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Abstract

We design a multilevel correction type of adaptive finite element method based on
the moving mesh technique for solving nonlinear eigenvalue problems. In this paper,
we take the ground state of Bose-Einstein condensates (BECs) as the example of a
nonlinear eigenvalue problem to show the solving process. For this aim, we propose a
non-nested augmented subspace method for the nonlinear eigenvalue problems since
the sequence of finite element spaces generated by the r-adaptive method has non-
nested property. The new method proposed in this paper can improve the efficiency
for solving nonlinear eigenvalue problems by the corresponding theoretical analysis
and numerical examples.
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1 Introduction

There exist many nonlinear eigenvalue problems in quantum mechanics, electronic struc-
ture, etc. It demands research about efficient numerical methods for solving nonlinear
eigenvalue problems. As an example, we consider the numerical methods for computing
the ground state solution of Bose-Einstein condensates which comes from the quantum
theory and is written as a nonlinear eigenvalue problem. Quantum theory is one of the
most important scientific discoveries in the last century, which asserts that all objects
behave like waves on a micro-scale. However, the extremely small wavelength makes it
difficult to observe the quantum phenomenon. Now, the realization of a new state of mat-
ter called “the fifth state of matter”–Bose-Einstein condensates (BECs) makes it possible
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to explore the quantum world in experiments. At the critical temperature (near abso-
lute zero), some Bosons will occupy the same quantum state, thus forming the observable
BECs. It is worth mentioning that the 2001 Nobel Prize in Physics was awarded to three
scientists who first realized BECs [4, 24].

In the past 20 years, especially after the realization of BECs, related research has devel-
oped rapidly, and mathematical modeling and numerical simulation play a very important
role, in theory, prediction, and experimental guidance. For the numerical study of ground
states of BEC, computational mathematicians and physicists are more interested in ef-
fective and accurate numerical simulations. Bao et al. [9, 11, 10] proposed normalized
gradient flow method to obtain ground state, a type of efficient Sobolev gradient method
is proposed in [21] and [26]. Heid et al. [28] designed an adaptive finite element gradient
flow method for the energy minimization aspect. Li et al. [35] proposed a combined dis-
continuous Galerkin (DG) method based on the imaginary-time method. In [21], Danaila
and Hecht proposed an adaptive finite element method based on imaginary time and
Sobolev gradient flow methods. Wu et al. [41] studied the regularized Newton method
and showed its efficiency and robustness. Danaila and Protas [22] proposed unconstrained
optimization methods on Riemannian manifolds. In [5, 6], Antoine et al. designed a type
of preconditioned nonlinear conjugate gradient method to compute the stationary states
of rotating Bose-Einstein condensates.

At the critical temperature (near absolute zero), the macroscopic behavior of the BECs
can be described by the wave function ψ(x, t) which is determined by the dimensionless
Gross-Pitaevskii equation (GPE) in Rd (d = 1, 2, 3) [9, 10, 11]

i ∂tψ(x, t) =

[
−1

2
∇2 +W (x) + ζ|ψ|2

]
ψ(x, t), x ∈ Rd, t > 0, (1.1)

and the initial value
ψ(x, t = 0) = ψ0(x), x ∈ Rd, (1.2)

where i =
√
−1 is the imaginary unit, t is time, x = (x, y)T ∈ R2 or x = (x, y, z)T ∈ R3,

V (x) denotes a given real-valued external trapping potential which is determined by the
type of system under investigation, ζ is a dimensionless interaction constant (positive for
repulsive interaction and negative for attractive interaction). If we consider the external
potentialW (x) that is measurable and locally bounded and lim|x|→∞W (x) = ∞, then the
wave function ψ vanishes exponentially fast as |x| → ∞ [36]. Therefore, it is reasonable
to truncate the problem (1.1)-(1.2) into a bounded computational domain Ω with cone
property and homogeneous Dirichlet boundary condition.

To find ground states of BEC, inserting ψ(x, t) = eiλtu(x) into (1.1) gives the following
nonlinear eigenvalue problem (NLEP):

−1

2
∇2u+Wu+ ζ|u|2u = λu, in Ω,

u = 0, on ∂Ω,∫
Ω
|u|2dΩ = 1,

(1.3)

where the eigenvalue λ is the chemical potential of the condensate, and the eigenfunction
u(x) is a real wavefunction. For generality, we consider the problem (1.3) on the general
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domain Ω. The the problem (1.3) may has the singularities from the domains. As we all
know, the ground state of BEC is actually the eigenfunction corresponding to the minimum
eigenvalue of the NLEP (1.3). For simplicity of notation, we also call the solution of the
problem (1.3) as the ground state of BEC. Hence, in this paper, we focus on the efficient
numerical method for the NLEP (1.3).

The energy can be given by

E(u) =

∫
Ω

(
1

2
|∇u(x)|2 +W (x)|u(x)|2 + ζ

2
|u(x)|4

)
dx. (1.4)

Hence, the eigenvalue λ can be computed from the corresponding eigenfunction as

λ =

∫
Ω

(
1

2
|∇u(x)|2 +W (x)|u(x)|2 + ζ |u(x)|4

)
dx = E(u) +

∫
Ω

ζ

2
|u(x)|4 dx. (1.5)

Solving the NLEP (1.3) has attracted the attention of many researchers, and has led
to many important studies. In [48], Zhou gave the convergence analysis of the finite-
dimensional approximation for the ground state solution of Bose-Einstein condensates.
Cancès et al. [15] presented the a priori error estimates and error bounds for the ground
state solution of Bose-Einstein condensates by the finite dimensional approximation. Two
grid schemes based on the spectral method, finite difference method, and finite element
method were studied in [14], [18] and [19], respectively. The a posteriori estimator for
the plane waves discretization was studied in [16]. Based on the computable errors, Xie
et al. [45] obtained the asymptotic lower bound of the ground state energy. Based on
the plane-wave method, an adaptive method has been proposed to solve the ground state
solution by Cancès et al. [14]. The inexact Newton method based on spectral collocation
was studied in [17]. Jeng et al. studied the spectral collocation method and the two-level
continuous scheme in [32]. [46] proposed a type of cascadic adaptive FEM for solving
NLEPs.

It is well known that the adaptive method could improve the computational efficiency
when solving partial differential equations [13, 30, 31, 38, 40]. There are three types of
important adaptive methods: the h-adaptive methods which locally refine or coarsen the
mesh, the p-adaptive methods which locally enrich the order of the approximate polyno-
mial, and the r-adaptive methods which redistribute the grid points while keeping the
number of mesh grids unchanged. The r-adaptive method is also called the moving mesh
method, which has been successfully used in many fields such as the computational fluid
dynamics [38, 39], phase-field model [12, 40], reaction-diffusion models [30], unstable flow
in porous media [31] and Kohn-Sham equation [8]. The first aim of this paper is to de-
sign an adaptive method based on a mesh redistributed technique to solve the ground
state solution of BECs. However, we do not require the number of mesh grids unchanged
during the mesh redistributing process. In the framework of the moving mesh method,
the so-called monitor function is of particular importance since it is used to control the
movement of the mesh grids. In this paper, the default monitor function given by Mshmet
is used (Section 4.2 in [3] and Section 2.4 in [25]).

In recent years, based on the multilevel correction method and augmented subspace
method [37, 42], Xie et al. proposed a type of multigrid method for solving the ground
state solution of BECs [33, 43, 44]. Based on the numerical method in [44], Zhang et
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al. propose an efficient multigrid method [47] with a tensor assembling technique. This
method’s interesting and important property is that the asymptotic computational work
does not depend on the number of nonlinear iterations. The second aim of this paper is
to design the multilevel correction algorithm on the sequence of meshes generated by the
moving mesh method. The existed multilevel correction method, like [33, 37, 42, 43, 44, 47],
requires the condition that the low-dimensional finite element space is a subspace of the
high-dimensional finite element space. However, this condition is not satisfied by the
sequence of finite element spaces generated by the moving mesh method. In this paper, to
apply the multilevel correction algorithm on the sequence of finite element spaces generated
by the moving mesh method, we design a non-nested augmented subspace method for
solving the NLEP (1.3), and then an efficient multilevel correction method for computing
the ground state of BECs.

An outline of the paper goes as follows. In Section 2, we introduce finite element
method for the nonlinear eigenvalue problem (1.3). The non-nested augmented subspace
method for the nonlinear eigenvalue problem is given in Section 3. Section 4 is devoted
to designing the multilevel correction algorithm on the sequence of meshes generated by
the moving mesh method. Some numerical examples are provided in Section 5 to validate
the convergence and computational complexity of the proposed numerical method. Some
concluding remarks are given in the last section.

2 Finite element method for the NLEP

This section is devoted to introducing some notation and the finite element method for the
NLEP (1.3). The letter C (with or without subscripts) denotes a generic positive constant
which may be different at its different occurrences. For convenience, the symbols ≲, ≳ and
≈ will be used in this paper. That x1 ≲ y1, x2 ≳ y2 and x3 ≈ y3, mean that x1 ≤ C1y1,
x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 that are independent
of mesh sizes. The standard notation for the Sobolev spaces W s,p(Ω) and their associated
norms ∥ · ∥s,p,Ω and seminorms | · |s,p,Ω (see, e.g., [2]) will be used. For p = 2, we denote
Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the sense
of trace, ∥ · ∥s,Ω = ∥ · ∥s,2,Ω. In this paper, we set V := {v ∈ H1

0 (Ω) | E(v) < ∞} and use
∥ · ∥s to denote ∥ · ∥s,Ω for simplicity. The L2(Ω) inner-product is denoted by (·, ·), that is

(v, w) :=

∫
Ω
vwdΩ, ∀v, w ∈ L2(Ω).

For the aim of finite element discretization, we define the corresponding weak form for
(1.3) as follows: Find (λ, u) ∈ R× V such that ∥u∥20 = 1, u ≥ 0, and

â(u, v) = λb(u, v), ∀v ∈ V, (2.1)

where

â(u, v) := a(u, v) + (ζ|u|2u, v), b(u, v) := (u, v), (2.2)

a(u, v) :=
1

2
(∇u,∇v) + (Wu, v). (2.3)
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Obviously, a(·, ·) satisfies

ca∥w∥1,Ω ≤ ∥w∥a,Ω ≤ Ca∥w∥1,Ω,

where ∥ · ∥a,Ω is the energy norm defined by ∥w∥a,Ω =
√
a(w,w). Now, let us define the

finite element method [13, 20] for the problem (2.1). First, we divide the computational
domain Ω ⊂ Rd into cells (triangles or rectangles for d = 2, tetrahedrons or hexahedrons for
d = 3). The diameter of a cell K ∈ Th is denoted by hK and define h as h := maxK∈Th kK .
Then the corresponding linear finite element space Vh ⊂ V can be built on the mesh Th,
i.e.,

Vh :=
{
vh ∈ H1

0 (Ω)
∣∣ vh|K ∈ P1, ∀K ∈ Th

}
∩H1

0 (Ω), (2.4)

where P1 denotes the linear polynomial space and Vh is a family of finite-dimensional
spaces that satisfy the following assumption:

lim
h→0

inf
vh∈Vh

∥w − vh∥a,Ω = 0, ∀w ∈ V. (2.5)

Based on the linear space Vh, we can discretize (2.1) as follows: Find (λ̄h, ūh) ∈ R× Vh
such that ∥ūh∥20 = 1, ūh ≥ 0, and

â(ūh, vh) = λ̄hb(ūh, vh), ∀vh ∈ Vh. (2.6)

Then, the discrete ground state energy is given by

E(ūh) =

∫
Ω

(
1

2
|∇ūh|2 +W |ūh|2 +

ζ

2
|ūh|4

)
dΩ. (2.7)

For the following analysis, let us define the Galerkin projection Ph : H1
0 (Ω) → Vh by

a(u− Phu, vh) = 0 ∀vh ∈ Vh. (2.8)

It is obvious that

∥Phu∥a,Ω ≤ ∥u∥a,Ω ∀u ∈ V. (2.9)

To give the error estimates for the finite element method, we define the following nota-
tion

δh(u) := inf
vh∈Vh

∥u− vh∥a,Ω. (2.10)

Lemma 2.1. ([15, Theorem 1],[48]) There exists h0 > 0 such that for all 0 < h < h0,
the principal eigenpair (λ, u) ∈ R×V and its approximation (λ̄h, ūh) ∈ R×Xh satisfy the
following error estimates

∥u− ūh∥a,Ω ≲ δh(u), (2.11)

∥u− ūh∥0 ≲ αa(Vh)∥u− ūh∥a,Ω ≲ αa(Vh)δh(u), (2.12)

|λ− λ̄h| ≲ ∥u− ūh∥2a,Ω + ∥u− ūh∥0 ≲ ρ(Vh)∥u− ūh∥a,Ω, (2.13)

5



where ρ(Vh) := αa(Vh) + δh(u), and αa(Vh) is defined as follows:

αa(Vh) = sup
f∈L2(Ω),∥f∥0=1

inf
vh∈Vh

∥Tf − vh∥a,Ω

with the operator T being defined as follows: Find Tf ∈ u⊥ such that

⟨(E′′(u)− λ)Tf, v⟩ = (f, v), ∀v ∈ u⊥,

where E′′(u) is the second derivative of E at u, and u⊥ =
{
v ∈ V : |

∫
Ω uvdΩ = 0

}
.

Based on (1.5), Lemma 2.1, the Hölder inequality, and the triangle inequality, we have
the following corollary.

Corollary 2.1. Under the conditions of Lemma 2.1, E = E(u) and its approximation
Ēh = E(ūh) satisfy the following error estimates

|E − Eh| ≲ |λ− λ̄h|+ ∥u− ūh∥0 ≲ ρ(Vh)∥u− ūh∥a,Ω. (2.14)

Corollary 2.2. Under the conditions of Lemma 2.1, we have the following finer error
estimate

∥u− ūh∥a ≤ 1

1− Cρ(Vh)
δh(u), (2.15)

where the constant C is independent of the mesh size.

Proof. From the definition (2.8) of finite element projection Ph and the standard finite
element error estimate [13, 20], we have

∥u− Phu∥a = inf
vh∈Vh

∥u− vh∥a, ∥u− Phu∥0 ≤ ρ(Vh)∥u− Phu∥a. (2.16)

Set wh = uh − Phu ∈ Vh ⊂ V . Combing (2.1), (2.6), (2.8) and the triangle inequality, the
following error estimates hold

a(ūh − Phu,wh) ≤ a(ūh − Phu,wh) +

∫
Ω
ζ|ūh|2(ūh − Phu)whdΩ

= b(λ̄hūh, wh)− a(u,wh)−
∫
Ω
ζ|ūh|2PhuwhdΩ

= b(λ̄hūh − λu,wh) +

∫
Ω
ζ
(
|u|2u− |ūh|2Phu

)
whdΩ

= b(λ̄hūh − λu,wh) +

∫
Ω
ζ
(
|u|2 − |ūh|2

)
uwhdΩ +

∫
Ω
ζ|ūh|2

(
u− Phu

)
whdΩ

= ∥λ̄hūh − λu∥0∥wh∥0 +
∫
Ω
ζ
(
|u|2 − |ūh|2

)
uwhdΩ +

∫
Ω
ζ|ūh|2

(
u− Phu

)
whdΩ.(2.17)

For the second term of (2.17), using the Hölder inequality, we have∫
Ω
ζ
(
|u|2 − |ūh|2

)
uwhdΩ =

∫
Ω
ζ
(
u+ ūh

)(
u− ūh

)
uwhdΩ
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≤ ζ

(∫
Ω
|u+ ūh|6dΩ

)1/6(∫
Ω
|u− ūh|2dΩ

)1/2(∫
Ω
|u|6dΩ

)1/6(∫
Ω
|wh|6dΩ

)1/6

≤ ζ∥u+ ūh∥0,6∥u∥0,6∥u− ūh∥0∥wh∥0,6. (2.18)

From Sobolev imbedding theorem (cf. [2])

W s,p(Ω) ↪→ Lq(Ω), for p ≤ q ≤ p∗ = dp/(d− sp), Ω ⊂ Rd,

we have

∥v∥0,6 ≤ CΩ∥v∥a, ∀v ∈ V, for d = 2, 3, (2.19)

where CΩ is a constant depending only on Ω.

Then, the combination of (2.18) and (2.19) leads to∫
Ω
ζ
(
|u|2 − |ūh|2

)
uwhdΩ ≤ C1∥u− ūh∥0∥wh∥a, (2.20)

where C1 = C3
Ωζ(∥u∥a + ∥ūh∥a)∥u∥a.

In the same way, for the second term of (2.17), we have∫
Ω
ζ|ūh|2

(
u− Phu

)
whdΩ ≤ C2∥u− Phu∥0∥wh∥a, (2.21)

where C2 = C3
Ωζ∥ūh∥2a.

Combing (2.16), (2.17), (2.20), (2.21), and Lemma 2.1, we have

∥ūh − Phu∥a ≤ ∥ūh∥0|λ− λ̄h|+ (C1 + |λ|)∥u− ūh∥0 + C2∥u− Phu∥0
≤ Cρ(Vh)∥u− ūh∥a, (2.22)

where the constant C depends on C1 and C2, but is independent of the mesh size.

From (2.22) and the triangle inequality, the following estimates hold

∥u− ūh∥a ≤ ∥u− Phu∥a + ∥Phu− ūh∥a
≤ ∥u− Phu∥a + Cρ(Vh)∥u− ūh∥a.

This is the desired (2.15) and the proof is completed.

3 Non-nested augmented subspace method

In this section, we design a non-nested augmented subspace method based on a non-nested
coarse finite element space. With the help of the low-dimensional augmented subspace,
the method can transform the solution of a nonlinear eigenvalue problem on the fine spaces
into solving a linear boundary value problem of the same scale, and a small-scale eigenvalue
problem in a low-dimensional subspace. Different from the existing augmented subspace
or multilevel correction scheme (c.f. [33, 37, 42, 44, 47]), the coarse space constructed in
this article is not the subspace of the finer finite element space which gives the feasibility
to use the augmented subspace method on the of meshes that are generated by the moving
mesh method. This section introduces the algorithm, efficient implementing techniques,
and their theoretical analysis.
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3.1 Non-nested augmented subspace algorithm

We use a coarse mesh TH with the mesh size H and define the coarse linear finite element
space VH on TH . The meshes TH and Th are not required to have a nested relationship.
With the help of VH , an augmented subspace of Vh is designed as VH,h := VH +span{ũh},
where ũh ∈ Vh is a finite element function defined on Th. Although VH and Vh do not have
the nested relationship which means VH,h ̸⊂ Vh, however, VH,h ⊂ V does hold. Therefore,
we could use the error estimates for VH,h in Lemma 2.1 and Corollary 2.2.

Before implementing the augmented subspace method, an approximation (λ
(ℓ)
h , u

(ℓ)
h )

of the principal eigenpair (λ, u) is assumed to be available. The augmented subspace

iteration algorithm (Algorithm 1) is used to improve the accuracy of (λ
(ℓ)
h , u

(ℓ)
h ). Here

the superscript ℓ denotes iteration index and (λ
(ℓ)
h , u

(ℓ)
h ) is the input parameter of the

algorithm, while (λ
(ℓ+1)
h , u

(ℓ+1)
h ) is the output.

Algorithm 1: Augmented subspace iteration algorithm on non-nested meshes

1. Solve the auxiliary linear source problem: Find ũ
(ℓ+1)
h ∈ Vh, such that

a(ũ
(ℓ+1)
h , vh) + (ζ|u(ℓ)h |2ũ(ℓ+1)

h , vh) = λ
(ℓ)
h b(u

(ℓ)
h , vh), ∀vh ∈ Vh. (3.1)

2. Define the augmented subspace VH,h := VH + span{ũ(ℓ+1)
h } and solve the nonlinear

eigenvalue problem: Find (λ
(ℓ+1)
h , u

(ℓ+1)
h ) ∈ R× VH,h such that b(u

(ℓ+1)
h , u

(ℓ+1)
h ) = 1

and

â(u
(ℓ+1)
h , vH,h) = λ

(ℓ+1)
h b(u

(ℓ+1)
h , vH,h), ∀vH,h ∈ VH,h. (3.2)

The output (λ
(ℓ+1)
h , u

(ℓ+1)
h ) is chosen such that λ

(ℓ+1)
h is the smallest one among all

eigenvalues of (3.2).

Summarize the above-mentioned two steps by defining

(λ
(ℓ+1)
h , u

(ℓ+1)
h ) = AugSubspace(VH , Vh, λ

(ℓ)
h , u

(ℓ)
h ).

Now we come to give the convergence analysis and the estimation of computational
work for Algorithm 1.

Theorem 3.1. Assume there exists an exact eigenpair (λ, u) such that the given eigenpair

approximation (λ
(ℓ)
h , u

(ℓ)
h ) satisfies the following error estimate

|λ(ℓ)h − λ|+ ∥u(ℓ)h − u∥0 ≤ Cρ(VH)∥u(ℓ)h − u∥a. (3.3)

Then the eigenpair approximation (λ
(ℓ+1)
h , u

(ℓ+1)
h ) obtained by Algorithm 1 satisfies

∥u− u
(ℓ+1)
h ∥a ≤ γ∥u− u

(ℓ)
h ∥a + κ∥u− Phu∥a, (3.4)
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|λ(ℓ+1)
h − λ|+ ∥u(ℓ+1)

h − u∥0 ≤ Cρ(VH)∥u(ℓ+1)
h − u∥a, (3.5)

where γ and κ are defined as follows

γ =
Cρ(VH)

1− Cρ(VH,h)
, κ =

1

1− Cρ(VH)
, (3.6)

where C is defined in (3.10).

Proof. From (2.8), (3.1), the triangle inequality and setting wh = ũ
(ℓ+1)
h − Phu, we have

a(ũ
(ℓ+1)
h − Phu,wh) +

(
ζ|u(ℓ)h |2(ũ(ℓ+1)

h − Phu), wh

)
= b(λ

(ℓ)
h u

(ℓ)
h , wh)−

(
a(u,wh) + (ζ|u(ℓ)h |2Phu,wh)

)
= b(λ

(ℓ)
h u

(ℓ)
h − λu,wh) +

(
ζ
(
|u|2u− ζ|u(ℓ)h |2Phu

)
, wh

)
≤ C∥λ(ℓ)h u

(ℓ)
h − λu∥0∥wh∥0 +

∣∣∣ (ζ(|u|2 − |u(ℓ)h |2
)
u,wh

) ∣∣∣+ ∣∣∣ (ζ|u(ℓ)h |2(u− Phu), wh

) ∣∣∣.(3.7)

For the second term of (3.7), using the Hölder inequality and Sobolev imbedding theo-
rem, (

ζ
(
|u|2 − |u(ℓ)h |2

)
u,wh

)
=
(
ζ
(
u+ u

(ℓ)
h

)(
u− u

(ℓ)
h

)
u,wh

)
≤ ζ

(∫
Ω
|u+ u

(ℓ)
h |6dΩ

)1/6(∫
Ω
|u− u

(ℓ)
h |2dΩ

)1/2(∫
Ω
|u|6dΩ

)1/6(∫
Ω
|wh|6dΩ

)1/6

≤ ζ∥u+ u
(ℓ)
h ∥0,6∥u∥0,6∥u− u

(ℓ)
h ∥0∥wh∥0,6

≤ C3∥u− u
(ℓ)
h ∥0∥wh∥a, (3.8)

where C3 = C3
Ωζ(∥u∥a + ∥u(ℓ)h ∥a)∥u∥a.

In the same way, for the third term of (3.7), we have(
ζ|u(ℓ)h |2(u− Phu), wh

)
≤ C4∥u− Phu∥0∥wh∥a, (3.9)

where C4 = C3
Ωζ∥u

(ℓ)
h ∥2a.

Combing (3.7), (3.8), (3.9) and Lemma 2.1, we have

∥ũ(ℓ+1)
h − Phu∥a ≤ ∥u(ℓ)h ∥0|λ− λ

(ℓ)
h |+ (C3 + |λ|)∥u− u

(ℓ)
h ∥0 + C4∥u− Phu∥0

≤ Cρ(Vh)∥u− ūh∥a, (3.10)

where the constant C depends on C3 and C4, but independent of the mesh sizes.

From (3.10) and the triangle inequality, the following estimates hold

∥u− ũ
(ℓ+1)
h ∥a ≤ ∥u− Phu∥a + ∥Phu− ũ

(ℓ+1)
h ∥a

≤ ∥u− Phu∥a + Cρ(Vh)∥u− u
(ℓ)
h ∥a. (3.11)
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Now we come to estimate the error for the eigenpair solution (λ
(ℓ+1)
h , u

(ℓ+1)
h ) of problem

(3.2). Since VH,h is a subset of V , (3.2) can be regarded as a subspace approximation
to the problem (2.1). Then based on the definition of VH,h, the subspace approximation
results from Lemma 2.1 and Corollary 2.2, the following estimates hold

∥u− u
(ℓ+1)
h ∥a ≤ 1

1− Cρ(VH,h)
inf

vH,h∈VH,h

∥u− vH,h∥a

≤ 1

1− Cρ(VH)
∥ũ(ℓ+1)

h − u∥a

≤ 1

1− Cρ(VH)

(
C̃ρ(VH)∥u− u

(ℓ)
h ∥a + ∥u− Phu∥a

)
≤ Cρ(VH)

1− Cρ(VH)
∥u− u

(ℓ)
h ∥a +

1

1− Cρ(VH)
∥u− Phu∥a, (3.12)

where we used the inequality ρ(VH,h) ≤ ρ(VH) since VH ⊂ VH,h. The estimate (3.4) is the
direct results of (3.12), thus (3.5) is readily proved by Lemma 2.1.

Remark 3.1. Since VH ̸⊂ Vh, the augmented subspace method defined by Algorithm 1
could be combined with the moving mesh method where the sequence of meshes does not
have a nested relationship. This is the most important contribution of this paper. Since
VH ̸⊂ Vh, the definition of the interpolation operator IhH : VH → Vh is different from
the standard one which is defined on the sequence of nested meshes. For the detailed
implementation of the interpolation between the two non-nested meshes, please refer to the
documentation of the finite element package FreeFem++ (c.f. [27]).

3.2 Efficient implementation

In order to solve the nonlinear eigenvalue problem (3.2) (Step 2 of Algorithm 1) efficiently,
we use the method proposed in [47]. For simplicity of notation, we omit the upper index

ℓ, i.e. using ũh to denote ũ
(ℓ)
h . Let {ϕi,H}1≤i≤NH

denote the Lagrange basis function for
the coarse finite element space VH , where NH := dimVH and Nh := dimVh.

Since (3.2) is a nonlinear eigenvalue problem, we need to use some type of nonlinear
iteration method, such as the fixed point (self-consistent field) iteration. In each nonlinear
iteration, the main work is to assemble the matrices for the problem (3.2) which is defined
on the special space VH,h. The function in VH,h can be denoted by uH,h = uH + αũh.
Solving problem (3.2) is to obtain the function uH ∈ VH and the value α ∈ R. Set
uH =

∑NH
i=1 µiϕi,H and uH = [µ1, · · · , µNH

]T ∈ RNH .

Based on the structure of the space VH,h, the matrix version of the eigenvalue problem
for (3.2) in each nonlinear iteration can be written as follows(

AH bHh

bTHh σ

)(
uH

α

)
= λh

(
MH cHh

cTHh ϱ

)(
uH

α

)
, (3.13)

where uH ∈ RNH and α ∈ R.
It is obvious that the matrixMH , the vector cHh, and the scalar ϱ keep the same during

the nonlinear iteration process once ũh is obtained. However, the matrix AH , the vector
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bHh, and the scalar σ change during the nonlinear iteration process. This subsection aims
to introduce an efficient method to update AH , bHh and σ which avoids computation on
Th during the nonlinear iteration process. This method is proposed in [47], however, for
readers’ easier understanding, we review it here.

From the definitions of the space VH,h and the definition of the eigenvalue problem (3.2),
the matrix AH has the following expansion

(AH)i,j =

∫
Ω
∇ϕi,H∇ϕj,HdΩ +

∫
Ω
Wϕi,Hϕj,HdΩ +

∫
Ω
ζ(uH + αũh)

2ϕi,Hϕj,HdΩ

:= (AH,1)i,j + (AH,2)i,j , (3.14)

where

(AH,1)i,j =

∫
Ω
∇ϕi,H∇ϕj,HdΩ +

∫
Ω
Wϕi,Hϕj,HdΩ, (3.15)

and

(AH,2)i,j =

∫
Ω
ζ(uH + αũh)

2ϕi,Hϕj,HdΩ

=

∫
Ω
ζ
(
(uH)2 + 2αuH ũh + α2(ũh)

2
)
ϕi,Hϕj,HdΩ

=

∫
Ω
ζ(uH)2ϕi,Hϕj,HdΩ + 2α

∫
Ω
ζũhuHϕi,Hϕj,HdΩ + α2

∫
Ω
ζ(ũh)

2ϕi,Hϕj,HdΩ

:= (AH,2,1)i,j + 2α(AH,2,2)i,j + α2(AH,2,3)i,j . (3.16)

It is obvious that the computational work for the matrix (AH,2,1)i,j isO(NH). The matrices
AH,1 and AH,2,3 do not change during the nonlinear iteration process.

Then the matrix AH,2,2 has following expansion

(AH,2,2)i,j =

NH∑
k=1

µk

∫
Ω
ζũhϕk,Hϕi,Hϕj,HdΩ. (3.17)

The expansion (3.17) gives a hint to define a tensor TH as follows

(TH)i,j,k =

∫
Ω
ζũhϕk,Hϕi,Hϕj,HdΩ. (3.18)

Then the matrix AH,2,2 has the following computational scheme

AH,2,2 = TH · uH , (3.19)

where TH ·uH denotes the multiplication of the tensor TH and the vector uH corresponding
to the last index k. From (3.18), the dimension of the tensor TH is NH×NH×NH and the
number of nonzero elements is O(NH). Thus TH is a sparse tensor and the computational
work for the operation (3.19) is O(NH).

Now, let us consider the computation for the vector bHh which has the following expan-
sion

(bHh)i =

∫
Ω
∇ũh∇ϕi,HdΩ +

∫
Ω
Wũhϕi,HdΩ +

∫
Ω
(uH + αũh)

2ũhϕi,HdΩ := (bHh,1)i + (bHh,2)i,
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where

(bHh,1)i =

∫
Ω
∇ũh∇ϕi,HdΩ +

∫
Ω
Wũhϕi,HdΩ, (3.20)

and

(bHh,2)i =

∫
Ω
ζ(uH + αũh)

2ũhϕi,HdΩ

=

∫
Ω
ζ
(
(uH)2 + 2αũhuH + α2(ũh)

2
)
ũhϕi,HdΩ

=

∫
Ω
ζ(uH)2ũhϕi,HdΩ + 2α

∫
Ω
ζ(ũh)

2uHϕi,HdΩ + α2

∫
Ω
ζ(ũh)

3ϕi,HdΩ

:= (bHh,2,1)i + 2α(bHh,2,2)i + α2(bHh,2,3)i. (3.21)

The vector bHh,1 does not change during the nonlinear iteration process. Thus, we are left
to consider the computation of the vector bHh,2.

First, the computation for the vector bHh,2,1 is treated as follows

(bHh,2,1)i =

∫
Ω

NH∑
j=1

ujϕj,H

2

ũhϕi,HdΩ =

NH∑
j=1

NH∑
k=1

µjµk

∫
Ω
ũhϕj,Hϕk,Hϕi,HdΩ. (3.22)

Based on the tensor TH , the vector bHh,2,1 can be calculated by the tensor multiplication

bHh,2,1 = (TH · uH) · uH = AH,2,2uH , (3.23)

and the computational work of the operation (3.23) is O(NH).

Then the computation for bHh,2,2 can be done as follows

(bHh,2,2)i =

NH∑
j=1

µj

∫
Ω
ζ(ũh)

2ϕj,Hϕi,HdΩ = (AH,2,3uH)i. (3.24)

Finally, the vector bHh,2,3 does not change during the nonlinear iteration process.

For the computation of σ, we first have the following expansion

σ =

∫
Ω
|∇ũh|2dΩ+

∫
Ω
W (ũh)

2dΩ +

∫
Ω
ζ(uH + αũh)

2(ũh)
2dΩ

=

∫
Ω

(
|∇ũh|2 +W (ũh)

2
)
dΩ +

∫
Ω
ζ
(
(uH)2 + 2αuH ũh + α2(ũh)

2
)
(ũh)

2dΩ

:= d1 + d2, (3.25)

where

d1 =

∫
Ω

(
|∇ũh|2 +W (ũh)

2
)
dΩ, (3.26)

and

d2 =

NH∑
i=1

NH∑
j=1

µiµj

∫
Ω
ζ(ũh)

2ϕi,Hϕj,HdΩ + 2α

NH∑
i=1

µi

∫
Ω
ζ(ũh)

3ϕi,HdΩ + α2

∫
Ω
ζ(ũh)

4dΩ
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= uT
HAH,2,3uH + 2αuT

HbHh,2,3 + α2σh, (3.27)

with the scalar σh being defined by

σh =

∫
Ω
ζ(ũh)

4dΩ. (3.28)

Remark 3.2. The computational cost of assembling the tensor, matrices, vectors, and
scalar is O(Nh), however, that for each nonlinear iteration step is only O(MH), where
MH is the computational cost for solving the eigenvalue problem (3.2) with MH ≪ Nh.
Assume it needs ϖ nonlinear iterations for (3.2), the computational cost is O(Nh+ϖMH)
for Algorithm 1 which is almost independent of ϖ.

4 Multilevel correction method on the r-adaptive meshes

In this section, based on the augmented subspace iteration algorithm (Algorithm 1), we
design a multilevel correction type of adaptive finite element method for the nonlinear
eigenvalue problem (2.1) on the sequence of r-adaptive meshes. To be specific, suppose a
coarse mesh TH is given and VH is defined on TH . Then a sequence of meshes Thk

(k =
1, · · · , n) is generated by the r-adaptive method with the help of mesh generation tools,
such as mshmet and mmg3d [23, 25]. We then construct the corresponding linear finite
element spaces Vhk

(k = 1, · · · , n) on Thk
. We assume the relationship between every pair

of adjacent levels of linear finite element space as

Nk ≈ ξdNk−1, (4.1)

δhk
(u) ≈ 1

ξ
δhk−1

(u), k = 2, · · · , n, (4.2)

where ξ is called the refinement constant and Nk := dimVhk
.

The corresponding multilevel correction method is described by Algorithm 2. Based
on Lemma 2.1, Corollary 2.2, Theorem 3.1 and the property (4.2), we deduce the error
estimate for Algorithm 2 by recursive argument.

Theorem 4.1. Under the condition of (4.2), the eigenpair approximation (λhn , uhn) ∈
R× Vhn obtained by Algorithm 2 and Ehn = E(uhn) have the following error estimates

∥u− uhn∥a ≤ 1− (ξγm)n

1− (ξγm)
κδhn(u), (4.4)

|λhn − λ|+ ∥uhn − u∥0 ≤ C
1− (ξγm)n

1− (ξγm)
κρ(VH)δhn(u), (4.5)

|Ehn − E| ≤ C
1− (ξγm)n

1− (ξγm)
κρ(VH)δhn(u), (4.6)

under the condition ξγm < 1.

Proof. From Corollary 2.2 and the property ρ(Vh1) ≤ ρ(VH), the eigenfunction approxi-
mation uh1 obtained by Step 1 of Algorithm 2 satisfies the following error estimates

∥u− uh1∥a = ∥u− ūh1∥a ≤ 1

1− Cρ(Vh1)
δh1(u) ≤ κ∥u− Ph1u∥a. (4.7)
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Algorithm 2: Multilevel correction method on r-adaptive meshes

1. Solve the eigenvalue problem on Vh1 : Find (λh1 , uh1) ∈ R× Vh1 such that

â(uh1 , vh1) = λh1b(uh1 , vh1), ∀vh1 ∈ Vh1 . (4.3)

2. For k = 2, · · · , n, do the following iteration:

(a) Generate the mesh Thk
by (λhk−1

, uhk−1
) using the r-adaptive method such

that the property (4.2) holds.

(b) Set (λ
(0)
hk
, u

(0)
hk

) = (λhk−1
, uhk−1

).

(c) For ℓ = 0, · · · ,m− 1, do the ‘augmented subspace iteration algorithm on
non-nested meshes’

(u
(ℓ+1)
hk

, λ
(ℓ+1)
hk

) = AugSubspace(VH , Vh, λ
(ℓ)
hk
, u

(ℓ)
hk
).

(d) Set (λhk
, uhk

) = (λ
(m)
hk

, u
(m)
hk

).

Combining Corollary 2.2, (4.7) and recursive argument leads to the following estimates

∥u− uhn∥a = ∥u− u
(m)
hn

∥a ≤ γm∥u− u
(0)
hn

∥a + κ∥u− Phnu∥a
= γm∥u− uhn−1∥a + κ∥u− Phnu∥a
≤ γm

(
γm∥u− uhn−2∥a + κ∥u− Phn−1u∥a

)
+ κ∥u− Phnu∥a

≤ γ(n−1)m∥u− uh1∥a +
n∑

k=2

γ(n−k)mκ∥u− Phk
u∥a

≤ γ(n−1)mκ∥u− Ph1u∥a +
n∑

k=2

γ(n−k)mκ∥u− Phk
u∥a

≤
n∑

k=1

γ(n−k)mκ∥u− Phk
u∥a =

n∑
k=1

γ(n−k)mκδhk
(u)

≤

(
n∑

k=1

γ(n−k)mξn−k

)
κδhn(u) =

(
n∑

k=1

(ξγm)n−k

)
κδhn(u)

=
1− (ξγm)n

1− (ξγm)
κδhn(u). (4.8)

For such choice of m, we arrive at the desired result (4.4), while (4.5) and (4.6) can be
obtained by Lemma 2.1, Corollary 2.1 and (4.8).

Now, we analyze the computational cost for Algorithm 2. Since the linear boundary
value problem (3.1) in Algorithm 1 can be solved by a multigrid method, the computational
cost for this part can be of optimal order.

The computational cost for the second step in Algorithm 1 is different from the linear

14



eigenvalue problems [37, 42, 44]. In this step, we need to solve a nonlinear eigenvalue
problem (3.2). Always, some type of nonlinear iteration method (self-consistent or Newton-
type iteration) is adopted. In each nonlinear iteration , we need to assemble the matrix
on the finite element space VH,hk

(k = 2, . . . , n) which computational cost is O(Nk).
Fortunately, assembling the matrix could be carried out in a parallel way easily since
there is no data transfer.

Remark 4.1. Assume solving the eigenvalue problem (3.13) and nonlinear eigenvalue
problem (4.3) in initial space Vh1 need work O(MH) and O(Mh1), respectively, and the
work for solving the source problem in Vhk

be O(Nk) for k = 2, 3, . . . , n. Let ϖ denote the
nonlinear iteration times when we solve the nonlinear eigenvalue problem (3.2). When we
use the efficient implementing techniques in Subsection 3.2, the work involved in Algorithm
2 has the following estimate:

Total work = O (Nn +ϖMH lnNn +Mh1) . (4.9)

Remark 4.2. Although the number of nonlinear iterations of Algorithm 1, i.e. ϖ, in-
creases as the nonlinear strength increases (ζ increases), the computational cost is asymp-
totically optimal and almost independent of ϖ due to the fact MH ≪ Nn and Mh1 ≤ Nn.

5 Numerical experiments

This section provides three numerical examples to validate the proposed augmented sub-
space algorithm and the corresponding theoretical analysis. With the help of the finite
element package FreeFem++ [27, 34], the numerical experiments are carried out on LSSC-
IV in the State Key Laboratory of Scientific and Engineering Computing, Academy of
Mathematics and Systems Science, Chinese Academy of Sciences. Each computing node
has two 18-core Intel Xeon Gold 6140 processors at 2.3 GHz and 192 GB of memory.

The eigenvalue problem on the coarsest space and low dimensional subspace VH,h are
solved by SLEPc [29] in parallel and serial ways, respectively. The linear equation (3.1)
in Algorithm 1 is solved with the GAMG [1, 7] from PETSc [7]. Adaptive meshes are
generated by mshmet and mmg3d [23, 25].

Example 1. We solve nonlinear eigenvalue (1.3) where

W =
1

2
(γ2xx

2 + γ2yy
2 + γ2zz

2),

and γx = γy = γz = 1 on the L-shape domain Ω = (−1, 1)3\[0, 1)3, with different choice
of ζ.

Although the ground state of BECs is always not defined on the L-shape domain, this
example is provided to show the ability of the r-adaptive method and the efficiency of
the multilevel correction method. The coarsest mesh Th1 := TH is presented in the left
subfigure of Figure 1. The corresponding numerical results for energy approximations
and CPU time by Algorithm 2 are shown in Figure 1, where Algorithm 2 is shown to
achieve the optimal error and linear scale complexity. The CPU time results show that
the computational cost of Algorithm 2 is independent of the strength of the nonlinearity.
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Example 2. In this example, we consider the ground state solution of BEC with a
harmonic oscillator potential of a stirrer corresponding to a far-blue detuned Gaussian
laser beam [11], i.e.,

W =
1

2
(γ2xx

2 + γ2yy
2 + γ2zz

2) + ωe−δ((x−r0)2+y2),

where γx = γy = 1, γz = 2, ω = 4, δ = r0 = 1 and Ω = (−6, 6)3, with different choices of ζ.

We check the convergence and efficiency of Algorithm 2 with ζ = 1, 50, 100, 200. The
coarsest mesh is presented in the subfigure of Figure 2. While the corresponding numerical
results for energy approximations and CPU time by Algorithm 2 are shown in Figure 2,
where Algorithm 2 is shown to achieve the optimal error and the efficiency is independent
of the strength of the nonlinearity. Figure 3 plots the isosurfaces of |uh|2, their contour
plot on the interior slice z = 0, and adaptive mesh sections for different ζ.

Example 3. In this example, we consider the ground state solution of BEC with optical
lattice potential [10, 28] that is a more complex nonlinear eigenvalue, i.e.,

W =
1

2
(γ2xx

2 + γ2yy
2 + γ2zz

2) + δ
(
sin2(2πx) + sin2(2πy) + sin2(2πz)

)
,

105 106

Number of Elements

10-3

10-2

10-1

100

E
rr

o
rs

105 106 107

Number of Elements (log)

101

102

103

104

C
P

U
 S

e
c
o
n
d
s
 (

lo
g
)

Figure 1: The coarsest mesh, the error estimate and CPU time for Example 1 by Algorithm
2 with linear element
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Figure 2: The coarse and initial mesh, the energy errors and CPU time for Example 2 by
Algorithm 2 with linear element
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(a)

(b)

(c)

(d)

Figure 3: Isosurfaces of |uh|2 (left column), their corresponding contour plot on the interior
slice z = 0 (middle column) and the corresponding adaptive meshes (right column) by
using linear elements in Example 2 for different ζ: (a) ζ = 1, (b) ζ = 50, (c) ζ = 100, (d)
ζ = 200.
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where γx = γy = γz = 1, δ = 50 and Ω = (−6, 6)3, with different choice of ζ. We also
check the convergence and efficiency of Algorithm 2 with ζ = 1, 50, 100, 200.

The coarsest mesh is presented in the left subfigure of Figure 4. Figure 4 shows the
corresponding numerical results for energy approximations and CPU time by Algorithm
2. From Figure 4, we can find that Algorithm 2 also achieve the optimal error and the
efficiency is independent of the strength of the nonlinearity. The isosurfaces of |uh|2, their
corresponding contour plot on the interior slice z = 0 and adaptive mesh sections for
different ζ are shown in Figure 5.

6 Concluding remarks

In this paper, we design an efficient multilevel correction type of moving mesh method for
solving the ground state solution of Bose-Einstein condensates. In addition, the tensor
assembling technique from [44, 47] is adopted to improve efficiency. The corresponding
convergence property and computational complexity are also presented. The proposed
numerical method makes the computational work for solving the NLEP (1.3) be asymp-
totically the same as solving the corresponding linear boundary value problem by the
moving mesh method.

Based on the result of the computational work, the method in this paper provides a way
to make the computational work escape from the dependence on the nonlinearity strength
of the problem. The idea and method here can be extended to other nonlinear problems
such as the ground state of rotating dipolar BEC and the Kohn-Sham equation.
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(a)

(b)

(c)

(d)

Figure 5: Isosurfaces (left column), their contour plot on the interior slice z = 0 (middle
column) and adaptive mesh sections (right column) for ground state solutions in Example
3 for different ζ: (a) ζ = 1, (b) ζ = 50, (c) ζ = 100, (d) ζ = 200.
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de recherche RR-4759. INRIA, 2003.

[4] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell,
Observation of Bose–Einstein condensation in a dilute atomic vapor, science,
269(5221):198–201, 1995.

[5] X. Antoine, A. Levitt, and Q. Tang, Efficient spectral computation of the stationary
states of rotating Bose–Einstein condensates by preconditioned nonlinear conjugate
gradient methods, Journal of Computational Physics, 343:92–109, 2017.

[6] X. Antoine, Q. Tang, and Y. Zhang, A preconditioned conjugated gradient method
for computing ground states of rotating dipolar Bose–Einstein condensates via ker-
nel truncation method for dipole-dipole interaction evaluation, Communications in
Computational Physics, 24(4):966–988, 2018.

[7] S. Balay, S. Abhyankar, M. Adams, J. Brown, et. al., PETSc users manual revision
3.8, Technical report, Argonne National Lab. (ANL), Argonne, IL (United States),
2017.

[8] G. Bao, G. Hu, and D. Liu, Numerical solution of the Kohn-Sham equation by
finite element methods with an adaptive mesh redistribution technique, Journal of
Scientific Computing, 55(2):372–391, 2013.

20



[9] W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose–Einstein
condensation, Kinetic and Related Models, 6(1):1–135, 2013.

[10] W. Bao, I.-L. Chern, and F.-Y. Lim, Efficient and spectrally accurate numerical
methods for computing ground and first excited states in Bose–Einstein condensates,
Journal of Computational Physics, 219(2):836–854, 2006.

[11] W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein con-
densates by a normalized gradient flow, SIAM Journal on Scientific Computing,
25(5):1674–1697, 2004.

[12] G. Beckett, J. MacKenzie, and M.L. Robertson, An r-adaptive finite element method
for the solution of the two-dimensional phase-field equations, Communications in
Computational Physics, 1(5):805–826, 2006.

[13] S. Brenner and R. Scott, The mathematical theory of finite element methods, vol-
ume 15, Springer Science & Business Media, 2007.

[14] E. Cancès, R. Chakir, L. He, and Y. Maday, Two-grid methods for a class of nonlinear
elliptic eigenvalue problems, IMA Journal of Numerical Analysis, 38(2):605–645,
2018.

[15] E. Cancès, R. Chakir, and Y. Maday, Numerical analysis of nonlinear eigenvalue
problems, Journal of Scientific Computing, 45(1-3):90–117, 2010.

[16] E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohraĺık, A perturbation-
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