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Abstract

We investigate the problem of classification of solutions for the steady Navier-
Stokes equations in any cone-like domain. In the form of separated variables,

u(x, y) =

(
ϕ1(r)v1(θ)
ϕ2(r)v2(θ)

)
,

where x = r cos θ and y = r sin θ in the polar coordinates, we obtain the expressions
of all smooth solutions with C0 Dirichlet boundary condition. In particular, we
find some solutions which are Hölder continuous on the boundary but their gradi-
ents blow up at the corner, show that all solutions in the entire plane R2 must be
polynomials, and prove a sharp Liouville type theorem.
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1 Introduction

Consider the Navier-Stokes equations{
∂tu−4u+ u · ∇u+∇p = 0,
div u = 0,

(1)

for x ∈ Rn and t ≥ 0. Here u(x, t) =
(
u1(x, t), u2(x, t), u3(x, t)

)
denotes the unknown

velocity of the fluid, and the scalar function p(x, t) denotes the unknown pressure.
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It is well-known that one of the seven most important unsolved problems of the Clay
Mathematics Institute is whether the existence and smoothness of solutions hold for 3D
Navier-Stokes equations (1) with the initial condition

u(x, 0) = u0(x), x ∈ R3,

where u0(x) is a smooth, divergence-free vector field decaying sufficiently fast as x→∞;
see [8].

In a seminal paper [17], Leray proved the global existence of weak (or generalized)
solutions in a suitable function space. In 3D, the problems of uniqueness and regulari-
ty of weak solutions are of great significance in mathematical fluid mechanics and still
open. Here the regularity problem usually refers to the smoothness problem of solutions.
In the context of Navier-Stokes equations, sometimes local boundedness is sufficient for
smoothness; see for example [15, Proposition 15.1, p. 147].

Recently, for the axi-symmetric Navier-Stokes equations, important progress has been
made by Chen-Strain-Yau-Tsai [6, 7] and Koch-Nadirashvili-Seregin-Šverák [13], respec-
tively. They showed that solutions do not develop type I singularity. We call a singularity
of type I for a Navier-Stokes solution u at time T if

sup
x
|u(x, t)| ≤ C√

T − t
.

The innovative idea in [13] is that they transform the regularity problem into Liouville
type theorems by the classic rescaling and blow-up procedure. If a Liouville type theorem
for some kind of solutions is available (they proved that this is true for the axi-symmetric
case), then finite-time singularities of type I can be ruled out.

Here, a Liouville type theorem means a theorem asserting that equations only have
constant or trivial solutions, as the classical Liouville theorem asserts that any bounded
entire analytic function must be constant.

Regarding Liouville theorems for Navier-Stokes equations, they said ([13], p. 84):
“The case of general 3-dimensional fields is, as far as we know, completely open. In fact,
it is open even in the steady-state case (u independent of t).”

Motivated by their question in [13], we consider here the case of the incompressible
steady Navier-Stokes equations on the whole space Rn:{

−4u+ u · ∇u+∇p = 0,
div u = 0,

(2)

and investigate the classification of solutions of (2). First, let us review some major
developments on this topic. In the 3D steady-state case, Galdi [10] proved the Liouville

theorem that u must be constant under the assumptions that u ∈ L 9
2 (R3) and the Dirichlet

integral is finite, namely ∫
Rn

|∇u|2dx <∞. (3)

A very challenging open problem is whether there exists a nontrivial solution under the
assumption of finite Dirichlet integral (3) without the condition u ∈ L

9
2 (R3). This u-

niqueness problem (or equivalently the Liouville type problem), can date back to Leray’s
celebrated paper [16], and is explicitly written in Galdi’s book [10, Remark X. 9.4, p. 729];
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see also Tsai’s book [21, p. 23]. Later, Chae-Wolf [4] gave an improvement for Galdi’s

result by replacing the condition u ∈ L 9
2 (R3) by

∫
R3 |u|

9
2{ln(2 + 1

|u|)}
−1dx <∞. For more

references, we refer to [20, 5, 3] and the references therein. Note that the above Dirichlet
integral condition (3) implies that the solution is bounded. However, it is still unknown
whether the Liouville theorem holds for bounded solutions.

In fact, even for the 2D case, the problem of classification of solutions for the steady
Navier-Stokes equations is still not solved, while some Liouville type theorems were proved.
We give some examples here. Gilbarg-Weinberger [11] proved the Liouville theorem by
assuming the Dirichlet integral condition (3) alone. They used the fact that the vorticity
function w = ∂yu1 − ∂xu2 satisfies the fine elliptic equation

4w − u · ∇w = 0 (4)

and applied a maximum principle to (4). If ∇u ∈ Lq(R2) with 1 < q <∞, the first author
[22] proved that u is a constant vector by using the growth estimate of the functions
whose gradients belong to the Lq space; see also [14] for another approach. When the
solution u is bounded, a Liouville theorem was obtained by Koch-Nadirashvili-Seregin-
Šverák in [13] as a byproduct of their work on the non-steady case. More generally, if
lim sup|x|→∞ |x|−α|u(x)| ≤ C with α ∈ [0, 1

7
), Fuchs-Zhong [9] proved the constancy of u.

Later, the exponent α is improved to α < 1
3

in [1] with the help of the vorticity equation
(4). It seems that α could be improved to 1, as suggested by Fuchs-Zhong in [9]:

“Suppose that lim|x|→∞ |x|−1|u(x)| = 0. Does the constancy of u follow?”
This is true for harmonic functions. It follows from the well-known fact that a harmonic

function on Rn having polynomial growth is necessarily a polynomial; see also Yau [23] and
Li-Tam [18], where they considered the space of harmonic functions with linear growth
on complete manifolds with nonnegative Ricci curvature.

In this paper, our purpose is to classify the solutions for the 2D steady Navier-Stokes
equations by separating variables, and as a byproduct we prove a sharp Liouville theorem
to answer the above question of Fuchs-Zhong in this setting.

Let Ω be the whole space R2, the half-space R2
+, or any cone domain of {(r, θ);α <

θ < β, 0 < r <∞} with 0 ≤ α < β ≤ 2π. Our first result is as follows.

Theorem 1.1. Suppose that (u, p) ∈ C3(Ω)× C1(Ω) is a solution of (2), u ∈ C0(Ω̄) and
u has the form

u(x, y) = ϕ(r)

(
v1(θ)
v2(θ)

)
.

Then, (u, p) can only be expressed in one of the following types:
(i)

u =

(
C1

C2

)
, p = C3.

(ii)

u =

(
C1x+ C2y
C3x− C1y

)
, p = −1

2
(C2

1 + C2C3)(x
2 + y2) + C4. (5)

(iii)

u =

(
(C2 + C3)x

2 + (3C2 − C3)y
2 + 2(C1 + C4)xy

(C4 − 3C1)x
2 − (C1 + C4)y

2 − 2(C2 + C3)xy

)
,

p =
1

2
(C2

1 + C2
2 − C2

3 − C2
4)(x2 + y2)2 + 8C2x− 8C1y + C5,
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with C1, C2, C3, C4 satisfying{
C1C3 + C2C4 − 2C1C2 = 0,
C1C4 − C2C3 + C2

1 − C2
2 = 0.

(6)

(iv)

u = rλ
(
C1 cos(λθ) + C2 sin(λθ)
C2 cos(λθ)− C1 sin(λθ)

)
, p = −1

2
(C2

1 + C2
2)r2λ + C3.

Here, if Ω = R2, λ ≥ 3 and λ ∈ N, otherwise λ ∈ (0, 1) ∪ (1, 2) ∪ (2,∞).
(v) If Ω 6= R2,

u = (C1 + C2 ln r)

(
−y
x

)
,

p =
1

4
r2
[
2C2

2 ln2 r + (4C1C2 − 2C2
2) ln r + 2C2

1 − 2C1C2 + C2
2

]
+ 2C2θ + C3.

Remark 1.2.

1. In type (iii), the coefficients of u1 are proportional to those of u2, since equations
(6) are equivalent to

C2 + C3

C4 − 3C1

=
3C2 − C3

−(C1 + C4)
=

(C1 + C4)

−(C2 + C3)
.

2. (The boundary blow-up phenomenon) The solutions in type (v) show that

∇u(x, y) =

(
−C2 sin θ cos θ −(C1 + C2 ln r + C2 sin2 θ)

C1 + C2 ln r + C2 cos2 θ C2 sin θ cos θ

)
,

which blow up at the corner of r = 0. However, u ∈ Cγ(Ω̄) locally for any 0 < γ < 1.
This is different from the case in [12], where the authors consider a class of Hölder
continuous boundary data on the time and prove that there exist unbounded gradients
at the boundary. These solutions also show that the singularity of the solutions does
not depend on the regularity of the boundary (for example, the case of R2

+ when
α = 0, β = π).

3. The examples in type (iv) show that: for any 0 < γ < 1 some solutions of steady
Navier-Stokes equations have the boundary Cγ regularity similar to their nontrivial
boundary data, while one can prove a uniform boundary Cγ0 with γ0 > 0 regularity
result for 6D steady Navier-Stokes equations with zero-Dirichlet boundary data (for
example, see [19]). Therefore the boundary data plays an important role in the
boundary regularity theory for steady Navier-Stokes equations.

More generally, let u be the form of

u(x, y) =

(
ϕ1(r)v1(θ)
ϕ2(r)v2(θ)

)
, (7)

and we have the following conclusions.
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Theorem 1.3. Suppose that (u, p) ∈ C3(Ω) × C1(Ω) is a solution of (2) with the form
of (7) and u ∈ C0(Ω̄). Then, (u, p) can only be expressed as one of the forms of (i), (ii),
(iii), (iv) and (v) in Theorem 1.1, or one of the following two types:

u =

(
C1

C2x

)
, p = −C1C2y + C3; (8)

and

u =

(
C1y
C2

)
, p = −C1C2x+ C3. (9)

This theorem immediately leads to the following conclusion.

Corollary 1.4. Suppose that (u, p) satisfies the assumptions of Theorem 1.3 with Ω = R2,
then u and p must be polynomials, which is similar to harmonic functions on the whole
space.

As another application of Theorem 1.3, we obtain a sharp Liouville theorem for (2)
in any cone domain when u has the form (7), which answers the question in [9] in this
setting.

Corollary 1.5. Suppose that (u, p) satisfies the assumptions of Theorem 1.3 with u ∈
C1(Ω̄) and

lim
|x|→∞

|x|−1|u(x)| = 0, (10)

then (u, p) must be constant.

Remark 1.6. Condition (10) says that the growth of u is less than |x|. This condition is
sharp for the constancy of u. If (10) does not hold, there exist nontrivial solutions, such
as (5), (8) and (9).

2 Preliminaries

Before proving the main theorems, we state some preliminary lemmas, which play impor-
tant roles in our arguments.

In this part, we let I and J be intervals in R.

Lemma 2.1. Suppose that

A(θ)f(r) = B(θ)g(r), θ ∈ I, r ∈ J. (11)

If g(r) 6≡ 0, then either
A(θ) = B(θ) ≡ 0,

or, there exists a constant λ such that

B(θ) = λA(θ), f(r) = λg(r).
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Proof. Assume that g(r0) 6= 0 without loss of generality.
Case 1: A(θ) ≡ 0. Then B(θ)g(r) ≡ 0 for θ ∈ I and r ∈ J, which implies B(θ) ≡ 0

for θ ∈ I due to g(r0) 6= 0.
Case 2: A(θ) 6≡ 0. We assume that A(θ0) 6= 0 for some θ0 ∈ I, then

f(r) =
B(θ0)

A(θ0)
g(r) =: λg(r), r ∈ J, (12)

where λ = B(θ0)
A(θ0)

. Substituting equation (12) into (11), there holds

λA(θ)g(r) = B(θ)g(r), θ ∈ I, r ∈ J,

which yields B(θ) = λA(θ) for θ ∈ I by taking r = r0. The proof is complete.

Lemma 2.2. Let v = v(θ), θ ∈ I.
(1) If v ∈ C1(I) and satisfies sin θv + cos θv′ = 0, then v = C cos θ.
(2) If v ∈ C2(I) and satisfies 2 sin θv + cos θv′ = 0, then v = C cos2 θ.

Proof. Assume that I = (0, 2π) for simplicity and denote

I1 =
(

0,
π

2

)
, I2 =

(π
2
,
3π

2

)
, I3 =

(3π

2
, 2π
)
,

then
cos θ 6= 0, θ ∈ Ii, i = 1, 2, 3.

(1) In Ii, i = 1, 2, 3,(
cos−1 θv

)′
= cos−2 θ(sin θv + cos θv′) = 0,

then
cos−1 θv = Ci, v = Ci cos θ, θ ∈ Ii,

and
v′ = −Ci sin θ, θ ∈ Ii.

Since v′ is continuous at π
2

and 3π
2

, then C1 = C2 = C3 =: C, and thus v = C cos θ.
(2) The argument is simialr, and we omitted it.
The proof is complete.

Lemma 2.3. Suppose that ϕ1, ϕ2 ∈ C1
(
(0,+∞)

)
and satisfy{

rϕ′1(r) = aϕ1 + bϕ2,
rϕ′2(r) = cϕ1 + dϕ2.

(13)

Let δ := (a− d)2 + 4bc. Then
(1) If b = 0, d = a, then {

ϕ1 = C1r
a,

ϕ2 = (cC1 ln r + C2)r
a.

(2) If b = 0, d 6= a, then {
ϕ1 = C1r

a,
ϕ2 = c

a−dC1r
a + C2r

d.
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(3) If b 6= 0, δ > 0, then {
ϕ1 = C1r

m + C2r
n, (m > n)

ϕ2 = m−a
b
C1r

m + n−a
b
C2r

n,

where m,n are two different real roots of the equation

ρ2 − (a+ d)ρ+ ad− bc = 0. (14)

(4) If b 6= 0, δ = 0, then {
ϕ1 = (C1 ln r + C2)r

l,

ϕ2 =
[
l−a
b
C1 ln r + C1+(l−a)C2

b

]
rl,

where l is the unique real root of (14).
(5) If b 6= 0, δ < 0, then{

ϕ1 =
[
C1 cos(µ ln r) + C2 sin(µ ln r)

]
rλ,

ϕ2 =
[ (λ−a)C1+µC2

b
cos(µ ln r) + (λ−a)C2−µC1

b
sin(µ ln r)

]
rλ,

where λ± µi are the complex roots of (14).

Proof. Let r = et and D = d
dt

, then the equations (13) become{
Dϕ1 = aϕ1 + bϕ2,
Dϕ2 = cϕ1 + dϕ2.

(15)

Case 1: b = 0. The first equation of (15) becomes Dϕ1 = aϕ1, then

ϕ1 = C1e
at = C1r

a. (16)

Substituting (16) into the second equation of (15), we get

Dϕ2 − dϕ2 = cC1e
at.

Then
D
(
e−dtϕ2

)
= e−dt(Dϕ2 − dϕ2) = cC1e

(a−d)t, (17)

which can be divided into the following two situations.
Case 1.1: If d = a, there holds e−atϕ2 = cC1t+ C2, and

ϕ2 = (cC1t+ C2)e
at = (cC1 ln r + C2)r

a.

Case 1.2: If d 6= a, it follows from (17) that e−dtϕ2 = c
a−dC1e

(a−d)t + C2, and

ϕ2 =
c

a− d
C1e

at + C2e
dt =

c

a− d
C1r

a + C2r
d.

Case 2: b 6= 0. The first equation of (15) implies that

ϕ2 =
1

b
(Dϕ1 − aϕ1). (18)
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Substituting (18) into the second euqation of (15), we get

D2ϕ1 − (a+ d)Dϕ1 + (ad− bc)ϕ1 = 0, (19)

which has the characteristic equation (14).
Case 2.1: If δ > 0, equation (14) has two different real roots m,n (m > n) and the

general solution of (19) is expressed as follows:

ϕ1 = C1e
mt + C2e

nt = C1r
m + C2r

n.

Substituting this into (18), we get

ϕ2 =
m− a
b

C1e
mt +

n− a
b

C2e
nt =

m− a
b

C1r
m +

n− a
b

C2r
n.

Case 2.2: If δ = 0, equation (14) has a unique real root l and the general solution of
(19) is

ϕ1 = (C1t+ C2)e
lt = (C1 ln r + C2)r

l.

Substituting this into (18), we get

ϕ2 =
[ l − a

b
C1 ln r +

C1 + (l − a)C2

b

]
rl.

Case 2.3: If δ < 0, equation (14) has complex roots λ ± µi (µ 6= 0) and the general
solution of (19) is

ϕ1 =
[
C1 cos(µt) + C2 sin(µt)

]
eλt =

[
C1 cos(µ ln r) + C2 sin(µ ln r)

]
rλ.

Substituting this into (18), we get

ϕ2 =
[(λ− a)C1 + µC2

b
cos(µ ln r) +

(λ− a)C2 − µC1

b
sin(µ ln r)

]
rλ.

Thus the proof is complete.

Lemma 2.4. Suppose that v1, v2 ∈ C1(I) satisfying{
a cos θv1 + c sin θv2 − sin θv′1 = 0,
b cos θv1 + d sin θv2 + cos θv′2 = 0,

(20)

and v1v2 ≡ 0. Then we have (i) v1 ≡ 0 if b 6= 0; (ii) v2 ≡ 0 if c 6= 0.

Proof. Multiplying (20)1 by v2, due to v1v2 ≡ 0 we get

cv22 − v′1v2 = 0. (21)

Similarly, multiplying (20)2 by v1, it follows that

bv21 + v1v
′
2 = 0. (22)

(22) minus (21) tells us that bv21 − cv22 + (v1v2)
′ = 0. Then bv21 = cv22, since v1v2 ≡ 0.

Consequently,
bv31 = cv2(v1v2) ≡ 0, cv32 = bv1(v1v2) ≡ 0.

If b 6= 0, then v1 ≡ 0. If c 6= 0, then v2 ≡ 0. The proof is complete.
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3 Proof of Theorem 1.1

Proof of Theorem 1.1. Let w := ∂2u1 − ∂1u2 be the vorticity of u, then w satisfies the
equation

4w − u · ∇w = 0. (23)

Throughout this section, we write vi(θ), v
′
i(θ), ϕ(r), ϕ′(r) as vi, v

′
i, ϕ, ϕ′, i = 1, 2.

Direct computations show that

div u =
(

cos θv1 + sin θv2
)
ϕ′ −

(
sin θv′1 − cos θv′2

)ϕ
r

= : A(θ)ϕ′ −B(θ)
ϕ

r
;

(24)

w =
(

sin θv1 − cos θv2
)
ϕ′ +

(
cos θv′1 + sin θv′2

)ϕ
r
. (25)

The equation div u = 0 and (24) yield that A(θ)ϕ′ = B(θ)ϕ
r
. By Lemma 2.1, we have

either
A(θ) = B(θ) ≡ 0,

or
B(θ) = λA(θ), ϕ′ = λ

ϕ

r
.

Next, we discuss the two cases respectively.
Case 1: A(θ) = B(θ) ≡ 0. A(θ) ≡ 0 implies that

v1 = − tan θv2, (26)

and B(θ) ≡ 0 tells us that
− tan θv′1 + v′2 = 0. (27)

Substituting (26) into (27), we deduce that sin θv2+cos θv′2 = 0. Due to v2 ∈ C1, applying
Lemma 2.2 we obtain that

v2 = C cos θ, (28)

and thus
v1 = −C sin θ. (29)

Without loss of generality, we assume that C 6= 0. Substituting (28) and (29) into (25),
we have

w = −C
(
ϕ′ +

ϕ

r

)
,

and then

∆w =
(
∂2r +

1

r
∂r +

1

r2
∂2θ
)
w = −C

(
∂2r +

1

r
∂r
)(
ϕ′ +

ϕ

r

)
=− C(ϕ′′′ +

2ϕ′′

r
− ϕ′

r2
+
ϕ

r3
)
;

∂1w =− C
(
ϕ′ +

ϕ

r

)′
cos θ = −C cos θ

(
ϕ′′ +

ϕ′

r
− ϕ

r2
)
;

∂2w =− C sin θ
(
ϕ′′ +

ϕ′

r
− ϕ

r2
)
;

u · ∇w =ϕ(v1∂1w + v2∂2w) = 0.

(30)
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Combining (23) and (30), we obtain

r3ϕ′′′ + 2r2ϕ′′ − rϕ′ + ϕ = 0. (31)

Let r = et and denote D = d
dt

, then the equation (31) becomes

(D + 1)(D − 1)2ϕ = 0,

which has the general solution as

ϕ = C1e
t + C2te

t + C3e
−t = C1r + C2r ln r + C3r

−1.

Recall that u ∈ C3(Ω) ∩ C0(Ω̄), then

ϕ =

{
C1r, if Ω = R2;
C1r + C2r ln r, if Ω 6= R2.

(32)

By (28), (29) and (32),

u =


C ′1

(
−y
x

)
, if Ω = R2;

(C ′1 + C ′2 ln r)

(
−y
x

)
, if Ω 6= R2.

(33)

Case 2: B(θ) = λA(θ), ϕ′ = λϕ
r
. At this time, we have

ϕ = Crλ. (34)

Without loss of generality, we assume that C 6= 0. Recall that u ∈ C0(Ω̄), then λ ≥ 0.
Denote

L(θ) = sin θv1 − cos θv2,

then it is easy to verify that

L′ = A+B = (λ+ 1)A, cos θv′1 + sin θv′2 = A′ + L. (35)

By (25), (34) and (35) we have

w = Cλrλ−1L+ Crλ−1(A′ + L) = Crλ−1
[
A′ + (λ+ 1)L

]
=: Crλ−1H, (36)

where
H = A′ + (λ+ 1)L.

Then we have

∆w =
(
∂2r +

1

r
∂r +

1

r2
∂2θ
)
w

=CH
(
∂2r +

1

r
∂r
)
rλ−1 + Crλ−3H ′′

=Crλ−3
[
H ′′ + (λ− 1)2H

]
;

u · ∇w =ϕ(v1∂1w + v2∂2w)

=ϕ
[
v1

(
∂rw cos θ − ∂θw

sin θ

r

)
+ v2

(
∂rw sin θ + ∂θw

cos θ

r

)]
=ϕ
(
∂rwA−

∂θw

r
L
)

=C2r2λ−2
[
(λ− 1)HA−H ′L

]
.

(37)
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4w − u · ∇w = 0 gives that

Crλ+1
[
(λ− 1)HA−H ′L

]
= H ′′ + (λ− 1)2H.

Since λ ≥ 0, the above equation is equivalent to{
(λ− 1)HA−H ′L = 0, (38)

H ′′ + (λ− 1)2H = 0. (39)

We keep in mind that
L′ = (λ+ 1)A, (40)

H = A′ + (λ+ 1)L. (41)

The above two equations yield that

A′′ + (λ+ 1)2A = H ′. (42)

First, we can solve H according to equation (39). If λ = 1, it is easy. If λ 6= 1, (39) has
general solution

H = A′ + (λ+ 1)L = C1 cos
(
(λ− 1)θ

)
+ C2 sin

(
(λ− 1)θ

)
, λ 6= 1. (43)

Second, we solve A according to equation (42). Substituting (43) into (42), we have

A′′ + (λ+ 1)2A = (λ− 1)
[
C2 cos

(
(λ− 1)θ

)
− C1 sin

(
(λ− 1)θ

)]
, λ 6= 1.

This equation has general solution

A =C3 cos θ + C4 sin θ +
θ

2
(C1 cos θ − C2 sin θ)

= cos θ
(C1θ

2
+ C3

)
+ sin θ

(
− C2θ

2
+ C4

)
, λ = 0;

A =C3 cos
(
(λ+ 1)θ

)
+ C4 sin

(
(λ+ 1)θ

)
+
λ− 1

4λ

[
C2 cos

(
(λ− 1)θ

)
− C1 sin

(
(λ− 1)θ

)]
, λ 6= 0, 1.

(44)

Substituting (43) into equation (38), we have[
C1 cos

(
(λ− 1)θ

)
+ C2 sin

(
(λ− 1)θ

)]
A

−
[
C2 cos

(
(λ− 1)θ

)
− C1 sin

(
(λ− 1)θ

)]
L = 0, λ 6= 1.

(45)

Next, the classification of solutions is discussed in the following cases.
Case 2.1: λ = 1. In this easy case, equations (38) and (39) become{

H ′L = 0,
H ′′ = 0,

thenH = aθ+b and aL = 0. If a 6= 0, then L = 0. By (40), A = 1
2
L′ = 0, H = A′+2L = 0,

this contradicts that a 6= 0. Therefore a = 0 and H = b. Namely A′ + 2L = b, then
A′′ + 2L′ = 0. By (40), L′ = 2A, then A′′ + 4A = 0. This equation has general solution

A = C1 cos 2θ + C2 sin 2θ. (46)
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Then

L =
1

2
(H − A′) =

b

2
+ C1 sin 2θ − C2 cos 2θ. (47)

Combining (46) and (47), we obtain{
v1 = C1 cos θ +

(
C2 + b

2

)
sin θ,

v2 =
(
C2 − b

2

)
cos θ − C1 sin θ.

Then

u = Cr

(
C1 cos θ +

(
C2 + b

2

)
sin θ(

C2 − b
2

)
cos θ − C1 sin θ

)
=

(
C ′1x+ C ′2y
C ′3x− C ′1y

)
. (48)

Case 2.2: λ = 0. As shown in (44), in this case

A = cos θ
(C1θ

2
+ C3

)
+ sin θ

(
− C2θ

2
+ C4

)
. (49)

By (40), (43) and (49), we have

L = H − A′ = cos θ
(C1 + C2θ

2
− C4

)
+ sin θ

(C1θ − C2

2
+ C3

)
. (50)

We substitute (49) and (50) into (45) and obtain that[(C2
1 − C2

2)θ − C1C2

2
+ C1C3 + C2C4

]
cos 2θ

−
[
C1C2θ − C1C4 + C2C3 +

C2
1 − C2

2

4

]
sin 2θ = 0.

Applying Lemma 2.1 again, we get

(C2
1 − C2

2)θ − C1C2

2
+ C1C3 + C2C4 = C1C2θ − C1C4 + C2C3 +

C2
1 − C2

2

4
≡ 0,

and thus
C1 = C2 = 0. (51)

By (49), (50) and (51), we have{
A = C3 cos θ + C4 sin θ
L = C3 sin θ − C4 cos θ.

Then

v1 = C3, v2 = C4,

and

u = C

(
C3

C4

)
=

(
C ′1
C ′2

)
. (52)

Moreover, for λ 6= 0, 1, as shown in (44) there holds

A = C3 cos
(
(λ+1)θ

)
+C4 sin

(
(λ+1)θ

)
+
λ− 1

4λ

[
C2 cos

(
(λ−1)θ

)
−C1 sin

(
(λ−1)θ

)]
, (53)
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and due to (40), (43) and (53) we have

L =
1

λ+ 1
(H − A′)

=C3 sin
(
(λ+ 1)θ

)
− C4 cos

(
(λ+ 1)θ

)
+
λ+ 1

4λ

[
C1 cos

(
(λ− 1)θ

)
+ C2 sin

(
(λ− 1)θ

)]
.

(54)

Furthermore, by substituting (53) and (54) into (45) we obtain

(C1C3 + C2C4) cos 2θ + (C1C4 − C2C3) sin 2θ

− 1

2λ

[
C1C2 cos

(
(2λ− 2)θ

)
+
C2

2 − C2
1

2
sin
(
(2λ− 2)θ

)]
= 0.

(55)

Case 2.3: λ = 2. Then (55) becomes(
C1C3 + C2C4 −

C1C2

4

)
cos 2θ +

(
C1C4 − C2C3 +

C2
1 − C2

2

8

)
sin 2θ = 0, (56)

then {
C1C3 + C2C4 − C1C2

4
= 0,

C1C4 − C2C3 +
C2

1−C2
2

8
= 0.

(57)

In this case, we have by (53) and (54) that

{
A = C3 cos 3θ + C4 sin 3θ + 1

8
(C2 cos θ − C1 sin θ

)
,

L = C3 sin 3θ − C4 cos 3θ + 3
8
(C1 cos θ + C2 sin θ

)
,

then {
v1 =

(
C3 + C2

8

)
cos2 θ +

(
3C2

8
− C3

)
sin2 θ +

(
C4 + C1

8

)
sin 2θ,

v2 =
(
C4 − 3C1

8

)
cos2 θ −

(
C4 + C1

8

)
sin2 θ −

(
C3 + C2

8

)
sin 2θ,

(58)

and

u = Cr2
(
v1
v2

)
= C

( (
C3 + C2

8

)
x2 +

(
3C2

8
− C3

)
y2 +

(
2C4 + C1

4

)
xy(

C4 − 3C1

8

)
x2 −

(
C4 + C1

8

)
y2 −

(
2C3 + C2

4

)
xy

)
,

with C1, C2, C3, C4 satisfying equation (57). If we replace CC1

8
by C1,

CC2

8
by C2, CC3 by

C3, CC4 by C4, then

u =

(
(C2 + C3)x

2 + (3C2 − C3)y
2 + 2(C1 + C4)xy

(C4 − 3C1)x
2 − (C1 + C4)y

2 − 2(C2 + C3)xy

)
, (59)

with C1, C2, C3, C4 satisfying{
C1C3 + C2C4 − 2C1C2 = 0,
C1C4 − C2C3 + C2

1 − C2
2 = 0.

(60)
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Case 2.4: λ 6= 0, 1, 2. By (55) we have
C1C3 + C2C4 = 0,
C1C4 − C2C3 = 0,
C1C2 = 0,
C2

2 − C2
1 = 0,

namely
C1 = C2 = 0. (61)

By (53), (54) and (61), we have{
A = C3 cos

(
(λ+ 1)θ

)
+ C4 sin

(
(λ+ 1)θ

)
,

L = C3 sin
(
(λ+ 1)θ

)
− C4 cos

(
(λ+ 1)θ

)
,

then {
v1 = C3 cos(λθ) + C4 sin(λθ),
v2 = C4 cos(λθ)− C3 sin(λθ),

and

u = Crλ
(
C3 cos(λθ) + C4 sin(λθ)
C4 cos(λθ)− C3 sin(λθ)

)
= rλ

(
C ′1 cos(λθ) + C ′2 sin(λθ)
C ′2 cos(λθ)− C ′1 sin(λθ)

)
, (62)

where λ 6= 0, 1, 2.

Moreover, if Ω = R2, it is necessary that vi(0) = vi(2π), i = 1, 2, namely{
C ′1[1− cos(2λπ)]− C ′2 sin(2λπ) = 0,
C ′2[1− cos(2λπ)] + C ′1 sin(2λπ) = 0.

Notice that the above equations are linear equations with respect to 1 − cos(2λπ) and
sin(2λπ), and the determinant∣∣∣∣ C ′1 −C ′2C ′2 C ′1

∣∣∣∣ = C ′21 + C ′22 6= 0,

otherwise u = 0, which is included in the former case (52). By Cramer’s Rule,

1− cos(2λπ) = sin(2λπ) = 0,

thus λ ∈ N. Recall that λ 6= 0, 1, 2, then λ ≥ 3 and λ ∈ N.
Finally, gathering (33), (48), (52), (59) and (62), we obtained that the solution u has

five types of forms as in Theorem 1.1.
The pressure expressions. Next we substitute solutions of these types into equa-

tions (2) respectively. All these solutions satisfy

div u = 0,

then it is left to find the suitable pressure.
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In type (i), it is easy to derive the solution

u =

(
C1

C2

)
, p = C3.

In type (ii), direct computations give that

u =

(
C1x+ C2y
C3x− C1y

)
, p = −1

2
(C2

1 + C2C3)(x
2 + y2) + C4

is the solution.
In type (iii), by direct computations, we have that

∂1p− 8C2 + 2(C2
3 + C2

4 − 2C1C4 + 2C2C3 + C2
2 − 3C2

1)x3

+ 2(C2
3 + C2

4 + 2C1C4 − 2C2C3 + C2
1 − 3C2

2)xy2

+ 8(C1C3 + C2C4 − 2C1C2)x
2y = 0,

∂2p+ 8C1 + 2(C2
3 + C2

4 + 2C1C4 − 2C2C3 + C2
1 − 3C2

2)y3

+ 2(C2
3 + C2

4 − 2C1C4 + 2C2C3 + C2
2 − 3C2

1)x2y

+ 8(C1C3 + C2C4 − 2C1C2)xy
2 = 0.

We apply (60) to the above equations, then

∂1p− 8C2 + 2(C2
3 + C2

4 − C2
1 − C2

2)(x3 + xy2) = 0,

∂2p+ 8C1 + 2(C2
3 + C2

4 − C2
1 − C2

2)(y3 + x2y) = 0.

Therefore

p =
1

2
(C2

1 + C2
2 − C2

3 − C2
4)(x2 + y2)2 + 8C2x− 8C1y + C5,

with C1, C2, C3, C4 satisfying equation (60).
In type (iv), note that C1 = C2 = 0 in (61), which implies H = 0 and w ≡ 0 due to

(43) and (36). Using

(u2,−u1)Tw = u · ∇u−∇
( |u|2

2

)
,

the pressure can be expressed by −1
2
|u|2 + C. Then

p = −1

2
(C2

1 + C2
2)r2λ + C3.

In type (v), Ω 6= R2 and

u = (C1r + C2r ln r)

(
− sin θ
cos θ

)
.

Direct computations give that

w = −(2C2 ln r + C2 + 2C1),

and

u · ∇u = (C1 + C2 ln r)∂θu.
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Then

∇p = 4u− u · ∇u = ∇>w − u · ∇u

=
2C2

r

(
− sin θ
cos θ

)
+ (C1 + C2 ln r)2r

(
cos θ
sin θ

)
,

which implies

p =
1

4
r2
[
2C2

2 ln2 r + (4C1C2 − 2C2
2) ln r + 2C2

1 − 2C1C2 + C2
2

]
+ 2C2θ + C3

by integration by parts.
Thus the proof is complete.

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Our strategy is to reduce the problem here to the
one stated in Theorem 1.1.

Proof of Theorem 1.3. In this part, u has the form

u =

(
ϕ1(r)v1(θ)
ϕ2(r)v2(θ)

)
.

In the following, we will only consider v1 6≡ 0, v2 6≡ 0, ϕ1 6≡ 0 and ϕ2 6≡ 0, for the cases
v1 ≡ 0, v2 ≡ 0, ϕ1 ≡ 0 or ϕ2 ≡ 0 can be reduced to the problem in Theorem 1.1.

Direct computations show that

div u =
(

cos θ∂r −
sin θ

r
∂θ

)
(v1ϕ1) +

(
sin θ∂r +

cos θ

r
∂θ

)
(v2ϕ2)

= cos θv1ϕ
′
1 + sin θv2ϕ

′
2 + cos θv′2

ϕ2

r
− sin θv′1

ϕ1

r
,

and

w = ∂2u1 − ∂1u2

=
(

sin θ∂r +
cos θ

r
∂θ

)
(v1ϕ1)−

(
cos θ∂r −

sin θ

r
∂θ

)
(v2ϕ2)

= sin θv1ϕ
′
1 − cos θv2ϕ

′
2 + cos θv′1

ϕ1

r
+ sin θv′2

ϕ2

r
. (63)

Moreover, div u = 0 implies that

cos θv1ϕ
′
1 + sin θv2ϕ

′
2 + cos θv′2

ϕ2

r
− sin θv′1

ϕ1

r
= 0. (64)

Next we discuss the problem according to whether cos θv1 and sin θv2 are linearly depen-
dent.

Case 1: cos θv1 and sin θv2 are linearly dependent. There exists λ 6= 0, such that

cos θv1 = λ sin θv2,
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since v1 6≡ 0 and v2 6≡ 0. Then
v1 = λ tan θv2. (65)

Substituting (65) into (64), we obtain that

sin θv2(λϕ
′
1 + ϕ′2) + cos θv′2

ϕ2

r
− λ sin θ(sec2 θv2 + tan θv′2)

ϕ1

r
= 0. (66)

Since v2 6≡ 0, there exist an interval K, such that v2, sin θ, cos θ 6= 0 when θ ∈ K. Then
we deduce from (66) that

λϕ′1 + ϕ′2 +
v′2

tan θv2

ϕ2

r
− λ
(

sec2 θ +
tan θv′2
v2

)ϕ1

r
= 0, θ ∈ K.

Let M(θ) =
v′2

tan θv2
, N(θ) = sec2 θ + M(θ) tan2 θ, then we can rewrite the above formula

as
λϕ′1 + ϕ′2 +M(θ)

ϕ2

r
− λN(θ)

ϕ1

r
= 0, θ ∈ K. (67)

Case 1.1: If M(θ) is not a constant in K, namely there exists θ1, θ2 ∈ K, such that

M(θ1) 6= M(θ2),

then
λϕ′1 + ϕ′2 +M(θ1)

ϕ2

r
− λN(θ1)

ϕ1

r
= 0,

λϕ′1 + ϕ′2 +M(θ2)
ϕ2

r
− λN(θ2)

ϕ2

r
= 0.

In the above two equations, the first one minus the second gives that

ϕ2 = λ
N(θ1)−N(θ2)

M(θ1)−M(θ2)
ϕ1 =: Cϕ1,

then u =

(
v1ϕ1

Cv2ϕ1

)
=

(
v1
Cv2

)
ϕ1, reducing to the problem in Theorem 1.1.

Case 1.2: If N(θ) is not a constant in K, this case is similar to the above case of
Case 1.1.

Case 1.3: If both M(θ) and N(θ) are constants in K, it is easy to see that M(θ) =
−1, N(θ) = 1, and (67) becomes

(λϕ1 + ϕ2)
′ =

λϕ1 + ϕ2

r
,

then λϕ1 + ϕ2 = C1r, and
ϕ2 = C1r − λϕ1. (68)

If C1 = 0, this case can be reduced to the problem in Theorem 1.1, so we can assume that
C1 6= 0. We substitute (68) into (66) and obtain that

(sin θv2 + cos θv′2)
(
C1 − λ sec2 θ

ϕ1

r

)
= 0.

Since λ 6= 0 and ϕ1 6≡ 0, then we have

sin θv2 + cos θv′2 = 0.
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Applying Lemma 2.2, there holds

v2 = C2 cos θ, C2 6= 0.

By (65), we get v1 = λC2 sin θ. We substitute
v1 = λC2 sin θ
v2 = C2 cos θ
ϕ2 = C1r − λϕ1

into (63) and obtain that

w = λC2

(
ϕ′1 +

ϕ1

r

)
− C1C2,

then

∆w =
(
∂2r +

1

r
∂r +

1

r2
∂2θ
)
w = λC2

(
∂2r +

1

r
∂r
)(
ϕ′1 +

ϕ1

r

)
=λC2

(
ϕ′′′1 +

2ϕ′′1
r
− ϕ′1
r2

+
ϕ1

r3
)
;

∂1w =λC2

(
ϕ′1 +

ϕ1

r

)′
cos θ = λC2 cos θ

(
ϕ′′1 +

ϕ′1
r
− ϕ1

r2
)
;

∂2w =λC2 sin θ
(
ϕ′′1 +

ϕ′1
r
− ϕ1

r2
)
;

u · ∇w =v1ϕ1∂1w + v2ϕ2∂2w = λC1C
2
2 sin θ cos θr

(
ϕ′′1 +

ϕ′1
r
− ϕ1

r2
)
.

(69)

Combine (23) and (69), and notice that C1 6= 0, C2 6= 0, λ 6= 0, then we obtain

ϕ′′′1 +
2ϕ′′1
r
− ϕ′1
r2

+
ϕ1

r3
= C1C2 sin θ cos θr

(
ϕ′′1 +

ϕ′1
r
− ϕ1

r2
)
,

which implies that {
ϕ′′1 +

ϕ′
1

r
− ϕ1

r2
= 0,

ϕ′′′1 +
2ϕ′′

1

r
− ϕ′

1

r2
+ ϕ1

r3
= 0.

(70)

Notice that the second equation of (70) is namely (31), whose solutions are ϕ1 = C3r +
C4r ln r. These solutions verify the first equation of (70) if and only if C4 = 0, then
ϕ1 = C3r are the solutions of (70). Therefore,{

ϕ1 = C3r,
ϕ2 = (C1 − λC3)r.

Finally we have

u = C2

(
λC3r sin θ

(C1 − λC3)r cos θ

)
=

(
C4y
C5x

)
, p = −1

2
C4C5(x

2 + y2) + C6,

included in the type (ii) as shown in Theorem 1.1.
Case 2: cos θv1 and sin θv2 are linearly independent. Then there exist θ1 6= θ2

such that the determinant

D1 :=

∣∣∣∣ cos θ1v1(θ1) sin θ1v2(θ1)
cos θ2v1(θ2) sin θ2v2(θ2)

∣∣∣∣ 6= 0.
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We take θ = θ1 and θ = θ2 respectively in (64), then we obtain equations{
cos θ1v1(θ1)ϕ

′
1 + sin θ1v2(θ1)ϕ

′
2 = sin θ1v

′
1(θ1)

ϕ1

r
− cos θ1v

′
2(θ1)

ϕ2

r
,

cos θ2v1(θ2)ϕ
′
1 + sin θ2v2(θ2)ϕ

′
2 = sin θ2v

′
1(θ2)

ϕ1

r
− cos θ2v

′
2(θ2)

ϕ2

r
.

(71)

Notice that the determinant of the coefficients of (71) is exactly D1. Since D1 6= 0, by
Cramer’s Rule we must have {

ϕ′1 = aϕ1

r
+ bϕ2

r
,

ϕ′2 = cϕ1

r
+ dϕ2

r
.

(72)

We substitute (72) into (64) and obtain that

(a cos θv1 + c sin θv2 − sin θv′1)ϕ1 + (b cos θv1 + d sin θv2 + cos θv′2)ϕ2 = 0.

Since ϕ2 6≡ 0, by Lemma 2.1 we get either{
ϕ1 = λϕ2

b cos θv1 + d sin θv2 + cos θv′2 = −λ(a cos θv1 + c sin θv2 − sin θv′1)
(73)

or {
a cos θv1 + c sin θv2 − sin θv′1 = 0,
b cos θv1 + d sin θv2 + cos θv′2 = 0.

(74)

In the first case (73), since ϕ1 = λϕ2, u =

(
λv1ϕ2

v2ϕ2

)
=

(
λv1
v2

)
ϕ2. This case can be

reduced to the problem in Theorem 1.1.
Next we focus on the second case (74), which implies that{

v′1 = a cot θv1 + cv2,
v′2 = −(bv1 + d tan θv2).

(75)

Substituting (72) and (75) into (63), we obtain that

w =
av1
sin θ

ϕ1

r
− dv2

cos θ

ϕ2

r
. (76)

w satisfy the equation 4w = u · ∇w. First, we compute u · ∇w.

u · ∇w = v1ϕ1∂1w + v2ϕ2∂2w

= v1ϕ1

(
cos θ∂r −

sin θ

r
∂θ
)
w + v2ϕ2

(
sin θ∂r +

cos θ

r
∂θ
)
w

= (cos θv1ϕ1 + sin θv2ϕ2)∂rw +
1

r
(− sin θv1ϕ1 + cos θv2ϕ2)∂θw. (77)

According to (76) and (72),

∂rw =
av1
sin θ

(ϕ1

r

)′
− dv2

cos θ

(ϕ2

r

)′
=
av1
sin θ

r−2
[
(a− 1)ϕ1 + bϕ2

]
− dv2

cos θ
r−2
[
cϕ1 + (d− 1)ϕ2

]
=
[
a(a− 1)

v1
sin θ

− cd v2
cos θ

]
r−2ϕ1 +

[
ab

v1
sin θ

− d(d− 1)
v2

cos θ

]
r−2ϕ2. (78)

19



According to (76) and (75),

∂θw =
aϕ1

r

( v1
sin θ

)′
− dϕ2

r

( v2
cos θ

)′
=

a

sin θ

[
(a− 1) cot θv1 + cv2

]
r−1ϕ1 +

d

cos θ

[
bv1 + (d− 1) tan θv2

]
r−1ϕ2. (79)

Substituting (78) and (79) into (77), we obtain that

u · ∇w = r−2
[
− c(a+ d)v1v2ϕ

2
1 + b(a+ d)v1v2ϕ

2
2 + F3ϕ1ϕ2

]
, (80)

where

F3 = (a cot θ − d tan θ)(bv21 + cv22) +
(a2 − a

sin2 θ
− d2 − d

cos2 θ

)
v1v2. (81)

Next we compute ∆w.

∆w =
(
∂2r + r−1∂r + r−2∂2θ

)
w. (82)

By (78) and (72),

∂2rw =
{[
a(a− 1)(a− 2) + abc

] v1
sin θ

− cd(a+ d− 3)
v2

cos θ

}
r−3ϕ1

+
{
ab(a+ d− 3)

v1
sin θ

−
[
d(d− 1)(d− 2) + bcd

] v2
cos θ

}
r−3ϕ2 (83)

By (79) and (75),

∂2θw =
{[
a(a− 1)(a− 2) cot2 θ − a(bc+ a− 1)

] v1
sin θ

+ ac
[
(a− 2) cot2 θ − d

] v2
cos θ

}
r−1ϕ1

−
{[
d(d− 1)(d− 2) tan2 θ − d(bc+ d− 1)

] v2
cos θ

+ bd
[
(d− 2) tan2 θ − a

] v1
sin θ

}
r−1ϕ2

(84)

Substituting (78), (83) and (84) into (82), we obtain that

∆w = r−3(F1ϕ1 − F2ϕ2), (85)

where

F1 =a(a− 1)(a− 2)
v1

sin3 θ
+ c
[
a(a− 2) cot2 θ − d(d+ 2a− 2)

] v2
cos θ

,

F2 =d(d− 1)(d− 2)
v2

cos3 θ
+ b
[
d(d− 2) tan2 θ − a(a+ 2d− 2)

] v1
sin θ

.
(86)

4w = u · ∇w, (80) and (85) yield that

F1ϕ1 − F2ϕ2 = (a+ d)v1v2r
(
bϕ2

2 − cϕ2
1

)
+ F3rϕ1ϕ2, (87)

where F1, F2, F3 are given by (81) and (86), and v1, v2 satisfy (74).
Since ϕ1, ϕ2 satisfy equations (72), applying Lemma 2.3 for them, we obtain their

expressions as shown in Lemma 2.3. If ϕ1 and ϕ2 are linearly dependent, one can reduce
this problem to the one in Theorem 1.1, hence it suffices to consider that they are linearly
independent.
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Case (1): b = 0, d = a. At this time,{
ϕ1 = C1r

a,
ϕ2 = (cC1 ln r + C2)r

a.

Since ϕ1 and ϕ2 are linearly independent, then cC1 6= 0. ϕ1, ϕ2 ∈ C0([0,∞)), then a > 0.
Substitute b = 0, d = a and the expressions of ϕ1 and ϕ2 into (87), then we obtain

(C1F1 − C2F2)− cC1F2 ln r = ra+1
[
cC2

1F3 ln r − 2acC2
1v1v2 + C1C2F3

]
,

which implies 
C1F1 − C2F2 = 0;
cC1F2 = 0;
cC2

1F3 = 0;
−2acC2

1v1v2 + C1C2F3 = 0.

Since cC1 6= 0 and a > 0, then F1 = F2 = F3 = v1v2 ≡ 0. Applying Lemma 2.4, we have
v2 ≡ 0, which contradicts our assumption that v2 6≡ 0. Therefore this case does not exist.

Case (2): b = 0, d 6= a. We have{
ϕ1 = C1r

a,
ϕ2 = c

a−dC1r
a + C2r

d.

Since ϕ1 and ϕ2 are linearly independent, then C1C2 6= 0. ϕ1, ϕ2 ∈ C0, then a ≥ 0 and
d ≥ 0. d 6= a implies that a+ d > 0.

In this case, equation (87) becomes

C1

(
F1 −

cF2

a− d

)
ra − C2F2r

d = cC2
1

[ F3

a− d
− (a+ d)v1v2

]
r2a+1 + C1C2F3r

a+d+1. (88)

ra, rd, r2a+1, ra+d+1 appear in the above formula. Obviously, ra is different from the other
three, so is ra+d+1. Then the coefficients of ra and ra+d+1 must be 0, which give that

F1 =
c

a− d
F2; (89)

F3 = 0; (90)

C2F2r
d = c(a+ d)C2

1v1v2r
2a+1. (91)

This situation will be divided into two subcases for further discussion.
Case (2.1): c = 0. The above equations are reduced to

F1 = F2 = F3 = 0,

namely 
a(a− 1)(a− 2) v1

sin3 θ
= 0;

d(d− 1)(d− 2) v2
cos3 θ

= 0;(
a2−a
sin2 θ

− d2−d
cos2 θ

)
v1v2 = 0.

(92)

Since v1 6≡ 0 and v2 6≡ 0, then the first and second equation of (92) give that

a = 0, 1, 2; d = 0, 1, 2.
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Notice that c = 0, then the first equation of (74) is reduced to

a cos θv1 − sin θv′1 = 0.

Since a = 0, 1, 2 and v1 ∈ C2, we use a argument similar to the one in Lemma 2.2, then
we obtain that

v1 = C3 sina θ, C3 6= 0, (93)

Similarly, since b = 0, the second equation of (74) is reduced to

d sin θv2 + cos θv′2 = 0,

Since d = 0, 1, 2 and v2 ∈ C2, we apply Lemma 2.2 and obtain that

v2 = C4 cosd θ, C4 6= 0. (94)

Having (93) and (94), one can reduce the third equation of (92) to{
a2 − a = 0;
d2 − d = 0.

Since d 6= a, the above equations have solutions{
a = 1
d = 0 ;

{
a = 0
d = 1 .

If a = 1, d = 0, then

ϕ1 = C1r, ϕ2 = C2, v1 = C3 sin θ, v2 = C4,

and

u =

(
C1C3r sin θ
C2C4

)
=

(
C5y
C6

)
, p = −C5C6x+ C7. (95)

If a = 0, d = 1, then

ϕ1 = C1, ϕ2 = C2r, v1 = C3, v2 = C4 cos θ,

and

u =

(
C1C3

C2C4r cos θ

)
=

(
C5

C6x

)
, p = −C5C6y + C7. (96)

Case (2.2): c 6= 0. Consider equation (91).
If d 6= 2a+ 1,

C2F2 = c(a+ d)C2
1v1v2 ≡ 0,

namely
F2 ≡ 0, v1v2 ≡ 0.

According to Lemma 2.4, v2 ≡ 0, which contradicts that v2 6≡ 0. Therefore

d = 2a+ 1.
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With (86) and b = 0, we rewrite (89) as

a(a− 1)(a− 2)v1 =
c sin θ

cos3 θ

[d(d− 1)(d− 2)

a− d
sin2 θ − a(a− 2) cos4 θ

+ d(d+ 2a− 2) sin2 θ cos2 θ
]
v2.

(97)

If a(a− 1)(a− 2) = 0, then[d(d− 1)(d− 2)

a− d
sin2 θ − a(a− 2) cos4 θ + d(d+ 2a− 2) sin2 θ cos2 θ

]
v2 = 0.

Since v2 6≡ 0, there holds 
d(d− 1)(d− 2) = 0;
a(a− 2) = 0;
d(d+ 2a− 2) = 0.

The above equations have solutions{
a = 0
d = 0 ;

{
a = 0
d = 2 ;

{
a = 2
d = 0 .

These all contradict that d = 2a+ 1. Therefore

a(a− 1)(a− 2) 6= 0.

This and (97) give that

v1 =
c

a(a− 1)(a− 2)

sin θ

cos3 θ

[d(d− 1)(d− 2)

a− d
sin2 θ − a(a− 2) cos4 θ

+ d(d+ 2a− 2) sin2 θ cos2 θ
]
v2.

(98)

Notice that when b = 0, equation (90) is

F3 = c(a cot θ − d tan θ)v22 +
(a2 − a

sin2 θ
− d2 − d

cos2 θ

)
v1v2 = 0.

Since v2 6≡ 0, there exists an interval K1, such that

v2 6= 0, θ ∈ K1.

Then

c(a cot θ − d tan θ)v2 +
(a2 − a

sin2 θ
− d2 − d

cos2 θ

)
v1 = 0, θ ∈ K1.

Substituting (98) into the above equation, we obtain that in K1,

a(a− 1)(a− 2)(a cos2 θ − d sin2 θ) cos4 θ +
[
(a2 − a) cos2 θ − (d2 − d) sin2 θ

]
×
[d(d− 1)(d− 2)

a− d
sin2 θ − a(a− 2) cos4 θ + d(d+ 2a− 2) sin2 θ cos2 θ

]
= 0.

(99)
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Notice that the left hand side of the above equation is a polynomial with respect to cos2 θ,

and the constant term of this polynomial is d2(d−1)2(d−2)
d−a , then we have

d2(d− 1)2(d− 2)

d− a
= 0,

d = 0, 1, 2.

Recall that d = 2a+ 1, a ≥ 0 and a(a− 1)(a− 2) 6= 0, then

d = 2, a =
1

2
.

Substituting this into (99), we obtain that −11
16

cos2 θ = sin2 θ, which is impossible. There-
fore, Case (2.2) does not exist.

Case (3): b 6= 0, δ > 0. Now we have{
ϕ1 = C1r

m + C2r
n,

ϕ2 = m−a
b
C1r

m + n−a
b
C2r

n,

where m,n are two different real roots of equation (14) and m > n.
Since ϕ1 and ϕ2 are linearly independent, then C1C2 6= 0. ϕ1, ϕ2 ∈ C0, then m > n ≥

0.
By Vieta’s theorem,

a+ d =m+ n > 0,

ad− bc =mn.
(100)

In this case, equation (87) becomes

C1

[
bF1 − (m− a)F2

]
rm + C2

[
bF1 − (n− a)F2

]
rn

=C2
1

{
(a+ d)

[
(m− a)2 − bc

]
v1v2 + (m− a)F3

}
r2m+1

+ C2
2

{
(a+ d)

[
(n− a)2 − bc

]
v1v2 + (n− a)F3

}
r2n+1

+ C1C2

{
2(a+ d)

[
(m− a)(n− a)− bc

]
v1v2 + (m+ n− 2a)F3

}
rm+n+1.

(101)

Note that rm, rn, r2m+1, r2n+1, rm+n+1 appear in the above equation. Since m > n,

2m+ 1 > m+ n+ 1 > 2n+ 1,m > n,

the coefficients of r2m+1, rm+n+1 and rn must be 0, which implies that
(a+ d)

[
(m− a)2 − bc

]
v1v2 + (m− a)F3 = 0;

2(a+ d)
[
(m− a)(n− a)− bc

]
v1v2 + (m+ n− 2a)F3 = 0;

bF1 = (n− a)F2;

C1

[
bF1 − (m− a)F2

]
rm = C2

2

{
(a+ d)

[
(n− a)2 − bc

]
v1v2 + (n− a)F3

}
r2n+1.

(102)

Notice that m,n are roots of equation (14). This and (100) give that

(m− a)2 − bc =(d− a)(m− a);

(n− a)2 − bc =(d− a)(n− a);

(m− a)(n− a) =− bc;
m+ n =a+ d.

(103)
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Substitute the third equation of (102) into the forth one and apply (103), then one can
rewrite (102) as

(a+ d)(d− a)(m− a)v1v2 + (m− a)F3 = 0;
4bc(a+ d)v1v2 + (a− d)F3 = 0;
F1 = n−a

b
F2;[

(a+ d)(d− a)(n− a)v1v2 + (n− a)F3

]
r2n+1 = (n−m)C1C

−2
2 F2r

m.

(104)

Consider the first and second equation of (104), where the determinant of the coefficients

D2 :=

∣∣∣∣ (a+ d)(d− a)(m− a) m− a
4bc(a+ d) a− d

∣∣∣∣
=(a+ d)(a−m)

[
(d− a)2 + 4bc

]
= (a+ d)(a−m)δ.

If D2 6= 0, by Cramer’s Rule,
v1v2 ≡ 0, F3 ≡ 0.

According to Lemma 2.4,
v1 ≡ 0,

which contradicts that v1 6≡ 0. Then we must have

D2 = 0.

Notice that a+ d > 0 and δ > 0, then

m = a.

Therefore, n = a+ d−m = d, bc = ad−mn = 0. Since b 6= 0, then c = 0. In summary,

m = a, n = d, c = 0, (105)

and a > d ≥ 0.
With (105), we can reduce equations (104) to

F1 =
d− a
b

F2; (106)

F3 = 0; (107)

(a+ d)(d− a)v1v2r
2d+1 = C1C

−2
2 F2r

a. (108)

The following argument for this case is very similar to that for Case (2.2). For complete-
ness, let us briefly describe the proof.

If a 6= 2d+ 1, equation (108) is equivalent to

(a+ d)(d− a)v1v2 = C1C
−2
2 F2 ≡ 0,

and then v1v2 ≡ 0, which contradicts that v1 6≡ 0. Therefore

a = 2d+ 1.
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With (86) and c = 0, we rewrite (106) as

d(d− 1)(d− 2)v2 =
b cos θ

sin3 θ

[a(a− 1)(a− 2)

d− a
cos2 θ − d(d− 2) sin4 θ

+ a(a+ 2d− 2) sin2 θ cos2 θ
]
v1.

(109)

If d(d− 1)(d− 2) = 0, then[a(a− 1)(a− 2)

d− a
cos2 θ − d(d− 2) sin4 θ + a(a+ 2d− 2) sin2 θ cos2 θ

]
v1 = 0.

Since v1 6≡ 0, we must have 
a(a− 1)(a− 2) = 0;
d(d− 2) = 0;
a(a+ 2d− 2) = 0.

The above equations have solutions{
d = 0
a = 0 ;

{
d = 0
a = 2 ;

{
d = 2
a = 0 .

These all contradict that a = 2d+ 1. Therefore

d(d− 1)(d− 2) 6= 0.

This and (109) give that

v2 =
b

d(d− 1)(d− 2)

cos θ

sin3 θ

[a(a− 1)(a− 2)

d− a
cos2 θ − d(d− 2) sin4 θ

+ a(a+ 2d− 2) sin2 θ cos2 θ
]
v1.

(110)

Notice that when c = 0, equation (107) is

F3 = b(a cot θ − d tan θ)v21 +
(a2 − a

sin2 θ
− d2 − d

cos2 θ

)
v1v2 = 0.

Since v1 6≡ 0, there exists an interval K2, such that

v1 6= 0, θ ∈ K2.

Then

b(a cot θ − d tan θ)v1 +
(a2 − a

sin2 θ
− d2 − d

cos2 θ

)
v2 = 0, θ ∈ K2.

Substituting (110) into the above equation, we obtain that in K2,

d(d− 1)(d− 2)(a cos2 θ − d sin2 θ) sin4 θ +
[
(a2 − a) cos2 θ − (d2 − d) sin2 θ

]
×
[a(a− 1)(a− 2)

d− a
cos2 θ − d(d− 2) sin4 θ + a(a+ 2d− 2) sin2 θ cos2 θ

]
= 0.

Notice that the left hand side of the above equation is a polynomial with respect to sin2 θ,

and the constant term of this polynomial is a2(a−1)2(a−2)
d−a , then we have

a2(a− 1)2(a− 2)

d− a
= 0,
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and a = 0, 1, 2. Recall that a = 2d+ 1, d ≥ 0 and d(d− 1)(d− 2) 6= 0, then

a = 2, d =
1

2
.

This is also impossible by similar arguments as Case (2.2). Therefore, Case (3) does not
exist.

Case (4) and (5): b 6= 0, δ ≤ 0. In these two cases, write{
ϕ1 = (C1f1 + C2f2)r

k,
ϕ2 = (B1f1 +B2f2)r

k.
(111)

In Case (4), 
k = l,
f1 = ln r, f2 = 1,

B1 = l−a
b
C1, B2 = C1+(l−a)C2

b
.

(112)

where l is the unique real root of equation (14). Since ϕ1 and ϕ2 are linearly independent,
then C1 6= 0. ϕ1, ϕ2 ∈ C0 at r = 0, then k = l > 0.

In Case (5), 
k = λ,
f1 = cos(µ ln r), f2 = sin(µ ln r),

B1 = (λ−a)C1+µC2

b
, B2 = (λ−a)C2−µC1

b
.

(113)

where λ±µi (µ 6= 0) are the complex roots of equation (14). Since ϕ1 and ϕ2 are linearly
independent, then C2

1 + C2
2 6= 0. ϕ1, ϕ2 ∈ C0 at r = 0, then k = λ > 0.

Substitute (111) into (87) and denote G = (a+ d)v1v2, then we obtain that

(C1F1 −B1F2)f1 + (C2F1 −B2F2)f2

= rk+1
{
f 2
1

[
(bB2

1 − cC2
1)G+ C1B1F3

]
+ f 2

2

[
(bB2

2 − cC2
2)G+ C2B2F3

]
+ f1f2

[
2(bB1B2 − cC1C2)G+ (C1B2 + C2B1)F3

]}
.

(114)

Since f1, f2, r
k+1f 2

1 , r
k+1f 2

2 and rk+1f1f2 are linearly independent, the above equations are
equivalent to 

C1F1 −B1F2 = 0;
C2F1 −B2F2 = 0;
(bB2

1 − cC2
1)G+ C1B1F3 = 0;

(bB2
2 − cC2

2)G+ C2B2F3 = 0;
2(bB1B2 − cC1C2)G+ (C1B2 + C2B1)F3 = 0.

(115)

For Case (4), we substitute (112) into the last three equations of (115) and take into
account that C1 6= 0, then we obtain that

[
(l − a)2 − bc

]
G+ (l − a)F3 = 0; (116){

C2
1 + 2(l − a)C1C2 +

[
(l − a)2 − bc

]
C2

2

}
G+

[
C1C2 + (l − a)C2

2

]
F3 = 0; (117){

2(l − a)C1 + 2
[
(l − a)2 − bc

]
C2

}
G+

[
C1 + 2(l − a)C2

]
F3 = 0. (118)

(117)−(116)×C2
2

C1
gives that [

C1 + 2(l − a)C2

]
G+ C2F3 = 0. (119)
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(118)−(116)×2C2

C1
gives that

2(l − a)G+ F3 = 0. (120)

(119)−(120)×C2

C1
gives that

G = 0,

namely G = (a + d)v1v2 = 0. Notice that a + d = 2l > 0, then v1v2 = 0. Since b 6= 0, we
apply Lemma 2.4 again, then we have v1 ≡ 0, which contradicts that v1 6≡ 0. Therefore
Case (4) does not exist.

For Case (5), we substitute (113) into the last three equations of (115), then we obtain
that

{[
(λ− a)2 − bc

]
C2

1 + µ2C2
2 + 2µ(λ− a)C1C2

}
G+

[
(λ− a)C2

1 + µC1C2

]
F3 = 0; (121){[

(λ− a)2 − bc
]
C2

2 + µ2C2
1 − 2µ(λ− a)C1C2

}
G+

[
(λ− a)C2

2 − µC1C2

]
F3 = 0; (122){

2µ(λ− a)
(
C2

2 − C2
1

)
+ 2
[
(λ− a)2 − µ2 − bc

]
C1C2

}
G

+
[
µ
(
C2

2 − C2
1

)
+ 2(λ− a)C1C2

]
F3 = 0. (123)

We claim that
G = 0.

Firstly, if C1 = 0, then C2 6= 0 due to C2
1 +C2

2 6= 0, and (121) becomes µ2C2
2G = 0. Since

µ 6= 0, then G = 0.
Secondly, if C2 = 0, then C1 6= 0 and (122) becomes µ2C2

1G = 0 and thus G = 0.
Finally, if C1C2 6= 0, (121)× C2

C1
+ (122)× C1

C2
− (123) gives that

µ2

(
C2

1 + C2
2

)2
C1C2

G = 0,

then G = 0. Thus the claim is proved.
Consequently, G = (a + d)v1v2 = 0. Notice that a + d = 2λ > 0, then v1v2 = 0, which
contradicts that v1 6≡ 0. Therefore Case (5) does not exist.

Finally, when

u =

(
ϕ1(r)v1(θ)
ϕ2(r)v2(θ)

)
,

all solutions of equations (2) are (i), (ii), (iii), (iv) and (v) as shown in Theorem 1.1, (95)
and (96).

The proof is complete.
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