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Abstract A novel local and parallel multigrid method is proposed in this study
for solving the semilinear Neumann problem with nonlinear boundary condition.
Instead of solving the semilinear Neumann problem directly in the fine finite el-
ement space, we transform it into a linearized boundary value problem defined
in each level of a multigrid sequence and a small-scale semilinear Neumann prob-
lem defined in a low-dimensional correction subspace. Furthermore, the linearized
boundary value problem can be efficiently solved using local and parallel methods.
The proposed process derives an optimal error estimate with linear computational
complexity. Additionally, compared with existing multigrid methods for semilin-
ear Neumann problems that require bounded second order derivatives of nonlinear
terms, ours only needs bounded one order derivatives. A rigorous theoretical anal-
ysis is proposed in this paper, which differs from the maturely developed theories
for equations with Dirichlet boundary conditions.
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1 Introduction

In [32], Xu and Zhou first proposed the local and parallel method to solve linear
elliptic boundary value problems. Through this method, large-scale equations can
be decomposed into some small-scale subproblems. Thus the simulation efficiency,
especially for large-scale partial differential equations in practical applications can
greatly benefit from such a technique. As we know, the low-frequency components
describe the global appearances of a solution, whereas the high-frequency compo-
nents describe the local appearances. So generally, local and parallel method first
uses a coarse mesh to approximate the low-frequency components, and then use a
fine mesh to correct the resulting residual via some local and parallel procedures.
Meanwhile, this method is naturally suitable for parallel computing based on the
domain decomposition. Owing to these advantages, local and parallel method has
been widely used to solve various mathematical models, for instance [2,3,9,10,11,
12,14,15,17,20,21,22,24,25,26,29,31,32,33,34,36,37,38,39]. However, to date, lo-
cal and parallel methods have been used to solve various equations with Dirichlet
boundary condition. Meanwhile, the local and parallel two-grid method has a strict
restriction on the mesh size ratio between the coarse mesh and the fine mesh.

To overcome these problems, we propose a local and parallel method to solve
the semilinear Neumann problem with nonlinear boundary condition based on
multigrid discretization. First, we will provide rigorous error estimates for the
approximate solution of the semilinear Neumann problem based on some weak
assumptions for the nonlinear terms; then, we propose a new type of local and
parallel method based on the local and parallel technique alongside the multilevel
correction technique [18,7,16,28]. Instead of solving the semilinear Neumann prob-
lem directly in the fine finite element space, we transform the problem into a lin-
earized boundary value problem defined in each level of a multigrid sequence and a
small-scale semilinear Neumann problem defined in a low-dimensional correction
subspace. The linearized boundary value problem can then be solved efficiently
by the local and parallel method. Furthermore, the dimension of the correction
subspace is small and fixed, which is independent of the fine space. This is the
main difference between our algorithm and the local and parallel two-grid meth-
ods. Thus, the computing time for the small-scale semilinear Neumann problem
can be negligible with mesh refinement. We can derive the optimal error estimates
with linear computational complexity for the proposed local and parallel multigrid
method. Additionally, compared with the existing multigrid methods for semilinear
Neumann problems, which require bounded second order derivatives of nonlinear
terms [10,14,23,33], our method only needs bounded one order derivatives. Rigor-
ous theoretical analysis is also proposed, which differs from the maturely developed
theories for equations having Dirichlet boundary conditions.

The remainder of this paper is organized as follows. In Section 2, some basic
finite element error estimates for the linear elliptic boundary value problem are
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presented. In Section 3, we introduce the semilinear Neumann problem with a
nonlinear boundary condition to be solved and provide rigourous finite element
error estimates. The novel algorithm for the semilinear Neumann problem with a
nonlinear boundary condition and the theoretical analysis are discussed in Section
4. In Section 5, we present some numerical experiments to support our theory
and illustrate the efficiency of our algorithm. Finally, some concluding remarks
are given in the last section.

2 Finite element method for linear elliptic boundary value problem

In this paper, Ω denotes a bounded domain in Rd (d ≥ 1). We use the standard
symbols Hs(Ω) and Hs(∂Ω) to denote the Sobolev spaces defined in Ω and the
boundary ∂Ω. The corresponding norms are denoted by ∥ · ∥s,Ω and ∥ · ∥s,∂Ω ,
respectively. In the rest of this paper, the letter C denotes a mesh-independent
constant.

In this section, for the following analysis, we study the linear elliptic boundary
value problem: {

Lu := −∇ · (A∇u) + ϕu = b, in Ω,
(A∇u) · n = g, on ∂Ω,

(1)

where the coefficient A is a symmetric positive definite matrix with suitable regu-
larity and ϕ is a nonnegative function bounded from below and above by positive
constants.

The variational form of (1) can be described as follows: Find u ∈ H1(Ω) such
that

a(u, v) = (b, v) + ⟨g, v⟩, ∀v ∈ H1(Ω),

where

a(u, v) =

∫
Ω

(A∇u · ∇v + ϕuv)dΩ, (b, v) =

∫
Ω

bvdΩ, ⟨g, v⟩ =
∫
∂Ω

gvds.

Next, we introduce the finite element method to solve the linear elliptic bound-
ary value problem (1). Let us decompose the computing domain Ω into shape-
regular triangulations, denoted by the symbol Th(Ω). For a mesh element K ∈
Th(Ω), the associated diameter is denoted as hK . Besides, given any point x ∈ Ω,
we denote h(x) := hK where x ∈ K, and we also denote hΩ := maxx∈Ω h(x).
Based on Th(Ω), the finite element space V h(Ω) ⊂ H1(Ω) is defined as:

V h(Ω) =
{
v ∈ C(Ω̄) : v|K ∈ Pk, ∀K ∈ Th(Ω)

}
. (2)

For G ⊂ Ω, V h(G) and Th(G) denote the restriction of V h(Ω) and Th(Ω) to
G. For any G ⊂ Ω mentioned in this paper, we assume that it aligns with the
partition Th(Ω). Next, we also need to define the following two spaces:

H1
Γ (G) =

{
v ∈ H1(Ω) : (supp v\(∂G ∩ ∂Ω)) ⊂⊂ G

}
, (3)

and

V hΓ (G) =
{
v ∈ V h(Ω) : (supp v\(∂G ∩ ∂Ω)) ⊂⊂ G

}
. (4)

From [6,8,32,34], the fractional norm property can be derived:
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Lemma 1 For any subset G ⊂ Ω, the following fractional norm property holds
true

inf
v∈V h

Γ (G)
∥w − v∥1,G . ∥w∥1/2,∂G\∂Ω , ∀w ∈ V h(G). (5)

Let us define a projection operator Ph : H1(Ω) → V h(Ω) in the following way:

a(u− Phu, vh) = 0, ∀vh ∈ V h(Ω). (6)

Then, we can derive

∥u− Phu∥1,Ω . inf
vh∈V h(Ω)

∥u− vh∥1,Ω ,

and the following estimates also holds true:

Lemma 2 The following estimates for the projection operator holds true

∥(I − Ph)Tg∥1,Ω . ρΩ(h)∥g∥0,∂Ω , ∀g ∈ L2(∂Ω),

∥(I − Ph)T
′b∥1,Ω . rΩ(h)∥b∥0,Ω , ∀b ∈ L2(Ω),

∥u− Phu∥0,∂Ω . ρΩ(h)∥u− Phu∥1,Ω , ∀u ∈ H1(Ω),

∥u− Phu∥0,Ω . rΩ(h)∥u− Phu∥1,Ω , ∀u ∈ H1(Ω),

where
ρΩ(h) = sup

g∈L2(∂Ω),∥g∥0,∂Ω=1

inf
vh∈V h(Ω)

∥Tg − vh∥1,Ω (7)

with the operator T : L2(∂Ω) → H1(Ω) being defined by

a(Tg, v) = ⟨g, v⟩, ∀v ∈ H1(Ω), (8)

and
rΩ(h) = sup

b∈L2(Ω),∥b∥0,Ω=1

inf
vh∈V h(Ω)

∥T ′b− vh∥1,Ω (9)

with the operator T ′ : L2(Ω) → H1(Ω) being defined by

a(T ′b, v) = (b, v), ∀v ∈ H1(Ω). (10)

In this study, we assume that the finite element space satisfies the following
conditions (see [32,34]):
A.1. There exists γ > 1 such that

hγΩ . h(x), ∀x ∈ Ω. (11)

A.2. For G ⊂ Ω and any v ∈ Sh(G), the following inverse estimate holds true

∥v∥1,G . ∥h−1v∥0,G. (12)

A.3. For G ⊂ Ω and ω ∈ C∞(Ω̄) satisfying (suppω\(∂G ∩ ∂Ω)) ⊂⊂ G, then for
any w ∈ V h(G), there exists v ∈ V hΓ (G) such that

∥h−1
G (ωw − v)∥1,G . ∥w∥1,G. (13)
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Hereafter, for the nested domainsD ⊂ G ⊂ Ω,D ⊂⊂ G denotes dist(∂G\∂Ω, ∂D\∂Ω) >
0.

Define

a0(u, v) =

∫
Ω

(A∇u · ∇v)dΩ. (14)

Then, we can derive the following lemmas:

Lemma 3 ([32,34]) Let D ⊂⊂ Ω0 ⊂ Ω and ω ∈ C∞(Ω̄) satisfying (suppω\(∂Ω0∩
∂Ω)) ⊂⊂ Ω0, we can derive the following inequality

a0(ωw, ωw) ≤ 2a(w,ω2w) + C ∥w∥20,Ω0
, ∀w ∈ H1(Ω). (15)

Lemma 4 For f ∈ L2(Ω), g ∈ L2(∂Ω) and D ⊂⊂ Ω0 ⊂ Ω, if w ∈ V h(Ω0) is the
solution of the following equation

a(w, v) = (f, v) + ⟨g, v⟩, ∀v ∈ V hΓ (Ω0), (16)

then there holds

∥w∥1,D . ∥w∥0,Ω0 + ∥f∥0,Ω0 + ∥g∥0,∂Ω∩∂Ω0 . (17)

Proof Let p ≥ 2γ−1 be an integer and Ωj be a series of nested domains satisfying

D ⊂⊂ Ωp ⊂⊂ Ωp−1 ⊂⊂ · · · ⊂⊂ Ω1 ⊂⊂ Ω0.

Let us choose a domain D1 such that D ⊂⊂ D1 ⊂⊂ Ωp, and choose ω ∈ C∞(Ω̄)
satisfying ω = 1 on D̄1 and (suppω \ (∂Ωp ∩ ∂Ω)) ⊂⊂ Ωp. Based on A.3., there
exists a function v ∈ V hΓ (Ωp) such that

∥ω2w − v∥1,Ωp . hΩ0∥w∥1,Ωp . (18)

Based on (18) and trace inequality, we can further derive

|(f, v)| = |
∫
Ω

fvdΩ|

. ∥f∥0,Ωp∥v∥0,Ωp

. ∥f∥0,Ωp∥v∥1,Ωp

. ∥f∥0,Ω0
(hΩ0

∥w∥1,Ωp
+ ∥ωw∥1,Ω) (19)

and

|⟨g, v⟩| = |
∫
∂Ω

gvds| = |
∫
∂Ωp∩∂Ω

gvds|

. ∥g∥0,∂Ωp∩∂Ω∥v∥0,∂Ωp∩∂Ω

. ∥g∥0,∂Ω0∩∂Ω∥v∥1,Ωp

. ∥g∥0,∂Ω0∩∂Ω(hΩ0∥w∥1,Ωp + ∥ωw∥1,Ω). (20)
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From (15), (16), (18), (19) and (20), there holds

∥ωw∥21,Ω . a(w,ω2w) + ∥w∥20,Ω0

= a(w,ω2w − v) + ∥w∥20,Ω0
+ (f, v) + ⟨g, v⟩

. hΩ0∥w∥21,Ωp
+ ∥w∥20,Ω0

+ (∥f∥0,Ω0 + ∥g∥0,∂Ω0∩∂Ω)(hΩ0∥w∥1,Ωp + ∥ωw∥1,Ω),

which implies

∥w∥1,D . h
1
2

Ω0
∥w∥1,Ωp + ∥w∥0,Ω0 + ∥f∥0,Ω0 + ∥g∥0,∂Ω∩∂Ω0 . (21)

Similarly, the following estimates can be proved in the same way as (21):

∥w∥1,Ωj . h
1
2

Ω0
∥w∥1,Ωj−1+∥w∥0,Ω0+∥f∥0,Ω0+∥g∥0,∂Ω∩∂Ω0 , j = 1, 2, · · · , p. (22)

Using (21), (22), A.1 and A.2, we can obtain

∥w∥1,D . h
p+1
2

Ω0
∥w∥1,Ω0 + ∥w∥0,Ω0 + ∥f∥0,Ω0 + ∥g∥0,∂Ω∩∂Ω0

. h
p+1
2

Ω0
∥h−1w∥0,Ω0 + ∥w∥0,Ω0 + ∥f∥0,Ω0 + ∥g∥0,∂Ω∩∂Ω0

. ∥w∥0,Ω0 + ∥f∥0,Ω0 + ∥g∥0,∂Ω∩∂Ω0 .

Then we complete the proof.

3 Finite element method for semilinear Neumann problem with
nonlinear boundary condition

In this paper, we study the semilinear Neumann problem with nonlinear boundary
condition: {

−∇ · (A∇u) + ϕu+ f(x, u) = b, in Ω,

(A∇u) · n+ g(x, u) = 0, on ∂Ω,
(23)

where f(x, u) ∈ C(Ω × R) denotes a nonlinear term with respect to u in the
domain Ω, g(x, u) ∈ C(∂Ω × R) denotes a nonlinear term with respect to u in
the boundary ∂Ω.

The variational form of (23) can be described as follows: Find u ∈ H1(Ω) such
that

a(u, v) + (f(x, u), v) + ⟨g(x, u), v⟩ = (b, v), ∀v ∈ H1(Ω). (24)

The discrete form of (24) can be described as follows: Find ūh ∈ V h(Ω) such
that

a(ūh, vh) + (f(x, ūh), vh) + ⟨g(x, ūh), vh⟩ = (b, vh), ∀vh ∈ V h(Ω). (25)

To guarantee the well-posedness of the semilinear Neumann problems (24) and
(25), we should make some assumptions on the nonlinear terms f(x, u) and g(x, u):
There exist two mesh-independent constants Cf and Cg, such that

0 ≤ ∂f

∂v
(x, v) ≤ Cf and 0 ≤ ∂g

∂v
(x, v) ≤ Cg, ∀x ∈ ∂Ω, ∀v ∈ R. (26)
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Theorem 1 If the condition (26) holds true, then (24) and (25) are uniquely
solvable. Besides, there exists the following error estimates

∥u− ūh∥1,Ω . δh(u), (27)

∥u− ūh∥0,Ω . (rΩ(h) + ρΩ(h))∥u− ūh∥1,Ω , (28)

∥u− ūh∥0,∂Ω . (rΩ(h) + ρΩ(h))∥u− ūh∥1,Ω , (29)

where

δh(u) = inf
vh∈V h(Ω)

∥u− vh∥1,Ω . (30)

Proof Using Theorem 6.1 in [23], the semilinear Neumann problems (24) and (25)
are uniquely solvable under the condition (26). Next, we prove the error estimates.

Using Lemma 2, (24) (25) and (26), there holds

∥ūh − Phu∥21,Ω
. a(ūh − Phu, ūh − Phu)

≤ a(ūh − Phu, ūh − Phu) + (f(x, ūh)− f(x, Phu), ūh − Phu)

+⟨g(x, ūh)− g(x, Phu), ūh − Phu⟩
= (b, ūh − Phu)− a(Phu, ūh − Phu)− (f(x, Phu), ūh − Phu)

−⟨g(x, Phu), ūh − Phu⟩
= a(u− Phu, ūh − Phu) + (f(x, u)− f(x, Phu), ūh − Phu)

+⟨g(x, u)− g(x, Phu), ūh − Phu⟩
= (f(x, u)− f(x, Phu), ūh − Phu) + ⟨g(x, u)− g(x, Phu), ūh − Phu⟩
≤ Cf∥u− Phu∥0,Ω∥ūh − Phu∥0,Ω + Cg∥u− Phu∥0,∂Ω∥ūh − Phu∥0,∂Ω
. (∥u− Phu∥0,Ω + ∥u− Phu∥0,∂Ω)∥ūh − Phu∥1,Ω ,

which yields

∥ūh − Phu∥1,Ω . ∥u− Phu∥0,Ω + ∥u− Phu∥0,∂Ω
. (rΩ(h) + ρΩ(h))∥u− Phu∥1,Ω . (31)

Based on (31) and triangle inequality, we can obtain the following estimates

∥u− ūh∥1,Ω ≤ ∥u− Phu∥1,Ω + ∥ūh − Phu∥1,Ω
. δh(u) + (rΩ(h) + ρΩ(h))∥u− Phu∥1,Ω
. (1 + CrΩ(h) + CρΩ(h))δh(u), (32)

which is just the first estimate (27).
Using Lemma 2, (31) and triangle inequality, we can obtain

∥u− ūh∥0,Ω ≤ ∥u− Phu∥0,Ω + ∥ūh − Phu∥0,Ω
≤ ∥u− Phu∥0,Ω + C∥ūh − Phu∥1,Ω
. (rΩ(h) + ρΩ(h))∥u− Phu∥1,Ω
. (rΩ(h) + ρΩ(h))∥u− ūh∥1,Ω ,
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and

∥u− ūh∥0,∂Ω ≤ ∥u− Phu∥0,∂Ω + ∥ūh − Phu∥0,∂Ω
≤ ∥u− Phu∥0,∂Ω + C∥ūh − Phu∥1,Ω
. (rΩ(h) + ρΩ(h))∥u− Phu∥1,Ω
. (rΩ(h) + ρΩ(h))∥u− ūh∥1,Ω ,

which are the desired estimates (28) and (29). Then the proof is completed.

4 Local and parallel multigrid method for semilinear Neumann
problem with nonlinear boundary condition

This section is devoted to introducing our novel local and parallel method based on
multigrid discretization for solving the semilinear Neumann problem with nonlin-
ear boundary condition. To design the algorithm, we need to construct a multilevel
mesh sequence. First, let us generate a coarse mesh TH . Then, we construct an
initial mesh Th1 satisfying Th1 ⊂ TH . Next, each mesh Thk

(k ≥ 2) is obtained from
Thk−1

through one-time uniform refinement. Finally, we can obtain the following
mesh sequence:

TH(Ω) ⊂ Th1(Ω) ⊂ · · · ⊂ Thk
(Ω) ⊂ · · · ⊂ Thn(Ω). (33)

Based on (33), we can construct a nested finite element space sequence such that:

V H(Ω) ⊂ V h1(Ω) ⊂ · · · ⊂ V hk(Ω) ⊂ · · · ⊂ V hn(Ω). (34)

4.1 Local and parallel method for semilinear Neumann problem

In this subsection, we explain how to perform the novel local and parallel method
in one level of the finite element space sequence, which is the basic component
of the local and parallel multigrid method. Assume that we have obtained an
approximate solution uhk

∈ V hk(Ω), then we design an algorithm to get a more
accurate approximate solution uhk+1

∈ V hk+1(Ω).
Let us divideΩ into disjoint domainsD1, · · · , Dm satisfying

∪m
j=1 D̄j = Ω̄, Di∩

Dj = ∅, then let us enlarge and reduce Dj to obtain Ωj and Gj respectively, and
all subdomains align with TH(Ω). Then we can obtain some subdomains satisfying
Gj ⊂⊂ Dj ⊂ Ωj ⊂ Ω for j = 1, · · · ,m. Finally, let us set Gm+1 = Ω \ (

∪m
j=1 Ḡj)

(see Figure 1).
In addition, we require that the decompositions satisfy:

m+1∑
j=1

∥v∥ℓ,Ωj
. ∥v∥ℓ,Ω and

m+1∑
j=1

∥v∥ℓ,∂Ωj∩∂Ω . ∥v∥ℓ,∂Ω , ∀v ∈ Hℓ(Ω), ℓ = 0, 1.

(35)
Then in Algorithm 1, we propose the novel local and parallel method in the finite
element space V hk+1(Ω) (k ≥ 1).

Next, Theorem 2 rigorously prove that uhk+1
∈ V hk+1(Ω) derived using Algo-

rithm 1 has a better accuracy than uhk
∈ V hk(Ω).
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Fig. 1 G ⊂⊂ D ⊂ Ω

Algorithm 1 Local and parallel method for semilinear Neumann problem
1. Solve the following linearized boundary value problem in each subdomain Ωj , j = 1, 2, · · · ,m:

Find ejhk+1
∈ V

hk+1

Γ (Ωj), such that for any vhk+1
∈ V

hk+1

Γ (Ωj), there holds

a(ejhk+1
, vhk+1

) = (b, vhk+1
)− ⟨g(x, uhk

), vhk+1
⟩ − (f(x, uhk

), vhk+1
)− a(uhk

, vhk+1
). (36)

Set ũj
hk+1

= uhk
+ ejhk+1

∈ V hk+1 (Ωj).

2. Solve the following linearized boundary value problem in Gm+1: Find ũm+1
hk+1

∈ V hk+1 (Gm+1)

such that ũm+1
hk+1

|∂Gj∩∂Gm+1
= ũj

hk+1
, j = 1, · · · ,m and for any vhk+1

∈ V
hk+1

Γ (Gm+1), there

holds
a(ũm+1

hk+1
, vhk+1

) = (b, vhk+1
)− ⟨g(x, uhk

), vhk+1
⟩ − (f(x, uhk

), vhk+1
). (37)

3. Construct ũhk+1
∈ V hk+1 (Ω) such that

ũhk+1
= ũj

hk+1
in Gj , j = 1, · · · ,m+ 1. (38)

4. Define a correction subspace V H,hk+1 (Ω) = V H(Ω) + span{ũhk+1
} and solve the follow-

ing small- scale semilinear Neumann problem: Find uhk+1
∈ V H,hk+1 (Ω) such that for any

vH,hk+1
∈ V H,hk+1 (Ω), there holds

a(uhk+1
, vH,hk+1

) + ⟨g(x, uhk+1
), vH,hk+1

⟩+ (f(x, uhk+1
), vH,hk+1

) = (b, vH,hk+1
). (39)

Summarize the above four steps into

uhk+1
= Correction(V H(Ω), uhk

, V hk+1 (Ω)).

Theorem 2 Assume that uhk
∈ V hk(Ω) satisfies the following estimates

∥u− uhk
∥1,Ω . εhk

(u), (40)

∥u− uhk
∥0,Ω . (rΩ(H) + ρΩ(H))εhk

(u), (41)

∥u− uhk
∥0,∂Ω . (rΩ(H) + ρΩ(H))εhk

(u). (42)
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Then, the new approximation uhk+1
∈ V hk+1(Ω) obtained by Algorithm 1 satisfies

∥u− uhk+1
∥1,Ω . εhk+1

(u), (43)

∥u− uhk+1
∥0,Ω . (rΩ(H) + ρΩ(H))εhk+1

(u), (44)

∥u− uhk+1
∥0,∂Ω . (rΩ(H) + ρΩ(H))εhk+1

(u), (45)

where εhk+1
(u) := (rΩ(H) + ρΩ(H))εhk

(u) + δhk+1
(u).

Proof Based on Theorem 1 and (38), we can obtain

∥u− uhk+1
∥1,Ω

. inf
vH,hk+1

∈V H,hk+1 (Ω)
∥u− vH,hk+1

∥1,Ω

≤ ∥u− ũhk+1
∥1,Ω

≤ ∥u− Phk+1
u∥1,Ω + ∥ũhk+1

− Phk+1
u∥1,Ω

. ∥u− Phk+1
u∥1,Ω +

m∑
j=1

∥ũjhk+1
− Phk+1

u∥21,Gj
+ ∥ũm+1

hk+1
− Phk+1

u∥21,Gm+1
.(46)

To describe the proof more clearly, next the procedure is divided into three
parts. The first part is used to estimate

∑m
j=1 ∥ũ

j
hk+1

− Phk+1
u∥1,Gj . The second

part is used to estimate ∥ũm+1
hk+1

− Phk+1
u∥1,Gm+1 . Then based on (46), the final

conclusion is proved in the third part.
Part 1: Based on (6), (24) and (36), the following equation holds true for j =
1, 2, · · ·m:

a(ũjhk+1
− Phk+1

u, v)

= (f(x, u)− f(x, uhk
), v) + ⟨g(x, u)− g(x, uhk

), v⟩, ∀v ∈ V
hk+1

Γ (Ωj). (47)

Using Lemma 4 for (47), there holds

∥ũjhk+1
− Phk+1

u∥1,Gj

. ∥ũjhk+1
− Phk+1

u∥0,Ωj + ∥f(x, u)− f(x, uhk
)∥0,Ωj

+∥g(x, u)− g(x, uhk
)∥0,∂Ω∩∂Ωj

. ∥ũjhk+1
− uhk

∥0,Ωj + ∥uhk
− Phk+1

u∥0,Ωj + ∥f(x, u)− f(x, uhk
)∥0,Ωj

+∥g(x, u)− g(x, uhk
)∥0,∂Ω∩∂Ωj

. ∥ejhk+1
∥0,Ωj

+ ∥uhk
− Phk+1

u∥0,Ωj
+ ∥f(x, u)− f(x, uhk

)∥0,Ωj

+∥g(x, u)− g(x, uhk
)∥0,∂Ω∩∂Ωj

. ∥ejhk+1
∥0,Ωj + ∥uhk

− Phk+1
u∥0,Ωj + ∥u− uhk

∥0,Ωj

+∥u− uhk
∥0,∂Ω∩∂Ωj . (48)

Next, we adopt Aubin-Nitsche technique to estimate ∥ejhk+1
∥0,Ωj involved in

(48): For any ψ ∈ L2(Ωj), there exists w ∈ H1
Γ (Ωj) such that

a(v, w) = (v, ψ), ∀v ∈ H1
Γ (Ωj). (49)
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Based on finite element method, there exists wjhk+1
∈ V

hk+1

Γ (Ωj), w
j
H ∈ V HΓ (Ωj)

such that

a(vhk+1
, wjhk+1

) = (vhk+1
, ψ), ∀vhk+1

∈ V
hk+1

Γ (Ωj), (50)

a(vH , w
j
H) = (vH , ψ), ∀vH ∈ V HΓ (Ωj). (51)

The following two estimates are the standard finite element error estimates

∥w − wjhk+1
∥1,Ωj . rΩj (hk+1)∥ψ∥0,Ωj , (52)

∥w − wjH∥1,Ωj . rΩj (H)∥ψ∥0,Ωj . (53)

Taking vhk+1
= ejhk+1

in (50), we can obtain

(ejhk+1
, ψ)

= a(ejhk+1
, wjhk+1

)

= (b, wjhk+1
)− ⟨g(x, uhk

), wjhk+1
⟩ − (f(x, uhk

), wjhk+1
)− a(uhk

, wjhk+1
)

= ⟨g(x, u)− g(x, uhk
), wjhk+1

⟩+ (f(x, u)− f(x, uhk
), wjhk+1

) + a(Phk+1
u− uhk

, wjhk+1
)

= ⟨g(x, u)− g(x, uhk
), wjhk+1

− wjH⟩+ (f(x, u)− f(x, uhk
), wjhk+1

− wjH)

+⟨g(x, u)− g(x, uhk
), wjH⟩+ (f(x, u)− f(x, uhk

), wjH) + a(Phk+1
u− uhk

, wjhk+1
)

= ⟨g(x, u)− g(x, uhk
), wjhk+1

− wjH⟩+ (f(x, u)− f(x, uhk
), wjhk+1

− wjH)

+a(Phk+1
u− uhk

, wjhk+1
− wjH). (54)

Set ψ = ejhk+1
in (54), there holds

∥ejhk+1
∥20,Ωj

= ⟨g(x, u)− g(x, uhk
), wjhk+1

− wjH⟩+ (f(x, u)− f(x, uhk
), wjhk+1

− wjH)

+a(Phk+1
u− uhk

, wjhk+1
− wjH)

. ∥u− uhk
∥0,∂Ω∩∂Ωj∥w

j
hk+1

− wjH∥0,∂Ω∩∂Ωj + ∥u− uhk
∥0,Ωj∥w

j
hk+1

− wjH∥0,Ωj

+∥Phk+1
u− uhk

∥1,Ωj∥w
j
hk+1

− wjH∥1,Ωj

≤
(
∥w − wjhk+1

∥1,Ωj + ∥w − wjH∥1,Ωj

)
(
∥Phk+1

u− uhk
∥1,Ωj + ∥u− uhk

∥0,∂Ω∩∂Ωj + ∥u− uhk
∥0,Ωj

)
. rΩj (H)∥ejhk+1

∥0,Ωj

(
∥Phk+1

u− uhk
∥1,Ωj + ∥u− uhk

∥0,∂Ω∩∂Ωj + ∥u− uhk
∥0,Ωj

)
,

which yields

∥ejhk+1
∥0,Ωj . rΩj (H)

(
∥Phk+1

u− uhk
∥1,Ωj + ∥u− uhk

∥0,∂Ω∩∂Ωj + ∥u− uhk
∥0,Ωj

)
.

(55)



12 Fei Xu et al.

Combining (48) and (55), we can derive the following estimate

∥ũjhk+1
− Phk+1

u∥1,Gj . rΩj (H)∥Phk+1
u− uhk

∥1,Ωj + ∥Phk+1
u− uhk

∥0,Ωj

+∥u− uhk
∥0,∂Ω∩∂Ωj + ∥u− uhk

∥0,Ωj . (56)

Part 2: Using (6), (24) and (37), for any vhk+1
∈ V

hk+1

Γ (Gm+1), we can obtain

a(ũm+1
hk+1

− Phk+1
u, vhk+1

)

= ⟨g(x, u)− g(x, uhk
), vhk+1

⟩+ (f(x, u)− f(x, uhk
), vhk+1

). (57)

Let us use aGm+1(·, ·) to denote the restriction of a(·, ·) on Gm+1. Then for any

v ∈ V
hk+1

Γ (Gm+1), we can derive

∥ũm+1
hk+1

− Phk+1
u∥21,Gm+1

. aGm+1(ũ
m+1
hk+1

− Phk+1
u, ũm+1

hk+1
− Phk+1

u)

. aGm+1(ũ
m+1
hk+1

− Phk+1
u, ũm+1

hk+1
− Phk+1

u− v)

+⟨g(x, u)− g(x, uhk
), v⟩+ (f(x, u)− f(x, uhk

), v)

. ∥ũm+1
hk+1

− Phk+1
u∥1,Gm+1

inf
ψ∈V

hk+1
Γ (Gm+1)

∥ũm+1
hk+1

− Phk+1
u− ψ∥1,Gm+1

+∥u− uhk
∥0,∂Ω∩∂Gm+1

(
∥ũm+1

hk+1
− Phk+1

u∥1,Gm+1

+ inf
ψ∈V

hk+1
Γ (Gm+1)

∥ũm+1
hk+1

− Phk+1
u− ψ∥1,Gm+1

)
+∥u− uhk

∥0,Gm+1

(
∥ũm+1

hk+1
− Phk+1

u∥0,Gm+1

+ inf
ψ∈V

hk+1
Γ (Gm+1)

∥ũm+1
hk+1

− Phk+1
u− ψ∥0,Gm+1

)
. (58)

Next, using Lemma 1 and trace theorem, (58) can be written as

∥ũm+1
hk+1

− Phk+1
u∥21,Gm+1

. ∥ũm+1
hk+1

− Phk+1
u∥1,Gm+1∥ũm+1

hk+1
− Phk+1

u∥1/2,∂Gm+1\∂Ω

+
(
∥u− uhk

∥0,∂Ω∩∂Gm+1 + ∥u− uhk
∥0,Gm+1

)(
∥ũm+1

hk+1
− Phk+1

u∥1,Gm+1

+∥ũm+1
hk+1

− Phk+1
u∥1/2,∂Gm+1\∂Ω

)
. ∥ũm+1

hk+1
− Phk+1

u∥1,Gm+1

(
∥ũm+1

hk+1
− Phk+1

u∥1/2,∂Gm+1\∂Ω

+∥u− uhk
∥0,∂Ω∩∂Gm+1 + ∥u− uhk

∥0,Gm+1

)
+∥u− uhk

∥20,∂Ω∩∂Gm+1
+ ∥u− uhk

∥20,Gm+1
+ ∥ũm+1

hk+1
− Phk+1

u∥21/2,∂Gm+1\∂Ω .(59)

Set
x := ∥ũm+1

hk+1
− Phk+1

u∥1,Gm+1 ,

m = ∥ũm+1
hk+1

− Phk+1
u∥1/2,∂Gm+1\∂Ω + ∥u− uhk

∥0,∂Ω∩∂Gm+1 + ∥u− uhk
∥0,Gm+1 ,
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n = ∥u− uhk
∥20,∂Ω∩∂Gm+1

+ ∥u− uhk
∥20,Gm+1

+ ∥ũm+1
hk+1

− Phk+1
u∥21/2,∂Gm+1\∂Ω .

Thus, (59) means
x2 ≤ Cmx+ Cn,

which indicates

x ≤ Cm+
√
C2m2 + 4cn

2
. m+

√
n. (60)

Since

∥ũm+1
hk+1

− Phk+1
u∥21

2 ,∂Gm+1\∂Ω .
m∑
j=1

∥ũjhk+1
− Phk+1

u∥21
2 ,∂Gj

.
m∑
j=1

∥ũjhk+1
− Phk+1

u∥21,Gj
, (61)

combining (60) and (61) leads to

∥ũm+1
hk+1

− Phk+1
u∥21,Gm+1

.
m∑
j=1

∥ũjhk+1
− Phk+1

u∥21,Gj
+ ∥u− uhk

∥20,∂Ω∩∂Gm+1
+ ∥u− uhk

∥20,Gm+1
. (62)

Part 3: From (35), (56) and (62), we obtain

∥ũhk+1
− Phk+1

u∥21,Ω

.
m∑
j=1

(
r2Ωj

(H)∥Phk+1
u− uhk

∥21,Ωj
+ ∥Phk+1

u− uhk
∥20,Ωj

+ ∥u− uhk
∥20,∂Ω∩∂Ωj

+∥u− uhk
∥20,Ωj

)
+ ∥u− uhk

∥20,∂Ω∩∂Gm+1
+ ∥u− uhk

∥20,Gm+1

. r2Ω(H)∥Phk+1
u− uhk

∥21,Ω + ∥Phk+1
u− uhk

∥20,Ω + ∥u− uhk
∥20,∂Ω + ∥u− uhk

∥20,Ω
. r2Ω(H)∥u− uhk

∥21,Ω + r2Ω(H)∥u− Phk+1
u∥21,Ω + ∥u− Phk+1

u∥20,Ω
+∥u− uhk

∥20,∂Ω + ∥u− uhk
∥20,Ω , (63)

which indicates

∥ũhk+1
− Phk+1

u∥1,Ω . (rΩ(H) + ρΩ(H))∥u− uhk
∥1,Ω + rΩ(H)∥u− Phk+1

u∥1,Ω
+rΩ(hk+1)δhk+1

(u). (64)

Using (46) and (64), we can derive

∥u− uhk+1
∥1,Ω

. ∥u− ũhk+1
∥1,Ω

. ∥u− Phk+1
u∥1,Ω + (rΩ(H) + ρΩ(H))∥u− uhk

∥1,Ω + rΩ(hk+1)δhk+1
(u)

. (rΩ(H) + ρΩ(H))εhk
(u) + δhk+1

(u)

. εhk+1
(u),
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where εhk+1
(u) := (rΩ(H) + ρΩ(H))εhk

(u) + δhk+1
(u). Then we derive the first

desired result (43).
Let us define

r̃Ω(H) = sup
f∈L2(Ω),∥f∥0,Ω=1

inf
vH,hk+1

∈V H,hk+1 (Ω)

∥∥Tf − vH,hk+1

∥∥
1,Ω

,

and

ρ̃Ω(H) = sup
g∈L2(∂Ω),∥g∥0,∂Ω=1

inf
vH,hk+1

∈V H,hk+1 (Ω)

∥∥T ′g − vH,hk+1

∥∥
1,Ω

.

Using Theorem 1 again, there holds

∥u− uhk+1
∥0,Ω . (r̃Ω(H) + ρ̃Ω(H))∥u− uhk+1

∥1,Ω
≤ (rΩ(H) + ρΩ(H))∥u− uhk+1

∥1,Ω ,

and

∥u− uhk+1
∥0,∂Ω . (r̃Ω(H) + ρ̃Ω(H))∥u− uhk+1

∥1,Ω
≤ (rΩ(H) + ρΩ(H))∥u− uhk+1

∥1,Ω .

Then we derive the desired results (44) and (45). The proof is completed.

4.2 Local and parallel multigrid method for semilinear Neumann problem

In this subsection, a new type of local and parallel multigrid for the semilinear
Neumann problem (24) is designed based on Algorithm 1 and the multilevel mesh
sequence (33). For the multilevel mesh sequence (33), any two consecutive meshes
Thk

(Ω) and Thk−1
(Ω) are generated through a one-time unform refinement, such

that the mesh sizes satisfy hk = 1
qhk−1, k ≥ 2. Meanwhile, there holds:

δhk
(u) ≈ 1

q
δhk−1

(u), q > 1. (65)

Based on Algorithm 1, the local and parallel multigrid method for (24) is
designed in Algorithm 2.

Theorem 3 After implementing Algorithm 2, the final approximate solution uhn

satisfies

∥u− uhn∥1,Ω . δhn(u), (66)

∥u− uhn∥0,Ω . (rΩ(H) + ρΩ(H))δhn(u), (67)

∥u− uhn∥0,∂Ω . (rΩ(H) + ρΩ(H))δhn(u). (68)

under the condition Cq(rΩ(H) + ρΩ(H)) < 1 for some constant C.
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Algorithm 2 Local and parallel multigrid method for semilinear Neumann prob-
lem
1. Solve the semilinear Neumann problem (24) in the initial space: Find uh1

∈ V h1 (Ω) such that

a(uh1
, vh1

) + (f(x, uh1
), vh1

) + ⟨g(x, uh1
), vh1

⟩ = (b, vh1
), ∀vh1

∈ V h1 (Ω).

2. For k = 1, · · · , n− 1, the approximate solution uhk+1
∈ V hk+1 (Ω) is as follows:

uhk+1
= Correction(V H(Ω), uhk

, V hk+1 (Ω)).

End For.
The final approximation uhn is obtained in the finest space V hn (Ω).

Proof Based on Theorem 1, the initial approximate solution uh1 satisfies

∥u− uh1∥1,Ω . δh1(u),

∥u− uh1∥0,Ω . (rΩ(h1) + ρΩ(h1))δh1(u),

∥u− uh1
∥0,∂Ω . (rΩ(h1) + ρΩ(h1))δh1

(u).

which means the initial condition of Theorem 2 can be met if we set εh1(u) :=
δh1(u).

Thus, using Theorem 2, we can obtain

εhk+1
(u) . (rΩ(H) + ρΩ(H))εhk

(u) + δhk+1
(u), 1 ≤ k ≤ n− 1. (69)

Based on (65) and (69), we can derive

εhn(u) . (rΩ(H) + ρΩ(H))εhn−1(u) + δhn(u)

. (rΩ(H) + ρΩ(H))2εhn−2(u) + (rΩ(H) + ρΩ(H))δhn−1(u) + δhn(u)

.
n∑
k=1

(
rΩ(H) + ρΩ(H)

)n−k
δhk

(u)

.
n∑
k=1

(
q(rΩ(H) + ρΩ(H))

)n−k
δhn

(u)

. δhn(u)

1− q(ρΩ(H) + rΩ(H))

. δhn(u). (70)

Using Theorem 2 and (70) leads to

∥u− uhn∥1,Ω . εhn(u) . δhn(u),

which is just the desired result (66).
Further using Theorem 2, we can obtain

∥u− uhn∥0,Ω . (rΩ(H) + ρΩ(H))∥u− uhn∥1,Ω . (rΩ(H) + ρΩ(H))δhn(u)
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and

∥u− uhn∥0,∂Ω . (rΩ(H) + ρΩ(H))∥u− uhn∥1,Ω . (rΩ(H) + ρΩ(H))δhn(u),

which are the desired results (67) and (68). Then the proof is completed.

4.3 Computational work of Algorithm 2

In this subsection, we estimate the computational work of Algorithm 2, finding that
requires nearly the same computational work as that of solving the corresponding
linearized boundary value problem. Let us define

N j
k = dimV hk

Γ (Ωj) and Nk = dimV hk(Ω) for k = 1, · · ·n, j = 1, · · · ,m+ 1.

Then there holds

N j
k ≈ (

1

q
)d(n−k)N j

n and N j
k ≈ (

Nk
m

) for k = 1, · · · , n, j = 1, · · · ,m+1. (71)

Theorem 4 Assume solving the semilinear Neumann problem in the coarse spaces
V H(Ω) and V h1(Ω) require work O(MH) and O(Mh1), and solving the linearized
boundary value problem in V hk

Γ (Ωj) requires work O(N j
k), where k = 2, · · · , n, j =

1, · · · ,m + 1. Then the computational work of each computing node involved in
Algorithm 2 requires O(Mh1 + Nn/m + MH logNn). Furthermore, Algorithm 2
requires O(Nn/m) when Mh1 ≤ Nn/m,MH ≪ Nn/m.

Proof Based on (71), the computational work of Algorithm 2 can be estimated by:

Total work = O(Mh1 +

n∑
k=2

(Nk/m+MH))

= O(Mh1 +
n∑
k=2

Nk/m+ (n− 1)MH)

= O(Mh1 +

n∑
k=2

(
1

q
)d(n−k)Nn/m+ (n− 1)MH)

= O(Mh1
+Nn/m+MH logNn). (72)

Furthermore, if Mh1 ≤ Nn/m,MH ≪ Nn/m, (72) can be controlled by O(Nn/m).
Then we complete the proof.

5 Numerical examples

In this section, some numerical examples are presented to support our theoretical
conclusions and illustrate the solving efficiency of Algorithm 2.
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5.1 Example 1

In the first example, we solve the following semilinear Neumann problem: Find
u ∈ H1(Ω) such that {

−∆u+ u+ f(x, u) = 1, in Ω,

∇u · n+ g(x, u) = 0, on ∂Ω,
(73)

where Ω = (0, 1)2, f(x, u) = u3 and g(x, u) = u3.
In order to use Algorithm 2, Ω is divided into four disjoint subdomains: D1 =

(0.5, 1.0)× (0.5, 1.0), D2 = (0.0, 0.5)× (0.5, 1.0), D3 = (0.5, 1.0)× (0.0, 0.5), D4 =
(0.0, 0.5)×(0.0, 0.5). Next, we constructGj andΩj such thatGj ⊂⊂ Dj ⊂ Ωj ⊂ Ω:
Ω1 = (0.375, 1.0)×(0.375, 1.0), Ω2 = (0.0, 0.625)×(0.375, 1.0), Ω3 = (0.375, 1.0)×
(0.0, 0.625), Ω4 = (0.0, 0.625)× (0.0, 0.625), G1 = (0.625, 1.0)× (0.625, 1.0), G2 =
(0.0, 0.375) × (0.625, 1.0), G3 = (0.625, 1.0) × (0.0, 0.375), G4 = (0.0, 0.375) ×
(0.0, 0.375), and G5 = Ω\(∪4

j=1Ḡj).

The initial mesh for Example 1
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Fig. 2 The initial mesh (left) and error estimates (right) of Algorithm 2 for Example 1.

We use linear finite element space in this example and the multilevel mesh
sequence is produced through one-time uniform refinement with the refinement
index of q = 2. The coarse TH is the same as Th1 with mesh sizes H = h1 = 1/8
(see Figure 2).

The numerical results derived by Algorithm 2 are presented in Figure 2. Be-
sides, we also use the direct finite element method to solve (73). That is, we solve
semilinear Neumann problem (73) directly in the final finite element space. The
results are also presented in Figure 2. From Figure 2, we can find that Algorithm 2
can produce an optimal approximate solution as the direct finite element method.

5.2 Example 2

In the second example, we solve the following semilinear Neumann problem by
Algorithm 2: Find u ∈ H1(Ω) such that{

−∇ · (A∇u) + ϕu+ f(x, u) = 0, in Ω,

(A∇u) · n+ g(x, u) = 0, on ∂Ω,
(74)
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where Ω = (0, 1)3, ϕ = e(x1− 1
2 )(x2− 1

2 )(x3− 1
2 ), f(x, u) = arctan(u), g(x, u) = |u|3/2

and

A =

 1 + (x1 − 1
2 )

2 (x1 − 1
2 )(x2 −

1
2 ) (x1 −

1
2 )(x3 −

1
2 )

(x1 − 1
2 )(x2 −

1
2 ) 1 + (x2 − 1

2 )
2 (x2 − 1

2 )(x3 −
1
2 )

(x1 − 1
2 )(x3 −

1
2 ) (x2 −

1
2 )(x3 −

1
2 ) 1 + (x3 − 1

2 )
2

 .

Similar to the first example, Ω is also divided into several disjoint subdomains
D1, · · · , D8: D1 = (0.5, 1.0) × (0.5, 1.0) × (0.0, 0.5), D2 = (0.0, 0.5) × (0.5, 1.0) ×
(0.0, 0.5), D3 = (0.5, 1.0) × (0.0, 0.5) × (0.0, 0.5), D4 = (0.0, 0.5) × (0.0, 0.5) ×
(0.0, 0.5), D5 = (0.5, 1.0) × (0.5, 1.0) × (0.5, 1.0), D6 = (0.0, 0.5) × (0.5, 1.0) ×
(0.5, 1.0), D7 = (0.5, 1.0) × (0.0, 0.5) × (0.5, 1.0), D8 = (0.0, 0.5) × (0.0, 0.5) ×
(0.5, 1.0), For the enlarged and reduced subdomains Gj ⊂⊂ Dj ⊂ Ωj ⊂ Ω: Ω1 =
(0.375, 1.0)×(0.375, 1.0)×(0.0, 0.625), Ω2 = (0.0, 0.625)×(0.375, 1.0)×(0.0, 0.625),
Ω3 = (0.375, 1.0) × (0.0, 0.625) × (0.0, 0.625), Ω4 = (0.0, 0.625) × (0.0, 0.625) ×
(0.0, 0.625), Ω5 = (0.375, 1.0) × (0.375, 1.0) × (0.375, 1.0), Ω6 = (0.0, 0.625) ×
(0.375, 1.0) × (0.375, 1.0), Ω7 = (0.375, 1.0) × (0.0, 0.625) × (0.375, 1.0), Ω8 =
(0.0, 0.625)×(0.0, 0.625)×(0.375, 1.0), G1 = (0.625, 1.0)×(0.625, 1.0)×(0.0, 0.375),
G2 = (0.0, 0.375) × (0.625, 1.0) × (0.0, 0.375), G3 = (0.625, 1.0) × (0.0, 0.375) ×
(0.0, 0.375), G4 = (0.0, 0.375) × (0.0, 0.375) × (0.0, 0.375), G5 = (0.625, 1.0) ×
(0.625, 1.0) × (0.625, 1.0) G6 = (0.0, 0.375) × (0.625, 1.0) × (0.625, 1.0), G7 =
(0.625, 1.0)×(0.0, 0.375)×(0.625, 1.0), G8 = (0.0, 0.375)×(0.0, 0.375)×(0.625, 1.0),
and G9 = Ω\(∪8

j=1Ḡj).

Fig. 3 The initial mesh of Algorithm 2 for Example 2.

We also use the linear finite element space in this example and the multi-
level mesh sequence is produced through one-time uniform refinement with the
refinement index of q = 2. The coarse TH is the same as Th1 with mesh sizes
H = h1 = 1/8 (see Figure 3).

The numerical results of Algorithm 2 are presented in Figure 4. Besides, we
also use the direct finite element method to solve (74) and the results are also
presented in Figure 4. From Figure 4, we also can find that Algorithm 2 can
produce an optimal approximate solution as the direct finite element method.

In addition, to illustrate the efficiency of Algorithm 2 intuitively, we also present
the computational time of Algorithm 2 and the direct finite element method in
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Fig. 4 Errors (left) and computational time (right) of Algorithm 2 for Example 2.

Figure 4. Figure 4 shows that Algorithm 2 has a linear computational complex-
ity. Meanwhile, Algorithm 2 has a higher solving efficiency than the direct finite
element method.

6 Concluding remark

A new type of local and parallel method was designed to solve the semilinear
Neumann problem with nonlinear boundary condition based on the multigrid dis-
cretization. Instead of solving the semilinear Neumann problem directly in the
finest space, we transformed it into some linearized boundary value problems in a
multilevel mesh sequence and some small-scale semilinear Neumann problems in
a low-dimensional correction subspace. The linearized boundary value problems
were efficiently solved through local and parallel technique. Meanwhile, the com-
putational time for the small-scale semilinear Neumann problems can be negligible
because the dimension of the correction subspace is small and remains fixed. Ad-
ditionally, compared with the existing multigrid method for semilinear Neumann
problems that require the second order derivatives of the nonlinear terms, our al-
gorithm only requires the one order derivatives of the nonlinear terms. Rigorous
theoretical analysis and some numerical experiments are presented to show the
efficiency of the proposed algorithm.
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