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Abstract. For collaborative tasks requiring multiple users, in Mobile Crowd 

Sensing (MCS), low user interest in certain tasks usually results in insufficient 

user recruitment. However, the interest of the user directly affects the quality and 

efficiency of task completion. To address this issue, we propose a multi-stage 

incentive mechanism based on the Top-Trading Cycles (TTC) from economics, 

enabling users to participate in tasks that align with their interest through the op-

timization of multiple stages. Firstly, we perform an initial screening of users 

using a reverse auction. Then, we adopt the Top-Trading Cycles algorithm to 

determine the optimal task-user pairs. For tasks with insufficient collaborators, 

an interest-based task recommendation algorithm is proposed, which calculates 

user interest similarity in the social network, recommends tasks to other users, 

and evaluates rewards based on their contributions. The proposed incentive 

mechanism can theoretically guarantee computational effectiveness, truthfulness, 

and individual rationality in this paper. Simulation experiments show that the 

proposed mechanism outperforms traditional incentives in terms of user partici-

pation rates, task coverage, and average user utility. 

Keywords: Mobile Crowd Sensing, Incentive Mechanisms, Top-Trading Cy-

cles; Multi-Stage Optimization. 

1 Introduction 

With the rapid development of wireless networks, smartphones have become an indis-

pensable necessity in people's lives. They integrate multiple sensors, such as magnetic 

sensors, gyroscopes, GPS location sensors, and fingerprint sensors [1], which enable 

them to perceive and analyze data from the surrounding environment and complete 

Mobile Crowd Sensing tasks. Currently, MCS has a wide range of applications in var-

ious fields, including environmental monitoring, disaster emergency search and rescue, 

and Smart Cities [2]. However, performing sensing tasks may incur significant costs 

for users, including data traffic, CPU computation, time consumption, battery usage, 

and potential privacy issues [3-4], which can lead to decreased user participation in 
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sensing activities. Therefore, in order to encourage more users to participate in sensing 

activities and enhance their enthusiasm, it is necessary to design reasonable incentive 

mechanisms [5-6]. 

The existing incentive mechanisms can be broadly classified into two categories: 

monetary incentives and entertainment incentives. The former is the most direct and 

effective mean for motivation [7]. Reverse auction is the most widely adopted incentive 

method, although, it is an incomplete information mechanism [8]. For instance users 

can only submit bids based on their own costs, and the service platform make decisions 

on the optimal bid. Thus, users have only one chance to participate in a sensing task, 

which may reduce their willingness to participate. Furthermore, the user's sensing abil-

ity depends on various factors, such as the sensing device's capability and the user's 

interest in the task, and it is often impossible to recruit enough users to participate in 

collaborative tasks. Therefore, it is feasible to design incentive mechanisms by consid-

ering the interest of the users. 

To address the aforementioned issues, we consider the similarity of user interest 

in social network scenarios [9]. Merely considering the similarity of users' interest is 

insufficient to solve the aforementioned issues. We introduce the concept of Top-Trad-

ing Cycles from economics [10] and propose to use the You Request My House-I Get 

Your Turn (YRMH-IGYT) mechanism for secondary transactions based on users' pref-

erence sequences, enabling them to acquire tasks of higher interest levels. For tasks 

with insufficient collaboration, we put forward a task recommendation algorithm based 

on interest similarity. With this multi-stage strategy, users have more opportunities to 

participate in tasks, ultimately resulting in a higher task coverage rate. 

The primary contributions of this paper are as follows: 

⚫ We proposed two trading models and developed user selection criteria for each. 

Additionally, in order to address tasks with a shortage of users, we proposed a task 

recommendation model. This model recommends tasks to other users based on the sim-

ilarity of their interest. 

⚫ We provide evidence that the proposed mechanism meets the expected charac-

teristics of computational efficiency, veracity, and individual rationality. Furthermore, 

MO-TTC can output the optimal solution. 

2 Related Works 

Reverse auctions have been widely used in the incentive mechanisms of mobile 

crowdsensing, which are mainly designed to maximize social welfare with a platform-

centered incentive mechanism. Under the uncertain task execution, Zheng et al. [11] 

designed a reverse auction model and considered the completion of tasks, minimizing 

the social cost of user recruitment. Gu et al. [12] proposed an information quality in-

centive mechanism for multimedia crowdsensing, maximizing social welfare by de-

signing a reverse auction model. Ji et al. [13] designed an incentive mechanism based 

on reverse auctions, which minimizes costs and retains users who are about to exit 

through the lottery mechanism. Furthermore, Luo et al. [14] designed two capacity rep-

utation systems to evaluate the online staff abilities and proposed an incentive mecha-

nism based on reverse auctions and fine-grained capacity reputation. The reward is 
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determined based on user bids and fine-grained capacity reputation. Jin et al. [15] in-

troduced the Quality of Information indicator, designed an incentive mechanism based 

on reverse combination auctions, accomplishing the optimal social welfare while meet-

ing individual rationality and computational efficiency. Although the incentive mecha-

nism based on reverse auction minimizes costs and maximizes social welfare from the 

perspective of the platform, it ignores the characteristics of users, resulting in a decrease 

in data quality and user enthusiasm. 

Li et al. [16] proposed an incentive mechanism for an interest tagging application 

program, which maximizes platform revenue through a three-stage decision process. 

Meanwhile, Xiong et al. [17] introduced a cosine similarity calculation protocol with 

privacy protection, which computes the similarity between task and user vectors and 

conducts a second selection of users to ensure fairness of user perception of being se-

lected. In social networks, Xu et al. [18] considered the collaboration compatibility of 

users for multiple collaborative tasks and designed two incentive mechanisms based on 

reverse auction. Additionally, they presented a user grouping method based on neural 

network model and clustering algorithm to minimize social cost by introducing a neural 

network-based method for learning the similarity between users and clustering them 

accordingly. This approach helps avoid uneven task allocation and incomplete tasks 

that can result from varying user interest in tasks. 

This paper proposes a Multi-Stage Optimization of Top-Trading Cycles (MO-

TTC) incentive mechanism to address the issues of the existing incentive mechanism. 

We innovatively integrated the TTC into the incentive mechanism of MCS. TTC is a 

resource allocation algorithm that divides agents into non-overlapping sets or cycles, 

exchanging resources internally within each cycle, and ensuring that each agent ac-

quires their preferred resources. The paper preliminarily screens users using a reverse 

auction model and performs a secondary selection of users based on their preference 

sequence submitted through the TTC algorithm. For tasks lacking collaboration, user 

interest similarities are calculated, and the tasks are assigned to users who may be in-

trigued by them. Finally, the reward is determined based on the degree of their contri-

butions. 

3 System Model 

In this paper, all users in the MCS are considered to be part of a social network, and the 

platform serves as the auctioneer, and tasks are the auctioned items. Table 1 presents 

the primary symbols used in this paper. 

The set of users is denoted as 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑖 , … , 𝑢𝑛}. The corresponding user 

reputation values are expressed by 𝑅𝑃 = {𝑟𝑝1, 𝑟𝑝2 , … , 𝑟𝑝𝑖 , … , 𝑟𝑝𝑛} . The perceptual 

task set is denoted as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑗 , … , 𝑡𝑚}. The task preference set of user 𝑢𝑖 is 𝐹𝑢𝑖. 

The number of users required for the task is referred to as the collaboration number and 

is expressed by the set 𝑁𝑈𝑀 = {𝑛𝑢𝑚1, 𝑛𝑢𝑚2, … , 𝑛𝑢𝑚𝑗, … , 𝑛𝑢𝑚𝑚}. 𝑛 represents the 

number of users, while 𝑚 represents the number of tasks. 

The contribution of users to tasks in this paper is integrated into the incentive 

mechanism, with the Quality of Information (QoI) they provide used as a measure. The 
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users' contributions are categorized into five levels in this paper and represented by the 

set Q = {1, 2, 3, 4, 5}. 

Table 1. Notations used 

Notations Definitions 
𝑈 set of users 

𝑈𝑅𝑊 set of winners in reverse auction 

𝑈𝑅𝐿 set of users entering the second phase 

𝑈𝑇𝑇𝐶 set of task-user in the second phase 

𝑈𝐼𝑄 set of task owners with insufficient collaboration count  

𝑈𝐼𝑊 set of users finally participating in the task 

𝑇 set of tasks 

𝑇𝑊 set of tasks with successfully bids 

𝑇𝐿 set of tasks with failed bids 

𝑛𝑢𝑚𝑗  collaboration count required for task 𝑡𝑗 

𝑟𝑝𝑖 reputation value of user 𝑢𝑖 
𝑐𝑖.𝑗  true cost of user 𝑢𝑖 for task 𝑡𝑗 

𝑏𝑖,𝑗 bidding price made by user 𝑢𝑖 for task 𝑡𝑗 

𝑝𝑖,𝑗 reward for user 𝑢𝑖 completing task 𝑡𝑗 

𝑞𝑖,𝑗 contribution of user 𝑢𝑖 to task 𝑡𝑗 

𝑟𝑗 maximum budget for task 𝑡𝑗 in reverse auction 

3.1 Design Objectives 

For each task, denoted as 𝑡𝑗 ∈ 𝑇, a limited budget is assigned to the incentive mecha-

nism, which requires the selection of 𝑛𝑢𝑚𝑗 users from the user set 𝑈 to perform the 

task. If the number of collaborative users falls short, the task is recommended to other 

users in the social network based on their interest similarity, allowing them to decide 

whether to participate. To enhance the QoI of users, a credibility mechanism is imple-

mented to update based on their contributions. The contribution values of users are 

linearly normalized, and defined in Equation (1). 

 𝑟𝑝𝑖 = 𝑟𝑝𝑖 +
𝑞𝑖,𝑗−min⁡(𝑞𝑡𝑗)

max(𝑞𝑡𝑗)−min⁡(𝑞𝑡𝑗)
 (1) 

where min⁡(𝑞𝑡𝑗) represents the minimum contribution value required by the platform 

for task 𝑡𝑗, max(𝑞𝑡𝑗) denotes the maximum contribution value needed for the same task 

by the platform. 

The profit of user 𝑢𝑖 is the difference between the compensation provided by the 

service platform and the user's self-costs, given as below: 

 𝑒𝑖 = 𝑝𝑖 − 𝑐𝑖 , 𝑢𝑖 ∈ 𝑈𝐼𝑊 (2) 

where 𝑝𝑖 = ∑ 𝑝𝑖.𝑗
𝑚
𝑗=1  represents the total reward that user 𝑢𝑖 receives for completing all 

the tasks, and 𝑐𝑖 = ∑ 𝑐𝑖.𝑗
𝑚
𝑗=1  represents the total costs incurred by the user for partici-

pating in the tasks. 
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This paper aims to identify the optimal set of tasks and users from task set 𝑇 using 

two transaction models. Additionally, we utilize information submitted by users 

through the reverse auction process to recruit other users to collaborate with those in 

the 𝑈𝑇𝑇𝐶. For tasks that lack sufficient collaboration, an interest-based task recom-

mendation algorithm is applied to suggest tasks to users who may be interested. Finally, 

user compensation and reputation values are updated based on their contribution. 

3.2 Reverse Auction Model 

During the first phase, the service platform releases tasks and each user, denoted as 

𝑢𝑖 ∈ 𝑈, sends a tuple (ζ𝑖，𝐵𝑖) to the platform. ζ𝑖 represents the task set that the user 𝑢𝑖 

is bidding on, and 𝐵𝑖  represents the corresponding bid set. The platform selects the user 

with the lowest bid 𝑏𝑖,𝑗, where 𝑏𝑖,𝑗 is less than the maximum budget 𝑟𝑗, to be the task 

owner and added to the 𝑈𝑅𝑊 set. The tasks that have been successfully bid on are 

added to the 𝑇𝑊 set, as illustrated in Fig.1. 

Service platform

Users

URW
 

Fig. 1. Reverse auction 

At this stage, the winning participant 𝑢𝑖 in 𝑈𝑅𝑊 is tasked with undertaking task 

𝑡𝑗 in the second phase of the project. The unsuccessful bidders' tasks will also move to 

the second phase and are collectively represented as 𝑇𝐿. 

3.3 Secondary Trading Model based on TTC Algorithm 

In the second phase, the platform sorts failed users in the reverse auction by their rep-

utation values, denoted as 𝑟𝑝𝑖 . The platform then gathers a set of potential users, de-

noted as 𝑈𝑅𝐿, by requesting their agreement to participate in the second phase based 

on their (ζ𝑖，𝐵𝑖) values. Users in 𝑈𝑅𝐿 are not assigned any tasks, whereas tasks in 

𝑇𝐿are unclaimed. Users in 𝑈𝑅𝑊 and 𝑈𝑅𝐿 indicate their preferences for tasks to the 

platform, while tasks in 𝑇𝑊and 𝑇𝐿reveal their preferred users. The TTC algorithm is 

employed to construct the task-user set 𝑈𝑇𝑇𝐶. 
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Before introducing the TTC algorithm, some concepts need to be introduced. In 

𝑈𝑅𝑊, users who are dissatisfied are labeled as unsatisfied users, while users who enter 

the third stage after their transactions are considered satisfied users. In 𝑇𝑊, tasks are 

referred to as old tasks, while in 𝑈𝑅𝐿, new users are added, and in 𝑇𝐿, new tasks are 

added. This article utilizes graph theory to define the transactions between users and 

tasks in the YRMH-IGYT mechanism by constructing a TTC graph. 

Definition 1(The construction rules of the graph): In the TTC graph, the set of ver-

tices consists of users and task sets; directed edges represent task vertices pointing to 

their owner users. If there is no owner for a task, the user set without a task is sorted 

based on credibility, and all tasks without owners are assigned to the user with the 

highest credibility. User vertices point to their most interesting task. 

The following steps constitute the second transaction phase based on the TTC: 

Step 1: Assign old tasks to their respective owners while assigning new tasks to 

the user with the highest reputation. Each user is linked to the task of their maximum 

interest. 

Step 2: In case of no cycle, the new user moves to the next task in their preference 

list. 

Step 3: Identify any cycle and eliminate it by allocating tasks linked to each user 

within the cycle. 

Step 4: Assign old tasks to their respective owners while assigning new tasks to 

the remaining new users with the highest reputation, and each user is linked to the task 

of their maximum interest among the remaining tasks. 

Step 5: Identify any cycle that may arise in this phase and eliminate it by allocat-

ing tasks linked to each user within the cycle. 

Step 6: Repeat steps 2 to 5 until all users and tasks have been assigned. The as-

signment process ends upon exhaustion. 

3.4 Task Recommendation Model based on Interest Level 

In the third phase of the project, secondary trades will match all tasks with users. The 

service platform will select 𝑛𝑢𝑚𝑗 − 1 users with the lowest 𝑏𝑖,𝑗 that is below the max-

imum budget 𝑟𝑗 , based on the collaboration number of each task and users' (ζ𝑖 , 𝐵𝑖 ). 

These users will be added to the 𝑈𝐼𝑊 set. If there are not enough users that meet the 

requirements, the task owner will be included in the 𝑈𝐼𝑄 set. As the social relationships 

between users are private, the interest level of users for a particular task will be calcu-

lated based on their (ζ𝑖，𝐵𝑖), and those users who are potentially interested in a task 

will be recommended. The recommendation process, which is based on interest level, 

mainly comprises the following steps: 

Step 1: involves constructing a user-task rating matrix (𝑈𝑇) based on the sets of 

users and tasks. 

Step 2: the cosine similarity formula is used to calculate the similarity of interest 

among users in both 𝑈𝐼𝑄 and 𝑈\𝑈𝐼𝑄, resulting in the interest similarity matrix 𝑊. The 

cosine similarity formula is shown in Equation (3). 
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 𝑤𝑢𝑣 =
|𝑁(𝑢)∩𝑁(𝑣)|

√|𝑁(𝑢)∥𝑁(𝑣)|
 (3) 

where 𝑁(𝑢) represents the set of tasks that user 𝑢 is interested in within the set 𝑈\𝑈𝐼𝑄, 

and 𝑁(𝑣) represents the set of tasks that user 𝑣 is interested in within the 𝑈𝐼𝑄set, and 

𝑤𝑢𝑣 is the similarity of interest between user 𝑢 and user 𝑣. 

Step 3: Sort users based on the similarity of their interest and recommend the 

tasks to them. 

Step 4: When the required number of collaborators for a task is met, add the users 

to the 𝑈𝐼𝑊 set. 

Step 5: After recruiting enough users, tasks will be carried out and compensation 

will be determined based on their contributions. The compensation formula is defined 

by Equation (4). 

 𝑝𝑖,𝑗 = {

𝑏𝑖,𝑗 ,
𝑞𝑖,𝑗𝑛𝑢𝑚𝑗𝑟𝑗

∑ 𝑞𝑖,𝑗
𝑛𝑢𝑚𝑗
𝑖

< 𝑏𝑖,𝑗

𝑞𝑖,𝑗𝑛𝑢𝑚𝑗𝑟𝑗

∑ 𝑞𝑖,𝑗
𝑛𝑢𝑚𝑗
𝑖

,
𝑞𝑖,𝑗𝑛𝑢𝑚𝑗𝑟𝑗

∑ 𝑞𝑖,𝑗
𝑛𝑢𝑚𝑗
𝑖

≥ 𝑏𝑖,𝑗
 (4) 

where 
𝑞𝑖,𝑗

∑ 𝑞𝑖,𝑗
𝑛𝑢𝑚𝑗
𝑖

 is the proportion of contribution from user 𝑢𝑖, and 𝑛𝑢𝑚𝑗𝑟𝑗 is the total 

budget of task 𝑡𝑗. 

3.5 Desirable Properties 

This paper aims to design an incentive mechanism that achieves efficiency within a 

reasonable time frame. In a reverse auction, each user submits a tuple (ζ𝑖 , 𝐵𝑖) to the 

platform, which includes the set of tasks they are interested in bidding for ζ𝑖 and their 

bidding price 𝐵𝑖 . Users can submit a tuple (𝜁𝑖
′, 𝐶𝑖) that deviates from the truthful value, 

where 𝐶𝑖 represents the user's cost set. It is critical for the incentive mechanism to en-

sure non-negative utility for each user to prevent negative utility from causing them to 

withdraw from the platform. 

Based on the descriptions given above, this paper expects the incentive mecha-

nism designed to satisfy the following features: 

⚫ Computational Efficiency: Algorithmic incentivization mechanisms can 

be completed in polynomial time. 

⚫ Truthfulness: The tuples (ζ𝑖 ,𝐵𝑖    and preference order 𝐹𝑢𝑖  submitted by 

each user 𝑢𝑖 ∈ 𝑈 are truthful. 

⚫ Individual Rationality: For every user 𝑢𝑖 ∈ 𝑈𝐼𝑊, the variable 𝑒𝑖 ≥ 0. 

4 Construction of MO-TTC 

In this section, we present two algorithms: the TTC algorithm and an interest-based 

task recommendation algorithm. We use an example to demonstrate the process of the 

second phase using TTC. Finally, we demonstrate the characteristics possessed by the 

proposed incentive mechanism. 
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4.1 Secondary Trading Algorithm 
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(a)User's preference ranking (b)First round of trading
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Fig. 2. Trading process 

The second-hand trading process based on the TTC is exemplified in Fig.2. Users rank 

their preferred tasks, as indicated in Fig.2(a), where 𝑢1, 𝑢2, and 𝑢3 are users in the 

𝑈𝑅𝑊 set who own tasks 𝑡1, 𝑡2, and 𝑡3, respectively (𝑡1, 𝑡2, 𝑡3 ∈ 𝑇𝑊), 𝑢4, 𝑢5 are users 

in the 𝑈𝑅𝐿 set who don't own any tasks, and 𝑡4, 𝑡5 are tasks in 𝑇𝐿 that don't belong to 

any user. In Fig.2(b), users point to their favorite tasks, which in turn point to their 

owners; 𝑡4, 𝑡5 do not have owners. Assuming that 𝑢4 has a higher reputation score than 

𝑢5, they point to the new user with the highest reputation score, 𝑢4. Hence, TTC leads 

to the cycle 𝑢1→𝑡5→𝑢4→𝑡1→𝑢1 . As a result, users 𝑢1  acquire tasks 𝑡5  and 𝑢4  ac-

quires task 𝑡1, which are both subsequently removed from the cycle, completing the 

first round of trading. Fig.2(c) displays the updated preference orders for the users and 
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tasks. In the second round, a cycle 𝑢5→𝑡4→𝑢5 is discovered, and user 𝑢5 gets task 𝑡4, 

which is then removed from the system. The third round is illustrated in Fig.2(d), where 

a cycle 𝑢2→𝑡3→𝑢3→𝑡2→𝑢2 is found. As a result, user 𝑢2 acquires task 𝑡3 and user 𝑢3 

acquires task 𝑡2, which are both subsequently removed from the cycle. The transaction 

comes to an end because there are no tasks or users left to trade. 

After the completion of the transaction, all users involved in the subsequent ex-

change demonstrate a preference for the final allocated task that is equal to or greater 

than their initial task allocation, indicating a preference for higher interest level tasks 

during the exchange process. 

This paper presents the TTC algorithm to implement the transaction process dur-

ing the second phase. The specific procedures are outlined in Algorithm 1. 

Algorithm 1. TTC algorithm 

input: User set 𝑈⁡ = ⁡𝑈𝑅𝑊 ∪ 𝑈𝑅𝐿, Task set 𝑇⁡ = ⁡𝑇𝑊 ∪ 𝑇𝐿 

Output: 𝑈𝑇𝑇𝐶 

1: Initialize users' preference sequence 𝐹𝑢𝑖 
2: Construct the TTC graph 𝐺 based on Definition 1 and user preference order 

3: while 𝐺 Number of nodes > 0 

4:      Find all cycles in 𝐺 

5:      for each 𝑐𝑦𝑐𝑙𝑒∈𝑐𝑦𝑐𝑙𝑒𝑠 

6:            𝑈𝑇𝑇𝐶 := {task-user} 

7:            Remove node and update graph G 

8:            Update task owner 

9:      end for 

10: end while 

4.2 Interest-based Task Recommendation Algorithm 

At this stage, the paper considers recommending tasks with insufficient user numbers 

based on similarity of user interest, to other users, to achieve sufficient user numbers. 

In the first stage of the reverse auction, all users submitted bids to the platform, 

bidding on the task set ζ𝑖 that they were interested in, which serves as their behavior 

towards tasks in the third stage. A user-task rating matrix, denoted as 𝑈𝑇, is then con-

structed. For a user 𝑢𝑖, if a task 𝑡𝑗 ∈ ζ𝑖 , the rating for this task by the user is considered 

1; otherwise, it is considered 0. Similarly, user's similarity matrix 𝑊⁡is calculated based 

on the 𝑈𝑇 matrix using Equation (3). Finally, the recommendation list is generated by 

multiplying the 𝑈𝑇 matrix and the user similarity matrix 𝑊. 

Firstly, we identify the 𝐾 users in the similarity matrix 𝑊 who are most similar to user 

𝑢𝑖 . The set of 𝐾 users, denoted as 𝑆(𝑢𝑖 , 𝐾), are the owners of tasks in the 𝑈𝐼𝑄 set, 

where user recruitment has been insufficient. Subsequently, we extract all tasks from S 

that users are interested in and remove tasks which 𝑢𝑖 has already expressed an interest 

in. The degree of interest that user 𝑢𝑖 has towards task 𝑡𝑗 is computed using Equation 

(5). 

 𝑝(𝑢𝑖 , 𝑡𝑗) = ∑ 𝑤𝑢𝑣 × 𝑢𝑡𝑣𝑡𝑗𝑣∈𝑆(𝑢𝑖,𝐾)∩𝑁(𝑡𝑗)
 (5) 
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where 𝑢𝑡𝑣𝑡𝑗 represents the degree of liking or rating that user 𝑣 gives to task 𝑡𝑗, and 

𝑁(𝑡𝑗) refers to users who have interacted with task 𝑡𝑗. 

Algorithm 2. Interest-based Task Recommendation Algorithm 

input: User set U; Under-recruited user set UIQ; K users 

1: Build user-task rating matrix 𝑈𝑇 

2: Calculate similarity matrix 𝑊 by Equation (3   

3: for 𝑢 ∈ 𝑈\𝑣 

4:      for v∈𝑈𝐼𝑄\𝑢 ∩ 𝑁(𝑡) 
5:            Find the 𝐾 users in the 𝑈𝐼𝑄 set that are most similar to user 𝑢 

6:            Calculate the level of interest of 𝑢 in task 𝑡 using Equation (5  

7:      end for 

8: end for 

9: descending order sorting 𝑈 base on 𝐹(𝑢) 
10: Select the top N users according to Equation (5  to participate in the task and add 

them to the 𝑈𝐼𝑊 collection 

11: Update the reputation of the users in the 𝑈𝐼𝑊 collection by using Equation (1  

12: Determine the rewards for the users in the 𝑈𝐼𝑊 collection by using Equation(4  

4.3 Mechanism Analysis 

The following section conducts theoretical analysis to demonstrate that the incentive 

mechanism proposed in this article can achieve the following characteristics: 

Lemma 1. MO-TTC is computationally efficient. 

Proof. Both Algorithm 1 and Algorithm 2 satisfy the computational effectiveness. In 

Algorithm 1, initializing the preference sequence of users and constructing the directed 

graph G both traverse the user and task sets, costing 𝑂(𝑛2) time. The worst-case sce-

nario for finding the set of winning users 𝑈𝐼𝑊 (lines 3-10) is when only one task-user 

match occurs each time, costing 𝑂(𝑛2) time in this case. Therefore, Algorithm 1 costs 

𝑂(𝑛2) time. In Algorithm 2, building the user-task scoring matrix and calculating the 

similarity matrix both traverse the user set, costing 𝑂(𝑛) time. Finding the top 𝐾 simi-

lar users (lines 3-8) costs 𝑂(𝑛2) time, sorting and selecting 𝑁 users (lines 9-10) costs 

𝑂(𝑛)  time, and updating the reputation and reward (lines 11-12) costs 𝑂(𝑛)  time. 

Therefore, Algorithm 2 costs 𝑂(𝑛2) time. 

Lemma 2. MO-TTC is truthful. 

Proof. Each user submits a tuple (ζ𝑖 , 𝐵𝑖) to the platform, which contains the set of tasks 

of interest ζ𝑖 and the bid set 𝐵𝑖 . Users have strategic considerations in bidding and may 

provide a tuple (𝜁𝑖
′, 𝐶𝑖) that deviates from the true value. Since the filtering process in 

all three stages considers 𝐵𝑖 , users' participation rates will decrease when submitting 

false bids. Additionally, if ζ𝑖 and the user's preference sequence 𝐹𝑢𝑖 are false, the user 

cannot obtain the tasks that they truly desire because task trades will only occur based 

on the user's genuine preference sequence in the second stage, while the third stage 

constructs a user-scoring matrix based on ζ𝑖 to search for users with high similarity. 

Lemma 3. Benchmark-S is individually rational. 

Proof. It is evident, as shown by Equation (2), that 𝑒𝑖 is greater than or equal to zero. 
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5 Experimental Evaluation 

5.1 Simulation Setup 

In order to evaluate the effectiveness of the MO-TTC algorithm, this paper conducts 

simulation on three performance indicators: user participation rate, task coverage rate, 

and average user utility. The simulation parameters are shown in Table 2. The simula-

tion experiments run on Windows 11 system with hardware configuration of AMD R7-

6800H CPU, RTX3060 GPU, and 16GB RAM. 

The performance of MO-TTC is compared with three other incentive mecha-

nisms, including the Incentive Mechanism Based on Reverse Auction (IMBRA), the 

Contribution Based Incentive Mechanism (CBIM), and the Reverse Vickrey Auction 

Incentive Mechanism (RVA-IM). In IMBRA, low bidders are selected to perform tasks, 

and if there are not enough users, the task is not executed, with user rewards being 

based on their bidding value. In CBIM, task performers are randomly selected, with 

user acceptance being random as well. If there are not enough users available, the task 

is not executed, and rewards are determined based on the user's contribution. In RVA-

IM, the second lowest bidder becomes the task performer, and other users are selected 

as collaborators based on their reputation value, with rewards being determined using 

the Vickrey-Clark-Groves (VCG) mechanism. 

Table 2. Simulation parameters 

Parameter Range 

Number of users 𝑛 [20,100] 

Number of tasks 𝑚 [20,100] 

Maximum budget for reverse auction 

𝑟𝑗 
[20,40] 

Number of task collaborators 𝑛𝑢𝑚𝑗  [2,4] 

User bid 𝑏𝑖,𝑗 [10,50] 

User contribution 𝑞𝑖,𝑗 [1,5] 

User reputation value 𝑟𝑝𝑖 [0,1] 

Whether the user accepts the task [0,1] 
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5.2 User Participation Rate 

 

(a)                                                             (b) 

Fig. 3. Comparison of user participation rates 

Fig.3 show a comparison of user participation rates between MO-TTC, IMBRA, CBIM 

and RVA-IM. Fig.3(a) depicts the comparison of user participation rates at different 

task numbers, with 50 users. The figure shows that the proportion of participating users 

increases with the number of tasks. This is because, when the number of tasks is smaller 

than the number of users, there are relatively fewer users participating in sensing tasks, 

and as the number of tasks increases, so too does the number of users participating in 

sensing tasks. With 50 users, MO-TTC outperformed IMBRA, CBIM, and RVA-IM by 

an average of 36%, 6%, and 23%, respectively, in terms of user participation rate when 

the number of tasks varies. Fig.3(b) shows that user participation rates decrease with 

an increase in the number of users. When the number of tasks is constant, an increase 

in the number of users quickly recruits enough users to reach saturation in the tasks. 

With 50 tasks, MO-TTC outperformed IMBRA, CBIM and RVA-IM by an average of 

39%, 12%, and 28%, respectively, in terms of user participation rate when there were 

varying numbers of users. For MO-TTC, a multi-stage optimization strategy was used 

to provide users with more opportunities to choose whether to participate in sensing 

tasks, thereby increasing the number of users executing sensing tasks. Therefore, user 

participation rates were always higher with MO-TTC than with IMBRA, CBIM and 

RVA-IM. 
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5.3 Task Coverage Rate 

 

(a)                                                             (b) 

Fig. 4. Comparison of task coverage rates 

Fig.4 illustrate a comparison of task coverage rates between MO-TTC, IMBRA, CBIM, 

and RVA-IM. Fig.4(a) represents the comparison of task coverage rates for different 

task numbers when the user number is 50, while Fig.4(b) shows the task coverage rate 

comparison for different user numbers when the task number is 50. The figures demon-

strate that the task coverage rate decreases with an increase in the number of tasks due 

to the users' limited budget for task completion. Fig.4(a) reveals that MO-TTC outper-

forms IMBRA, CBIM, and RVA-IM by an average of roughly 17%, 9%, and 15%, 

respectively, regarding user participation rate when the user number is 50 and the task 

number increases. Fig.4(b) demonstrates that the task coverage rate increases with an 

increase in the number of users, as recruiting more users means more task coverage 

opportunities. When the task number is 50, MO-TTC outperforms IMBRA, CBIM, and 

RVA-IM by an average of roughly 39%, 10%, and 21%, respectively, concerning the 

user participation rate as the user number increases. Interest-based task recommenda-

tion algorithms can effectively recommend remaining tasks to users, thereby allowing 

MO-TTC to achieve higher task coverage rates than those of IMBRA, CBIM, and 

RVA-IM. 
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5.4 Average User Utility 

 

(a)                                                             (b) 

Fig. 5. Comparison of average user utility 

Fig.5 compare the average user utility of MO-TTC, IMBRA, CBIM, and RVA-IM. 

Fig.5(a) presents a comparison of the average user utility concerning different task 

numbers at constant user quantity of 50. Fig.5(b) shows a comparison of the average 

user utility with different user quantities but constant task number of 50. From Fig.5(a), 

it is evident that the average user utility increases with task quantity due to the increased 

involvement of users when the number of tasks increases. When there are 50 users, 

MO-TTC shows an average increase of 63%, 14%, and 40% in average user utility 

compared to IMBRA, CBIM, and RVA-IM, respectively. In contrast, from Fig.5(b), 

the average user utility decreases as the number of users increases because the partici-

pation rate is reduced with an increase in tasks. When there are 50 tasks, MO-TTC 

results in an average increase of 67%, 17%, and 50% in average user utility compared 

to IMBRA, CBIM, and RVA-IM, respectively, with increasing numbers of users. 

IMBRA shows relatively lower average user utility as only low bidding users are cho-

sen. CBIM randomly selects users only once, leading to decreased participation rates 

and lower average user utility as the number of users increases. In contrast, RVA-IM 

determines rewards according to the VCG mechanism, achieving maximum welfare 

instead of high average user utility. MO-TTC utilizes a multi-stage optimization strat-

egy, incentivizing users based on their interest and recommending tasks requiring in-

adequate collaboration to other users. This approach results in consistently higher av-

erage user utility than IMBRA, CBIM, and RVA-IM. 

6 Conclusion 

In social networks, perceptual tasks usually require multi-user collaboration. Consider-

ing the low user interest in certain tasks, it is challenging for these tasks to recruit 

enough contributors. This paper proposes an incentive mechanism based on MO-TTC. 

The paper first uses a reverse auction model to select users and then employs the TTC 

algorithm to assign tasks to users with higher interest for secondary transactions. If 
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tasks have insufficient collaborative efforts, we recommend them to other users with 

similar interest in the social network. Rewards are then allocated to users based on their 

contributions, and their reputation values are updated accordingly. We have proven that 

MO-TTC is computationally efficient, truthful, and individually rational. Furthermore, 

the simulation results show that the MO-TTC incentive mechanism proposed in this 

paper outperforms other approaches such as IMBRA, CBIM, and RVA-IM in terms of 

user participation rate, task coverage, and average user utility. 
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