Under different values of 𝜆, the complexities

5
Essentially, when 𝐸𝑟𝑟 (𝜆ℎ ) = E𝑓 E(𝑥𝑖 ,𝑦) ∈ΩE𝑇 [ ∥𝑦𝑖 − 𝑓 (𝑥𝑖 ;𝑇, 𝜆ℎ ) ∥2

2
] is used, the learning difficulty is independent of the basic learner 𝑓 .
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(a) Entire data set (b) Samples with x in [0,1.5)

(c) Samples with x in [1.5,3.5) (d) Samples with x in [3.5,5]

Fig. 1. Illustrations of comparisons between learned and true models under imbalance sampling.

of fitting models differ accordingly. For each value of 𝜆, 40 fitting models are learned using different random training

sets.

Imbalance sampling is applied and each training set is consists of 100 random samples with 𝑥 ∈ [0, 1.5), 50 random
samples with 𝑥 ∈ [1.5, 3.5), and 25 random samples with 𝑥 ∈ [3.5, 5]. The samples in the additional data set are sampled

with the same imbalance strategy. Under each value of 𝜆, 40 models are learned using different training sets sampling

from the initial 4000 realizations. ■

Let ŵ𝑡 = (𝑤̂𝑡,1, · · · , 𝑤̂𝑡,10)𝑇 be the model parameter learnt on a training set 𝑇𝑡 . The model complexity of a learnt

model 𝑓ŵ𝑡
parameterized by ŵ𝑡 is calculated as follows:

𝑚(𝑓ŵ𝑡
) =

10∑︁
𝑖=1

( 𝑖
10

𝑤̂𝑡,𝑖 )2,

and the model complexity expectation is calculated as:

𝑐 (ŵ(𝜆)) = 1

40

40∑︁
𝑡=1

𝑚(𝑓ŵ𝑡
) = 1

40

40∑︁
𝑡=1

[
10∑︁
𝑖=1

( 𝑖
10

𝑤̂𝑡,𝑖 )2] (10)

Details of the calculation are presented in Appendix A.

The imbalance sampling aims to generate three regions comprising easy, medium, and hard samples, respectively.

Samples with 𝑥 ∈ [0, 1.5) are relatively easy and those with 𝑥 ∈ [3.5, 5] are relatively hard. The fitting curves are shown

in Fig. 1. In Fig. 1(a), fitting curves differ distinctly from the true model in hard region (i.e., 𝑥 ∈ [3.5, 5]) but precisely fit

the true model in easy region (i.e., 𝑥 ∈ [0, 1.5)), which shows that error of samples in easy region is much smaller than
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hardeasy

(a) 

hardmedium

(b)

= 1

0 1

0 1

easy

Fig. 2. Illustrations for dichotomy (a) and trichotomy (b) of samples.

that of hard region. Intuitively, fitting curves in easy region (Fig. 1(b)) are much less complex than those in hard region

(Fig. 1(d)), which means that hard samples have higher optimal model complexity than easy samples.

We also define a learning difficulty coefficient as follows:

Definition 5. Given the optimal model complexity 𝑐∗ on the whole space Ω and the learning difficulty of the sample 𝑥𝑖 ,

the learning difficulty coefficient (LDC) is defined as

LDC(𝑥𝑖 ) =
LD(𝑥𝑖 )
𝑐∗

=
𝑐∗𝑥𝑖
𝑐∗

(11)

The larger the value of LDC is, the more difficult the sample 𝑥 will be. The succeeding subsection will define the

easy and hard samples based on LDC.

3.4 Definitions of Easy and Hard Samples

Many existing studies are based on the two or three splits for training samples, namely easy/hard and easy/medium/hard,

respectively. With LDC, the dichotomy is defined as follows:

Definition 6. Given a sample 𝑥𝑖 and its learning difficulty coefficient LDC, if LDC(𝑥𝑖 ) ≤ 1, then 𝑥𝑖 is an easy

sample; if LDC(𝑥𝑖 ) > 1, then 𝑥 is a hard sample.

Definition 6 is flexible because the threshold can be a parameter instead of a fixed value. Let 𝜏 be the threshold. If

LDC(𝑥) ≤ 𝜏 , then 𝑥 is an easy sample; if LDC(𝑥) > 𝜏 , then 𝑥 is a hard sample.

In the trichotomy, distinguishing between easy and medium or medium and hard is difficult. Accordingly, we propose

the following definition for these partitions:

Definition 7. Given a sample 𝑥𝑖 and its learning difficulty coefficientLDC(𝑥𝑖 ), let 𝜏𝑒 and 𝜏ℎ be two positive parameters

and 0 < 𝜏𝑒 < 1 < 𝜏ℎ . If LDC(𝑥𝑖 ) ≤ 𝜏𝑒 , then 𝑥𝑖 is an easy sample; if 𝜏𝑒 < LDC(𝑥𝑖 ) ≤ 𝜏ℎ , then 𝑥𝑖 is a medium sample; if

LDC(𝑥𝑖 ) > 𝜏ℎ , then 𝑥𝑖 is a hard sample.

The two parameters depend on the concrete application tasks and data characteristics. The above two definitions

describe the dichotomy and trichotomy for samples as shown in Fig. 2. Some samples are quite hard and are harmful to

learning process. We can also define quite-hard samples if LDC(𝑥) > 𝜏𝑞 and 𝜏𝑞 > 𝜏ℎ .
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Error

Bias Term
Variance Term

c
c*

Fig. 3. The bias-variance trade-off curve.

3.5 Bias-Variance Trade-Off for Generalization Error

Although the theoretical definition of learning difficulty is solid and comprehensive, it is not ready for algorithmic

implementation due to lack of a consensus calculation for model complexity (the function𝑚(·) in Eq. 2). However, owing

to the generalized knowledge and previous works mentioned in section 3.1, the following three positive correlations

can be revealed:

• between the learning difficulty and the minimum generalization error;

• between the learning difficulty and the optimal model complexity;

• between the minimum generalization and the optimal model complexity.

Although the model complexity has no explicit form, generalization error can be explicitly written and approximately

estimated. In order to practically investigate the learning difficulty defined by the optimal model complexity, the

minimum generalization error is used because of above-mentioned positive correlations. A typical theory of machine

learning containing both generalization error and model complexity, namely the bias-variance trade-off theory, is

imported. With the help of the imported theory and the above-mentioned correlations, we study precisely the variation

of generalization error with respect to the model complexity. More precisely, the variations of bias and variance with

respect to the model complexity are also revealed. In fact, most existing measurement methods utilize the training loss

(or loss variance) which can be considered as an approximation of the bias (or the variance) term of generalization error

as a measurement of learning difficulty. Nevertheless, no study considers the bias and the variance terms simultaneously.

Therefore, it is logical to consider both the bias term and the variance term, which leads us to bias-variance trade-off

theory.

Bias-variance trade-off is initially constructed on regression and mean square error (MSE) is used [34]. Eq. (1) can be

factorized into

𝐸𝑟𝑟 (𝜆ℎ) = E𝑥∈Ω [∥𝑦 − 𝑓 (𝑥 ; 𝜆ℎ)∥2

2
] + E𝑥∈ΩE𝑇 [∥ 𝑓 (𝑥 ; 𝜆ℎ) − 𝑓 (𝑥 ;𝑇, 𝜆ℎ)∥2

2
] + 𝛿𝑒 , (12)

where
¯𝑓 (𝑥 ; 𝜆ℎ) = E𝑇 [𝑓 (𝑥 ;𝑇, 𝜆ℎ)], and 𝛿𝑒 is known as the irreducible noise, and is independent of the basic learner and

𝜆ℎ . The first and the second terms of the right side of Eq. (12) are the learning bias and variance terms, respectively,

shown as follows:

𝐵𝑖𝑎𝑠2 (𝜆ℎ) = E𝑥∈Ω [∥𝑦 − 𝑓 (𝑥 ; 𝜆ℎ)∥2

2
] . (13)
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Fig. 4. Illustration of bias-variance trade-off under non-linear regression.

𝑉𝑎𝑟 (𝜆ℎ) = E𝑥∈ΩE𝑇 [∥ 𝑓 (𝑥 ; 𝜆ℎ) − 𝑓 (𝑥 ;𝑇, 𝜆ℎ)∥2

2
] . (14)

In classification, the above derivation becomes complex [79]. Nevertheless, the following expression holds, with

𝐵𝑖𝑎𝑠𝑇 and 𝑉𝑎𝑟𝑇 denoting the bias and the variance terms respectively:

𝐸𝑟𝑟 (𝜆ℎ) = 𝐵𝑖𝑎𝑠𝑇 (𝜆ℎ) +𝑉𝑎𝑟𝑇 (𝜆ℎ) + 𝛿𝑒 . (15)

Variable 𝑦 is categorical in classification. We suppose that 𝑥 is continuous in order to consider in the total space, and

facilitate the inference for classification. Therefore, the generalization error for a region Ω𝑟 ⊂ Ω s.t. Ω𝑟 = Ω𝑟
𝑋
× Ω𝑌 =

{(𝑥,𝑦) |𝑥 ∈ Ω𝑟
𝑋
, 𝑦 ∈ Ω𝑌 } is defined as

𝐸𝑟𝑟 (Ω𝑟 , 𝜆ℎ) =
∑︁
𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥∈Ω𝑟

𝑋

E𝑇 [𝑙 (𝑦, 𝑓 (𝑥 ;𝑇, 𝜆ℎ))]𝑝 (𝑥 |𝑦)d𝑥, (16)

where 𝑙 (·, ·) measures the error between the label and a prediction. 𝑃 (𝑦) signifies the probability when the label equals

to 𝑦 and 𝑝 (𝑥 |𝑦) is the conditional probability density function of 𝑥 when the label equals to 𝑦.

The following widely accepted assumption
6
holds for both regression and classification.

Assumption 1. The bias term is a decreasing function of the expectation of model complexity 𝑐 , whereas the variance

term is an increasing function of 𝑐 when the basic learner is fixed. The generalization error decreases first and then increases.

An example of non-linear regression learning is still utilized to empirically support Assumption 1.

Example 2. The target model and the calculation of model complexity in Example 1 are still used. Each training set is

composed by 200 samples randomly sampled from the 4000 realizations. An additional test set is constructed in the

same way as training sets and is of the same size. ■

The bias, variance, and generalization error curves of Example 2 are given in Fig. 4. Assumption 1 holds with regard

to this example. A clear bias-variance trade-off is presented. The bias curve decreases with respect to the employed

6
Most professional books and papers explicitly or implicitly apply this assumption without giving a strict proof. Some recent studies point out that the

variance curve is not increasing any more in some cases [48]. However, the structures of base models in these studies are also varied. Meanwhile, the

structures of base models in this study are assumed to be fixed.
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(a) Entire data set (b) Samples with x in [0,1.5)

(d) Samples with x in [3.5,5](c) Samples with x in [1.5,3.5)

Fig. 5. Illustrations of bias-variance trade-off under imbalance sampling.

model complexity while the variance term increases. The generalization error first decreases to its minimum, and

then increases. The minimum of the average generalization error over all samples is 0.018 and is attained around the

intersection of the bias curve and the variance curve.

According to Assumption 1, the minimum generalization error is achieved when the partial derivatives of generaliza-

tion error with respect to 𝑐 equals to zero, i.e., the sum of the partial derivatives of its bias term and the corresponding

variance term with respect to 𝑐 equals to zero. A diagrammatic drawing of the bias-variance curve is shown in Fig.

3 [28, 32].

Similar to Assumption 1, we have the following assumption:

Assumption 2. Assume that the basic model is given and fixed. The bias term for 𝑥 is a decreasing function of 𝑐 , whereas

the variance term for 𝑥 is an increasing function of 𝑐 . The generalization error for 𝑥 decreases first and then increases.
Manuscript submitted to ACM
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Example 1 is reused and analysed to empirically support Assumption 2 by illustrating the bias, variance, and

generalization error curves in different regions.

The imbalance sampling aims to generate three regions comprising easy, medium, and hard samples, respectively.

Samples with 𝑥 ∈ [0, 1.5) are relatively easy and those with 𝑥 ∈ [3.5, 5] are relatively hard. The learning curves are

shown in Figs. 5 and 1. Fig. 5 shows the bias-variance trade-off curves for the entire data set (Fig. 5(a)), the samples from

[0, 1.5) (Fig. 5(b)), the samples from [1.5, 3.5) (Fig. 5(c)), and the samples from [3.5, 5] (Fig. 5(d)), respectively. Under
all cases, the bias term decreases with respect to the employed model complexity, while the variance term increases.

The generalization error firstly decreases to its minimum, and then increases. The minimum values of generalization

error vary: 0.022 for the entire data set (Fig. 5(a)), 0.018 for the majority sampling part ([0, 1.5)) (Fig. 5(b)), 0.025 for the
medium sampling part ([1.5, 3.5)) (Fig. 5(c)), and 0.05 for the minority sampling part ([3.5, 5]) (Fig. 5(d)). Alternatively,
both Assumptions 1 and 2 hold in this example.

According to Assumption 2, the minimum of 𝐸𝑟𝑟 (𝑥, 𝜆ℎ), denoted as 𝐸𝑟𝑟∗𝑥 , is also attained when the partial derivatives

of generalization error for 𝑥 on 𝑐 equals to zero, i.e., the sum of the partial deviations of the bias term and the variance

term for 𝑥 on 𝑐 is zero.

3.6 The Proposed Measure for Learning Difficulty

An approach is proposed based on 𝐸𝑟𝑟∗𝑥 , and is utilized as the practical measure of learning difficulty.

Considering that it is also infeasible to calculate 𝐸𝑟𝑟∗𝑥 traversing all values of 𝜆ℎ , we only calculate the generalization

errors 𝐸𝑟𝑟 (𝑥, 𝜆ℎ) for each sample with the same reasonable
7 𝜆ℎ to approximate the learning difficulty. As widely

accepted in existing literature [19, 35], reasonable hyper-parameters that optimize the performance of the algorithm are

typically obtained through techniques such as cross-validation, selection using a validation set, and meta-learning. In

our study, we use the validation set to determine the values of 𝜆ℎ that optimize the algorithm’s performance. Specifically,

the proposed approach adopts the cross-validation strategy to calculate the average learning errors for each sample.

First, the whole training set is divided into 𝑀 folds. 𝑀 − 1 folds are alternatively used for training, and the trained

model is used to predict the label of all training samples. This cross-validation process is repeated for 𝐾 times. Each

sample receives 𝐾 ∗𝑀 predictions, with which can we calculate the average prediction of each sample. Second, average

losses and variance of losses for each training sample are calculated using corresponding average predictions.

Let 𝑝𝑘
𝑖,𝑚

be the prediction of 𝑥𝑖 in the𝑚𝑡ℎ cross-validation of the 𝑘𝑡ℎ repeat. Then, according to [76], we calculate:

𝑝𝑖 = 𝑒𝑥𝑝{
1

𝑀 ∗ 𝐾
∑︁
𝑚,𝑘

𝑙𝑜𝑔(𝑝𝑘𝑖,𝑚)}. (17)

Subsequently, the bias and the variance terms are calculated as follows

𝐵𝑖𝑎𝑠𝑖 ≈ 𝑙𝐶𝐸 (𝑦𝑖 , 𝑝𝑖 ), (18)

𝑉𝑎𝑟𝑖 ≈
1

𝑀 ∗ 𝐾
∑︁
𝑚,𝑘

𝑙𝐶𝐸 (𝑝𝑖 , 𝑝𝑘𝑖,𝑚), (19)

where 𝑙𝐶𝐸 is the standard cross-entropy loss. The actual value of learning difficulty of 𝑥𝑖 is

𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) ≈ 𝐵𝑖𝑎𝑠𝑖 + 𝜇𝑉𝑎𝑟𝑖 , (20)

7
In our future work, we plan to explore dividing the entire training set into subsets, where each subset will adopt the same 𝜆ℎ . This strategy has the

potential to better balance accuracy and efficiency compared to our current approach, where the same 𝜆ℎ is used for all samples.
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Algorithm 1 GELD

Input: Training set 𝑇 with 𝑁 samples, validation data,𝑀 , 𝐾 , 𝜇, and 𝜆ℎ
Output: 𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ), 𝑖 = 1, · · · , 𝑁 .

1: for 𝑘 in 1 to 𝐾 do
2: Randomly split 𝑇 into 𝑇

(𝑘 )
1

, · · · ,𝑇 (𝑘 )
𝑀

;

3: for𝑚 in 1 to𝑀 do
4: Perform the training on 𝑇 −𝑇 (𝑘 )

𝑚 . The model is selected with the validation data;

5: Predict the label 𝑝𝑘
𝑖,𝑚

of 𝑥𝑖 for each sample;

6: end for
7: end for
8: Calculate 𝑝𝑖 using Eq. (17) for each sample;

9: Calculate 𝐵𝑖𝑎𝑠𝑖 and 𝑉𝑎𝑟𝑖 using Eqs. (18) and (19);

10: Calculate 𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) using Eq. (20).

where 𝜇 is a tuning factor for the variance. The value of 𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) is used as the learning difficulty for 𝑥𝑖 . This approach

is called generalization error-based learning difficulty (GELD) measurement. The detailed steps of GELD are shown in

Algorithm 1. The primary difference between our approach and the existing loss-based/cross-validation-based methods

lies in that our approach does not discard the variance term but combines the importance of both term of generalization

error. If 𝜇 = 0, then GELD is similar to the conventional cross-validation-based methods. Several existing methods

including O2UNet [37] also point out that hard samples have high loss variances.

3.7 Comparison with Existing Works

Existing studies that explore sample characteristics often employ measures based on either bias or variation. For

instance, certain studies [18, 37] utilize the averaged loss as a measure, which primarily captures the model’s prediction

bias. Other works [2, 39] take a step forward and consider the variation of the loss or gradient to provide a more

comprehensive understanding of the sample characteristics. In this subsection, we will theoretically analyze three

classic measures, focusing on the bias or the variation.

• O2UNet: It proposes to identify noisy samples using the average loss of each sample, which is the mean of CE

loss for each sample, i.e.,

ℓ𝑖 =
1

T

T∑︁
𝑡=1

ℓ𝑡𝑖 , (21)

where T is the number of epochs. Considering the equation mentioned above, it is evident that the averaged

loss can be regarded as the bias term in the bias-variance decomposition.

• Forgetting: It is a phenomenon referring to the degradation of previously acquired knowledge in a neural

network over time. Specifically, if a sample 𝑥𝑖 is forgotten by the model at the 𝑡 + 1-th epoch, it indicates that

the model made an incorrect prediction for the sample in the 𝑡 + 1-th epoch, despite having made a correct

prediction for the sample in the 𝑡-th epoch [39], i.e., 𝑦𝑖 = 𝑓
𝑡
𝑖
and 𝑦𝑖 ≠ 𝑓 𝑡+1

𝑖
with 𝑓 𝑡

𝑖
representing the prediction

of sample 𝑥𝑖 made by the model at the 𝑡-th epoch. The forgetting counts during the whole training process can

be formulated as,

𝐹𝐶 =

T∑︁
𝑡=1

I(𝑦𝑖 = 𝑓 𝑡𝑖 & 𝑦𝑖 ≠ 𝑓 𝑡+1

𝑖 ). (22)
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Forgetting is a sort of variation where the prediction acutely becomes incorrect at epoch 𝑡 + 1, and the forgetting

count 𝐹𝐶 represents the frequency of such variations for sample 𝑥𝑖 throughout the entire training process. As

stated in [64], the forgetting phenomenon tends to occur more frequently on challenging samples, such as noisy

samples. Thus, by analyzing the variations related to the forgetting phenomenon, it can be used to identify

hard samples.

• VoG: It is the first framework that evaluates samples’ learning difficulty using the variance of gradients, i.e.,

𝑉𝑜𝐺𝑖 = E𝑝∈{1,· · · ,P} [E𝑘∈{1,· · · ,K} [g𝑘𝑖,𝑝 − g𝑖,𝑝 ]], (23)

where P,K, and g𝑘
𝑖,𝑝

denote the number of pixels, number of checkpoints, and the gradient of the 𝑝-th pixel in

sample 𝑥𝑖 at the 𝑘-th checkpoint, respectively; g𝑖,𝑝 denotes the average of g𝑘
𝑖,𝑝

over K checkpoints.

In summary, O2UNet considers bias to capture noisy samples, while forgetting and VoG characterize samples based

on their variation or variance. Both bias and variance have been proven effective in characterizing samples in existing

studies. GELD combines both bias and variance as a measure of learning difficulty to characterize the samples.

4 RATIONAL ANALYSIS OF THEORETICAL DEFINITIONS

In this section, we verify theoretically the rationality of proposed definition for learning difficulty of samples

by conducting an analysis under weighting strategies, given that the weighting strategies in machine learning are

mainly based on learning difficulties, such as Adaboost [24], SPL [29, 74], and Focal loss [48]. Under our definition of

learning difficulty, above-mentioned weighting strategies can be better rationalized and further comprehended. First,

the weighted generalization error
8
is defined as follows:

𝐸𝑟𝑟w (𝜆ℎ) =
∑︁
𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥∈Ω𝑋

𝜔 (𝑥)𝐸𝑟𝑟 (𝑥, 𝜆ℎ)𝑝 (𝑥 |𝑦)d𝑥

=
∑︁
𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥∈Ω𝑋

𝜔 (𝑥)𝐵𝑖𝑎𝑠𝑇 (𝑥, 𝜆ℎ)𝑝 (𝑥 |𝑦)d𝑥

+
∑︁
𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥∈Ω𝑋

𝜔 (𝑥)𝑉𝑎𝑟𝑇 (𝑥, 𝜆ℎ)𝑝 (𝑥 |𝑦)d𝑥

+ 𝛿
′
𝑒 ,

(24)

where the non-negative weighting function 𝜔 (𝑥) is defined over the entire sample space Ω, and 𝛿
′
𝑒 is the irreducible

noise. Under various cases, propositions according to Eq. (24) are discussed and demonstrated. Subsequently, above-

mentioned typical weighting strategies are well-explained from the angle of difficulty-based weighting in order to prove

the rationality of proposed theoretical definition for learning difficulty of samples.

4.1 Propositions

We discuss influence to optimal model complexity brought by different learning schemes applied separately on

samples. An underlying case is firstly discussed in Proposition 1.

Proposition 1. If 𝜔 (𝑥) in Eq. (24) is a constant value, then 𝑐∗ remains unchanged.

The proof is simple and omitted.

8
When generalization error is defined over the entire sample space, regard 𝐸𝑟𝑟 (𝜆ℎ ) as 𝐸𝑟𝑟 (Ω, 𝜆ℎ ) for simplicity.
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Proposition 2. Consider a sample region Ω𝑟 ⊂ Ω in which the value of LDC for each sample in Ω𝑟 is larger than

one. If a constant weight 𝜔 larger than one is placed on each sample of Ω𝑟 and the weights of other samples in Ω remain

one, then the new optimal model complexity will become larger.

The proof is contained in Section B.2. in Appendix.

This proposition is in accordance with the idea that when the weights of hard samples are increased, the learned

model will become more complex than the original model. Based on this proposition, we could extend a corollary more

generalized.

Corollary 1. Consider a sample region Ω𝑟 ⊂ Ω whose learning difficulty coefficient LDC for each sample in Ω𝑟 is

larger than one. If a weight larger than the original weight is placed on each sample in Ω𝑟 , and the weights on other regions

remain unchanged, the new optimal complexity will become larger.

The proof is contained in Section B.3. in Appendix.

Proposition 3. Consider a sample region Ω𝑟 ⊂ Ω whose value of LDC for each sample in Ω𝑟 is smaller than one. If a

constant weight larger than one is placed on each sample of Ω𝑟 , and the weights of other samples in Ω remain one, then the

new optimal model complexity 𝑐′∗ will become smaller.

The proof is similar to that for Proposition 3 and Corollary 1 and omitted. In numerous weighting strategies, the

rationale is to modify the contributions of easy, medium, and hard samples. Therefore, the following propositions are

presented.

Proposition 4. Assume that the original weight of each sample is 𝜔0 (𝑥). Let 𝜔 (𝑥) = 𝑢 (LD(𝑥)) be a new weighting

function for a sample 𝑥 . If u is non-decreasing and satisfies that 0 ≤ min𝜔 (𝑥) < max𝜔 (𝑥), then the new optimal complexity

is larger than the original optimal complexity.

The proof is contained in Section B.4. in Appendix.

Corollary 2. Let Ω𝑒 , Ω𝑚 , and Ωℎ be a trichotomy for the whole space Ω, and they represent the regions for easy,

medium, and hard samples, respectively. Let 𝜔 (·, ·) be a region weighting function over the three data regions, and assume

that the weights in each region are identical for each sample. Note 𝑥 ∈ Ω𝑒 ;𝑥 ′ ∈ Ω𝑚 ;𝑥 ′′ ∈ Ωℎ . If 𝜔 (𝑥) ≤ 𝜔 (𝑥 ′) ≤ 𝜔 (𝑥 ′′)
and 𝜔 (𝑥) < 𝜔 (𝑥 ′′) hold, then the new optimal complexity will become larger.

The proof is simple and omitted.

Proposition 5. Assume that the original weight of each sample is𝜔0 (𝑥). Let𝜔 (𝑥) = 𝑢 (LD(𝑥)) be a weighting function
for a sample 𝑥 . If u is non-increasing and satisfies that 0 ≤ min𝜔 (𝑥) < max𝜔 (𝑥), then the new optimal complexity is

smaller than the original optimal complexity.

Corollary 3. Let Ω𝑒 , Ω𝑚 , and Ωℎ be a trichotomy for the whole region Ω and they are the regions for easy, medium,

and hard samples, respectively. Let 𝜔 (·, ·) be a region weighting function over the three data regions, and assume that the

weights in each region are identical for each sample. Note 𝑥 ∈ Ω𝑒 ;𝑥 ′ ∈ Ω𝑚 ;𝑥 ′′ ∈ Ωℎ . If 𝜔 (𝑥) ≥ 𝜔 (𝑥 ′) ≥ 𝜔 (𝑥 ′′) and
𝜔 (𝑥) > 𝜔 (𝑥 ′′) hold, then the new optimal complexity will become smaller.

Propositions 1-5 and the associated corollaries are about the weighting on generalization errors and also the losses.

They establish a theoretical framework for the analysis of the learning difficulty-aware weighting strategies in learning.

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 ZHU and WU, et al.

4.2 Explanations Under Classical Weighting Methods

We rationalizes several typical learning methods which assign weights on samples based on learning difficulties
9
.

4.2.1 Adaboost.

Adaboost is a classical ensemble learning algorithm. In each epoch, it learns a new model based on the updated

weights on samples defined as follows:

𝜔𝑡𝑖 =
𝜔𝑡−1

𝑖

𝑧𝑡−1
𝑒𝑥𝑝 (−𝛼𝑦𝑖 𝑓 𝑡−1 (𝑥𝑖 )), (25)

where 𝜔𝑡
𝑖
is the weight in the 𝑡𝑡ℎ epoch, 𝑧𝑡−1

is a normalized factor, 𝑓 𝑡−1
is the learned weak classifier in the (𝑡 − 1)𝑡ℎ

epoch, and 𝛼 is a positive weight for 𝑓 𝑡−1
. According to Eq. (25), if 𝑥𝑖 is mis-predicted by 𝑓 𝑡−1

, then the weight of 𝑥𝑖

will become larger in the next epoch. If 𝑥𝑖 is correctly predicted by 𝑓 𝑡−1
, then the weight of 𝑥𝑖 will become smaller in

the next epoch. In essence
10
, the weight in Eq. (25) can be written as follows:

𝜔𝑡𝑖 = 𝜔
𝑡−1

𝑖 𝑢 (LD(𝑥𝑖 )), (26)

where

𝑢 (LD(𝑥𝑖 )) =


𝑒𝑥𝑝 (𝛼)
𝑧𝑡−1

if LDC(𝑥𝑖 ) > 1

𝑒𝑥𝑝 (−𝛼)
𝑧𝑡−1

otherwise

(27)

Obviously, 𝑢 (LD(𝑥𝑖 )) is an increasing function over learning difficulty. According to Proposition 4, the new model

complexity becomes larger than the original one. Specially, the learned new classifier 𝑓 𝑡 is more complex than that in

the (𝑡 − 1)𝑡ℎ epoch if the learner is not as simple as the decision trump. Therefore, the new classifier and the whole

ensemble classifier become more complex with the increase in epoch.

Two aspects determine the complexity of the final ensemble model greatly:

• Power of the basic model. If the basic model is a strong classifier, such as SVM, the learned model will become

highly complex with the increase in epoch and overfitting is inevitable. A weak learner can avoid this situation.

• Number of maximum epochs. If the maximum epoch is large, then the ensemble model in the last few epochs

will become highly complex when noises exist. Accordingly, overfitting may occur.

A natural improvement is that high weights above a threshold are restricted. This condition makes the model less

complex. A famous modification with solid theoretical basis is soft margin boosting [80]. The weight is calculated as

follows:

𝜔𝑡𝑖 =
𝜔𝑡−1

𝑖

𝑧𝑡−1
𝑒𝑥𝑝 (−𝛼𝑦𝑖 𝑓 𝑡−1 (𝑥𝑖 ) −𝐶𝜁 𝑡−1

𝑖 |𝑏𝑡−1 |), (28)

where 𝐶 (≥ 0) is a hyper-parameter, 𝜁 𝑡−1

𝑖
is the average weight of the 𝑖𝑡ℎ sample up until the (𝑡 − 1)𝑡ℎ iteration, and

𝑏𝑡−1
is a factor that reflects the classification performance in the (𝑡 − 1)𝑡ℎ iteration. If 𝐶 > 0, then the above weight

is smaller than the weight in Eq. (25) when the sample is often misclassified up until the (𝑡 − 1)𝑡ℎ iteration, and vice

versa. Based on Corollary 1, on the contrary, the optimal complexity of the learned model based on the above weighting

scheme will be smaller than that of the model based on Eq. (25).

9
It should be noted that the difficulty measures in these methods are not equal to our proposed theoretical measure. Nevertheless, we assume that their

employed measures are in accordance with ours in their contexts to facilitate further theoretical investigation.

10
Indeed, the LDC(𝑥𝑖 ) can be seen as being approximated by 𝑒𝑥𝑝 (𝑦𝑖 𝑓 (𝑥𝑖 ) ) in Adaboost.
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Fig. 6. Curves of Focal loss with different values of 𝛾 .

4.2.2 SPL.

SPL trains models from easy samples and adds hard samples with the increasing training epoch. Its objective function

is as follows:

min

Θ,𝑣𝑖 ∈{0,1}

∑︁
𝑖

𝑣𝑖𝑙𝑖 − 𝜆𝑣𝑖 , (29)

where Θ is the model parameter, 𝑣𝑖 is the sample weight, and 𝜆 > 0 is a hyper-parameter and increased with the epoch.

Theoretically
11
, the weight in SPL is defined as follows

𝜔𝑖 =


1 LD(𝑥𝑖 ) ≤ 𝜆

0 otherwise.

(30)

In each new epoch, the weights of some hard samples are changed from zero to one with the increase in 𝜆. According

to the Corollary 1, the optimal model complexity will become larger. Alternatively, SPL obtains simple models in the

initial epochs and gradually yields complex models.

4.2.3 Focal loss.

Focal loss assigns each sample a weight as follows:

𝜔𝑖 = (1 − 𝑝𝑖,𝑦𝑖 )𝛾 , (31)

where 𝑝𝑖,𝑦𝑖 is the estimated SoftMax value of 𝑥𝑖 on the ground-truth label in the current model, and 𝛾 is positive. The

motivation of Focal loss is to exert (relatively) larger weights on hard samples than simple ones. Focal loss utilizes the

value of 1 − 𝑝𝑖,𝑦𝑖 as an indicator of learning difficulty. To better understand Focal loss, we first theoretically define a

11
Indeed, the LD(𝑥𝑖 ) can be seen as being approximated by 𝑙𝑖 in SPL.
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weight:

𝜔𝑖 =

(
LD(𝑥𝑖 )

maxLD(𝑥𝑖 )

)𝛾
. (32)

According to Proposition 4 and Corollary 2, the new optimal complexity will be increased. We further obtain the

following conclusion:

Corollary 4. The larger the value of 𝛾 , the larger the optimal complexity will be, i.e., ∀𝛾1 < 𝛾2, 𝑐
∗ (𝛾1) < 𝑐∗ (𝛾2).

The proof is similar to that for Proposition 3. Alternately, 𝛾 controls the model complexity. Consequently, if 𝛾 is quite

large, then the learned model will be quite complex which affects the generalization capability of the model. If 𝛾 is

smaller than zero, then the learned model will be simpler than the learned model when no weights are used (i.e., 𝛾 = 0).

Fig. 6 shows the curves of Focal loss when 𝛾 is searched in {−4,−3,−2,−1, 0, 1, 2, 3, 4}. Corollary 4 is also supported by

the empirical observations [11] shown in Fig. 7. A small(large) 𝛾 will result in under-fitting(over-fitting).

Focal loss is actually the strategy that uses the weight in Eq. (31) to approximate the weight defined in Eq. (32):(
LD(𝑥𝑖 )
LD𝑚𝑎𝑥

)𝛾
≈ (1 − 𝑝𝑖,𝑦𝑖 )𝛾 . (33)

Fig. 7. Detection performance with the variations of 𝛾 [11].

Remark 1. The proposed propositions and corollaries in Section 4.1 are in accordance with intuitions on the model

complexity variations when applying weighting for learning. The explanations for the three classical methods are also

reasonable and partially supported by empirical observations as shown in Fig. 7. The above analysis and explanations

support the rationale of our proposed learning difficulty theory.

5 PRACTICAL EXPERIMENTS OF PROPOSED MEASURE

This section demonstrates empirically the effectiveness of proposed practical measure under majority situations.

In general, the proposed measure is compared with competitive methods in terms of precision, learning speed, and

classification accuracy.

As previously mentioned, learning difficulty is heavily affected by the data quality, sample margin, uncertainty, and

category distribution. Therefore, four different scenarios are designed to evaluate the precision in detection.

5.1 Measurement under Noise Detection

Two benchmark image classification data sets [41], namely, CIFAR10 and CIFAR100 are used. There are 10 classes in

CIFAR10 and 100 classes in CIFAR100. On both sets, there are 50,000 images for training and 10,000 images for testing.
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The test images are used as the validation data for CIFAR10 and CIFAR100. In this scenario, noises contain two types.

The first type is noisy labels (𝑦), while the second consists of noisy images (𝑥 ). The competing methods are as follows:

• Loss. The losses for each sample in the epoch with the highest validation accuracy are used for measurement.

• Average loss (AveLoss). The average values of losses of the last 100 epochs are used for measurement.

• O2UNet [37]. As previously introduced, this method adopts a cyclical training procedure and the average loss

of each sample in the procedure is used.

• MentorNet [38]. This method pertaining to curriculum learning, uses the output weights of the teacher

network with the highest accuracy on the validation set to present the possibility of being correct. A smaller

weight indicates the sample is more difficult to learn.

• Co-teaching [31]. Two networks are trained. For each sample, the smaller one of the two losses given by the

two networks is regarded as the learning difficulty.

• Variance of Gradients (VoG) [2]. This method relies on calculating the variances of the gradient norms for

each sample across different training epochs. A high VoG value indicates that a sample has a higher level of

difficulty.

• Variance of Gradient for Curriculum Learning (VoG-CL) [82]: VoG-CL, derived from VoG, incorporates

the concept of curriculum learning. By utilizing multiple networks, VoG-CL calculates the averaged variance of

the gradient to assess the learning difficulty of samples.

• Our proposed method GELD. The detailed steps are presented in Algorithm 1.

Fig. 8. The F1 scores (%) of the competing methods on CIFAR10 under different sub-types and rates of label noises.

In the methods of Loss, AveLoss, O2UNet, VoG, VoG-CL, and our GELD, ResNet-34 [33] is used as the base network.

The hyper-parameters of ResNet-34 used in [33] are followed. Specifically, the batch-size is 128, the SGD optimizer
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has a momentum of 0.9, and the weight decay is 1e-4. The learning rate of the first 40 epochs is 0.1 and is multiplied

by 0.1 for every 40 epochs. Each model is learned for 200 epochs. The default settings of MentorNet and Co-teaching

are borrowed from the corresponding papers [31, 38]. O2UNet, VoG, and VoG-CL contain specific hyper-parameters

other than those of ResNet-34. These parameters follow the setting in the original paper [2, 37, 82]. In our GELD, 𝐾 and

𝑀 are set as 5 and 6 respectively, for GELD, except for the part E (the discussion of the impact of (𝐾,𝑀) value). The
tuning factor 𝜇 of GELD is set as 1.

Let 𝑣 be the noise rate. The result evaluation scheme used for O2UNet [37] is followed. In each method, the

top-50000 ∗ 𝑣 ∗ 𝑟 samples are selected as its detected noisy samples according to its estimated difficulties, where

𝑟 ∈ {0.8, 0.9, 1, 1.1, 1.2}. Then, the whole detection is repeated three times for each method and the average F1 values

on the detection results are calculated and compared. A high F1 value indicates a good performance in noisy label

detection and thus the learning difficulty measurement.

5.1.1 Noisy Label Detection.

Two sub-types of noises are used, namely, symmetric and pair-flip. The symmetric noise describes mislabeling to

each other classes of equal possibility. In pair-flip, labelers may make mistakes only within very similar class. The noise

rate is set as 20%, 40%, and 60%, respectively. The detailed noise setting in [31] is followed.

Figs. 8 and 9 show the detection performances of the competing methods on CIFAR10 and CIFAR100, respectively.

Our proposed approach GELD achieves the highest F1 values in most cases. Although O2UNet outperforms GELD

under the symmetric noise sub-type on CIFAR100 (Figs. 9(a), (b), and (c)), its performances are quite poor under the

pair-flip noises. The performance of the widely-used method Loss is poor and it achieves the worst F1 scores in several

cases. Loss is not an ideal measurement for the easy and hard samples even though it does not require additional

computational cost. VoG and VoG-CL exhibit superiority compared with other comparison methods, but our method

GELD consistently outperforms all comparison methods. These results indicate that variance is more relevant to data

characteristics than bias on these datasets, as VoG, VoG-CL, and GELD all incorporate variance for data detection.

However, it is worth noting that the variance term occasionally fails to characterize data, while our method GELD,

which utilizes both bias and variance, proves to be effective under all cases.

In our approach GELD, 𝜇 can be tuned. Table 2 shows the performance variations of GELD under the pair-flip noise

sub-type and different values of 𝜇 in Eq. (20). When the value is larger than one, higher F1 values are achieved. These

results reveal the importance of the variance term during the evaluation of the learning difficulty.

Table 2. 𝐹1 scores (%) of GELD under various values of 𝜇.

𝜇 0.5 0.75 1 1.25 1.5 2

C
I
F
A
R
1
0

20% 90.48 92.01 93.67 93.99 94.83 95.06

40% 93.95 93.99 96.03 96.00 96.00 95.39

60% 91.60 92.47 95.80 95.67 95.52 94.99

C
I
F
A
R
1
0
0

20% 89.74 90.00 90.50 90.71 91.00 91.67

40% 90.04 91.39 91.51 92.00 92.33 92.97

60% 90.33 91.05 91.39 91.49 92.41 93.22
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Fig. 9. The F1 scores (%) of the competing methods on CIFAR100 under different sub-types and rates of label noises.

5.1.2 Noisy Image Detection.

In this experiment, salt-and-pepper noises are leveraged [25]. The noise is simulated by adding white (salt) or black

(pepper) noises into the original RGB images with a parameter of signal-to-noise ratio (SNR). In our experiment, the

SNR is set as 0.4 for each image. Fig. 10 shows an example for nosiy images with different SNR levels. The noise rate on

the whole data is set as 20% and 40%, respectively.

Fig. 10. Noisy images with different SNR levels.

Fig. 11 shows the performances of the competing methods on CIFAR10 and CIFAR100, respectively. The settings of

competing methods remain unchanged compared with the label noise experiments. Our method GELD still achieves

the highest F1 values under all the noise rates. Few noisy data were detected by methods that rely merely on the loss.

5.2 Measurement under Small-margin Data Detection

A sample with a small margin (the distance to the oracle decision boundary) is considered to be hard in learning [74].

This experiment evaluates a learning difficulty measure in terms of the detection of small-margin samples.
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Fig. 11. The F1 scores (%) of the competing methods on CIFAR10 and CIFAR100 under different rates of salt-and-pepper noise.

In this experiment, four UCI [8] data sets are used, namely, Iris, Mammographic, Haberman, and Abalone. To better

construct the ground-truth, only binary classification is considered. Only two categories are selected for both Iris

(the “Setosa" and “Versicolour" categories) and Abalone (the “9" and “10" categories). Mammographic and Haber-

man contain only two categories. The details of used data in this experiment are presented in Table 3. The classical

margin-based learning method SVM [16] is used to construct the ground truth, i.e., the small-margin samples. Specifi-

cally, the SVM with RBF kernel is used. Two parameters 𝐶 and 𝑔 are searched in {10
−3, 10

−2, 10
−1, 1, 10, 10

2, 10
3
} and

{10
−3, 10

−2, 10
−1, 1, 10, 10

2, 10
3
}, respectively, via five-fold cross-validation. The optimal parameter setting is used and

the SVM is trained on the whole training set. Constantly, the margin of each sample is calculated as the ground-truth

difficulty. The margin is 𝑦𝑓 (𝑥) for the sample 𝑥 , where 𝑦 is the label and 𝑓 (𝑥) is the output of the kernel SVM. Let 𝑁 be

the #Instances. The top-𝑁 ∗ 𝑣 samples with small margins are selected as the ground-truth samples to detect.

As the base network ResNet-34 is inappropriate in this experiment, a three-layer perception with the Sigmoid

activation function is used as the base network. The number of epoch is set as 10000. Its hyper-parameters are also

pursed via five-fold cross-validation. Considering that MentorNet and Co-teaching are quite complex for this scenario,

they are not compared in this experiment. The competing methods include Loss, AveLoss, O2UNet, VoG, VoG-CL, and

our GLED. The evaluation criteria and the whole calculate scheme follow the setting in the previous experiments. The

value of 𝑣 is set as 20%, 40%, and 60%, respectively; 𝑟 is set as one.

The results are shown in Fig. 12. Our approach GELD achieves the highest F1 values on all data sets. In addition,

GELD is stable across different 𝑣s and different data sets. By contrast, the other methods are not stable.
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Table 3. Details of the four UCI data sets.

Data set #Dimensions #Classes #Instances

Iris 4 2 100

Mammographic 5 2 961

Haberman 3 2 360

Abalone 8 2 1323

Fig. 12. Histograms of F1 scores (%) under various data sets using margin as ground-truth.

5.3 Measurement under Epistemic Uncertainty Detection

In this experiment, a data corpus containing epistemic uncertainty is required. An image aesthetic assessment data

corpus, namely, AVA benchmark image aesthetic data corpus [54], is then utilized and each photo receives multiple rating

scores from multiple different users. The variance of user rating scores of a photo reflects the epistemic uncertainty

on the photo using each user as a gold model. A large variance indicates a large uncertainty for a photo. Specifically,

the former 50,000 samples in the AVA corpus are downloaded and each sample receives 210 rates on average counting

from 1 to 10. We use ResNet-101 as the base network as the image quality of AVA is much higher than CIFAR10 and

CIFAR100. Given that the Bayesian Neural Network (BNN) [73] is particularly designed for modeling uncertainty, we

import BNN as one of the competing methods, and its outputting confidence coefficient is used to detect uncertain

photos. Therefore, the competing methods include Loss, AveLoss, O2UNet, BNN, VoG, VoG-CL, and our GELD.

The top-50, 000 ∗ 𝑣 photos with high uncertain scores are taken as the objective samples to detect. The 𝑣 values

are set as 20%, 40%, and 60%. The 𝑟 value is set as one. In the BNN method, the dropout strategy described in [73] is

followed. The parameter setting of ResNet-101 reported in [33] is adopted. The photos are resized into shape of (3, 192,

192) to fit in the ResNet-101.
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Table 4. 𝐹1 scores (%) using the variance of scores as standard

Method Loss AveLoss O2UNet BNN VoG VoG-CL GELD

20% 14.64 54.05 33.27 62.71 61.09 62.45 63.96
40% 28.38 33.33 35.67 54.30 71.99 73.08 78.39
60% 30.23 45.79 38.20 78.21 76.42 78.69 79.11

Table 4 shows the F1 scores of the competing methods in high uncertain sample detection. GELD still performs the

best and slightly outperforms BNN. The rest of the three methods poorly perform in this detection task. Fig. 13 shows

the top-5 high uncertain photos and the top-5 photos detected by our GELD approach. The aforementioned figure

(Fig. 14) also shows the last five photos with small uncertainty and the last five photos detected by our GELD.

Fig. 13. True highest uncertain photos and our detection results. The histograms of user ratings are also presented.

5.4 Measurement for Imbalance Data

The long-tail versions of the CIFAR10 and CIFAR100 are used in this experiment. Buda et al. [13] compiled a series

of data sets under different imbalance ratios. The two data sets under the 20 : 1 ratio for CIFAR10 and CIFAR100 are

used. There is no ground-truth information for the learning difficulties because the head categories can also contain

difficult samples. Consequently, we only plot the histograms of the numbers of hard samples detected by the competing

methods in the head and tail categories. The competing methods are Loss, AvgLoss, O2UNet, VoG, and our proposed

GLED. The base network and the concerning setting in part A are followed.

The top-40% samples detected by each competing methods are regarded as their detected hard samples. Figs. 15

and 16 show the histograms of the detected hard samples by each method on CIFAR10 and CIFAR100 (the top five

head categories and the last five tail categories), respectively. All the competing methods identically behave on the

tail categories on both data corpora. This condition is reasonable and accords well with the primary motivation for

imbalance learning that samples in tail categories are hard to learn. There are slight differences between our GELD and

other competing methods on the head categories. The numbers of hard samples detected by GELD are larger than those

of other methods, which is reasonable because head categories still contain hard samples.
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Fig. 14. True lowest uncertain photos and our detection results. The histograms of user ratings are also presented.

Fig. 15. Histogram of CIFAR10-LT top-40% detected hard samples.

5.5 Discussion

The above experiments on the four scenarios, namely, noise detection, small-margin sample detection, uncertain

sample detection, and hard sample detection in imbalance learning, verify the superiority of the proposed GELD

approach over existing classical and state-of-the-art methods. As previously introduced, the primary difference between

GELD and many existing methods lies in that GELD explicitly considers variances. Fig. 17 shows the histograms of the

bias values and the variance values achieved by GELD on clean samples and label noisy samples under both pair-flip

and symmetric noise types on CIFAR10. The variance values between clean and noisy samples are also considerably

distinct as shown in Figs. 17 (b) and (d), which demonstrates the usefulness of the variance term utilized in our GELD

method. In addition, the difference consist in histograms of noisy and clean samples under the pair-flip noises is trivial,

which rationalises the poor performances of the loss-based methods such as O2UNet.
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Fig. 16. Histogram of CIFAR100-LT top-40% detected hard samples.

(a) Bias of pair-flip-type label noisy samples (b) Variance of pair-flip-type label noisy samples

(d) Variance of symmetric-type label noisy samples(c) Bias of symmetric-type label noisy samples

Fig. 17. Histograms of bias and variance values calculated by GELD under different types of label noise (𝑣 = 40%).

Although good results are achieved, GELD is only an appropriation for theoretical difficulty in Definition 1. We

evaluate the robustness of the method in terms of the variations on the two key parameters, namely, 𝐾 and𝑀 . Table

5 shows the performances of pair-flip noise detection (𝑟 = 1) on CIFAR10 and CIFAR100. The results show that the

performances of GELD are stable when the value of (𝐾,𝑀) is set in {(4, 5), (5, 6), (5, 8), (5, 10)}.

We are interested in whether a simple model can also obtain better results. A simple network, namely, AlexNet [42], is

used as the basic leaner in pair-flip noisy label. The base network and setting of other methods follow the previous setting

of the corresponding experiments in part A. The training setting of AlexNet in [55] is followed, and the output-size

is modified into 100 while training CIAFR100. The results are shown in Table 6. GELD (AlexNet) is inferior to GELD

(ResNet-34). However, it is comparable to Co-teaching and outperforms the rest of the methods.
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Table 5. 𝐹1 scores (%) with various values of 𝐾 ∗𝑀 .

𝐾 ∗𝑀 20 (4×5) 30 (5 × 6) 40 (5 × 8) 50 (5 × 10)

C
I
F
A
R
1
0

20% 96.83 97.51 96.91 97.04

40% 94.12 95.77 96.10 96.34

60% 94.81 95.82 94.95 95.34

C
I
F
A
R
1
0
0

20% 90.36 91.00 92.67 91.46

40% 91.78 92.48 91.86 91.04

60% 90.02 92.00 91.17 90.89

Table 6. 𝐹1 scores (%) of the competing methods plus GELD using
AlexNet as base model.

Method CIFAR10 CIFAR100

Label noise rate 20% 40% 60% 20% 40% 60%

GELD (ResNet-34) 97.51 95.77 95.82 91.00 92.48 92.00

O2UNet 92.31 80.76 33.69 61.29 54.03 46.98

Co-teaching 92.63 89.45 58.02 86.22 89.77 88.90

MentorNet 88.02 67.96 47.14 73.00 51.49 60.09

AveLoss 81.39 79.23 51.98 77.38 74.18 79.17

Loss 76.69 76.12 50.53 75.29 74.15 79.75

GELD (AlexNet) 82.58 88.77 83.54 82.96 86.51 84.39

Table 7. Time cost of different complex methods.

Method Time cost (hours)

O2UNet 7.95

GELD (1 GPU) 11.11

GELD (2 GPUs) 5.67

GELD (3 GPUs) 3.71

GELD (4 GPUs) 2.83

A large real-world data set, namely, Clothing1M [41], is used to further evaluate the performance of our GELD

measure in terms of image classification. There are 14 classes in Clothing1M containing 1,000,000 training images with

real noisy labels, 48,000 training samples verified to be clean, and 10,000 testing images. The 48,000 clean training

samples are used as the validation data for Clothing1M. Clothing1M has a noise proportion of 38% approximately.

ResNet-101 is used and the settings of the network in [37] are employed. (𝐾,𝑀) are set as (50, 50). Each model is

learned for 50 epochs for GELD. The model is selected using the 48,000 clean training samples. The learning rate

remains constant as 1𝑒 − 6. The batch size is set as 16 during the GELD calculation. Other hyper-parameters follow

the settings in [37]. The top 10% samples with the highest 𝐸𝑟𝑟 (𝑥𝑖 , 𝜆ℎ) values are removed as detected noisy samples.

Remaining samples are used to learn the final image classifier. The batch size is set as 128 and the maximum epoch is
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Table 8. Classification accuracy (%) on Clothing1M

MentorNet Co-teaching O2UNet GELD

79.30 78.52 82.38 82.94

set as 10 during this procedure. The settings of other methods in [37] are followed. Table 8 shows the comparison of

classification accuracies (%) among the four competing methods. GELD outperforms the other three methods. Results

of methods beside GELD are directly from the O2UNet study [37].

The computational cost of GELD is relatively high as 𝐾 ∗𝑀 models should be trained. However, it is still smaller

than another SOTA method O2U-Net. Moreover, several ways can significantly reduce the complexity. First, the task

can be performed in parallel. Four NVIDIA GeForce RTX 3090 GPUs are used in our experiments. The average time

costs for our GELD using different number of GPUs on CIFAR10 using ResNet-34 as base network are shown in Table 7.

The settings follow the pair-flip label noise experiments’ in part A with (𝐾,𝑀) is set as (5, 6). The time consumption is

considerably reduced when GELD is run on more GPUs in parallel. The time cost of O2UNet is also large. More over,

O2UNet cannot be performed in parallel. Second, a relatively small training set instead of the entire can be used when

dealing with large corpora. Third, a dropout-based strategy (like the quantifying uncertainties in BNN) can also reduce

the time cost. To sum up, the time complexity of GELD does not hinder its applications based on these strategies.

Although four key factors, namely, data quality, samplemargin, uncertainty, and category distribution, are summarized

and the proposed method achieves quite competing performance, a directly theoretical connection between the four

factors and the learning difficulty is not established in this study. We leave this theoretical investigation as our future

work.

6 CONCLUSION

This study has conducted a comprehensive investigation on learning difficulty of data in machine learning. We

gave a first summary of influential factors for learning difficulty. Correlations between generalization error, model

complexity, and influential factors are surveyed and analyzed. Then we established a theoretical definition of learning

difficulties of data based on generalization error and model complexity. The well discussed and explored concepts, easy

and hard samples, are formally described based on the theoretical definition and the associated difficulty coefficients. A

practical measure, namely, the generalization error-based learning difficulty (GELD) measurement, is then proposed

by importing the typical bias-variance trade-off theory to calculate the learning difficulty of each training sample.

Our proposed measure is the first measure which incorporates both the bias and the variance to characterize samples.

Finally, the properties of the weighted learning strategy are presented and three classical methods are explained on

the basis of the theoretical formalization. Extensive experiments validate the effectiveness of our proposed measure,

which outperforms existing state-of-the-art methods under different scenarios considering concluded influential factors.

Learning speed and classification accuracy are also explored and GELD shows its outstanding performance.

This study conducts an attempt to establish a theory for learning difficulty of samples. Our future work aims to

reveal the mathematical correlations between the theoretical definition (i.e., optimal model complexity) and the measure

(i.e., generalization error) for learning difficulty.
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A CALCULATION OF MODEL COMPLEXITY

The model complexity used in this study is on the basis of minimum description length (MDL) [9] and the Kolmogorov

complexity [46]. MDL and Kolmogorov complexity are combined and used to describe the model complexity under

various learning tasks in [22].

Let w = (𝑤1, ..,𝑤𝑑−1
)𝑇 be the model parameter of a regression model where 𝑑 signifies the dimension of inputs. Let

𝑝 (w) be the probability density of w. According to MDL, the model complexity expectation 𝑐 (w) is the expectation of

model complexity

𝑚(w) = − log𝑝 (w),

over different training set 𝑇 , i.e., 𝑐 (w) = E𝑇 [𝑚(w)]. Suppose that each component of w is independent to each other

and follows the identical Gaussian distribution𝑤𝑖 ∼ N (0, 𝜎2) . Therefore, the model complexity defined on the basis of
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MDL equals to

𝑚(w) = − log𝑝 (w)

= −
𝑑∑︁
𝑖=1

log𝑝 (𝑤𝑖 )

= − log

𝑑∏
𝑖=1

𝑝 (𝑤𝑖 )

= − log

𝑑∏
𝑖=1

[ 1

√
2𝜋𝜎

exp(−
𝑤2

𝑖

2𝜎2
)]

=

𝑑∑︁
𝑖=1

𝑤2

𝑖

2𝜎2
+ 𝑑 log(

√
2𝜋𝜎)

=
∥w∥2

2

2𝜎2
+ 𝑑 log(

√
2𝜋𝜎)

(A.1)

When the construction of the basic learner and 𝜎2
is fixed, the model complexity only concerns ∥w∥2

2
.

Under the ridge regression, with the input denoted as 𝑥 and its label denoted as 𝑦, the objective function is

L =

𝑁∑︁
𝑛=1

𝑙 (𝑓 (𝑥 ;w), 𝑦) + 𝜆∥w∥2

2
,

and the estimated parameters are given by

ŵ(𝜆) = (𝑥𝑇 𝑥 + 𝜆𝐼 )−1𝑥𝑇𝑦.

Based on the Assumption 1, the variance term is an increasing function with respect to the model complexity, and as

the loss function normally used during the training procedure is in fact the bias term in the bias-variance trade-off, the

generalization error can be estimated by the following form:

L =

𝑁∑︁
𝑛=1

𝑙 (𝑓 (𝑥 ;w), 𝑦) +𝑚(w)

=

𝑁∑︁
𝑛=1

𝑙 (𝑓 (𝑥 ;w), 𝑦) +
∥w∥2

2

2𝜎2
+ 𝑑 log(

√
2𝜋𝜎)

∼
𝑁∑︁
𝑛=1

𝑙 (𝑓 (𝑥 ;w), 𝑦) + 𝜆∥w∥2

2

Accordingly, an enlargement of 𝜆 leads to a reducing of ∥w∥2

2
, and moreover, a lower model complexity. The above

analysis indicates that the MDL-based model complexity well explains the ridge regression. However, the former

calculation is based on the identical distribution assumption for each𝑤𝑖 . When the model is a polynomial function, the

contributions of each component of w to the whole model complexity are not identical. For example, when using a

polynomial function 𝑔(𝑥) ∼ O (3) to perform ridge regression,𝑤3 should contributes more to the model complexity

comparing to 𝑤0. Therefore, an identical distribution for all components of w is unreasonable. A more reasonable
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assumption is that𝑤𝑖 ∼ N (0, 𝜎2

𝑖
) with the condition that 𝜎2

𝑖
< 𝜎2

𝑗
if 𝑖 > 𝑗 . From Eq. (A.1), we have

𝑚(w) = − log 𝑝 (w)

= −
𝑑∑︁
𝑖=1

log 𝑝 (𝑤𝑖 )

= − log

𝑑∏
𝑖=1

𝑝 (𝑤𝑖 )

= − log

𝑑∏
𝑖=1

[ 1

√
2𝜋𝜎𝑖

exp(−
𝑤2

𝑖

2𝜎2

𝑖

)]

=

𝑑∑︁
𝑖=1

𝑤2

𝑖

2𝜎2

𝑖

+ 𝑑 log(
√

2𝜋𝜎𝑖 )

(A.2)

In our practical calculation, let 𝜎2

𝑖
= (𝑑

𝑖
𝜎)2

. Denoting ŵ𝑡 (𝜆) as parameters of model learnt on training set𝑇𝑡 . Ignoring

the constant term, the model complexity becomes

𝑚(ŵ𝑡 (𝜆)) =
𝑑∑︁
𝑖=1

( 𝑖
𝑑
𝑤̂𝑡,𝑖 (𝜆))2 .

Given𝑀 training sets, the model complexity expectation is

𝑐 (ŵ(𝜆)) = 1

𝑀

𝑀∑︁
𝑖=1

𝑑∑︁
𝑖=1

( 𝑖
𝑑
𝑤̂𝑡,𝑖 (𝜆))2 . (A.3)

B PROOFS OF PROPOSITIONS

B.1 Proof of Proposition 2

Proof.

𝐸𝑟𝑟w (𝜆ℎ ) =
∑︁

𝑦∈Ω𝑌
𝑃 (𝑦)

∫
𝑥 ∈Ω𝑋

𝜔 𝐸𝑟𝑟 (𝑥, 𝜆ℎ )𝑝 (𝑥 |𝑦)d𝑥

=
∑︁

𝑦∈Ω𝑌
𝑃 (𝑦)

∫
𝑥 ∈Ω𝑟

𝑋

𝜔 𝐸𝑟𝑟 (𝑥, 𝜆ℎ )𝑝 (𝑥 |𝑦)d𝑥

+
∑︁

𝑦∈Ω𝑌
𝑃 (𝑦)

∫
𝑥 ∈Ω𝑋 /Ω𝑟

𝑋

𝐸𝑟𝑟 (𝑥, 𝜆ℎ )𝑝 (𝑥 |𝑦)d𝑥

= 𝐸𝑟𝑟 (𝜆ℎ ) +
∑︁

𝑦∈Ω𝑌
𝑃 (𝑦)

∫
𝑥 ∈Ω𝑟

𝑋

(𝜔 − 1)𝐸𝑟𝑟 (𝑥, 𝜆ℎ )𝑝 (𝑥 |𝑦)d𝑥

.

Note that

𝜕𝐸𝑟𝑟 (𝜆ℎ)
𝜕𝑐

|𝑐=𝑐∗ = 0. Given that LDC(𝑥) > 1,

𝜕𝐸𝑟𝑟 (𝑥, 𝜆ℎ)
𝜕𝑐

|𝑐=𝑐∗ < 0, ∀𝑥 ∈ Ω𝑟 .With 𝜔 > 1, we have

𝜕𝐸𝑟𝑟w (𝜆ℎ)
𝜕𝑐

|𝑐=𝑐∗ < 0.

According to Proposition 1, the new optimal model complexity 𝑐′∗ will be larger than 𝑐∗. □

B.2 Proof of Corollary 1

Proof. The optimal complexity 𝑐∗ under the original weights 𝜔 can be theoretically inferred under the (original)

weighted distribution 𝑃1 ∼ 𝜔𝑃 . The learning with new weights 𝜔̃ equals to the learning with the weights 𝜔̃/𝜔 for each
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sample in Ω𝑟 under the distribution 𝑃1. Because the new weights are larger than the original weights on Ω𝑟 , 𝜔̃/𝜔 is

larger than one on Ω𝑟 . According to Proposition 3, the new optimal complexity becomes larger. □

B.3 Proof of Proposition 4

Proof. Let Ω𝑒 and Ωℎ be the regions containing the easy and hard samples according to 𝑐∗, respectively.
𝜕𝐸𝑟𝑟w0 (𝜆ℎ )

𝜕𝑐
|𝑐=𝑐∗ =

∑︁
𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥 ∈Ω𝑒

𝑋

𝜔0 (𝑥 )
𝜕𝐸𝑟𝑟 (𝑥, 𝜆ℎ )

𝜕𝑐
|𝑐=𝑐∗𝑝 (𝑥 |𝑦)d𝑥

+
∑︁

𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥 ∈Ωℎ

𝑋

𝜔0 (𝑥 )
𝜕𝐸𝑟𝑟 (𝑥, 𝜆ℎ )

𝜕𝑐
|𝑐=𝑐∗𝑝 (𝑥 |𝑦)d𝑥

=0

.

Let 𝜔∗
𝑒 = max

𝑥∈Ω𝑒
𝜔 (𝑥) and 𝜔∗

ℎ
= min

𝑥∈Ωℎ
𝜔 (𝑥). Moreover, 𝜔∗

𝑒 ≤ 𝜔∗
ℎ
. We have

𝜕𝐸𝑟𝑟w (𝜆ℎ )
𝜕𝑐

=
∑︁

𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥 ∈Ω𝑒

𝑋

𝜔 (𝑥 ) 𝜕𝐸𝑟𝑟
w

0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥

+
∑︁

𝑦∈Ω𝑌

𝑃 (𝑦)
∫
𝑥 ∈Ωℎ

𝑋

𝜔 (𝑥 ) 𝜕𝐸𝑟𝑟
w

0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥

Note that

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

|𝑐=𝑐∗ > 0, ∀ 𝑥 ∈ Ω𝑒
𝑋

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

|𝑐=𝑐∗ < 0, ∀ 𝑥 ∈ Ωℎ
𝑋

.

Therefore, ∫
𝑥 ∈Ω𝑒

𝑋

𝜔 (𝑥 ) 𝜕𝐸𝑟𝑟
w

0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥︸                                               ︷︷                                               ︸
1○

≤
∫
𝑥 ∈Ω𝑒

𝑋

𝜔∗
𝑒

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥,

and ∫
𝑥 ∈Ωℎ

𝑋

𝜔∗
ℎ

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥 ≥
∫
𝑥 ∈Ωℎ

𝑋

𝜔 (𝑥 ) 𝜕𝐸𝑟𝑟
w

0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥︸                                               ︷︷                                               ︸
2○

1○ + 2○ ≤
∫
𝑥 ∈Ω𝑒

𝑋

𝜔∗
𝑒

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥 +
∫
𝑥 ∈Ωℎ

𝑋

𝜔∗
ℎ

𝜕𝐸𝑟𝑟 ′ (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥

≤
∫
𝑥 ∈Ω𝑒

𝑋

𝜔∗
ℎ

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥 +
∫
𝑥 ∈Ωℎ

𝑋

𝜔∗
ℎ

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

𝑝 (𝑥 |𝑦)d𝑥

=𝜔∗
ℎ

∫
𝑥 ∈Ω𝑋

𝜕𝐸𝑟𝑟w0 (𝑥, 𝜆ℎ )
𝜕𝑐

|𝑐=𝑐∗𝑝 (𝑥 |𝑦)d𝑥

=0

.

The equal relation holds if and only if

min

𝑥 ∈Ω𝑒
𝜔 (𝑥 ) = 𝜔∗

𝑒 = 𝜔∗
ℎ = max

𝑥 ∈Ωℎ
𝜔 (𝑥 ) .

Note that min𝜔 (𝑥) < max𝜔 (𝑥). Therefore, 𝜕𝐸𝑟𝑟
w (𝜆ℎ)
𝜕𝑐

< 0. Accordingly, the optimal complexity becomes larger. □

C ONLINE RESOURCES

https://github.com/Weiyao619/GELD.git
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