A posteriori and superconvergence error analysis for finite
element approximation of the Steklov eigenvalue problem
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Abstract

In the current paper, we introduce an error analysis method and a new procedure
to accelerate the convergence of finite element (FE) approximation of the Steklov
eigenvalue problem. The error analysis consists of three steps. First, we introduce
an optimal residual type the a posteriori error estimator, and prove its efficiency
and reliability. Next, we present a residual type the a priori estimate in terms of
derivatives of the eigenfunctions. Finally, we prove accurate the a priori error estimates
by combining the a priori residual estimate and the a posteriori error estimates. The
new procedure for accelerating the convergence comes from a postprocessing technique,
in which we solve an auxiliary source problem on argument spaces. The argument
space can be obtained similarly as in the two-space method by increasing the order
of polynomials by one. We end the paper by reporting the results of a couple of
numerical tests, which allow us to assess the performance of the new error analysis
and the postprocessing method.

Keywords. Steklov eigenvalue problem, the a posteriori error estimate, the a
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1 Introduction

The Steklov eigenvalue problems are the eigenvalue problems that the eigenvalue is on the
boundary condition. In this paper, we are concerned with the second-order type, which
goes as follows,
—Au =0, in €,
% = Au, on 0f. (1.1)
on

Here, € is a bounded domain with a Lipschitz boundary and n is the unit outward normal
on the boundary. Such a problem has an increasing sequence of eigenvalues(see [3]):

O< A <AL
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Steklov first proposed this problem and studied the bounded domains in the plane in [23].
Since then, the problem was also found in many other physics fields, for instance, in the
study of the surface wave [4], in the study of the vibration modes of a structure in contact
with an incompressible fluid [5], mechanical oscillators in a viscous fluid [10, 20], in the
antiplane shearing on a system of collinear faults|7], etc.

Researchers have applied different numerical methods to deal with this problem. Bram-
ble and Osborn [6], Andreev and Todorov [2] studied the conforming finite element meth-
ods for the problem. Yang [28] applied the nonconforming finite element method to the
problem and gave the lower bounds for the eigenvalue. Han and Guan [11], Han, Guan and
He [12], Huang and Lii [14] and Tang, Guan and Han [24] studied the boundary element
method for the problem. Xie [26] and Han, Li, and Xie[13] proposed a multilevel cor-
rection method for the problem and largely increased the computation efficiency. Weng,
Zhai, and Feng [25] introduced the two-grid method for the problem. In the paper, the
standard finite element method is applied to the Steklov eigenvalue problem, and a new
error analysis method is developed with the help of the method in [15].

For the main content of the paper, we would like to introduce some works on the topics
of the a posterior error analysis of the Steklov eigenvalue problem and the post-processing
method as well. Armentano and Padra [1] analyzed the residual type of the a posteriori
error estimators for the linear FE approximations and proved the efficiency and reliability.
Yang and Bi [27] provided the new local a posteriori error estimates and the local a priori
error estimates in (||-||1,0,) norm for conforming elements eigenfunction. Russo and Alonso
[22] provided a posteriori error estimates of the non-conforming Crouzeix—Raviart FE ap-
proximations of the Steklov eigenvalue problem. For the post-processing method, Lin and
Li [19], Lin and Lin [18], Lin, Huang and Li [17] applied the Richardson extrapolation for
the elliptic eigenvalue problems. Chen and Lin [8] extended the Richardson extrapolation
to the Stokes eigenvalue problems. Especially, for the Steklov eigenvalue problem, Li, Lin,
and Zhang [16] used the Richardson extrapolation to improve the accuracy of the approx-
imation interpolation, the Rayleigh quotient accelerating techniques, and an interpolation
postprocessing method to get the superconvergence results of the bilinear finite element.

In this paper, we mainly focus on two things: new error analysis and a new method for
accelerating the convergence of FE approximations of Steklov eigenvalue problems. We
provide the new error analysis in three steps. First, we introduce an optimal residual
type a posteriori error estimator, and prove its efficiency and reliability. Next, we present
a residual type a priori estimate in terms of derivatives of the eigenfunctions. Finally,
we prove accurate a priori error estimates by combining the a priori residual estimate
and the a posteriori error estimate. The new procedure for accelerating the convergence
comes from a postprocessing technique, in which we solve an auxiliary source problem on
an argument space. The argument space can be obtained similarly as in the two-space
method by increasing the order of the polynomial by one.

The rest of the paper is organized as follows. In Section 2, we introduce the abstractly
formulated eigenvalue problem along with the main theorem, which provides the lower
eigenvalue bounds. Some results from the previous section are applied to the Steklov
eigenvalue problem to obtain lower eigenvalue bounds, taking care to give explicit error
estimates for the projection operator in Section 3. Section 4 presents some computation
results to demonstrate the efficiency of our proposed method for bounding eigenvalues.
Finally, in Section 5, we summarize the results of this paper and discuss issues with the



current algorithm.

2 Preliminaries and main results

2.1 The finite element methods

In this subsection, we introduce the FE methods for the problem (1.1).

Mesh. Assume that 2, is a family of shape-regular partitions of the domain 2 which
is the union of disjoint open element domains K such that the nonempty intersection of
a distinct pair of elements is a single node or edge. hx denotes the diameter of K. As
usual, h = maxgeq,and hx = diam(K).

Edges. The set of edges (or faces) of the partition €2, is denoted by 9€Qp. I';n: denotes
the union of all the interior faces of 2, and the set of faces that are not located in the
boundary 0€2, i.e.,

00 ={0K:Ke}, Twm=\ U F
KeQy, FEOK\oN

Jumps. For each element K € Qj, and a function v € H*(,), we denote the interior
(exterior) trace on K by vi(vy). Furthermore, the inner trace and outer trace of the
boundary 9 are defined as follows: v+ = v(x) and v~ = 0. So the jump [v] and average
value {v} are naturally introduced

1
[U”Fij = U‘Ki - U|Kj7 {U}Fij = §(U|Ki + U|Kj)v

here F;; = 0K; N 0K is the common edge.

Spaces, norms and inner-products. Let (-,-)x and (-,-)r denote the usual scalar
products in L?(K) and L?(F), and || - |z2(x) and [ - | 2(g) the corresponding norms. We
also use the following notations:

(e = [ ubxuGodx
(w,w)o, = > (s,w)g= Z/

KeQy, KeQy,
(u, ) = Z u, W) p = Z /
Fean Feon
(u,v-mn)pq, = ds,
o= 3 | w60 (ve0-n)
(u,v-mp,,, = u(x)(v(x) -n)ds,
= 3 /F (vG<) n)

where v - n is the vector inner product. In addition, H*(K) is the standard Sobolev space.
The associated norm and seminorm are defined, respectively, by

ol ey = (Z ol )

KeQy
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and

lolsn = ( 3 ||v|rSK) ,
KeQy
where || - || sk is the Sobolev norm on K, and ||v||s x := HVUHLQ(K For simplicity, we
denote |- s == | - |50, and V' == H'(Q).

The finite element space is defined as follows
Vi, ={ve () vk € Z"(K), VK € Q},

where &7 (K) denotes the set of polynomials of total degree r on the element K.

For v € H*(Qy,), we define the following mesh-dependent norm

lolfe, = > [ P

FeoQyy,

FE approximation. We describe the FE approximation of the Steklov model problem
(1.1). First, we introduce the classical weak formulation of (1.1): Find the eigenpair
(A u) € R x V satisfying

(Vu, Vu)g = Mu,v)gn, YveV. (2.1)

Now we define the finite element approximation scheme corresponding with (2.1): Find
the eigenpair(A\p, up) € R x V}, satisfying

(Vuh,V’Uh)Qh = )\h<uh,vh>3g, Yy, € Vy,. (2.2)

Projections and Interpolation. In our subsequent error analysis, some appropriate
interpolant and projection operators play important roles. Here we recall their properties.
First, we list the standard approximation results of [1]: For any v € H*(Q2), there exists
an interpolant operator II such that ITv € V}, and

o= Tollpagy < CAIVOl gz, (23)
o= TolZaey < CRIVo (24)

= L2(F)’
for any element K € €, where K is the union of all the elements sharing a vertex with
K and F' is the union of all the elements sharing a vertex with F'.

For an arbitrary function vy, € V},, and an arbitrary element K € €2, , the image Pyvy, to
K is a element of the invariant eigen-subspace £(A) associated with the eigenvalue subset
A that satisfies

(Prvp, — vp,u)g =0, Yu € E(A). (2.5)

For any face F' € T' and given a function ¢ € L?(T), the image Ps¢ to a face F of K is a
element of &,.(F') that satisfies

(Py&— &) =0, Y € P, (F), (2.6)



Adjoint equations. To prove our error estimates in the approximation of the eigen-
value A and eigenfunction u, we need to introduce the adjoint equations

“Ap =0, inQ,
o6 (2.7)

o~ A=0, onoQ.

with a regularity assumption
16l 2(0) < Cll0]lL2(0)-

2.2 Main results

Let \; (i = 1,2, ...,00) and A denote the i-th eigenvalue and a subset of the spectrum of the
Steklov eigenvalue problem, respectively. £(A) denotes the invariant space associated with
the eigenvalues in A. For example, £();) is the eigen-subspace of the individual eigenvalue
)\, i.e., A= {)\1}

Let (An,upn) be an approximation eigenpair with the normalization ||us/z2(90) = 1. We
define the error of eigenfunction in u; with respect to £(A) by

Qaup = up — Ppyup, = (I — Pp)uy,.

For example, if A is the set of individual eigenvalue A, then @5 describes the error of
the eigen-subspace £(A). In order to continue to discuss our error analysis, we need the
following assumption: There exists a sufficiently small constant § € [0, 1) such that

A — A
Ai — A

max
A EA

'sa, 1Qaunllizy <6 un— Pounllpzom <6, (28)

Theorem 2.1 (Reliability).  Let {\jn, ujn} with [|up| r200) = 1 be an eigenpair solution
of (2.2) and {u, \} with |lul[r2@90) = 1 be a solution of (1.1). Assume that (2.8) holds.
Then we have the following the a posterior error estimates: for the error of eigenfunctions,

ID™Quusnlra) < CR*™™ > Ricp(ujn, Ajp)  m=0,1.
KEQh

and for the error of the eigenvalues,

)\j,h - )\j S Ch2 Z RK,F(Uj,hv)\j,h)'
KeQy,

where the estimator is defined by
1
R r(ujn, Ajn) = CRi (ujn) + Ch™2 Rp(ujn, Ajn)
where Ry (ujn) = [|Aujnlr2xy, and
1 Buj,h
EQ[QT]HH(F)v FeTlinu
1555 = Njpujnlloey, F € 0.

Rr(ujn, Ajn) = {



According to the results of Theorem 2.1, we provide a natural result for discrete invariant
subspaces in the following corollary. These bounds of corollary are very useful when we
approximate the eigen-subspace of the multiple eigenvalue or eigenfunctions associated
with a small cluster of closed eigenvalues. &,(Ay) denotes the discrete invariant subspace
of the discrete eigenvalue subset of Aj. We define a natural measure of the distance
between the space £ := £(A) and the space &, := E,(Ay,) as follows:

dist(€, En) 20 = gsélgp (I — Pa)él 22
€12 =1

dist(£,E)s = sup ||[(I — Pp)¢]ls,
EEER
€120y =1

in the sense of the different norms.

Corollary 2.1. Let &, be an approximation of £ and the conditions of Theorem 2.1 hold.
Then for the error between &, and £, we have the error estimates:

dist(€,Ep) 20y < Ch® Y R p(En An),
KeQy

diSt(E,gh)g < Ch Z RK,F(Eh,Ah),
KeQy,

where Ry (Ex, Ap) is the vector function whose j-th components are

Z Rir(Win, Ajp),  J=1,2,...,m,
KeQy

and m is the multiplicity of the eigenvalue.

Theorem 2.2 (Efficiency). Let the eigenpair {up, \p} with [Jup||12(90) = 1 be the solution
of (2.2) and the eigenpair {u, A} with ||u|1250) = 1 be the solution of (1.1). Assume that
(2.8) holds. Then, for the error of the eigenfunction, we have the following lower bound
estimate:

Z hxkRir < C|Qauns-
KeQy

Now we turn to describe the a priori error estimates.

Theorem 2.3 (The a priori error estimate). Assume that the conditions of Theorem 2.1
hold. Then, for the eigenfunction error, we have the following a priori estimates:

1Qaunlr2() < CR2™™M 15| Pyuy | s ().

1Quaunlls < CR™™M LS| Py | (.
For the eigenvalue error, we have

My — A< Cthin{r+l’S}_2“PAuhHHs(Q).



We end Section 2 by illustrating how to exploit the superconvergence property to post-
process A, and up to get a better approximation solution to the eigenvalue A defined as
follows.

_ We introduce a better approximation (Xh, ap) of (A, u), as the element of R x V}, (V, C
Vj, C V) presented by the following algorithm.

Algorithm 2.1. Superconvergence algorithm

1. Find the eigenvalue problem (2.2) for (Ap,up) € R x Vj,.

2. Find the solution of the following source problem with Neumann boundary con-
dition %%f =wuy: Find u, € V}, such that

(Vin, Vop)a, = (un, vi)aa, Vou € Vi. (2.9)

3. Compute Xh =

(un,un)oq

4. Evaluate up, = Xhﬂh.

The fact that Xh provides a better approximation to the eigenvalue A than )y, is discussed
in the following result.

Theorem 2.4. Assume the conditions of Theorem 2.1 hold and Xh comes from Algorithm
2.1. Then, for the eigenvalue error, we have the following superconvergence

Xh A< Ch?min{ﬂrl,s}flHPAuhHHS(Q).

3 Proofs of main theorems

3.1 The a posteriori error estimates

The main purpose of this subsection is to present the proof of the reliability (Theorem
2.1) for eigenfunctions and the eigenvalues and efficiency (Theorem 2.2) for the residual
error estimator introduced in Section 2. Our idea is to convert the a posteriori error
representation into an a posteriori error estimator which is used in adaptive algorithms. In
the following, we begin with the first step of the proof that states the following intermediate
result for the errors of the eigenvalue and eigenfunction approximations.

Lemma 3.1. Assume that wy, is the solution of (2.2) and 0 € L*(Q). Then we have the
following identity:

(un,0)q, =(—Aup, ¢ —Io)q, + <8auh — ApUp, ¢ — H¢>
n a0

8uh A\ — )\h
i < [811} 0 H¢>Fmt " /\zzif:l\ A=\ (0, i), (un, pi)on (3.1)



where {¢;}3°, are an orthogonal basis of eigenfunctions in L?(Q) associated with eigen-
values {\;}32,.

Proof. Using the dual problem (2.7) and the integration by parts, we have

(u/w 9)9h = (Uh, _A¢)Qh <uha 8¢ >8 (VUh, v¢)
Qp,

On
(Uhs AP) 5o + < > (—Aup, 9)q,
Ao m+< > (~Aup, ¢~ g)g, + (—Auy, TTd)g,
= —Mun, ¢ m+<‘9uh > (—Aup, ¢ — p), <8“h qu>8Q + (Vup, VIg)q,

- _)\<th ¢>BQ + <aUh ) ¢> + <_Auh7 ¢ - H¢)Qh - <8Uh H¢> + )\h<uh7 H¢>6Q
oQp

oy,

by the integration of parts and the discrete problem (2.2). Next, we consider the combi-
nation of the integrations on the boundary, i.e.,

) () - (] ), (o)
<an,¢ oy, On ¢ o0y, 0 oo Tint oo Ely)

(Anun, O@)aa — (Aun, @)aa = (Anun, Id — ¢)aa + (An — A)(un, d)aq-

Inserting the above two identities into the first equation induces that

and

(Uh, 0) ( Auh? ¢ H¢)Qh <aah - )\huhv ¢ H¢>

o0N

+<|:8Uh:| ¢ — Hqﬁ>F + O — N {un, 6)on.

int

For the above representation, we need to express the last term, i.e. the solution of dual
problem (2.7) can be expressed by 6 and the eigenfunctions ;.

Assume that A ¢ A, A € A and (\,u) and (), ¢) are the solutions of the problem (1.1)
and the dual problem (2.7), respectively. By using the problem (1.1), the integration by
parts, and the dual problem (2.7), we have

(_A¢v U)Q = _5‘<¢’ U>BQ + >‘<¢)7 u>8Q + (va _AU)Q = ()‘ - 5‘) <¢7 U>6Q
On the other hand, using the dual problem (2.7) with 6 = u, — Pyup = Qaup, we have
(=A¢,u)a = (6, u)o = (up — Prup,u)o =0,

by the definition of the projection Py. From the above two equations, A ¢ A and X € A,
we have

<¢7 u>8Q =0.



i.e. the dual solution ¢ is orthogonal to an arbitrary eigenfunction of subspace £(A) in
the sense of inner product (-, -)aq. Since {¢;}°; are an orthogonal basis of eigenfunctions
in L? associated with eigenvalues {Ai}52,, ¢ can be expressed by

b= wipi,

AEA

where x; is the unknown coefficient. To obtain them, we need to discuss the property of
eigenfunction ¢; on the boundary. Since ¢; and ¢; are the solutions to the problem (1.1)
with the differential eigenvalues A; and A;, we have that

L [ Oy Aj

1
(@i, pj)o0 = % o O ;= Ai/{)Wivwg‘ = 7<soi,soj>an,

by Gauss formula, which implies that

(@i, pj)aa = 0.
It follows from ¢ =}, ¢ Tipi that
1 Oy;
z; = (9, pi)oa = (9, X oo )o0
1 1
=3 / (Api)op + — / Vi V¢  (by Gauss formula)
Ai Jo Ai Jo
1 0¢ 1 . :
=1 —pi—— | @i(Ad) (by Ag; = 0 and integration by parts)
Ai Joq On i Jo
A 1
= y<¢, Pi)oa — y(& ©i)Q- (by the dual problem)
So we have (01.0) 0.0
Wi, 0)a _ » Pi)Q
I'Z—A_Aiale)qb_z X — A i
N
Inserting the above expression into (A, — A)(un, ¢)sq completes the proof. O

From Lemma 3.1, it is easy to see the first three terms are easy to estimate by the
approximation property and the stability of the dual problem, while the last term will be
tackled in the next lemma.

Lemma 3.2. Assume that up, and ¢ are the solutions of (2.2) and (2.7) and the projections
Py and Py are defined in Section 2. Then

2
D™ (up, — Prup)|Z2(q)- (32)

A=A
[(un, ¢)oa| < Ch*Ric(un, An)ay, + max | 3

Proof. Tt follows from the fact that ¢; is orthogonal to the subspace E(A), Pyuy and
Pruy, € g(A) that

0, ) 97 %
(un, d)oa = D (/\ f;g (un, piYoo = Y ()\ f))\g (un — Py un, ¢i)on
)\i¢A ! /\¢¢A v



m u )\ 7
0= ( A) QA h Z QAU}HSO > <Uh _ Pa uh7§0i>aﬂ

AigA
1 1
2 2
<m Np- )\ | > A Qaun, o), > (un — Pyun, 0i)3q
g o\ gA NigA
1 m
< Cgfjgfm!w Qaun)|lL2(0)llun — Pounl 12(50), (3.3)

where we use the facts that (VQaup, Vi)a = Ai{Qaup, vi)oq and

D NQaun, 0i)30 = Y (VQaun, Vei)d < [IDQaunllF2) D IVeillia) = ClDQAuLT:(q)-
)\i¢A )\¢¢A )\i¢A

We are now ready to bound ||up, — Py up| 12 (aq) in (3.3). Consider the following auxiliary
problem

—A¢; =0, inQ,
%1 _A\p1 =01, on 0.

The following identity plays an important role in bounding |up — Ppul|p2p0). Using
similar techniques as in Lemma 3.1, we have

0
(un, 01)a0 = (un, %)aﬁ — (un, Ap1)on

= (un, Ad1)q, + (Vup, Vori)a, — (un, Ap1)aq
= (—Aup, ¢1 — Io1)q, — <8;ha¢1 - H€f>1> - <8uh — A\pUp, 91 — H¢1>
n Dint on o0
— (An = A)(un, é1)00;

by using the Gauss formula in the second and the third lines, and fact A¢; = 0, and the
discrete problem (2.2) in the third line. It follows from the problem (3.4), integration by
parts, the orthogonality of the projection Py and 01|50 = (up, — Py up)|sq that

(3.4)

1 0 1 i
(i, d1)00 = X <90¢7 ;;11>89 - X<‘Pi791>69 = X@%(ﬁﬁaa

By A ¢ A and \; € A, we have, for u € E(A), (u, p1)aq = 0. For (up, ¢1), we again use the
same techniques as in Lemma 3.1 in order to conclude that

(un, p1)oa < MAX 5 D" (un, — Paun)l| 2oy llun — Pounllr2(o)

1
ZA A = Adl
At the same time, taking 01|50 = (up, — Py up)|oq and using the definition of Py, we have

(un,01)00 = (un, un — Poup)on = |lun — Poun|72(0)-

8uh
<8n gy _¢1>r-

int

Combining all the intermediate steps implies that

lun — Pounll72o0) < [(=Aun, 1 = gi)g, | +

10



0
+ ‘<8uh — A\pup, $1 — H¢1>
n a0

— A
A— N

+ max

max D™ (ur, — Paun) || 20 lun — Po unll 2 a0)-

We estimate the first term of the above inequality by the Cauchy-Schwartz inequality and
the approximation property (2.3) to get

[(=Aup, 1 — Uo1)q, | < [[Aupl| 20 Ch2||¢1”H2(Q)

Next, we turn to bound the second and the third terms. It follows from the approximation
property (2.4) and again the Cauchy-Schwartz inequality that we have

o 0
‘<[ uh] o1 — H¢1> +’<aUh—)\huh7¢1 H¢1>
ant n o0
ou u 5
<C H [ah} n )1z + C‘ S = Mg B2 1120
n Tint L2(09)

By using the simple and miscellaneous calculation for the above threes inequalities, we
have

— A 2
lun = P unl|72(90) < Ch®Ric(un, An) + A A D™ (un, — Paup)|[ 20
Substituting the above inequality into (3.3) completes the proof. O

Now we first present the residual of the approximation solution according to the identity
in Lemma 3.1. Then we bound the right-hand sides in the error expression formulas in
terms of the residuals and the regularity assumption of the dual problem.

The residuals are the combination of the following three parts: the residual of equation

|Aupl[z2(q) arising from the element domain, jump H [a"h} describing the size of

LQ(Fint)
the d1scont1nuous of the normal derivatives across the interior edges of the element and

the residual H%L“h — )\huhHLQ(ag) of the boundary condition arising from the boundary of

domain €.

The proof of Theorem 2.1:

Proof. For the residual in (3.1), we obtain similar results by similar techniques in Lemma
3.2. Then we aim to bound || D™ (up, — Paup)r2(q) = D" Qaunl|r2(0)

Taking 6 = (—A)™Qauy, and using the definition of Py, we have
(un,0)q, = (up, (—A)™ QAuh) = [|D™Qnunllr2@), m=0,1.

Inserting the above equation and (3.2) into (3.1) and using the approximation properties
(2.3-2.4) and Cauchy-Schwartz inequality imply the desired results for the eigenfunction.

Finally, we turn to the error estimate of the eigenvalue. The main idea of error estimate
is to express the eigenvalue error representation formula similar to the eigenfunction.

11



To obtain a representation formula of eigenvalue error, we choose § = 0 in the dual
problem, which implies that (3.1) can be written as follows:

8uh

0 :(—AUh, ¢ - H¢)Qh + <8n - )\huhv ¢ - H¢>

o0

. < [‘Zﬂ 6 n¢>F + O = A)un, &) o

int
On the other hand, we observe the fact that the Steklov eigenvalue problem (1.1) is the
same as the dual problem with 6 = 0, i.e., Pyup = ¢ is the solution of the dual problem.
Further, using the assumption (2.8), we have
(un, d)aq = (un, Poun)oq = (un — Poun, Py un)oq + (Po un, P un)oo
= [|Py Uh”%Q(aQ) =1—|un— Py Uh||%2(ag) >1-ad.

Inserting this inequality into the identity above, we obtain the eigenvalue error represen-
tation formula

(1=08)(A\p = A) < = (=Aup, ¢ — 1), — <[80U:} 9= H¢>Fint

0
— <81:f — Apup, ¢ — H¢>

For the above inequality, using the approximation property (2.3)—(2.4) and Cauchy—
Schwartz inequality completes the proof of Theorem 2.1. O

o0

The remainder of this subsection is devoted to the proof of efficiency for the error
estimators Ry (u;p) and Rp(Ajp,ujp). The efficiency ensures that the true error will be
an upper bound for the resulting estimators up to a generic constant and some high-order
terms.

The proof relies on the bubble functions which are developed in [29]. In general, they
are positive, smooth, real-valued, local compact supports and bounded by 1 in the sense of
the L*°-norm. In order to describe some properties of the bubble function, we introduce
the denotations as follows.

Let bg be the standard polynomial bubble function with support in the element K
which vanished on the edge of K. Similarly, for any interior edge F', the polynomial
bubble function is denoted by by which vanishes outside the closure of K ;5 U K, where
K;E and K are the two adjacent elements sharing the common edge or face F. Some
properties of the bubble function are collected in the following lemma which is seen in
Lemma 3.3 from [29].

Property 3.1. For all polynomial functions v € P"(K) and the bubble functions by and
br, we have

bVl 25y < Cllvllp2(x), (3.5)
1
[vllz2(ry < CllbgvllL2 (k) (3.6)

Ioxvllsa < hig vl z2cy.

12



For all polynomial functions w € " (F'), we have

lorwllr2(ry < Cllwll L2(ry, (3.8)

wll 2y < ClIbRw ] 20, (3.9)

brwll 2oy < ChEIollza(e), (3.10)
lerllsscpuncy < Chi” Iollzace) (3.11)

Lemma 3.3. Assume that (A\jn,ujn) is an eigenpair solution of (2.2) which converges to
eigenvalue \;. Then we have the following local bound:

2

Y Wkl AunlFag | < Odist(ujn, E(V))s0,,
KeQy,

where uj be the minimizer of dist(v,V)gq, = Ur§1€1‘1/1||v —wlls.q,-

Proof. For arbitrary element K, let vy|x = h%(Auj’h - by, then
B 30) = WSl <€ [ Aujn - oida
by using (3.6). Since Auj; = 0 is satisfied in a distributed sense, we then have
R3 (ujp) < C/K (A(ujp — uj))vpda
= —C'/K V(ujn —uj) - Vopda

by the integration of parts and the fact that v|sgx = 0. Using Cauchy-Schwartz inequality,
inverse inequality, and (3.5), we have
R (ujp) < OV (wjn — uj)ll 2y - 1 Vonll 2 )
< OV (ujn — uj)llz2(rey - Chig lvall z2cre)
< ChMV (g — uj) |l L2y - bl Awgnll 2 -
Using the fact Ry (ujn) = |Aujkllz2(k), we end up with
Ry (un) < Chil|V (ujn — uj)ll L2 x)-
O

Lemma 3.4. Let (A, u;n) be an eigenpair solution of the problem (2.2) which converges
to \j of multiplicity R > 1. Then we have
1
2 3
L2(F ))

ujp

aU'h
s )\
— AU
an j7h

on

) 3
+ Z hk ‘
L2(F)

Feo
< dist(ujn, E(Aj))s,0, + RlIAju; — Ajawjnllr2a0)-

Rp(ujn, Ajn) = Z hi ‘
Ferint

13



Proof. For the the interior faces and domain faces, taking vp|rer,,, = hr [auj h} br and

V| Fean = hr ( )\huh> br respectivly, and using (3.9), we have

ounl? ) du,

> el ) <0 T [ [
Felin; m L2y Fer,, /F L 91
and
1
2 ou; h
Z hp )\ <C Z / < 7 ]7hu] h> vpds.
FeoQ L2(F) Fedn
Using the fact that [g—ﬁ] | = 0 for any face I and 2% \Feag = \ju;, we have
0 0
R} 7(ujn, Ajn) <C Z /[ ik _ uﬂ'“hds
Ferznt
0 0
+ C Z / ( u]h u] + A jU; — Aj,h“j,h) vhds
FeaQ
=C Z / Aum)vh + V(ujp — uy) - Vvh) dx
Fely,
+C Z / (Ajuj — Ajpujn)vpds,
FeaQ

by using the Gauss formula and Au; = 0 in the third line. We bound the right-side hand
of the term by term in the above equation. For the first term, it follows from the above
Lemma 3.3, Cauchy-Schwartz inequality, and (3.10) that

3 / Augpendr <O Y il Auzallgcsony - AR ol g
Ferznt UK Ferznt

<C Z l[wjn — ujHS,nguK; Ry ”UhHm(K;U[(;)

FeFint
1 1
2 2
2
< D lujn— > i ‘|UhHi2(K;uK;)
Keﬂh Felint

< lujn — ujlls - Re(wjn, Ajn)-

For the second term, using (3.11) and again Cauchy-Schwartz inequality, we have

Z / V(ujn —uj) - Vopdx
K UKL

Fel'yy,

< IIUj,h —ujllsllvnlls < Cllujn — ujlls - Be(wjn, Ajp)-

14



For the last term, using (3.8), we have

Z /()\ju]' — )\jﬁuj,h)vhds
F

FeoQ

<C Y I = Al
FeoQ

Buj,h A A
81.1 - J7hu]7h

L2(F)

8uj7h

o GhUih

< Chl[Ajuj = Ajnugnllr2o0) - ‘ 2(5Q) .
L2(0Q

Combining the all above intermediate steps completes the proof. O

The proof of Theorem 2.2

Proof. The efficiency in Theorem 2.2 follows immediately from Lemma 3.3 and Lemma
3.4. O

3.2 A priori error estimate

In this subsection, we present the proof of the a posteriori-priori error results for the
standard finite element method applied to eigenvalue problems. For the FE approximation
of the problem (1.1) by the discrete problem (2.2), our priori error analysis depends on
the following Ritz projection Ry, : H' () — V},, defined by

(Vu,Vv)g = (VRyu,Vu)g, Yv € V. (3.12)

The main implementation in the a priori error analysis of Theorem 2.3 is the following
approximation proposition: the weighted a priori error estimate of the Ritz projection.

Property 3.2 ([15]). Assume that the partition is uniform. Ifv € H°)1 < s < p+ 1.
Then we have

1B ED(I = Ry)vllzge) < ClBT 72D ol|p2gg), 1<s<p+1,

where o = 1,2, 3.

The proof of Theorem 2.3:

Proof. To prove the result, we use V to denote H2 Nker A. Let T : L2(Q) — V with

% = \pv for any v € L?(Q2). Set u = Ty, in Ritz projection (3.12), we have

(VRpTup, Vup)a, = (VTun, Vor)a,
8Tuh

= o On vhds—/QATuh-vhdx

= Ap(un, vp)aq,

15



by the integration of parts and the definition of the operator T'. Using the approximation
problem and the above equation, we induce that

Up = RhTuh.
So we can express the interior part of the residual as follow
Auh = ARhTuh - AT’LLh = A(Rh - I)Tuh

The rest of the proof is similar to the proof of [15, Theorem 4.2], and it is omitted for
brevity. O

3.3 Postprocessing

In this subsection, employing the idea developed in [21], we extend the methods to the
FE approximation of the Steklov eigenvalue problem (1.1). We describe and prove a
postprocessing algorithm that presents a better approximation with a superconvergence
for the post-processed eigenvalues. The essence of our new method consists of the following
two steps: First, solve the finite element approximation of the eigenvalue problem for a
given finite element space V},. Next, solve the additional source problem with the Neumann
condition % = up, on an argument space. We introduce an additional FE space XN/h such
that

Vi, C Vi ={v:ve HY(Q),v|x € Z"TU(K),VK € Q,} C V.

Considering the following finte element approximation of elliptic problem(source problem):
Find uy, € V}, such that

(Vﬂh,VUh)Qh = <uh,vh>ag, Yoy, € Vh. (3.13)

After doing the necessary work, now we describe a postprocessing Algorithm 2.1, which
will present a much better approximation Ap, of the eigenvalues. In order to prove the better
approximation property of Xh, we introduce an auxiliary problem defined as follows: Find
the solution u € V' such that

(Vu, VU)Qh = (up,v)oq, Yv eV (3.14)

Then we can evaluate the real number

~ 1
{un, U)o
Lemma 3.5. (\,u) and (A, up) are two eigenpairs of problem (1.1) and discrete problem
(2.2), respectively. Assume that [[ullp2a0) = lunllr2en) = 1. Assume that u be the

solution of the source problem (3.14) with Neumann boundary condition %‘BQ = up. A is
computed by (3.15). Then N
A=Al < Cllu = unll72 o0

Proof. Consider the Neumann problem with Neumann boundary condition g € L?(092):
Find £ € V such that R
(VE,Vu)g = (g,v)aq, YveV. (3.16)

16



The solution ¢ of the above problem defines the operator S : L?(09Q) — 17,

Sg=2¢&.

So the solution to the Steklov eigenvalue problem (1.1) can be expressed through the
operator S : u = ASu. Indeed, consider the problem (3.16) with g = Au. Therefore, the
solutions of (3.16) and (3.14) are u = ASu and © = Suy, respectively. By the definition
(3.15) of A\, u = ASu and ||u| z2(90) = ||lunllr2(a0) = 1, we have
)\_1 — X_l = <u,5u>39 — (uh,Suh>3Q
= 2(u, Su)pa — 2(up, Su)an — (v — up, S(u — up))oo
1

= X<u — Up, u — up)an — (u— up, S(u —up))aq,

by the symmetry of the operator S in (-, -)9n. We obtain that
A=Al < A+ ANISl200) e = wnl 72 (00)-
O

Next, we estimate ||u — up|[12(50). By the Ritz projection and its approximation prop-
erty, trace theorem and inverse inequality, we have

lu —unllL200) < [lu— Ruullr200) + | Rru — unll r2(00)
1 1 1
S C’Hu — Rhqug(Q)Hu — RhUHIQ-[l(Q) + Ch7§||Rhu — uh”LQ(Q)
. 1 1
< Ch™™M 23 | ooy + Ch2 (|| Rpu — ul + lu — upllog)

< CH™M+ 35 || o -

The proof of Theorem 2.4

Proof. By the triangle inequality, we have
A= Xnl < A= X+ X = Al

Lemma 3.3 has shown that the first term is bounded. So the only second term needs to
be estimated. The techniques are similar to those in the estimate of the first term A — A.
Using the definition of A and Ap, and equations (3.13) and (3.14), we have

A= Xt = (un, Moo — (un, Tn)oo = (Vi Vi)o — (Viiy, Vi),

= (V(u —un), V(u = un))ay,
by the orthogonal property (V(u — uyp), Vup)q, = 0. Indeed, let v = vy, € V in (3.13) and
subtract (3.13) from (3.14), we obtain the orthogonality. On the other hand, u; € V}, is

the finite element approximation of the problem (3.14). Using the standard finite element
error estimate [9], we have

IV (@ = @)l 2) < CH™™ 5@ o).
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The above equation and inequality then lead to
‘X—l _ X}:1| < C«thin{r—‘rl,s}HaHHS(Q)7

ie.,

A= M| < CON R ELsH 3,

which together with Lemma 3.3 completes the superconvergence proof. ]

4 Numerical experiment

This section presents two numerical examples that would allow us to assess the theoretical
results proved above. First, we illustrate the behavior of an adaptive algorithm that is
driven by the error estimator in the L—shaped domain. Then the superconvergence of
the postprocessing algorithm is investigated on model problems. With those aims, we
implement in MATLAB code a first-order finite element on triangular meshes.

4.1 Experiment 1: Adaptive algorithm

The first example is the Steklov eigenvalue problem (1.1) on the L-shaped domain Q =
[—1,1]2/(]0,1]x[~1,0]). This problem is very popular in the numerical experiment because
the regularity is broken on the original point(reentrant corner). The initial mesh is a
uniform structured mesh of 96 elements. In Figures 1-3, we show the efficiency, that is
the observed accuracy of TOL versus the number of elements, of the meshes obtained by
using estimator, and global (uniform) refinement. We see that estimator mesh refinement
yields more economical meshes than simple uniform refinement.

Figure 1 shows the initial grid and the adaptively refined grids obtained with adaptive
procedures on the L—shaped domain by using the estimator for the first five eigenvalues.

We show the efficiency of the a posteriori error estimator with that achieved by the first
five eigenfunctions in Figure 2.

Figure 3 illustrates the error curves for the obtained first five eigenvalues on the adap-
tively refined meshes with FEM schemes. We also see that the estimated error reflects the
predicted behavior with a line of slope —1, which corresponds with the optimal convergence
order.

4.2 Experiment 2: Superconvergence of eigenvalue

The efficiency of the postprocessing techniques is illustrated in problem (1.1). Assume
that eigenfunctions are known and the eigenfunctions of the example are enough smooth.
Therefore, there are no restrictions concerning regularity.

We consider the Steklov eigenvalue problem

—Au =0, in €,
@—)\u:(), on 0,
on
where Q = [0,1]2. The exact eigenpair (\,u) of this problem is unknown, we use the

accurate enough approximation A = 0.2400790830800452 given by extrapolation method in

18



Initial mesh

Figure 1: The initial mesh (left) and the one after 9 adaptive refinements for the first
five eigenvalues (right) for the L—shaped domain.

The posterior error estimator

the firs 5 eigenfunctions| |
‘== slope=-1/2

Errors

10' 10° 10°
Number of elements

Figure 2: Mesh efficiency of the a posteriori error estimator of the first five eigenfunctions
for adaptive refinements with FEM (“Adaptive FEM”) on the L—shaped domain.

[18]. In the example, the order of polynomials is 1. In Figure 4 we plot the true error for the
first eigenvalue against the size of the mesh. We also see that the estimated error reflects
the predicted behavior with a line of slope 3 which corresponds to the superconvergence
rate.

Figure 5 presents the superconvergence behavior of the first four eigenvalues using the
FE method’s postprocessing procedure. Because of the postprocessing techniques, it is
ready to see that the convergence rate has been considerably accelerated. A line of the
slope is 3, which corresponds with the superconvergence.

5 Conclusion

In this paper, a new error analysis technique is presented for the FE approximation of the
Steklov eigenvalue problem. The error estimates of the eigenvalue are reliable and efficient
as well as the energy error estimates of the eigenfunctions. Our numerical experiment 1 has
illustrated the efficiency of the resulting error estimators which generate the optimal grids.
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Eigenvalue errors
:

Errors

. .
10' 10° 10° 10°

10°
Number of elements

Figure 3: The errors for the first five eigenvalues using adaptive FEM on the L-shaped
domain

Errors for the 1st eigenvalue
: :
Q-
1 =" = slope=3

107"
Size of element

Figure 4: The convergence rate of the first eigenvalue for the postprocessing method on
the unit square domain.

In addition, we propose a post-processing technique that provides superconvergence for
the eigenvalues. For other classes of problems, such as the fourth-order Steklov eigenvalue
problem, the spectral superconvergence of finite element methods is under investigation.
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Figure 5: The convergence rate of the first four eigenvalues for the postprocessing method
on the unit square domain.
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