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Abstract—Load forecasting is critical to the task of energy
management in power systems, for example, balancing supply
and demand and minimizing energy transaction costs, etc. There
are many approaches used for load forecasting such as the
support vector regression, the autoregressive integrated moving
average and neural networks, but most of these methods focus on
single-step load forecasting, whereas, multi-step load forecasting
can provide better insights for optimizing the energy resource
allocation and assisting the decision-making process. In this
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work, a novel sequence-to-sequence based deep learning model
based on a time series decomposition strategy for multi-step load
forecasting is proposed. The model consists of a series of basic
blocks, each of which includes one encoder and two decoders;
and all basic blocks are connected by residuals. In the inner of
each basic block, the encoder is realized by temporal convolution
network for its benefit of parallel computing, and the decoder
is implemented by long short-term memory neural network to
predict and estimate time series. During the forecasting process,
each basic block is forecasted individually. The final forecasted
result is the aggregation of the predicted results in all basic
blocks. Several cases within multiple real-world datasets are
conducted to evaluate the performance of the proposed model.
The results demonstrate that the proposed model achieves the
best accuracy compared with several benchmark models.

Index Terms—Multi-step load forecasting, sequence to se-
quence model, decomposition strategy, long short-term memory
neural network, temporal convolution network.

I. INTRODUCTION

ITH the rapid development of modernization and ur-

banization, the role of a stable and efficient power
system in society has become increasingly significant [1]. In
power systems, load forecasting is performed to determine
the supply of electricity, which is essential to establish an
efficient and accurate operating plan to reduce system losses
and improve the reliability, efficiency and security of the
electricity supply for customers [2]. Specifically, for energy
suppliers, forecasting electricity loads in advance is critical to
balancing production and demand, reducing production costs,
and implementing various demand response pricing schemes
[3]. Recently, an interesting and fantastic IEEE dataport day-
ahead electricity demand forecasting competition was held
[4], which was based on the post-COVID paradigm load
data. The competition aimed to encourage the development
and promotion of state-of-the-art load forecasting methods
that can alleviate the negative impact of pandemic-related
demand uncertainties on the electricity market. However, due
to various uncertainties and the complexity of climate change,
industrial structures and other social environments, load data
exhibit complex patterns and fluctuations, making accurate
load forecasting a challenging task [5].

Generally, according to forecasting horizon, the load fore-
casting can be classified into two categories: single-step ahead
and multi-step ahead [6]. The single-step ahead load fore-
casting is use historical load data and related variables to
predict the next one step load data, and the multi-step ahead
forecasting is to predict future multi-step load data. Compared



to single-step ahead load forecasting, the multi-step ahead
load forecasting task presents various additional challenges,
such as increased prediction errors and reduced accuracy,
making the task of multi-step ahead forecasting more difficult
[7]. Load data are essentially time-series. Many time series
forecasting approaches have been reported in the literature.
Broadly, these techniques can be grouped into three major
groups: statistical methods, traditional machine learning-based
methods, and deep learning-based methods [8].

Statistical models are based on fitting a regression model
to the previous data and then validating the model by finding
the difference between the actual and predicted values [9].
In particular, the autoregressive integrated moving average
(ARIMA) model is one of the most famous statistical models
used to perform load forecasting [10], and the ARIMA model
overcomes the drawback that the autoregressive moving aver-
age (ARMA) model is only applicable to stationary time series
[11]. Besides, in order to incorporate exogenous variables into
the forecasting model, the autoregressive integrated moving
average exogenous model (ARIMAX) has been proposed. The
ARIMA and its variant models are simple and interpretable,
making them easier to implement and understand, and could
also achieve a good forecasting performance on the linear data,
to a certain extent. However, a drawback is thereupon occurred
for their assumption of a linear correlation structure in the
underlying time series data. This proves unreasonable in many
real-world load forecasting problems, since real-world data is
often composed by both linear and nonlinear patterns [12].

Traditional machine learning-based models learn patterns
from input load data. Different from statistical models, the
input-output mapping in machine learning models does not
need to be defined in advance. Instead, it is learned during the
training process [13]. The support vector regression (SVR),
which maps historical load data to a higher dimensional
space through a nonlinear mapping and then performs lin-
ear regression on the mapped elements, is one of the most
commonly used machine learning models for load forecasting
[14]. Another commonly adopted model is the regression
trees (RT) [15], which has a tree-like structure and regresses
decisions in the form of a tree, starting from the root node
down to the leaf nodes, where the leaf nodes contain the
responses. Although the parameters of the SVR and RT are
learned during the training process, feature extraction is still
needed to perform to determine the inputs to the model.
Moreover, adjusting the hyper-parameters of machine learning-
based models would have a significant impact on its learning
speed and performance, depending on the characteristics of
the training data [16]. However, there is currently no standard
method for selecting the best values for these hyper-parameters
[17]. Typically, practitioners tune a subset of these parameters
through trials to maximize accuracy on a validation dataset.
In the specific study of this work, the hyper-parameters of
the proposed model are given in Subsection D of Section V,
which are established according to some empirical guidelines
in the literature and a number of preliminary accuracy tests via
trial and error. In addition, finding a well-fit training dataset is
important for building a successful machine learning model.
Including too much or too little information in the training

data can have a crucial impact on the prediction accuracy
[18]. If too few features are considered, the model will be
simple, leading to high bias and low variance, this is known
as underfitting. Underfitting is not fitting accurately in the data
set via simple curve and linear hypothesis thus should always
be low biased to avoid the problem of underfitting. On the
contrary, if too many features are included, the real valuable
features may be overshadowed by disturbances, resulting in
a complex model, leading to high variance and low bias,
this is known as overfitting. Overfitting is fitting the training
set accurately via complex curve and high order hypothesis
but is not the solution as the error with unseen data is high
[19]. Both underfitting and overfitting can decrease prediction
accuracy. Since the quantity and quality of input features play
a crucial role in forecasting accuracy. Various approaches, such
as correlation analysis and principal components analysis, have
been used to extract and select input features [20].

Deep learning-based models are promising approaches for
accurate load forecasting due to their excellent nonlinear
approximation capabilities enabling them to extract features
well and automatically build complex mapping relationships
between multiple inputs and outputs [2]. The convolutional
neural network (CNN) and long short-term memory (LSTM)
have been widely used in load prediction and have achieved
some success in the field of single-step load forecasting. In
addition, some hybrid methods combining CNN and LSTM
for load forecasting have been proposed to take full advantage
of the respective strengths of the CNN and LSTM [21]. In gen-
eral, when proposing a deep learning-based forecasting model,
it often require a large amount of data to train. Fortunately,
the widespread deployment of smart meters in power grids has
resulted in the availability of large amounts of data. Therefore,
neural network models are currently recognized as one of the
most promising approaches for power load forecasting.

The aforementioned traditional machine learning and deep
learning-based models have achieved undeniable results in
load forecasting, but they all focus on single-step ahead load
forecasting. In most real-world applications, multi-step ahead
forecasting is more valued than single-step ahead forecasting
since it can provide key insights for optimizing the energy
resource allocation and assisting the decision-making process
[22].

Currently, there are several strategies for generating multi-
step ahead forecasts: the Direct strategy, Recursive strategy
and DirRec strategy [23]. However, these strategies are limited
by their inherent flaws, and none of them can achieve good per-
formance. Fortunately, the Multi-Input Multi-Output (MIMO)
strategy implemented by sequence-to-sequence (Seq2Seq)
model is regarded as a promising approach for multi-step
ahead forecasting [24]. The heart of this model lies in two
different sequential-based neural networks, namely, encoder
and decoder, which can enhance the prediction of continuous
sequences while also allowing the input and output to have
different time dimensions. The encoder is responsible for
converting the input sequence into a fixed-size vector repre-
sentation, called the context vector. The decoder is responsible
for converting the context vector into the output sequence.
However, for longer input sequences, the encoder may suffer



from incomplete compression, and it is difficult for the decoder
to extract all the valuable information from the context vector.

To overcome these drawbacks of multi-step ahead forecast-
ing models, a novel Seq2Seq-based deep learning model is
proposed in this work. The model consists of a series of
basic blocks, each of which is responsible for predicting a
portion of patterns in the time series; and the basic blocks
are connected by residuals. The residual removes the patterns
that can be fitted well in the previous basic block, allowing the
downstream basic block can concentrate on predicting patterns
that are not learned by the previous basic block. The final pre-
diction result is the aggregation of all basic blocks. To verify
the effectiveness and evaluate the accuracy of the proposed
model, multiple cases are conducted on real-word datasets.
The results demonstrated that the proposed model outperforms
all benchmark models in terms of accuracy. To better clearly
clarify the advantages and drawbacks of the proposed model
with other existing model, a comparative analysis is carried
out with respect to some aspects as given in Table I, including
application scene and performance comparison. In summary,
this work has the following contributions:

1) A novel Seq2Seq-based deep learning model is proposed
for multi-step ahead load forecasting, in which each basic
block of the model is connected by residuals, and the final
residual output is used as part of the loss function.

2) A decomposition strategy is deeply integrated into the
Seq2Seq framework to improve the trainability of the
deep architecture and the convergence of the model.

3) The proposed model dynamically decomposes the origi-
nal time series into individual components for prediction,
reducing the overall prediction burden and improving the
forecasting accuracy.

4) In each basic block, temporal convolutional network
(TCN) is used as the encoder, and LSTM is used as
the decoder. The advantages of the TCN and LSTM are
combined, and a considerable improvement in the results
is achieved.

The rest of the paper is organized as follows: Section II
presents the problem formulation for the load forecasting task,
which consists of problem description and existing available
approaches. Section III presents the technical preliminaries,
which are the basis of the proposed model. Section IV de-
scribes the proposed methodology in detail. Section V explains
the experiments and analyzes the corresponding results; and
finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

In this section, we present the load forecasting task in detail
in subsection A and analyze the existing multi-step ahead
forecasting approaches in subsection B.

A. Problem Description

Assume that the time-series load data are X, which can be
described as follows:

XZ{CU1,$2,...,ZL’T} (1)

where z; represents the actual load value at the ¢-th timestamp,
and T denotes the length of the historical load sequence. Load
forecasting is to predict load value for the next H time steps
given historical load data of length 7', and the parameter H
is called the forecasting horizon. When H = 1, it is called
single-step ahead forecasting; and when H > 1, it is called
multi-step ahead forecasting. More specifically, for single-step
ahead forecasting, the formula can be expressed as follows:

,oT) 2)

where Fnge denotes the single-step ahead forecasting model
and x4 is the predicted load value given the historical load
sequence. Different from the single-step ahead forecasting, the
multi-step ahead forecasting is to predict various-step load
values, such as k-step ahead forecasting as follows:

s xr)  (3)

where Fi denotes the multi-step ahead forecasting model.
x741.7+% denotes the predicted sequence, including k pre-
dicted load values.

Tr41 = Fsingle(th% cee

TT41, 87425 -+, LTk = Frui (21, T2, . ..

B. Existing Available Approaches

Currently, to the best of our knowledge, there are four
main strategies that can perform multi-step ahead forecasting,
i.e., the Recursive strategy, the Direct strategy, the DirRec
strategy and the MIMO strategy [23]. Among the four strate-
gies, the first three are called single-output models because
they all establish a multiple-input single-output mapping. The
last MIMO strategy is usually implemented by the Seq2Seq
architecture. These four strategies are described and discussed
as follows.

The Recursive strategy is the most intuitive and traditional
forecasting strategy. It uses a single-step ahead forecasting
model (such as SVR, ARIMA, or deep neural network) that
recursively takes previous predictions as its input to predict
subsequent predictions until /[ predictions are output [25].
The formula of the Recursive strategy for multi-step ahead
forecasting is defined as follows:

Yir1 = Free (T4, o1, .. T Ny1)
Yiv2 = Frec (Y1, T, Te—1, -, Ti_N42)

€]
YirH = Free WiaH-1,Yt4H -2, Yi+H-N)

where Fgre. denotes a single-step ahead forecasting model in
the Recursive strategy. ;1.7 denotes the forecasted value,
and z;;_n+1 denotes the given historical time series data
of length N. Although the Recursive strategy is easy to
implement, iteration-based forecasting methods will produce
large cumulative errors when the forecasting horizon H is
large [26].

Different from the Recursive strategy, the Direct strategy
builds H different single-step ahead forecasting models for
each forecasting horizon, and the Direct strategy is defined by
the following equation:

Yerh = Fpien(Te, X1, ..., T N41) (5



TABLE I
THE COMPARISON BETWEEN THE PROPOSED APPROACH WITH OTHER EXISTING MODELS

Forecasting Number of

: Multi-Step ;
Models Input Variables Parameters Forecasting Advantages Disadvantages
Statistical Models Historical time 2-3 (p, d, q) Yes Easy to use and highly in-  Limited to linear relationships, not suit-
series data terpretable able for complex relationships, and may
be affected by outliers
Machine Learning Historical time Many (hundreds to No Can handle various non-  Requires extensive parameter tuning
Models series data, other  thousands) linear relationships and  and feature engineering
features use external features
LSTM, CNN, TCN, Historical time Many (tens of thou- No Can handle various non-  Requires a significant amount of train-
series data, other  sands to millions) linear relationships ing data, training time, and computa-
features tional resources.

Seq2Seq Historical time Many (tens of thou- Yes Suitable for sequence-to-  Lack long-term memory capacity and
series data, other  sands to millions) sequence forecasting tasks  gradually forget previous information
features

Proposed Historical time Many (tens of thou- Yes High accuracy with time High computational complexity and
series data, other  sands to millions) series additive decomposi-  long processing time
features tion

where h € {1,2,3,...,H}, and Fp;.p, denotes the h-th
forecasting model. Obviously, the Direct strategy does not
accumulate errors. However, since H models are learned
independently, which prevents this approach from considering
the complex dependencies between the predicted values, and
this further affects the forecasting accuracy [26].

The DirRec strategy combines the two previous strategies,
which use different single-step ahead forecasting models for
each horizon to calculate the forecasts (similar in this respect
to the Direct strategy), then, at each time step, expand the
input set by adding variables corresponding to the forecasts
of the previous step (similar in this respect to the Recursive
strategy). The formula of this strategy is as follows:

Yt+1 = Foimect (Te, Te—1, -+, Tt N+1)

Yer2 = FbiRec-2 (Y415 Tt Te—15- - s Te—N41)

S Tt-N+1)

(6)
where Fpirec.h denotes the h-th forecasting model and y;4p,
denotes the forecasted value at moment ¢ + h.

Although the DirRec strategy avoids the disadvantage of the
Direct strategy, it still has the disadvantage of the Recursive
strategy, i.e., error accumulation [25].

The MIMO strategy can address the inherent drawbacks
of single-output strategies since the MIMO strategy mod-
els multiple-output dependencies rather than modeling single
output mapping [27]. Consequently, the MIMO strategy can
avoid error accumulation and overcome the problem caused
by using independently single-step predictor at different steps
in the Direct strategy. However, The MIMO strategy imposes
a constraint that all horizons being predicted must use the
same model structure and the same set of input training
data. This limitation reduces the flexibility of the forecasting
approach and may bias the resulting model [28]. Fortunately,
the Seq2Seq framework is employed to implement the MIMO

Y+ H = FDirRec (Yt H-1,- - Y41, L1, - -

strategy, and the advantages of neural networks can signifi-
cantly alleviate the drawbacks of the MIMO approach. The
Seq2Seq framework is comprised of two sequential-based
neural networks, an encoder and a decoder. However, for
longer input sequences in Seq2Seq model, the encoder may
suffer from incomplete compression and it is difficult for the
decoder to extract all the valuable information from this single
vector, which therefore affects the prediction accuracy.

To overcome the drawbacks of current multi-step ahead
forecasting methodologies, a novel Seq2Seq-based deep learn-
ing model is proposed in this work, and the details are
presented in section IV.

III. TECHNICAL PRELIMINARIES

This section will briefly review the related basic deep learn-
ing techniques for time series forecasting, including LSTM,
TCN and Seq2Seq. All of these techniques are preliminary
knowledge for the proposed model.

A. LSTM

Benefiting from the self-feedback mechanism, the recurrent
neural network (RNN) model has advantages in exploring the
temporal relationships in time series. However, it is more prone
to gradient disappearance in practical applications. LSTM is
designed to solve this problem on the basis of RNN [29], and
thus with the ability to build long term dependencies.

Fig. 1 shows the structure of a LSTM unit. In order
to establish long-term dependence, LSTM maintains a new
internal state s throughout its life cycle. In addition, three gate
structures are introduced: input gate, forget gate, and output
gate. The internal state s;_; interacts with the external state
h;_; and the input x;. With the help of the gate mechanism,
the output of the previous time step and the input of the current
time step are used to determine the internal state vector of the
elements that should be maintained, updated or deleted [30].



The update formula of the state in LSTM at ¢-th timestamp is
as follows:

fi=0Wxi + Wirrhi_1 + by)
it = o (Wi + Winhy 1 + b;)
9y = (W gamy + Wophi1 + by)
o, = o0(Woexy + Wophi_1 + b,)
8§t =9, 0%+ 8-10f,

hi = ¢(s) © oy

w
w

)

where me, th, Wm, Wih, ng, Wgh, Wow and
W, are the weight matrices; and by, b;, b, and b, are the
biases of the activation function. o(-) is the sigmoid activation
function, ¢(-) represents the hyperbolic tangent function, and
© represents the element-by-element multiplication. ¢;, f, and
o; denote the states of input gate, forget gate and output gate,
respectively; and g, is the candidate state [31].

hy,
- T
mo |G g g )
e J

Fig. 1. The structure of LSTM unit.

B. TCN

The TCN is a general convolution model for sequence
modeling tasks with powerful feature extraction and efficient
parallel computing capabilities [32]. It consists of three parts:
causal convolution, dilated convolution and residual connec-
tion.

The causal convolutions ensure causal constraint, which
means that there is no leakage of information from the
future to past. Furthermore, to expand the receptive field of
causal convolution more efficiently, the dilated convolution,
which can realize an exponentially enlarged receptive field,
is employed in the TCN [32]. Fig. 2a shows a dilated and
causal convolution with a convolution kernel size of 2 and an
exponential increase in expansion factor d(d = O(2¢)) in the
i-th layer of the network.

In addition, in the design of the general TCN model, a
residual block is adopted to replace the convolutional layer.
Fig. 2b shows the residual block of the general TCN. To
ensure that the addition of residual blocks can accept tensors
of the same shape, a 1 x 1 convolution kernel is adopted at
the residual connection to perform dimensional transformation.
Within the residual block, the TCN has two dilation causal
convolution layers (Dilated Causal Conv), activation functions
(ReLU) and weight normalization. Furthermore, in order to
avoid overfitting, the spatial dropout after each causal dilation
convolution layer is employed for regularization [32].

Output

DroPout
ReLU

Future

777777 F7

t
Weight Normalization

Dilated szusal Conv

1x1
Dropout Conv
i=2 RelU
[/ /[ [ [/ ‘ Y
d=1 Weight No:mallzatlon
i frsf [/ / [r Dilated Causal Conv
e
Past Current Input
(@) (b)

Fig. 2. (a) A dilated causal convolution; (b) TCN residual block.

C. Seq2Seq Model

The Seq2Seq structure was originally designed to solve the
problem that the RNN cannot generate arbitrary length output
sequences in neural machine translation. The core idea of the
Seq2Seq model is using two networks to form an encoder-
decoder architecture. The encoder is responsible for converting
the input sequence into a fixed-size vector, called the context
vector. The decoder is responsible for converting the context
vector into the output sequence [33].

Forecasting Sequence
Encoder

g y1—| y2—| YH
LSTM [ LSTM [ LSTM %= LSTM [ LSTM [» LSTM
EniEmiET ST
! T2 N S TN
History S'equence Decoder

Fig. 3. The Seq2Seq model based LSTM encoder and decoder.

Codecs are typically multi-layer LSTM structures due to the
natural convenience of LSTM to process sequence data. Fig.
3 shows the common Seq2Seq forecasting model. The codecs
are all composed of a chain of LSTM units. In the encoder, the
input is historical sequence data X = {x1,z2,23,...,ZN},
and the context vector is the output state of the last LSTM unit.
For the decoder, the input of the first LSTM unit is x , which
is the last time step input of the encoder; and each unit input
thereafter is the predicted output value of the previous unit.
The length of the input sequence of the encoder and the length
of the output sequence of the decoder can be different, and
the model will automatically learn the mapping relationship
between the input sequence and the forecasting sequence.

However, in the original Seq2Seq structure, for longer input
sequences, the encoder may not be able to encode all valuable
timing features into this vector, and it is difficult for the
decoder to extract all valuable timing features. To overcome
this shortcoming, a novel Seq2Seq model, which is based on
a time series additive decomposition strategy, is proposed in
this work.

IV. PROPOSED MODEL

In this section, we describe the proposed model, which
is based on the time series additive decomposition strategy
and original Seq2Seq structure. First, the overall architecture



Fig. 4. The architecture of proposed model, consisted a series of basic blocks.

is described, and then the internal details of this model are
presented.

A. Overall Architecture

In the task of time series forecasting, an effective approach
is to decompose the time series into multiple components
and then model each component individually [34]. Additive
decomposition is a classical time series decomposition method,
which assumes that time series data can be decomposed into
seasonal, trend-cycle, and remainder components [35]. When
applying the additive decomposition method to decompose
the time series and subsequently model each component
separately, it reduces the sensitivity of the prediction model to
the noise in the time series and enhances the robustness of the
prediction model [36]. Additionally, there are more robust and
efficient decomposition approaches, such as Robuststl [37] and
Fast Robuststl [38]. However, these explicit decompositions
divide the time series into fixed components in advance
and separate them from the modeling task, which fails to
adequately address the temporal characteristics present in real-
world data. Different from the native decomposition strategy,
the model proposed in this work dynamically decomposes
the time series into any number of components during the
forecasting process.

Fig. 4 illustrates the overall proposed framework, consisting
of a series of basic blocks (exemplified here by three basic
blocks for brevity), and each of which can be viewed as a
component of a decomposition. Each basic block includes
three parts and appears as a fork-like structure. The first
part is the encoder, which is responsible for compressing all
the useful information of the input sequence data w into the
context vector c¢. The second part is the forecasting decoder
(F-Decoder), which decodes the context vector ¢ to produce
the forecasting output z. And the third part is the estimate
decoder (E-Decoder), which is responsible for generating the
best estimate e of the input sequence u based on the context
vector ¢, where the length of the estimate sequence e is the
same as the length of the input sequence u.

To have a clear understanding of the proposed model,
Fig. 5 presents an example using actual time series data,
demonstrating the functioning of each basic block during fore-
casting (exemplified here by three basic blocks for brevity).
Specifically, for the i-th basic block, it receives a sequence
data u’ € RV*? and outputs two sequence data, forecasting
sequence z' € RH*! and estimate sequence e’ € RV*!, For
the first basic block of the model, its input w! is the original
data X = {z1,29,23,...,2N5}, wWhich has N timestamps
and each timestamp contains d features. For the other basic
blocks, the inputs are the residuals of the previous basic block,
which is obtained by subtracting its estimate e‘~! from the

input sequence u'~!, therefore, each timestamp contains one
feature, i.e., d = 1. The one of the outputs, 2, is the forecast
sequence data of length H generated by the F-Decoder. And
the another output, ', is the estimated sequence of input data
produced by the E-Decoder. Formally, the following equations
are the computation process for the ¢-th (z > 2) block:

(®)

where u’ is the input of the i-th block; and 2z’ and e?, which
are the forecast and estimate sequence data, respectively, are
both the outputs of the i-th block. f(:), gs(-) and gc(-)
represent the encoder, F-Decoder and E-Decoder respectively,
and 6%, 0; s and 0;6 are the corresponding parameters.

Generally, the residual in a neural network refers to the
difference or error between input and output of some layers
or blocks in the model. The utilization of residual blocks
can address the problem of gradient vanishing while propa-
gating information from shallow to deep layers, and prevent
performance degradation with deeper network structures [39].
Additionally, residual connections can enhance the accuracy
and stability of the model [40]. In this work, however, in each
basic block, the residual refers to the difference between the
input and the estimated output. Then, the residual is regarded
as the input of the next basic block, so that each subsequent
basic block is only a prediction and analysis of the residuals
of the previous basic block. The residual input removes the
patterns from the sequence data that can be fitted well in
the previous block, allowing the downstream basic block to
concentrate more on predicting patterns that are not learned.
Thus, the problems that the context vector in the original
Seq2Seq model cannot fully express all the patterns of the
input sequence and the difficulty for the decoder to extract all
the useful information from the context vector are avoided. In
addition, the basic blocks are connected by residuals, which
has a significant advantage in improving the trainability of the
deep architecture.

Correspondingly, the final output includes two items: one is
Y,a prediction sequence of length H, which is the aggregation
of all basic block forecast outputs; and the other is F, a
residual of length /N, which will be used as part of the model
loss value to ensure model convergence. The computational
operation are as follows:

y=3y o

S ©)
E=X-) ¢

where 2z’ and e’ are the forecast and estimate output of the
i-th block, respectively, and D is the total number of basic
blocks.
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Fig. 5. The dynamic decomposition process of the proposed model.

B. Basic Block

As previous subsection mentioned, each basic block consists
of three parts, i.e., one encoder and two decoders. TCN is
adopted as the encoder due to its powerful feature extraction
and efficient computation capabilities, which have been in-
troduced in Section III. And the two decoders are a series
of LSTM units with shared parameters, respectively. Fig. 6
shows the internal details of the basic block. In the encoder, the
number of TCN residual blocks is a hyperparameter, which is
determined by both the convolution field and the length of the
input sequence. In addition, in the two decoders, the number
of LSTM units is determined by the length of the forecasting
sequence and estimate sequence, respectively.

Context vector Forecasting Sequence 2
i 1
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Fig. 6. The internal details of the i-th basic block.

For the i-th basic block, suppose the input sequence is u?,
and the context vector ¢’ € R" is generated through the TCN
encoder. Note that the context vector is only the output of the
last time step of the last TCN residual block. Furthermore,
the F-Encoder and E-Decoder share the context vector ¢’ to
generate the predicted series data 2’ and estimated series data
e, respectively. Specifically, for the F-Decoder, the input of
the first LSTM unit is the last time step of the current basic
block input sequence, and the input of the subsequent units
is the forecast output of the previous unit. For the E-Decoder,

since it is the estimate of the input sequence, the input of the
first LSTM unit is the data of the first time step of the input
to the current basic block.

C. Model Training

The model parameters are learned by back propagation
mechanism, and the mean squared error (MSE) is selected
as the loss function. In addition, the residual output of the
model is added to the loss function, so that the model can learn
the pattern contained in the input sequence as completely as
possible. The loss function is defined as follows:

L) = ~ > [(Yi Vi) + By

m =
i

(10)

where m is the number of samples; and Y, f/; and FE; are
the true vector, prediction vector and residual vector of the
i-th sample, respectively. The training process is provided in
Algorithm1.

V. EXPERIMENTS AND DISCUSSION

In this section, the effectiveness of the proposed model on
real-world datasets with three cases is verified. Case 1 presents
the superiority of the proposed model. Case 2 demonstrates the
effect of the decomposition strategy. Case 3 explores the effect
of model hyperparameter changes on forecast performance.
Case 4 conducts accuracy comparison of the proposed model
using the competition post-COVID-19 load demand data. Case
5 examines the model’s convergence speed, and comparing
it with other neural network models. Case 6, the impact of
sliding window size on prediction accuracy is thoroughly
investigated. Case 7 delves into the diverse choices available
for the encoder and decoder of the proposed model.

A. Datasets Description

The datasets used in the experiments are obtained
from the Open Power System Data Platform (https://data.
open-power-system-data.org/), including historical load data



Algorithm 1 The training process of the proposed model

1: Prepare and process the dataset.

2: Initialize the hyperparameters, i.e., the total epochs M,
number of basic block D, learning rate r, and the param-
eters 6 in the model ®(-)

3: for epoch =1 to M do

4. Sample input X € RV*? and target Y € RF*! from

datasets randomly

5: fori=1to D do

6: c = f(u',0) # Encoding

7: 2zt =gs(c',0)  # Forecast Decoding
8 e’ = g.(c',0)  # Estimate Decoding
9 u'tl =u’ — e’ # Calculating residuals

10: end for
D

11:  Aggregate forecast sequence Y = 2t

122 Compute loss with Eq. (10)
13:  Back propagation of loss
14 0« Adam(6,r)

15: end for

16: return Trained model ®(-)

and weather data with a sampling rate of 1 hour in several
different countries. Specifically, we select the load data of
Switzerland (CH) from 2011 to 2014, the load data of Ger-
many (DE) from 2014 to 2017 and the load data of Australia
(AT) from 2013 to 2016. Besides, we selected the temperature
and wind speed as relevant variable to assist load forecasting.
The selection of input variables are based correlation analysis
and some empirical guidelines described in [41] [42]. Thus,
the datasets contain four parts, namely, timestamps, historical
load data, temperatures, and wind speeds. The timestamp
records the sampling times, the load data are the variables
to be predicted, and the temperature and wind speed are
the relevant variables to assist load forecasting. The datasets
for the experiments and source code are stored on GitHub
(https://github.com/BaiRuic/Novel-Seq2Seq-Module).

When conducting the experiments, the ratio of training
datasets, validating datasets, and testing datasets is roughly
divided into 0.8:0.1:0.1. Fig. 7 illustrates the correspond data
patterns of the three countries used in this work.

B. Data Preprocessing

In order to keep all the data in the same range, maximum-
minimum normalization is applied to all the variables in the
datasets and is formulated as follows:

xl(t) = 7:6(75) — Lmin

Lmax — Lmin
where x(t) and x/(t) represent the raw value and the normal-
ized value at timestamp ¢, respectively. Zpyin and zm.x represent
the minimum and maximum values in all time steps of the
feature, respectively.

As defined in Section II, time series forecasting is the
modeling of the relationship between a set of input variables
and one or more output variables on a set of observed data.
However, the original load data are a sequence of historical
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Fig. 7. The load data of three real-world datasets (CH, DE and AT).

measurements at equal time intervals, which cannot be used
to train the model directly; therefore, in this work, a sliding
window approach is used to transform the dataset into input
and target pairs for training the model.

Fig. 8 illustrates the input and target pairs in a sample of
the multi-step ahead load forecasting task. The input sample
can be represented as a matrix X € RN*d wwhere N denotes
the number of input time steps and d denotes the number
of features at each time step. In this work, the input data
have three features, i.e., the load data (LOAD), temperature
data (TEMP), and wind speed (WP). The target sample is a
vector Y € R¥*1 where H denotes the forecast horizon. Fig.
9 shows the process of sample generation. When generating
samples, a window of length N + H slides over the time
series, and each sliding of the window indicates that a sample
is generated. In each generated sample, the vector of the first
N time steps is the input, and the vector of the last H time
steps is the target.

index 1 i+1 i+2 “+N-1 +N +N+H-1
TEMP
A
T T T 1
(- —~ . J

—~
Hx1
TInput X € RNX3 Target Y € R

Fig. 8. The input and target pairs.

C. The Benchmarks

In order to better demonstrate the performance of the
proposed model, some forecasting models are selected as
benchmark models: the naive forecast (Naive), which is a
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Fig. 9. A sliding window approach is used to generate sample.

sample baseline used to measure the difficulty of forecasting
task, statistical model, traditional machine learning model, and
deep learning model.

Specifically, the ARIMA model, which was employed in
[10] to predict loads, is selected as the statistical benchmark
model. The ARIMA model contains three main components,
autoregressive (AR), integrated (I) and moving average (MA).
In the ARIMA model, the future variable is a linear function of
past observations and some random errors, with the following
equation:

P q
Yy = 5+Z¢iytﬂ'+at —Zejat—j (12)
i=1 j=1
where y; and a; are the true value and random error at
timestamp ¢, respectively; ¢ and 6 are the parameters of the
model; and p and q are the orders of the model [10]. For this
benchmark, the Recursive strategy is used to perform multi-
step ahead forecasting.

The SVR is selected as the traditional machine learning
benchmark model. By introducing kernel functions, the SVR
can map the original feature space to a higher dimensional fea-
ture space, which converts the nonlinear problem in the orig-
inal feature space to a linear problem in a high-dimensional
feature space [43]. The SVR is formulated as follows:

fl@)=w"g(x)+b (13)

where f(-) is the SVR model, ¢(-) is the kernel function,
and w and b are the vector perpendicular to the separating
hyperplane and the displacement of the separating hyperplane,
respectively.

Besides, the MD-XGBoost, which is recently proposed by
[44], is also selected as a benchmark model. An adaptive de-
composition method based on Variational mode decomposition
(VMD) and SampEn (SVMD) is adopted to firstly decompose
the raw load data into a set of fluctuation sub-series. Then,
the prediction model is correspondingly established for each
fluctuation sub-series [44]. Similar to the ARIMA model, the
Recursive strategy is used in SVR model and MD-XGBoost
to perform multi-step prediction.

Finally, the original Seq2Seq model (LSTM-LSTM), which
is introduced in Section III, is selected as the deep learning
benchmark model. The selection of hyperparameter of the
model is presented in the next subsection.

D. Implementation Details

For the proposed model and the benchmark models, some
hyperparameters need to be predetermined before training. In

this work, the grid search strategy is used to fine-tune the
optimal values of the hyperparameters. Specifically, for each
model, we first specify the hyperparameters to be set and the
corresponding values to be tried. Then, the grid search strategy
will test all possible combinations of hyperparameter values
to build each model and determine the optimal combination
of hyperparameters that yields the best performance. Table II
lists the hyperparameters optimized for each model and the
corresponding values.

To quantitatively assess the performance of the proposed
model and benchmark methods, two common metrics: the
mean squared error (MSE) and the mean absolute percentage
error (MAPE), are chosen to evaluate forecasting performance:

n

1
MSE = — i — 1i)?
nE (yi — ¥i)

=1

100% <~ i
MAPE =
=2

i=1

A (14)
—Yi |
Yi

where y represents the true value, { represents the forecast
value, and n represents the number of samples.

All forecasting models are built on a desktop PC with a
3.4GHz Intel i5-7500 processor and 8GB of memory using
the PyTorch library [45].

E. Case 1: Comparison With Benchmark Models

In this subsection, comparative experiments are conducted
to verify the superiority of the proposed model. The proposed
model and benchmark models are verified with four different
forecasting horizons of H = 3,6,12 and 24 on three real-
world datasets.

Table III shows the corresponding results, and it can be
concluded that: First, for different forecasting horizons, the
proposed model achieves the best performance in two evalua-
tion metrics compared to benchmark models. For example, as
shown in the second column of the CH dataset, the MAPE of
the proposed model is 2.958%, while the benchmark models
are 11.31%, 3.439%, 5.401%, 4.532%,4.061% when H = 3.
Second, regarding the results on three different datasets, al-
though the proposed model achieves the best performance, it
is obvious that their metrics are much different. Specifically,
on the CH dataset, the average MAPE of the proposed model is
4.38%; while on the DE dataset, the average MAPE is 7.23%;
and on the AT dataset, the average MAPE is 5.47%. This
phenomenon suggests that the prediction accuracy is related to
the characteristics of the dataset itself. Furthermore, according
to the result shown in Table III it can be observed that the
MAPE of Naive model on the DE dataset is significantly
bigger, for example, when H = 3, the MAPE of Naive
model in three datasets are 11.31%,16.654%,9.891%. This
phenomenon shows that accurate prediction on the DE dataset
is more difficult than those on the AT and CH datasets.
Besides, compared to the CH dataset, the DE dataset has
relatively large nonstationary (see Fig. 7) and therefore has
the worst average prediction results.

Moreover, as the forecasting horizon increases, the accuracy
of all multi-step ahead forecasting models generally decreases.



TABLE I

THE HYPERPARAMETERS TO BE OPTIMIZED FOR EACH MODEL AND THE CORRESPONDING DESCRIBE AND VALUES

Model Hyperparameters Describes Optional Values
p The order of autoregression {1, 2,3, 4,5}
ARIMA q The order of moving average {1, 2,3, 4,5}
d The degree of difference needed for stationarity {1,2}
kernel The kernel function of SVR model {’rbf’, ’sigmoid’, "poly’}
g The coefficients of the kernel function {0.05, 0.1, 0.5, 1, 5}
SVR d Degree of the polynomial kernel function (‘poly’). Ignored by other kernels. {3, 5, 8}
C Regularization parameter {1, 5, 10}
e Tolerance of termination criterion {0.01, 0.1, 0.5, 1}
eta The step size / learning rate for each iteration {0.08, 0.06, 0.05, 0.04}
gamma The minimum loss reduction required to make a further partition {0.1, 0.4, 0.6, 1.2}
MD-XGBoost max depth The maximum depth of the tree {4, 6, 8, 10}
’ subsample The proportion of random sampling for each tree {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
colsample bytree The subsample ratio of columns when constructing each tree {0.5, 0.6, 0.7, 0.8}
min child weight The minimum number of instances needed in each node {0.8, 1.0, 1.2, 1.5}
hidden size The number of features in the hidden state h {6, 8, 12}
LSTM-LSTM  activation function The form of activation functions {’tanh’, "Relu’}
optimizer The optimizer to minimize the loss function {’Adam’, "SGD’}
block size The number of the basic block {2,4,5,6,8, 10}
Proposed residual block size Size of the residual block in TCN encoder of each basic block {3, 4, 6}
P kernel size Size of the convolution kernel of TCN Encoder {2, 3, 5}

optimizer The optimizer to minimize the loss function {’Adam’, ’SGD’}
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Fig. 10 shows how the mean MAPE of benchmark models
excluding the naive benchmark change as the forecasting
horizon increases, and compared with the proposed model.
The reason that accounts for this phenomenon mainly include
two point, one is that as the forecasting horizon increases, the
uncertainty of the load data increases, and the forecasting task
becomes relatively more difficult. The second is due to the
shortcomings of the forecasting model. Specifically, the SVR
model and the ARIMA model adopt the Recursive strategy to
perform multi-step ahead forecasting tasks, which has inherent
error accumulation problems. Therefore, when the forecast
horizon increases, the accuracy will drop sharply. Although the
Seq2Seq model does not have the error accumulation problem,

blocks to learn. Therefore, the advantage of the proposed
model is more obvious when the forecasting horizon increases.
As illustrated in Fig. 10, the MAPE of the proposed model
is smaller than those of all benchmark models in different
horizon scenarios, and the gap increases as the forecasting
horizon increases.

F. Case 2: The Effect of the Decomposition Strategy

To demonstrate the effectiveness of the decomposition strat-
egy utilized in the proposed model. We compare the proposed
model with the TCN encoder-based Seq2Seq model (S2S-
TCN), noting that S2S-TCN can be seen as the case where
the proposed model has only one basic block. Table IV shows
the comparison results of these two models on three datasets
under four different forecasting horizon.



TABLE IV
EFFECTIVENESS VALIDATION OF DECOMPOSITION STRATEGY
Prediction  Model CH datasets DE datasets AT datasets
Horizon MSE(-10"2) MAPE(%) MSE(-10-2) MAPE(%) MSE(-10"2) MAPE(%)
H=3 Proposed  0.0985 2.958 0.0949 4.099 0.102 2.996
2 S2S-TCN  0.0974 4.345 0.462 5.007 0.412 4.532
H=6 Proposed  0.143 3.989 0.902 6.900 0.465 4232
- S2S-TCN  0.276 6.911 1.35 9.336 0.712 6.851
H=12 Proposed  0.225 4.598 1.23 7.416 0.925 5.818
o S2S-TCN 0414 9.577 1.94 11.418 1.61 6.891
H=24 Proposed  0.343 5.982 2.15 10.524 1.50 8.826
8 S2S-TCN  0.587 10.541 3.23 14.792 2.94 13.131

Clearly, the proposed model performs better than the S2S-
TCN model. In particular, the advantage of the decomposition
strategy is more noticeable when the forecasting horizon
increases. For example, in the DE dataset, when the forecasting
horizon is 3, the MAPE of the proposed model is 0.907%
lower than that of the S2S-TCN, but when the forecasting
horizon is increased to 24, the difference between the two
MAPEs is 4.27%.

This is because with the decomposition strategy, the pro-
posed model consists of a series of basic blocks and the
blocks are linked to each other by residuals, thus dynamically
decomposing the time series into multiple components. In this
way, the previous basic blocks remove patterns that can be
fitted well, allowing the downstream basic blocks to focus
more on learning new patterns.

G. Case 3: The Effect of the Number of Basic Blocks

In the proposed model, the number of basic blocks is de-
termined experimentally by the grid search strategy. However,
how the number of basic blocks affects the performance of
the model remains to be answered. In order to explore the
relationship between the model forecast accuracy and the
number of basic blocks, comparisons of the proposed model
with different numbers of basic blocks on a specific multi-step
ahead forecasting task are conducted.

In detail, we build several models with different numbers of
basic blocks, i.e., 1,3, 5,6,8 and 10; and perform independent
forecasting on a 12-step ahead forecasting task. These models
are denoted as S2S-x, where x represents the number of basic
blocks.

According to the obtained results in Table V, as the number
of basic blocks increases, the prediction accuracy increases
and then levels off. We define the number of basic blocks
corresponding to when the accuracy no longer increases signif-
icantly as the saturation value. For example, in the CH dataset,
when the number of basic blocks is less than 5, the prediction
accuracy increases as the number of basic blocks increases.
This is because as the number of basic blocks increases,
the advantage of the decomposition strategy becomes more
obvious, since it can decompose the complex patterns in the
time series to be learned separately. After the number of
basic blocks exceeds 5, the accuracy remains stable and even
starts to decrease slightly because as the number of basic
blocks increases, the hypothesis space of the model gradually

increases and the model begins to overfit. In this case, the
saturation value of the number of basic blocks is 5.

TABLE V
INVESTIGATION OF THE RELATIONSHIP BETWEEN MODEL PREDICTION
ACCURACY AND THE NUMBER OF BASIC BLOCKS

CH datasets DE datasets AT datasets

Model
MSE(-102) MAPE(%) MSE(-10"2) MAPE(%) MSE(-10"2) MAPE(%)

S2S-1 0.414 9.577 1.94 11.418 1.610 6.891
S2S-3 0.306 6.891 1.54 8.954 0.925 5.818
S2S-4 0.252 5.112 1.43 8.102 0.927 5.821
S2S-5 0.225 4.598 1.37 7.823 0.921 5.782
S2S-6 0.227 4.605 1.23 7.416 0.924 5.81
S2S-8 0.223 4.595 1.22 7.409 0.943 6.143
S2S-10  0.231 4.621 1.29 7.532 0.935 6.108

In addition, it can be found that the saturation value of this
hyperparameter varies on different datasets. For example, on
the CH dataset, the saturation value is 5; while on the DE
dataset the saturation value is 6. This is due to the fact that
different time series contain different patterns. The DE dataset
contains more complex patterns and therefore requires more
basic blocks to fit, which further demonstrates that the DE
dataset has relatively large nonsmoothness.

It should be noted that the saturation value varies for
different time series, so it is recommended that the grid search
strategy be used to determine the saturation value.

H. Case 4: Comparative Study on the Competition Post-
COVID-19 Load Demand Data

To further validate the forecasting accuracy and replicability
performance of the proposed model, more comparative studies
are conducted on the different and specific competition post-
COVID-19 load demand datasets (pC19), which consists of
historical electricity load data and weather data such as atmo-
spheric pressure, wind speed, temperature, and humidity. Sim-
ilar to the previous datasets, the post-COVID-19 load demand
datasets are preprocessed and split it into training, validation,
and test sets. In addition, the mean absolute error (MAE)
evaluation metric is used to compare with other participants
in the competition in [4], which is calculated as follows:

I )
MAE = — ; lyi — 3l (15)
where y and ¢ represent the true value and the forecasted
value, and n represents the number of samples.

Table VI presents the corresponding experimental results.
From the results, it can be observed that the accuracy of all
models decreases as the forecasting horizon increases, which
is similar to the previous experimental findings. And the pro-
posed model achieves better performance on different datasets
compared to the Naive, MD-XGBoost, and LSTM-LSTM
models, with higher accuracy and the increasing advantage
as the forecasting horizon expands. When testing on the post-
COVID-19 load demand datasets, the accuracy of the proposed
model is relatively lower than the top team in [4], since the
most teams in [4] combined forecasting from multiple models
and utilized a lot of data preparation techniques. Although



the ensemble approach of multiple models can achieve a
better performance on a specific dataset (i.e., the post-COVID-
19 load demand data in [4]), the ensemble approaches need
large computational resources and also some other tools for
automatic model selection and tuning, which may lead an
extra burden to the system operator. Meanwhile, as stated in
[4], large ensembles of multiple models can incur significant
costs for production and maintenance, as each member of the
ensemble requires staff attention and computational effort for
relatively minor improvements in forecasting accuracy. Conse-
quently, there are questions regarding whether such models can
be justified by system operators due to the additional overhead
they create. Additionally, the generality and robustness of the
winning models in [4] require further investigation, given that
the ensemble methods used a substantial amount of post-
COVID-19 data to train their models and it is unclear whether
their performance may be adversely affected by different load
profile changes brought on by other global or local events.

TABLE VI
EXPERIMENTAL COMPARISON OF THE PROPOSED MODEL ON VARIOUS
DATASETS

Prediction

hori Model CH datasets DE datasets AT datasets pC19 datasets
orizon
Naive 744335 4310464  576.543  51798.929
MD-XGBoost  446.215 1990251  281.251 24851.650
H=3 LSTM-LSTM 400.583 1976.135  302.827  22963.095
Top Team - - - -
Proposed 386416  1589.657  265.298 18156.650
Naive 956.693 7030991  928.385 87064.916
MD-XGBoost 619.568 2412256  348.624  48910.364
H=6 LSTM-LSTM 632.054 2214.856  316.013  49645.418
Top Team - - - -
Proposed 496.651 1809.734  306.456  31942.453
Naive 1218.621 10523.884 1388.000 141494.161
MD-XGBoost  599.423 1951.124  460.101 63218.651
H=12 LSTM-LSTM 540.507  2429.739  423.126  61959.087
Top Team - - - -
Proposed 498.421 1986.328  389.517  38164.458
Naive 1549.155 10704.823 1404.465 142836.662
MD-XGBoost  701.651  3515.851  538.291 71852.264
H=24 LSTM-LSTM 658.101 2915488  546.844  67681.858
Top Team - - - 10844.000
Proposed 602.421 2137.161  419.854  42615.284

1. Case 5: Convergence Analysis of Different Forecasting
Models

To investigate the training time and convergence rate of
different forecasting models, comparative experiments are per-
formed on the same prediction horizon with the same datasets.
Specifically, three neural network-based models including the
proposed model, S2S-TCN, and LSTM-LSTM are taken to
compare their convergence speeds, in which the AT dataset
is chosen as the training and testing samples, and the pre-
diction horizon is set to 12. Fig 11 shows the corresponding
experimental results, wherein the x-axis represents the model
training time and the y-axis indicates the loss value during the
training process, and the training time and execution time are
given in Table VII. All models are trained and evaluated on
the same hardware equipment.

TABLE VII
TRAINING TIME AND EXECUTION TIME COMPARISON BETWEEN
PROPOSED MODEL AND MULTIPLE NEURAL NETWORK MODELS

Model Training Time (s)  Execution Time (s)
Proposed 6757 0.6835
TCN-LSTM 1074 0.5834
LSTM-LSTM 164 0.0772
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Fig. 11. Training time and model loss comparison between proposed model
and multiple neural network models

It can be seen that, the proposed model has slower conver-
gence speed compared to other forecasting models, whereas
it achieves lower loss value and higher accuracy upon con-
vergence. This is because the proposed model utilizes the
time series addition decomposition strategy, which is able to
effectively capture the long-term dependencies and seasonal
patterns in the time series data. Moreover, the utilization of
multiple basic blocks allows the model to extract more diverse
and comprehensive features from the input data, further im-
proving the predictive capability. However, to a certain extent,
this resulting in more complex network structures and higher
training time in turn, but there is no significant difference on
the execution time between the different forecasting models.

J. Case 6: Impact of Sliding Window Size on Model Prediction
Accuracy

Generally, an appropriate sliding window size has a sig-
nificant impact on both the model’s prediction accuracy and
computational efficiency [46]. To the best of our knowledge,
most of the existing studies used fixed or static window size
in the sliding window algorithm, and as indicated by [47],
there is currently no standard method for determining the value
of sliding window size. In this work, a fixed window size is
selected based on some empirical guidelines in the literature
and a number of preliminary accuracy tests via trial and error.
Specifically, on the AT dataset using the MAPE evaluation
metric, multiple comparative experiments are conducted to
explore the impact of different sliding window size of inputs
on the prediction results with different forecasting horizon.
Table VIII shows the corresponding experimental results. It



can be seen that a larger window size could result in a higher
prediction accuracy under a specific forecasting horizon, i.e.,
when the forecasting horizon H is set to 3, the prediction
accuracy is 7.823% when the sliding window size N is chosen
to 2, and the prediction accuracy is increased to 2.843% when
the sliding window size NN is chosen to 72. However, a larger
sliding window size usually requires a longer training time.

TABLE VIII
RELATIONSHIP BETWEEN SLIDING WINDOW SIZE AND PREDICTION
ACCURACY (MAPE) EXPERIMENT

Windows Size MAPE(%) for Different Prediction Horizon

H=3 H=6 H=12 H=24
N=2 7.823  15.644  19.581 21.342
N=3 7.154 15716  18.712 22.951
N=6 4.528 8.006 12.681 20.106
N=12 2.899 5.091 7.681 16.851
N =24 2.796 4.232 5.472 9.436
N =36 2.945 4.594 5.818 8.826
N=72 2.843 4.119 5.795 8.792

K. Case 7: The Determination Experiments of Encoders and
Decoders in the Proposed Model

In this work, a novel multi-step power load forecasting
model is designed by incorporating time series additive de-
composition strategy into Seq2Seq architecture. This model
consists of a series of basic blocks connected through residual,
wherein each basic block comprising an encoder and two
decoders. For the decoder implementation, the CNN is not
considered as an option due to its unsuitability for generating
variable-length time series [48]; and the RNN structures such
as Gate Recurrent Unit (GRU) and LSTM are already tried
and verified in the previous case studies. For the encoder
implementation, the CNN, LSTM, GRU and TCN is succes-
sively tried in the proposed architecture. Table IX shows the
corresponding comparative results on the AT dataset with a
12-step prediction. It can be seen that the best prediction
performance is achieved by the TCN-LSTM architecture, thus,
the TCN and LSTM are ultimately selected as the encoder and
decoder in each basic block of the proposed model.

TABLE IX
COMPARISON EXPERIMENT OF USING DIFFERENT STRUCTURES AS
ENCODER AND DECODER

Encoder  Decoder (F-Decoder & E-Decoder) MAPE(%) MSE(-102)
in i
e
T i
o

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel Seq2Seq-based deep learning model,
which is based on a decomposition strategy combine the

Seq2Seq structure, is proposed for multi-step load forecasting.
To evaluate the performance of the proposed model, three
cases are conducted on three real-world datasets. Case 1
verifies the superiority of the proposed model in terms of
accuracy. Specifically, various benchmark models are selected
to compare with the proposed model in four scenarios with
different forecasting horizons. The results indicate that the
proposed model outperforms all benchmark models in terms
of accuracy. Furthermore, the performance advantage of the
model becomes more obvious as the forecasting horizon
increases. Case 2 demonstrates the effectiveness of the de-
composition strategy. Case 3 studies the effect of the number
of basic blocks on the forecast performance. Case 4 involved
an accuracy comparison experiment of the proposed model
using the competition post-COVID-19 load demand dataset.
Case 5 analyzed the convergence speed of the model during
training. In Case 6, a comparison was conducted on the effect
of different sliding window sizes on prediction accuracy. Case
7 determined the selection of encoder and decoder for the pro-
posed model through multiple experiments. All experiments
prove the performance of the proposed model, so that the
model can provide more accurate prediction information for
power systems.

For future work, a methodology for adaptively adjusting
the number of basic blocks based on the datasets can be
developed to further enhance the robustness of the forecasting
model and improve the prediction accuracy. Additionally, as
the proposed method adopts the MIMO strategy, this may
restrict model flexibility and result in biases in the output of the
model. Hence, more advanced techniques will be developed to
enhance the flexibility of the MIMO strategy.
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