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Abstract—Considering the limited computing power of Mo-
bile Edge Computing (MEC) servers and the emergence of
Vehicular Ad-Hoc Networks (VANETSs), we employ the com-
puting paradigm known as Parked Vehicle Edge Computing
(PVEC) to leverage the computational capabilities of idle vehicles,
thereby enhancing the overall computing performance of these
vehicles. We establish a multi-stage Stackelberg game model,
which captures the interactions among the requester (RV), the
service provider (SP), and the parked vehicles (PV). In order
to incentivize parked vehicles to provide computing power, we
design a dissatisfaction feedback mechanism. To optimize the
system and maximize the relative benefits of all stakeholders, we
formulate an optimization problem to find an optimal pricing
scheme that guides task allocation and resource utilization. We
employ reverse induction and gradient descent to solve this
problem. Simulation results demonstrate the effectiveness of the
dissatisfaction feedback mechanism and provide insights into the
changing trends of optimal strategies at each stage as the task
density increases. These findings contribute to the understanding
of PVEC and offer guidance for real-world task offloading
scenarios.

Index Terms—Parked Vehicle Edge Computing, multi-stage
Stackelberg game, task offloading, dissatisfaction feedback

I. INTRODUCTION

Ith the popularization of smart mobile devices and the

development of computationally intensive applications,
the task of enhancing device computing performance poses a
significant challenge given the limitations of mobile device
computing power. In recent years, Mobile Edge Computing
(MEC) has offered a promising solution by offloading compu-
tationally intensive tasks to MEC servers, harnessing the ben-
efits of heightened computational efficiency and reduced com-
munication latency [1]. Nonetheless, the computing resources
of edge servers remain limited, making it difficult to ensure
the provision of Quality of Service (QoS) when offloading
compute-intensive tasks to these constrained servers. Thus, it
becomes imperative to augment the resource capacity of edge
servers by effectively utilizing the idle resources of existing
network entities. A noteworthy observation is the emergence of
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Vehicular Ad-Hoc Networks (VANETS), wherein vehicles pos-
sess abundant idle computing resources that can be harnessed
to establish a novel computing paradigm for task offloading,
known as Parked Vehicle Edge Computing (PVEC) [2]. This
paradigm serves to enhance the communication and computing
capabilities of urban areas.

Unfortunately, the process of offloading computing tasks to
vehicles still poses several daunting challenging issues [3].
One prominent challenge arises from the fact that vehicles
are not obliged to share their private resources, posing a
significant obstacle to resource coordination. Additionally, in
order to enable the widespread deployment of edge computing,
energy optimization becomes a crucial consideration. As a re-
sult, effectively coordinating resources among parked vehicles
(PV), service providers (SP), and requesters (RV) like vehicles
and mobile device users, as well as designing transaction
mechanisms that benefit all entities, present arduous tasks due
to the intricate and multifaceted nature of their interactions.

In the field of MEC, numerous research advancements have
been achieved through diverse research endeavors, employing
a wide range of technical approaches [4]-[8]. For instance,
Li et al. [9] proposed a contract-based incentive mechanism
method, while Zhang et al. [10] put forth a method based on
a multi-leader multi-follower Stackelberg game model. Ma et
al. [11] developed a time-related trajectory prediction model
based on the random forest model. Li er al. [12] explored
an energy-efficient PVC paradigm, and designed a contract-
based incentive mechanism. Nevertheless, there is room for
optimization in these methods, particularly with regard to
computational efficiency.

To tackle the challenges mentioned above, we introduce the
PVEC paradigm to enhance its practical applicability. Regard-
ing modeling, our goal is to construct a more effective task
allocation model, thereby enabling RV, SP, and PV to achieve
higher returns following the allocation process. Hence, we es-
tablish a multi-stage Stackelberg game model to effectively co-
ordinate the allocation of computing resources and maximize
the respective benefits of RV, SP and PV. Furthermore, within
the context of incentivizing parked vehicles to contribute their
computing capacities, we introduce a dissatisfaction feedback
mechanism to fulfill this role. This mechanism exhibits a
lower algorithmic complexity, enhancing the efficiency of task
allocation when compared to the approach of establishing
contracts with parked vehicles. The main contributions of this
work are three-fold:



e The PVEC computing paradigm is formulated as a multi-
stage Stackelberg game model, which takes into account a
range of influencing factors. Moreover, a rational pricing
strategy is developed aimed at guiding the task offloading
process, ensuring the preservation of modeling accuracy
while simultaneously reducing the overall computational
complexity associated with the task offloading process.

o A dissatisfaction feedback mechanism is designed to in-
centivize parked vehicles to contribute computing power
and reduce the algorithm complexity, while simultane-
ously ensuring the smooth progress of the game. By
employing the reverse induction and gradient descent
methods, this study offers analytical solutions for three
stages.

o Through simulation experiments, we demonstrate the
effectiveness of our approach by observing the trends of
energy consumption and offloading decisions for users
with varying parameters, illustrating its superior effi-
ciency improvement and benefit maximization.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Application Scenario

We focus on a parking lot that is equipped with wireless
communication capabilities, which includes several key com-
ponents, namely, the SP, the edge crowdsourcing platform
integrated into PV and RV. The network architecture of the
PVEC system that we have established is depicted in Fig. 1.
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Fig. 1: The overall architecture of our PVEC system.

Suppose there are /N mobile device users in this area, en-
compassing various devices such as smartphones, headphones,
tablets, and smart cars. Each user is denoted by the index 1,
where i € {1,--- , N}. We assume that the map of the parking
lot is based on a grid system [2]. At each grid point, there
exists a computationally intensive task described by a tuple
(¢i,d;, t), where ¢; represents the computational workload
of the task, d; represents the size of the input data, and ¢}
represents the maximum allowable time delay for completing
the task. For convenience, Table I provides a summary of the
key symbols used in our study.

We design a multi-stage Stackelberg game model along-
side an incentive mechanism based on dissatisfaction feed-
back [13], for coordinating computing resources allocation
and maximizing relative benefits among PV, SP, and RV. The
model considers strategic decision-making, resource alloca-
tion, and pricing strategies at different stages of the PVEC
process.

TABLE I: Symbol Definitions

Symbol  Definition

fll The local computing resources of user ¢

fe The computing resources of SP used for task offloading

fi The quantity of resources that user ¢ purchases from SP
ff Threshold to determine whether user 4 should offload tasks
frv The computing resources provided by parked vehicles

c The price of computing resources collected by PV

p The price of SP’s computing resources

U; The utility of user %

o Stage 1: PV acts as the leader and SP acts as the
follower. Leveraging the dissatisfaction feedback mech-
anism, parked vehicles voluntarily contribute their com-
puting resources to maximize their rental income.

o Stage 2: SP acts as the follower when engaging with PV
as the leader. Simultaneously, SP takes on the role of
the leader in the game where RV acts as the follower. In
this stage, SP is responsible for determining the quantity
of computing resources to be procured from PV. Addi-
tionally, SP communicates the unit price of computing
resources to the requesting users.

o Stage 3: RV acts as the follower, and SP acts as the leader.
All requesting users evaluate and determine whether to
offload their computing tasks. Additionally, they make
decisions regarding the quantity of computing resources
to be acquired from the roadside server. Within our
global game model, we manage the rental funds, ensuring
control and oversight. In addition, the prices of computing
resources are communicated to the roadside server by the
PV.

For the practical implementation of our approach, we as-
sume that all parked or slow-moving vehicles within the
parking lot have the ability to establish a wireless connection
with SP. Each vehicle is equipped with onboard units that
possess storage, communication, and computing capabilities.
It is important to note that the computing capability of these
onboard units is uniform across all vehicles. To ensure fairness
and efficiency in the transaction process, we introduce comput-
ing brokers. These brokers play a crucial role in collecting and
transmitting information, executing algorithms, and scheduling
tasks. They act as intermediaries between the users and the
resource providers, facilitating smooth coordination and re-
source allocation. We aim to optimize the resource scheduling
process and assist users in making informed decisions regard-
ing the offloading of their computing tasks. This emphasis on
transparency and fairness enhances the overall efficiency and
effectiveness of the system.

B. Multi-stage Stackelberg Game-based Model

1) Stage 1: PV serves as the leader in the parked vehicle-
edge server Stackelberg game and sets the price ¢ for its
computational resources provided to the edge server. The
utility function can be defined as follows:

Upv (c) = cfpv — %a c>0,0< fpy < BV (D
PV

where the first term represents the rental income obtained
by the SP, which corresponds to the benefit of the PVs



participating in edge computing, the second term represents
the loss in utility caused by user dissatisfaction, where «
represents the impact factor of user dissatisfaction, and fp3{y*
represents the maximum computational capacity of the PVs.
¢ > 0 ensures that PV has the computational capacity and
0 < fpyv < fBY* ensures that the computational capacity of

PV should not exceed the maximum value.

As the computational capacity of the PVs approaches its
maximum value, the functionality of the PVs gradually sat-
urates and decreases. This decrease in functionality leads to
increased user dissatisfaction and has a negative impact on the
utility of the SP. However, in the context of the Stackelberg
game, the vehicles themselves, driven by the desire to max-
imize their own benefits, will inevitably attempt to increase
the maximum value of their computational capacity. By doing
so, they aim to mitigate the decrease in utility caused by the
saturation of PV functionality. This behavior aligns with the
concept of self-motivation, where the vehicles actively strive
to enhance their capabilities to achieve their individual goals.

2) Stage 2: We define the utility function [3] as:

Usp =Y _pfi — ekt — cfpv, 2)

i=1

where e represents the cost of unit energy, f. represents the
computing power, k is the energy conversion factor, and ek f, >
represents the total energy consumed by the SP, reflecting the
utility consumed from an energy perspective [14], [15].

In summary, it determines f. and fpy based on the unit
computing power pricing by the PV and passes the unit price
p to RV. The problem can be described as follows:

P, : max Ugp, 3)
p.fe.fPv
s.t. p=0, “4)
frv 20, (5
0 < fo < f, (6)
fet fov=>_Fi )
i=1

3) Stage 3: To capture the various factors and dynamics
involved in the task offloading process, such as the relation-
ship between computational power and benefits, the cost of
resource acquisition, and the impact of time delay, we consider
the utility function for requesting vehicle ¢ as:

(fi +5> —pfi. )

0
Ui(fi) = o7 In 7

m
ti

which consists of two terms, i.e., benefit value and cost of
requesting tasks from SP [3], [16].

The requesting vehicle user 7 is a follower in the user-
edge server Stackelberg game and determines the amount of
computational power to purchase from the edge server based

on the price p to maximize its own benefit. This problem can
be described as:

P H;aX Us (fi), ©))
st fi > fi, (10)
C; dz m
7 + . <t (11)

where f! = is the offloading threshold, r; repre-

sents the transmission rate of task i to the edge server, c;/ f
and d; /r; are the computation time and the transmission time,
respectively. Constraint (11) ensures that the total required
delay for solving task ¢ is less than the maximum tolerable

delay.

III. SOLUTIONS

In this section, we solve the three-stage Stackelberg game
model using a reverse inductive approach.

A. Solution for Stage 3

Proposition 1: U;(f;) is a concave function, the optimal
solution f of problem Pj is
D < 57t

Ti _ fl
P i a7
RS P2 T

Ti

12)

Proof: By taking the derivative of the objective function
U;(f;), it can be observed that it is a concave function.
Therefore, we obtain the optimal solution f;* by solving for
the zero points of the first derivative of the objective function.
By taking the derivative of the objective function U;(f;),

According to Eq. (13), it can be observed that U; is a
concave function. Therefore, we obtain the optimal solution
fi by solving for the zero points of the first derivative of the
objective function in Eq. (14). [ ]

We can observe that if the price p becomes excessively high,
users will no longer choose to upload their tasks for offloading
and instead perform the computations locally.

B. Solution for Stage 2

By considering the task volume f; assigned to the com-
putational resources acquired by each user, we substitute the
result obtained from Eq. (12) into the utility function of the SP.
Given that the result can be expressed as a piecewise function,
we can represent it using the indicator function denoted as ;.



Consequently, we obtain an equivalent optimization problem
as follows:

max Usp=p Y xifld+ fl +ekf? —cfpy (15)

Ps:
3 p.fesfPv p—
s.t. p=0, (16)
frv 20, (17)
0 < fo < f, (18)
fet frv = xitio + fl, (19)
i=1
15 p < L
Yi = { ff‘i‘*‘fi’ (20)
0, p= TTo+ 77

where we can observe that y; is a discontinuous function
of p, but once the values of y; are determined, the above
problem becomes a convex programming problem with respect
to (p, fe, fpv ). Here, let us assume that the users can be sorted
according to the following rules:
1 T2 Tn
R TR A LR
Proposition 2: When A, < ¢ < Aji_;, corresponding to
k users choosing to purchase computational resources, i.e.,
xi = 1 (for ¢ < k), the analytical expression for the optimal
solution to Eq. (15) can be calculated as follows:

ch

21

=y 22
3F. (22)
* : C max
= min - 23
fe = min o=, £, (23)
+
[,/W—(SF,@—Q;;E} , < 2ke
frv = 24

JF
[, [Leks — §Fy — fglw] , > 2ke

where Ty = Y0 75, Fro = 2 | f1, and Aj, = %.
Proof: We can simplify the analysis by Consideringka skpeciﬁc
scenario where k = n, implying that all users demonstrate a
willingness to purchase resources.

The Lagrangian function of the concave optimal program-

ming function in Eq. (15) is defined as
Ly
L=-T,+6Fp+ekf?+a (p —6F, — fo— fpv)

tefpy +B(fe = f) —yp — ufe = AMfpv,  (29)

where a, 3, v, p and )\ are the Lagrange multipliers.
According to Karush-Kuhn-Tucker (KKT) conditions, we
have

o~ of. = g =" @

%_6Fn_fe_fPV =0, @7

B(fe = fI"") =vp = pfe = Afpv =0, (28)

P, fe;s fpv, o By, 1, A 2 0. (29)
According to Egs. (26)-(29), we have

y=pu=A=0. (30)

Then we can easily obtain the optimal solutions as shown
in Egs. (22) and (23). It should be noted that the pricing of
computing resources must adhere to a certain condition, as
follows:

1 Tn _ Tn 31
Ao+ TfeHfES Lo+ L

(Crn)/((SFn) < Tn/(fvlz(5+
]

p<min{

Then from Eq. (22), we have
fLy, which follows ¢ < A,,.
The algorithmic process is as described in Algorithm 1.

Algorithm 1: The Optimal Solution for Stage 2

1 Initialization: k=N
2 Sort all users according to Eq. (21)

V3T
(FL+TDTxk
4 Compare ¢ with Ay,

5 if ¢ > A, then

6 | seth=Fk—1

3 Compute Ay =

7 Compute p*, f) and fp, based on Egs. (22), (23)
and (24)

C. Solution for Stage 1

1) Availability of Opportunistic Resources: In the PVEC
paradigm, it is crucial to maintain a relatively stable state
for vehicles participating in edge computing, ensuring that
they remain parked in the parking lot for a specific duration
of time. This enables them to fulfill the tasks they have
accepted and downloaded. To address privacy concerns, the
SP cannot directly access the precise departure time of a
vehicle. However, it can monitor the duration of the vehicle’s
parking in the parking lot until a certain point in time. We can
employ the probability of the vehicle remaining parked beyond
a duration of Tp, which is denoted as the time required for a
vehicle to complete edge computing.

We define F(t) = fot f(z)dz(t < T™) as the proba-
bility distribution function of the vehicle’s parking time in
the parking lot. Here, f(t) represents the probability density
function, and 17" %* denotes the maximum duration the vehicle
can stay parked in the parking lot. This process typically
follows a Poisson distribution [17]. Given the accumulated
parking duration T for vehicle j up to the current moment, its
conditional probability distribution function can be expressed:

F(t,t >1Ty) F(t)

FU=1)=3"Fa,) = 1-Fm)

By taking the derivative with respect to ¢, we can derive the
conditional probability density function as follows:

ft)
tHt>T;) = ———.
f(|> J) 17F(T])
Therefore, the probability P; that vehicle j remains in the
parking lot after a duration of Ty is given by:

BT f (@) 1-F(Tj+Ty)
3‘A3 T e

(t>Tj). (32)

(33)

(34)



Setting Py as the threshold, when P; > P, vehicle j is
selected to join edge computing.

Algorithm 2: The Optimal Solution for Stage 1

1 Initialization: M =0, k= N
for j =1 to My do
Compute P;;
if Pj > P, then
L M=M+1,;

n A W N

Compare Ay, with 2kef"*%;
Compute c*;
if A;_1 <c* < Ag then

L continue;

N-R- I Y

10 else
11 Lk:k—l;

2) Optimal Solution of Stage 1: We assume that after the
screening process mentioned earlier, M vehicles are selected
to participate in edge computing. We distribute the task volume
equally among the vehicles, denoted as f; = % Considering
the condition A,_; < ¢ < Ag, we substitute the result
obtained from Eq. (22) into the utility function in Eq. (8) of
each vehicle.

Uj (C) =cC - max :
M PV
(35)

By taking the derivative of this convex function, we can obtain

its optimal solution:
ol Fy,
o EE SR ). (36)
c 2ke

(0%
* pr—
¢’ = ke fmaa:
J

We just need to verify that Ax_1 < ¢* < Ayg.

The algorithmic process is as shown in Algorithm 2. For
Stage 1, the time complexity depends on Step 2, namely,
O(M). For Stage 2, according to Eq. (21), the time complexity
of sorting users is O(Nlog N). In the worst case, Step 4
will take O(NN) time. For Stage 3, according to Eq. (14), the
time complexity of solving f; is a constant, i.e., O(1). This
approach leads to a noteworthy reduction in computational
complexity when compared to alternative iterative methods
commonly used for solving the model.

D. Overall Three-Stage Game Model

Indeed, the operational sequence of the entire game model is
reversed compared to its construction process. To clarify, when
provided with essential environmental parameters such as the
task vehicle set, our initial step involves inserting the optimal
solution c obtained from the optimization algorithm in Stage 1
into the Stage 2 algorithm. This enables us to further refine the
solution and derive the optimal values p*, f7, f5y . Likewise,
the optimal solution obtained in Stage 2 is integrated into Stage
3, resulting in the determination of the optimal solution for
f*. This comprehensive approach enables us to establish the
optimal pricing strategy and the optimal resource allocation
scheme under this pricing strategy for the entire process.

Algorithm 3: The Optimal Solution for the Multistage
Stackelberg Game

1 Set the necessary parameters in the environment;
2 Compare Ay, with 2k fI"** according to Algorithm 2;
3 Compute c* according to Eq. (36);

&

Compute p*, ¥, fpy according to Algorithm 1 ;
for i =1 to N do
Compute x; according to Eq. (20) ;
if x; = 1 then
| Compute f; according to Eq. (12) ;

®w N S W

K3

IV. PERFORMANCE EVALUATION
A. Model Training

We consider a parking lot with limited space. The total num-
ber of available parked vehicles, denoted as My, is determined
by filtering based on parking duration and can be acquired
through statistical analysis of parked vehicle behavior [12].
Other parameters are adopted from [18]. The time interval is
set to t = 10 min and § = 1. The computing frequency of
the SP server is fI"® = 300 GHz, while the local computing
frequency is 1 GHz. The maximum delay tolerance ¢;" for user
1 is randomly assigned within the range of [0.5, 2] ms.
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Fig. 2: The unit price of SP and PV vs. the number of vehicles.

Fig. 2 illustrates the optimal pricing strategies for the unit
computing resources of SP and PV, taking into account various
levels of traffic pressures. It is evident that as the number of
vehicles rises while the server capacity remains unchanged,
the unit prices of computing resources for both SP and PV
also experience an increase. Conversely, in scenarios where
the number of vehicles remains constant, the pricing strategy
employed by SP surpasses that of PV in terms of cost.
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Figs. 3 illustrates the relationship between the utility of
the SP or PV and the number of users. With a fixed energy
parameter e, it can be observed that as the number of users
rises, the utility of both the SP and PV also improves.
However, when the number of users remains fixed, the utility
of the server declines as the energy parameter e increases. In
addition, we also found that when the number of request users
rises to a certain value, the benefit value of SP and PV will
tend to a stable valne

e[}
—#—e=20|
_— =30

_— e=40
A —#—e=50
[H—es0)

80 90 100
The number of users

Fig. 4: The number of users choosing to offload.

Fig. 4 depicts the relationship between the number of users
choosing to offload and the energy coefficient e. With a
fixed number of users, the energy consumption decreases as e
increases, and users tend to choose not to offload.

B. Comparative Experiment

To establish the superiority of our proposed algorithm, we
conducted a comparative analysis against both the greedy algo-
rithm and the randomized algorithm (Monte Carlo) in terms of
pricing and utility. As depicted in Fig. 5, our algorithm exhibits
a tendency toward lower pricing and higher utility when the
number of requested users remains constant. This observation
suggests the advantages and excellence of our algorithm in
these aspects.
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Fig. 5: Comparison of the unit price and utility of SP under
three different algorithms with e = 10.

V. CONCLUSION AND FUTURE WORK

This paper introduces the PVEC paradigm for task offload-
ing through the utilization of parked vehicles. The approach
is formulated as a multi-stage Stackelberg game model, which
incorporates a feedback mechanism based on user dissatisfac-
tion. Subsequently, we put forth a model-solving algorithm
that leverages the reverse induction and gradient descent
methods. Finally, we derive the pricing and computational
resource allocation strategies for each stage. The experimental

simulation results vividly illustrate how the optimal pricing
strategy dynamically evolves with increasing task request
intensity. Furthermore, our findings offer valuable insights
into the interplay between task offloading preferences and the
utilities of PV and SP, serving as a guide for real-world task
offloading scenarios.

From a practical perspective, our model considers nu-
merous influencing factors and employs various functions
to characterize their influence on efficiency. This leads to
complex expressions for benefit functions, necessitating the
use of gradient descent for model optimization. Additionally,
the absence of physical experiments contributes to a limited
amount of experimental data, making it challenging to employ
deep learning algorithms. In future work, we intend to improve
the model and incorporate federated learning strategies to
further boost the algorithm’s performance. Simultaneously, as
hardware capabilities continue to advance, we plan to explore
the feasibility of creating a virtual parking lot and deploying
the algorithm on edge servers for conducting physical exper-
iments.
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