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Abstract

We investigate the problem of classification of solutions for the steady Navier-
Stokes equations in any cone-like domain. In the form of separated variables,

o))
ul@y) = ( oa(r)ual0) ) ’

where x = r cosf and y = rsin @ in the polar coordinates, we obtain the expressions
of all smooth solutions with C® Dirichlet boundary condition. In particular, we
find some solutions which are Holder continuous on the boundary but their gradi-
ents blow up at the corner, show that all solutions in the entire plane R? must be
polynomials, and prove a sharp Liouville type theorem.
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1 Introduction
Consider the Navier-Stokes equations

ou— Au+u-Vu+ Vp=0, (1)
divu =0,

for z € R" and t > 0. Here u(z,t) = (u1(z,t),us(, t), us(x,t)) denotes the unknown
velocity of the fluid, and the scalar function p(x,t) denotes the unknown pressure.
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It is well-known that one of the seven most important unsolved problems of the Clay
Mathematics Institute is whether the existence and smoothness of solutions hold for 3D
Navier-Stokes equations (1) with the initial condition

U(ZE,O) = Uo(fE), S R?,’

where ug(z) is a smooth, divergence-free vector field decaying sufficiently fast as x — oo;
see [8].

In a seminal paper [17], Leray proved the global existence of weak (or generalized)
solutions in a suitable function space. In 3D, the problems of uniqueness and regulari-
ty of weak solutions are of great significance in mathematical fluid mechanics and still
open. Here the regularity problem usually refers to the smoothness problem of solutions.
In the context of Navier-Stokes equations, sometimes local boundedness is sufficient for
smoothness; see for example [15, Proposition 15.1, p. 147].

Recently, for the axi-symmetric Navier-Stokes equations, important progress has been
made by Chen-Strain-Yau-Tsai [6, 7] and Koch-Nadirashvili-Seregin-Sverdk [13], respec-
tively. They showed that solutions do not develop type I singularity. We call a singularity
of type I for a Navier-Stokes solution u at time T if

sup [u(z, )] < ——
up |u(z,t)| < .
e T 1

The innovative idea in [13] is that they transform the regularity problem into Liouville
type theorems by the classic rescaling and blow-up procedure. If a Liouville type theorem
for some kind of solutions is available (they proved that this is true for the axi-symmetric
case), then finite-time singularities of type I can be ruled out.

Here, a Liouville type theorem means a theorem asserting that equations only have
constant or trivial solutions, as the classical Liouville theorem asserts that any bounded
entire analytic function must be constant.

Regarding Liouville theorems for Navier-Stokes equations, they said ([13], p. 84):
“The case of general 3-dimensional fields s, as far as we know, completely open. In fact,
it 1s open even in the steady-state case (u independent of t).”

Motivated by their question in [13], we consider here the case of the incompressible
steady Navier-Stokes equations on the whole space R":

{—Au—l—u-Vu+Vp:O, )
div u =0,

and investigate the classification of solutions of (2). First, let us review some major
developments on this topic. In the 3D steady-state case, Galdi [10] proved the Liouville
theorem that u must be constant under the assumptions that u € L2 (R3) and the Dirichlet
integral is finite, namely

/ |Vul*dz < oo. (3)

A very challenging open problem is whether there exists a nontrivial solution under the
assumption of finite Dirichlet integral (3) without the condition u € Lz (R®). This u-
niqueness problem (or equivalently the Liouville type problem), can date back to Leray’s
celebrated paper [16], and is explicitly written in Galdi’s book [10, Remark X. 9.4, p. 729];



see also Tsai’s book [21, p. 23]. Later, Chae-Wolf [4] _gave an improvement for Galdi’s
result by replacing the condition u € L2 (R3) by Jas |u)2 2{In(2 + B ‘)}_ldx < 00. For more
references, we refer to [20, 5, 3] and the references therein. Note that the above Dirichlet
integral condition (3) implies that the solution is bounded. However, it is still unknown
whether the Liouville theorem holds for bounded solutions.

In fact, even for the 2D case, the problem of classification of solutions for the steady
Navier-Stokes equations is still not solved, while some Liouville type theorems were proved.
We give some examples here. Gilbarg-Weinberger [11] proved the Liouville theorem by
assuming the Dirichlet integral condition (3) alone. They used the fact that the vorticity
function w = 0yu; — Ous satisfies the fine elliptic equation

Aw—u-Vw=0 (4)

and applied a maximum principle to (4). If Vu € LY(R?) with 1 < ¢ < oo, the first author
[22] proved that u is a constant vector by using the growth estimate of the functions
whose gradients belong to the L? space; see also [14] for another approach. When the
solution w is bounded, a Liouville theorem was obtained by Koch-Nadirashvili-Seregin-
Sverdk in [13] as a byproduct of their work on the non-steady case. More generally, if
lim supy,) o || ~|u(z)| < C with a € [0, 1), Fuchs-Zhong [9] proved the constancy of w.
Later, the exponent « is improved to a < % in [1] with the help of the vorticity equation
(4). It seems that a could be improved to 1, as suggested by Fuchs-Zhong in [9]:

“Suppose that limy,| oo |z| " |u(z)| = 0. Does the constancy of u follow?”

This is true for harmonic functions. It follows from the well-known fact that a harmonic
function on R™ having polynomial growth is necessarily a polynomial; see also Yau [23] and
Li-Tam [18], where they considered the space of harmonic functions with linear growth
on complete manifolds with nonnegative Ricci curvature.

In this paper, our purpose is to classify the solutions for the 2D steady Navier-Stokes
equations by separating variables, and as a byproduct we prove a sharp Liouville theorem
to answer the above question of Fuchs-Zhong in this setting.

Let © be the whole space R?, the half-space R%, or any cone domain of {(r,0);a <
0<p,0<r<oo}with0<a<f<2r. Our ﬁrst result is as follows.

Theorem 1.1. Suppose that (u,p) € C3(Q) x C1(Q) is a solution of (2), u € C°(Q) and

u has the form
_ v1(6)
u(z,y) = ¢(r) ( va(6) ) :
Then, (u,p) can only be expressed in one of the following types:

(i)

(i)

CL’E + C’gy )

1
Cox— Cly —5(CF + CaCy) (@ +9%) + G (5)

(iii)

CQ + Cg l’ + (302 Cg) 2(01 + C4).Z‘y
04 — 301 JI — (Ol + 04) 2(02 + Cg)ZL‘y
1
=5

(C}+C3 — O3 — C))(2* + y°)* + 8Cyx — 8Chy + Cs,



with Cy, Cy, C5, Cy satisfying

C1C5 + CoCy — 2C1C = 0, ©)
C1Cy — CoCs + C2 — C2 = 0.

(i)

w ( C cos(A) + Cysin(A0)

S T 2Y,.2X
C5 cos(AF) — C sin(A\0) ) o P= _5(01 + C3)r*" 4 Cs.

Here, if Q =R?*, A >3 and A € N, otherwise A € (0,1) U (1,2) U (2, 00).
(v) If Q@ # R?,
u:@+@mm(f),

1
p:zﬁzaaﬁr+@0¢5—mgﬂmwac}—%mz+cﬂ+2@9+a}

Remark 1.2.

1. In type (iii), the coefficients of uy are proportional to those of ug, since equations
(6) are equivalent to

Cot+Cs  3CH—-Cs (C1 + Cy)
C,—3C; —(C1+Cy) —(Co+Cy)

2. (The boundary blow-up phenomenon) The solutions in type (v) show that

—(Cysinf cos 0 —(Cy + CyInr + Cysin? )

VU’('£7 y) = 2 : )
Ci1 4+ Colnr + Cycos* 8 Cysinf cosd
which blow up at the corner of r = 0. However, u € C7(Q) locally for any 0 < v < 1.
This is different from the case in [12], where the authors consider a class of Holder
continuous boundary data on the time and prove that there exist unbounded gradients
at the boundary. These solutions also show that the singularity of the solutions does
not depend on the regularity of the boundary (for example, the case of Ri when
a=0,0=m).

3. The examples in type (1v) show that: for any 0 < v < 1 some solutions of steady
Navier-Stokes equations have the boundary C" reqularity similar to their nontrivial
boundary data, while one can prove a uniform boundary C° with vy > 0 regularity
result for 6D steady Navier-Stokes equations with zero-Dirichlet boundary data (for
example, see [19]). Therefore the boundary data plays an important role in the
boundary reqularity theory for steady Navier-Stokes equations.

More generally, let u be the form of
e1(r)vi(0) )
) = ) 7
e = (2 )

and we have the following conclusions.



Theorem 1.3. Suppose that (u,p) € C3(Q) x CY(Q) is a solution of (2) with the form
of (7) and u € C°(Q). Then, (u,p) can only be expressed as one of the forms of (i), (ii),
(iii), (1) and (v) in Theorem 1.1, or one of the following two types:

C
U = ( 02; ) , p= —0102:(/ + 03, (8)
and
u:(%y) p = —CiChz + Cs. (9)
2

This theorem immediately leads to the following conclusion.

Corollary 1.4. Suppose that (u,p) satisfies the assumptions of Theorem 1.3 with Q = R?,
then u and p must be polynomials, which is similar to harmonic functions on the whole
space.

As another application of Theorem 1.3, we obtain a sharp Liouville theorem for (2)
in any cone domain when u has the form (7), which answers the question in [9] in this
setting.

Corollary 1.5. Suppose that (u,p) satisfies the assumptions of Theorem 1.3 with u €
CH(Q) and
lim [z|™ u(z)] = 0, (10)

|z|—o00

then (u,p) must be constant.

Remark 1.6. Condition (10) says that the growth of u is less than |z|. This condition is
sharp for the constancy of u. If (10) does not hold, there exist nontrivial solutions, such

as (5), (8) and (9).

2 Preliminaries

Before proving the main theorems, we state some preliminary lemmas, which play impor-
tant roles in our arguments.
In this part, we let I and J be intervals in R.

Lemma 2.1. Suppose that



Proof. Assume that g(rg) # 0 without loss of generality.

Case 1: A(f) =0. Then B(#)g(r) =0 for § € I and r € J, which implies B(6) = 0
for @ € I due to g(rg) # 0.

Case 2: A(0) # 0. We assume that A(fy) # 0 for some 6y € I, then

fr) = g(r) = Ag(r),  rel, (12)

where \ = %. Substituting equation (12) into (11), there holds
AA(0)g(r) = B(6)g(r), bel, rel,
which yields B(#) = AA(#) for 6 € I by taking r = 1. The proof is complete. ]

Lemma 2.2. Letv=wv(f), 6 € 1.
(1) If v € CY(I) and satisfies sin Qv + cos Ov' = 0, then v = C cosb.
(2) If v € C*(I) and satisfies 2sin Qv + cos v’ = 0, then v = C cos? 6.

Proof. Assume that I = (0,27) for simplicity and denote
T m 3w 3T
h=(03) B=(35) b=(5)
=0g) =g T\

cosf # 0, bel, 1=1,23.

then

() Inl, i=123,
(cos™ 01})/ = cos 2 f(sin fv + cos v') = 0,
then
cos 1Ov=C;, v=C;cosb, 0c I

and
U/ = —CZ Siﬂe, 0 < Iz

Since v’ is continuous at § and 37”, then C7 = Cy = C3 =: C, and thus v = C cos 6.
(2) The argument is simialr, and we omitted it.
The proof is complete. O

Lemma 2.3. Suppose that 1, 2 € C'((0,400)) and satisfy

[ o+ )
Ty (r) = cp1 + dps.
Let § :== (a — d)* + 4bc. Then
(1) If b=0, d = a, then
Y1 = Clraa
{ 02 = (cCrInr 4+ Co)re.

(2) If b= 0, d # a, then
Y1 = Clra7
Y2 = aTchﬂ"a -+ CQTd.
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(8) If b#0, 0 >0, then

o1 = Crr™ + Cor™, (m >n)
g = O™ + A Cor™,

where m,n are two different real roots of the equation
p* —(a+d)p+ad—bc=0.
(4) If b#0, 6 =0, then
{ 01 = (CrInr + Co)rt,

¢ = [F2CiInr + —Cﬁ(lb_a)oﬂrl,

where | is the unique real root of (14).
(5) Ifb#0, 6 <0, then

{ ¢1 = [Cycos(pInr) + Cosin(plnr)]r,

o = [P cog(yyInr) 4+ LUt gin (1 In )],

where A £ pi are the complex roots of (14).

Proof. Let r = ¢' and D = 4 then the equations (13) become

D1 = apy + byps,
Dy = cp1 + deps.

Case 1: b = 0. The first equation of (15) becomes Dy; = ap;, then

Y1 = Cleat = C’lr“.
Substituting (16) into the second equation of (15), we get
DgOg — ngQ = cCle“t.

Then
D(e‘dtgpg) = e_dt(Dgpg —dps) = cChela= Dt

which can be divided into the following two situations.
Case 1.1: If d = a, there holds e~ %y, = cCit + Cy, and

o = (cO1t + Co)e™ = (cCyInr + Cy)r,
Case 1.2: If d # a, it follows from (17) that e=%p, = ﬁC’le(“_d)t + (5, and

C C

Y2 = P dCleat + CQEdt =

dCﬂ’a + Czrd.

Case 2: b # 0. The first equation of (15) implies that

1
P2 = E(Dgal — aypy).

(14)

(15)

(16)

(17)

(18)



Substituting (18) into the second euqation of (15), we get
D?*p, — (a + d) Dy, + (ad — be)p; = 0, (19)

which has the characteristic equation (14).
Case 2.1: If § > 0, equation (14) has two different real roots m,n (m > n) and the
general solution of (19) is expressed as follows:

¥1 = Clemt + C’g@"t = Cﬂ‘m + CQT’”.

Substituting this into (18), we get

m—a

m — a n —
Yo = b Cl€mt+

Cﬂ"m + b aCQTn.

n—a
C2€nt =

b b

Case 2.2: If § = 0, equation (14) has a unique real root [ and the general solution of
(19) is
Y1 = (Clt + 02)6“ = (Cl Inr + Cg)Tl.

Substituting this into (18), we get

0y = |:l —b CLCI o r n Cl + (lb— G)Cg T‘l.

Case 2.3: If § < 0, equation (14) has complex roots A £ ui (u # 0) and the general
solution of (19) is

p1 = [Cy cos(ut) + Cysin(ut)] e = [Cy cos(ulnr) + Cosin(ulnr)]r.

Substituting this into (18), we get

Qg = [()\ — a)(;l - nCh cos(plnr) + (A= a)(;g —Heh sin(pu lnr)] .
Thus the proof is complete. O
Lemma 2.4. Suppose that vy, vy € CY(I) satisfying
a cos fvy + csin fvy — sin Ov) = 0,
{ b cos vy + dsin Qvy + cos vy = 0, (20)

and vivg = 0. Then we have (i) vy =0 if b #0; (i1) va =0 if ¢ # 0.
Proof. Multiplying (20); by vs, due to vivy = 0 we get

cvs — vivg = 0. (21)
Similarly, multiplying (20)s by v, it follows that

bl + vyvh, = 0. (22)

(22) minus (21) tells us that bv? — cv? + (v1v2)" = 0. Then bv? = cv3, since vivy = 0.
Consequently,
bv? = cvy(v1v2) =0,  cvs = buy(viv2) = 0.

If b # 0, then v; = 0. If ¢ # 0, then vy = 0. The proof is complete. ]



3 Proof of Theorem 1.1

Proof of Theorem 1.1. Let w := Oyu; — Oyus be the vorticity of u, then w satisfies the
equation
Aw —u - Vw = 0. (23)

Throughout this section, we write v;(0), vi(0), p(r), ¢'(r) as v;, v, ¢, ¢, i =1,2.
Direct computations show that

div u =(cos vy + sin vs) ¢’ — (sin Bv] — cos Gu}) L
: (24)
/ ¥
—: A0) - BO)Z:
w = (sinfuv; — cosvy) ¢’ + (cos vy + sin Ou}) % (25)

The equation div u = 0 and (24) yield that A(0)¢" = B(0)£. By Lemma 2.1, we have
either

or

B(6) = MA(6), @u:Af.

Next, we discuss the two cases respectively.
Case 1: A(A) = B(A) = 0. A(f) =0 implies that

v = — tan v, (26)

and B(0) = 0 tells us that
— tan Gv] + vy = 0. (27)

Substituting (26) into (27), we deduce that sin fv, +cos v}, = 0. Due to v € C*, applying
Lemma 2.2 we obtain that

vy = C'cos ¥, (28)

and thus
vy = —C'sin 6. (29)

Without loss of generality, we assume that C' # 0. Substituting (28) and (29) into (25),
we have o
w=-C(¢'+7),

and then

1 1 1 r P
Aw :(83 + ;8r + r—2892) —C(@f + ;@) (QO + ;)

w =
2 /
ST A . A

r r2 3
81w:—C’(g0'+£)/0089: —CcosQ(w”—l—g—%); (30)
r roor
el E PN
Oow = C’sm@(@ + " 7“2)’

u - Vw =p(v101w + v905w) = 0.

9



Combining (23) and (30), we obtain
"+ 2r%0" — ' + o = 0. (31)
Let 7 = e and denote D = 4 then the equation (31) becomes
(D+1)(D—1)*¢ =0,
which has the general solution as
o = Cre' + Cyte! + Cse™ = Cir + Corlnr + Cyr 1.
Recall that u € C3(Q) N C°(2), then

| Cyr, if QO = R?; (32)
Y7 Cir+ Corlnr, if Q £ R2.
By (28), (29) and (32),
c;(‘my>, if O = R2:
u= _ (33)
(C! + Cilnr) ( xy ) . i Q£ R2
Case 2: B(0) = MA(0), ¢’ = A£. At this time, we have
o =Cr. (34)

Without loss of generality, we assume that C' # 0. Recall that u € C°(€2), then A > 0.
Denote
L(#) = sin vy, — cos vy,

then it is easy to verify that
L'=A+B=(\+1)A, cosOv]+sinfvy=A"+ L. (35)
By (25), (34) and (35) we have
w=CXN 'L+ Cr A+ L)=Cr ' A+ (A+1)L] = Cr' A, (36)

where

H=A+O\+1)L,
Then we have
N =(02 + 0, + —50R)w
=CH (07 + %&ﬁ)rk_l + Cr*3H"
=Cr*?[H" + (A = 1)*H];
u - Vw =p(v101w + vy00w) (37)

sin @

" > —I—v2<8rwsin0+8gwcorse>]

= [vl (@w cos ) — Jyw

=p (&,wA — aeTwL)

=C*r*?[(A—1)HA - H'L].

10



Aw —u - Vw = 0 gives that
Cr*'[(A\—1)HA—H'L] = H' + (A — 1)*H.

Since A > 0, the above equation is equivalent to

{ (A\—1)HA—-H'L =0, (38)

H" +(A—1)’H =0. (39)
We keep in mind that

L'=(A+1)A, (40)

H=A+\+1)L. (41)

The above two equations yield that
A"+ N+ 1)*A=H. (42)

First, we can solve H according to equation (39). If A = 1, it is easy. If A # 1, (39) has
general solution

H=A+(A+1)L=Cicos ((A—1)8) + Cosin (A —1)8), A #1 (43)
Second, we solve A according to equation (42). Substituting (43) into (42), we have
A"+ (A +1)24=(A—1) [02 cos (A — 1)) — Cysin (A — 1)9)}, A£ 1.
This equation has general solution

A =C5cos0 + C,sinf + g(C’l cos) — Cysin )

B 10 , Cy0 N
—COSQ(T+C3>+SIH9<—T+C4), )\—0, (44)
A =Cscos (A4 1)8) + Cysin (A +1)6)
+ % [02 cos (A —1)8) — Cysin (A — 1)9)}, A#0,1.
Substituting (43) into equation (38), we have
[Crcos (A= 1)9) + Cysin (A~ 1)6) | 4
(45)

- [02 cos (A — 1)8) — Cy sin (A — 1)9)}L —0, A#L

Next, the classification of solutions is discussed in the following cases.
Case 2.1: )\ = 1. In this easy case, equations (38) and (39) become

H'L =0,
H// — O

then H = af+band aL = 0. If a # 0, then L = 0. By (40), A = 3L/ =0, H = A'+2L =0,

this contradicts that a # 0. Therefore a = 0 and H = b. Namely A’ + 2L = b, then
A"+ 2L =0. By (40), L' = 2A, then A” + 4A = 0. This equation has general solution

A = C cos20 + Cysin 26. (46)

11



Then . ;
L= §<H — Al) = 5 + Cl sin 260 — OQCOS20.

Combining (46) and (47), we obtain

v; = Ccosf + (Cg + %) sin @,
Vg = (Cg — g) cosf — C;sinf.

Then
_c C)cosO + (Cg + %) sinf \ [ Clz+ Chy
w=rr (Cy— L) cosd — Cysind )~ \ Che—Cly )

Case 2.2: A\ = 0. As shown in (44), in this case

A= COSQ(%-FC%) +sin9(— g—%@;).

By (40), (43) and (49), we have

L=H-A 20089<w —04) +sin0<# —I—C’3>.

We substitute (49) and (50) into (45) and obtain that

[(012 - 022)9 — 10y

5 + C,C5 + 0204} cos 20

02 _ 02
— [01029 —O,C + OO+ =L 2} sin 26 = 0.
Applying Lemma 2.1 again, we get
C?2 - 020 — O,C C2 (2
G 2; 122 L 0105+ Cy,Cy = CLC0 — C1Cy + CoyCs + —1 7 2 =,

and thus
Cl = 02 - O

By (49), (50) and (51), we have

A =C3co80+ Cysinf
L =C5sinf — Cycosf.

Then

U1 = 037 V2 = 047

_ Gy \ _ (¢
v=c(a)=(d)

Moreover, for A # 0,1, as shown in (44) there holds

and

A = Cycos ((A+1)0)+Cysin (()\—1-1)9)—1—u [CQ cos ((A—=1)#) —C} sin (()\—1)0)} :

4\
12

(47)

(48)

(50)

(51)

(52)

(53)



and due to (40), (43) and (53) we have

I :ALH(H _yn
=Cssin (A4 1)6) — Cycos (A +1)0) (54)
% |Gy cos ((A = 1)6) + Cysin (A= 1)6)]

Furthermore, by substituting (53) and (54) into (45) we obtain
(0103 + CQC4> cos 20 + (0104 — 0203) sin 26

_% [y cos (20— 2)6) + @ an (22~ 26)] =0 (55)

Case 2.3: A\ = 2. Then (55) becomes

C? - C?
(0103 INeNe 01402) cos 260 + (0104 —CyCy + 2) sin20 =0,  (56)
then
C1C5 + CyCy — G2 —
{ 103 + Caly A (57)
C1Cy — CoC3 + -2 = 0.
In this case, we have by (53) and (54) that
A = C3co830 + Cysin 36 + £ (Cycos — Cy sin@),
L = C3sin 30 — Cycos 36 + 5(Cr cos ) + Cy sin@),
then
v1 = (Cy+ ) cos? 0 + (32 — C5) sin® 6 + (Cy + %) sin 26, (58)
Vg = (C’4 — %) cos?f — (04 + %) sin® ) — (03 + ?2) sin 20,
and

Lo (0} — o (Gt D)t (52 - Gy 4 (20 + )y
w=er ()= (el et gt tatal ).

with C1, Cy, Cs, Cy satisfying equation (57). If we replace % by C1, % by Cy, CC3 by
03, 004 by 04, then

. (OQ + 03)1'2 + (302 — Cg)y2 + 2(01 + C’4)a:y (59)
N (04 — 301)1’2 - (Cl + C4)y2 — 2(02 + Cg).%'y ’
with C4, Cs, C3, Cy satisfying
C1C5 4+ CyCy — 20,05 = 0, (60)
C1Cy — CyCs + C2 — C2 = 0.

13



Case 2.4: X\ #0,1,2. By (55) we have

C1Cy + CyCy = 0,
0164 — CQCg = 0,
C1Cy =0,
C2— 2 =0,

namely
Ci=0Cy=0. (61)
By (53), (54) and (61), we have

Y

{ A= Cjcos (A +1)0) + Cysin (A + 1)6),
L = Cssin (A +1)8) — Cycos ((A+1)6)

then
vy = Ccos(A0) + Cysin(A9),
vy = Cycos(A0) — C3sin(A),
and
_ o C5co8(A0) + Cysin(N0) \ [ C]cos(A0) + Chsin(A\) (62)
YT Creos(M) — Cssin(M) ) T\ Cheos(A0) — Clsin(A0) )

where X #£ 0,1, 2.
Moreover, if Q = R?, it is necessary that v;(0) = v;(27),7 = 1,2, namely

C1[1 — cos(2A7)] — CYsin(2A7) = 0,
C4[1 — cos(2A7)] 4+ Cf sin(2A7) = 0.

Notice that the above equations are linear equations with respect to 1 — cos(2A7r) and
sin(2A7), and the determinant

o =iz,

Gy O

otherwise u = 0, which is included in the former case (52). By Cramer’s Rule,
1 — cos(2A7) = sin(2A71) =0,

thus A € N. Recall that A #0,1,2, then A > 3 and A\ € N.

Finally, gathering (33), (48), (52), (59) and (62), we obtained that the solution u has
five types of forms as in Theorem 1.1.

The pressure expressions. Next we substitute solutions of these types into equa-
tions (2) respectively. All these solutions satisfy

div u =0,

then it is left to find the suitable pressure.
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In type (i), it is easy to derive the solution

In type (ii), direct computations give that

| Ciz+Cyy 1, 2 .2
u_(ng—Cly>’ p = 5(01+C2C3)(‘r —i—y)+C’4

is the solution.
In type (iii), by direct computations, we have that

Op — 8Cy + 2(C3 + CF — 2C,Cy + 2C,C5 + C3 — 3C7)
+2(C2 + C2 +2C,Cy — 20,05 + C? — 3C%)xy?
+ 8(C1Cs + Cy,Cy — 20,Co) %y = 0,

Oop + 8C, + 2(C3 + C2 + 20,0y — 2C,Cs + CF — 303)y”
+2(C2 + C2 — 2C,C4 + 20,05 + C2 — 3CH 2%y
+ 8(C1Cs + Cy,Cy — 20,Co)zy* = 0.

We apply (60) to the above equations, then

O1p — 8C2 +2(C5 + CF — CF = C3)(a” + 2y*) = 0,
dop + 8C1 +2(Cs + C; — CF — C3) (v° + 2%y) = 0.

Therefore |
p= 5(012 + 022 — C’32 — C’f)(w2 + y2)2 + 8Cyx — 8Chy + Cs,

with C4, Cy, Cs, Cy satisfying equation (60).
In type (iv), note that C), = Cy = 0 in (61), which implies H = 0 and w = 0 due to
(43) and (36). Using

(ug, —uy)Tw =u - Vu — V(@),

the pressure can be expressed by —3|ul> + C. Then
1
P = —§<012 + CQQ)TQ/\ + 03.

In type (v),  # R? and

u=(Cyr+ Csyrlnr) ( —sind ) :

cosf
Direct computations give that
w=—2CyInr + Cy + 2C4),
and

u-Vu = (Cy + Cylnr)dyu.
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Then

Vp = Au—u-Vu=V'w—u-Vu
9 o
= &( sin 0 ) +(C’1+C'21n7’)2r(cose ),

r cos sin 6

which implies
1
p= 7% |2C3 0" + (4C1Cy — 2C5) In7 420 — 2C1Cs + 022} 42050+ Cy

by integration by parts.
Thus the proof is complete. O]

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Our strategy is to reduce the problem here to the
one stated in Theorem 1.1.

Proof of Theorem 1.3. In this part, u has the form

u— [ Pr(r)u(®)
pa(r)va(0) )
In the following, we will only consider v; # 0, vy Z 0, 1 Z 0 and ¢, # 0, for the cases

v =0,v3 =0, o1 =0 or s =0 can be reduced to the problem in Theorem 1.1.
Direct computations show that

sin 6 cos

div u :<cos 00, — 89) (v11) + (sin 00, + ; 39) (v202)

. Y2 . Y1
= cos vy + sin Qugply, + cos v, — — sin Gu;—,
r r

r

and

w = (92u1 - 81u2

7 in 6
= <sin 00, + o8 89> (v1p1) — (cos 00, — S c%) (v2p2)
r r

= sin Qvy ] — cos Buawy + cos 91)'1ﬂ + sin 9@’2@. (63)

r r

Moreover, div u = 0 implies that
/ : / 1 P2 . 20

cos Qv + sin Quvapr, + cos vy — — sin fv;— = 0. (64)

r r

Next we discuss the problem according to whether cos fv; and sin fvy are linearly depen-
dent.
Case 1: cosfv; and sin v, are linearly dependent. There exists A # 0, such that

cos Bvy = Asin Qv
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since v1 # 0 and vy Z 0. Then
v1 = Atan Qu,. (65)

Substituting (65) into (64), we obtain that
sin Qvg (A + ¢5) + cos GUéﬁ — Asin 0(sec? fv, + tan Qvg)ﬂ =0. (66)
r r

Since vy Z 0, there exist an interval K, such that vs,sinf,cos@ # 0 when # € K. Then
we deduce from (66) that

/ t 0 /
tan fvy r (%) r

Let M(0) = ﬁ, N(0) = sec? + M(6) tan® 0, then we can rewrite the above formula
as

AL+ @+ M(e)% - AN(@)% =0, fcK. (67)
Case 1.1: If M(0) is not a constant in K, namely there exists 6;, 0y € K, such that
M(6:) # M(02),

then o o
Mgy + ¢ + M(01) =2 = AN(61) = = 0,

NG, + 0y + M(02) 22 — AN(8,)22 = 0.

r r
In the above two equations, the first one minus the second gives that

L N(B) - N(6)
2= (6) — M6

Y1 = C(pla

_ V11 _ U1 . )
then u = < Cogoy ) = ( Coy ) 1, reducing to the problem in Theorem 1.1.

Case 1.2: If N(0) is not a constant in K, this case is similar to the above case of
Case 1.1.

Case 1.3: If both M () and N () are constants in K, it is easy to see that M(0) =
—1,N(#) =1, and (67) becomes

A1 +
(Ao + ) = ZELT22
then Apy 4+ @9 = Cyr, and
Y2 = 017’ — )\(,01 (68)

If C; = 0, this case can be reduced to the problem in Theorem 1.1, so we can assume that
C1 # 0. We substitute (68) into (66) and obtain that

(sin Qg + cos Hv)) (01 — Asec? 9—('01> = 0.
r
Since A # 0 and ¢ # 0, then we have

sin Qvg + cos fvy = 0.
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Applying Lemma 2.2, there holds
= (5 cos0, Cy # 0.

By (65), we get v; = ACysinf. We substitute

v; = ACy sin 6
v9 = Cycosl
P2 = Cir — )\901

into (63) and obtain that
w = ACo(] + (il) 10y,

then
9 1 1 2 2 1 / Spl
Aw :(87, + ;a'r + ﬁﬁe)w = ACQ (ar + ;a{") (4,01 T _)

20" /
_/\02( "y ‘fl _ﬁ_i_gpl).

2 3
1w =\Ch (go’l + %) cos = \C, cos «9( % — %), (69)
Dyw =ACy sin () + ﬁ - 5);
u - Vw =0191010 + vapa0sw = AC1C5 sin § cos Or (] + ﬁ — %)

Combine (23) and (69), and notice that Cy # 0, Cy # 0, A # 0, then we obtain

2
oy i ('01 = C1Cysin 6 cos Or (] + ﬁ — %1)
r r
which implies that

Notice that the second equation of (70) is namely (31), whose solutions are ¢ = Csr +
Cyrlnr. These solutions verify the first equation of (70) if and only if Cy = 0, then
1 = C3r are the solutions of (70). Therefore,

037’
Yo = (Cl — )\Cg)?”.
Finally we have

ACs5rsin @ ) _ ( Cyuy

_ B 1 ; ,
u = 02 ( (Ol — /\03)7“(3089 051. ) , pP= —50405($ _|_y )+ 067

included in the type (ii) as shown in Theorem 1.1.
Case 2: cosfv; and sinfvy are linearly independent. Then there exist 6, # 6,
such that the determinant

cos Byv1(01) sinbvy(6y)

Dy := cos Oav1(0y)  sin Oav9(6s)

o
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We take 0 = 6; and 6 = 05 respectively in (64), then we obtain equations

{ cos 0101 (61) ) + sin 6v2(0;) ¢
cos Oav1 (02) @) + sin Oyvy(02) @l =

in 6,v] (01)5‘;—1 — cos 01v5(601) %22,

in Oy} (02) 2 — cos 921)5(02)50:—2. (1)

Notice that the determinant of the coefficients of (71) is exactly D;. Since D; # 0, by
Cramer’s Rule we must have

= gL 4 pe2
{ Z’; = c‘p—r1 + dé. (72)
We substitute (72) into (64) and obtain that
(a cos Bvy + csin Gvy — sin Ov] )y + (bcos Bvy + dsin Bvy + cos vy )y = 0.
Since @9 # 0, by Lemma 2.1 we get either
21 = AP (73)
bcos Ovy + dsin Qvy + cos vy, = —A(a cos Qvy + c¢sin fvy — sin Hvy)
or
a cos Qv + csin fvy — sin Ov] = 0, (74)
b cos 0vy + dsin Gvy + cos Ovy, = 0.

In the first case (73), since ¢ = Ay, u = ( Av1pa ) = ( vt ) 9. This case can be
V22 U2

reduced to the problem in Theorem 1.1.
Next we focus on the second case (74), which implies that

v = acot Qvy + cvs,
vy, = —(bvy + dtan fvy).

Substituting (72) and (75) into (63), we obtain that

aviy Y1 dvy @
= RIS =, 76
v sinf r cosf r (76)

w satisfy the equation Aw = u - Vw. First, we compute u - Vw.

u - Vw = v19100w + v9pa0rw

inf 0
= vlcpl(cos 00, — Sl? 89)1,0 + vgcpg(sin 00, + COTS ag)w
1
= (cos Qv 1 + sin Ovgps) 0w + ;(— sin vy 1 + cos Qugps ) Dgw. (77)

According to (76) and (72),

by - (2

sin 6

r cosf\ r
av dv
:sinlﬁr_Q [(a — 1)1 + bg@] - COS2QT_2 [cgol + (d — 1)(,02]
_ _ v V2 ] 2 v B Vo ] o
_[a(a 1)sin@ ¢ COSQ}T Pt [absiHQ d(d 1)c0s9]T va: (78)
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According to (76) and (75),

aew:asol( v >’_d902( U2 )’

r \sin6 r \cosf
a _ d _
== [(a — 1) cot vy + cvg}r Yo + p—s [bvl + (d—1)tan 01}2]7’ Lo, (79)

Substituting (78) and (79) into (77), we obtain that

u-Vw =12 = c(a+ d)vivap] + bla + d)vivaps + Fyp109], (80)
where a*>—a d*—d
Fy = (acotf — dtan0)(bvi + cv3) + < g ey )'Uﬂ)g. (81)
Next we compute Aw.
Aw =(0? +r7'0, + r20))w. (82)
By (78) and (72),
02w :{ [a(a —1)(a — 2) + abc] sivnle —cdla+d—3) C(1))829 }7“’3901
+ {ab(a +d—3) Si“nl - = [d(d = 1)(d — 2) + bed C;’SQ ; }w?’@ (83)

By (79) and (75),

Djw = { [a(a — 1)(a — 2) cot® 0 — a(bc + a — 1)] ,Ule + ac[(a — 2) cot* 6 — d 2 }r_1¢1

sin cos 6
_ _ _ 29 _ V2 _ 29 Y1 -1
{[d(d 1)(d = 2) tan®§ — d(be + d — 1)] — + bd[(d — 2) tan’ 6 — a] — 9}7’ 0
(84)
Substituting (78), (83) and (84) into (82), we obtain that
Aw = T'_3<F1g01 — FQQDQ), (85)
where
U1 2 (%)
Fy =a(a—1)(a — 2)—5— + c[a(a — 2) cot® § — d(d + 2a — 2)] :
sin® cos (86)
(%) 2 V1
= —1)(d—2 -2 — 2d — 2 .
b =d(d —1)(d )COS3 7+ b[d(d — 2) tan® 0 — a(a + 2d — 2)] =
Aw = u - Vw, (80) and (85) yield that
Frpr = Fapa = (a + d)vrvgr (b — cpi) + Fargies, (87)

where Fy, Fy, F3 are given by (81) and (86), and vy, vy satisfy (74).

Since 1, o satisfy equations (72), applying Lemma 2.3 for them, we obtain their
expressions as shown in Lemma 2.3. If ¢y and ¢, are linearly dependent, one can reduce
this problem to the one in Theorem 1.1, hence it suffices to consider that they are linearly
independent.
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Case (1): b =0, d = a. At this time,

Y1 = Cl?naa
w2 = (cCyInr + Co)re.

Since o1 and (s, are linearly independent, then cC; # 0. ¢y, s € C°([0,00)), then a > 0.
Substitute b = 0, d = a and the expressions of ¢; and @9 into (87), then we obtain

(ClFl — OQFQ) — CClF2 Inr = Ta+1 [CO%F?, Inr — 2&6012’011)2 + Clchg},

which implies
OlFl — CQFQ = O;
cC1F5 = 0;
cC?Fy = 0;
—2(100121}17)2 + C’ngFg = 0.
Since ¢C; # 0 and a > 0, then F; = Fy = F3 = vjvy = 0. Applying Lemma 2.4, we have

vg = 0, which contradicts our assumption that vy £ 0. Therefore this case does not exist.
Case (2): b=0, d # a. We have

Y1 = Clra>
Y2 = aTchlT'a + Cg?"d.

Since ¢, and ¢, are linearly independent, then C;Cy # 0. 1,2 € C°, then a > 0 and
d > 0. d # a implies that a + d > 0.
In this case, equation (87) becomes
F. F.
¢ 2d>7"a — OQFQTd = 0012 —3d - (CL + d)’Ul’UQ] 7“2a+1 -+ 0102F37"a+d+1. (88)

a —

Cy <F1 _

re, rd p2etl petdtl gnpear in the above formula. Obviously, ¢ is different from the other

three, so is r®t¥*1. Then the coefficients of r* and r**¥*! must be 0, which give that

c
Fy = a— dF2; (89)
Fy = 0; (90)
CoFyr® = c(a + d)Cvyvgr® ™. (91)

This situation will be divided into two subcases for further discussion.
Case (2.1): ¢ = 0. The above equations are reduced to

F1:F2:F3:O,

namely
a(a —1)(a —2)%5 = 0;
d(d — ].)(d - 2) COZ%G = 0, (92>
<a2—a _ d2—d>v =0
sin? 6 coszg ) V102 )

Since v; Z 0 and vy # 0, then the first and second equation of (92) give that

a=0,1,2, d=0,1,2.
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Notice that ¢ = 0, then the first equation of (74) is reduced to
a cos Quy — sin Gv| = 0.

Since a = 0,1,2 and v; € C?, we use a argument similar to the one in Lemma 2.2, then
we obtain that

v, = C3sin? 0, Cs3 #0, (93)

Similarly, since b = 0, the second equation of (74) is reduced to
dsin Qvy + cos vy, = 0,
Since d = 0,1,2 and vy € C?, we apply Lemma 2.2 and obtain that
vy = Cycos? ), Cy # 0. (94)
Having (93) and (94), one can reduce the third equation of (92) to
{ a® —a =0
d*>—d=0.

Since d # a, the above equations have solutions
a=1 a=20
d=20; d=1.

Y1 = 017', Y2 = 02, v = Cg sin 9, Vg = 04,

Ifa=1,d=0, then

and

[ CiCsrsin® \ [ Csy _
u = ( 0204 ) = ( 06 ) , p= 05061‘—|- 07. (95)

If a=0,d=1, then

Y1 = Cl, Y2 = 027’, V1 = Cg, Vo = 04 COS 6,

and cc c
B 1C3 _ 5 _
v= ( CyCyr cosf ) N ( Csx >  p=—CsCey + Cr. (96)
Case (2.2): ¢ # 0. Consider equation (91).
If d # 2a+1,
CyFy = cla + d)C?v1v, = 0,
namely

F, =0, v1v9 = 0.
According to Lemma 2.4, v, = 0, which contradicts that vy # 0. Therefore

d=2a-+1.
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With (86) and b = 0, we rewrite (89) as
a(a —1)(a —2)v, sin?f — ala — 2) cos* 9

a — d (97)
+ d(d + 2a — 2) sin? § cos? 9] vg.

_csinf [d(d —1)(d-2)
~ cos3 6

If a(a — 1)(a —2) = 0, then

d(d—1)(d—2)
[ a—d

Since vy # 0, there holds

sin® 0 — a(a — 2) cos* 0 + d(d + 2a — 2) sin* § cos® 9] vg = 0.

d(d—1)(d—2) = 0;
ala—2)=0;
d(d+2a —2)=0.

The above equations have solutions
a=20 a=20 a=2
d=0; d=2; d=0.
These all contradict that d = 2a + 1. Therefore

ala—1)(a —2) #0.
This and (97) give that

c sin 0 [d(d —1)(d - 2)

in* 6 — a(a — 2) cos* 0
a(a —1)(a —2) cos3 0 S ala —2) cos

+ d(d + 2a — 2) sin” 6 cos® 9] Ug.

V1 =

Notice that when b = 0, equation (90) is

Fy = c(acotf — dtan0)v; + <c;jn;9a - Cis_QQd)UlU? =0.
Since vy Z 0, there exists an interval K, such that
vy # 0, 0 e K.
Then 2a P d
c(acotG—dtan@)v2+<Sm29 - COSQ&)sz, 0 € K.

Substituting (98) into the above equation, we obtain that in K3,

a(a —1)(a — 2)(acos® § — dsin®6) cos* 0 + [(a® — a) cos® § — (d* — d) sin® 4]
d(d—1)(d—2)
a—d

sin® 0 — a(a — 2) cos* § + d(d + 2a — 2) sin® § cos «9] = 0.
(99)
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Notice that the left hand side of the above equation is a polynomial with respect to cos? 0,

and the constant term of this polynomial is L(d-1)°(d-2) (d_dl_)i(d_2

d*(d —1)*(d — 2)
d—a
d=0, 1, 2.
Recall that d =2a+ 1, a > 0 and a(a — 1)(a — 2) # 0, then

), then we have

=0,

Substituting this into (99), we obtain that —}—é cos? @ = sin? §, which is impossible. There-
fore, Case (2.2) does not exist.
Case (3): b# 0, § > 0. Now we have

o1 = Cir™ + Cor™,
g = BFCIr™ + B2 Cor™,

where m,n are two different real roots of equation (14) and m > n.

Since ¢; and (s, are linearly independent, then C;Cy # 0. ¢y, s € CY, then m > n >
0.

By Vieta’s theorem,

a+d=m-+n >0,

ad — bc =mn. (100)
In this case, equation (87) becomes
C, [bFl — (m— a)FQ}rm + Cs [bFl —(n— CL)FQ}T”
:Cf{(a +d)[(m — a)* = bc]vyvs + (m — a)F3}r2m+1
(101)

+ 022{(& +d)[(n—a)® — bc|vvs + (n — CI,)Fg}T2n+1
+ 0102{2(a +d)[(m — a)(n — a) — beJviva + (m+n — 2a)F3}rm+"H.
Note that r™,r®, p2mtl p2ntl pmtntl anpear in the above equation. Since m > n,
2m+1>m+n+1>2n+1,m > n,

the coefficients of r?™*! rm+n+l and ¢ must be 0, which implies that

(a+d)[(m —a)? — bc]vyvs + (M — a)F3 = 0;
2(a+d)[(m — a)(n — a) — bc]vivs + (m + n — 2a) F3 = 0;
by = (n—a)Fy; (102)
4 [bFl —(m — a)Fz}rm = 022{((1 +d) [(n —a)? — bc} VU9 + (N — a)Fg}r2”+1.
Notice that m,n are roots of equation (14). This and (100) give that
(m — a)? — be =(d — a)(m — a);
(n —a)?* —bc =(d — a)(n — a);
(m—a)(n—a) =—bc
m+n =a+d.

(103)
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Substitute the third equation of (102) into the forth one and apply (103), then one can
rewrite (102) as

(a+d)(d—a)(m —a)vive + (m —a)F3 = 0;

4bc(a + d)vvy + (a — d) Fs = 0;

Fy =2 Fy;

[(a+d)(d—a)(n — a)vivs + (n — a)F3]r*"*! = (n — m)C1Cy 2 For™.

(104)

Consider the first and second equation of (104), where the determinant of the coefficients
(a+d)(d—a)(m—a) m—a

4bc(a + d) a—d
=(a +d)(a —m)[(d — a)* + 4bc] = (a + d)(a — m)é.

D2 =

If Dy # 0, by Cramer’s Rule,
V1V = 0, F3 =0.

According to Lemma 2.4,
v = 0,

which contradicts that v; # 0. Then we must have
D, =0.
Notice that a +d > 0 and § > 0, then
m = a.
Therefore, n =a+d —m = d, bc = ad — mn = 0. Since b # 0, then ¢ = 0. In summary,
m=a, n=d, c=0, (105)

and a > d > 0.
With (105), we can reduce equations (104) to

d—
F== o (106)
Fy = 0: (107)
(a4 d)(d — a)vwer*™™ = CLCy 2 Fyr®, (108)

The following argument for this case is very similar to that for Case (2.2). For complete-
ness, let us briefly describe the proof.
If a # 2d + 1, equation (108) is equivalent to

(CI, + d)(d — CL)UlUQ = C10;2F2 = O,
and then v;v, = 0, which contradicts that v; Z 0. Therefore

a=2d+1.
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With (86) and ¢ = 0, we rewrite (106) as

d(d — 1)(d — 2)vy :b_cogse alaz@=2) op_ d(d — 2)sin*
sin” 6 d—a (109)

+ a(a + 2d — 2) sin” f cos® 8} 1.

If d(d — 1)(d — 2) = 0, then

ala —1)(a —2)
d—a

Since vy # 0, we must have

cos? 0 — d(d — 2)sin* § + a(a + 2d — 2) sin” 6 cos® 9] vy = 0.

a(a —1)(a—2) = 0;
d(d — 2) = 0;
ala+2d —2) =0.

The above equations have solutions

d=0 d=0 d=2
a=0; a=2; a=0.

These all contradict that ¢ = 2d 4+ 1. Therefore
d(d—1)(d—2)#0.
This and (109) give that

b cos 6 [a(a— 1)(a —2)

29 B "
d(d—1)(d—-2) sin® @ cos” 0 — d(d — 2)sin" 0

d—a (110)
+ aa + 2d — 2) sin” f cos® 0] 1.

Vg =

Notice that when ¢ = 0, equation (107) is

a?—a d*—d

sin? 0 cos2 6

Fy = b(acot — dtanf)v] + ( >U1U2 = 0.

Since vy # 0, there exists an interval Ky, such that
(%] 7é 0, 0 € KQ.

Then
2

a4 &—d
b(acotf — dtanf)v; + (a a )112:0, 0 e K.

sin2f  cos?6
Substituting (110) into the above equation, we obtain that in K,
d(d —1)(d — 2)(acos*§ — dsin®6) sin* 6 + [(a* — a) cos® § — (d* — d) sin” 0]
a(a—1)(a—2)
d—a

cos? 0 — d(d — 2) sin* § + a(a + 2d — 2) sin” 6 cos® 9] = 0.

Notice that the left hand side of the above equation is a polynomial with respect to sin? 6,
a?(a—1)?(a—2)
d—

- , then we have

and the constant term of this polynomial is

a*(a —1)*(a —2)
d—a

=0,
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and a = 0, 1, 2. Recall that a =2d+ 1, d > 0 and d(d — 1)(d — 2) # 0, then

This is also impossible by similar arguments as Case (2.2). Therefore, Case (3) does not
exist.
Case (4) and (5): b# 0, 6 <0. In these two cases, write

o1 = (CLfi + Cafo)r*,
{ 2 = (Bifs + Bofo)r*. (111)

In Case (4),
k=1,
fi=Inr, fo=1, (112)

1— Ci14(l—a)C
Bi =501, By= R

where [ is the unique real root of equation (14). Since p; and ¢, are linearly independent,
then C; # 0. 1,92 € CY at r =0, then k =1 > 0.
In Case (5),
k=X,

fi1 =cos(ulnr), fo =sin(ulnr), (113)
B, — (A—a)C1+uCo B, — (A—a)Co—puCq

Y

where A+ pi (1 # 0) are the complex roots of equation (14). Since ¢ and ¢, are linearly
independent, then C? + C2 # 0. 1,2 € C° at r =0, then k = A > 0.
Substitute (111) into (87) and denote G = (a + d)vjvs, then we obtain that

(C1Fy — B1Fy) fi + (CoFy — BoFy) fo
= rkﬂ{ fi[(0B; — cC)G + C1 B F3| + f3[(bB; — ¢C3)G + Co By Fy] (114)

+ flfz [2(()3132 - 60102>G + (ClBg -+ CQBl)Fg] }

Since f1, fo, "2 r**1f2 and r¥+1f) f, are linearly independent, the above equations are
equivalent to
CiFy — B Fy, =0
CoFy — BoFy = 0;
(bB? — cC?)G + C1 B, F3 = 0; (115)
(sz2 — CC%)G + Oy By F5 = 0;
2(()3132 — CC’1C'2)G + (ClBQ + CQBl)Fg =0.

For Case (4), we substitute (112) into the last three equations of (115) and take into
account that C; # 0, then we obtain that

(Il —a)® = bc]G+ (I — a)F3 = 0; (116)
{012 +2(1 — a)ChCy + [(1 — a)? — be] cg}G +[C1Cy + (1 — a)C2] Fy = 0; (117)
{2([ —a)Cy +2[(1 — a)? = bd] @}G +[Cy+2(1— a)Cy] Fy = 0. (118)

(117)—(116)xC2

o gives that

[C1+2(1 — a)C5) G + CoF3 = 0. (119)
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% gives that
2l — )G+ Fy =0, (120)
% gives that
G - 07

namely G = (a + d)vyvy = 0. Notice that a + d = 2] > 0, then vv, = 0. Since b # 0, we
apply Lemma 2.4 again, then we have v; = 0, which contradicts that v; Z 0. Therefore
Case (4) does not exist.

For Case (5), we substitute (113) into the last three equations of (115), then we obtain
that

({0 = @) = b CF + 12CF + 201 = )C1C2 } G + [(A = a)CF + pC1 Gy By = 0; (121)
{10 =) = 6] €3 + 42C% = 22— a) 0102}G + (A — pCyCy) Fy = 0; (122)
{Q,u()\ —a)(C2—C2) +2[(A—a) — 0102}(;

\ + [u(C5 = CF) + ()\ — a)C1Cy] Fy = (123)

We claim that
G =0.

Firstly, if C; = 0, then Cy # 0 due to C7 + C3 # 0, and (121) becomes p?C3G = 0. Since
w# 0, then G = 0.

Secondly, if Cy = 0, then C # 0 and (122) becomes p?C%G = 0 and thus G = 0.

Finally, if C1Cy # 0, (121) x £ + (122) x & — (123) gives that

,(C2+ 022)2

X G =0,

L
then G = 0. Thus the claim is proved.

Consequently, G = (a + d)vjve = 0. Notice that a + d = 2\ > 0, then vjvs = 0, which
contradicts that vy # 0. Therefore Case (5) does not exist.

Finally, when
"y ( p1(r)vi(0) )
pa(r)ua(0) )
all solutions of equations (2) are (i), (ii), (iii), (iv) and (v) as shown in Theorem 1.1, (95)

and (96).
The proof is complete. O
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