A Novel Sequence-to-Sequence based Deep
Learning Model for Multi-step Load Forecasting

Renzhi Lu, Member, IEEE, Ruichang Bai, Ruidong Li, Senior Member, IEEE, Lijun Zhu,
Mingyang Sun, Senior Member, IEEE, Feng Xiao, Member, IEEE, Dong Wang, Senior Member, IEEE, Huaming
Wu, Senior Member, IEEE, Yuemin Ding, Senior Member, IEEE

Abstract—Load forecasting is critical to the task of energy
management in power systems, for example, balancing supply
and demand and minimizing energy transaction costs, etc. There
are many approaches used for load forecasting such as the
support vector regression, the autoregressive integrated moving
average and neural networks, but most of these methods focus on
single-step load forecasting, whereas, multi-step load forecasting
can provide better insights for optimizing the energy resource
allocation and assisting the decision-making process. In this

This work was supported in part by the National Natural Science Foundation
of China under Grant 62003143, Grant 62373158, in part by the Natural
Science Foundation of Hubei Province under Grant 2022CFB041, in part by
the Wuhan Science and Technology innovation special project under Grant
2022010801020099, in part by the Fundamental Research Funds for the Cen-
tral Universities under Grant HUST 2020kfyXJJS084, Grant 2022SMECP03,
in part by the Key Laboratory of System Control and Information Processing
under Grant Scip202211, in part by the Key Laboratory of Industrial Internet
of Things and Networked Control under Grant 2020FF02, in part by the
Open Fund of Hubei Key Laboratory of Mechanical Transmission and
Manufacturing Engineering at Wuhan University of Science and Technology
under Grant MTMEOF2021B04, in part by the Hubei Key Laboratory of
Advanced Control and Intelligent Automation for Complex Systems under
Grant ACIA2022001, and in part by the 111 project under Grant B17040.
(Corresponding authors: Huaming Wu, Yuemin Ding.)

Renzhi Lu is with the Key Laboratory of Image Processing and Intelli-
gent Control, School of Artificial Intelligence and Automation, Huazhong
University of Science and Technology, Wuhan 430074, China, with the
Key Laboratory of System Control and Information Processing, Ministry
of Education, Shanghai 200240, China, with the Key Laboratory of Smart
Manufacturing in Energy Chemical Process, Ministry of Education, East China
University of Science and Technology, Shanghai 200237, China, and with
the Hubei Key Laboratory of Mechanical Transmission and Manufacturing
Engineering, Wuhan University of Science and Technology, Wuhan 430081,
China (e-mail: rzlu@hust.edu.cn).

Ruichang Bai is with the Central Academe, Shanghai Electric Group Co.,
Ltd, Shanghai 200070, China (email: bairch@shanghai-electric.com).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kakuma, Kanazawa 920-1192, Japan (e-mail: liruidong @ieee.org).

Lijun Zhu is with the School of Artificial Intelligence and Automation, State
Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China (e-
mail: ljzhu@hust.edu.cn).

Mingyang Sun is with the State Key Laboratory of Industrial Control Tech-
nology, Department of Control Science and Engineering, Zhejiang University,
Hangzhou 310027, China (e-mail: mingyangsun@zju.edu.cn).

Feng Xiao is with the State Key Laboratory of Alternate Electrical Power
System with Renewable Energy Sources and the School of Control and Com-
puter Engineering, North China Electric Power University, Beijing 102206,
China (e-mail: fengxiao@ncepu.edu.cn).

Dong Wang is with the Key Laboratory of Intelligent Control and Opti-
mization for Industrial Equipment of Ministry of Education, Dalian University
of Technology, Dalian 116024, China, and also with the School of Control
Science and Engineering, Dalian University of Technology, Dalian 116024,
China (e-mail: dwang@dlut.edu.cn).

Huaming Wu is with the Center for Applied Mathematics, Tianjin Univer-
sity, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Yuemin Ding is with the Department of Electrical and Electronic En-
gineering, University of Navarra, San Sebastian 20018, Spain (e-mail:
yuemin.ding 1986 @ gmail.com).

work, a novel sequence-to-sequence based deep learning model
based on a time series decomposition strategy for multi-step load
forecasting is proposed. The model consists of a series of basic
blocks, each of which includes one encoder and two decoders;
and all basic blocks are connected by residuals. In the inner of
each basic block, the encoder is realized by temporal convolution
network for its benefit of parallel computing, and the decoder
is implemented by long short-term memory neural network to
predict and estimate time series. During the forecasting process,
each basic block is forecasted individually. The final forecasted
result is the aggregation of the predicted results in all basic
blocks. Several cases within multiple real-world datasets are
conducted to evaluate the performance of the proposed model.
The results demonstrate that the proposed model achieves the
best accuracy compared with several benchmark models.

Index Terms—Multi-step load forecasting, sequence to se-
quence model, decomposition strategy, long short-term memory
neural network, temporal convolution network.

I. INTRODUCTION

ITH the rapid development of modernization and ur-

banization, the role of a stable and efficient power
system in society has become increasingly significant [1]. In
power systems, load forecasting is performed to determine
the supply of electricity, which is essential to establish an
efficient and accurate operating plan to reduce system losses
and improve the reliability, efficiency and security of the
electricity supply for customers [2]. Specifically, for energy
suppliers, forecasting electricity loads in advance is critical to
balancing production and demand, reducing production costs,
and implementing various demand response pricing schemes
[3]. Recently, an interesting and fantastic IEEE dataport day-
ahead electricity demand forecasting competition was held
[4], which was based on the post-COVID paradigm load
data. The competition aimed to encourage the development
and promotion of state-of-the-art load forecasting methods
that can alleviate the negative impact of pandemic-related
demand uncertainties on the electricity market. However, due
to various uncertainties and the complexity of climate change,
industrial structures and other social environments, load data
exhibit complex patterns and fluctuations, making accurate
load forecasting a challenging task [5].

Generally, according to forecasting horizon, the load fore-
casting can be classified into two categories: single-step ahead
and multi-step ahead [6]. The single-step ahead load fore-
casting is use historical load data and related variables to
predict the next one step load data, and the multi-step ahead
forecasting is to predict future multi-step load data. Compared

to single-step ahead load forecasting, the multi-step ahead
load forecasting task presents various additional challenges,
such as increased prediction errors and reduced accuracy,
making the task of multi-step ahead forecasting more difficult
[7]. Load data are essentially time-series. Many time series
forecasting approaches have been reported in the literature.
Broadly, these techniques can be grouped into three major
groups: statistical methods, traditional machine learning-based
methods, and deep learning-based methods [8].

Statistical models are based on fitting a regression model
to the previous data and then validating the model by finding
the difference between the actual and predicted values [9].
In particular, the autoregressive integrated moving average
(ARIMA) model is one of the most famous statistical models
used to perform load forecasting [10], and the ARIMA model
overcomes the drawback that the autoregressive moving aver-
age (ARMA) model is only applicable to stationary time series
[11]. Besides, in order to incorporate exogenous variables into
the forecasting model, the autoregressive integrated moving
average exogenous model (ARIMAX) has been proposed. The
ARIMA and its variant models are simple and interpretable,
making them easier to implement and understand, and could
also achieve a good forecasting performance on the linear data,
to a certain extent. However, a drawback is thereupon occurred
for their assumption of a linear correlation structure in the
underlying time series data. This proves unreasonable in many
real-world load forecasting problems, since real-world data is
often composed by both linear and nonlinear patterns [12].

Traditional machine learning-based models learn patterns
from input load data. Different from statistical models, the
input-output mapping in machine learning models does not
need to be defined in advance. Instead, it is learned during the
training process [13]. The support vector regression (SVR),
which maps historical load data to a higher dimensional
space through a nonlinear mapping and then performs lin-
ear regression on the mapped elements, is one of the most
commonly used machine learning models for load forecasting
[14]. Another commonly adopted model is the regression
trees (RT) [15], which has a tree-like structure and regresses
decisions in the form of a tree, starting from the root node
down to the leaf nodes, where the leaf nodes contain the
responses. Although the parameters of the SVR and RT are
learned during the training process, feature extraction is still
needed to perform to determine the inputs to the model.
Moreover, adjusting the hyper-parameters of machine learning-
based models would have a significant impact on its learning
speed and performance, depending on the characteristics of
the training data [16]. However, there is currently no standard
method for selecting the best values for these hyper-parameters
[17]. Typically, practitioners tune a subset of these parameters
through trials to maximize accuracy on a validation dataset.
In the specific study of this work, the hyper-parameters of
the proposed model are given in Subsection D of Section V,
which are established according to some empirical guidelines
in the literature and a number of preliminary accuracy tests via
trial and error. In addition, finding a well-fit training dataset is
important for building a successful machine learning model.
Including too much or too little information in the training

data can have a crucial impact on the prediction accuracy
[18]. If too few features are considered, the model will be
simple, leading to high bias and low variance, this is known
as underfitting. Underfitting is not fitting accurately in the data
set via simple curve and linear hypothesis thus should always
be low biased to avoid the problem of underfitting. On the
contrary, if too many features are included, the real valuable
features may be overshadowed by disturbances, resulting in
a complex model, leading to high variance and low bias,
this is known as overfitting. Overfitting is fitting the training
set accurately via complex curve and high order hypothesis
but is not the solution as the error with unseen data is high
[19]. Both underfitting and overfitting can decrease prediction
accuracy. Since the quantity and quality of input features play
a crucial role in forecasting accuracy. Various approaches, such
as correlation analysis and principal components analysis, have
been used to extract and select input features [20].

Deep learning-based models are promising approaches for
accurate load forecasting due to their excellent nonlinear
approximation capabilities enabling them to extract features
well and automatically build complex mapping relationships
between multiple inputs and outputs [2]. The convolutional
neural network (CNN) and long short-term memory (LSTM)
have been widely used in load prediction and have achieved
some success in the field of single-step load forecasting. In
addition, some hybrid methods combining CNN and LSTM
for load forecasting have been proposed to take full advantage
of the respective strengths of the CNN and LSTM [21]. In gen-
eral, when proposing a deep learning-based forecasting model,
it often require a large amount of data to train. Fortunately,
the widespread deployment of smart meters in power grids has
resulted in the availability of large amounts of data. Therefore,
neural network models are currently recognized as one of the
most promising approaches for power load forecasting.

The aforementioned traditional machine learning and deep
learning-based models have achieved undeniable results in
load forecasting, but they all focus on single-step ahead load
forecasting. In most real-world applications, multi-step ahead
forecasting is more valued than single-step ahead forecasting
since it can provide key insights for optimizing the energy
resource allocation and assisting the decision-making process
[22].

Currently, there are several strategies for generating multi-
step ahead forecasts: the Direct strategy, Recursive strategy
and DirRec strategy [23]. However, these strategies are limited
by their inherent flaws, and none of them can achieve good per-
formance. Fortunately, the Multi-Input Multi-Output (MIMO)
strategy implemented by sequence-to-sequence (Seq2Seq)
model is regarded as a promising approach for multi-step
ahead forecasting [24]. The heart of this model lies in two
different sequential-based neural networks, namely, encoder
and decoder, which can enhance the prediction of continuous
sequences while also allowing the input and output to have
different time dimensions. The encoder is responsible for
converting the input sequence into a fixed-size vector repre-
sentation, called the context vector. The decoder is responsible
for converting the context vector into the output sequence.
However, for longer input sequences, the encoder may suffer

from incomplete compression, and it is difficult for the decoder
to extract all the valuable information from the context vector.

To overcome these drawbacks of multi-step ahead forecast-
ing models, a novel Seq2Seq-based deep learning model is
proposed in this work. The model consists of a series of
basic blocks, each of which is responsible for predicting a
portion of patterns in the time series; and the basic blocks
are connected by residuals. The residual removes the patterns
that can be fitted well in the previous basic block, allowing the
downstream basic block can concentrate on predicting patterns
that are not learned by the previous basic block. The final pre-
diction result is the aggregation of all basic blocks. To verify
the effectiveness and evaluate the accuracy of the proposed
model, multiple cases are conducted on real-word datasets.
The results demonstrated that the proposed model outperforms
all benchmark models in terms of accuracy. To better clearly
clarify the advantages and drawbacks of the proposed model
with other existing model, a comparative analysis is carried
out with respect to some aspects as given in Table I, including
application scene and performance comparison. In summary,
this work has the following contributions:

1) A novel Seq2Seq-based deep learning model is proposed
for multi-step ahead load forecasting, in which each basic
block of the model is connected by residuals, and the final
residual output is used as part of the loss function.

2) A decomposition strategy is deeply integrated into the
Seq2Seq framework to improve the trainability of the
deep architecture and the convergence of the model.

3) The proposed model dynamically decomposes the origi-
nal time series into individual components for prediction,
reducing the overall prediction burden and improving the
forecasting accuracy.

4) In each basic block, temporal convolutional network
(TCN) is used as the encoder, and LSTM is used as
the decoder. The advantages of the TCN and LSTM are
combined, and a considerable improvement in the results
is achieved.

The rest of the paper is organized as follows: Section II
presents the problem formulation for the load forecasting task,
which consists of problem description and existing available
approaches. Section III presents the technical preliminaries,
which are the basis of the proposed model. Section IV de-
scribes the proposed methodology in detail. Section V explains
the experiments and analyzes the corresponding results; and
finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

In this section, we present the load forecasting task in detail
in subsection A and analyze the existing multi-step ahead
forecasting approaches in subsection B.

A. Problem Description

Assume that the time-series load data are X, which can be
described as follows:

XZ{CU1,$2,...,ZL’T} (1)

where z; represents the actual load value at the ¢-th timestamp,
and T denotes the length of the historical load sequence. Load
forecasting is to predict load value for the next H time steps
given historical load data of length 7', and the parameter H
is called the forecasting horizon. When H = 1, it is called
single-step ahead forecasting; and when H > 1, it is called
multi-step ahead forecasting. More specifically, for single-step
ahead forecasting, the formula can be expressed as follows:

,oT) 2)

where Fnge denotes the single-step ahead forecasting model
and x4 is the predicted load value given the historical load
sequence. Different from the single-step ahead forecasting, the
multi-step ahead forecasting is to predict various-step load
values, such as k-step ahead forecasting as follows:

s xr) (3)

where Fi denotes the multi-step ahead forecasting model.
x741.7+% denotes the predicted sequence, including k pre-
dicted load values.

Tr41 = Fsingle(th% cee

TT41, 87425 -+, LTk = Frui (21, T2, . ..

B. Existing Available Approaches

Currently, to the best of our knowledge, there are four
main strategies that can perform multi-step ahead forecasting,
i.e., the Recursive strategy, the Direct strategy, the DirRec
strategy and the MIMO strategy [23]. Among the four strate-
gies, the first three are called single-output models because
they all establish a multiple-input single-output mapping. The
last MIMO strategy is usually implemented by the Seq2Seq
architecture. These four strategies are described and discussed
as follows.

The Recursive strategy is the most intuitive and traditional
forecasting strategy. It uses a single-step ahead forecasting
model (such as SVR, ARIMA, or deep neural network) that
recursively takes previous predictions as its input to predict
subsequent predictions until /[predictions are output [25].
The formula of the Recursive strategy for multi-step ahead
forecasting is defined as follows:

Yir1 = Free (T4, o1, .. T Ny1)
Yiv2 = Frec (Y1, T, Te—1, -, Ti_N42)

€]
YirH = Free WiaH-1,Yt4H -2, Yi+H-N)

where Fgre. denotes a single-step ahead forecasting model in
the Recursive strategy. ;1.7 denotes the forecasted value,
and z;;_n+1 denotes the given historical time series data
of length N. Although the Recursive strategy is easy to
implement, iteration-based forecasting methods will produce
large cumulative errors when the forecasting horizon H is
large [26].

Different from the Recursive strategy, the Direct strategy
builds H different single-step ahead forecasting models for
each forecasting horizon, and the Direct strategy is defined by
the following equation:

Yerh = Fpien(Te, X1, ..., T N41) (5

TABLE I
THE COMPARISON BETWEEN THE PROPOSED APPROACH WITH OTHER EXISTING MODELS

Forecasting Number of

: Multi-Step ;
Models Input Variables Parameters Forecasting Advantages Disadvantages
Statistical Models Historical time 2-3 (p, d, q) Yes Easy to use and highly in- Limited to linear relationships, not suit-
series data terpretable able for complex relationships, and may
be affected by outliers
Machine Learning Historical time Many (hundreds to No Can handle various non- Requires extensive parameter tuning
Models series data, other thousands) linear relationships and and feature engineering
features use external features
LSTM, CNN, TCN, Historical time Many (tens of thou- No Can handle various non- Requires a significant amount of train-
series data, other sands to millions) linear relationships ing data, training time, and computa-
features tional resources.

Seq2Seq Historical time Many (tens of thou- Yes Suitable for sequence-to- Lack long-term memory capacity and
series data, other sands to millions) sequence forecasting tasks gradually forget previous information
features

Proposed Historical time Many (tens of thou- Yes High accuracy with time High computational complexity and
series data, other sands to millions) series additive decomposi- long processing time
features tion

where h € {1,2,3,...,H}, and Fp;.p, denotes the h-th
forecasting model. Obviously, the Direct strategy does not
accumulate errors. However, since H models are learned
independently, which prevents this approach from considering
the complex dependencies between the predicted values, and
this further affects the forecasting accuracy [26].

The DirRec strategy combines the two previous strategies,
which use different single-step ahead forecasting models for
each horizon to calculate the forecasts (similar in this respect
to the Direct strategy), then, at each time step, expand the
input set by adding variables corresponding to the forecasts
of the previous step (similar in this respect to the Recursive
strategy). The formula of this strategy is as follows:

Yt+1 = Foimect (Te, Te—1, -+, Tt N+1)

Yer2 = FbiRec-2 (Y415 Tt Te—15- - s Te—N41)

S Tt-N+1)

(6)
where Fpirec.h denotes the h-th forecasting model and y;4p,
denotes the forecasted value at moment ¢ + h.

Although the DirRec strategy avoids the disadvantage of the
Direct strategy, it still has the disadvantage of the Recursive
strategy, i.e., error accumulation [25].

The MIMO strategy can address the inherent drawbacks
of single-output strategies since the MIMO strategy mod-
els multiple-output dependencies rather than modeling single
output mapping [27]. Consequently, the MIMO strategy can
avoid error accumulation and overcome the problem caused
by using independently single-step predictor at different steps
in the Direct strategy. However, The MIMO strategy imposes
a constraint that all horizons being predicted must use the
same model structure and the same set of input training
data. This limitation reduces the flexibility of the forecasting
approach and may bias the resulting model [28]. Fortunately,
the Seq2Seq framework is employed to implement the MIMO

Y+ H = FDirRec (Yt H-1,- - Y41, L1, - -

strategy, and the advantages of neural networks can signifi-
cantly alleviate the drawbacks of the MIMO approach. The
Seq2Seq framework is comprised of two sequential-based
neural networks, an encoder and a decoder. However, for
longer input sequences in Seq2Seq model, the encoder may
suffer from incomplete compression and it is difficult for the
decoder to extract all the valuable information from this single
vector, which therefore affects the prediction accuracy.

To overcome the drawbacks of current multi-step ahead
forecasting methodologies, a novel Seq2Seq-based deep learn-
ing model is proposed in this work, and the details are
presented in section IV.

III. TECHNICAL PRELIMINARIES

This section will briefly review the related basic deep learn-
ing techniques for time series forecasting, including LSTM,
TCN and Seq2Seq. All of these techniques are preliminary
knowledge for the proposed model.

A. LSTM

Benefiting from the self-feedback mechanism, the recurrent
neural network (RNN) model has advantages in exploring the
temporal relationships in time series. However, it is more prone
to gradient disappearance in practical applications. LSTM is
designed to solve this problem on the basis of RNN [29], and
thus with the ability to build long term dependencies.

Fig. 1 shows the structure of a LSTM unit. In order
to establish long-term dependence, LSTM maintains a new
internal state s throughout its life cycle. In addition, three gate
structures are introduced: input gate, forget gate, and output
gate. The internal state s;_; interacts with the external state
h;_; and the input x;. With the help of the gate mechanism,
the output of the previous time step and the input of the current
time step are used to determine the internal state vector of the
elements that should be maintained, updated or deleted [30].

The update formula of the state in LSTM at ¢-th timestamp is
as follows:

fi=0Wxi + Wirrhi_1 + by)
it = o (Wi + Winhy 1 + b;)
9y = (W gamy + Wophi1 + by)
o, = o0(Woexy + Wophi_1 + b,)
8§t =9, 0%+ 8-10f,

hi = ¢(s) © oy

w
w

)

where me, th, Wm, Wih, ng, Wgh, Wow and
W, are the weight matrices; and by, b;, b, and b, are the
biases of the activation function. o(-) is the sigmoid activation
function, ¢(-) represents the hyperbolic tangent function, and
© represents the element-by-element multiplication. ¢;, f, and
o; denote the states of input gate, forget gate and output gate,
respectively; and g, is the candidate state [31].

hy,
- T
mo |G g g)
e J

Fig. 1. The structure of LSTM unit.

B. TCN

The TCN is a general convolution model for sequence
modeling tasks with powerful feature extraction and efficient
parallel computing capabilities [32]. It consists of three parts:
causal convolution, dilated convolution and residual connec-
tion.

The causal convolutions ensure causal constraint, which
means that there is no leakage of information from the
future to past. Furthermore, to expand the receptive field of
causal convolution more efficiently, the dilated convolution,
which can realize an exponentially enlarged receptive field,
is employed in the TCN [32]. Fig. 2a shows a dilated and
causal convolution with a convolution kernel size of 2 and an
exponential increase in expansion factor d(d = O(2¢)) in the
i-th layer of the network.

In addition, in the design of the general TCN model, a
residual block is adopted to replace the convolutional layer.
Fig. 2b shows the residual block of the general TCN. To
ensure that the addition of residual blocks can accept tensors
of the same shape, a 1 x 1 convolution kernel is adopted at
the residual connection to perform dimensional transformation.
Within the residual block, the TCN has two dilation causal
convolution layers (Dilated Causal Conv), activation functions
(ReLU) and weight normalization. Furthermore, in order to
avoid overfitting, the spatial dropout after each causal dilation
convolution layer is employed for regularization [32].

Output

DroPout
ReLU

Future

777777 F7

t
Weight Normalization

Dilated szusal Conv

1x1
Dropout Conv
i=2 RelU
[/ /[[[/ ‘ Y
d=1 Weight No:mallzatlon
i frsf [/ / [r Dilated Causal Conv
e
Past Current Input
(@) (b)

Fig. 2. (a) A dilated causal convolution; (b) TCN residual block.

C. Seq2Seq Model

The Seq2Seq structure was originally designed to solve the
problem that the RNN cannot generate arbitrary length output
sequences in neural machine translation. The core idea of the
Seq2Seq model is using two networks to form an encoder-
decoder architecture. The encoder is responsible for converting
the input sequence into a fixed-size vector, called the context
vector. The decoder is responsible for converting the context
vector into the output sequence [33].

Forecasting Sequence
Encoder

g y1—| y2—| YH
LSTM [LSTM [LSTM %= LSTM [LSTM [» LSTM
EniEmiET ST
! T2 N S TN
History S'equence Decoder

Fig. 3. The Seq2Seq model based LSTM encoder and decoder.

Codecs are typically multi-layer LSTM structures due to the
natural convenience of LSTM to process sequence data. Fig.
3 shows the common Seq2Seq forecasting model. The codecs
are all composed of a chain of LSTM units. In the encoder, the
input is historical sequence data X = {x1,z2,23,...,ZN},
and the context vector is the output state of the last LSTM unit.
For the decoder, the input of the first LSTM unit is x , which
is the last time step input of the encoder; and each unit input
thereafter is the predicted output value of the previous unit.
The length of the input sequence of the encoder and the length
of the output sequence of the decoder can be different, and
the model will automatically learn the mapping relationship
between the input sequence and the forecasting sequence.

However, in the original Seq2Seq structure, for longer input
sequences, the encoder may not be able to encode all valuable
timing features into this vector, and it is difficult for the
decoder to extract all valuable timing features. To overcome
this shortcoming, a novel Seq2Seq model, which is based on
a time series additive decomposition strategy, is proposed in
this work.

IV. PROPOSED MODEL

In this section, we describe the proposed model, which
is based on the time series additive decomposition strategy
and original Seq2Seq structure. First, the overall architecture

Fig. 4. The architecture of proposed model, consisted a series of basic blocks.

is described, and then the internal details of this model are
presented.

A. Overall Architecture

In the task of time series forecasting, an effective approach
is to decompose the time series into multiple components
and then model each component individually [34]. Additive
decomposition is a classical time series decomposition method,
which assumes that time series data can be decomposed into
seasonal, trend-cycle, and remainder components [35]. When
applying the additive decomposition method to decompose
the time series and subsequently model each component
separately, it reduces the sensitivity of the prediction model to
the noise in the time series and enhances the robustness of the
prediction model [36]. Additionally, there are more robust and
efficient decomposition approaches, such as Robuststl [37] and
Fast Robuststl [38]. However, these explicit decompositions
divide the time series into fixed components in advance
and separate them from the modeling task, which fails to
adequately address the temporal characteristics present in real-
world data. Different from the native decomposition strategy,
the model proposed in this work dynamically decomposes
the time series into any number of components during the
forecasting process.

Fig. 4 illustrates the overall proposed framework, consisting
of a series of basic blocks (exemplified here by three basic
blocks for brevity), and each of which can be viewed as a
component of a decomposition. Each basic block includes
three parts and appears as a fork-like structure. The first
part is the encoder, which is responsible for compressing all
the useful information of the input sequence data w into the
context vector c¢. The second part is the forecasting decoder
(F-Decoder), which decodes the context vector ¢ to produce
the forecasting output z. And the third part is the estimate
decoder (E-Decoder), which is responsible for generating the
best estimate e of the input sequence u based on the context
vector ¢, where the length of the estimate sequence e is the
same as the length of the input sequence u.

To have a clear understanding of the proposed model,
Fig. 5 presents an example using actual time series data,
demonstrating the functioning of each basic block during fore-
casting (exemplified here by three basic blocks for brevity).
Specifically, for the i-th basic block, it receives a sequence
data u’ € RV*? and outputs two sequence data, forecasting
sequence z' € RH*! and estimate sequence e’ € RV*!, For
the first basic block of the model, its input w! is the original
data X = {z1,29,23,...,2N5}, wWhich has N timestamps
and each timestamp contains d features. For the other basic
blocks, the inputs are the residuals of the previous basic block,
which is obtained by subtracting its estimate e‘~! from the

input sequence u'~!, therefore, each timestamp contains one
feature, i.e., d = 1. The one of the outputs, 2, is the forecast
sequence data of length H generated by the F-Decoder. And
the another output, ', is the estimated sequence of input data
produced by the E-Decoder. Formally, the following equations
are the computation process for the ¢-th (z > 2) block:

(®)

where u’ is the input of the i-th block; and 2z’ and e?, which
are the forecast and estimate sequence data, respectively, are
both the outputs of the i-th block. f(:), gs(-) and gc(-)
represent the encoder, F-Decoder and E-Decoder respectively,
and 6%, 0; s and 0;6 are the corresponding parameters.

Generally, the residual in a neural network refers to the
difference or error between input and output of some layers
or blocks in the model. The utilization of residual blocks
can address the problem of gradient vanishing while propa-
gating information from shallow to deep layers, and prevent
performance degradation with deeper network structures [39].
Additionally, residual connections can enhance the accuracy
and stability of the model [40]. In this work, however, in each
basic block, the residual refers to the difference between the
input and the estimated output. Then, the residual is regarded
as the input of the next basic block, so that each subsequent
basic block is only a prediction and analysis of the residuals
of the previous basic block. The residual input removes the
patterns from the sequence data that can be fitted well in
the previous block, allowing the downstream basic block to
concentrate more on predicting patterns that are not learned.
Thus, the problems that the context vector in the original
Seq2Seq model cannot fully express all the patterns of the
input sequence and the difficulty for the decoder to extract all
the useful information from the context vector are avoided. In
addition, the basic blocks are connected by residuals, which
has a significant advantage in improving the trainability of the
deep architecture.

Correspondingly, the final output includes two items: one is
Y,a prediction sequence of length H, which is the aggregation
of all basic block forecast outputs; and the other is F, a
residual of length /N, which will be used as part of the model
loss value to ensure model convergence. The computational
operation are as follows:

y=3y o

S ©)
E=X-) ¢

where 2z’ and e’ are the forecast and estimate output of the
i-th block, respectively, and D is the total number of basic
blocks.

Forecasting Sequence 2
B

Forecasting Sequence 22
2

a

Forecasting Sequence 22 &
s Forecasting Sequence Y

Y

1B 160 170 180 190 200

Residual Sequence F/

1e-15 E

w

[) 100 150 - o 0]) 00 50

B
Input Sequence u! Estimate Sequence e'

3 R I
Input Sequence u? Estimate Sequence e

&
g
&

"]) 100 50 o © 00

2 Input Sequence u? Estimate Sequence e

Fig. 5. The dynamic decomposition process of the proposed model.

B. Basic Block

As previous subsection mentioned, each basic block consists
of three parts, i.e., one encoder and two decoders. TCN is
adopted as the encoder due to its powerful feature extraction
and efficient computation capabilities, which have been in-
troduced in Section III. And the two decoders are a series
of LSTM units with shared parameters, respectively. Fig. 6
shows the internal details of the basic block. In the encoder, the
number of TCN residual blocks is a hyperparameter, which is
determined by both the convolution field and the length of the
input sequence. In addition, in the two decoders, the number
of LSTM units is determined by the length of the forecasting
sequence and estimate sequence, respectively.

Context vector Forecasting Sequence 2
i 1

2) 1
¢ Y Y2 Y
TCN Residual block t 1 t
> LSTM unit — LSTM unit = - -— LSTM unit
TN
TCN Residual block F-Decoder
t Estimate ISequence e
TCN Residual block T N N
Iy) TN
' f t
o1 T2 T3 0 IN o1 STM unit —> LSTM unit = - - = LSTM unit
Input Sequence u’ 4
T
Encoder E-Decoder

Fig. 6. The internal details of the i-th basic block.

For the i-th basic block, suppose the input sequence is u?,
and the context vector ¢’ € R" is generated through the TCN
encoder. Note that the context vector is only the output of the
last time step of the last TCN residual block. Furthermore,
the F-Encoder and E-Decoder share the context vector ¢’ to
generate the predicted series data 2’ and estimated series data
e, respectively. Specifically, for the F-Decoder, the input of
the first LSTM unit is the last time step of the current basic
block input sequence, and the input of the subsequent units
is the forecast output of the previous unit. For the E-Decoder,

since it is the estimate of the input sequence, the input of the
first LSTM unit is the data of the first time step of the input
to the current basic block.

C. Model Training

The model parameters are learned by back propagation
mechanism, and the mean squared error (MSE) is selected
as the loss function. In addition, the residual output of the
model is added to the loss function, so that the model can learn
the pattern contained in the input sequence as completely as
possible. The loss function is defined as follows:

L) = ~ > [(Yi Vi) + By

m =
i

(10)

where m is the number of samples; and Y, f/; and FE; are
the true vector, prediction vector and residual vector of the
i-th sample, respectively. The training process is provided in
Algorithm1.

V. EXPERIMENTS AND DISCUSSION

In this section, the effectiveness of the proposed model on
real-world datasets with three cases is verified. Case 1 presents
the superiority of the proposed model. Case 2 demonstrates the
effect of the decomposition strategy. Case 3 explores the effect
of model hyperparameter changes on forecast performance.
Case 4 conducts accuracy comparison of the proposed model
using the competition post-COVID-19 load demand data. Case
5 examines the model’s convergence speed, and comparing
it with other neural network models. Case 6, the impact of
sliding window size on prediction accuracy is thoroughly
investigated. Case 7 delves into the diverse choices available
for the encoder and decoder of the proposed model.

A. Datasets Description

The datasets used in the experiments are obtained
from the Open Power System Data Platform (https://data.
open-power-system-data.org/), including historical load data

Algorithm 1 The training process of the proposed model

1: Prepare and process the dataset.

2: Initialize the hyperparameters, i.e., the total epochs M,
number of basic block D, learning rate r, and the param-
eters 6 in the model ®(-)

3: for epoch =1 to M do

4. Sample input X € RV*? and target Y € RF*! from

datasets randomly

5: fori=1to D do

6: c = f(u',0) # Encoding

7: 2zt =gs(c',0) # Forecast Decoding
8 e’ = g.(c',0) # Estimate Decoding
9 u'tl =u’ — e’ # Calculating residuals

10: end for
D

11: Aggregate forecast sequence Y = 2t

122 Compute loss with Eq. (10)
13: Back propagation of loss
14 0« Adam(6,r)

15: end for

16: return Trained model ®(-)

and weather data with a sampling rate of 1 hour in several
different countries. Specifically, we select the load data of
Switzerland (CH) from 2011 to 2014, the load data of Ger-
many (DE) from 2014 to 2017 and the load data of Australia
(AT) from 2013 to 2016. Besides, we selected the temperature
and wind speed as relevant variable to assist load forecasting.
The selection of input variables are based correlation analysis
and some empirical guidelines described in [41] [42]. Thus,
the datasets contain four parts, namely, timestamps, historical
load data, temperatures, and wind speeds. The timestamp
records the sampling times, the load data are the variables
to be predicted, and the temperature and wind speed are
the relevant variables to assist load forecasting. The datasets
for the experiments and source code are stored on GitHub
(https://github.com/BaiRuic/Novel-Seq2Seq-Module).

When conducting the experiments, the ratio of training
datasets, validating datasets, and testing datasets is roughly
divided into 0.8:0.1:0.1. Fig. 7 illustrates the correspond data
patterns of the three countries used in this work.

B. Data Preprocessing

In order to keep all the data in the same range, maximum-
minimum normalization is applied to all the variables in the
datasets and is formulated as follows:

xl(t) = 7:6(75) — Lmin

Lmax — Lmin
where x(t) and x/(t) represent the raw value and the normal-
ized value at timestamp ¢, respectively. Zpyin and zm.x represent
the minimum and maximum values in all time steps of the
feature, respectively.

As defined in Section II, time series forecasting is the
modeling of the relationship between a set of input variables
and one or more output variables on a set of observed data.
However, the original load data are a sequence of historical

Y

Training Data Validation Data Testing Data

7000 4

6000

Load (MW)

%3
k=
=3
3

40007 (CH dataset, Load Range: [3000, 8000])

2013-10-01 2013-10-15 2013-11-01 2013-11-15 2013-12-01 2013-12-15 2014-01-01

Time

80000 Training Data Validation Data Testing Data

70000

60000

Load (MW)

50000

40000 4 [DE dataset, Load Range: [37000, XOOOO]J

2016-11-01 2016-11-15 2016-12-01 2016-12-15 2017-01-01

Time

2016-10-01 2016-10-15

Training Data Validation, Data Testing Data

10000

8000 1

Load (MW)

6000

[AT dataset, Load Range: [5000, 12000]]

2015-10-01 2015-10-15 2015-11-01 2015-11-15

Time

2015-12-01 2015-12-15 2016-01-01

Fig. 7. The load data of three real-world datasets (CH, DE and AT).

measurements at equal time intervals, which cannot be used
to train the model directly; therefore, in this work, a sliding
window approach is used to transform the dataset into input
and target pairs for training the model.

Fig. 8 illustrates the input and target pairs in a sample of
the multi-step ahead load forecasting task. The input sample
can be represented as a matrix X € RN*d wwhere N denotes
the number of input time steps and d denotes the number
of features at each time step. In this work, the input data
have three features, i.e., the load data (LOAD), temperature
data (TEMP), and wind speed (WP). The target sample is a
vector Y € R¥*1 where H denotes the forecast horizon. Fig.
9 shows the process of sample generation. When generating
samples, a window of length N + H slides over the time
series, and each sliding of the window indicates that a sample
is generated. In each generated sample, the vector of the first
N time steps is the input, and the vector of the last H time
steps is the target.

index 1 i+1 i+2 “+N-1 +N +N+H-1
TEMP
A
T T T 1
(- —~ . J

—~
Hx1
TInput X € RNX3 Target Y € R

Fig. 8. The input and target pairs.

C. The Benchmarks

In order to better demonstrate the performance of the
proposed model, some forecasting models are selected as
benchmark models: the naive forecast (Naive), which is a

Sample i
e
(TInput X € RV Target Y € RH_X_} _______ 1
| 3 | i+1 |z+2 | |i+N—1'ii+N|i+N+1|i+N+2| ‘iH‘HHAlHN—H | l
t """" put X RV R Toget Y REXL
A
Sample i+ 1

Fig. 9. A sliding window approach is used to generate sample.

sample baseline used to measure the difficulty of forecasting
task, statistical model, traditional machine learning model, and
deep learning model.

Specifically, the ARIMA model, which was employed in
[10] to predict loads, is selected as the statistical benchmark
model. The ARIMA model contains three main components,
autoregressive (AR), integrated (I) and moving average (MA).
In the ARIMA model, the future variable is a linear function of
past observations and some random errors, with the following
equation:

P q
Yy = 5+Z¢iytﬂ'+at —Zejat—j (12)
i=1 j=1
where y; and a; are the true value and random error at
timestamp ¢, respectively; ¢ and 6 are the parameters of the
model; and p and q are the orders of the model [10]. For this
benchmark, the Recursive strategy is used to perform multi-
step ahead forecasting.

The SVR is selected as the traditional machine learning
benchmark model. By introducing kernel functions, the SVR
can map the original feature space to a higher dimensional fea-
ture space, which converts the nonlinear problem in the orig-
inal feature space to a linear problem in a high-dimensional
feature space [43]. The SVR is formulated as follows:

fl@)=w"g(x)+b (13)

where f(-) is the SVR model, ¢(-) is the kernel function,
and w and b are the vector perpendicular to the separating
hyperplane and the displacement of the separating hyperplane,
respectively.

Besides, the MD-XGBoost, which is recently proposed by
[44], is also selected as a benchmark model. An adaptive de-
composition method based on Variational mode decomposition
(VMD) and SampEn (SVMD) is adopted to firstly decompose
the raw load data into a set of fluctuation sub-series. Then,
the prediction model is correspondingly established for each
fluctuation sub-series [44]. Similar to the ARIMA model, the
Recursive strategy is used in SVR model and MD-XGBoost
to perform multi-step prediction.

Finally, the original Seq2Seq model (LSTM-LSTM), which
is introduced in Section III, is selected as the deep learning
benchmark model. The selection of hyperparameter of the
model is presented in the next subsection.

D. Implementation Details

For the proposed model and the benchmark models, some
hyperparameters need to be predetermined before training. In

this work, the grid search strategy is used to fine-tune the
optimal values of the hyperparameters. Specifically, for each
model, we first specify the hyperparameters to be set and the
corresponding values to be tried. Then, the grid search strategy
will test all possible combinations of hyperparameter values
to build each model and determine the optimal combination
of hyperparameters that yields the best performance. Table II
lists the hyperparameters optimized for each model and the
corresponding values.

To quantitatively assess the performance of the proposed
model and benchmark methods, two common metrics: the
mean squared error (MSE) and the mean absolute percentage
error (MAPE), are chosen to evaluate forecasting performance:

n

1
MSE = — i — 1i)?
nE (yi — ¥i)

=1

100% <~ i
MAPE =
=2

i=1

A (14)
—Yi |
Yi

where y represents the true value, { represents the forecast
value, and n represents the number of samples.

All forecasting models are built on a desktop PC with a
3.4GHz Intel i5-7500 processor and 8GB of memory using
the PyTorch library [45].

E. Case 1: Comparison With Benchmark Models

In this subsection, comparative experiments are conducted
to verify the superiority of the proposed model. The proposed
model and benchmark models are verified with four different
forecasting horizons of H = 3,6,12 and 24 on three real-
world datasets.

Table III shows the corresponding results, and it can be
concluded that: First, for different forecasting horizons, the
proposed model achieves the best performance in two evalua-
tion metrics compared to benchmark models. For example, as
shown in the second column of the CH dataset, the MAPE of
the proposed model is 2.958%, while the benchmark models
are 11.31%, 3.439%, 5.401%, 4.532%,4.061% when H = 3.
Second, regarding the results on three different datasets, al-
though the proposed model achieves the best performance, it
is obvious that their metrics are much different. Specifically,
on the CH dataset, the average MAPE of the proposed model is
4.38%; while on the DE dataset, the average MAPE is 7.23%;
and on the AT dataset, the average MAPE is 5.47%. This
phenomenon suggests that the prediction accuracy is related to
the characteristics of the dataset itself. Furthermore, according
to the result shown in Table III it can be observed that the
MAPE of Naive model on the DE dataset is significantly
bigger, for example, when H = 3, the MAPE of Naive
model in three datasets are 11.31%,16.654%,9.891%. This
phenomenon shows that accurate prediction on the DE dataset
is more difficult than those on the AT and CH datasets.
Besides, compared to the CH dataset, the DE dataset has
relatively large nonstationary (see Fig. 7) and therefore has
the worst average prediction results.

Moreover, as the forecasting horizon increases, the accuracy
of all multi-step ahead forecasting models generally decreases.

TABLE I

THE HYPERPARAMETERS TO BE OPTIMIZED FOR EACH MODEL AND THE CORRESPONDING DESCRIBE AND VALUES

Model Hyperparameters Describes Optional Values
p The order of autoregression {1, 2,3, 4,5}
ARIMA q The order of moving average {1, 2,3, 4,5}
d The degree of difference needed for stationarity {1,2}
kernel The kernel function of SVR model {’rbf’, ’sigmoid’, "poly’}
g The coefficients of the kernel function {0.05, 0.1, 0.5, 1, 5}
SVR d Degree of the polynomial kernel function (‘poly’). Ignored by other kernels. {3, 5, 8}
C Regularization parameter {1, 5, 10}
e Tolerance of termination criterion {0.01, 0.1, 0.5, 1}
eta The step size / learning rate for each iteration {0.08, 0.06, 0.05, 0.04}
gamma The minimum loss reduction required to make a further partition {0.1, 0.4, 0.6, 1.2}
MD-XGBoost max depth The maximum depth of the tree {4, 6, 8, 10}
’ subsample The proportion of random sampling for each tree {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
colsample bytree The subsample ratio of columns when constructing each tree {0.5, 0.6, 0.7, 0.8}
min child weight The minimum number of instances needed in each node {0.8, 1.0, 1.2, 1.5}
hidden size The number of features in the hidden state h {6, 8, 12}
LSTM-LSTM activation function The form of activation functions {’tanh’, "Relu’}
optimizer The optimizer to minimize the loss function {’Adam’, "SGD’}
block size The number of the basic block {2,4,5,6,8, 10}
Proposed residual block size Size of the residual block in TCN encoder of each basic block {3, 4, 6}
P kernel size Size of the convolution kernel of TCN Encoder {2, 3, 5}

optimizer The optimizer to minimize the loss function {’Adam’, ’SGD’}
TABLE III 14 -®- Mean of benchmarks _® j: ~®@- Mean of benchmarks 14 -®- Mean of benchmarks _#
PERFORMANCE COMPARISON WITH BENCHMARK MODELS | TR o i Y o
ST e S 1 o S e
Prediction Model CH datasets DE datasets AT datasets g . . s g_- 1; . g . . s
Horizon MSE(-10"2) MAPE (%) MSE(-10"2) MAPE (%) MSE(-102) MAPE (%)] . d RN z . N
Naive 9.200 11.31 11.60 16.654 10.80 9.891 (l 61¢ 'l
ARIMA 0.351 3.439 1.180 5.450 0.806 5.443 4 4 4
He3 SVR 0.194 5.401 0.794 6.812 0.679 5.681 2 i datases 2 DEdataces 2 Al daiazes
- MD-XGBoost ~ 0.186 4.532 0.352 5.411 0.252 3.198 306 2 24 36 2 2 36 2 24
LSTM-LSTM 0.197 4,061 0.246 5.357 0.370 4208 Forecasting Horizon Forecasting Horizon Forecasting Horizon
Proposed 0.099 2.958 0.095 4.099 0.102 2.996
Naive 11.90 14.33 21.60 22.128 16.20 15.644 Fig. 10. Comparison of the mean of MAPE of all models with the MAPE
ARIMA 0.597 4.548 4.770 11.227 2.280 9.734 : 9 :
i SVR 0210 10,998 5030 11304 0829 Tola of the proposed model in the four scenarios
- MD-XGBoost 0.520 5.659 1.790 7.623 0.601 6.018
LSTM-LSTM 0.433 6.114 1.400 10.748 0.633 5.740
Proposed 0.143 3.989 0.902 6.900 0.465 4232
Naive 1980 2062 2610 32048 1990 21762 as the forecasting horizon increases, increasingly more patterns
ARIMA 1.000 6.145 6.820 20.945 4.570 15.114 . .
He1y SWR 1480 14255 3210 14890 0967 7.87 need to be learned from the time series, and the problem that
= MD-XGBoost ~ 0.973 10.189 2.120 11.152 1.010 7.831 LV .
ISTMISIM 0558 7165 2460 12210 1806 75 it is difficult for the context vector to express all the patterns
Proposed 0225 4598 1230 7416 0925 5818 and the decoder to fully extract the learned patterns becomes
Naive 18.20 20.120 25.20 32.018 20.20 22.653 . :
ARIMA 1960 12213 9980 24306 4880 16489 serious. The proposed model connects basic blocks through
_ SVR 2.560 19.009 3.540 16.129 3.560 15.937 1
H=24 oS0 o T e e S S e re51dua1§, so that the patterns that have not been learned by
LSTM-LSTM 0645 10329 3560 16224 2680 13408 the previous blocks are then passed to the downstream basic
Proposed 0.343 5.9820 2.150 10.524 1.500 8.826

Fig. 10 shows how the mean MAPE of benchmark models
excluding the naive benchmark change as the forecasting
horizon increases, and compared with the proposed model.
The reason that accounts for this phenomenon mainly include
two point, one is that as the forecasting horizon increases, the
uncertainty of the load data increases, and the forecasting task
becomes relatively more difficult. The second is due to the
shortcomings of the forecasting model. Specifically, the SVR
model and the ARIMA model adopt the Recursive strategy to
perform multi-step ahead forecasting tasks, which has inherent
error accumulation problems. Therefore, when the forecast
horizon increases, the accuracy will drop sharply. Although the
Seq2Seq model does not have the error accumulation problem,

blocks to learn. Therefore, the advantage of the proposed
model is more obvious when the forecasting horizon increases.
As illustrated in Fig. 10, the MAPE of the proposed model
is smaller than those of all benchmark models in different
horizon scenarios, and the gap increases as the forecasting
horizon increases.

F. Case 2: The Effect of the Decomposition Strategy

To demonstrate the effectiveness of the decomposition strat-
egy utilized in the proposed model. We compare the proposed
model with the TCN encoder-based Seq2Seq model (S2S-
TCN), noting that S2S-TCN can be seen as the case where
the proposed model has only one basic block. Table IV shows
the comparison results of these two models on three datasets
under four different forecasting horizon.

TABLE IV
EFFECTIVENESS VALIDATION OF DECOMPOSITION STRATEGY
Prediction Model CH datasets DE datasets AT datasets
Horizon MSE(-10"2) MAPE(%) MSE(-10-2) MAPE(%) MSE(-10"2) MAPE(%)
H=3 Proposed 0.0985 2.958 0.0949 4.099 0.102 2.996
2 S2S-TCN 0.0974 4.345 0.462 5.007 0.412 4.532
H=6 Proposed 0.143 3.989 0.902 6.900 0.465 4232
- S2S-TCN 0.276 6.911 1.35 9.336 0.712 6.851
H=12 Proposed 0.225 4.598 1.23 7.416 0.925 5.818
o S2S-TCN 0414 9.577 1.94 11.418 1.61 6.891
H=24 Proposed 0.343 5.982 2.15 10.524 1.50 8.826
8 S2S-TCN 0.587 10.541 3.23 14.792 2.94 13.131

Clearly, the proposed model performs better than the S2S-
TCN model. In particular, the advantage of the decomposition
strategy is more noticeable when the forecasting horizon
increases. For example, in the DE dataset, when the forecasting
horizon is 3, the MAPE of the proposed model is 0.907%
lower than that of the S2S-TCN, but when the forecasting
horizon is increased to 24, the difference between the two
MAPEs is 4.27%.

This is because with the decomposition strategy, the pro-
posed model consists of a series of basic blocks and the
blocks are linked to each other by residuals, thus dynamically
decomposing the time series into multiple components. In this
way, the previous basic blocks remove patterns that can be
fitted well, allowing the downstream basic blocks to focus
more on learning new patterns.

G. Case 3: The Effect of the Number of Basic Blocks

In the proposed model, the number of basic blocks is de-
termined experimentally by the grid search strategy. However,
how the number of basic blocks affects the performance of
the model remains to be answered. In order to explore the
relationship between the model forecast accuracy and the
number of basic blocks, comparisons of the proposed model
with different numbers of basic blocks on a specific multi-step
ahead forecasting task are conducted.

In detail, we build several models with different numbers of
basic blocks, i.e., 1,3, 5,6,8 and 10; and perform independent
forecasting on a 12-step ahead forecasting task. These models
are denoted as S2S-x, where x represents the number of basic
blocks.

According to the obtained results in Table V, as the number
of basic blocks increases, the prediction accuracy increases
and then levels off. We define the number of basic blocks
corresponding to when the accuracy no longer increases signif-
icantly as the saturation value. For example, in the CH dataset,
when the number of basic blocks is less than 5, the prediction
accuracy increases as the number of basic blocks increases.
This is because as the number of basic blocks increases,
the advantage of the decomposition strategy becomes more
obvious, since it can decompose the complex patterns in the
time series to be learned separately. After the number of
basic blocks exceeds 5, the accuracy remains stable and even
starts to decrease slightly because as the number of basic
blocks increases, the hypothesis space of the model gradually

increases and the model begins to overfit. In this case, the
saturation value of the number of basic blocks is 5.

TABLE V
INVESTIGATION OF THE RELATIONSHIP BETWEEN MODEL PREDICTION
ACCURACY AND THE NUMBER OF BASIC BLOCKS

CH datasets DE datasets AT datasets

Model
MSE(-102) MAPE(%) MSE(-10"2) MAPE(%) MSE(-10"2) MAPE(%)

S2S-1 0.414 9.577 1.94 11.418 1.610 6.891
S2S-3 0.306 6.891 1.54 8.954 0.925 5.818
S2S-4 0.252 5.112 1.43 8.102 0.927 5.821
S2S-5 0.225 4.598 1.37 7.823 0.921 5.782
S2S-6 0.227 4.605 1.23 7.416 0.924 5.81
S2S-8 0.223 4.595 1.22 7.409 0.943 6.143
S2S-10 0.231 4.621 1.29 7.532 0.935 6.108

In addition, it can be found that the saturation value of this
hyperparameter varies on different datasets. For example, on
the CH dataset, the saturation value is 5; while on the DE
dataset the saturation value is 6. This is due to the fact that
different time series contain different patterns. The DE dataset
contains more complex patterns and therefore requires more
basic blocks to fit, which further demonstrates that the DE
dataset has relatively large nonsmoothness.

It should be noted that the saturation value varies for
different time series, so it is recommended that the grid search
strategy be used to determine the saturation value.

H. Case 4: Comparative Study on the Competition Post-
COVID-19 Load Demand Data

To further validate the forecasting accuracy and replicability
performance of the proposed model, more comparative studies
are conducted on the different and specific competition post-
COVID-19 load demand datasets (pC19), which consists of
historical electricity load data and weather data such as atmo-
spheric pressure, wind speed, temperature, and humidity. Sim-
ilar to the previous datasets, the post-COVID-19 load demand
datasets are preprocessed and split it into training, validation,
and test sets. In addition, the mean absolute error (MAE)
evaluation metric is used to compare with other participants
in the competition in [4], which is calculated as follows:

I)
MAE = — ; lyi — 3l (15)
where y and ¢ represent the true value and the forecasted
value, and n represents the number of samples.

Table VI presents the corresponding experimental results.
From the results, it can be observed that the accuracy of all
models decreases as the forecasting horizon increases, which
is similar to the previous experimental findings. And the pro-
posed model achieves better performance on different datasets
compared to the Naive, MD-XGBoost, and LSTM-LSTM
models, with higher accuracy and the increasing advantage
as the forecasting horizon expands. When testing on the post-
COVID-19 load demand datasets, the accuracy of the proposed
model is relatively lower than the top team in [4], since the
most teams in [4] combined forecasting from multiple models
and utilized a lot of data preparation techniques. Although

the ensemble approach of multiple models can achieve a
better performance on a specific dataset (i.e., the post-COVID-
19 load demand data in [4]), the ensemble approaches need
large computational resources and also some other tools for
automatic model selection and tuning, which may lead an
extra burden to the system operator. Meanwhile, as stated in
[4], large ensembles of multiple models can incur significant
costs for production and maintenance, as each member of the
ensemble requires staff attention and computational effort for
relatively minor improvements in forecasting accuracy. Conse-
quently, there are questions regarding whether such models can
be justified by system operators due to the additional overhead
they create. Additionally, the generality and robustness of the
winning models in [4] require further investigation, given that
the ensemble methods used a substantial amount of post-
COVID-19 data to train their models and it is unclear whether
their performance may be adversely affected by different load
profile changes brought on by other global or local events.

TABLE VI
EXPERIMENTAL COMPARISON OF THE PROPOSED MODEL ON VARIOUS
DATASETS

Prediction

hori Model CH datasets DE datasets AT datasets pC19 datasets
orizon
Naive 744335 4310464 576.543 51798.929
MD-XGBoost 446.215 1990251 281.251 24851.650
H=3 LSTM-LSTM 400.583 1976.135 302.827 22963.095
Top Team - - - -
Proposed 386416 1589.657 265.298 18156.650
Naive 956.693 7030991 928.385 87064.916
MD-XGBoost 619.568 2412256 348.624 48910.364
H=6 LSTM-LSTM 632.054 2214.856 316.013 49645.418
Top Team - - - -
Proposed 496.651 1809.734 306.456 31942.453
Naive 1218.621 10523.884 1388.000 141494.161
MD-XGBoost 599.423 1951.124 460.101 63218.651
H=12 LSTM-LSTM 540.507 2429.739 423.126 61959.087
Top Team - - - -
Proposed 498.421 1986.328 389.517 38164.458
Naive 1549.155 10704.823 1404.465 142836.662
MD-XGBoost 701.651 3515.851 538.291 71852.264
H=24 LSTM-LSTM 658.101 2915488 546.844 67681.858
Top Team - - - 10844.000
Proposed 602.421 2137.161 419.854 42615.284

1. Case 5: Convergence Analysis of Different Forecasting
Models

To investigate the training time and convergence rate of
different forecasting models, comparative experiments are per-
formed on the same prediction horizon with the same datasets.
Specifically, three neural network-based models including the
proposed model, S2S-TCN, and LSTM-LSTM are taken to
compare their convergence speeds, in which the AT dataset
is chosen as the training and testing samples, and the pre-
diction horizon is set to 12. Fig 11 shows the corresponding
experimental results, wherein the x-axis represents the model
training time and the y-axis indicates the loss value during the
training process, and the training time and execution time are
given in Table VII. All models are trained and evaluated on
the same hardware equipment.

TABLE VII
TRAINING TIME AND EXECUTION TIME COMPARISON BETWEEN
PROPOSED MODEL AND MULTIPLE NEURAL NETWORK MODELS

Model Training Time (s) Execution Time (s)
Proposed 6757 0.6835
TCN-LSTM 1074 0.5834
LSTM-LSTM 164 0.0772
0.05 - —— Proposed
TCN-LSTM
—— LSTM-LSTM
0.04
o
wn
\2; 0.03 1
&
|
0.02 A L
0.01 A
0 1000 2000 3000 4000 5000 6000 7000

Training Time (s)

Fig. 11. Training time and model loss comparison between proposed model
and multiple neural network models

It can be seen that, the proposed model has slower conver-
gence speed compared to other forecasting models, whereas
it achieves lower loss value and higher accuracy upon con-
vergence. This is because the proposed model utilizes the
time series addition decomposition strategy, which is able to
effectively capture the long-term dependencies and seasonal
patterns in the time series data. Moreover, the utilization of
multiple basic blocks allows the model to extract more diverse
and comprehensive features from the input data, further im-
proving the predictive capability. However, to a certain extent,
this resulting in more complex network structures and higher
training time in turn, but there is no significant difference on
the execution time between the different forecasting models.

J. Case 6: Impact of Sliding Window Size on Model Prediction
Accuracy

Generally, an appropriate sliding window size has a sig-
nificant impact on both the model’s prediction accuracy and
computational efficiency [46]. To the best of our knowledge,
most of the existing studies used fixed or static window size
in the sliding window algorithm, and as indicated by [47],
there is currently no standard method for determining the value
of sliding window size. In this work, a fixed window size is
selected based on some empirical guidelines in the literature
and a number of preliminary accuracy tests via trial and error.
Specifically, on the AT dataset using the MAPE evaluation
metric, multiple comparative experiments are conducted to
explore the impact of different sliding window size of inputs
on the prediction results with different forecasting horizon.
Table VIII shows the corresponding experimental results. It

can be seen that a larger window size could result in a higher
prediction accuracy under a specific forecasting horizon, i.e.,
when the forecasting horizon H is set to 3, the prediction
accuracy is 7.823% when the sliding window size N is chosen
to 2, and the prediction accuracy is increased to 2.843% when
the sliding window size NN is chosen to 72. However, a larger
sliding window size usually requires a longer training time.

TABLE VIII
RELATIONSHIP BETWEEN SLIDING WINDOW SIZE AND PREDICTION
ACCURACY (MAPE) EXPERIMENT

Windows Size MAPE(%) for Different Prediction Horizon

H=3 H=6 H=12 H=24
N=2 7.823 15.644 19.581 21.342
N=3 7.154 15716 18.712 22.951
N=6 4.528 8.006 12.681 20.106
N=12 2.899 5.091 7.681 16.851
N =24 2.796 4.232 5.472 9.436
N =36 2.945 4.594 5.818 8.826
N=72 2.843 4.119 5.795 8.792

K. Case 7: The Determination Experiments of Encoders and
Decoders in the Proposed Model

In this work, a novel multi-step power load forecasting
model is designed by incorporating time series additive de-
composition strategy into Seq2Seq architecture. This model
consists of a series of basic blocks connected through residual,
wherein each basic block comprising an encoder and two
decoders. For the decoder implementation, the CNN is not
considered as an option due to its unsuitability for generating
variable-length time series [48]; and the RNN structures such
as Gate Recurrent Unit (GRU) and LSTM are already tried
and verified in the previous case studies. For the encoder
implementation, the CNN, LSTM, GRU and TCN is succes-
sively tried in the proposed architecture. Table IX shows the
corresponding comparative results on the AT dataset with a
12-step prediction. It can be seen that the best prediction
performance is achieved by the TCN-LSTM architecture, thus,
the TCN and LSTM are ultimately selected as the encoder and
decoder in each basic block of the proposed model.

TABLE IX
COMPARISON EXPERIMENT OF USING DIFFERENT STRUCTURES AS
ENCODER AND DECODER

Encoder Decoder (F-Decoder & E-Decoder) MAPE(%) MSE(-102)
in i
e
T i
o

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel Seq2Seq-based deep learning model,
which is based on a decomposition strategy combine the

Seq2Seq structure, is proposed for multi-step load forecasting.
To evaluate the performance of the proposed model, three
cases are conducted on three real-world datasets. Case 1
verifies the superiority of the proposed model in terms of
accuracy. Specifically, various benchmark models are selected
to compare with the proposed model in four scenarios with
different forecasting horizons. The results indicate that the
proposed model outperforms all benchmark models in terms
of accuracy. Furthermore, the performance advantage of the
model becomes more obvious as the forecasting horizon
increases. Case 2 demonstrates the effectiveness of the de-
composition strategy. Case 3 studies the effect of the number
of basic blocks on the forecast performance. Case 4 involved
an accuracy comparison experiment of the proposed model
using the competition post-COVID-19 load demand dataset.
Case 5 analyzed the convergence speed of the model during
training. In Case 6, a comparison was conducted on the effect
of different sliding window sizes on prediction accuracy. Case
7 determined the selection of encoder and decoder for the pro-
posed model through multiple experiments. All experiments
prove the performance of the proposed model, so that the
model can provide more accurate prediction information for
power systems.

For future work, a methodology for adaptively adjusting
the number of basic blocks based on the datasets can be
developed to further enhance the robustness of the forecasting
model and improve the prediction accuracy. Additionally, as
the proposed method adopts the MIMO strategy, this may
restrict model flexibility and result in biases in the output of the
model. Hence, more advanced techniques will be developed to
enhance the flexibility of the MIMO strategy.

REFERENCES

[1] C. Zheng, S. Wang, Y. Liu, C. Liu, W. Xie, C. Fang, and S. Liu, “A
novel equivalent model of active distribution networks based on lIstm,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 9, pp. 2611-2624, 2019.

[2] G. Dudek, P. Petka, and S. Smyl, “A hybrid residual dilated 1stm and
exponential smoothing model for midterm electric load forecasting,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1-13,
2021.

[3] R. Lu, R. Bai, Z. Luo, J. Jiang, M. Sun, and H.-T. Zhang, “Deep rein-
forcement learning-based demand response for smart facilities energy
management,” [EEE Transactions on Industrial Electronics, vol. 69,
no. 8, pp. 8554-8565, 2022.

[4] M. Farrokhabadi, J. Browell, Y. Wang, S. Makonin, W. Su, and
H. Zareipour, “Day-ahead electricity demand forecasting competition:
Post-covid paradigm,” IEEE Open Access Journal of Power and Energy,
vol. 9, pp. 185-191, 2022.

[5] M. Khodayar, G. Liu, J. Wang, O. Kaynak, and M. E. Khodayar,
“Spatiotemporal behind-the-meter load and pv power forecasting via
deep graph dictionary learning,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 10, pp. 4713-4727, 2021.

[6] N. Safari, C. Chung, and G. Price, “Novel multi-step short-term wind
power prediction framework based on chaotic time series analysis and
singular spectrum analysis,” IEEE Transactions on Power Systems,
vol. 33, no. 1, pp. 590-601, 2017.

[71 J. Li, S. Wei, and W. Dai, “Combination of manifold learning and
deep learning algorithms for mid-term electrical load forecasting,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1-10, 2021.

[8] Y. Yang, W. Li, T. A. Gulliver, and S. Li, “Bayesian deep learning-
based probabilistic load forecasting in smart grids,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 7, pp. 4703-4713, 2019.

[9] R. Lu, S. H. Hong, and M. Yu, “Demand response for home energy
management using reinforcement learning and artificial neural network,”
IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6629-6639, 2019.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

C. Li, “Designing a short-term load forecasting model in the urban smart
grid system,” Applied Energy, vol. 266, p. 114850, 2020.

R. Lu, R. Bai, Y. Ding, M. Wei, J. Jiang, M. Sun, F. Xiao, and H.-
T. Zhang, “A hybrid deep learning-based online energy management
scheme for industrial microgrid,” Applied Energy, vol. 304, p. 117857,
2021.

M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid cnn-Istm model
for short-term individual household load forecasting,” IEEE Access,
vol. 8, pp. 180544-180557, 2020.

B. Dietrich, J. Walther, M. Weigold, and E. Abele, “Machine learning
based very short term load forecasting of machine tools,” Applied
Energy, vol. 276, p. 115440, 2020.

S. Tripathi and S. De, “Dynamic prediction of powerline frequency for
wide area monitoring and control,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 7, pp. 2837-2846, 2017.

G. Dudek, “Short-term load forecasting using random forests,” in
Intelligent Systems’ 2014. Springer, 2015, pp. 821-828.

R. Lu, Y.-C. Li, Y. Li, J. Jiang, and Y. Ding, “Multi-agent deep rein-
forcement learning based demand response for discrete manufacturing
systems energy management,” Applied Energy, vol. 276, p. 115473,
2020.

L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295-316, 2020.

V. Singla, S. Singla, S. Feizi, and D. Jacobs, “Low curvature acti-
vations reduce overfitting in adversarial training,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2021, pp. 16423-16433.

Q. Shi, Y.-M. Cheung, Q. Zhao, and H. Lu, “Feature extraction for
incomplete data via low-rank tensor decomposition with feature regular-
ization,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 6, pp. 1803-1817, 2019.

M. Capd, A. Pérez, and J. A. Lozano, “A cheap feature selection
approach for the k-means algorithm,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 5, pp. 2195-2208, 2021.
C. Tian, J. Ma, C. Zhang, and P. Zhan, “A deep neural network model
for short-term load forecast based on long short-term memory network
and convolutional neural network,” Energies, vol. 11, no. 12, p. 3493,
2018.

G. Li, Y. Li, and F. Roozitalab, “Midterm load forecasting: A multistep
approach based on phase space reconstruction and support vector
machine,” IEEE Systems Journal, vol. 14, no. 4, pp. 4967-4977, 2020.
A. Ahmed and M. Khalid, “An intelligent framework for short-term
multi-step wind speed forecasting based on functional networks,” Ap-
plied Energy, vol. 225, pp. 902-911, 2018.

A. Ghasemi, H. Shayeghi, M. Moradzadeh, and M. Nooshyar, “A novel
hybrid algorithm for electricity price and load forecasting in smart grids
with demand-side management,” Applied Energy, vol. 177, pp. 40-59,
2016.

S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and
comparison of strategies for multi-step ahead time series forecasting
based on the nn5 forecasting competition,” Expert Systems with Appli-
cations, vol. 39, no. 8, pp. 7067-7083, 2012.

J. Hinnikdinen, “Multi-step forecasting in the presence of breaks,”
Journal of Forecasting, vol. 37, no. 1, pp. 102-118, 2018.

R. Lu and S. H. Hong, “Incentive-based demand response for smart grid
with reinforcement learning and deep neural network,” Applied Energy,
vol. 236, pp. 937-949, 2019.

J. Deng, X. Chen, R. Jiang, X. Song, and I. W. Tsang, “A multi-view
multi-task learning framework for multi-variate time series forecasting,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1-16,
2022.

R. Lu, R. Bai, Y. Huang, Y. Li, J. Jiang, and Y. Ding, “Data-driven
real-time price-based demand response for industrial facilities energy
management,” Applied Energy, vol. 283, p. 116291, 2021.

W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-term
residential load forecasting based on resident behaviour learning,” IEEE
Transactions on Power Systems, vol. 33, no. 1, pp. 1087-1088, 2017.
R. Lu, Z. Jiang, H. Wu, Y. Ding, D. Wang, and H.-T. Zhang, “Reward
shaping-based actor-critic deep reinforcement learning for residential
energy management,” IEEE Transactions on Industrial Informatics,
vol. 19, no. 3, pp. 2662-2673, 2023.

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

(33]

[34]

(35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

E. Skomski, J.-Y. Lee, W. Kim, V. Chandan, S. Katipamula, and
B. Hutchinson, “Sequence-to-sequence neural networks for short-term
electrical load forecasting in commercial office buildings,” Energy and
Buildings, vol. 226, p. 110350, 2020.

L. Yang, Q. Wen, B. Yang, and L. Sun, “A robust and efficient multi-
scale seasonal-trend decomposition,” in ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 5085-5089.

R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, “Cost: Contrastive
learning of disentangled seasonal-trend representations for time series
forecasting,” arXiv preprint arXiv:2202.01575, 2022.

Q. Wen, J. Gao, X. Song, L. Sun, H. Xu, and S. Zhu, “Robuststl: A
robust seasonal-trend decomposition algorithm for long time series,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 5409-5416.

Q. Wen, Z. Zhang, Y. Li, and L. Sun, “Fast robuststl: Efficient and robust
seasonal-trend decomposition for time series with complex patterns,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 2203-2213.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian, “Deep
residual learning in spiking neural networks,” in Advances in Neural
Information Processing Systems, vol. 34, 2021, pp. 21 056-21 069.

T. Ahmed, D. H. Vu, K. M. Muttaqi, and A. P. Agalgaonkar, “Load
forecasting under changing climatic conditions for the city of sydney,
australia,” Energy, vol. 142, pp. 911-919, 2018.

Y. Dai and P. Zhao, “A hybrid load forecasting model based on
support vector machine with intelligent methods for feature selection
and parameter optimization,” Applied Energy, vol. 279, p. 115332, 2020.
Y. Chen, P. Xu, Y. Chu, W. Li, Y. Wu, L. Ni, Y. Bao, and K. Wang,
“Short-term electrical load forecasting using the support vector regres-
sion (svr) model to calculate the demand response baseline for office
buildings,” Applied Energy, vol. 195, pp. 659-670, 2017.

Y. Wang, S. Sun, X. Chen, X. Zeng, Y. Kong, J. Chen, Y. Guo, and
T. Wang, “Short-term load forecasting of industrial customers based on
svmd and xgboost,” International Journal of Electrical Power & Energy
Systems, vol. 129, p. 106830, 2021.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

Y. Qin, Y. Yan, H. Ji, and Y. Wang, “Recursive correlative statistical
analysis method with sliding windows for incipient fault detection,”
IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 4185—
4194, 2022.

H. Gao, C. Liu, Y. Yin, Y. Xu, and Y. Li, “A hybrid approach to
trust node assessment and management for vanets cooperative data
communication: Historical interaction perspective,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16504-16513,
2022.

L. Tang, W. Shen, Z. Zhou, Y. Chen, and Q. Zhang, “Defects of
convolutional decoder networks in frequency representation,” arXiv
preprint arXiv:2210.09020, 2022.

Renzhi Lu (Member, IEEE) received the B.E. in
electronic information engineering from the School
of Information Science and Engineering, Wuhan
University of Science and Technology, Wuhan,
China, in 2014, and the Ph.D. degree in electronic
systems engineering from the Department of Elec-
tronic Systems Engineering, Hanyang University,
Ansan, South Korea, in 2019.

He is currently an Associate Professor with the
School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology,

Wuhan, China, where he was a Lecturer from 2019 to 2021. His research
interests include learning, optimization, and control with applications to smart
manufacturing, smart grid and unmanned system.

Ruichang Bai received the B.E. degree from the
School of Automation, HangZhou DianZi Univer-
sity, Hangzhou, China, in 2019, and the M.E. de-
gree from the School of Artificial Intelligence and
Automation, Huazhong University of Science and
Technology, Wuhan, China, in 2023.

He is currently an Engineer with the Central
Academe, Shanghai Electric Group Co., Ltd, China.
His research interests include deep learning algo-
rithm design and its application in time-series fore-
casting.

2NONY.BOSTON

Ruidong Li (Senior Member, IEEE) received the
B.S. degree in engineering from Zhejiang University,
China, in 2001, and the M.S. and Ph.D. degrees
from the University of Tsukuba, in 2005 and 2008,
respectively. He was a Researcher with the Network
Architecture Laboratory, National Institute of Infor-
mation and Communications Technology (NICT).

He is currently an Associate Professor with the
Institute of Science and Engineering, Kanazawa Uni-
versity. His current research interests include the In-
ternet of Things, future networks, informationcentric
networks, security/secure architectures of future networks, and next-generation
wireless networks. He serves on the Editorial Board of IEEE Internet of Things
Journal and KSII Transactions on Internet and Information Systems.

Lijun Zhu received the Ph.D. degree in electrical
engineering from the University of Newcastle, Aus-
tralia, Callaghan, NSW, Australia, in 2013.

He is currently a Professor with the School of Ar-
tificial Intelligence and Automation, Huazhong Uni-
versity of Science and Technology, Wuhan, China.
He was a Postdoctoral Fellow with the Department
of Electrical and Electronic Engineering, The Uni-
versity of Hong Kong, and a Postdoctoral Researcher
with the University of Newcastle. His research inter-
ests include robotics, and nonlinear systems analysis

and control.

Mingyang Sun (Senior Member) received the Ph.D.
degree from the Department of Electrical and Elec-
tronic Engineering, Imperial College London, Lon-
don, UK., in 2017. From 2017 to 2019, he was a
Research Associate and a DSI Affiliate Fellow with
Imperial College London.

He is currently a Professor of control science and
engineering under the Hundred Talents Program with
Zhejiang University, Hangzhou, China. Also, he is
an Honorary Lecturer with Imperial College London.
His research interests include Al in energy systems
and cyber-physical energy system security and control.

Feng Xiao received the B.S. and M.S. degrees in
mathematics from Inner Mongolia University, Ho-
hhot, China, in 2001 and 2004, respectively, and the
Ph.D. degree in systems and control from Peking
University, Beijing, China, in 2008.

He became a Faculty Member with the School
of Automation, Beijing Institute of Technology, Bei-
jing, in 2008. He was a Postdoctoral Fellow with the
Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada, from
June 2010 to May 2013. He was a Visiting Professor
with the Department of Mechanical Engineering, University of Victoria,
Victoria, BC, Canada, from January 2016 to January 2017. He was also
a Professor with the Harbin Institute of Technology, Harbin, China, and is
currently a Professor with the School of Control and Computer Engineering,
North China Electric Power University, Beijing. His current research interests
include group intelligence, coordination control, and networked systems.

Dr. Xiao was a recipient of the Izaak Walton Killam Postdoctoral Fellowship
and the Dorothy J. Killam Memorial Postdoctoral Fellow Prize at the
University of Alberta in 2010, and a recipient of the Program for New Century
Excellent Talents in University, China, and the Excellent Young Scientists
Fund by NSFC, China.

o —
P

Dong Wang (Senior Member, IEEE) received the
B.Sc. degree in automation and the M.Eng. de-
gree in control theory and control engineering from
the Shenyang University of Technology, Shenyang,
China, in 2003 and 2006, respectively, and the Ph.D.
degree in control theory and control engineering
from the Dalian University of Technology, China,
in 2010.

Since 2010, he has been with the Dalian Univer-
sity of Technology, where he is currently a Professor
with the School of Control Science and Engineering.
His current research interests include multiagent systems, distributed opti-
mization, fault detection, and switched systems. He is an Associate Editor of
Information Sciences and Neurocomputing.

Huaming Wu (Senior Member, IEEE) received the
B.E. and M.S. degrees in electrical engineering from
the Harbin Institute of Technology, Harbin, China,
in 2009 and 2011, respectively, and the Ph.D. degree
in computer science from Freie Universitidt Berlin,
Berlin, Germany, in 2015.

He is currently an Associate Professor with the
Center for Applied Mathematics, Tianjin University,
Tianjin, China. His research interests include wire-
less networks, mobile edge computing, Internet of
Things, and deep learning.

Yuemin Ding (Senior Member, IEEE) received the
Ph.D. degree in electronic systems engineering from
Hanyang University, Ansan, South Korea, in 2014.

Since 2021, he has been an Associate Professor
with the Department of Electrical and Electronic
Engineering, University of Navarra, San Sebastian,
Spain. From 2019 to 2021, he was a Postdoctoral
Fellow with the Department of Energy and Pro-
cess Engineering, Norwegian University of Science
and Technology, Trondheim, Norway. From 2015 to
2019, he was an Associate Professor with the School
of Computer Science and Engineering, Tianjin University of Technology,
Tianjin, China. From 2017 to 2018, he was a Visiting Fellow with the
Queensland University of Technology, Brisbane, QLD, Australia. His research
interests include Internet of Things, communication networks in smart grid,
smart homes/buildings, and smart manufacturing.

i

