OFF-DIAGONAL LOWER ESTIMATES AND HOLDER REGULARITY OF
THE HEAT KERNEL

ALEXANDER GRIGOR’YAN, ERYAN HU, AND JIAXIN HU

ABSTRACT. We study the heat kernel of a regular symmetric Dirichlet form on a metric space with
doubling measure, in particular, a connection between the properties of the jump measure and
the long time behaviour of the heat kernel. Under appropriate optimal hypotheses, we obtain the
Holder regularity and lower estimates of the heat kernel.
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2 A. GRIGOR’YAN, E. HU, AND J. HU

1. INTRODUCTION

In this paper, we are concerned with the heat kernel lower estimates for regular symmetric
Dirichlet forms on metric spaces with doubling measures.

Let (M, d) be alocally compact separable metric space and let u be a Radon measure on M with
full support. A triple (M,d, u) is called a metric measure space. Let (£, F) be a regular Dirichlet
form on L? := L*(M, ). Let {P;}+~0 be the heat semigroup in L? associated with (£, F), that is,
P, = etf, t > 0, where £ is the generator of (£, F).

Note that P; is a bounded self-adjoint operator in L?. If, for any ¢ > 0, the operator P; has an
integral kernel then the latter will be denoted by pi(z,y) and will be referred to as the heat kernel
of (£, F). The heat kernel coincides with the transition density of the Hunt process associated with
(&, F).

For the sake of Introduction, assume that (€, F) is of jump type and that it is determined by a
jump kernel J(z,y), that is,

E(u,v) = / /MxM(“(“‘) — u(y))(0(z) — v(y))T (2 y)dpu(z)dp(y). (11)

Our main goal is investigation of the influence of the jump kernel on the heat kernel long time
behaviour.
For example, consider in R” the following jump kernel

J(z,y) = —— 5 (1.2)

where 0 < 8 < 2. In this case £(u,v) is a regular Dirichlet form with the generator const (—A)5/2,

and its heat kernel admits the following two-sided estimate:

1 |z —y[\ " 1 t
Pt (CL',y) — tn/ﬁ <1 + tl/ﬁ > — tn/ﬂ A ‘J) _ y‘n_i_/g? (13>

for all £ > 0 and z,y € R™. Here A means minimum and >~ means comparable, that is, the ratio of
the both sides is bounded from above and below by positive constants (in this case, for all ¢ > 0
and x,y € R™).

For simplicity of presentation, we assume throughout Introduction that the metric measure space
(M,d, p) is a-regular for some o > 0, that is, for any metric ball B (z,r) in M,

w(B(z,r)) ~r°, (1.4)

although the main results of this paper are stated and proved under a weaker hypothesis of the
volume doubling.
Assume further that the jump kernel satisfies for some 5 > 0 the estimate
1
——— (J)
d(z,y)**’

for all z,y € M. A natural question arises whether the heat kernel of (£, F) exists and satisfies an
estimate similar to (1.3), that is, whether the following estimate holds:

C d(fL’, y> —(OH—B) 1 t
pe(T,y) = 75 <1 T /8 ) = 078 " Az, g)atB

for allt > 0 and x,y € M. If 8 < 2 then the answer is affirmative; moreover, by a result of [4], the
following equivalence holds:

J(z,y) ~

(1.5)

(J) & (1.5).
However, if § > 2 then one more hypothesis is needed: a so called generalized capacity condition that
will be denoted by (Gceap). This condition ensures the existence of cutoff functions with controlled
energy and will be rigorously formulated in the next section. It was proved independently in [6]
and [9] that, for any 5 > 0,
(J) + (Geap) & (1.5). (1.6)



LOWER ESTIMATES OF HEAT KERNEL 3

It is natural to ask then what kind of heat kernel bounds can be ensured if the jump kernel satisfies
instead of (J) some weaker hypotheses. This problem has been addressed in a series of papers of
the authors [11], [12], [13], which is concluded with the present work.

We replace (J) by some integral estimates of the jump kernel as follows. The pointwise upper
bound of J is replaced by the hypothesis about the tail of the jump kernel:

c
| et < 5 (1)
B(z,r)° r

for all x € M and r > 0, while the pointwise lower bound of J is replaced by an appropriate
Poincaré inequality that is denoted by (PI). A detailed definition of the latter will be given in the
next section. It is easy to verify that (J) implies (TJ) and (PI) but not vice versa.

The first main result of the present paper — Theorem 2.10, says that the hypotheses (TJ), (PI)
and (Gcap) imply the following near-diagonal lower estimate of the heat kernel

pi(w,y) > et if d(x,y) < 6t'/7, (NLE)
for some ¢, d > 0. Moreover, under the standing hypothesis (TJ), we have the equivalence
(PI) + (Geap) < (LLE), (1.7)

where (LLE) denotes a similar near-diagonal lower bound of the Dirichlet heat kernels in balls,
which is a somewhat stronger condition than (NLE) (see the next section for a detailed definition).
Note that, under the hypotheses of Theorem 2.10, one cannot ensure an off-diagonal lower
estimate of the form
d(z,y) > -

Cc

for all t > 0 and x,y € M, whatever N > 0 is, as it was shown by a counterexample in [1].
However, if we replace in (1.7) the Poincaré inequality (PI) by a stronger hypothesis — the
pointwise lower estimate of the jump kernel

c
J(z,y) > W’ (J>)
then we do obtain a full off-diagonal lower estimate
c d(w,y) |~

This follows from our second main result in this paper — Theorem 2.13, that says the following:
under the standing hypothesis (TJ), the following equivalence holds:

(J>) 4+ (Geap) & (LLE) + (LE)

(see also Corollary 2.14).

As far as upper bounds of the heat kernel are concerned, this problem under weaker assumptions
on J has been addressed in our companion papers [12] and [13]. For any ¢ > 1, let us introduce
the following hypothesis about the Li-tail of the jump kernel:

1/q c
J ad < —, TJ
(@@m @w)uwo < s (13,)

for all z € M and r > 0, where ¢’ is the Hélder conjugate to ¢q. For example, if ¢ = 1 then (TJ,)
coincides with (TJ). It is easy to see that (TJ,) gets stronger when ¢ increases (see [13, Proposition
3.1]).

By a result of [12], if ¢ > 2 then (TJ,), (Gcap), and a certain Faber-Krahn inequality imply the
following upper bound of the heat kernel:

C d(z,y)\ /T 1 t 1
Pl@.9) < 3575 <1+ 1175 > = O\ i " dwgyora+s ) wieo © (VB
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for all £ > 0 and z,y € M. Combining the results of the present paper with those of [12] yields the
following implication for any 2 < g < oo:

(J>) + (Geap) + (TJ,) = (UE,) + (LE)

(cf. Theorem 2.20 and Corollary 2.21).

Note that there is a mismatch in the exponents of the off-diagonal terms in (LE) and (UE,) that
are a+ (3 and a/¢' 4 B3, respectively. The gap between these exponents is in general unavoidable as
an example in [1, Section 3| (see [1, Proposition 3.5 and Theorem 2.8]) shows. However, if ¢ = co
then ¢’ = 1, and the two exponents coincide. In this case we recover the equivalence (1.6).

In the main body of the paper our results are stated and proved in a more general form as
follows.

(1) Instead of volume regularity, we assume the volume doubling condition, so that the volume
function V' (z,r) = pu(B(x,r)) explicitly enters the heat kernel estimates.

(2) Instead of the scaling function r® that appears in (TJ) as well as in (Gcap) and (PI), we
use a more general scaling function W (z,r) depending also on the space variable x € M,
which causes additional difficulties in the proof.

(3) The Dirichlet form (£, F) may contain a local part, that is, (£, F) may be an arbitrary
regular Dirichlet form without killing part.

(4) The hypotheses (Gcap) and (PI) are assumed in a localized form, that is, for a bounded
range of radii of balls involved, which, in particular, allows to include bounded metric
spaces. In this case, the heat kernel estimates are valid for a bounded range of time.

(5) Together with heat kernel lower estimates, we obtain also the Holder regularity of the heat
kernel.

In Section 2 we give all necessary definitions and formulate our main results in full generality. In
a short Section 3, we recall some general properties of the energy measure of (£, F). In Section 4
we change the metric d so that under the new metric the scaling function does not depend on the
space variable. In Section 5 we prove an oscillation inequality that is a central technical result. It
is used, in particular, in Section 6 to prove the Holder continuity of the heat kernel. In Section 7
we prove Theorem 2.10. In Section 8 we prove Theorems 2.13 and 2.20. Appendix contains some
auxiliary results.

NoOTATION. Letters ¢, C,C’,C1, Oy, etc. are used to denote positive numbers, depending on the
constants in the hypotheses, whose values may change at each occurrence. For a function u on M,
we denote by supp(u) the support of u that is, the minimal closed subset of M so that u = 0 a.e.
outside it. For an open set U, the notation A € U means that A is a precompact subset of U with
AcCU.

2. STATEMENT OF THE MAIN RESULTS

Now we give precise statements of our results. For any x € M and r > 0, consider an open
metric ball

B(z,r):={ye M :d(y,x) <r}
and its volume
V(z,r) := u(B(x,r)).
For any ball B = B(z,r) and any A > 0, set
AB := B(x, \r).

Definition 2.1 (Volume doubling condition). We say that a measure p on (M,d) satisfies the
condition (VD) if there exists a constant C' > 1 such that, for all x € M and all r > 0,

Viz,2r) < CV(x,r). (2.1)
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Condition (VD) implies that 0 < V(x,r) < oo for all » > 0.
It is known that condition (VD) is equivalent to the following: there exists a positive number «
such that, for all x,y € M and all 0 < r < R < o0,

d «
V(z, R) <C d(z,y) + R 7 (2.2)
Viy,r) r
where constant C' can be taken the same as in (VD). In particular, for all z € M and all 0 < r <
R < o0,
V(z,R) R\“
<C|—] . 2.3
v << (7) 2

Let us fix throughout the paper a parameter R € (0, diam M|, where diam M is the diameter of
M.

Definition 2.2 (Reverse volume doubling condition). We say that u satisfies the condition (RVD)
if there exist positive numbers C, o/ such that, for all x € M and for all 0 <r < R < R,

/

VB o (1) (2.4)

Let (€, F) be a regular Dirichlet form on L?. Recall that any regular symmetric Dirichlet form
(€,F) in L? admits the following unique Beurling-Deny decomposition (cf. [7, Theorem 3.2.1 and
Theorem 4.5.2]):

E(u,v) = EP) (u,v) + ED (u,v) + EF) (u, v), (2.5)

where £ is the local part (or diffusion part) associated with a unique Radon measure dI'(%) (the
notions £ (u, v), dl' ") (u, v) are instead denoted by £ (u,v), %d,u?u ) respectively in [7, see Eq.
(3.2.22) on p. 126]):

S(L)(u,v):/ dr ) (u, v),
M

EW) is the jump part associated with a unique Radon measure j defined on M x M \ diag:
ey = [ (ula) ~ ul)e() ~ ou) i), (26)
M x M\diag

and finally, £5) is the killing part. We assume throughout the paper that £) = 0 and, thus,
Eu,v) = ED (u,v) + D (u,v). (2.7)

For simplicity, we set j = 0 on the diagonal of M x M so that the integral in (2.6) can be
extended to the entire space M x M.

Let us fix a scaling function W : M x [0, 00] — [0, 00] such that, for each x € M, the function
W (z,-) is strictly increasing, and W (z,0) = 0, W(x,00) = co. Assume also that there exist three
positive numbers C, 5, By (8; < By) such that, for all 0 < » < R < 0o and for all z,y € M with

d(z,y) < R,
R\?"  W(z,R) R\
=) <« ==L <o(—=) . 2.
(5) =wen = () &
Clearly, we have by (2.8) that, forallz € M and all 0 <7 < R < o0
R\ /P2 W_l(l' R) R\ YA
-1 (1t < ) < £ .
() =wvem=e(n) =9

where W~1(z, ) is the inverse function of W (z,-) for every x € M.
This type of scaling functions depending both on x and r was first considered by Telcs in [22],
where the author studied the heat kernels of random walks and related probabilistic problems.
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The function W will determine the space/time scaling of the Hunt process of the Dirichlet form
(€, F). A typical example of a scaling function is W (z,r) = 7 as was considered in Introduction.
For example, if M = R"™ and (&, F) is the classical Dirichlet integral

& (u,u) :/ \Vul? dp
R’ﬂ

then 5 = 2. For the jump type Dirichlet form in R™ with the jump kernel (1.2), 8 can be any
number from (0,2). If M is a fractal space and (£, F) is a self-similar strongly local Dirichlet form
then typically 8 > 2, for example, for the Sierpinski gasket in R? we have = igg‘;’
0 is called the walk dimension of the fractal.

For any metric ball B := B(x,r), set

This value of

W(B) == W(x,r).

Despite of notation, W (B) is not a function of a ball as a subset of M, but is a function of a pair
(z,r) as it may happen that B(z1,r1) = B(x2,r2) whereas W (xy,71) # W (2, r2).
Let U C M be an open set, A be a Borel subset of U and £ > 1 be a number. A &-cutoff function
of the pair (A,U) is any function ¢ in F such that
o 0 < ¢ <K p-a.e. in M;
e ¢ > 1 pae. in A;
e ¢ =0 p-a.e. in U°.

FIGURE 1. A function ¢ € R-cutoff (A, U)

We denote by k-cutoff(A,U) the collection of all F-cutoff functions of the pair (A,U). Any
1-cutoff function for & = 1 will be simply referred to as a cutoff function. Clearly, ¢ € F is a cutoff
function of (A,U) if and only if 0 < ¢ <1, ¢|4 = 1 and ¢|ye = 0. Denote by

cutoff (4, U) := 1-cutoff (A4, U).
Note that for every k¥ > 1,
cutoff (A, U) C - cutoff (A4, U),

and that, if ¢ € R-cutoff(A4,U), then 1 A ¢ € cutoff(A,U). It is known that if (£, F) is a regular
Dirichlet form in L?, then cutoff (A4, U) is not empty for any non-empty precompact A with A C U.
Define a function space F’ by

Fi={v+a:veF, acR},
that is, F’ is a vector space that contains F and constants.

Definition 2.3 (Generalized capacity condition). We say that condition (Gcap) is satisfied if there
exist two numbers & > 1,C > 0 such that, for any v € F' N L% and for any pair of concentric
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balls By := B(zo, R), B := B(xg,R+ 1) with z9 € M and 0 < R < R+ r < R, there exists
¢ € R-cutoff (By, B) such that

2 ¢ 2
E(u"g,¢) < ZEEW/BU dp. (2.10)

We remark that the function ¢ in (Geap) may depend on u, but the constants %, C are indepen-
dent of u, By, B.

FIGURE 2. Function ¢ in (2.10)

For any open set U C M and a Borel set A C U, define the capacity of the pair (A, U) by
cap(A4,U) :=inf{&(p, ) : for any ¢ € cutoff(A4,U)}.
Definition 2.4 (Capacity upper bound). We say that the condition (Cap.) is satisfied if there
exists a constant C' > 0 such that for all balls B of radius R less than R
cap(%B,B) < CVV((';))' (2.11)
Note that the following implication is obvious:
(Geap) = (Cap<). (2.12)

Indeed, using (Gcap) with v = 1, we see that there exists a function
1
¢ € k- Cutoff(iB, B)
such that

C (B)
E(p,0) < /u2d,u:C.
0= B g W (D)
Replacing ¢ by ¢ := 1 A ¢ € cutoff (%B , B) and then using the Markov property

E(9, ) < E(¢,9),

we obtain that & (%, 5) satisfies the same estimate, which implies the condition (Cap.).

It would be ideal if in all our results (Gcap) could be replaced by the simpler condition (Cap.),
but so far there is no technique for that. Usually it is very difficult to verify (Gcap). However,
there are some cases when (Gcap) is trivially satisfied (see [11, Section 4]).

For a Borel measurable subset U C M and u € F', define the energy measure dl'y(u) by

dly(u)(z) := dU'™ (u)(z) + /M 1y(y)(ule) — u(y)*dj(z, y). (2.13)

Here we use () (u) := ') (u, u) for short.
The following condition (ABB) (which is named after Andres, Barlow and Bass) is an equivalent
condition to (Gcap) in some sense. Indeed, the authors proved in [11, Theorem 2.11] that under
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mild assumptions, (Gcap) < (ABB) + (Cap<). While, in [12, Lemma 9.4], we further prove that
under the same assumptions, (Gcap) < (ABB).

Definition 2.5. We say that condition (ABB) is satisfied if there exist C7 > 0, Cy > 0 such that,
for any u € F' N L>® and for any three concentric balls By := B(wxo, R), B := B(zo, R + r) and
Q:= B(zo,R') with 0 < R < R+ 1 < R < R, there exists some ¢ € cutoff(By, B) such that

C
u?dl <C’/ 2dT g(u) + su 2 /u2d,
/Q 6(6) < C1 [ D) tsup s | uldy

where I'g(u) is defined as in (2.13).

Let B(M) be the sigma-algebra of Borel sets of M. Recall that a transition kernel is a map
J: M x B(M) — R, satisfying the following two properties:
e for every fixed z in M, the map E — J(z, E) is a measure on B(M);

e for every fixed E in B(M), the map x — J(z, E) is a non-negative measurable function on
M.

Definition 2.6 (Tail estimate of jump measure). We say that condition (TJ) is satisfied if there
exists a transition kernel J(z, E) on M x B(M) such that

4j(w,y) = J (. dy)du(z) in M x M,
and, for any point x in M and any R > 0,

J(z, B(x, R)) = /B( o J(z,dy) < Wi R)

where C' € [0, 00) is a constant independent of z, R.

(2.14)

For example, if W(x, R) = R® for any z € M and R > 0 then the inequality (2.14) reads

J(z,B(z,R)) < % for all x in M and R > 0.

The latter condition was introduced in [1] in the setting of the ultra-metric spaces.
For a measurable function u and a measurable set A, let u4 denote the mean of the function u

over A, that is,
5l
ug = —— | udu —:][ udp,
1(A) Ja A

whenever the integral makes sense.

Definition 2.7 (Poincaré inequality). We say that the Poincaré inequality (PI) holds if there exist
constants C' > 0 and « € (0, 1] such that, for any ball B := B(xg, R) with 0 < R < R and for any
function v € F' N L™,

/ lu — up|2dp < CW (o, R)/ dl'p(u), (2.15)
xB B
where I'p is defined in (2.13).

For example, if M is a complete manifold of non-negative Ricci curvature, d is the geodesic metric,
p is the Riemannian measure, and € is the Dirichlet integral, then (PI) holds with W (x, R) = R2.

Definition 2.8 (Near-diagonal lower estimate). We say that condition (NLE) holds if the heat
kernel p;(x,y) exists and satisfies a near-diagonal lower estimate: for any Cy > 1, there exist two

constants ¢, C' > 0 such that
-1

V(z, W=z, 1))
for (u x p)-almost all (z,y) € M x M and for any ¢t < CoW (z, R) such that
d(z,y) < SW(z,1).

pe(@,y) = (2.16)
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We say that condition (sNLE) (strong near-diagonal lower estimate) is satisfied if the function
pi(x,y) has a version satisfying the semigroup identity

Proal,y) = /M Pl 2)ps 2, y)dz

for any t,s > 0, x,y € M, and satisfying (2.16) for any t < CoW (z, R) and all x,y € M such that
d(x,y) < W (x,t).

For a non-empty open subset U of M, let Cy(U) denote the space of all continuous functions
with compact supports contained in U. Let F(U) be a vector space defined by

F(U) = the closure of F N Co(U) in the norm of /E(-) + | - |32, (2.17)

where £(u) := £(u,u). By the theory of Dirichlet forms, (£, F(U)) is a regular Dirichlet form on
L3(U) if (€, F) is a regular Dirichlet form on L?(M, ) (see, for example, |7, Theorem 4.4.3]). In
this case, denote the heat semigroup of (£, F(U)) by {PY};~o. The integral kernel of {P}i~o
(should it exist) is denoted by pY(x,%) and is referred to as the heat kernel of (£, F(U)) or the
Dirichlet heat kernel of (£,F) in U.

Definition 2.9 (Localized lower estimate). We say that condition (LLE) holds if the following two
properties are satisfied:

(1) for any bounded open set Q C M, the Dirichlet heat kernel p*(z,y) exists;
(2) there exist C' > 0 and § € (0, 1) such that, for any ball B := B(zo, R) with R € (0, R), for
any t < W(z,dR) and for p-almost all z,y € B(xo, SW ~1(z¢,1)),
C_l
V(.I(], Wﬁl(x(b t)) '
We say that condition (sLLE) (strong localized lower estimate) holds if (LLE) holds and, in
addition, the Dirichlet heat kernel p{*(z,y) is locally Hélder continuous in

(x,y,t) € 2 x Q x(0,00)

pi(,y) > (2.18)

for any non-empty bounded open set Q) C M.

In other words, the inequality (2.18) says that the Dirichlet heat kernel pP(z,y) satisfies the
near-diagonal lower bound for z,y close to the center of B.
Under condition (sLLE), we can rephrase the inequality (2.18) in a simpler way: there exist some
constants C' > 0,4 € (0,1) such that, forall 2 € M, 0 < R < R and all t < W (z,R),
-1
V(e, W=1(z,1))

The following theorem is our first main result that gives a lower estimate of the heat kernel.

for all y € B(x,6W 1 (x,1)).

PP (z,y) >

Theorem 2.10. Let (€, F) be a regular Dirichlet form in L? without killing part. If conditions
(VD), (RVD) and (TJ) hold, then

(PI) + (Gecap) < (PI)+ (ABB) < (sLLE) < (LLE) = (sNLE).
We will prove Theorem 2.10 in Section 7.5. The most difficult part is to show the implication
(VD) 4+ (RVD) + (TJ) 4+ (PI) + (Gecap) = (sLLE),

which will be done in Section 7.
Let us turn to off-diagonal lower estimates of the heat kernel. For that we need two more
conditions (J>) and (LE). For all z,y € M, denote

Vi(z,y) :=V(z,d(z,y)) and W(z,y):=W(z,d(z,y)).
Note that V(z,y) and W (x,y) are not symmetric in x,y in general.
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Definition 2.11 (Lower bound of jump kernel). We say that condition (J>) is satisfied if there
exists a non-negative function J (called the jump kernel) such that

dj(z,y) = J(z,y)du(y)du(z)
in M x M, and, for (u x p)-almost all (z,y) € M x M,
C
Viz,y) W(x,y)’

where C' > 0 is a constant independent of x,y.

J(z,y) > (2.19)

Definition 2.12 (Lower bound of heat kernel). We say that condition (LE) is satisfied if the heat
kernel p;(z,y) exists and, for any Cy > 1, there exists a constant C' > 0 such that for (1 x p)-almost
all (x,y) € M x M and any t < Co(W (z, R) A W(y, R)),

1 t
”“”)Zc<vmﬁv1u¢»Av«aww«aw>' (2.20)

We say that condition (sLE) (strong lower estimate) is satisfied if condition (LE) is satisfied and
the function py(x,y) has a version satisfying

mﬂwwzéfom@wm

for any t,s > 0, x,y € M and satisfying (2.20) for all z,y € M and t < Co(W (x, R) A W(y, R)).
Denote by (C) the condition that the Dirichlet form (£, F) is conservative, that is
P11 =1 in M for each t > 0.
The second main result of this paper is the following theorem.

Theorem 2.13. Let (£, F) be a regular Dirichlet form in L? without killing part. If conditions
(VD), (RVD) and (TJ) hold, and the jump kernel J(x,y) exists, then

(J>)+(Geap)+(C) < (J>)+(ABB)+(C) = (sLLE)+(sLE) = (LLE)+(LE) = (J>)+(Gcap).
We will prove Theorem 2.13 in Section 8.

Corollary 2.14. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume that
conditions (VD), (RVD) and (TJ) hold, and the jump kernel J(x,y) exists. If

Zlél]\f/[ W(z,R) >0, (2.21)

then
(J>) 4+ (Gcap) < (J>)+ (ABB) & (sLLE) + (sLE) < (LLE) + (LE).

Moreover, under these hypotheses, (€, F) is conservative.

Remark 2.15. The assumption (2.21) can be easily verified in the following two cases:

(1) R = diam M;

(2) the function W (z, R) is, in fact, independent of the space variable z.

Indeed, in the case (2) the condition (2.21) is obvious. In the case (1), if R = oo then W (2, R) =
oo so that (2.21) is again trivially satisfied. Consider the case when R = diam M < oco. Then we
have by (2.8), for any z,y € M,

WR _Wadzy+R) _ . (d(:c,y)+R>52
R

2 < 2%, (2.22)

W(y, R) W(y. R) a
Hence, for an arbitrary fixed point z € M,
inf W(y,R) > cW(z,R) >0
inf W(.F) = W@ ) >

for some ¢ > 0, which is (2.21).
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In the paper [12], the authors study the upper bound of heat kernel under mild assumptions on
a doubling space. Combining the results in [12] and the results in this paper, we can obtain the
two-sided heat kernel estimates (see Theorem 2.20 and Corollary 2.21). To state these results, let
us introduce more conditions.

For a given number 1 < ¢ < oo, let ¢’ be the Holder conjugate of ¢, that is,

so that ¢ =1if g =00, and ¢ = c0 if ¢ = 1.

Definition 2.16 (L%tail estimate of jump kernel). For ¢ € [1,00], we say that condition (TJ,) is

satisfied if (€, F) has the jump kernel J(x,y) such that, for all x € M and R > 0,
C

V(x, R)Y4 W(z,R)’

where C' € [0, 00) is a constant independent of z, R.

(2, M La(Be,r)e) < (2.23)

Of course, if ¢ < co then we have

1/q
I (%, )|l a(B@,R)e) = (/ J(ﬂ?,y)qdﬂ(y)> ,
B(z,R)°

while for ¢ = oo

||J($, ')HL‘?(B(x,R)C) = €sup J(xv )
B(z,R)c

Definition 2.17 (Upper bound of jump kernel). We say that condition (J<) is satisfied if (£, F)

has the jump kernel J(z,y) such that, for (u x p)-almost all (x,y) in M x M,
C

V(z,y) W(z,y)’

where C' € [0, 00) is a constant independent of z,y.

J(z,y) < (2.24)

Note that if ¢ = co then ¢’ = 1 and, hence, condition (TJ) coincides with (J<), that is,
(J<) = (TJoo).
If further V(z, R) < R® and W (z, R) < R”, then (2.24) becomes

J P —
(ZL‘,y) = d('x’y)a_i_ﬁv

which was a starting point in a lot of literature, see for example [6], [9] and the references therein.
Let us recall the notion of a regular £-nest (cf. [7, Section 2.1, p. 66-69]). For an open set
U C M, let

Capy(U) := inf{€(u) + |[ul|72 : u € F and u > 1 p-almost everywhere on U} (2.25)

(noting that Cap;(U) = oo if the set {u € F :u > 1 on U} is empty). An increasing sequence of
closed subsets {F},}32, of M is called an E-nest of M if

lim Cap,(M \ F}) = 0.
k—ro0

An E-nest {Fy} is said to be regular with respect to p if for each k,
w(U(x) N Fy) >0 for any x € Fy, and any open neighborhood U (z) of z.
For an E-nest {F},}7° |, denote by
C({Fy}) := {u is a function on M : u|p, is continuous for each k} . (2.26)

A function u : M — R U {oo} is said to be quasi-continuous if and only if u € C({F}}) for some
E-nest {F},}7° .
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Note that any function v € F admits a quasi-continuous version u (see. [7, Theorem 2.1.3 on
p. 71 and Theorem 2.1.7 on p. 75]). Unless otherwise stated, we always use the quasi-continuous
versions of functions in F. We also follow this convention for other Dirichlet forms.

We introduce condition (TP,) for ¢ € [1, 00] that means a certain Li-estimate of the tail P;1pge
of the heat semigroup {P;} outside ball.

Definition 2.18 (L9tail bound of heat semigroup). We say that condition (TP,) holds for a given
number 1 < ¢ < oo if the heat kernel p;(z,y) exists on (0,00) x M x M, and there exists a regular
E-nest {F};} such that the following two statements are true:

(1) for every x in M and every t > 0,

pi(x,-) € C({Fi}),
(2) for any ball B := B(x, R) with R € (0,R) and any 0 < t < W (x, R),

1 t
, o <C - A - , 2.27
It Mo = (e e ) (220
where C' is a positive constant independent of B, t.

For any ¢ € [1,00], define condition (UE,) that is an off-diagonal upper estimate of the heat
kernel.

Definition 2.19 (L%-upper bound of heat kernel). For a given 1 < g < oo, we say that condition
(UE,) is satisfied if there exists a pointwise defined heat kernel p;(x,y) such that, for all z,y € M
and all 0 <t < W(z, R) AW (y, R),

1 t
60 < € (i Ty )
1 1
(e * o)

for some positive constant C' independent of ¢, z, y.

X (2.28)

For ¢ = oo, we write (UE) for (UE4), by omitting the subscript co.
The following theorem provides a two-sided estimate of the heat kernel.

Theorem 2.20. Suppose that (E,F) is a regular Dirichlet form in L? without killing part. Let

q € [2,00]. Assume that R = diam M and the jump kernel J(z,y) exists when q # oco. If conditions
(VD) and (RVD) hold, then

(PI) + (Geap) + (TJy) PI) + (ABB) + (TJ,)

TP,) + (LLE)

TP,) + (LLE)

E,) +

=
<~
<~
= (U (NLE) + (C).

(
(
(
(UE,
We will prove Theorem 2.20 in Section 8.

We say that condition (J) is satisfied if both (J<) and (J>) are satisfied. Combining Theorem
2.20 and Theorem 2.13 (or Corollary 2.14), we immediately obtain the following corollary.

Corollary 2.21. Suppose that (€, F) is a reqular Dirichlet form in L? without killing part. Let
q € [2,00]. Assume that R = diam M and the jump kernel J(z,y) exists when q # oco. If conditions
(VD) and (RVD) hold, then

(J>) + (Geap) + (TJg) & (J>) + (ABB) + (TJ)
& (TPy) + (SLE) + (C) (2.29)
& (TP,) + (LE) + (C) (2.30)
& (TP,) + (LE) (2.31)
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= (UEy) + (LE) + (C). (2.32)
In particular, if ¢ = oo (so that (TP ) < (UEw) = (UE)), then we have
(Geap) + (J) & (ABB) + (J) & (UE) + (LE). (2.33)

Moreover, under any set of conditions in the above equivalences, the Dirichlet form (£,F) is con-
servative.

The equivalence in (2.33) generalizes the results in [6], [9] (see also [5]). Let us emphasize that
the scaling function W (z,r) in the present paper may depend on the variable x (which causes
serious difficulties in the proof), while in [6] and [9] the scaling function does not depend on x.

Remark 2.22. Note that condition (ABB) is stable under bounded perturbation in the following
sense. Let (€0, F®)) § = 1,2, be two regular Dirichlet forms without killing parts on L?(M),

whose energy measures (see (2.13)) for any u € F on any ball B are denoted by Fg)(u), i=1,2

respectively. Suppose that there exists ¢ > 1 such that ¢! [}, ng)(u) < [ dfg) (u) < cfy dfg)(u)
for any ball B, any v € F and any Borel subset U C M. Then, condition (ABB) holds true for
(EW, FM) if and only if it holds true for (£3), F(2)),

Consequently, all results related with (ABB) are also stable, such as Theorem 2.10, 2.13 and
2.20, Corollaries 2.14, 2.21, and so on.

Example 2.23. Assume that the measure pu is a-regular for some « > 0, that is,
V(z,r) ~r®

for all z € M and r > 0. Then the both conditions (VD), (RVD) are trivially satisfied with R = oco.
Set W (z,r) = r? for some 8> 0 and all x € M and r > 0. The condition (TJ) means in this case
that

C
J(z,dy) < —=. (2.34)
/B(:L’,R)C RS

The Poincaré inequality (PI) means that, there exist C' > 0 and x € (0, 1] such that, for any ball
B := B(z0, R) with 0 < R < R and any function u € F' N L,

/ |u—u,€B|2du<CRﬁ/dFB(u). (2.35)
kB B

The generalized capacity condition (Gcap) means that, for any v € F' N L> and for any pair of
concentric balls By := B(xg, R), B := B(zog, R+ 1) with zp € M and 0 < R < R+ r < R, there
exists some ¢ € R-cutoff (By, B) such that

E(u2p, ) < f’;/ u?dp. (2.36)

B

Theorem 2.10 says in this case that, under the standing assumption (2.34), the conditions (2.35),
(2.36) are equivalent to the following localized lower estimate: for any ball B = B(z,r) and for any
t < (57")’8 , the Dirichlet heat kernel in B exists and satisfies the inequality

B c 1/8
pr(y) 2 o5 it y € Ble, 6677,
Consequently, the global heat kernel exists and satisfies the near-diagonal lower estimate
1/8
pt(a;,y)zm if d(x,y) <ot/”.
The condition (J>) means in this case that

J(z,y) (2.37)

>
= d(x,y)ots



14 A. GRIGOR’YAN, E. HU, AND J. HU

Hence, under the hypotheses (2.34), (2.35), (2.36) and (2.37), Theorem 2.13 yields the full lower

estimate:
1 / C d(x,y)\ 7

3. ENERGY MEASURE

In this section we collect some elementary properties on energy measures, which will be used
later on.
Let (£, F) be any regular Dirichlet form in L? with the Beurling-Deny decomposition (2.5). Let

Floc :={u:V U & M, there exists v € F so that v = u p-a.e. on U}.

Since (€, F) is regular, the constant function 1 € Fc, so that F' C Floe. It is known that for any
u € Fioe N L, there exists a unique Radon measure dI'®) (u) := dT'™) (u, u) such that

EB) (u,u) = / dr ) (u, w),
M
see for example [7, Lemma 3.2.3, and the first two paragraphs on p. 130] wherein the symbol
dpfyy = 2dT ) (u, u)
is used instead. Moreover, these measures satisfy the following properties: for any u,v,w € Fioe N
L,
e the product rule ([7, Lemma 3.2.5, and the second paragraph on p. 130]):
dl'P) (v, w) = udl'™ (v, w) 4+ vdl'F) (u, w); (3.1)
e the chain rule ([7, Theorem 3.2.2, and the second paragraph on p. 130]):
dl' ) (@ (u), v) = &' (u)dD P (v, w

(v, w)
for any ® € C(R) (one does not need to assume ®(0) = 0);
o the Cauchy-Schwarz inequality: for any f € L*(M,T") (u)), g € L*(M,TE) (v))

/|fg|dF (u,v) < (/ F2drt) >1/2 (/g2dr<L>(v)>1/2 (3.3)

(cf. [21, on p. 390]).
Moreover, for any u € Fioe N L, we have
T (Ju) = d' ) (u) (3.4)

(see [11, Eq. (5.6)]).
Recall that for a Borel measurable subset U of M and u € F', the energy measure I'g(u) is
define in (2.13):

dly (u)(x) = dI'P () () +/ 1y (y) (u(z) — u(y))*dj(z, y).

M

Such a measure dI'y(u) is well-defined for any v € 7' and U € M. Clearly, for any three sets
A, B,Q with A C B, any v € F' and any measurable function f > 0,

/ Fda(u / FdUp(u (3.5)

/fdrB(uM)g/fdrB(u). (3.6)
Q Q

and
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4. CHANGE OF METRIC

4.1. A new metric. In [12], the authors introduced a new metric d, on M with the following
properties: under this new metric d,, the measure p still retains the doubling property (or the
reverse doubling property), while the scaling function W (x, R) becomes independent of a point z.
This type of change of metric was first used by Kigami in [19]. Let us recall the construction and
some properties of the new metric.

For any =,y € M, set W(z,y) := W(z,d(z,y)). Let

D(z,y) :=W(x,y) + W(y,x), (4.1)

Clearly, the quantity D(x,y) = 0 if and only if z = y, and is symmetric: D(z,y) = D(y,x). The
following proposition shows that D(z,y) is a quasi-metric on M.

Proposition 4.1 ([12, Proposition 5.1]). There exists a constant C1 > 1 such that for all z,y, z in

M,
Consequently, there exist two constants B, Co > 0 and a metric dy, on M such that
Oyl (z,y)P < D(z,y) < W(z,y) < Codi(z,y)” (4.3)

for all x,y in M.

In the rest of the paper, 8 will be always referred to as the constant from Proposition 4.1.
Define the function F' by

F(z,R) :=W(z,R)}"/?, ze M, R>0, (4.4)

where 8 comes from (4.3). Clearly, such a function F(z,-) is strictly increasing on [0, cc] for any
x € M, since so is W(z, ). Moreover, by (4.3)

L_ld*(l'?y) S F(l’,d(.’E,y)) - W(.’E,y)l/’B S Ld*(x7y)7 z,y € M (45>

for some constant L > 1. For x € M, let F~!(z,-) be the inverse of the function ¢ — F(x,t), and
then

F Yz, t) =W (z,t%), t>0.
For any r > 0, let
Bi(z,r) :={y e M : di(y,z) <r}

be an open ball under the new metric d,.

Proposition 4.2 ([12, Proposition 5.2]). There exists a number Ly with Lo > L? > 1, where L > 1
is the same constant as in (4.5), such that the following properties are true.

(1) For all x in M and all r > 0,
B.(z,Ly'r) € B(z, F*(x, L™r)) C Bu(w,7), (4.6)

where F~1(x,-) is the inverse of F(x,-) with F(z,-) defined by (4.4).
(2) For all x in M and all R > 0,

B(x,Ly*R) C Bu(x, L 'F(z, R)) C B(z, R). (4.7)
Consequently, a subset of M is open under the metric d, if and only if it is also open under d.

Proposition 4.3. For any n > 0 and for any x,z € M with dy(z,z) < nW (x, R)Y/?, there exists
a constant C' > 0 such that

C'W(z,R) < W(z,R) < CW(z,R). (4.8)
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Proof. Fix z,z € M with d.(z,z) < nW (x, R)"/#. It suffices to consider the case when R < oo.
By the second inequality in (4.5) and the left inequality in (2.8), we have
W(a,d(z,2)) = F(z,d(2,9)) < (Ldu(, 2))° < (Ln)*W (2, F) < Wz, cR),
for some ¢ > 0. This implies that
d(z,z) < cR.
This together with the right inequality in (2.8) implies that

W@ R) _ Wi(r,dz) +R) d(z,2) + R)\™ 5
WER - WER) SC(R) = cler

Similarly, we also have

W B ety
W(z, R)
By renaming the constant C, we finish the proof. O

For any x in M and any r > 0, let Vi(z,r) be the volume of a ball B,(z,r) under the metric d,,
that is,

Vi(z,r) = p(By(z,1)).

Note that R is the diameter of M in [12], while in this paper, it can be smaller than diam M.
Following the proof of [12, Proposition 5.4] and using Proposition 4.3 instead of [12, Proposition
5.3], we can prove that the reverse doubling condition (RVD,) under the new metric d, holds true
for all z € M and r < W(x, R) (see Proposition 4.4(2)).

Proposition 4.4 ([12, Proposition 5.4]). Assume that (VD) is satisfied. Then the following state-
ments are true.
(1) Condition (VDy) holds true: there exists a constant C' > 0 such that, for all z in M and
all r >0,
Vi(z,2r) < CVi(z,r). (4.9)
Consequently, there exists a constant c, > 0 such that for all x,y € M and all0 < s <r
with dy(z,y) <7,

Vi(z, ) A
<C|(- .
Vi(y,s) ~ <8)

(2) Assume in addition that (RVD) is satisfied. Then condition (RVD.) holds true: there exists

a constant o/, > 0 such that for all z € M and all 0 < s <r < W (z, R)Y/?,

Feg ot (D) (110

4.2. Some conditions under the new metric. In this subsection, we will rephrase the conditions
(TJ), (PI), (Cap<) under the new metric d.. Besides, we will use conditions (Nash,) and (FKj)

under d, that are called the Nash inequality and Faber-Krahn inequality, respectively. These
conditions will be used to derive the weak Harnack inequality.

Definition 4.5. We say that condition (TJ,) is satisfied if there exists a non-negative kernel J on
M x B(M) such that

dj(x,y) = J(x,dy)du(x) in M x M,
and for any point x in M and any r > 0,
<@
— 7"/6’

where C' € [0, 00) is a constant independent of z,r with C'= 0 when J = 0.

J(x, By(z,1)°) (4.11)

It is proved in [12, Proposition 6.4(3)] that
(TJ) = (TJ.). (4.12)
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Definition 4.6. We say that the Poincaré inequality (PI.) is satisfied if there exist two positive
constants C., k, with s, < 1 such that, for all B, := B, (zq,r) with r € (0, W(xo, R)'/?) and all
functions u € F' N L,

/ lu — g, g, |2dp < C*rﬁ/ dl'g, (u), (4.13)
where I'p, (u) is defined as in IZ;BIS) "
It is known that for any ball B,
]{3|u—uB|2du:32Hg]é|u—a|2du. (4.14)

Indeed, for any a € R, we have

][ \u—a\gdu:][ lu —up +up — al’*du
B B

:]{9 (Ju —up|* + 2(up — a)(u — up) + (up — a)?) du
:]é lu — uB\Qdu +2(up —a)(up —up) + (up — a)2

:][ lu — up|*du + (up — a)? 2][ lu — up|*dpu,
B B
which implies that

inf][ lu — al?dp 2][ lu — up|*dpu.
a€R B B

The other direction is trivial, thus showing that (4.14) is true.

Proposition 4.7. Let (£, F) be a regular Dirichlet form in L?, and let d, be the new metric defined
in Proposition 4.1. Assume that condition (VD) holds. Then

(PI) & (PL). (4.15)
Proof. Assume that condition (PI) holds with the constant x < 1.
Fix a ball B, := B,(z,r) with r < W(z, R)"/#. Set
R:=F Yz, L7'r) < F7'(z,r) < R.
Note that by (4.4)
W(z,R) = F(z,R)’ = (L 'er)’. (4.16)

By (4.6), we have
B.(z,Ly'r) € B(x,R) C Bi(x,7) = B.. (4.17)

It follows that

][L_IB Iu—uﬁL(;ledu: inf][B » lu —al?dp (by (4.14))
Rlg Dx kB (x,Ly r)

a€eR

< inf V(””“)][ lu—al?du (by (4.17))
~ aeR V*(x,mLalT) kB(z,R) a v
<C inf][ lu —al*du (by (VD.))

acR kB(z,R)
-C 4 — Uep(,r)*dp (by (4.14) again)

kB(z,R)
<CWG@R) [ dlpm( (b (PD)

B(z,R)

< (L ler)? / dCp(u) (by (4.16), (4.17), (3.5)),

*
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thus showing condition (PL.) by setting k. = KL L
Similarly, one can show (PI.) = (PI). Indeed, let B := B(z, R) with R < R and set
r:= L7 F(z,R) < W(z, R)"/".

Note that
W (z,R) = F(z, R)? = (Lr)°. (4.18)
By (4.7), we have
B(x,Ly'R) C Bi(z,r) C B(x, R) = B. (4.19)
It follows that

lu—u_ —1p|%dp = inf][ lu —al’dp (by (4.14))
]{*LolB rely B a€R )5, B(z,L5 ' R)

< inf ‘/(“53)1][ lu—af?du (by (4.19))
a€R V(z, ki Ly R)J k. B, (2,r)
< Cinf lu—al*dp (by (VD))

a€R /., B.(z,r)

< P /B ( )de*W)(u) (by (4.14) and (PL,))

< C’LﬁW(x,R)/BdPB(u) (by (4.18), (4.19), (3.5)),

thus showing that condition (PI) holds by setting x = kL b<, O
We look at condition (Nash,).

Definition 4.8. We say the Nash inequality (Nash,) holds for (£, F) if there exist two positive
constants C, v such that, for all B, := B.(xo,r) with r > 0 and all u € F(B.)

B

1+l/ CT D\ — v

s ™ < s (€ w) + W G0, B) ™ ulfa) Jull (4.20)
We remark that both constants C, v above are independent of R.

Lemma 4.9. Let (£, F) be a regular Dirichlet form in L?, and let d, be the new metric defined in

Proposition 4.1. Then
(VD,) + (RVD,) + (PL,) = (Nash,). (4.21)

Proof. Fix a ball B, := B, (xg,r) of radius r > 0. We divide the proof into three steps.
Step 1. We show that for any s > 0 and u € F(By),

HUSH%Q > Sup

Tl 1.2

where C' is a positive constant independent of s, u, By, and

us(x) ::]{B*(%s) u(2)du(z)

is the average of u over the ball B, (z, s).
Indeed, we have by condition (VD) that for all s > 0,

s < [ sy . GG
/Iu )|dp(z) /mdu(w)

= [ uinte) [ D Ie e gy
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<0 [ wepante) [ 0 = .
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On the other hand, since u = 0 outside B, = B(zo,r), the function u; = 0 outside the set

Uyen. B(y, s). It follows that

1
fuie= s s [ u@)due)
mEUyEB*B(yvs) Vk(w’ S) B*(ZZ‘,S)

Vily,s) 1 /
< sup sup (=) dp(2)
YEBx« x€ B« (y,s) V*(x’ S) V*(ya S) B (z,s)

sup

i m“u”ﬂ- (by (VD,))

Therefore,
2

C
sl < Nl sz < sup sl

thus showing (4.22).
Step 2. We show that for any s € (0, %*W(mo,ﬁ)l/ﬂ) and any u € F,

lu = usl|72 < Cs”E (u, ),

(4.23)

where C' > 0 is some constant independent of s, u, and tlf constant s, comes from condition (PL).
Indeed, fix a function v € F and s € (0,%W(w0,R)l/ﬁ). Since M is separable, there is a
countable sequence of balls { B; := B,(z;, s),7 > 1} such that B;NB; = 0 if i # j and M C U2,5B;,

see for example [18, Theorem 1.2, p. 2]. Thus,

[e.9]

So [t

— /5B,
o0 [e.@]

< 22/ \u—u63i|2d,u+22/ |ueB, —u8|2d,u.
i=175Bi i=1 7/ 5Bi

Note that by condition (PL,),

/ lu — ugp,|*dy < / lu — ugp, |2du < C(6/<:*_18)6/
5B; :

6B; (6831 B;)

IN

llu — USH??

dl =1,y (u),

from which, it follows from (VD,) and Cauchy-Schwarz inequality that

1
U, .—u52d,u§/ / ugn, — uw(2)|2du(z)du(z
L, twom sl s [ G [ s, — () Paute)ate)
< — uep;, — u(2)|“dp(z)dp(z
L sy Ly, s~ uCdute)dnta)
dp(x) -1 ﬂ/
< -C(6k, s dl i —1 5 (u
o /E)Bi V;(.T7S) ( ) (6 7131') (6 Bl)( )

Fox

Vo) ) g, |
= -C(6k, s dl . —1,\(u
/SBZ ‘/*('7:7 S) :U’(E)Bz) ( ) (6&;131-) (6rx 1Bz)( )

< C's /(6“3) I ——T)

Therefore, plugging (4.26), (4.25) into (4.24), we obtain

o0

2 B B
U — Ug < Cs / dl' . —1py(u) < Cs / dl v (u).
= 72 Z oty s () ; ety T

(4.24)

(4.25)

(4.26)
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On the other hand, by the doubling property (VD,), there is an integer Ny > 1, depending only
on the constant in (VD,), such that every point € M is contained at most Ny number of sets
6r; 1 Bj. Then, we obtain

- g2 < Cs? Z )= O / Z 1 guet oy dTar (0) < NoCsPE (),
thus showing (4.23).

Step 3. We show the inequality (4.20) in condition (Nash )

Indeed, we have by (4.22), (4.23) that for any s € (0, %W (o, R)'/#) and any u € F(B.),

e o (g lal
HU||L2_ Hu 7J’SHLQ—i_ HuSHLQ_ (s (u7u)+inf1e3*m(ﬂf73)

On the other hand, when R < oo, we have for any s € [%W (29, R)1/#, 00)

B
2 S 2
U < — U
H ||L2 — (6715*W($0,R)1/ﬁ)5” HL2
Adding up the above two inequalities and setting Cy := C; V (6k; )%, we have for all s > 0

= (6r,")7s"W (20, B) " [[ull7-

] Juli,
€ ulle < o7 (€(u) + Wlao, R) 7 fulfs) + sup 70

ull7 Vi(zo, 1)

e SB (E(U) + W($07§)_1Hu||%2) + V (:L»O 7") Seug V (x S) '

From this and (VD,), we have for all s < r,

2
)2, < 88 )L ful2 ryer iz
O3 ulfs < o (€ + Wao. B) Mul) +.€ (5) ooy (4.27)
Whilst for all s > r,
o 2
S w2, < s° R) w2 ryes iz, ‘
O3 ullfs < o7 (£0) + Wao B ulila) +€ () 57005 (4.28)
since, by using (VD,) and (RVD,),
Vi(xo, 1) Vi(xo,7) Vi(zy7) 7\ O
R Vi) = 3 Ve vitas) < 5)
Define two functions fi, fo : Ry — Ry by
s — 11 12 5T TO‘*HuH%l
R(s)i= 55 (0 + Wian ) ull) + 5 (T8 ) s>,
_ vty S (g
fQ(s) = E (g(u) + W(.ZEO,R) HUHL2) + a{k VY*(.’BO,T) , 8> 0.
It follows from (4.27), (4.28) that
if
C Yl < { N1 He<r (4.29)
fa(s), ifs>r,

where C' > 0 is independent of u, By, W (xg, E)l/ﬂ, s, but may depend on ax, ., 3 and on constants
in conditions (VD.,), (RVD,).

We will minimize the right hand side of (4.29) over s € (0,00). Indeed, a direct computation
shows that fi(s) attains its minimum over s € (0,00) at

51 = r(F(u, )7,
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where )
[Jwll?
Vi(wo, r)rf (E(u,u) + W (xo, R)~|ul|3,)

Similarly, the function f2(s) attains its minimum over s € (0,00) at

F(u,r) =

1
s9 = 1(F(u,r))ex+s.

We distinguish two cases whether F'(u,r) < 1 or not.
Case 1 when F(u,r) < 1. In this case,

51 = T(F(ujr))a*lﬂf <r.

Thus, applying (4.29) with s = s;, we obtain

o 9 _B
Ll )

C M ul22 < fils1) = Claw, B) (E(u) + W (wo, B) " [lull32) 777 (v*@o,r)

B on the both

Qx

for a positive constant C'(ay, 3) depending only on ax, 5. Raising to the power 1 +
sides and then rearranging the terms, we obtain that

ull?,Vi(x NORNCE _
ullZ (””Lnun(”) < O (£(u) + W (w0, )~ ulZs) (4:30)
Ll

where C' is a positive constant independent of u, B, W (zo, R)'/%.
Case 2 when F(u,r) > 1. In this case,

Sg = T(F(ujr))a*lﬂf >

Thus, applying (4.29) with s = s, we obtain

”UH2 (HUH%Q‘/*(:UO7T)
g | ——n——>
t lullZ.

ﬁ/
)a* < O (&(u) + W (o, B) " Jul2) (4.31)

for a positive constant C independent of u, By, W(mo,ﬁ)l/ B,
On the other hand, since u € F(B,), we have by the Holder inequality,
lullfr < (B lullfz = Vi(wo,r) [l 72
That is,
[ull 2 Vi(wo, 7)

> 1.
ull7

Hence, it follows from (4.30), (4.31) that

]2, Vo, )\ )"

where v := a% A o% = aﬁ since o, < ay, thus showing that

B
2(14v) _ Cr
||u”L2 — ‘/*(:L‘O’T)V (

for some C' > 0 independent of W (xg, R)*/#. This proves that condition (Nash,) holds. O

E(u) + W(zo, R)™H[ull7) [lull?:

For a non-empty open set U C M, let LU be the generator of the Dirichlet form (&, F(U)).
Denote by A;(U) the bottom of the spectrum of £V in L?(U). It is known that

AM(U)= in 5(u2) .
weF(O\{0} [|ull72
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Definition 4.10. We say the Faber-Krahn inequality (FK,) holds for (£,F) if there exist three

positive constants C, v, o, with o, < 1 such that, for all B, := B,(z,r) with r € (0,0.W (x0, R))
and for all non-empty open subsets U, of B,

C' (B
nw) = (M(U;)) | (4.32)

The following derives the Faber-Krahn inequality from the Nash inequality, under the metric d,.

Lemma 4.11. Let (£, F) be a regular Dirichlet form in L?, and d, be the new metric defined in
Proposition 4.1. Assume that every ball has finite measure under the metric dy. Then

(Nash,) = (FK,).

Consequently, we have
(VD) + (RVD,) + (PL,) = (FK.,) (4.33)

Proof. Let o, € (0,1/2) be a number to be determined later on. Fix a ball B, := B(xq, ) of radius
r € (0,0.W (20, R)"/#). Let U, C B, be open. For any u € F(U,) \ {0}, since

lull?s < w(U)|lull7e,
we have by condition (Nash,) that

(14v) Cr?

2 D\~ v
HUHLz = W (E(Uau) + W (xo, R) 1”“”%2) ||U”%1

ull2,\”
< Crf (E(u,uw) + W (2o, R)|ul|72) <M(U*)HHL>

1(Bx)
U)\"
< Je] 8 2 (U 2
< (euw+ allul) (A59) i
Since u(Uy) < u(By), it follows that
Ud)\”
2, < OB UL Bl 2. 4.34
Julls < Croeu,) (155 +Cotluls (434
Taking o, € (0,1/2) to be so small that
1
8 <« —
Co, <5

we obtain from (4.34) that

1 U\
Sl < crtequ) (405

1(Bx)
from which,
: E(u,u) 1 (M(B*))V
MU, = inf > ,
1(U:) weF(U N0} [lullZ. — 2078 \ u(Uy)
thus showing that condition (FK,) holds. O

Let us rephrase (FK,) in terms of the original metric d, and denote it by (FK).

Definition 4.12 (Faber-Krahn inequality). We say that condition (FK) holds if there exist three
numbers o € (0,1] and C, v > 0 such that, for all balls B with radius less than o R and all non-empty

open subsets U of B, X
Ct (B
w02 57755 () 9

Proposition 4.13. Let (£, F) be a regular Dirichlet form in L?, and d, be the new metric defined
in Proposition 4.1. Assume that condition (VD) holds. Then

(FK) < (FK,). (4.36)
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Proof. Assume that condition (FK) holds. Fix a ball B, := B.(z,7) with 0 < 7 < o, W (z, R)Y/5,
where o, is a positive constant to be determined later. Let U, be an open subset of B,. Note that
U, is also open under the metric d by using Proposition 4.2. Set
R:=F '(z,L7 'Lor)
so that
W(z,R) = F(z,R)? = (L7 'Lor)? < (L7 'Ly)?c®W (2, R).
By the right inequality in (2.8), one can choose o, to be so small that R < oR, where o is the
constant from condition (FK).
Using (4.6) with r replaced by Lor, we have
B, = Bi(z,r) C B(z,R) =: B,
from which, using condition (FK), it follows that
-1 B v -1 B* v -1 B* v
ML) > C (M( )) . _© (u( )) _ C; (u( )) 7
Wiz, R) \ u(Us) Wiz, R) \ n(Us) (L~'Lor)P \ u(Us)

thus showing that condition (FK,) holds.

Finally, we show the converse implication (FK,) = (FK). Indeed, assume that condition (FK.)
holds. Fix a ball B := B(x, R) with R < o¢R, where o > 0 will be picked up later. Let U be an
open subset of B, which is also open under the metric d,. Set

r:= L7 F(z, LoR)

so that
W (z, LoR) = F(z, LoR)® = (Lr)®.
Using (4.7) with R replaced by LoR, we have
B = B(z,R) C By(z,r) =: B,. (4.37)
By the left inequality in (2.8), one can choose o to be so small that
r=L""W(x, LyR)"? < L7'W (2, Lo R)"/? < o, W (x, R)"/5.
Since U C B C By, it follows from condition (FK,) that, using (4.37) and the right inequality in

(2.8),
C (u(B)Y - C (u(B))"
GRS (M(U)> ST <M(U)>
_ c! w(B)\" ¢ (B
" L BW(xz, LoR) <M(U)> = W(z, R) (u(U)> ’
thus showing that condition (FK) holds. O

We introduce condition (CapZ).

Definition 4.14 (Condition (CapZ)). We say that condition (CapX) is satisfied if there exists a
positive constant C' such that for all balls B, (zq,r) with r < W (zg, R)Y/#

1(Bx)
rB

1
cap(iB*, B, <C (4.38)

Lemma 4.15. Let (£, F) be a regular Dirichlet form in L?, and d, be the new metric defined in
Proposition 4.1. Then

(VD) + (Cap<) = (CapX).

Consequently, we have

(VD) + (Geap) = (VD) + (Cap<) = (CapZ).
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Proof. Fix By := Bi(zo,r) with r < W (zo, R)'/. Let Cy be the constant in (2.8), Lo > 1 be the
constant as in (4.6) and C be the constant in Proposition 4.3 with n = 1.
Step 1. We show that for any z € %B*,

cp(Bi(z,br))
rB ’
where c is some positive constant independent of z, By, and a, b are given by

a = 2%/ L, cHPTYP) 1 and b= (2047C7) !

sothata<Lalb<b< %
Indeed, let

cap(By(z,ar), By(z,br)) < (4.39)

Ry :=FY(z,L 'Loar) and Ry:= F'(z, L br)
so that Ry < Ry and
W(z,R1) = F(z,R1)? = (L 'Loar)? and W(z, Ry) = F(z, Ry)? = (L™ 'br)®.
Moreover, by (4.8) and the fact that d.(zo, z) < 1W(af0 R)'Y/8 we have

7P W (zo, R CW(z, R) —
— < : < —— < W(z,R),
2L CwC (2 )ﬂcwc erycowe = & H)

W(Z, RQ) =

which shows that o
Ry < R.
y (2.8), we have

Ro\"2 _ W(z, Ry) (L~br)? 3
2 > — — 9P
e (&) = Weny = @y =20

which implies that
2R < Rs.

Also note that by (4.6),
By(z,ar) C B(z,R1) C B(z,R2) C By(z,br).
It follows from condition (Cap.) that
cap(Bi(z,ar), Bi(z,br)) < cap(B(z, R1), B(z, R2)) < cap(B(z, R1), B(z,2Ry))
Cp(B(z,2R1)) _ Cp(Bi(z,br)) _ Cu(Ba(z,br))

< =
- W(z,2R)) — W(z, R) (L—1Lgar)?

thus showing (4.39).
Step 2. We show condition (CapZ).
Indeed, using condition (VD, ) there exist a finite number N of balls {B.(zi,ar)}Y, covering
B*7 where each center z; lies in B and {B.(z;, ar/5)} | are disjoint, for some integer N indepen-
dent of B.. Since each ball B, (zz, br) is contained in B*, using the subadditivity and monotonicity
of capacity, it follows from (4.39) that

N
cap((1/2)Bs, By) anp (2, ar), Z B(z;,ar), By(z,br))
=
cu(B zz, br)) ( )
< Z < Nem 52,
thus proving (4.38), and so condltlon (Capg) follows. O

Remark 4.16.

(1) Under (VD), conditions (TJ.), (PL), (CapZ) follow from conditions (TJ), (PI),(Cap<)
respectively. We emphasize that the number 5 appearing in (TJ,), (PL,), (Nash,), (FK,),
(CapZ) is the same, and it comes from (4.3).
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(2) By Propositions 4.4 and 4.7, Lemmas 4.9 and 4.11, and Proposition 4.13, we see that
under the conditions (VD) and (RVD), condition (PI) implies (FK). Hence, most of results
involving (FK) in [11], [12], [13], also hold true if (FK) is replaced by (PI).

5. WEAK HARNACK INEQUALITY AND OSCILLATION INEQUALITY

In this section, we will derive the weak Harnack inequality and the oscillation inequality. The
oscillation inequality gives rise to the local Holder continuity of harmonic function, which is used
to derive the lower bound of the heat kernel.

Definition 5.1. Let Q be an open subset of M. We say that a function u € F' is subharmonic
(resp. superharmonic) in € if
E(u,0) <0 (resp. E(u,p) = 0) (5.1)

for any 0 < ¢ € F(Q). A function u € F’ is called harmonic in  if it is both subharmonic and
superharmonic in €.

For any function v € F and any two subsets U C V' of M, define the tail of v outside V by

Ty (o) = esup | jo(y)|J(z.dy). (5:2)

Note that, since v € F is quasi-continuous, the integral in (5.2) is well defined.

5.1. Lemma of growth under new metric. We introduce condition (LG,) that is called a
lemma of growth.

Definition 5.2 (Lemma of growth under new metric). We say that condition (LG,) holds if there
exist three constants ¢g > 0,0, € (0,1),v > 0 such that the following is true: if a function
u € F' N L% is superharmonic, non-negative in 2B,, where B, := B(zo,r) with radius r €
(0,270, W (9, R)'/?), and if

—-1/v
u(Bs N {u <a}) < 7T, 2B*(U—)>
<eg |1+ —"— , 5.3
W(B.) a (53)
for some a > 0, where tail function T's, 2p, (u—) is defined by (5.2), then
einfu > % (5.4)

15,
(see Figure 3).

We remark that the three constants eq, v, o appearing in (5.3) are all independent of By, u, R..

Ficure 3. Illustration to condition (LGy)

Before proving (LG.), we need more conditions, say, (ABB,), (EP.). We first introduce condition
(ABB{) for a number ¢ > 0.
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Definition 5.3. Given a number ¢ > 0, we say that condition (ABB{) is satisfied if for any
u € F'NL™ and any three concentric balls Bf := B, (zo, R), By := By(z9, R+71) and Q := B,(zo, R')
with 0 < R < R+7 < R’ < W(xo, R)"/?, there exists some ¢ € cutoff (B, B.) such that
9 C R/ C1
[ e <¢ [ garn+S (5 [ o (5.5)
Q B r r Q

where C' > 0,C; > 0 are two constants independent of function v and three balls B, By, €2, and
dl'q, dU'p, are defined by (2.13). We say that condition (ABB.) holds if condition (ABB{) holds
for some ¢ > 0 and C; > 0.

We mention that the value of the exponent C; in (5.5) is unimportant.
The following result is an analogue of [11, Lemma 6.2], which derives condition (ABB,).

Lemma 5.4. Let (£, F) be a reqular Dirichlet form in L?, and d, be the new metric defined in
Proposition in 4.1. Then
(VD,) + (Geap) + (TJ,) = (ABB.).

Proof. Let Cw, Ly > 1 be the constants in (2.8) and (4.6) respectively. Fix three concentric balls
B := B.(z0, R), By := By(wo, R+7) and Q := B, (g, R') with0 < R < R+r < R < W (o, R)"/5.
We divide the proof into two steps.
Step 1. We will show that for any v € F'NL> and any two concentric balls B, (z,ar) C B.(z,7/2)
with z € By = B.(x0, R) and with

a:= (258 L clP) e (0,1/2), (5.6)
there exists some ¢ € cutoff (B, (z,ar), B«(z,7/2)) such that
_ C
[dra@) <an [ Gdrs e+ [ (5.7)
Q Bi(z,r) ™ Jq

where % is the constant in condition (Gcap) and C' > 0 is independent of u, B, Bx, Q) and =z.
Indeed, let
Ry == F Y (2,L7'Lyar) and Ry:= F~ (2, L71r/2)

so that, using definition (4.4),

W(z,R1) = F(z,R))? = (L7 Loar)® and W(z,Rs) = F(z, Ry)? = (L7'r/2)%.  (5.8)
With the choice of a in (5.6), we have

2R < Ry, (5.9)

since, by (2.8),

~ W(z,R1) (L 'Lgar)?
We may assume that r < C; IW(IL’o,R)l/ B for some sufficiently large constant Cy > 1 so that
Ry < R, (5.10)

B -1 B
CW <R2> 2 > W(Z,RQ) . (L 7’/2) — QBQCW-

otherwise, one can replace r by C Ly, which is less than Cy 1W(:U0,§)1/ A and then runs the same
argument in the sequel. In fact, the value of Cjy can be chosen in the following way: by (4.8)

W (z, Re) = (L~ 1r/2)% < (L7/2)P (051W(:c0,§)1/ﬁ)6
= (L7'/2)(Cy1POW (2, R) < W(2, R)

provided Cj is chosen such that (2LCy)"?C < 1. With this choice of Cy, we see that Ry < R by
using the monotonicity of the function W(z,-).
Note that by (4.6),

By (z,ar) C B(z,R1) C B(z,R2) C By(z,7/2). (5.11)
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By condition (Gcap), there exists a function g such that

g € R-cutoff(B(z, R1), B(z, R2)) C &- cutoff (B, (z, ar), B«(z,7/2)) (5.12)
and that
E(ulg,g) <  sup C/ u?dp
T z€B(z,R2) W(xa Ry — Rl) (2,R2)

C
< sup / u?dp (using (5.9
z€B(z,R2) W(x’Rl) B(z,R2) ( ( ))

= sup Wz 1) ¢ / udp
(z,R2)

z€B(z,R2) W(x’ Rl) W(Z’ Rl)
C / 9 i
< u“d using (2.8), (5.8) and (5.11)).
S g fy 0 (0508 (28, (59 and (5.11)
From this and applying [11, Eq. (5.9)] with © being replaced by B.(z,r), we obtain

/ V2T, ) (g) < 4 / AT (o ) () + 26 (u2g, g)
By (z,r) By (z,r)
C

< 4/ 9*dTp, (2 ) (u) + 5/ u?dy. (5.13)
By (z,r) r By (z,r/2)

On the other hand, since the function g is supported in B, (z,7/2) C Bi(z,7) C Q = By(zo, R'),
we have

I e@io - gwrai- ( I/ [ ]
QxQ «(2,7) X By (z,r) By (z,r) X (Q\Bx«(2,1)) (2\Bx(z,r)) X By« (z,r)
o )
(\Bx(2,m)) x (N Bx(2,1))

N // u*()(g(x) — g(y))*dj
B (z,r) X By« (z,r)
n / / u?(2)g? (x)dj
Bi(2,5)x(Q\Bx(z,r))

+// u?(2)g%(y)dj. (5.14)
(B (2,7)) X Bu(2,5)
We estimate the last two integrals in (5.14). Indeed, for any
r
(z,y) € Bu(z, 5) x (Q\ Bi(z,7)),
we have dy(x,y) > 5. It follows from (TJ,) that

I/ CP@d s [ @) ew [ )
By (z,r/2)x (2\ B« (z,r)) Bi(z,r/2) 2E€Bx(z,r/2) J B« (x,r/2)°¢
C

< — uw?(z)du(z).
5@
Similarly, for any (z,y) € (2\ B«(z,7)) x By(z, §5), we see that d.(z,y) > §. Thus by (TJ),

// u?(2)g*(y)dj < / u?(z)dp(x)  esup / )J (z, dy)

(Q\Bs(2,7)) X B (2,5) O\ B« (z,r) xEQ\B* z,r) J Bi(z 7"/2)C

< / u*(x)dp(z)  esup / J(z,dy)
Q\Bx«(z,r) er\B* z,r) J By (z,r/2)¢
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¢ 2
<3 u?(z)dp(x).
" JO\Bu(z,r)

Plugging the above two inequalities into (5.14), we have

2 2 g 2 2 7. c 2
| @) —grai < [ /B e BN o) [ au (515)

Therefore, using the fact that supp(g) C Bx(z, 5), we have by (5.15) that

[ arato) = [ war®ig // (2)(9(2) — 9(»))?dj
Q QXQ
= [ waWg [[ @i - gw)ry
Bi(z,r) QXQ
< [ tﬁ’ u(2)(g(2) - g)2dj + < [ udu
By (z,r) «(2,7)X B« (z ™ Jq
= / QdFB*(zr)(g)+/u2du
Bi(z,r) Q

<if s / s [ (by (513)
By (z,r) By (z,r/2) ™ Jao

c

< 4/ ¢*dlp, () +3 u? (5.16)
By (z,r) ™ Ja

By (5.11) and (5.12), we have
¢:=gA1ecutoff(B(z, R1), B(z, R2)) C cutoff (By(z,ar), B«(z,7/2)).
Since g < K¢ in M, we obtain by (3.6) and (5.16) that

C/
/u2dfg(¢) < /quFQ(g) < 4/ QQdFB*(z,r)(U)+5/ uldp
Q Q Bi(z,r) ™ Ja

C/
§4/<:/ $*dl Lz (U +/u2du,
By (z,r) B.( )( ) 8 Q

thus showing (5.7), as desired.

Step 2. We show condition (ABB,).

Indeed, by condition (VD.), there exist a finite number of balls {B.(z;,ar)}Y | with z; € B
such that {B.(z;,ar)}Y, cover B} = B.(zq, R) and {B.(2;,ar/5)}Y are disjoint, where

N§C<R+T>a*. (5.17)

r

By (5.7), for each 1 <i < N, there exists some ¢, € cutoff (B, (z;, ar), B«(zi,7/2)) such that

/ W2dlo(6;) < 47 / G0, oy ) (1) + / u2dp. (5.18)
Q B (z4,r) = Ja

Define
¢ = max{qbl, ¢27 e 1¢N}

Since {By(zi,ar)}Y; cover By and

UlB «(2i,7/2) C By(x0, R+ 1/2),

the function ¢ belongs to cutoff (Bf, B,). On the other hand, for any f,g € F,
dlo(f vV g) +dla(f A g) < dlo(f) +dla(g).
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It follows from (5.18) that, using (5.17) and (3.5),

N
2 2
/Qu o (6) < Z/Q“ dTo ()
N
4,12 / @)+ Y IR
4/{2/ ¢2dFB* (u) + :f;(R:—r> */QUQdM

«(2i,7)

B C/ R/ Qlx
< 4/<&/ <Z 1B*(Z¢,R+r)> ¢*dlg, (u) + ol <T> /Qu2du-

i=1
By condition (VD.,), there exists an integer Ny > 1, independent of balls Bf, By, €2, such that each
point y in B, belongs to at most Ny balls like B,(z;, R 4+ r). Therefore, we conclude from above

that J”
[ itarao) < oo [ a5 (2) [
Q Q
thus proving (ABB,). O

IN

IN

The following condition (EP,) is the counterpart of condition (EP) in [11] under the new metric
dy.

Definition 5.5 (Condition (EP,)). We say that the condition (EP,) is satisfied if there exist two
universal constants C' > 0,C; > 0 such that, for any three concentric balls B} := By (zo, R),
B, := B.(xg, R+ 7) and Q := B, (2o, R') with 0 < R < R+r < R < W(xo, R)"/#, and for any
u € F' N L, there exists some ¢ € cutoff (B, By) such that

E(up,ug) < Se(uus?) + 5 (R)C [wans [ autea

The following is a parallel version of [11, Eq. (8.3)] under the new metric d,.

Proposition 5.6. Let (£, F) be a reqular Dirichlet form in L* without killing part. Assume that
every metric ball has finite measure. Then

(TJ.) + (ABB,) = (EP.). (5.19)

Consequently,
(VD) + (Geap) + (TJ) = (EP.). (5.20)
Proof. Note that conditions (TJ.) and (ABB,) are analogous to conditions (TJ) and (ABB) re-

/ C
spectively under the new metric d, (although there is a ratio term (%) in (ABB,) and there is

no such term in (ABB). Hence, one can follow the same arguments in the proof of [11, Eq. (8.3)]
to obtain the first implication (5.19).
The second implication (5.20) follows from Proposition 4.4(1), (4.12), Lemma 5.4 and (5.19). O

The following lemma plays an important role in the proof of Lemma 5.8. For simplicity of
notation, fix some xg € M and set for any r > 0

BT = B*(l'o, 7“).

Let us also recall the notion of “quasi-everywhere” (see the last paragraph in [7, p. 68]). Let E be a
subset of M. A statement depending on z € F is said to hold q.e. on E if there exists aset N C E
with Cap;(NN) = 0 (see (2.25) for the definition of Cap;) such that the statement is true for every
x € E\ N. “q.e.” is an abbreviation of “quasi-everywhere”. We also write £-q.e. to emphasize the
notion q.e. for the Dirichlet form (&£, F). In particular, one can introduce the notion of q.e. for
other regular Dirichlet forms.
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Lemma 5.7. Let (£, F) be a reqular Dirichlet form in L* without killing part. Assume that con-
ditions (VD..), (EP.), (FK.), and (TJ.) are all satisfied. Let a function u € F' N L™ be superhar-
monic, non-negative in a ball By, with r € (0,27 0, W (z9, R)Y/?), where constant o, comes from
condition (FK,). Let 0 < a <b, 1 <rg <r be some numbers and set
1B 0 {u < a) p(Bry O < b)
1(Bry) 1(Br,)
Then, with the same constants aw, v and Cy as in conditions (VDy), (FK,) and (EP,),

b 2 Qi B“I‘Cl
my < CA 2 2 mit (5.21)
- b—a 1 ro — 11 2

where the positive constant C' depends only on the hypotheses and

and mo =

(ra — rl)/BTB(r1+r2)/2,Br2 (u-)

A=1+

FiGURE 4. Illustration to Lemma 5.7

Proof. Note that any function v € F admits a quasi-continuous version u (see. [7, Theorem 2.1.3
on p. 71]), and that for any w € F and any open subset Q of M, we have u € F(Q2) if and only if
u =0 q.e. in Q°, (cf. [7, Corollary 2.3.1 on p. 98]).

Let us fix a quasi-continuous modification of a given function v in F and denote it by the same
letter u. Set v := (b —u)4+ and

my = pu(Br, N{u < a}), ma:= pu(Br, N{u < b}).
Taking ¢ € cutoff(B,,, B%(r1+r2))v we have

~ b—u 2 1
fig = /B PR /B ) ¢2<( b_(j*) = G /B (o0)dp.  (5.22)
>1 on {u<a)
Consider the set
E = B%(m-&-m) N{u < b}.
By the outer regularity of u, for any € > 0 , there is an open set 2 such that £ C 2 C B,, and

u(Q) < u(E)+e <mg+e. (5.23)
On the other hand, since ¢ = 0 g.e. outside Bl(r1+r2) and v = 0 outside {u < b}, we see that
2

¢v =0 g.e. in E°. Since ¢pv € F and ¢v = 0 q.e. in Q¢ C E¢, we have
ov € F(Q), (5.24)
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from which, by the definition of A\;(2),

2 E(giw,giw)
/QW =@

Therefore, using ¢v = 0 outside 2 again, it follows from (5.22) that

. 1 E(¢v, ¢v)
my < b—a2 /Q(qﬁv)zdu < b= aPn(Q) (5.25)
By condition (FK,) and (5.23), we have
¢ ((Br)\" c (u(Br,)\"
() > @ ( Q) ) > g <7%2 +€> ) (5.26)

where v is the constant from (FK,).

Let us estimate E(¢v, pv) from above. Since u is superharmonic in By, the function b — u is
subharmonic in Ba, and so, the function v = (b—wu) is also subharmonic in B, by using [11, Lemma
9.3]. By Proposition 9.2(iii) in Appendix and using (5.24), we see v¢* = v - ¢ € F(Q) C F(Ba,),
which gives that

E(v,v9?) < 0.
Applying (EP.) to the triple By, B, r,)/2, Br, and to v, there exists ¢ € cutoff (B, B(y, 4r,)/2)
such that
3 c (ra\C1 ,
Elov.ov) < et + 5 (2)7 [ waus [f o) (@)
AT By, Bry X Bg,

where 7 := r9 — r;. Combining the above two inequalities and using the fact that ¢ = 0 outside
By, 1ry)/2, We obtain

sws,v) < 5 (2)° /B oyt 3 /B o(@)du(x) - esup / o(y) T, dy)

" (r1+r2)/2 wGB(TH—m)/? B

C
< é (2) ' / v2dp + 3/ vdp - esup / b+u_(y))J(z,dy)
7'6 r B B ?92

) ) TE€B () +ry)/2/ B

cb? /19N C1 .
< 7 (?) w(Br, N {u < b}) + 3bu(Br, N{u < b}) (using v < bl{u<b})

b esup / J :1;7dy _|_TBT i B, (u_
( B(z,(ro—r1)/2)° ( ) (r1+r2)/2 2( ))

TEB(ry 4rg)/2

IN

_ b2 C 7B T TBT - B, (U— _
cmo— ((m) ' + (?;2)6 + Siks 2;)/2 . )> (by definition of mg and (TJ,))

~ b2 C FﬁTBT oy /95 By (U—
< cma—3 (22) 1+ g2 Bra (1) (by the fact ERS 1)
7’6 r b T
62 T9 Ci
=z (=) A 5.27
 (2)° .

where in the fourth line we have used the fact that, for any point x € B(,, 1r,)/2;
By, C By(z,7/2)".
Combining (5.25), (5.26), (5.27) and letting ¢ — 0, we obtain

_ b \? (o)™ 1o\ B+C1
< =
ml_c(b—a) iy (7)) A

Dividing this inequality by p(B;,) and observing that

my
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we obtain by using (VD,),

my < ¢ b ? 1+V:U'(Br2) (E)BJFCI
B b—a 2 pw(Br) \T
2 Ok
<o) () () ame
b—a r1 T
thus showing (5.21). O

Now we prove (LG,).
Lemma 5.8. Let (£,F) be a regular Dirichlet form in L? without killing part. Then
(VD,) + (EP,) + (TJ,) + (FK,) = (LG,). (5.28)
Consequently,
(VD) 4 (Gceap) + (TJ) + (FK.) = (LG,). (5.29)

Moreover, the constants v, o, in (5.3) of condition (LG.) can be taken as the same as those in
condition (FK,).

Proof. Let u € F' N L™ be superharmonic, non-negative in By, with r € (0,27 o, W (20, R)/#)
and let a > 0. Consider the following two sequences of numbers
1 1
TR 1= 5(1 +27%)r and ay = 5(1 +278a  fork=0,1,2,---.
Clearly, ro =7, ag = a and 71 | %7“, ag | %a as k — oo (see Figure 5). Set
_ By, N{u <ap})
mp = .
1(Br,,)

FIGURE 5. Sets B,, N{u < a;}

Note that the hypothesis of Lemma 5.7 is satisfied. Applying inequality (5.21) with a = a,
b=ag_1, 1 =7 and 19 = rp_1, we obtain for any k > 1,

ag—1 2 e\ TE—1 A+t
my < CAg — — — mllgfl{,
Ap—1 — ag Tk Tk—1 — Tk

(Tk_l B rk)ﬁTB(’"k—1+”k>/2’B%—1 (u_)

where

Ak::1+
ak—1

Since u is non-negative in By, and B,, | C B, C Bs,, we see by definition (5.2)

TB(rk71+rk)/2aBrk71 (u*) = TB(T‘k71+Tk>/27BZT (u*) S TB’I‘7B2T (u*)’
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from which, using the fact that ap_1 > %a, it follows that

Ak < ZA)
where
A — 1 TﬂTBmBZT (u*)
a
Noting that
—(k—1
k-1 ) rk-1 o 1+2 (k=1) < okt1, -1 _ gh+1.
TR rh—1 =71 271 — 27k = ak-1—ag

we obtain that for all kK > 1

mp < C 24 - 22(k+1) _gax  9(k+1)(8+C1) 'm}i’f _ D)ka};_“{,

where D = 23T +8+C10 A \ = 22+8+C1 | Thus, applying Proposition 9.3 in Appendix, we have

1 1 14v (1+v)k
mp < D~v (D?)\ p mo)

~0 (5.30)

as k — oo, provided that
14+v

1
Dg)jj; e = (23+a*+6+cl CA); (22+6+Cl> o2 mo <
Note that (5.31) is equivalent to

,u(BTﬂ{u<a})_m <1
p(Br) — T2

(5.31)

1
(23+oc*+5+6’1c)_; (224-5-1-01)_7 -1

TBTBT7B2T (u_) > v

)
a

=: EQA*% =&y (1 +
which is secured by the hypothesis (5.3) with

1 - -4
€0 1= 5 (23+a*+B+C10) v (224-5-1-01) vi

With the choice of ¢y, we conclude by (5.30) that
(B2 N {u < 5})
(B, 2)
thus showing (5.4). That is, we obtain (5.28).
It remains to prove the implication (5.29). Indeed, by Proposition 4.4, we have that (VD,) is

true. By (5.20), we have that (EP.) is true. By (4.12), we have that (TJ,) is true. Therefore,
implication (5.29) follows from implication (5.28). O

=0,

5.2. Weak Harnack inequality. In this subsection, we show the weak Harnack inequality, which
will be used in deriving the oscillation inequality below.
We introduce condition (WHI, ), that is called the weak Harnack inequality .

Definition 5.9 (Weak Harnack inequality). We say that condition (WHI,) holds if there exist
three numbers ¢, k4, 0, in (0,1) such that the following is true: if a function u € F’ N L> is
superharmonic, non-negative in 2B,, where B, := B,(x,r) has radius € (0,2 o, W (20, R)/#),

and if B .
* * >
p(FxBy) 2
and
rﬁT%B*QB* (u—) <ea (5.33)
for some a > 0, then
einf u > ea. (5.34)

K
2 B
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We remark that the three constants €, k, 04 are all independent of B, u, a.

FIGURE 6. Illustration to condition (WHL,)

To obtain the weak Harnack inequality, we need the following result on the average of logarithm
function cut off by two constants, see (5.39) below. The following result is a stronger version of
[11, Proposition 12.3] (see also [9, Lemma 3.7, p. 469] for the version of pure jump type Dirichlet
form).

Proposition 5.10. Let (£, F) be a reqular Dirichlet form in L? without killing part. Let a function
u € F' N L™ be non-negative in an open set B C M and ¢ € F N L>* be such that ¢ = 0 in BC.

Fiz any X > 0 and set uy :=u+ X. Then % € FNL*® and
¢2

U, —
U

2

ux(y) dj

2
)< 380.0) 5 [ Gar®o g [[ @@ ndw) w2 Y

B ¢*(x)
2//Bch uA(y)u)\(:E)d]. (5.35)

Proof. 1Tt is already proved in [11, Proposition 12.3] that % € F N L®. We sketch its proof.
Indeed, define the Lipschitz function F(t) := mﬁ with Lipschitz constant A= on R. Then, we

In

&(

have % = F(u)¢* on M. Moreover, by Proposition 9.2(7), (i) in Appendix, we can prove
F(u) € F' and F(u)¢* € FNL>.

That is, £ € Fn L.

’U/\

It remains to show (5.35). Indeed, it was proved in [9, Lemma 3.7, p. 469] that

2 2
e (w2 ) <3600 -5 [[ (@) n ) n N0 ajia
¢*(x) .
2 [ Sy (5.36)

(noting that the existence of the jump kernel J is not assumed therein).
On the other hand, by using the product and chain rules ((3.1) and (3.2)), and then using the
Cauchy-Schwarz inequality (3.3), we have

2 2 9 2
W2y = [ ar®w )= [Larie - [ Z}df(”(%w)

UX Ux
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| /\

¢dPL><> 2 [ar®(e) - @D )

2 UX

¢2
= 5 [ SarPw) +26@(6,0)

2 uy

From this and using (5.36), we conclude that

E(u, ¢2) _ gD (u’ ¢2) ) (U, <l52)

U U Ux
2
<_, ﬂ () (u) + 26 (¢, ) + 3V (¢, ¢)
ux(y) ? .
‘//M S || G

—2//Bch m(y)féc;dj(m’y)
< 38(¢, d) — /¢dFL) //BXB (¢*(x) A ¢*(y)) |In
2] uw? D,

thus proving (5.35). O

Lemma 5.11. Let B C M be a ball and w € F' N L™ be non-negative, superharmonic in 2B in
M. Set uy:=u-+ X for A\ > 0. Then

Jogm s ]

Proof. Let ¢ be the potential for the pair (B, %B) so that

)\y
’LL.’L‘

dj < 6cap (B, %B) +4//BX . de. (5.37)

3
E£(¢, ) = cap <B, 53). (5.38)
By Proposition 9.2 in Appendix, one can show that
¢2

aef( )oL°°

because 0 < ¢ € }'(% )N L*°. Since u € F' N L™ is superharmonic in 2B, we have

2
£, L) >0

U

Applying Proposition 5.10 in 2B instead of B, we obtain

" a0 / / (@@ AW) ' n““y)rdj < 6(6,9)

ux(z)
YRR e
2x@pye 0 un()

Applying (5.38) and observing that ¢ = 1 on B and ¢ = 0 outside %B, we obtain (5.37). O

MU)\

Lemma 5.12. Let (£, F) be a regular Dirichlet form in L?. Assume that conditions (VD,), (Cap)
and (PL,) are all satisfied. Let By := By(xg,r) with r < %W@g,ﬁ)l/ﬁ and a function u € F' N L>®
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be non-negative, superharmonic in the ball 2B,. Fix three positive numbers a,b, A and consider the

function:
vi= (ln a) A b,
ux/)
where uy :=u + A. Then

7T ((ur)-)
][ ][ (y)*dp(z)du(y) < C <1+ QB*’QJj* ’ ) : (5.39)
K By J Ky By

where ky € (0, 1] is the same constant as in (PL,) and C > 0 is a universal constant depending only
on constants in conditions (VD.), (CapZ) and (PL).

Proof. By the similar arguments in Proposition 5.10, we can prove that v € F N L. Moreover, by
(3.4), (3.6) and (3.2), we obtain that

/ dF(L)(v,U)S/ dI‘(L)(lna,lna):/ dF(L)(lnuA,lnu)\)

U\ U\

1
= / —QdF(L)(uA,u,\) = / —dI‘(L)(u u).
B. U B. U3
On the other hand, by the definition of v, we have for all z,y € B,

jv() — v(y)| < ]m XON

u)\(a;)

Combining the above two inequalities, we see that, using (5.37) with B being replaced by B,

(L) (v, v v(x) —v 245
[ >+//*XB*< (2) — v())*dj

2
< / L ar® ) + / / I 2W) | 4
B, U\ B x B ux ()

3 (ur(y))-
< 6cap | By, =B, +4/ ———dj
p( 2 ) (2B.)x(2B.)e ux(z)
)

QU

< Cﬂrﬁ +4/33* Hla /230 “ (Ay) J(,dy) (by (CapZ))

I/\
/_\
7;
A
*
N~—
8
mm
w &
m'U
s &
oy
N

C(UA(y))J(fU,dy)> (by (VD))

Using the above inequality and the following equality that holds for any open €2 in M,

// (y)?dp(z)dp(y) = 2#(9)/(f—f9)2du, fel?
QxQ Q
we obtain that

? = L V=0 2
i*B*i*B* () dp(x)dp(y) = B /H*B*( ko B,) A

<t o, Tyl o)

20778 C”'U(B*) " TﬁTgB*QB*((UA)f)
~ w(B.) rf A
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TﬁTgB*,w* ((ur)-)
A

=20C' (1 +

(where in the second line we have used (PI)), which proves (5.39). O
Lemma 5.13. Let (£, F) be a reqular Dirichlet form in L? without killing part. Then
(LGy) + (CapZ) + (PL) = (WHL). (5.40)

Moreover, the constants ks, o, in (WHL,) can be taken as the same as in (PL.) and (LG,) respec-
tively. Consequently,

(VD) 4+ (RVD) + (TJ) 4+ (Geap) + (PI) = (WHL,). (5.41)
Proof. Consider a ball B, := B, (xg,r) with
re (0,27 o, W (xo, R)YP),

where o, is the constant from (LG,). Assume that u € F' N L™ is superharmonic, non-negative in
2B,. Let A, b be two positive numbers to be determined later on. Let u) := u + A and

V= <lna+)\) A b.
ux /)4

Note that 0 < v <bin M, and in 2B,

A
U:O @t Sl = UZC%
Ux
A
v="> ot >eb o w<(atNel=q
(O

For simplicity, set
_ (BN {uz a}) _ (B 0 (v =0})

WmB) C almB) (5:42)
and
(BN i < q))  pl(raB) 1 {o = b))

Here k, is the same constant as in (5.39).
Therefore, applying (LG.,) to the function uy € F' N L, which is superharmonic, non-negative
in a ball 2k, B, we have that, if

B —-1/v
mp < € <1 + (7) K*B*’QR*B*((U/\))> , (5.44)
q
then
sinf uy > %. (5.45)
We need to verify condition (5.44).
Since (uy)— < wu— in M and w is non-negative in 2B,, we have
A= TﬁTgB*gB* (u_) = TBTgB,“Q;@*B* (u_) > ("f*r)ﬁTmB*,%*B* ((un)-),
from which, in order to guarantee (5.44), it suffices to ensure that
—-1/v
mo < €p (1 + ) . (5.46)
q
By Lemma 5.12 and using definitions (5.42) and (5.43), we see that
1
bmow = / / b2 du(x)du(y)
(kB)? ) (. BN {o=0} J (1 B.)N{v=b}

- v(z) — v(y))du(z
- n(raB.)? /(H*B*)W{UO} /(H*B*)ﬂ{vb}( (=) W) dp(z)du(y)
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IN

][ ][ (0(z) — v(y))?du(z) du(y)
KxBx J kx By

TﬂT’éB*,QB* ((ur)-)
cl|l1+ 2

3 ) (by (5.39))
Se(1+4)

<i 1_|_é <% 1+é
Mo =2 X)) =2 A

where we have used the fact that w > 1/2, which is true by assumption (5.32). Hence, the condition
(5.46) will be satisfied provided that

2 (0 A (A
b2 N) =0 q ’

1/v
b > 2 <1 + f) (1 + A) . (5.47)

€0 q
Fix a number € > 0 whose value will be determined later. We pick the parameters A, b by
1+4+¢
4e

It follows that

which is equivalent to

A:=c¢ca, b:=In

Then we have
q=(a+ Ne b =4ea,
and the inequality (5.47) is equivalent to

1+e\? _ 2 A AN
| >— 1+ — 14— . A4
<n 46) _60<+5a>(+4sa> (5:48)
Since A < ea by assumption (5.33), the inequality (5.48) will follow if
2 1/v
In L+e > de (3 )
4e €0 4

which can be achieved by choosing ¢ to be sufficiently small. With this choice of €, we conclude
that (5.45) holds, which implies that

einf u > g—)\:25a—5a:€a,
%5,
thus showing (5.34).
Finally, the implication (5.41) follows directly from Propositions 4.4 and 4.7, (4.33), Lemmas 5.8
and 4.15, and the implication (5.40). O

5.3. Oscillation inequalities. In this subsection, we will show the oscillation inequality for har-
monic function in a ball. The oscillation inequality will be used to derive lower bound of the heat
kernel. We will frequently use the notion B, := B,(zo,r), without mentioning its center x, nor
the new metric d.

We introduce condition (OSC,) that is called the oscillation inequality.

Definition 5.14 (Oscillation inequality). We say that condition (OSC,) holds if there exist three
constants oy, €, ks in (0,1) such that the following is true: for any ball B, = B.(xg,r) with
r € (0,0.W (0, R)/?) and any function u € ' N L that is harmonic in B,, we have either

osc u<(1—e¢) oscu, (5.49)

Bm.;'r/4



LOWER ESTIMATES OF HEAT KERNEL 39

or
oscu < e \rPTp, g ((u—m)_ + (M —u)_), (5.50)
Z’f‘

B,
where

m = einfu and M = esupu.
B, B,

We mention that the constants o, e, k4 are all independent of B,,u, R.
Lemma 5.15. Let (£, F) be a reqular Dirichlet form in L* without killing part. Then
(WHI,) = (OSC,).
Consequently, we have by (5.41)
(VD) 4+ (RVD) + (TJ) + (Gcap) + (PI) = (WHI,) = (OSC,). (5.51)

Proof. Let B, = B.(zo,r) with r € (0,0, W (x0, R)"/?), where . is the positive constant in (WHI,).
For simplicity, denote by
A= TBTB%T,BT((U - m)_ + (M - u)_)

Consider the function u—m € F'N L%, which is non-negative, harmonic in B,. Applying the weak
Harnack inequality (WHL,) in the ball B, for the function u — m, we obtain that if

—m>
IU’(BK/*’V‘/Q) —2
where a = M;m and if
(T/Q)BTB%T,BT,((U, —m)_) < A; = T'BTB%T,B,.((U —m)_) <¢a (5.53)

then

einf (u—m) > ¢a,
BK*’I‘/4

for some constant ¢ € (0, 1).

;‘S—‘

FIGURE 7. Level sets of the function v — m



40 A. GRIGOR’YAN, E. HU, AND J. HU

It follows that
e 4
55, e (0 £ O =) == (1= ) O == (15 e

which implies that (5.49) holds with e = £’/2.
Similarly, if both conditions

B, ,sN{M —u>
IL(IBR*T/Q) 2
and
(r/2)°Tp, B, (M —u)_) < Ay:=7Tg, p.(M—u)_)<ca (5.55)
ar ar

are satisfied, then
einf (M —u) > ¢a,
Bn*r/ll
so that
4 e
osc u<M-—m-—¢éa= <1—> (M —m) = <1—> 0SC U,
Bn*r/4 2
which again implies that (5.49) holds with ¢ = &’/2.
Observing that

T

M+m
u—m=a & UuU> 5

M
M-u>a & u< ;m,

we see that either (5.52) or (5.54) is satisfied. Hence, if both (5.53) and (5.55) are satisfied, we
conclude that (5.49) is true. However, if one of (5.53) and (5.55) is not satisfied, then

1 "M — !
14125(1414“42)28'@:i ol

2 2 4B "
which is equivalent to (5.50) with e = &’/4. Hence, we finish the proof by setting ¢ = %/. O

We introduce condition (IOS,) that is called the iterated oscillation inequality for the harmonic
function.

Definition 5.16 (Iterated oscillation inequality). We say that condition (IOS,) holds if there exist
constants o,y € (0, 1l and ¢,Cp > 1 such that the following is true: for any ball B, := By (zq, 1)
with r € (0, 0,W (xg, R)'/?) and any function v € ' N L>, which is harmonic in B,., we have, for
all k > 0,

osc u< Cog A, (5.56)

g kr
where
A=r"Tp, 5. (u) + [ull = (5,)-

In what follows we set rj, := ¢ *r and Qy := oscu so that (5.56) means that
Tk

Qi < Cog " A. (5.57)
Lemma 5.17. Let (£, F) be a regular Dirichlet form in L* without killing part. Then
(OSC,) + (TJ,) = (1I0S,).
Consequently, we have by (5.51)
(VD) + (RVD) + (TJ) + (Gcap) + (PI) = (I0S,). (5.58)
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Proof. We will prove (5.57) by induction in k. For k = 0,1, it is trivial, since
Q1< Qo=o0scu=< 2||ullzee(p,) <24 =2¢"(¢77A),

so that (5.57) holds, provided that
Co>2q".
In the sequel, we will choose three constants ¢,y,Cp in the following order: first choosing a large
number ¢, then specifying a small number 7, and finally picking up a large constant Cj.
Assume that (5.57) holds up to some integer k with & > 1. We show that it also holds for k + 1.
To see this, let ¢ > 4/k. where k, comes from (OSC,). Applying condition (OSCy) over B,,, we
obtain that

cither Qr1 < (1—€)Qr or Qp <& 'Ap, (5.59)
where ¢ € (0, 1) is the constant from (OSC,), and Ay, is given by
Ay = rij%Brk,Brk ((w—mp)— + (M —u)_) = rgT%BrkﬁBrk (v) (5.60)

with v := (u — my)— + (M —u)_, and

my :=einfu, My := esupu.
Tk Brk

In the first case in (5.59), that is, when
Qi1 < (1 —€)Qx,
we obtain by induction hypothesis that
Qi1 < (1—2)Cog ™A= (1-¢)q"Coq " *TVA < Cog 7"+ 4,
provided that

(1—-e)g" <1. (5.61)
In the second case in (5.59) when
Qr < e Ay, (5.62)
we will prove that
Qi < Cog 1T 4, (5.63)

by choosing the suitable values of the constants q,y,Cy. Since Qry1 < Qk, this will conclude the
proof of the induction step.
In order to prove (5.63), we will estimate Ay, (defined in (5.60)) by using the induction hypothesis

Qj < Cog WA forj=0,1,...,k. (5.64)

Indeed, let us decompose T’ 5B, B, (v) as follows:

4 3 Be
S ZBTIC Tk

k—1
= esup (Z /BTZ.\B”H v(y)J(x,dy)—i—/ v(y)J(x,dy)). (5.65)

xE%B’T}C i=0 B¢
Observe that, for any 0 < i < k,
v=(u—my)- + (M —u)- < Qi —Qr in B,,. (5.66)

Indeed, if mp < w < My in B,,, then v = 0 in B,,, and (5.66) is trivial by using the fact that
Qi — Qi >0 for any ¢ < k. If u < my, in B,,, we have in B,,

v=my —u < mg—m; <my —m;+ M;— M = Q; — Q,
thus showing that (5.66) holds. Similarly, if v > M}, in B,,, then
v=u— My < M;— My < M; — Mg+ (mg —my;) = Q; — Qp in By,
showing that (5.66) holds again.
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FIGURE 8. Balls B,, and B,,

Therefore, by Proposition 9.6 in Appendix and using condition (TJ,), we obtain from (5.66) that
for any 0 <17 < k,

esup / o(y)J (2, dy) < (Qi — Qu) esup / Iz, dy)
Brz \BT1+1 Br \BTH’l

xe%BT'k xE%B%

IN

(Qi—Qu) esup / J(z,dy)
Bla,ri1/4)

2€3 B,
c(Qi — Q)
= ("“z‘+1/4)57

where ¢ > 1 is the constant from condition (TJ.).
On the other hand, by Proposition 9.5 in Appendix, we have

v(y) < [u(y)] +max(|myl, |Mk]) < [u(y)] + [ullL=(s,) for every y € M.

Using (TJ.), we obtain that, for any k > 1,

eswp [ o) I(wdy) < esup [ (Ju)]+ [ul e ) o dy)

xG%BTk TE€B3, /4
< Tyy (W) + [ull s, esup / Iz, dy)
! ©€Bsya J B(x,r/4)°
cllull Lo (B,) - 48cA
(r/4)8 = P

< Tsp, p,(u) +

Therefore, it follows from (5.65) that

PeA
8 Q’L Qk 4Fc
Tsp, b, (V) <cd Z e

=0 z—l—l
which together with (5.60) and the fact that ¢ > 4/k, implies that

TE\ P
A = (Tk)ﬁTgBrk,Brk ) < 4P Z <T2+1> —Qr) +4%¢ (%) A

k—
Z B(i+1— k) Q Qk)+cq A (567)
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Assuming that v < 8 and using the induction hypothesis (5.64), we obtain

k—1 k—1 k—1
Z PU1-R g, < Z PR L0y A = CyAg— kDY Z qB—+1-k)
i=0 i=0 i=0
(o1 S (5 ¢
_ —(k=1)y —(B=7)3
= CyAq Zq < C’OAl T
7=0
Noting also that
E—1
qﬁ(iJrlfk) >1
i=0

for k > 1, it follows from (5.67) that

(b—1)y

Ay < C(JOA% —CQy+Cq A,

q (B—
This together with (5.62) implies that
A _CCA ¢ ¢ C

<k < - = Zq kA
Qk_ P c 1_q_(,8_,7) EQk+€q 5
which gives that
C qf(kfl)fy k
< C k) A
@S T < g e

To ensure (5.63), it suffices to have

—(k=1)y
C <C’ q )+qk,8> A < Cog*17 4,

Cte\ 1- q= (=
that is,
2y 1
q
1= gl
Now first choose ¢ > 4/k. to be so large that

kB <14 & .
<1+ C (5.68)

<142
1—q~ c’

and then choose v € (0, 3/2) so small that both (5.61) and
2y
q

[

g
71—q7ﬁ/2 <1+6

are satisfied. Since § — v > /2, it follows that
27y 2y
q q €
=g “1-gr <1tE
Finally, we choose C so big that (5.68) is satisfied. O

We introduce condition (OSL,) that is called the oscillation lemma for harmonic functions on a
ball. This condition says that any harmonic function is locally uniformly Hélder continuous.

Definition 5.18 (Oscillation lemma). We say that condition (OSL,) holds if there exist three posi-
tive constants o, € (0,1) and -y, C such that for any ball B, := B.(zq,r) with r € (0, 0. W (x:0, R)"/#)
and any function u € F' N L%, which is harmonic in B,, we have for any p € (0, r],

P\
oscu < C (;) (rﬁTgBT7BT(|u|) + ”uuLm(Br)) . (5.69)

P

We mention that constants o, and C' are independent of B, u, p.
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Lemma 5.19. Let (€, F) be a regular Dirichlet form in L%. Then
(I0S,) = (OSL.).

Moreover, the constant v in (5.69) of condition (OSL,) can be taken as the same as that in (5.57)
of condition (I0S,). Consequently, we have by (5.58) that

(VD) 4 (RVD) + (TJ) + (Geap) + (PI) = (OSL,).

Proof. Let Cy,7,q be the same constants as in (5.57) of condition (10S.). As p € (0,r], there
exists an integer £ > 0 such that

q—(k+1) < P~ "
T
It follows from (IOS,) that

2l ol
oscu < osc u< Coqik’yA = C'Oq'y (qf(kJrl)) A < Coq“/ (B) A7
Bp Bq*kr T

thus showing (5.69) with C' = Cyq". O

6. HOLDER CONTINUITY
In this section, we show the Hoélder continuity of the heat solution, including the harmonic

function.

6.1. Green operator and mean exit time. Let  C M be a non-empty open set. Note that if
oo
G ::/ PMgdt € L®(Q)
0

then G*? can be extended to a bounded operator on L?(f2) that satisfies the identity G* = (£?)71,
see for example [17, Lemma 3.2, p. 1232]'. The function G%1 is called the mean ezit time from
the set €.

Lemma 6.1 ([9, Lemma 5.1]). If G1 € L>®(Q), then the function u = G f, for any f € L*(Q),
belongs to F()) and satisfies the identity

E(u, ) = (f, ) for any ¢ € F(Q).
If in addition f > 0, then u s superharmonic in ).

Definition 6.2. We say that condition (EZX) holds, if there exist two constants d., C' > 0 such
that for all balls B, := B(xg,r) of radius r < 8, W (zq, R)"/5,

|G 1|, < Cr.

We say that condition (EX) holds, if there exists a constant C' > 0 such that for all balls
B, := B(xg,r) of radius r < W (zo, R)"/?,

inf GB1 > b,
lB*
4

We say that condition (E.) holds if both conditions (EX) and (EX) are satisfied.

Definition 6.3 (condition (S.)). We say that condition (S,) holds, if there exist two small constants
g,0, in (0,1) such that for all metric balls By, = B.(z,r) of radius r < W (z, R)'/?,

1
PP1p > in 1B+ (6.1)
provided that t1/8 < Qur.

1Although this lemma was stated for the local Dirichlet form, its proof also holds for the regular Dirichlet form.
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Lemma 6.4. Let (£, F) be a regular Dirichlet form in L?. Then

(FK.) = (EZ). (6.2)
and
(VD) + (LGy) + (CapZ) = (EI). (6.3)
Consequently,
(VD) + (RVD) + (Gceap) + (PI) + (TJ) = (E.) = (S«). (6.4)

Proof. One can follow the proof of [11, Lemma 12.2] to obtain the first implication (6.2), and follow
the proof of [11, Lemma 12.4] to obtain the second implication (6.3).

Proposition 4.4 shows that (VD) + (RVD) implies (VD.) + (RVD.,.). Proposition 4.7 shows that
(PI) implies (PI.). Hence, it is shown in (4.33) that (FK.) holds true. Then, Lemma 5.8 shows
that (LG,) holds true. On the other hand, condition (CapZ) follows from (2.12) and Lemma 4.15.
Finally, the first implication in (6.4) follows from the implications (6.2) and (6.3). The second
implication in (6.4) follows from the same arguments in the proof of [11, Proposition 13.4]. O

Remark 6.5. One can also use [11, Theorem 14.1] to obtain condition (S). Indeed, as mentioned
in the proof of Lemma 6.4, we have

(VD) + (RVD) + (PI) = (FK.).

Then, by Proposition 4.13, condition (FK) holds true, and hence, it follows from [11, Theorem 14.1]
that condition (S) (see Definition 7.13) holds rue. Finally, by Proposition 4.3 and by the method
in the proof of [12, Proposition 6.4(2)], we can obtain condition (S,) from (S) (note that condition
(Si) in [12, Proposition 6.4(2)] looks different from that in this paper, because R = diam M in
[12, Proposition 6.4(2)] and R < diam M in this paper. However, the method in [12, Proposition
6.4(2)] still works in the case when R < diam M).

6.2. Oscillation inequality for solutions of Poisson equation. We study the oscillation of
the weak solution of the Poisson-type equation on domain € by using Lemma 5.19 in Subsection
5.3. This property will be used to show the Holder continuity of the heat kernel later on.

For a non-empty open set Q C M and f € L?*(2), we say that a function u € F solves weakly
the equation (called the Poisson-type equation)

Lu=f in Q, (6.5)
if for any ¢ € F(),
E(u,9) = ([, 9).

Proposition 6.6. Let (£, F) be a regular Dirichlet form in L?. Assume that u € F solves weakly
the equation (6.5) for some f € L*(Q). Let B be a non-empty open subset of €.

(1) If v € F solves weakly the equation Lv = f in B, then uw — v is harmonic in B.

(2) If |GB1||p < oo, then u — GB f is harmonic in B.
Proof. (a) By the definition of weak solution, we see for any ¢ € F(B) C F(Q2)

E(u, ) = (f,¢) and E(v,9) = (f,9),
from which, it follows that
E(u—wv,9) =0,
thus showing that © — v is harmonic in B.
(b) If ||GP1]|| L= < 0o, then by Lemma 6.1, the function v = G f belongs to F(B) and satisfies

E(v,¢) = (f,0)

for any ¢ € F(B), that is, the function v solves weakly the equation Lv = f in B. We conclude
by (a) that v — GBf is harmonic in B. O

The following gives the oscillation of the weak solution of the Poisson-type equation.
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Lemma 6.7. Let (£, F) be a reqular Dirichlet form in L? without killing part. Assume that condi-
tions (FK.), (TJ.), (OSLy) are all satisfied. Let Co > 1 and §2 be any open subset of M containing
a ball By := B.(z0,7) of radius v € (0,CoW (0, R)/?). If the function u € F(Q) N L>® solves
weakly the equation (6.5) for f € L? N L>(Q), then for any 0 < p <r

-
osc u = C(2) fullpeo) + CrolS e s, (6.6)

B (z0,p)

where v is the constant from condition (OSL.) and C is independent of B.,u,$,p, f, R. Conse-
quently,
(VD) 4+ (RVD) + (TJ) + (Geap) + (PI) = inequality (6.6). (6.7)

Proof. Let 6, be the constant from (EZ) and o, be the constant from (OSL.). We consider two
cases.
Case 1. 7 < (6, A o)W (xg, R)'/?. Note that condition (FK,) implies condition (EX) by (6.2),
that is, we have -
1GP1|| e < CFP.

From this, we see that
IGP flleo sy < IGE L poo| fllpoo () < CrP| fll oo (B.)- (6.8)

In particular, we have ||GB*1

|pee < 00. Consider the function
vi=u—GBf.

Clearly, we see that v € F(Q) N L. By Proposition 6.6, the function v is harmonic in B,. It
follows from condition (OSL,) that for any 0 < p <r

P\7 (. B
< - oo . .
pose v O (2) (1" Tup p (0D + oo (6.9)

Since u = GP*f = 0 in Q°, using Proposition 9.5 in Appendix, we obtain by condition (TJ,) that

Typ .00 < esup [ (uly)| +1GP F @) (e dy

IE%B* B

(Il + 16™ Flieisy) esup [ o)

JJE%B*

IA

IN

(lull =y + 11GP Fllz=(s.)) esup / J(z, dy)
By (z,r/4)°

xE%B*

C
B.
(lull Loy + 1G7 fll o= (8.)) (r/4)

IN

Substituting this into (6.9) and using the fact that

[ollLoe By < Nulloem) + IGP* fllzoo ()
we obtain

P\ B
<C|- o G"r o . 6.10
B*?ig,p)v < (T> (llull oo () + 1G7* fll Lo (.y) (6.10)
Therefore, we conclude by (6.10) and (6.8) that

osc u< o0sc v+ o0sc GB*f
B*(w():p) B*("EO7P) B*(:L‘(),p)

)
< C(2) (ullueoy + G Fllioes) +21G7 £

P\
= C(;) el oo () + CrP 1 f lpoe 2.

| oo (B.)

thus showing (6.6).
Case 2. (6, Ao, )W (xo, R)Y? <r < CoW (x0, R)"/? with Cy > 1 when R < oo.
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If p < 2(6: A o)W (9, R)*/?, then, applying the result in Case 1 for r = (8, A o)W (zg, R)Y/?,
we obtain that

Y
p
<C — o
B*?Egp)u < (5(5* A a*)W(xo,R)1/5> HUHL Q)
1 =178
C g(é* A O'*)W(CUO7 R) ||f”Loo(B*(m07%(6*/\a*)w($07§)1/ﬁ))

v
- p
< @6, 7o) o1 C () M=+ O lmio

_ P\
< (200 A o) Co)C (2) ullie i) + O fll e,

which is (6.6).

If p > %(6* A )W (20, R)Y/?, then, % < %. Hence,

™\ /p\7 3¢ \" /p\7
B*(()ig,p)u <p> (r> B*(()ig,p)u - <(5* /\a*)) <r) [ull oo ()

which implies (6.6).
Finally, the implication (6.7) follows directly from Lemma 5.19 by using the facts that (PI) =
(PL.) = (FK,) (see (4.15) and (4.33)) and (TJ) = (TJ,) (see (4.12)). O

6.3. Estimates for the heat semigroup solutions. We derive the L*°-estimate of the heat
semigroup solutions on any open subset. The following gives the L' — L ultra-contractivity of
the heat semigroup {P?*} from condition (Nash,) (cf. [2, Theorem 2.1]).

Lemma 6.8. Let (£, F) be a regular Dirichlet form in L?. If condition (Nash,) holds, then for any
ball By := By (xo,7) of radius r > 0, the operator PtB* satisfies that for any t > 0

C(v)rPlv N
—_— tW tTv 11
Vo) P W (o FIE) (o410
where v > 0 comes from condition (Nash,). Consequently, we have for any t > 0

1P fllze < NP Ipaope s < 70—

B B
”Pt *HL1—>L°0 < HPt/§||%1—>L2 <

oxp (tW (0, B) ™) ¢ ¥ | flpis,)  (6.12)

Moreover, we have by (4.21)
(VD) + (RVD) + (PI) = (Nash,) = inequalities (6.11) and (6.12).
Proof. Since PtB* is symmetric, we see by duality
1PP sz = 1P (|2 poes
from which, using the semigroup property, we see that
1B e < I1P5
By condition (Nash,), for all B, := By (zg,r) with » > 0 and all u € F(B,)

2
L'—L?:

2(1+4v) Crf BY=111,112 2w _. 2 2
Jull7: ™ < Voo (E(u,w) + W(xo, B) " lullzz) lullfi =: A (E(u, w) + 8]lullz2) lull71,
where A, are given by
A= 07715 and 6 = W(zg, R)™*
~ Vi(wo,m)¥ a > '

Applying [2, Theorem 2.1 and its proof on Line 8 on p. 252] wherein v being replaced by %, it
follows that
2ut

—-1/v
exp(-200)1 PP 11 =ut) < (%7) AR,
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for any ¢ > 0 and any non-negative f in L?(B,) N L', that is,
A 1/1/ C 1/1/ T'B/V . 1
B (|2 _ —1y -2

HPt ||L1—>L2 S eXp(25t) <2yt> = <2y> m eXp (QtW(LUO, R) ) t v,
thus showing (6.11). O
Lemma 6.9. Let (£, F) be a regular Dirichlet form in L?. Let B, := B.(x9,7) C M be a ball of
radius v > 0, and Q an open subset of By. Set u = P f for f € LY(Q) N L2. If condition (Nash,)
holds, then for any t > 0,

CrPlv

R
- ‘/*(1:05 T)

where Ogu(-,t) is the Fréchet derivative of the L*(Q)-valued function t — u(-,t). Moreover, for all
t>s>0,

— _ _ 1
10k (-, )|l oo () exp (tW (zo, B) ™) t 7| fll 1. (6.13)

BV o
Voo &P (W@ B ™) s~ figq. (6.14)

Here v > 0 is the same as in condition (Nash,) and constant C' depends only on condition (Nash,).

[u(,t) = u(, 8)llLe < C(t = 5)

Proof. Let f € L'(2) N L? be non-negative in M. Since P§* is contractive in L? and
Pth:PsQPtstf
for any ¢ > 0 and any s € (0,t), we have
(P f) = PHOPLSS)-

From this and using the following general inequality (see [17, Lemma 5.4])

2

10s(PS )| L2y < gHPsg}Qf“LZ(Q) for any s > 0, f € L?, (6.15)
we obtain, since 2 C By, that
10:(P2 )L = I1PL0(PE Plloo < 1P 2w 100(PEL )| 2

IN

2
Q Q
1P 2 e - =BGy 2 Il 22
2 B B.
< PR 8||Ps *HLQHL"OHP(t_S)/QHLlaL?||f”L1(Q)-
Setting s = t/2 in the above inequality and using the fact that
B. B.
1P o2 = 1B 2 oo (6.16)

it follows from (6.11) that

||3t(Pth)||Loo <

SIS

B, B,
[P AN P oyt FRRNEY N FAYES)

CrPlv
V:k(x(]:r)

IN

S\ — _q1_1
exp (tW (zo, R) 1) ¢t ralAY

thus showing (6.13).
Finally, we show (6.14). For simplicity, let ¢ > s > 27 > 0. Then

IP2f = P fllpeo) = IPHEPE L f = PE )l o)
< NP e poo |1 P2 f = P fllr2)-

By (6.15) and using the fact that ¢ — HPtB*fHL2(B*) is non-increasing in (0, c0), we see that

t—T
1P f = P fllnae) = || /_ e (P F)dE || 12
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t77'2
< [ ZIPG
2, b0 2150
< (t-— 5);\|Pr/2f||L2 < (t-— S)FHP7—/2HL1—>L2||f||L1'

Therefore, using (6.16) and (6.11), we conclude that
2
IP2f — P fllpoo) < (t— 8);HP3HL2—>L°° 1Pl szl

2 .
< (t-— 3);||PTB* HLlﬁLQHPf;*gHLlHL?||f||L1(Q) (since 2 C Bs)
rB/v
‘/*(:UOﬂﬂ)
thus showing (6.14) by letting 7 = 3. O

. 1
<C(t-s) exp (TW(ZL‘o’R)_l)T_(H”)HfHLl(Q)’

6.4. Holder continuity of the heat semigroup solutions. We derive that the heat semigroup
solutions are locally Holder continuous.

Lemma 6.10. Let (€, F) be a reqular Dirichlet form in L? without killing part. Let Co > 1 and Q be
a non-empty open subset of a ball B.(xo, R) with R € (0,CoW (x0, R)'/?), and let u(zx,t) = P2 f(x)
for f € LY N L2(2). Assume that conditions (VD), (RVD), (Gcap), (TJ), (PI) are all satisfied.
Then, for any = and r > 0 so that By(z,7) C Q, and for any t >0 and p > 0 so that p® <t AP,
we have

C RB 1/v B p )
< | — tW ,R -1 (7) 7 6.17
BS(SxC,p)U(7 ) < Vi(20. R) ( ; > exp (tW (zo, R)™) 7B Ay Il ) (6.17)
where C' is a positive number depending only on constants in the hypothesis, and 0 is given by
B
0=—— 6.18
v+ p ( )

Here v is the same as in Lemma 6.7, and v comes from condition (Nash,).
Proof. By (6.12), we see for any ¢ > 0
B/v
S -
Vi(zo, R)

For any ¢ > 0, the function u(-, ) belongs to dom(£%), is Fréchet differentiable with respect to ¢ in
L?(€2), and satisfies weakly

€ —_— _ 1
(- 8| poe < P20 £ po exp (tW (2o, B) ™) £+ || £l 11 (6.19)

8tu('7 t) - _EQU'('7 t)a
that is, for any ¢ € F(Q2) and ¢ > 0,
g(u(v t)7 ¢) = (‘CQu(a t)a ¢) = _(615“('7 t)v ¢>
By Lemma 6.9, we have dyu(-,t) € L>°(Q) for any ¢ > 0.

Let p < /BN <, and 7 € (p,7) be a number to be specified later on. Applying Lemma 6.7
for the ball B.(z,r") C Q and then using (6.13), (6.19), we have for any ¢ > 0

P\Y Y
5350, 100 < 0 ((5) Ml + (07 o)

< V*(fm (T)W exp (tW (xo, R) ™) ((

e () e v 1)

T:t/\r62p'8.

ﬁ\\b

)+ 5 il

t

)+ i o0

INA
ﬁ\\b

T

where
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Now choose 7’ such that

that is,

r! = pTAB B
With this choice of 7/, we have that ' € (p,r), as desired, since
ol B

> p@pv#—ﬁ = p,
v

1
< 7OHBBTAHE = 7'1/’3 <r.

Noting that

Y

Y 8N\ v/ (r+8)
we see that (6.17) follows directly from (6.20). O
For any set U C M and r > 0, denote by U, by the open r-neighborhood of U, that is

= | B«(z,7).

zeU

The following gives the locally Holder continuity of the heat semigroup solutions in an open subset.

Lemma 6.11. Let (£, F) be a reqular Dirichlet form in L? without killing part. Let Co > 1 and Q be
a non-empty open subset of a ball B.(xo, R) with R € (0,CoW (x0, R)'/?), and let u(zx,t) = P2 f(x)
for f € L* N L2(2). Assume that conditions (VD), (RVD), (Gcap), (TJ), (PI) are all satisfied.

Then the following properties are true.
(a) For anyt > 0, the function u(-,t) has a locally Holder continuous version u(-,t) in Q with the
Holder exponent 0. Moreover, the function u(x,t) is jointly continuous in (x,t) € 2x (0, 00).
(b) For any open subset U C Q and r > 0 with U, C , we have for all z,2' € U and allt >0
C RO\ — Az )\
iz, t) —u(z’,t)| < Volzo. B) <t> exp (tW (zo, R)™) <t1/5/\r> 1l 21 (e)- (6.21)
Here 0 is given by (6.18), and constant C' depends only on constants in the hypotheses.

Proof. (a) By a standard argument, it follows from (6.17) that for any fixed ¢ > 0, u(-,t) has a
locally Holder continuous version u(-, t).
On the other hand, by (6.14), we have for all t > s > 7 > 0,

le.t) — Tla,)] < Ot - 5)
sup |u(x,t) —u(x,s)| < C(t —8) —F——
x€N Vi (Io, R)
from which, we see that the function t — u(z,t) is continuous in ¢ € (0, 00) uniformly in x € Q.
Since the function x +— u(z,t) is continuous in z € Q, we conclude that u(x,t) is jointly continuous
n (z,t) € Q x (0,00).

(b) Note that B, (z,r) C U, for any « € U. Set 7 =t Ar?. By Lemma 6.10, we obtain

exp (tW (zo, R) ") 7 () [FAIFAYE

C Rﬂ 1/v o
)< —— [ — tW (20, R)™* 6.22
jose 1) < e (B) e (o R () Wl (022
provided that p? < 7. If p% > 7, we have by (6.12)

osc U < 2||u o < ——mm ——
B*(m)( t) < 2fu(-, 1)L S Voo B

1/v _
- o (B w7 () () 1l

3 1/v
c <Rt> exp(tW(.CL‘(), ) )”f”Ll
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t
Hence, we see that (6.22) holds for all p > 0. Taking p = d.(z,2’) in (6.22), we obtain (6.21). [

¢ RN -1y (P!
SVM() exp (tW (zo, R) )<¢17> £ 1122 (c)-

7. NEAR-DIAGONAL LOWER ESTIMATES

In this section we study the regularity of the heat kernel, and then give its near-diagonal lower
bound.

7.1. Holder continuity of the heat kernel. For any non-empty open subset Q of M, let {Pf*}
and p§!(z,y) be the heat semigroup and the heat kernel of the form (£, F(Q)), respectively. In this
subsection, we shall show that for any bounded open set 2 C M, the heat kernel p?(m,y) exists
pointwise in M x M x (0,00) and is locally, uniformly Hélder continuous. This property is used to
derive near-diagonal lower bound of the global heat kernel.

If conditions (VD), (RVD), (Geap), (TJ), and (PI) are all satisfied, we see by Lemma 6.11, the
function PtQ f(-) has a continuous version when f € L' N L?(M), for any bounded open subset €
of M. The following gives on-diagonal upper estimate and the Holder continuity of the Dirichlet
heat kernel p{*(z,v).

Lemma 7.1. Let (£, F) be a reqular Dirichlet form in L? without killing part. Assume that condi-
tions (VD), (RVD), (TJ), (Gecap), (PI) are all satisfied. Let Cy > 1 and Q@ be any non-empty open
subset of a ball B,(xg, R) with R € (0,CoW (0, R)Y/#). Then the Dirichlet heat kernel p(z,y)
exists and is locally Holder continuous. Moreover, for each t > 0
c (R .
sup p?(:n,y) < () exp (tW(:L'o,R) 1) , (7.1)

z,yeQ = Vi(zo, R)

and, for any non-empty open subset U C Q and r > 0 with U, C Q, and for all x,2',y,y € U,
t>s>0,

t

C RP
i (z,y) — (2, y)| < (

1/v
I ¢ )1
dy(z, ')\’ do(y, )\’ t—s
" ((m) aa) Y ) (72)
where 6 € (0,1) is defined in (6.18) and C > 0 depends only on the constants in the hypotheses.

Proof. Fix an open subset U of ) and fix a number r > 0 with U, C ). By Lemma 6.11, for any
feL'NnL*M) and t > 0, the function Pf is locally, uniformly Holder continuous, that is, for
all z,2’ € U and all t > 0,

3 1/v o - 0
220w - P < o (B) e Vo ) (SEE) Wil ()

where C' > 0 depends only on the constants in the hypothesis, but is independent of B, (zo, R), Q,
U’r7t7x7$/7f7R
By (6.12), we have for all t > 0 and all z € M,

o RA 1/v
‘P [z ‘ = TR) <t> eXp (tW(-TO; R)” ) ||f||L1(Q) (7.4)
By (6.14), we have for all t > s > 0 and all x € M,
c (RO ot
‘Pth( PQf | ~ W <S> exp (SW(Z‘O,R) 1) (75)

Since P{f is continuous, using [10, Theorem 2.1 and Corollary 4.2], it follows from (7.4) that
the following are true (see also [9, Lemma 5.13, p. 506]):
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(1) the Dirichlet heat kernel p{* exists pointwise for (z,y,t) € Q x Q x (0,00);
(2) both pf!(z,-) and p{*(-,x) are continuous in Q for every ¢t > 0 and every z € €;
(3) the inequality (7.1) holds true.

We show (7.2). Indeed, fix a point y in U. Setting f = p{*(-,y) in (7.3), we obtain for all z,2’ € U
and t > 0,

C RO\ VY — du(z, ') \°
Q QO _C (R -1y (&)
P2 (2, y) — pa(a’ y)| < V. (z0, R) < t ) exp (W (o, ) ™) <t1/5 /\7") '

Since the three points z,2’,y € U are arbitrary in the above inequality, replacing x, 2",y by y, v, 2’
respectively and using the symmetry pS}(z,y) = pSt(y, ), we have

c (R o1y (a9’
Q , Q ’ ’ —1 * Y
P32’ y) — py(a’,y)| < V@, R) (t ) exp (W (20, B)™) (tl/ﬂ /\T) '

Summing up the above two inequalities and renaming 2t by ¢, we obtain

o C RB 1/v _ d* x,x/ 0 Cl* , / [
[P () v (a9 < 5 (t) exp (tW (z0, B)™") ((tl/(ﬁm)) + (M) ) :

Moreover, for 2’,y € Q and t > s > 0, applying (7.5) with ¢ replaced by t — 3,
and f = p?ﬂ(-, y'), we obtain

s by 5, x by a

C RP v — t—s
et o o | < 2—1 -1 .
Py (s y") = P (@, y)| < V(o ) (8/2> exp (27 sW (zo, R) ™) 2
Adding up the above two inequalities, we obtain (7.2). O

By Remark 4.16(2) and [13, Corollary 2.14], the following five conditions
VD) + (RVD) + (TJy) + (Geap) + (PI) for 2 < ¢ < o0

imply the existence of the pointwise defined heat kernel in [13, Definition 6.1]. While, the following
gives a refinement of this result by reducing condition (TJ,) for 2 < ¢ < oo to condition (TJ), since
condition (TJ,) is stronger than condition (TJ) by [13, Proposition 3.1].

Proposition 7.2. Let (£, F) be a reqular Dirichlet form in L?. Assume that for any bounded open
set Q C M, the Dirichlet heat kernel pi*(x,y) exists and is locally Holder continuous in (x,y) € QxQ
for any t > 0. Then (£, F) admits a pointwise defined heat kernel pi(x,y) satisfying the following
properties.

(1) For anyt,s >0,

ps(es) = [ o e n)dnt). V€ M
(2) For anyt >0,

/ pe(x,2)du(z) <1, VaeM.
(3) Foranyt,s >0, N
Pipsf(x) = PP f(z), ¥ fe€L*M), z€M,
where

Pf@) = [ mle.p))dut). £ € P00, >0,

(4) For any bounded open set Q@ C M,
pe(z,y) > pit(x,y), Vit>0, z,ye M.
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Proof. Fix a point xyp € M. By assumption, for any ball B,, := B(zg,n) with n > 1, the locally
Holder continuous heat kernel pf " exists. Since pf ™ is increasing and non-negative, we can well
define
pe(z,y) == lim p/"(x,y), t>0,z,y € M.
n—oo

Obviously, the function p:(z,y) is pointwise defined and is measurable on M x M x (0,00). The
rest proof is motivated by [10, Lemma 5.1].

Property (1) follows from the definition of p:(z,y), monotone convergence theorem and the
identities:

PP (2,y) = / P (2, P (o y)du(z), Vs> 0, @y € By
M

Property (2) follows from the definition of p;(x, y), monotone convergence theorem and the inequal-
ity:

/ptB”(x,Z)du(z)él, Vt>0, z€ B,
M

Since each pf " is locally Holder continuous, for any n > 1, ¢t > 0 and f € L' N L?(M), the
function z +— PtB " f(x) is also locally Holder continuous in B,,. Then, by monotone convergence
theorem, we have for any t >0, 0 < f € L' N L*(M) and = € M,

Rt = [ i@t = [ Tm o (o) @)t

n—oo

= lim [ p/"(z,9)f(y)du(y) = lim PP f().
M n—oo
This together with the identities
Pt%éf(ﬂf) = PP PP f(x)
yields the property (3) for any 0 < f € L' N L?(M). Then, by the standard approximating
arguments, we can extend it to all f € L2(M).

Property (4) follows from the definition of p;(z,y), the monotonicity of pf” in n and the conti-
nuities of pf ™ and p?. O

Corollary 7.3. Under the hypothesis of Lemma 7.1, the form (€, F) admits a pointwise defined
heat kernel pi(z,y) satisfying all properties in Proposition 7.2.

In the rest of the paper, under the conditions (VD), (RVD), (TJ), (Gcap), (PI), the heat kernel
pe(x,y) is always referred to as that obtained in Corollary 7.3.

7.2. Derivation of the near-diagonal lower bounds. In this subsection, we will derive the
near diagonal lower estimate of the heat kernel. We introduce condition (LLE,) that is called the
localized lower estimate under the new metric d,.

Definition 7.4. We say that condition (LLE,) holds if the following two conditions are true.
(1) For any bounded open set  C M, the Dirichlet heat kernel p{*(z,vy) exists.
(2) There exist ¢, > 0 and 0, € (0,1) such that, for any ball B, := Bi(xg,r) with r €
(0, W (z0, R)'/#) and for any t'/# < §,r, we have

B* >
pt (xay) - ‘/*(.:U(),tl/ﬁ)’

We say that condition (sLLE,) holds true if (LLE,) holds true and, for any non-empty bounded

open set Q C M, the Dirichlet heat kernel p{*(x,y) is locally Holder continuous in (z,y,t) €
Q2 x Q x (0,00).

Cx

p-a.a. .,y € By(xg, 6,tY5). (7.6)

We introduce condition (NLE,) that is called the near-diagonal lower estimate under the new
metric d,.
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Definition 7.5. We say that condition (NLE,) holds if the heat kernel p;(z,y) exists, and for any
Cy > 1, there exist two positive constants d,, C such that
-1

Va(z, t1/F)
for p x p-almost all (x,y) € M x M and all t < CoW (x, R) satisfying
di(z,y) < §.t1/8.

pi(z,y) > (7.7)

We say that condition (sNLE,.) (strong near-diagonal lower estimate) is satisfied if condition (NLE,.)
is satisfied and, the function p;(x,y) has a version satisfying piis(z,y) = [y, pi(2, 2)ps(2,y)dz

s(
for any t,s > 0, z,y € M and satisfying (2.16) for any z,y € M and t < CoW (z, R) with
di(z,y) < 5.t1/8.

Lemma 7.6. Let (£,F) be a regular Dirichlet form in L? without killing part. Then
(VD) + (RVD) + (TJ) 4 (Gcap) + (PI) = (VD.) + (sLLE,) = (sNLE,).

Proof. Assume that conditions (VD), (RVD), (TJ), (Gcap), (PI) are all satisfied. Note that the
constant Cy > 1 in Lemma 7.1 can be arbitrary. By Lemma 7.1, we see that for any bounded
open subset €} of M, the Dirichlet heat kernel p?(x,y) exists and is locally Holder continuous in
(z,y,t) € Q2 x Q x (0,00). In particular, for any ball B,, the Dirichlet heat kernel pP*(z,y) exists
and is jointly continuous.

Condition (VD) holds true by Proposition 4.4. To prove condition (sLLE,) holds. It suffices to
show (7.6).

Indeed, by (6.4), we see that condition (S.) is true, that is, there exist two small constant ¢, §;
n (0,1) such that for all metric balls B, (z,7') of radius ' < W (z, R)"/?,

/ 1
pB(ar )13*(“6/) >¢e in ZB*(Z, ), (7.8)
provided that s < (§17)?. We split the proof of inequality (7.6) into two steps.
Step 1. Fix t € (0,5?W(m0,§)) and set
pi= 5f1t1/’6 <W(zo,R)Y? and B, := B.(x0,p),

so that t = (61p)”. We claim that there exist constants c, d in (0, 1) such that
c

B
* x7 Z -

for all points z,y in B, (xzg, dot'/?).
Indeed, for any « € B,, we have by the Holder inequality,

B. . 2
o) = [ ot = s ([ o)) = W

Since the function P5:1p, is continuous by Lemma 6.11 and /2 = (01p)°/2 < (01p)?, it follows

t/2
from (7.8) that,

2
Pli1p.(x)) L2
ILI/(B*) a V:k(x()vp)

On the other hand, since p € (0, W (zo, R)"/?) and t € (0, 5BW(w0,§)), applying (7.2) with
QO=DB,,U= %B* and 7 = %p, we have for any z,y € %B* = B.(xo, 45 141/8),

N 5 c [P\ 8} W (z0, R) di(z,y) '
e (w,2) = p; " (x,y)| < V*(xmp)<t> eXp( %/(xo,ﬁ) ><t1/5/\(3p/4)>

( i
pP(z,z) > for any x in ZB*. (7.10)
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_ /v 0
< C 0q A dy(z,y)
S Vo) \ 0 1175
_ O (duy)’
B ‘/*(CCO,/)) tl/ﬁ ‘
Let 62 be a constant in (0,267 1) to be determined. If z,y € B, (g, d2t*/?), then

c’ (d*(x,y)>9 C'(265)°
< .
Vi(wo, p) \ t1/8 ~ Vi(®o, p)

pE (@,2) = pf (w,)| <

Combining this and (7.10), we have
82 — C,(252)0

B B
Py (@) = py(2,2) — Ipy " (2, 2) — py " (2,)] =
v (@y) = p (e w) = |p (2, 2) — (2, 9))] TACN

22/0

ChOOSing 52 = W

A (3671) so that

C'(26)% < £2/2,

we obtain (7.9) with ¢ := £2/2, thus proving our claim.
Step 2. Let 8, := 01 A 8. Fix a ball B,(xg,r) with r € (0, W (zo, R)/?) and some

t < (6.7)° < 8°W(z0, R).
Then,
p=07YP <o HYE <,
so that By (xg,p) C By«(xzg,r). By (7.9), we have, for all
2,y € Ba(xo,0.tY%) C B(xg, 21/,

that

B. (o, B. (o,
pr 0N (2, y) > pPoR (2 y) >

Since p = 87 11/% > t1/8 we see by (VD,) that

Vawop) _ o (67 °\" _ osee
)~ L

V;(.T(),P) '

‘/*(m(b tl/ﬁ tl/ﬁ
Therefore, it follows that for any x,y € B, (x,6,t'/?) and any t < (5,r)?,
/
B.(z0, c
pt (IO T) («T,y) >

o ‘/*(.TQ, tl/ﬁ) ’

thus showing (7.6). Therefore, condition (sLLE,) holds.
It remains to show the implication (VD) + (sLLE,) = (sNLE,).

55

(7.11)

Indeed, assume that condition (sLLE,) holds true. Note that the hypothesis of Proposition 7.2
is satisfied. Then, the existence of the global heat kernel p;(x,y) follows from Proposition 7.2. In

the sequel, we divide the proof of (7.7) into two steps.

Step 1. Let 8, be the constant from (7.6). For any = € M and s € (0,0°W (z, R)), set

ri= 618 < W(x, R)\/P
so that s < (6,7)®. Then we have by (7.6) and Proposition 7.2(4) that
V z,w € Ba(z,8.5"7).

c
>
= Vi(z, s1Y/8)’
Step 2. Fix Cy > 1 and take an integer n > 1 so that

ps(z,w) > pB @) (2 w)

n—1§@<n.
5B

*

(7.12)
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Set
s

onl/B’
Fix z,y € M and t < CoW (x, R) with dy(x,y) < 85tY/P. By the pointwise semigroup property in
Proposition 7.2(1), we have

03 :=

pe(z,y) = /M 71Pt/n(l’, Zl)pt/n(ZbZZ)"'pt/n(znflay)dzleQ"‘dznfl

Z / pt/n(x7 Zl)pt/n(zh 22) o 'pt/n(zn—l) y)dzleZ o dZn_l.
(x (sstl/ﬁ)n 1

Since
B(z,85t%) € B(x,6.(t/n)Y?), y e B(x,5.(t/n)/?) and t/n < W (z,R),
we obtain by the above inequality and (7.12) with s = ¢/n that

C n
> - dzidzg -+ - dzp—
pi(@:y) 2 /Bu,&tw)m <v*<x,<t/n>1/ﬁ>> adz e o
C n n—1
Y . — V. (xz, 63t/
(wx,(t/n)l/ﬁ)) (Vo))

n—1
c " n—1 c Vi (z, 63t1/9)
> (— % ) (Vi(w,o5tV/? _ i
) (vm,tl/ﬁ)) (Va0 m(:c,tl/ﬁ)( Ve, t77)

Moreover, by (VD,),
Vi, 55t'%) (&at”ﬂ) o

V*(g;,tl/ﬁ) t1/8
Combining the above two inequalities, we obtain (7.7), thus proving (sNLE,). O
Lemma 7.7. Let (£, F) be a reqular Dirichlet form in L?. If condition (VD) holds, then
(sLLE,) < (sLLE), (7.13)
(LLE,) < (LLE),
(SNLE,) < (sNLE),
(NLE,) & (NLE).

Proof. Let Cy be the constant from (2.8) and (2.9). If either (sLLE,) or (sLLE) holds true, then
for any bounded open set 2 C M, the Dirichlet heat kernel p?(m,y) exists and is locally Holder
continuous in (x,y,t) € Q x Q x (0, 00).

(1). We show implication (sLLE,) = (sLLE).

Assume that conditions (VD), (sLLE,) are satisfied. Fix a ball B := B(zg, R) with R € (0, R).
It suffices to prove (2.18). Indeed, let ¢y, 0, be the constants from (7.6). Let

ri= L7 F(x9, R) < W(zo, R)"/? so that W (xo, R) = F(xo, R)® = (Lr).
By (4.7), we have
B.(xg,7) = B,(xo, L F(xg, R)) C B(xo,R) = B.
Thus, by (7.6) and (VD.,), we have that for any
t < (6,7)% = 6P L=PW (0, R)
and for any z,y in B, (zq,6,t'/7),

B*(ZO’ )(

i (2.y) 2 py (7.14)

) > > _ ¢
O =Y (o, 01/8)

On the other hand, let
Ry := F_l(xo,L_lLotl/B) = W_I(CC(], (L_lLo)Bt) so that W(CL‘(), Rl) = (L_lLo)ﬂt
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By (4.6),

B, (z0,t%) € B(zo, R1) = B(xo, W™ (x0, (L Lo)?1)),
from which, we see that

Vi(zo, tY/8) < V(xo, W (20, (L' Lo)P1)). (7.15)
Let
Ry := F~ Yo, L76,tY%) = W (20, (L7'6,)%t)  so that W (w0, R2) = (L '6,)°t.

By (4.6), we obtain

B(zo, W™ (o, (L76,)%t)) = B(zo, Ra) C Bu(wo, 65t'/7). (7.16)
Combining (7.14)-(7.16), we obtain for any

t < 6P L7PW (20, R)

and for any x,y in B(zo, W ! (xo, (L715,)%t)),

Plew) 2 o 2 C
be % Y) = Vi(xo, t1/8) = V(xg, Wz, (L1 Lo)Pt))

Moreover, by (2.8), we can choose § € (0,1) to be so small that
W (z0,0R) - Cy 61 <1,
6P L=BW (x9,R) ~ 69L—F

and by (2.9) that
W laot) st N _ous (1 NP
W—1(zo, (L~16,)88) = W\ (L~16.)0t W \(L16,)8 -

With this choice of §, we obtain for any ¢ < W (xo,§R) and for any z,y in B(zg, W ~(zo,1)),
B c
> .
P Y) 2 e T (o (-1 L9)P0))
By (VD) and (2.9) and using the fact that L='Lo > L > 1, we have

V (w0, W (0, (L' Lo)"t)) _ o W (xo, (L Lo)Pt)\* e (L1Lo)%t off .
V (o, W(zo,1)) - W=1(z0,t) = t = M
Therefore, it follows from above that for any ¢t < W (xg,dR) and for any x,y in B(zg, W ~!(z0,1))

c c

B > >
pi (@) 2 V(zo, W= (zo, (L~ Lo)?t)) ~ V(xo, W (20,1))’
thus showing (2.18). This proves the implication (sLLE,) = (sLLE).

To show the opposite implication (sLLE) = (sLLE,), assume that condition (sLLE) is true. Fix
a ball B, := By(xg,r) with some

r e (0, W (o, R)'/P).
It suffices to show that the inequality (7.6) is true. Indeed, let C,d be the constants from (2.18).
Let
R:=F Yao, L71r) = W (o, (L71)P) < W (o, rP) < W (xg, W(z0, R)) = R.
By (4.6), we have
B(zo, R) = B(zo, F~(z0, L7 'r)) C By(z0,7) = B,.
Thus, by (2.18), we obtain that for any ¢t < W (zg,dR) and for any x,y in B(xg, W ~!(z0,1)),
-1

B(IO,R)(
t V(:Iio,W_l(:Iio,t))'

T,y) >

pP(z,y) > p (7.17)

On the other hand, set
r1 = L7 F (0, LoW ™ Hao, 1)) = LW (20, LoW ™ (20, 1)) /7.
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By (2.8),
r < L CWP LYW (o, W (w0, )V = LY Oy L7118,
from which, we see by (4.7) that
Bao, W™ (0,1)) € Bu(o,71) C Bulawo, L™ Cyy” Ly t!17)
and hence,
V (w0, W (w0, 1)) < Vi(wo, L CLPLEP11/5), (7.18)
Let
o = LT F (20, W ™ (a0, 1)) = L™ W (20, SW ™ (a0, 1)) /5.
Then by (2.8),
o > Lflc‘,_vl/ﬁcSB?/ﬂW(xo,Wfl(a:o,t))l/ﬁ = Lflc‘;vl/ﬂgﬁz/ﬂtl/@
from which, we have by (4.7) that
B(wo, W (20,1)) D Ba(xo,72) D Ba(wo, L CpptP6%2/541/8), (7.19)
Combining (7.17)-(7.19), we obtain for any
t < W(wo,d6R) = W (zo, SW (g, Cip (L711)P))
and for any x,y in B, (xo, L*10@1/6552/5t1/6),

C
p (z,y) >

Vi(zo, L1CH P L Prey

Note that by (2.8),
C’;VI(L_lr)ﬂ _ W(zo, W= (z, C‘;}(L_lr)ﬁ))
W (xg, SW—1(xo, C"/_Vl(L_lT)ﬁ)) W (zg, SW (o, C‘/_Vl(L_lr)B))
Therefore, taking d, € (0,1) to be so small that 0, < L_lC;VQ/ﬁ&B?/ﬁ and
(0.r)7 < CRtoP2Ct (L71r)P < W (o, sW (o, Oyt (L711)P)),
we obtain from above that for any ¢ < (§,7)? and for any z,y in B, (zg, 6,t'/7),

pr(,y) > °
t 9 - 9
Vi (o, L1CH P L0/ P18

thus showing (7.6) by using condition (VD,). Equivalence (7.13) follows. Similarly, under (VD),
we have (LLE,) < (LLE).
(2). We show (NLE,) = (NLE). Assume that (7.7) is satisfied. We need only to prove the
inequality (2.16) is true.
Indeed, Let C,d, be the constants as in condition (NLE,). For any 6 > 0, ¢t > 0 and =,y € M
with d(z,y) < SW~(z,t), by (4.5) and (2.8), we have
du(,y) < LF (x,d(z,y)) < LW (2, 6W ™ (2, 1))/
< LCYPSPIOW (2, W (m, )8 = LC Y PsPr/811/P
Then, we can take § small enough such that
B(x,6W ™ (x,t)) C B.(x,8,t/7).
Moreover, by the second inclusion in (4.7) with R = W~1(z,t), we obtain
B.(x, L'%'%) ¢ Bz, W\ (z,1)).
Therefore, using the above two inclusions and (VD,), we obtain from condition (NLE,) that
c-t ct ct
> > >
P& Y) 2 ) 2 Vi L) 2 Ve W ia, D)

< COwo P,
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for (u x p)-almost all x,y € M and all t < CoW (z, R) with Cy > 1 satisfying
d(z,y) < W (z,1).

This shows the implication (NLE,) = (NLE).
To prove the opposite implication (NLE) = (NLE,), we need only to prove (7.7) holds true.
Indeed, let C, 6 be the constants as in condition (NLE). For any 6. > 0 and z,y € M with
di(z,y) < 8, 8Y/BW=1(a,t), by (4.5), we have

W (e, d(z,y)) < (Ldu(z,9))° < (L6.)°1.

Then, by (2.9), we can take ¢, small enough such that

d(z,y) < W (z, (L6,)Pt)) < sW Yz, 1).
Moreover, by the second inclusion in (4.6) with 7 = Lt'/#, we obtain

Bz, W™z, t'/%)) c B,(z, Lt'/?).
Therefore, using the above two formulas and (VD,), we obtain from condition (NLE) that
c1 Cc1 c!
pe(w,y) > VW1 (017 > Vo(w, L9 > Vo 0178’
for (1 x p)-almost all z,y € M and all t < CoW (x, R) with Cy > 1 satisfying
d(z,y) < Wz, t).

This shows the implication (NLE) = (NLE,).
Similarly, under (VD), we can prove (sNLE,) < (sNLE). O

7.3. The reflected Dirichlet form. In this subsection, we recall the general theory of the reflected
Dirichlet form in L?(Q, 1) for a non-empty open subset € of M. The reflected Dirichlet form will
be used to derive the Poincaré inequality in the next subsection.

Let (£,F) be a general regular Dirichlet form defined in (2.5). Let U be a non-empty open
subset of M.
e The part Dirichlet form (&, F(U)) on L*(U).

Let F(U) be a space defined by (2.17), that is F(U) = F N CO(U)&. It is known (cf. [7, Theorem
4.4.3)) that if (£, F) is regular, then (€, F(U)) is a regular Dirichlet form on L?(U), which is called
the part of the Dirichlet form (€, F) on U. Moreover, the two Dirichlet forms (£, F) in L*(M, u)
and (£, F(U)) in L?(U) share the same set of quasi notions (cf. [7, Theorem 4.4.3(ii) on p. 174]).
Note that the energy & keeps the same expression (cf. [3, Eq. (3.3.1) on p. 108]) but its domain
F(U) becomes smaller than the original F, so that F(U) C F.

For any u € F(U), we have by (2.5)

£(u,u) = /U A0 (o, ) + / /U (ule) = )P + /U w(@)2k (dz) (7.20)

where ky(B) = k(B) + 2j(B x M \ diag) for any Borel set B € B(U) is the killing measure of the
Dirichlet form (€, F(U)), see also [3, Eq. (5.2.29) on p. 189].
e The resurrected Dirichlet form (£Yes FUres) on L2(U).

We follow the arguments in [3, the first paragraph on p. 190] to recall the notion of resurrected
Dirichlet form.

Indeed, for any u € F(U), we define

U,resuu: (L)uu ulxr) —u 245 .
EU5S (1, 1) /Udr <,>+//M<<> (v))%d). (7.21)

that is, the energy £V is defined through (7.20) by removing the killing part. Applying [3,
Theorem 5.2.17] for (£, F(U)) instead of (&€, F), the form (£,F(U)) has a resurrected Dirichlet
form (£Ures, FUTs) with an appropriate domain FU' (see the last paragraph in [3, the first
paragraph on p. 190]). Moreover, we also have the following conclusion from [3, Theorem 5.2.17]:
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(1). (gUres, FUes) ig a regular Dirichlet from on L?(U).
(2). FN Co(U) is a core of (EUres, FUTeS) gince it is a special standard core of (£, F(U)).

Consequently,
£ U,res

FUres = FnCo(U)™ (7.22)
where
U,res ._ ecUres
E (uyu) = E7 (u, u) + (u, u) 20y

(3). The two Dirichlet forms (€, F(U)) and (EYVres, FUres) in [2(U) share the same set of quasi
notions.

Since Y (u, u) < E(u,u) for any u in F N Co(U), we have by (7.22)
F(U) c FUres, (7.23)

Roughly speaking, the resurrected Dirichlet form (£Vres, FUres) can be viewed as a modification
of the Dirichlet form (£, F(U)) on L?(U) by dropping its killing part and by enlarging its domain.
e The reflected Dirichlet form (£Vrf, FUref) on L2(U).

The reflected Dirichlet form (EUref, FUref) on [2(U) is a modification of the resurrected Dirichlet
form (EUres, FUres) on L2(U) by adjusting its domain FU*® while keeping the same expression of
the energy £V on the space F N L.

Recall that a set £ C M is called £-quasi open for the Dirichlet form (&€, F) if for any € > 0 there
exists an open set U containing £ with Cap;(U \ E) < ¢ (see (2.25) for the definition of Cap;).
So called £Y_quasi open sets for the Dirichlet form (£Yrs, FUres) can be similarly defined. We
follow the definition of the notion Fiee in [3, Eq. (4.3.31), p. 163] to define the function class .}(ng’cref
on U:

]_-lg,cres = {u : there is an increasing sequence of EV**-quasi open sets {D,} with U2, D, =U

EUres_q.e. and a sequence {u,} C FU' such that u = u, p-a.e. on Dn} .

That is, we replace F, E appearing in [3, Eq. (4.3.31), p. 163] by FU* U respectively.

The arguments following [3, Eq. (4.3.31), p. 163]) shows that every function in .ﬁg’cres admits a
quasi-continuous version. Indeed, for u € ]i"g’cres, by definition, there exists an increasing sequence
of quasi open sets {D,,} with U3, D,, = U and a sequence {u,} C FU* such that u = u,, p-a.e.
on D,,. Moreover, each u,, can be chosen to be its quasi-continuous version. Consequently, for any
m > n, we have u,, = u = u, p-a.e. on D,. Then, it follows from [7, Lemma 2.1.5, p. 70] that
Um = Uy q.e. on D,. Hence, one can define a quasi-continuous function v on M such that v = u,
g.e. on D,, and it is clear that v is a quasi continuous version of wu.

Since (£Yres| FUres) is a regular Dirichlet form on L2(U) by the above result, one can follow the
arguments in the last two paragraphs in [3, p. 263] to prove that (7.21) is also well defined for all
u € FU' (not only for u € F(U)). In this case, we write the formula in (7.21) by £V (u, u) when

loc

= fgfes. That is,
EU,reS(u’ u) = / ar®) (u,u) + // (u(x) — u(y))2d], u € ‘/_iilcj);:res' (7.24)
U UxU

Again, since (EUres, FUres) is a regular Dirichlet form on L?(U), by [3, Defintion 6.4.4, p. 256],
the reflected Dirichlet space (EUref, FUrel) of (gUres FUes) is defined by

FUrel . {u € fg’cres : EU’res(u,u) < OO} ) (7.25)
and
gU,ref(u’ 1)) _ gU,res(u7v)’ u,v € ]:U,ref. (726)

Moreover, applying [3, Theorems 6.4.5, p. 266], with (£, F), (£, Fr!) being replaced by
(EUxes FUres) (gUret | FUrel) raspectively, we see that the form (U7, FY ’mf) with

]_-g,ref . pUref L2(U) (7.27)



LOWER ESTIMATES OF HEAT KERNEL 61

is a Dirichlet form on L?(U). This Dirichlet form is called the reflected Dirichlet form on U. It
is known that the Dirichlet form (SU’ref,]-"g ’ref) need not be regular in general. In the following,
we will construct a regular Dirichlet form on L?(U) such that the associated domain contains the
function set F|y:

Flu :={u : there exists a function f in F such that u = f on U}.
We need the following lemma.
Lemma 7.8. Let U be an open subset of M. Then
Flu c Flre. (7.28)

loc

Proof. Let {U,} be a sequence of precompact open sets such that U,, + U asn — oo and U,, C U, 11
for n > 1. Fix a function u of its £-quasi continuous version in F. For any n > 1, let
D,={zecU:—n<u(z) <n}NU,.

Then each D, is E-quasi open, precompact with D,, C Dy, 41 for n > 1 and U, D,, = U. Moreover,
by definitions (7.20) and (7.21), each D,, is also £Y**-quasi open.
Let forn >1

Up = (—n) VuAn.
Then each u,, € F N L* and u,, = v on D,,. We show
= J,—_-U,res
n :
Indeed, let ¢ € cutoff(Dy,, Dy+1) so that supp(¢) C Dy,q1 C U. We have by [7, Theorem 1.4.2(ii),
p. 28] that v, := uy - ¢ € F N L, and so by [15, Proposition 2.8],
Un S f(Dn+1)
From this, we have by (7.23)
vy € F(Dpy1) C F(U) € FUTes,
Since u = vy, p-a.e. on Dy and v, € FUres we see that uly € ]i'lg’cres by definition. O
For any open set U C M, it is easy to see that F|y C L?(U), and by the definitions (2.5) and
(7.24),
EVTes (u)y, uly) < E(u,u) < oo, ue F.
Hence, by (7.28) and by the definitions (7.25) and (7.27), we have

Flu ¢ FUrein L2(U) = FU™

Assume in addition that x(9U) = 0. In this case, we have L?(U) = L?*(U). We will construct a
regular Dirichlet form on L2(T). Indeed, all functions in F|y or FY™ can be identified as functions

on U. Moreover, note that (£Uref, 7™ is a Dirichlet form on L2(U), and Fly C FJ™. We
define

U,ref
81

Fo=F (7.29)
where

glU,ref(u’ u) — gU,ref(u’ ’LL) + (u’ u)LQ(U)7 u € FU.

Denote by Co(U) the space of continuous functions with compact supports in U. Note that the
space Cp(U) is the same to the space of functions in Cy(M) restricted to U.

Theorem 7.9. Let U C M be a non-empty open set with u(0U) = 0. Then (EU’ref, FY) defined in
(7.26) and (7.29) is a regular Dirichlet form on L*(U). Moreover, F|g N Co(U) is also the core of
(SU,rcf7 fU)
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Proof. Tt is easy to see that FU is dense in L?(U), since Fly C FU and F|y is dense in L2(U).
Hence, (EUf, FU) is a Dirichlet form on L?(U). It remains to prove that (£V*°f, FU) is regular.
Indeed, let us first prove that FY NCy(U) is dense in Cy(U). Since FNCq(M) is dense in Co(M),
we have that for any u € Co(U) with u = ulg for some u € Co(M), there exists {@,} C FNCo(M)
such that
sup |t (x) — u(z)| < l, n>1.
rEM n

Set uy, 1= ty|g € Flg N Co(U) for n > 1. Then

sup [un(z) — u(z)| < sup [Gn(x) — A(x)| < =, 0> 1.
zcU zeM n
That is, F|z N Co(U) is dense in Co(U). Since Flg C FY, we have that FY N Cy(U) is also dense
in Cy(U).
Let us prove that FY N Cy(U) is dense in FV. By the definition (7.29) of FV, for any u € FY,
there exists {u,} C F| such that

ElU’ref(un — Uy Uy, — u) < n > 1. (7.30)

ﬁa
Then there exists {@,} C F such that u, = @, |7 for n > 1. Since F N Cy(M) is dense in F, there
exists {v,} C FNCy(M) such that

1

ﬁ’ 7121

gl(rﬁn - anvfﬁn - an) <

Set vy, := U7 € Flg N Co(U) for n > 1. By (7.26), (7.24) and (2.7), we have

1

51U’ref(vn — Up, Uy — un) S 51(1771 - anyan - ﬂn) < ﬁa n Z ]- (731)

Combining (7.30) and (7.31), we have

4

81U7ref 5 nZ 1.
n

(U — Uy vy —u) <
Since v, € Flz N Co(U) for n > 1, Flz N Co(U) is dense in FY. Moreover, since Flg N Co(U) C
FUNCy(U), we have that FU N Cy(U) is dense in FU. Therefore, (EV, FU) is regular. O

By Theorem 7.9, (§Uf, FU) is a regular Dirichlet form on L?(TU). Then, its part Dirichlet form
(EUret FU(U)) is a regular Dirichlet form on L2(U), where

gU,rcf
FUU)=FUnCoU)
and ElU’ref(u, u) = EVre (u,u) + (u, u) 2y, U € FU.
Recall that (£, F(U)) be the part Dirichlet form on L?(U) of (£, F). If we identify the functions
in F N Cy(U) as functions on U, then we have by (7.29),
FNCo(U) c FY(U)NCy(U).

Moreover, since EY* (u|yr, u|y) < E(u,u), u € F, we have

oU,ref

FU)=FnCo(0) c FUAGU)" =F ). (7.32)

We also have the following proposition.

Proposition 7.10. Let U C M be an open set with (0U) = 0. Then, F N Cy(U) is weakly dense
in FU(U) with respect to EV™" and L?-norm.
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Proof. Step 1. Fix u € FV N Cy(U). Let K := supp(u) C U and choose ¢ € cutoff (K,U) C FU.
Since u € FY, by Theorem 7.9, there exist {u,} C F|i N Co(U) such that

1
ElU’ref(un — Uy Uy —u) < —, n>1
n

Note that u € Co(U) is bounded. Let vy, := (—||ullsc) V un A ||ullos € Fliz N Co(U) for n > 1. By
[7, Theorem 1.4.2(v), p. 28] with ¢(t) := (—||u|/s0) V E A ||t]|co, t € R, we have

lim ElU’ref(vn —u, vy, —u) = 0.
n—oo

Consequently, we have v, converges to pu = u as n — oo in L?norm, and by [7, Theorem
1.4.2(ii), p. 28]

sup EV (g, pvn) < sup 2/ @]l oV (U, vn) + sup 2[|on [ ET (0, )
n>1 n>1 n>1

< sup 280 (v, v3) + 2||ul| o EV (0, ) < 00
n>1
Hence, by Lemma 9.4 in Appendix, there exist {pv,, } C {¢v,} such that pv,, converges weakly
to u in EY L -norm. Moreover, since each v, € FNCy(U), we see that F N Cy(U) is weakly dense
in FU N Cy(U) with respect to £V and L%-norm.

Step 2. Fix u € FY(U). There exist {u,} C FU N Cy(U) such that
1
E{J’ref(un — Uy Uy —u) < —, n>1.
n

By step 1, for any v € FU, there exist {v,} C F N Co(U) such that

1V (uy, — vy, 0)| < =, n>1,

S|

and

1
[vn — unll L2y < N > 1.

Consequently, we have for any v € FU,

. U,ref _ ; =
nh~>n<}og re (Un - 'LL,’U) - 07 nh~>nolo an - U”Lz(U) =0.

The proof is complete. O

We will use the parabolic maximum principle [14, Proposition 4.11] to prove the following Propo-
sition 7.11. Let us recall the definition of subcaloric functions.
Let I be an interval in R. A function u : I — L? is said to be weakly differentiable at t € I, if
for any ¢ € L?, the function (u(-), ) is differentiable at ¢, that is, the limit
t —u(t
i (M0 )

e—0 )

exists. In this case, by the principle of uniform boundedness, there is some w € L? such that
t —u(t
lim (’“(""8)“()7@> = (w, )

e—0 5
for any ¢ € L?. The vector w is called the weak derivative of u at t, and we write w = O;u or
For an open subset U C M, a function u : I — F is subcaloric (caloric) in I x U if u is weakly
differentiable in L? at any ¢ € I and if for any ¢ € I and any non-negative ¢ € F(U),

(Ovu, @) + E(u(t, ), ¢) <0 (=0).

One can prove that for any f € L?(U), PV f is caloric in (0,00) x U. Subcaloric (caloric) functions
for other Dirichlet forms can be similarly defined.
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Proposition 7.11. Let U C M be an open set with n(dU) = 0. Let {P:}1>0, {P >0, {PY }es0
be the heat semigroups of the Dirichlet forms (€Ut FUY) (€Ut FU(U)), (€, F(U)) respectively.
Then for any 0 < f € L*(U) and any t > 0,

Pf>PVf>PUf in M. (7.33)
Proof. Clearly, for any non-negative f in L?(U),
Pf>PUf in M.
Since ﬁth = 0= PVfin U, we only need to show
PUf>PVf inU.

To do this, note that both Dirichlet forms (£, FU(U)) and (£, F(U)) in L?(U) are regular. Let
for any f € L?(U) and t > 0,

u(t,”) := PV f — PY¥.

We are to show that u < 0 in (0,00) x U by using the parabolic maximum principle.
Indeed, it is easy to see that u(t,-) — 0 in L?(U) as t — 0. Since

u(t,) < P () € F(U),
we see by [14, Lemma 4.4] and by using (7.32) that
uy(t,-) € F(U) c FY(U).

Thus, the function u satisfies the initial and boundary conditions in (0,00) x U with respect to
(€05 FU(U).

We show that u is subcaloric in (0, 00) x U with respect to the form (EUref, FU(U)), that is, for
any non-negative function ¢ € FUY(U)

ou ‘o
(57 9) + &7 (w9) 0. (7.34)

Indeed, using the definitions (7.20) and (7.26), we see for any u,v € F(U)

E(u,0) = / ar®) (u, v) / /U B u())(w(z) — v(y))dj + /U u(a)o(@)ky (dz)
= Vet (y, v) +/Uu(x)v(x)kU(dm).

From this, we have for any non-negative function ¢ € F(U) c FY(U),

(%a@) = (;Pthf —pUy, > — —E(PUf, o)+ VL (BUf, o)

— —eUrt(PUf ) - /U PY f(2)p(w)ky (de) + EV7F(BY £, )
= U (u,p) - /U PY f(2)p(a)ku(dz) < ~EV7 (u, ), (7.35)

that is, the inequality (7.34) holds for any 0 < ¢ € F(U). Moreover, by Proposition 7.10, (7.34)
holds for any 0 < ¢ € FU(U).
Therefore, by the parabolic maximum principle [14, Proposition 4.11], we have

u(t,)=PVf—PUf <0 in (0,00) x U.

The proof is complete. U
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7.4. Derivation of conditions (PI) and (S). Recall that (£,F) is a regular Dirichlet form
without killing part defined by (2.7), and d, is the metric defined by Proposition 4.1.

In this section we derive conditions (PI) and (S) by using condition (LLE). Here the condition (S)
is called survival estimate which is defined below. This condition is used to derive the implication
(LLE) = (Gcap).

We start with the implication (LLE,) = (PL,).

Lemma 7.12. Assume that condition (VD) is satisfied. Then (LLE,) = (PL).

Proof. Fix a ball B, := B,(xg,r) of radius r € (0, W (zo, R)'/#).
Case 1. u(0B,) =0
Let the Dirichlet forms (£Bxref, FB«) (gB«ref | FB«(B,)), (£, F(By)) be as in Proposition 7.11
with U = B,, whose heat semigroups are denoted by {ﬁt}t>07 {IStB* Hso0, {PtB* }i>0 respectively.
By [16, Eq. (8.7)] and (7.33), we have for any ¢ > 0 and for any u € FB+,

£5° ) > - (Blu() — w)(x), 1(x))
1

> 27(??* (u()1 — w)2(x), 1(x))
> (PP (u(w)1 — u)(w), 1(x)
- / / u(w) — u(y))du(z)dp(y).

Let t = (6,7)% where §, is the constant from (LLE,). By (LLE,),

c c c

>
= Vowo,/9)  Vilwo6ur) = p(Ba)’

Combining the above two formulas and using condition (VD,), it follows that for any u € F5+,

p-a.a. T,y € B*(xo,é*tl/ﬁ) =46%B

pt “(w,y) >

B ,ref >
) 2 e /523* /523* u(y)du(2)dp(y)
C/.L((SZ *) / 2 C 9
= 5B (B u—-u dp > — u—u dp. 7.36
(6.7)8(B) 533*| gl dn = 3 533*‘ 52, dp (7.36)

Setting . := 82, we see by (7.36) and definition (7.26) that for any u € F|p, C FB*,
/ lu — g, g, |Pdp < CrPEPt (u, w) (u, u) = Crﬁ/ dl', (u,u),
K By *

thus showing that condition (PI,) holds.

Case 2. u(0By) >0

It follows from (VD,) that there exist at most countably many numbers s € (0,7) such that
(0B (x0,5)) > 0. Then, we can take a sequence {1y, }n>1 C (0,7) such that By, := B.(xo, ) 1T Bx
as n — oo and p(9By) = 0 for all n > 1. Moreover, applying the result in Case 1 for each B,, and
using (3.5), we obtain

/ u — ., |*dp(x) < Crﬁ/ dl'p, (u) < 07"5/ dl'p, (u).
K« Bn

Passing to the limit in the above inequality as n — oo, we obtain (4.13) for the ball B,. That is,
condition (PL,) holds. O

Definition 7.13. We say that condition (S) holds if there exist two small constants €, € (0,1)
such that for all balls B of radius less than R,

1
PP1p >¢ in 1B (7.37)
provided that t < §W (B).
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We show that condition (LLE) implies condition (S).
Lemma 7.14. Assume that condition (VD) is satisfied. Then (LLE) = (S).

Proof. Rename the constant § in (LLE) by do.
Step 1. Let By := B(z,R) with z € M and R € (0, R). By (LLE) and (VD), we obtain for any
t < W(z,d0R) and p-almost all z € B(x, oW 1 (z, 1)),

PPoLp, (2) = / PP (2, ) duly) > / PP (2, y)da(y)
Bog B(a:7(50W* ( ))

c1 1 Vi(x, oW ( t))
—/B@,(sowl(x,t)) Vw1 ) MY = O Vw1 )
> e (using (9.1)) (7.38)

V

for some positive constant ¢ independent of By,t, z.

Step 2. Fix B := B(zo,R) with 29 € M and R € (0,R). Let x be any point in %B SO
that B(z, %) C B. Applying (7.38) with By being replaced by B(z, %), it follows that for any
t < W(zx,00R/2),

B(z,R/2)

PB1p > P, 1p@.r2) =€ in Bz, 6oW ™ (2, t)). (7.39)

Moreover, by the right inequality in (2.8), we have for any x € iB
W(LEO’R) < CI 3 & —. 571’
W(z,d0R/2) 0

that is, W (zo, R) < W(x,doR/2). And, by the left inequality in (2.8), we have for any x € %B

)
and t < dW (zo, R),

W Y(zo,t) _ W (zo,t) + R _ ,, (W (wo, WL (zo,t) + R)\ /™"
Wit = Wolnt) ( W (e, W-1(z, 1)) >
_ 1/84
:C,,<W($(),W lt(‘%.Oat)—i_R)) — C(l’o,t,R)_l

that is, c(zo,t, R)W 1(xg,t) < W l(z,t). Here c(xg,t, R) is a positive constant depending on
Zo, t, R.
Hence, by (7.39), we have that for any = € %B and t < W (zo, R),

PP1p >¢ in B(z,doc(xo,t, R)).

Since 4B can be covered by at most countable balls like {B z,00c(xo, t, R)), x € %B}, it follows
that for any t < dW (xg, R),

1
PP1p>¢ in 1B
thus showing that (S) is true. O

7.5. Proof of Theorem 2.10. The follow lemma was proved in [12, Lemma 9.4], which shows
that under mild assumptions, conditions (Gcap) and (ABB) are equivalent.

Lemma 7.15 ([12, Lemma 9.4]). Let (£, F) be a reqular Dirichlet form in L? without killing part.
Then, we have

(VD) + (TJ) + (ABB) = (Cap).
Consequently, under conditions (VD), (FK) and (TJ), we have the following equivalence:

(Geap) < (ABB). (7.40)
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Proof of Theorem 2.10. Assume that conditions (VD), (RVD) and (TJ) are satisfied. We prove
the first equivalence: (PI)+ (Gcap) < (PI)+ (ABB) which follows from (7.40) and the following
equivalences:

(VD) + (PI = (PL.) (Proposition 4.7)
(VD) + (RVD) = (VD,) + (RVD,) (Proposition 4.4)
(VD,) + (RVD,) + (PL) = (FK,) (Fq. (4.33))
(VD) + (FK,) = (FK) (Proposition 4.13).
Next, we prove the following two equivalences:
(PI) 4+ (Geap) & (sLLE) < (LLE). (7.41)
Indeed, we have the following results:
(VD) + (RVD) + (Gcap) + (TJ) + (PI) = (LLE,) (Lemma 7.6)
(VD) 4 (LLE,) = (sLLE) (Lemma 7.7).

Moreover, it is obvious that (sLLE) = (LLE). To verify the opposition implication (LLE) = (PI)+
(Geap), we use the following implications:

(VD) + (LLE) = (LLE,) (Lemma 7.7)
(VD) + (LLE,) = (PL.) (Lemma 7.12)
(VD) + (PIL.) = (PI) (Proposition 4.7)
(VD) + (LLE) = (S) (Lemma 7.14)
(VD) + (S) = (Geap) ([11, Lemma 13.5]).

Hence, we have proved (7.41).
To prove the implication (LLE) = (sNLE), by the above equivalence, it suffices to prove
(sLLE) = (sNLE), which in turn follows from the following implications:

(VD) + (sLLE) = (sLLE,) (Lemma 7.7)
(VD) + (sLLE,) = (sNLE,) (Lemma 7.6)
(VD) + (sNLE,) = (sNLE) (Lemma 7.7).

The proof of Theorem 2.10 is complete. g

8. FULL LOWER ESTIMATES OF THE HEAT KERNEL

8.1. Proofs of Theorem 2.13 and Corollary 2.14. We start with derivation of (PI) from the
lower bound of the jump kernel.

Lemma 8.1. Let (£, F) be a regular Dirichlet form in L? without killing part. Then
(VD) + (J>) = (PI).

Proof. Fix a ball B := B(xg, R) with g € M and R € (0, R). It follows from conditions (VD), (J>)
that, for any v € F,

/ dT 5 (u / /B . w())2J (2, y)dpa(y) dp()
2. ¢ x
> //BXB(U(:E) —u(y)) V(w,y)W(w,y)dﬂ(y)du( )
/ /B - )53 R)me 7y ) )

V(fﬂo, W (zo, R //BxB (y))?dp(y)du(z).
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From this and using the identity

/ / (u() — uly)*dpu(y)dpu(z) = 2u(B) / (u — up)dp,
BxB B

we obtain
/ dl'g(u) > d -QM(B)/ (u — up)?dy = 2 / (u —up)*du
B B V(mo,R)W(.TO,R) B W(ZU(),R) B ’
thus showing that (2.15) holds with x = 1. O

We introduce condition (J%).
Definition 8.2. We say that condition (J%) holds if there exists a non-negative function J such
that dj(z,y) = J(z,y)du(y)du(x) in M x M, and for (p x p)-almost all (z,y) in M x M,

C
Vi(@, y)du(z, )7

where Vi(z,y) := Vi(x,ds(x,y)), x,y € M, and C is a positive constant independent of z,y (C' =0
if J=0).

J(z,y) > (8.1)

Then we have following.

Lemma 8.3. The following implication is true:
(VD) + (J>) = (J)

Proof. Tt suffices to show (8.1). Indeed, fix two points z,y in M. For any z € B(z,d(z,y)), we
have by (4.5) that

di(x,2) < LF(z,d(z,2)) < LF(z,d(z,y)) < L*d.(z,y),

showing that
B(z,d(z,y)) C By(z, L?d.(z,7)).
Since (VD) holds by Proposition 4.4, we have
V(z,y) = V(z,d(z,y)) < Vi(z, L2d(z,y)) < OVi(z, du(z,y)) = CVi(z,y).

One the other hand, using (4.5) again, we see

W(z,y) = W(z,d(x,y) = F(z,d(z,y))” < (Ldi(z,y))".
Therefore, it follows from (2.19) that

C C’
Hoy) 2 V(e g)W(a.y) ~ Vi, 9)di(z,9)°

thus showing (8.1). O

Proposition 8.4 ([8, Corollary 3.5]). Assume that (£, F) is a reqular conservative Dirichlet form
in L?. Let K be compact and U,V be open such that K C U C V. Then

> _ pK°y Y i . v . ‘
Ply > (1 P 1k )ogitel(?fps 1y in M
Proposition 8.5 ([8, Lemma 4.1]). Assume that (€, F) is a regular Dirichlet form in L. Let Q

be an open subset of M and f € L' N L? be non-negative. Let ¢ € F be such that 0 < ¢ < 1 in M
and ¢ =0 in Q. Then for any t > 0,

t
(1- PP1o, ) > - /0 £(6, P2f)ds.

We introduce condition (LE,), the full lower bound of the heat kernel under the metric d.,.
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Definition 8.6. We say that condition (LE.) holds if the heat kernel p;(z,y) exists and, for any
Co > 1, there exists C' > 0 such that for any z,y in M and t < Co(W(x, R) A W(y, R)),

1 t
pe(z,y) > C (V*(a;,tl/ﬁ) A m(:p,y)d*(z,y)ﬁ> : (8.2)

where C' is a positive constant independent of ¢, z, y.

The following gives a lower estimate of the heat kernel.

Lemma 8.7. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume that (€, F)
is conservative, and for any non-empty bounded open set Q C M, the Dirichlet heat kernel p*(x,y)
is locally Holder continuous in (x,y,t) € Q x Q x (0,00). Then

(VD) + (JX) + (Ss+) + (sNLE4) = (VD) + (LE,) = (sLE).

Proof. By assumption, the hypothesis of Proposition 7.2 is satisfied, and for any non-empty bounded
open set Q C M and t > 0, the function Pf*1q is continuous.

We first show condition (LE,) holds. The proof is motivated by that in [8, Theorem 4.8].

Let 61 be the constants from (6.1) in condition (S.) and d2 from (7.7) in condition (sNLE,). Let
us fix 2,y € M and t < Co(W (x, R) AW (y, R)). We consider two cases.

Case 1: d.(x,y) < dot'/8. In this case, (8.2) follows directly from (7.7).

Case 2: d.(z,y) > 5ott/P. We divide the proof of this case into four steps.

Step 1. Let

__ 0 1 8
53 = m and 54 = 5 AN (5351) .
Fix s < Co(W (2, R) AW (y, R)) with
dy(2,y) > 695'/P. (8.3)

Set 7 := d35'/7 so that
1 _ _
and set

By := By(z,r) and B, := B,(y,r)
so that B, and B, are disjoint. By the pointwise semigroup property in Proposition 7.2(1), we
have for any z € M,

pa(,2) = /M D1 t495 (2 )3y, 2)dps(u0)

> / D155 (2, 10)p5s (10, 2)ds(w)

T

> cinf pu-selaw) [ pas(w ()

T

= einf P(1-64)s(®, W) P5,51p,(2). (8.4)
Since for any w € By,
dy(z,w) < r =358 < 6y(s/2)/8 < 63((1 — 64)8) Y5,
we have by (sNLE,) and (VD) that

einf (z,w) > einf ¢ > ¢
weBmp(l_M)s ) = weB, Vi(z, (1 — 54)8)1/ﬁ) = V:k(x,sl/ﬁ)'

From this, we have by (8.4) that for any z € M,

C
ps(aj, Z) Z WP&LSIBQC(Z)‘ (85)

We need to estimate Ps,;1p, from below.
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Step 2. Let K C %BI be compact. Since (€, F) is conservative, applying Proposition 8.4 with

V=B,U= %Bw and ¢t = d45, we obtain

Ps g > (1 — PEK‘17¢) inf einf PP=1 in B,.
6451 B, —( d4s K)0<t’§64s iBz t Bz Y

Since
S48 = 04(65 ') < (617)”,
we see by condition (S,) that
elinf szle >e¢
Z x
where € € (0,1) comes from (S.). From this, we have by (8.6)
Ps,s1p, > ¢ (1 — Pyl 1) in By

We need to estimate 1 — ngl Ke from below.
Step 3. Indeed, let ¢ € F be such that 0 < ¢ < 1, and 0 < f € L' N L™ be such that

1
supp(f) C 15y

Since the two functions ¢ and PX“ f have disjoint supports, we have for all 7 € (0, 45)
—E(¢, P f) = — €W, PE ) — V(¢ PE )
= — &V, PE°f)
=~ [ [ @)~ )P () - PE fw)di
M JM
—2 [ 6 [ PFf) Iz w)dutw)dn(z
K K¢
22 _gint () [ 62) [ PEfida(w)dn(z)
K B

2€Bz,wEBy Y

=2 einf J('zaw)H¢HL1(P7{(Cf7 1By)
Y

2€Bg;,weB

> 2 inf J
> 2 _cinf I w6l

where we have used the fact that, by condition (S.) and the fact that supp(f) C 1B,

4
c c B
(P f1p,) = (£, PE"1p,) 2 (f. P-71B,) 2 el fliap,)

Therefore, applying Proposition 8.5 with 2 = K¢ we obtain from above that

048

(1-PE1ge, f) > — E(¢, PE" f)ds

0
> 2654SzeBil,rzluf€B J(va)HQSHLl||f||L1(iBy)'

Yy

Let us estimate einf.ep, wep, J(2,w). By (8.3), we have that, for any z € B, and w € By,
di(z,w) < dy(z,2) + d(z,y) + di(y,w) < 2r + di(z,y) < 2di(x,y),
which yields by the inequality (8.1) in condition (J%) and (VD.) that

C
inf J(z,w)> _einf
B L S P v P2
> einf <
"~ 2€Bs,wEBy ‘/*(Zv 2d, (.’IJ, y))(zd(l', y))ﬂ
C/

= Vi(z,y)d(z,y)P

(8.6)

(8.8)
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Plugging the above inequality into (8.8) and using the arbitrariness of f, we obtain that
1— Pf1ge > 2045 einf  J(z,w)||o|| L

z2EDz,wEeDLy

Cs

1
> in —B
= V*(x,y)d(l“,y)ﬁ ||¢||L1 m 4 Yy
Plugging the above inequality into (8.7), we have
c Ces 1
Ps,1p, > (1 — PE 1) > in —B,. 8.9
048+ B, Z 5( das +K ) = ‘/;(.’L',y)d(l',y)ﬁ H¢||L1 m 4 Y ( )

Step 4. Substituting (8.9) into (8.5), we obtain that for y-almost all z € 1By,
¢ ¢ sl 4]l

> Plp(2) > ,

- V'*(x’sl/ﬂ) o4 BI(Z) B V'*(x’sl/ﬁ) ‘/*(Cb,y)d(l‘,y)ﬁ

where C’ is a positive constant depending only on constants in hypothesis.
Since ¢ is arbitrary with support in K C in, it follows from above and (VD,) that

C's ,U/(ing) S Cs
Vi, s1/8) V(, y)d(z,y)? = Vi(z,y)d(z,y)?’

We emphasize that one can NOT set z = y in the above inequality since it holds only for p-almost

ps(x, 2)

1
ps(z,2) > p-a.a. z € ZBy'

B
all z € iBy. To overcome this difficulty, we set d5 := (%) . Multiplying the above inequality

1
. . . . . . . 1B
by psss(2,y), integrating it with respect to du(z), and using the inequality ps;s(2,y) > py. "

z € M (by Proposition 7.2(4)), we have

(z,9),

Peirss)s(@y) = /M Po(, 2)psas (2, y)du(2)

ip
> / ps(, 2D (2, ) du(2)
iBy

Cs / 1p
> pa . (z,y)du(z
Vi(a,y)d(z,y)? Jip, (& v)du(z)
Cs 1p
_ PP (). (8.10)

Vi@, y)d(z, y)°
Moreover, note that

1/8 r !

1
. 7B . . . .-
Since Pyt 71 1p, i continuous by assumption, by condition (S,), we have
1
1B
PEL () > e

Hence, it follows from (8.10) that for any s < Co(W (z, R) A W (y, R)) with d(z,y) > da5'/7,
Cs ip Ces
> P > .
P+3)s(7:Y) 2 Vi(z,y)d(z,y)8 = % %By(y) = Vi(z,y)d(x,y)8
Note that t < Co(W (z, R) AW (y, R)) and d.(z,y) > 62t*/#. Therefore, we can set s =
above inequality and obtain

Ce(1+65)7 1 S o 1 N t
= Vil y)d(z,y)? T \Vi(, t1/8) - V(@ y)du(z,9)? )
Finally, combining the above two cases, we have proved condition (LE,).

It remains to show the implication (VD) + (LE,) = (sLE). Assume that conditions (VD) and
(LE,) hold true. By Proposition 7.2(1), the heat kernel p;(x,y) satisfies the pointwise semigroup

t .
m in the

pi(r,y)
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property. Hence, we need only to prove the inequality (2.20) in (sLE) is true for any x,y € M and
t < Co(W(z,R) NW(y,R)). B B
Indeed, fix z,y € M and t < Co(W (x, R) AW (y, R)). Let

R:=F Y&, L Lot"/?) = W' (&, L™ L{t).
By (4.6), we see B, (z,t'/#) c B(z, R), and hence, by (VD) and (2.8),
1 S 1 _ 1 > C
Vi(@, t/8) = V(2,R)  V(x, W1z, L-0LEt)) ~ V(z, Wl(z,1))’
On the other hand, by (4.5) and (2.9), we have for any z € By(z,d.(x,y)),
F(z,d(z,2)) < Ld.(x, 2) < Ld.(x,y) < L?F(z,d(x,y)) < F(z,Cd(z,y)),
which gives that d(z,z) < Cd(x,y) by the monotonicity of F(x,-) = W (z,-)'/#. Thus
B.(z,d(z,y)) C Bz, Cd(z,y)),

(8.11)

from which, we see by (VD)
Vi@, de(,y)) < V(z,Cd(z,y)) < CV(z,d(z,y)) = CV(z,y).
Note that by (4.5),
di(x,y)” < (LF (2, d(x,y)))" = L'W (2, d(z,y)) = LW (z,y).
Therefore, it follows from (8.11), the above two inequalities and condition (LE,) that
wen > € (i m  vigae o) * © (veme e v oo )
thus showing (2.20). We have proved (sLE). O

We show that condition (LE) implies condition (J>).
Lemma 8.8. Let (£,F) be a regular Dirichlet form in L. If the jump kernel J(x,y) exists, then
(LE) = (J>).
Proof. Let U,V C M be bounded open sets such that dist( ,V) 0,and let 0 < f,g € FN L' be
such that supp(f) C U, supp(g) C V. Since supp(f) Nsupp(g) = 0, we have

_E(f.9) = —EV(f.9) = 2 / / F(@)9() T (@ y)da(y)dp(x).

On the other hand, let us fix a point 29 € U. In the case when R < oo, by the right inequality in
(2.8), we have for any x € U

W(wo,B) _ W(ao, R+ diaml) _ <R+ diamU)’BQ _

W(z,R) ~ W(z,R) R

Cy .

That is,
aaW(zo,R) < W(z,R), ze€U.
Similarly, fix a point yo € V and there exists ca = co(V, R) > 0 such that coW (yo, R) < W(y, R)
for all y € V. _
Hence by (LE), we have for (u x p)-almost all (z,y) in U x V' and for any ¢ < (ciW(zg, R)) A
(c2W (yo, R)) < W(z, R) A\W(y, R),

lt( 7:’“}) >—C ‘/ ‘/1/ 1 .1 /\ [/ ) [[ ?

_5(f7 )_ hm (Ptf fa )_hm (Ptfa )

t—0 ¢
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— lim+ / / Pu(o, ) F(2)g(y)da(y)dpu(z)

t—0 t

> tipint [ / T M)ﬂz)g(y)du(y)du(x)

B /U /V mf(x)g(y)du(y)dﬂ(x),
Therefore, we obtain

/U/Vf(:v)g(y) (2, y)du(y) // y)du(y)dﬂ(ﬂﬂ)-

Since (€, F) is regular, the functions

> fi@)giy)
i=1

with f;,9; € FNCo(M) and supp(f;)Nsupp(g;) = 0 for all 1 <4 < n, constitute a dense subalgebra
of Co(M x M \ diag), see for example [7, Lemma 1.4.2 on p. 29]. It follows from above that

C/2
Viz, y)W(z,y)
for (p x p)-almost all (z,y) in M x M \ diag, thus showing condition (J>). O

J(z,y) >

We are now in a position to prove Theorem 2.13.

Proof of Theorem 2.13. We firstly prove the equivalence in Theorem 2.13. Indeed, by Lemma 8.1,
(PI) follows from conditions (VD) and (J>). Hence, by the first equivalence in Theorem 2.10, we
obtain (Gcap) < (ABB), and consequently,
(J>) + (Gcap) + (C) < (J>)+ (ABB) + (C).
Next, we prove the rest implications. Indeed, under the conditions (VD), (RVD) and (TJ), the
implication
(J>) + (Gcap) + (C) = (sLLE) + (sLE)

follows from the following sequence of implications:

(VD) 4+ (J>) = (PI) (Lemma 8.1)
(VD) + (RVD) + (PI) + (Geap) + (TJ) = (sLLE) + (NLE) (Theorem 2.10)
(VD) + (RVD) + (PI) + (Geap) + (TJ) = (S.)  (by (6.4))
(VD) + (NLE) = (NLE,) (Lemma 7.7)
(VD) +(J>) = (JX) (Lemma 8.3)
(VD) + (Ss) + (NLE,) + (JX) + (C) + Hélder continuity of p? = (sLE) (Lemma 8.7).

It is obvious that
(sLLE) + (sLE) = (LLE) + (LE).
Under the condition (VD) and the assumption that the jump kernel J(x,y) exists, the implication
(LLE) 4+ (LE) = (J>) 4+ ( Geap)
follows from the following implications:
(VD) + (LLE) = (S) (Lemma 7.14)
(VD) + (S) = (Gcap) ([11, Lemma 13.5])
(LE) + “the existence of jump kernel” = (J>) (Lemma 8.8).
The proof of Theorem 2.13 is complete. U
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Corollary 8.9. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume that
inf W(z, R
nf (z,R) > co

for some cy > 0. If one of the following conditions is satisfied, then (£, F) is conservative:
(1) (Sx) and every ball under the new metric dy has finite measure;
(2) (S) and every ball has finite measure;

Proof. (1). Suppose that (S.) is satisfied, and that every ball under the new metric d, has finite
measure.

Since inf,ep W(z, R) > ¢ for some ¢y > 0, condition (S,) implies that for all metric balls

B, = B(x,r) of radius r < c(l]/'g,

1
PtB*lB* > e in ZB*,

provided that t'/8 < §,r. This is exactly the condition (S) in [8]. Hence, it follows from [8, Lemma
4.6, p. 3327] that (£, F) is conservative.

(2). Suppose that (S) is satisfied, and that every ball has finite measure.

One can follow the method in the proof of [12, Proposition 6.4(2)] and use Proposition 4.3 to
prove that (S) = (S.). On the other hand, it follows from (4.6) that every ball under the new
metric d, has finite measure. Hence, the conservativeness of (£, F) follows from (1).

U

Proof of Corollary 2.14. By Theorem 2.13, it suffices to prove the implication
(VD) + (RVD) + (J>) + (Gcap) + (TJ) = (C).
under the assumption (2.21). Indeed by the following two implications
(VD) + (J>) = (PI) (Lemma 8.1)
(VD) 4+ (RVD) + (PI) 4 (Geap) 4+ (TJ) = (Si) ((6.4))
we obtain (S.).
On the other hand, condition (VD) and Proposition 4.4 imply that (VD,) holds true. This shows

that every ball under the metric d, has finite measure.
Therefore, (£, F) is conservative by Corollary 8.9(1). O

8.2. Two-sided estimates. In this subsection we combine the upper bounds of heat kernels from
[12] and the lower bounds obtained in this paper, in order to state two-sided estimates of the heat
kernel.

Proof of Theorem 2.20. By [13, Proposition 3.1], condition (TJ) follows from conditions (VD) and
(TJg). Then, the first equivalence of this theorem follows directly from the first equivalence in
Theorem 2.10.

The following two equivalences

(PT) + (Gcap) + (TJ,) < (TP,) + (SLLE)
& (TP,) + (LLE)
follow from the following implications:
) = (PL.) (Proposition 4.7)
) = (VD,) + (RVD,) (Proposition 4.4)
)= ( «)  (Lemma 4.9)
(Nash,) = (FK,.) (Lemma 4.11)
) = (
) = (
) = (

Z
&
wn
=

FK) (Proposition 4.13)
TP,) ([12, Theorem 2.15])
TJ)  ([13, Proposition 3.1])
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(VD) + (RVD) + (PI) 4 (Geap) + (TJ) = (sLLE) = (LLE) (Theorem 2.10)

and
(VD) + (TP,) + “the existence of J(z,y)” = (TJ,) when q € [2,00) ([12, Lemma 9.1(2)])

(VD) 4+ (TP ) = (TJs) when g = 00 ([12, Lemma 9.1(2)])
(VD) + (LLE) = (LLE,) (Lemma 7.7)

(VD) + (LLE,) = (PL.) (Lemma 7.12)

(VD) + (PL.) = (PI) (Proposition 4.7)
(VD) + (LLE) = (S) (Lemma 7.14)
(VD) 4+ (S) = (Gcap) ([11, Lemma 13.5])

The implication
(TP,) + (sLLE) = (UE,) + (NLE) + (C)
follows directly from the following implications:

(VD) + (TP,) = (UE,) ([12, Lemma 8.8])

(VD) + (sLLE) = (sLLE,) (Lemma 7.7)
(VD) 4 (sLLE.) = (sNLE,) = (NLE.) (Lemma 7.6)
(VD) 4+ (NLE,) = (NLE) (Lemma 7.7)
(VD) 4+ (LLE) = (S) (Lemma 7.14)
(VD) + (S) + “R = diam M” = (C) (Corollary 8.9(2) and Remark 2.15).
The proof of Theorem 2.20 is complete. O

Denote the diameter of M under the metric d, by
R, := sup{di(z,y)| z,y € M}.

Definition 8.10 (Condition (TP,)). We say that condition (TP,) is satisfied if for any Cy > 1,
there exists C' > 0 such that for any ball B, := B,(x,r) of radius r € (0, R,) and any t < Cy(R.)?

ct 1
Lemma 8.11. Let (€, F) be a reqular Dirichlet form in L? without killing part. Assume that
R =diam M. Then

(VD,) + (TP,) + (NLE.,) = (S.).

Proof. The proof is motivated by [8, Lemma 4.10, p. 3334].
Fix a ball B, := B, (xg,r) with r < R.. Since every ball has finite measure by (VD,), we can
apply [15, Eq. (4.1), p. 2626] with
© 1
QO=M, U=8B,, K= <iB*) . and =B

and obtain that, for any ¢ > 0,

PtB*léB* > Ptl%B* — sup ,  p-a.e. in Bi. (8.13)

s€(0,t)

L= ((38.)")
Let §, be the constant from (NLE,). Note that for any z € %B* and t < P,
) 1
B, (z, —=t'/%) c =B,.
<‘T7 4 ) 2

By (NLE,) and (VD,), we obtain, for any ¢t < r# and p-almost all 2 € %B*,

Py @) = [ plez)dut) = [ pe(a 2)dp(2)
iB. B (x,%x1/8)
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c Vi, %:t1/8)
> dp(z) = —4 2 > ¢5 > 0. 8.14
= V;(Q%tl/ﬂ) /B (2,5 11/5) :u(z) V*(aj‘,tl/'g) = Co ( )

C
On the other hand, since for any w € %B* and z € (%B*> ,

3 1 r
> — i — Zp=_
d(z,w) > d(z,z0) — d(zo,w) > yUEURY
we have )
r C
QB* C Bi(z, 4) .
Then, by (TP.), we have, for any s < t,
ct r T
P]_IB < Pilp,(z,z)e _(r/4)5 p-a.e. 1n4B( 4):B*(2,E).

Covering (%B*) by at most countable balls like B,(z, 1%) with z € <
above inequality that

C
% *) , we obtain from the

t
sup ‘ (8.15)

=\ C S -
s€(0,0) r=((38.)) ~ 1P
Plugging (8.14) and (8.15) into (8.13), we obtain that for y-almost all z € 1B, and t < r¥,
B. ct
Pt ]'%B* 2 Co — 7‘75
Setting 6 := (Co)l/’B we have for p-almost all x € iB* and t < (67)5,
B. e _ .t _ %%
Pt 1%B*ZCO_T,B_CO 2—2.
To prove (S*L it suffices to extend ihe radius of the ball B, from r < R, to r < W(xo,ﬁ)l/ B in
the case when R < co. Indeed, since R = diam M, by (2.22), we see that
sup W(z, R) < CW (g, R) < oo.
zeM

for some fixed o € M. Moreover, by the standard covering arguments, we can extend the radius
of the ball B, from r < R, to r < aR, for any given a > 1. Taking a large enough so that
aR, > CW (x9, R), we manage to extend the radius of the ball B, from r < R, to r < W (xg, R)'/?
in the case when R < oo. That is, we obtain (S,). O

Proof of Corollary 2.21. Similar to the first paragraph in the proof of Theorem 2.20, by [13, Propo-
sition 3.1], condition (TJ) follows from conditions (VD) and (TJ,). Then, the first equivalence of
this corollary follows directly from Remark 2.15 and the first equivalence in Corollary 2.14.

Let us prove the next two equivalences (2.29) and (2.30). Indeed, we have the implications

(VD) + (J>) = (PI) (Lemma 8.1)
(VD) + (RVD) + (PI) 4 (Gcap) + (TJy) = (TP,) + (C)  (Theorem 2.20)
(VD) + (TJ,) = (TJ) ([13, Proposition 3.1])
(VD) 4+ (RVD) + (J>) + (Geap) + (TJ) + (C) = (sLE)  (Theorem 2.13).

Combining the above four implications, we obtain the implication “=" in (2.29).

It is obvious that (sLE) = (LE).

To complete the circle in (2.29) and (2.30), it suffices to prove the implication (TP,) + (LE) +
(C) = (J>)+ (Geap) + (TJ,). Indeed, note that the jump kernel J(z,y) is assumed to exist when
q € [2,00). Then this implication follows from the following implications:

(Geap) < (VD) + (TP,) + (C)  ([12, Lemma 9.1(3) and Eq. (6.4)])
(TJs) < (VD) + (TPw)  ([12, Lemma 9.1(2)])
(J>) <= (LE) + “the existence of J(z,y)” (Lemma 8.8),
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where the existence of J(z,y) when ¢ = oo is ensured by (TJy). Combining the above three
implications, we complete the circle.
To prove the equivalence in (2.31), it suffices to prove the implication

(VD) + (TPy) + (LE) = (O).
This follows from the following implications:
(VD) = (VD,) (Proposition 4.4)
(VD) + (TP,) = (TP,) ([12, Proposition 3.1 and Eq. (8.17)])
(LE) = (NLE)
(VD) + (NLE) = (NLE,) (Lemma 7.7)
(VD,) + (TP,) + (NLE,) = (Ss) (Lemma 8.11)
(VD) + (S) + “R = diam M” = (C) (Corollary 8.9(1) and Remark 2.15).
The implication (2.32) follows directly from (2.31) and the implication
(VD) + (TP,) = (UE,) ([12, Lemma 8.8]).

Finally, the equivalence (2.33) follows from the equivalences (2.29), (2.31) and the following rela-
tions:

(J<) = (TJx) and (TP) < (UEy) = (UE).

9. APPENDIX
In this appendix, we collect some facts that have been used in this paper.

Proposition 9.1 ([12, Proposition 10.1 in Appendix]). Assume that condition (VD) holds and W
satisfies (2.8). Then there exists a constant C > 0 such that, for allt > 0 and all points x,y in M
with d(z,y) < Wz, t) v W i(y, 1),

_ Vi(z, W (x,t))
o1 < V(ij—l(y,t)) <(C. (9.1)

Proposition 9.2 ([11, Proposition 15.1 in Appendix]). Let (£, F) be a regular Dirichlet form in
L?. Suppose that u =w+a € F withw € F anda € R, v € FNL*® and that F : R +— R is a
Lipschitz function. Then the following statements are true.
(i) The function F(u) — F(a) belongs to F, so that F(u) € F'.
(#9) If in addition F(u) € L™, then F(u)v € F N L.
(131) Let Q2 be an open subset of M. If in addition v € F(R2), then F(u)v € F(Q).

Proposition 9.3 ([11, Proposition 15.4 in Appendix]). Let {ar}72, be a sequence of non-negative
numbers such that

ar < DA\Faj 1Y k=1,2,---
for some constants D,v > 0 and X > 1. Then for any k > 0,

4y (1+v)k
af < D_% <D%)\1V+2 a0>
The following was proved in [20, Lemma 2.12].

Lemma 9.4. Let (£, F) be a Dirichlet form in L*. If

In 5 f Supg(fn) < o0,

then f € F, and there exists a subsequence, still denoted by { f,}, such that f, LN f weakly, that is,
E(fnr ) = E(f, )
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as n — oo for any ¢ € F. And there exists a subsequence {fn,} such that its Cesaro mean
%22:1 fn, converges to f in E1-norm. Moreover, we have

E(f) < lirginfé’(fn).
The notion of the u-regular E-nest {F}} is given in Section 2.

Proposition 9.5 ([11, Proposition 15.3 in Appendix]). Let {Fi} be a p-regular E-nest and u €
C({Fy}). Then for any open set U C M

sup u = esupu where F:= |J F.
UNF U k>1

Proposition 9.6 ([12, Proposition 10.6 in Appendix]). Let By C By be two metric balls such that
B\ By # (. Then for any quasi-continuous v € F,

/ v(y)J(z, dy) < (esupv)/ J(xz,dy)  for q.e. x € Bs.
Bi\Bs By BS
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