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Investigating the Sample Weighting Mechanism
Using an Interpretable Weighting Framework

Xiaoling Zhou, Ou Wu, and Mengyang Li

Abstract—Training deep learning models with unequal sample weights has been shown to enhance model performance in various
typical learning scenarios, particularly for imbalanced and noisy-label learning scenarios. A deep understanding of the weighting
mechanism facilitates the application of existing weighting strategies and illuminates the design of new weighting strategies for real
learning tasks. Scholars have focused on exploring existing weighting methods. However, their studies mainly establish how the
weights of samples influence the model training. Little headway is made on the weighting mechanism, i.e., which and how the
characteristics of a sample influence its weight. In this study, we adopt a data-driven approach to investigate the weighting mechanism
by utilizing an interpretable weighting framework. First, a wide range of sample characteristics is extracted from the classifier network
during training. Second, the extracted characteristics are fed into a new neural regression tree (NRT), which is a tree model
implemented by a neural network, and its output is the weight of the input sample. Third, the NRT is trained using meta-learning within
the whole training process. Once the NRT is learned, the weighting mechanism, including the importance of weighting characteristics,
prior modes, and specific weighting rules, can be obtained. We conduct extensive experiments on benchmark noisy and imbalanced
data corpora. A package of weighting mechanisms is derived from the learned NRT. Furthermore, our proposed interpretable weighting
framework exhibits superior performance in comparison to existing weighting strategies.

Index Terms—Sample weighting, interpretability, neural regression tree, meta-learning.

✦

1 INTRODUCTION

IN addition to the design of new deep neural networks,
the design of unequal weights on the losses of training

samples is also a common technique to improve model
performance in various machine learning tasks. Different
weighting strategies are proposed based on diverse em-
pirical observations or theoretical inspirations. For exam-
ple, the typical weighting strategy called Focal Loss [1]
was motivated by the observation that background (easy)
samples are overrepresented in object detection datasets
relative to foreground (hard) samples. Thus, this weighting
strategy assigns relatively high weights on hard samples
and relatively low weights on easy ones. The experimen-
tal results show that detection performance was improved
in terms of accuracy. The classical shallow classification
method, called AdaBoost [2], also exerts high weights on
hard samples. By contrast, the weighting strategies in Cur-
riculum Learning (CL) [3] and Self-paced Learning (SPL) [4]
set high weights on easily classified samples. Studies have
verified that the easy-first paradigm CL mainly takes effect
on noisy datasets [17]. In addition, given that noisy samples
are generally hard ones, SuperLoss [56] also assigns higher
weights to easy samples and lower weights to hard ones,
which yields favorable performance in noisy-label learning
scenarios. These two approaches, characterized by assign-
ing high weights to either hard or easy samples, adopt
fundamentally contrasting strategies, yet both demonstrate
effectiveness in specific learning scenarios. As a result, the
current understanding regarding the prioritization of sam-
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Fig. 1. Two issues of understanding weighting strategies.

ples for learning remains inconclusive. Besides, samples in
small categories are generally hard ones and are assigned
with high weights in long-tailed classification [5], [6]. In
some cost-sensitive tasks, such as fraud detection [54] and
medical diagnosis [55], samples having large gains or costs
are allocated higher weights. Moreover, samples that play
a greater role in enhancing the training and generalization
abilities of the model are assigned higher weights. For
example, in data augmentation, the weights assigned to
original samples are generally larger than those assigned
to augmented ones [47].

In summarizing of existing studies, the mainstream
approaches for sample weighting can be categorized into
two categories. The first category encompasses heuristically
defined weighting functions, such as Focal Loss [1], Super-
Loss [56], SPL [4], etc. These methods explicitly model the
sample weights as a function of the sample characteristics.
For example, Class-Balanced Loss [5] formulates weights as
a function of the category distribution, Focal Loss assigns
weights based on sample predictions, while SPL and Super-
Loss determine weights based on the sample loss. However,
a consensus regarding which weighting characteristics more
effectively determine sample weights and the underlying
mechanisms governing their determination has yet to be
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reached. The second category contains meta-learning-based
weighting strategies [7], [8], [9], which have demonstrated
state-of-the-art performance compared to heuristically de-
fined weighting functions. For instance, Meta-weight-net [7]
leverages the loss as an input to the weighting network
and generates weights based on the usage of meta-learning.
Nevertheless, existing meta-learning-based weighting meth-
ods often rely on a single or very limited set of indica-
tors as inputs to the weighting network. Furthermore, the
weighting network is typically a black box model, lacking
interpretability, thereby posing a substantial obstacle to the
thorough investigation of sample weights.

The understanding of sample weights can be divided
into two issues, as shown in Fig. 1. The first issue rep-
resents the mechanism of weighting, i.e., knowing which
sample characteristics determine the weight of a sample
and how. The second issue is concerned with the role of
weighting, i.e., knowing how the sample weights influence
the model training. Thus far, the previous studies pertaining
to the understanding of sample weights in deep learning
mainly focused on the second issue. For example, Byrd
and Lipton [10] investigated importance weighting which
is the likelihood of the densities of the target and source
distributions and found that sample weights affect deep
model training by influencing the implicit bias of gradient
descent. On the basis of their finding, Xu et al. [11] revealed
the role of sample weights on the optimization dynamics
and generalization performance for deep learning under
certain rigorous assumptions.

Few studies have attempted to address the first issue,
which is investigating the weighting mechanism. Conse-
quently, numerous significant problems remain unsolved.
We summarize the unsolved but widely concerned prob-
lems as follows:

(i) Different weighting methods rely on distinct charac-
teristics of samples, such as loss, prediction, margin,
etc. Which types of characteristics are more effective
than others?

(ii) Nearly all existing weighting strategies only utilize
a single weighting characteristic. Whether and How
does the combination of multiple weighting charac-
teristics yield better performance?

(iii) In some schemes, hard samples1 are assigned with
high weights, which is called the hard-first mode [1],
[5]. In some other schemes, easy samples have higher
weights than hard ones, which is called the easy-first
mode [3], [4]. Both modes are claimed to be effective
in previous studies. Consequently, which samples
should be learned first [12], easy or hard ones?

(iv) The prior mode2 (easy-first or hard-first) is fixed dur-
ing the training process in existing heuristic strate-
gies. Are there any other effective prior modes?

To solve the above questions, this study attempts to
design a data-driven method to investigate the weighting
mechanism of a good set of sample weights. For this pur-
pose, an interpretable weighting framework is constructed

1. The learning difficulty of a training sample is usually approxi-
mated by the sample characteristics, such as loss, margin, etc.

2. Prior mode means that a weighting strategy assigns higher weights
to specific types of samples than other ones in training.

to infer the sample weights with an interpretable neural
regression tree (NRT). Aiming to ensure a “good” set of
weights, meta-learning [7] is utilized based on an addi-
tional meta dataset. Specifically, a wide range of sample
characteristics in the previous studies is first extracted from
the classifier. These characteristics are then fused and fed
into our proposed NRT. Finally, the NRT is trained with
meta-learning to achieve a good set of sample weights.
As the NRT can naturally yield concrete weighting rules
from the input sample characteristics to the output weights,
the weighting rules can also be obtained once the NRT
is trained. Our approach possesses notable advantages in
contrast to previous weighting strategies:

• In contrast to existing strategies that employ only a
single or very limited weighting characteristic, our
method employs a wider range of sample character-
istics to infer sample weights.

• The weighting network in our framework is an NRT,
which possesses inherent interpretability, whereas
other meta-learning-based approaches employ black
box models as the weighting networks. Conse-
quently, the weighting mechanisms can be readily
explained by our framework.

• Our framework obviates the necessity of designing
an explicit weighting function, instead opting for a
data-driven approach to ascertain sample weights.
As a result, our framework can accommodate all
feasible optimal prior modes. Furthermore, the prior
mode exhibits the potential to dynamically change
throughout the training process.

A package of weighting mechanisms has been revealed
in our experiments. First, the importance of weighting
characteristics in some typical occasions is analyzed. These
important characteristics can be adopted preferentially in
future weighting strategies. Second, the hybrid prior mode
is observed from the learned weights, referring to both the
easy-first and the hard-first modes utilized by the partial
samples, while existing weighting strategies adopt a single
prior pattern for all samples. Third, the shifting prior mode
is discovered. Alternatively, the transition from easy (hard)-
first to hard (easy)-first may occur during training, while
existing methods maintain the same prior mode throughout
the training process. In addition, concrete weighting rules
are obtained from the learned NRT. Furthermore, the ex-
perimental results indicate that our proposed interpretable
weighting framework can achieve superior performance
compared with other advanced weighting strategies.

Our contributions can be summarized as follows:

• A novel interpretable weighting framework is initi-
ated to investigate the weighting mechanism in deep
learning. To the best of our knowledge, this work is
the first one to apply interpretability techniques to
facilitate the understanding of an important training
component (i.e., sample weighting). Our framework
can also be utilized to investigate the mechanism of
other training components.

• A package of weighting mechanisms, including the
importance of weighting characteristics, major prior
modes, and specific weighting rules, is achieved.
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Heuristic priors used in previous studies are ob-
served. Moreover, valuable findings undetected in
previous studies are obtained.

• An NRT is proposed. Taking the interpretable tree as
the weighting network, our framework can achieve
superior performance with excellent interpretability
compared with employing black box models as the
weighting network, which is inexplicable.

2 RELATED WORK

2.1 Learning with Sample Weights
Samples differ from each other because of their differences
in aspects, including data quality [13], [14], sample neigh-
bors [15], [16], and category distribution [5], [6]. Treating
each training sample independently can improve learn-
ing performance in many machine learning tasks [1], [17].
Numerous weighting schemes have been proposed, which
are based on various weighting characteristics related to
the above-mentioned differences. However, these strategies
only rely on a single or very limited weighting characteristic,
thereby falling short in their ability to capture the diverse
attributes of samples. The most frequently used character-
istic is loss (or the predicted probability of ground truth).
Three popular weighting methods, namely SPL [4], Focal
Loss [1], and SuperLoss [56] are both based on the loss. Some
weighting schemes are also based on other characteristics,
such as margin [16], loss gradient [52], uncertainty [19], and
category proportion [5], [6]. However, which characteristics
are more effective than others remains unclear. In contrast to
existing weighting methods that rely on one or very limited
characteristics, our approach leverages multiple dimensions
of sample characteristics, such as loss, margin, uncertainty,
etc. Consequently, it enables more precise assignment of
sample weights based on their unique characteristics.

According to the prior mode principle, existing weight-
ing methods can be divided into two categories, namely
easy-first and hard-first. Some typical easy-first weighting
methods have achieved success, especially for noisy-label
learning occasions [3], [56]. For example, CL [3] is inspired
by human learning in which easy samples should be learned
first. An empirical study conducted by Wu et al. [17] verified
that CL mainly takes effect under noisy scenarios. SPL [4]
also belongs to the easy-first mode, which sets the weights
of hard samples to zero with a threshold. The threshold
is gradually increased to ensure that more hard samples
can participate in the next epochs of training. Meanwhile,
there are also some weighting strategies belonging to the
hard-first mode. These strategies behave well in imbalanced
learning scenarios. Class-Balanced Loss [5] and Weighted
Broad Learning System [20] exert high weights on samples
in the minority categories, which are generally hard ones.
Learning Optimal Weights [52] forces a model to focus on
less represented or more challenging samples. However,
current heuristic approaches are constrained by the adop-
tion of either an easy-first or hard-first strategy exclusively
during the entire training procedure, thus restricting their
applicability to specific learning scenarios. In contrast, our
proposed framework offers a dynamic and flexible solution
that can accommodate both easy-first and hard-first modes.
As a result, our method exhibits broad versatility across

diverse learning scenarios, including imbalanced learning
and noisy-label learning.

Nowadays, meta-learning-based weighting methods
have achieved state-of-the-art performance. MentorNet [9]
learns a data-driven curriculum of StudentNet by training
a teacher network, while L2RW [8] learns to assign weights
to samples based on their gradient directions. MetaReg [21]
learns the weights of noisy samples using meta-learning,
which is a powerful regulation algorithm. Shu et al. [7]
adopted an online learning strategy to alternatively update
parameters in a classifier network and a sample weighting
network. The sample weighting network is a multilayer per-
ception network (MLP) and its input is only loss. Notably,
the weighting networks in previous meta-learning-based
approaches are black box models, rendering them incapable
of explaining the fundamental mechanisms underpinning
sample weighting. In contrast, our proposed framework
employs an interpretable NRT as the weighting network.
Consequently, we are able to systematically investigate the
intrinsic mechanisms that govern sample weighting.

2.2 Understanding the Weighting Strategies

Only a few studies have attempted to understand the
weighting strategies. These studies mainly focused on ex-
ploring the influence of sample weights on model training.
For example, Byrd and Lipton [10] empirically found that
importance weighting influences deep learning models by
affecting the implicit bias of gradient descent [22]. Xu et
al. [11] investigated how the theoretical understanding of
implicit bias of gradient descent adjusts to the weighted em-
pirical risk minimization. However, their theoretical anal-
ysis was based on some rigorous assumptions, resulting
in their conclusions being limited and inappropriate in
some cases. Few studies have attempted to investigate the
weighting mechanism or know which sample characteristics
influence the sample weights and how. Our study fills this
gap by thoroughly investigating the mechanism of sample
weighting. Specifically, we delve into the critical aspects of
the weighting characteristics that govern the determination
of sample weights and shed light on the mechanisms.

2.3 Rule-Based Deep Learning Interpretability

In building trust in intelligent systems, “transparent” mod-
els must be built to explain why they predict what they
predict. Compared with deep learning models, the predic-
tion of a rule-based model is easier to explain because its
prediction depends on a short sequence of rules, and each
rule is directly based on the input data. The alternative
rule model [23] explains the behavior of black box models
by selecting the rule with a prediction that is closest to
the black box model based on a pre-verifiable finite rule
set. Some studies have also combined neural networks and
decision trees. Frosst and Hinton [24] utilized the neural
network to train decision trees that mimic the input-output
function discovered by the neural network. Neural-Backed
Decision Trees [25] replace the final layer of a neural net-
work with a differentiable sequence of decisions and a
surrogate loss. However, the aforementioned methods only
have limited explainability, and they are not suitable for
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Fig. 2. The overall structure of our proposed interpretable weighting framework.

tabular data3. Deep Neural Decision Tree (DNDT) [26] is a
tree classification model realized by deep neural networks,
and it is intrinsically interpretable. In addition, DNDT can
sufficiently fit tabular data. However, the structure of DNDT
is fixed, which is inefficient and seriously damages its inter-
pretability. In this study, an NRT with a variable structure
that is trained with gradient descent is proposed to achieve
an effective and interpretable weighting network, which is
suitable for tabular data with inherent interpretability.

3 METHODOLOGIES
This section first introduces the overall configuration of
our proposed interpretable weighting framework. Its three
important modules are then detailed.

3.1 The Proposed Interpretable Weighting Framework
The core element of nearly all existing weighting methods
is either a mathematical function heuristically defined with
prior knowledge or a black box model such as the MLP
network learned using meta data [1], [4], [7]. The input
of both methods is one or no more than three limited
weighting characteristics in existing studies. For a heuris-
tically defined mathematical function, it is usually simple
and has strong interpretability. However, its performance is
inferior to the black box model because it heavily relies on
prior knowledge or assumptions. The black box model is
generally learned via meta-learning based on an additional
meta dataset. However, its interpretability is poor.

Inspired by the strong interpretability of the decision
tree and the competitive performance of the pure data-
driven mode of meta-learning [7], an interpretable weight-
ing framework is constructed as shown in Fig. 2. Our
framework consists of four main parts, namely, the back-
bone classifier network, weighting characteristic extraction
module, NRT-based weighting network, and meta-learning
optimization, which optimizes the entire parameters of both
the classifier network and the NRT.

Our interpretable weighting framework differs from ex-
isting weighting methods. First, the primary goal of our
framework is to acquire the weighting mechanism in deep
learning whereas other weighting methods are mainly con-
cerned with model performance. Undoubtedly, a thorough
understanding of the weighting mechanism can facilitate
the improvement of model performance. Second, the core

3. The input of the weighting network in our proposed interpretable
weighting framework is the weighting characteristics of samples which
are tabular data.

weighting network of our framework is an interpretable
model, whereas those of existing meta-learning-based meth-
ods are nearly inexplicable as they adopt the black box
model, such as MLP, as the weighting network. Third, no
prior knowledge or inspiration is required in our frame-
work, whereas implicit or explicit assumptions are needed
by most mathematical weighting functions. In addition,
more weighting characteristics are extracted and input into
our weighting network which can contribute to a more
effective weighting function, while existing methods only
consider one or part of them.

The next three subsections will introduce the weighting
characteristic extraction, the NRT-based weighting network,
and the entire training with meta-learning.

3.2 Weighting Characteristic Extraction
This module aims to extract quantifiable characteristics of
samples in each training iteration as a means of suffi-
ciently determining the weight of each training sample.
Then, the weighting network assigns weights to samples
according to these extracted characteristics. First, the char-
acteristics employed in the core weighting functions in pre-
vious studies are inherited in this study. Six characteristics
(ζ·,1, ζ·,2, · · · , ζ·,6) are considered and extracted first, which
can be described as follows.

(1) Loss (ζ·,1) is the most widely used characteristic
in existing weighting strategies [4], [7], [56]. For example,
SPL [4] and SuperLoss [56] decrease the weights of samples
with large losses, which behave well on noisy datasets,
while Focal Loss [1] assigns high weights to these samples.

(2) Margin (ζ·,2) refers to the distance from the sample to
the classification boundary, and it is usually used to measure
the difficulty of samples [16]. It can be calculated by

ζi,2 = f(xi)yi
− maxj ̸=yi

(f(xi)j), (1)

where f(xi) and yi are the output of the classifier after
Softmax and the label of sample xi, respectively.

(3) Gradient norm (ζ·,3) of f(xi) is another commonly
used weighting characteristic [52]. As the Cross-Entropy
(CE) loss is adopted in our framework, it is calculated by

ζi,3 = ||yi − f(xi)||2, (2)

where yi is the one-hot label vector of sample xi.
(4) Information entropy (ζ·,4) of f(xi) is used to measure

the uncertainty of training samples [27]. Its calculation is

ζi,4 = −
C∑

j=1

f(xi)j log(f(xi)j), (3)
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where C is the number of categories.
(5) Category proportion (ζ·,7) is commonly used to

handle imbalanced category distribution [5], [6]. It can be
calculated by

ζi,7 = Nyi
/N, (4)

where Nyi
and N are the numbers of samples in category yi

and in the entire training set, respectively.
(6) Average loss of each category (ζ·,6) is another

category-level weighting characteristic used to indicate the
average learning difficulty of a category. Its calculation is

ζi,6 = ℓ̄yi
, (5)

where ℓ̄yi is the average loss of samples in category yi.
Besides the abovementioned six characteristics, three

characteristics related to the weights of samples in previous
rounds are also employed, including the weight of the last
epoch (ζ·,7), the weight of the last but one epoch (ζ·,8), and
the difference between the weight of the last epoch and the
last but one epoch (ζ·,9).

To further enhance the performance of our framework,
the sequence extensions of the first six characteristics can
also be considered4. Specifically, we can integrate the dis-
crepancy between the values of each characteristic from the
previous iteration to the current iteration. Our employed
NRT to be introduced in the next subsection can auto-
matically perform the characteristic selection. Therefore,
irrelevant or redundant characteristics in the input can be
discarded during the tree training.

3.3 NRT-Based Weighting Network
Due to the superiority in interpretability, the decision tree is
the primary choice for our weighting network. DNDT [26]
offers a way to train a tree model with stochastic gradient
descent (SGD) for tabular input data. However, three defects
arise when DNDT is directly utilized in our framework.
First, DNDT is a classification tree, but our weighting mod-
ule requires a regression model. Second, the structure of
DNDT is fixed during training, which equals to a perfect
k-ary tree. The fixed structure creates numerous redundant
nodes within DNDT and seriously impairs its interpretabil-
ity. Third, the number of cut points for each characteristic
is manually determined, which is obviously unreasonable
and inefficient. Aiming to construct a more effective tree
model for our weighting module, an NRT with a variable
structure is proposed, in which the number of cut points of
each characteristic is learned by the model.

Following DNDT, NRT still replaces the hard binning
employed in conventional decision trees with a soft binning
function π(·), which is a one-layer neural network with
Softmax as its activation function.

π
(
ζi,j

)
= Softmax

[(
wζi,j + b

)
/τ

]
, (6)

where ζi,j refers to the j-th weighting characteristic of
sample xi which is a scalar; w = [1, 2, · · · , aj + 1], where
aj is the number of cut points of ζ·,j ; b is a trainable vector
constructed as b = [0,−βj,1,−βj,1−βj,2, · · · ,−βj,1−βj,2−
· · · − βj,aj

], where βj,1 to βj,aj
are aj cut points of ζ·,j with

4. The sequence extension is not applied for category proportion, as
it is fixed for each sample during the training procedure.

Algorithm 1: Learning of NRT

Input: weighting characteristics ζ·,j |
Q
j=1 for training

samples, maximum number of cut points c,
thresholds ε+ and ε−, maximum iterations T ,
record iterations Tr , temperature τ .

Output: Learned parameters of NRT Ω.
1 Initialize Ω(1), βj,1,1|Qj=1, and aj,1|Qj=1 = 1;
2 for t = 1 to T do
3 Bin each weighting characteristic ζ·,j by Eq. (6);
4 Calculate all possible leaf nodes by Eq. (7);
5 Calculate V(ζ(t);Ω(t)) of the input samples;
6 Record the values of βj,k,t|

aj,t

k=1, j = 1, · · · , Q;
7 if t%Tr == 0 then
8 Calculate sj,k,t|

aj,t

k=1 & dj,k,t|
aj,t−1
k=1 , j = 1,· · ·,Q

by Eqs. (8) and (10);
9 Calculate the numbers of samples between all

adjacent activated cut points
n̂j,k,t|

aj,t−1
k=1 , j = 1,· · ·,Q;

10 Remove the recorded values of
βj,k,p|

p=t,k=aj,p,j=Q
p=t−Tr,k=1,j=1;

11 for j = 1 to Q do
12 if maxaj,t

k=1sj,k,t < ε+ & aj,t < c then
13 activate and initialize

βj,aj,t+1 & aj,t = aj,t + 1;
14 end
15 for k = 1 to aj,t − 1 do
16 if dj,k,t < ε− & aj,t > 0 then
17 deactivate βj,k,t & aj,t=aj,t − 1;
18 end
19 if n̂j,k,t == 0 & aj,t > 0 then
20 deactivate βj,k,t & aj,t=aj,t − 1;
21 end
22 end
23 end
24 end
25 Update Ω(t+1) &βj,k,t+1|

aj,t+1=aj,t

k=1 , j=1,· · · , Q;
26 end

the constraint that βj,1 < βj,2 < · · · < βj,aj
; and τ is a tem-

perature factor. As τ → 0, then π(ζi,j) tends to be a one-hot
vector. For example, if the loss characteristic ζ·,1 is divided
into three intervals and the two cut points are denoted as
β1,1 and β1,2, then the one-hot vector π(ζi,1) = [1, 0, 0]
implies that ζi,1 < β1,1.

After binning each characteristic, the Kronecker product
is calculated to determine all final nodes of the tree:

z = π
(
ζ·,1

)
⊗ π

(
ζ·,2

)
⊗ · · · ⊗ π

(
ζ·,Q

)
, (7)

where Q refers to the number of weighting characteristics.
zi ∈ Rd in z is an approximated one-hot vector, which is
the index of the leaf node where ζi arrives. d is the number
of all possible leaf nodes. The weights corresponding to all
leaf nodes are a trainable vector with a size of d× 1. Finally,
the weights of the input samples V(ζ;Ω) are obtained by
multiplying z and the trainable weight vector, where Ω
refers to the parameters of the weighting network.

As opposed to the fixed structure of DNDT, the structure
of NRT is variable as it adopts both the growth and the
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pruning operations during training, which will be stated in
the next two subsections. Thus, the number of activated cut
points for each characteristic is dynamically determined by
the model. Moreover, as the weights have no gold-standard
values, the activating and deactivating of cut points for each
characteristic is determined by the behavior of the activated
cut points of this characteristic.

3.3.1 Growth of the Tree
The growth of the tree refers to the activation of new
cut points for the weighting characteristics. Given that the
values of all activated cut points vary during the training
process in NRT, we believe that the model has learned the
reasonable values of the existing activated cut points when
their values are stable and then new cut points will be
activated to achieve the growth of the tree. Let aj,t be the
number of activated cut points of ζ·,j at the t-th iteration.
sj,k,t is the moving scope of the k-th cut point of ζ·,j during
the (t− Tr)-th iteration to the t-th iteration, which is

sj,k,t = maxtp=t−Tr
(βj,k,p)− mint

p=t−Tr
(βj,k,p), (8)

where Tr is the number of the record iterations. For ζ·,j , if

maxaj,t

k=1(sj,k,t) < ε+, (9)

indicating that the variation magnitudes for all activated cut
points of characteristic ζ·,j during Tr iterations are smaller
than ε+, then βj,aj,t+1 will be activated, and aj,t increases
by one. In the above formula, ε+ is the activating threshold.

3.3.2 Pruning of the Tree
The pruning of the tree refers to the deactivation of the
activated cut points for the weighting characteristics. There
are two occasions that the pruning occurs. The first is that
when two adjacent cut points are too close, that is,

dj,k,t = βj,k+1,t − βj,k,t < ε−, (10)

then βj,k,t will be deactivated to alleviate overfitting, and
aj,t decreases by one. ε− is the deactivating threshold.

The second occasion is when no samples exist between
two adjacent cut points, that is,

ζ·,j /∈ (βj,k,t, βj,k+1,t) . (11)

The two cut points will then be merged to reduce the invalid
nodes of the tree. Specifically, βj,k,t will be deactivated. The
reason why we choose to deactivate the smaller cut point is
that the subsequently activated cut points tend to be larger.
As a result, the preceding activated cut points primarily
accomplish the segmentation of characteristic ranges with
relatively smaller values. By deactivating the smaller cut
point, the newly activated cut point can more effectively
partition the characteristic within its larger value range.
Furthermore, our empirical findings demonstrate that de-
activating βj,k,t leads to better performance compared to
deactivating βj,k+1,t. When aj,t = 1, the two endpoints
of ζ·,j will be treated as cut points to decide whether to
deactivate the remaining cut point.

As the number of cut points for each characteristic can
be decreased to zero, NRT naturally has the ability to filter
irrelevant or redundant characteristics. The learning algo-
rithm of NRT is shown in Algorithm 1. Although NRT is not
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Fig. 3. An example of a regression tree obtained from our framework.

concerned with the order of layers in which the weighting
characteristics are located during training, the information
gain can be used to determine the hierarchical order of the
weighting characteristics like conventional decision trees.
In calculating the information gain, the weights are clus-
tered using unsupervised clustering algorithms, such as
k-means [28], and the category labels after clustering are
adopted as the labels of the weights. Notably, the clustering
algorithm is only used when visualizing the decision trees
and does not affect the performance of the model. Fig. 3
shows an example of a regression tree obtained from our
framework, in which information gain is utilized to deter-
mine the hierarchical order of weighting characteristics.

3.4 Training with Meta-Learning

The training dataset is denoted as Dtrain = {xi,yi}Ni=1,
where xi denotes the i-th sample’s feature, and yi is the
label vector of xi over C categories. N refers to the number
of samples in the training set. f(x;θ) denotes the classifier
network, which is parameterized by θ. The sample weight-
ing network is denoted as V(ζ;Ω), which is an NRT in
our framework. Assume that we have a small amount of
unbiased meta data Dmeta = {xmeta

i ,ymeta
i }Mi=1. Our learning

problem can be formulated as the following bi-level opti-
mization problem:

min
Ω

M∑
j=1

ℓ
(
ymeta
j , f

(
xmeta
j ;θ∗ (Ω)

))
,

s.t. θ∗(Ω) = argmin
θ

N∑
i=1

V (ζi;Ω) ℓ (yi, f (xi;θ)) .

(12)

Notably, even if meta data are lacking, they can be
compiled by meaningful samples from training data [29].
The problem in Eq. (12) is generally difficult to solve, and an
online learning strategy inspired by Model-agnostic meta-
learning [30] is adopted to alternatively update θ and Ω
during training. Specifically, θ and Ω are updated using a
single optimization loop, as shown in Fig. 2.

First, Ω is treated as the to-be-updated parameters, and
the parameters θ of the updated classifier are formulated.
SGD is used to optimize the training loss. Specifically, in
each training iteration, a mini-batch of training samples
{xi,yi}ni=1 is sampled, where n is the size of the mini-batch.
Then, the updating equation of θ can be formulated on a
mini-batch of training data as follows:

θ̂
(t)
(Ω) = θ(t) − η1

1

n

n∑
i=1

V (ζi;Ω)∇θℓ
train
i (θ)

∣∣∣∣∣
θ(t)

, (13)
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Algorithm 2: Meta Training of Our Interpretable
Weighting Framework

Input: Training data Dtrain, meta data Dmeta, batch
size n, meta batch size m, maximum
iterations T , step sizes η1 and η2.

Output: Learned parameters θ and Ω.
1 Initialize θ(1) and Ω(1);
2 for t = 1 to T do
3 Sample {xi,yi}

n
i=1 from Dtrain;

4 Sample {xmeta
i ,ymeta

i }mi=1 form Dmeta;

5 Formulate θ̂
(t)
(Ω) by Eq. (13);

6 Execute steps 3 to 25 in Algorithm 1, in which
Ω(t+1) is updated by Eq. (14);

7 Update θ(t+1) by Eq. (15);
8 end

where η1 is the step size, and ℓtrain
i refers to the loss of xi in

the mini-batch of training data.
After receiving the feedback from the classifier network,

Ω can be updated on a mini-batch of meta data as follows:

Ω(t+1) = Ω(t) − η2
1

m

m∑
i=1

∇Ωℓ
meta
i

(
θ̂
(t)
(Ω)

)∣∣∣∣∣
Ω(t)

, (14)

where m and η2 are the mini-batch size of meta data and
the step size, respectively. ℓmeta

i refers to the loss of xi in the
mini-batch of meta data. Then, by fixing the parameters of
NRT as Ω(t+1), the parameters of the classifier network are
finally updated with the obtained sample weights.

θ(t+1) = θ(t) − η1
1

n

n∑
i=1

V
(
ζi;Ω

(t+1)
)
∇θℓ

train
i (θ)

∣∣∣∣∣
θ(t)

. (15)

The meta-learning algorithm of our interpretable weighting
framework is displayed in Algorithm 2.

In our experiments, MLP is also adopted as the weight-
ing network in our framework. An analysis of the results of
MLP and NRT, presented in Section 4.1, indicates that using
NRT as the weighting network can achieve comparable or
even better performance compared with using MLP.

4 EXPERIMENTS

Our experiments consist of three parts. In the first
part (Section 4.1), the weights generated by our inter-
pretable weighting framework are verified to be good.
The second part (Sections 4.2, 4.3, and 4.4) reveals
the obtained weighting mechanisms, including the im-
portance of the weighting characteristics, undiscovered
prior modes, and specific weighting rules obtained from
NRT. The third part (Sections 4.5 and 4.6) conducts ab-
lation studies and calculates the time complexity for
our proposed interpretable weighting framework. All ex-
perimental runs are repeated five times with different
seeds. Our code is available at https://github.com/AI-
Mathematical/Interpretable-weighting-framework.

4.1 Evaluation for Generated Weights

Three typical learning scenarios, namely noisy label, imbal-
ance, and large corpus, are considered.

4.1.1 Noisy Label Learning
Two settings of corrupted labels following Shu et al. [7]
are adopted, namely uniform and pair-flip noise labels.
CIFAR-10 and CIFAR-100 [31] are employed as they are
popularly used for the evaluation of noisy labels [32], [33].
The construction of meta data also follows Shu et al. [7],
in which 1,000 images with clean labels in the valida-
tion set are selected as the meta data. Wide ResNet-28-10
(WRN-28-10) [34] and ResNet-32 [35] are adopted as the
classifiers for the uniform and pair-flip noise, respectively.
The comparison methods include the following: Baseline,
which trains the backbone network with CE loss; the robust
learning methods, including SPL [4], Focal Loss [1], Co-
teaching [32], Dimensionality-Driven Learning (D2L) [33],
and Active Passive Loss (APL) [36], Re-weighted CE Loss
(R-CE) [53], Learning Optimal sample Weights (LOW) [52],
and SuperLoss [56]; and meta-learning-based methods, in-
cluding MentorNet [9], Learning to Re-Weight (L2RW) [8],
Gold Loss Correction (GLC) [37], Meta-weight-net [7], and
Warped Probabilistic Inference (WarPI) [51]. To demonstrate
the effectiveness of NRT, we also compare the performance
of our framework with MLP as the weighting network. In

TABLE 1
Test accuracy (%) of ResNet-32 on CIFAR-10 and CIFAR-100 with varying noise rates under flip noise. The best and the second best results are

highlighted in bold and underlined. Mean accuracy (±std) over 5 repetitions is reported.

Dataset Noisy CIFAR-10 Noisy CIFAR-100

Noise rate 0 0.2 0.4 0 0.2 0.4
Baseline 92.89±0.32 76.83±2.30 70.77±2.31 70.50±0.12 50.86±0.27 43.01±1.16
SPL [4] 88.52±0.21 87.03±0.34 81.63±0.52 67.55±0.27 63.63±0.30 53.51±0.53
Focal Loss [1] 93.03±0.16 86.45±0.19 80.45±0.97 70.02±0.53 61.87±0.30 54.13±0.40
Co-teaching [32] 89.87±0.10 82.83±0.85 75.41±0.21 63.31±0.05 54.13±0.55 44.85±0.81
D2L [33] 92.02±0.14 87.66±0.40 83.89±0.46 68.11±0.26 63.48±0.53 51.83±0.33
APL [36] 92.36±0.21 87.23±0.27 80.08±0.12 69.13±0.11 59.37±0.43 52.98±0.70
MentorNet [9] 92.13±0.30 86.36±0.31 81.76±0.28 70.24±0.21 61.97±0.47 52.66±0.56
L2RW [8] 89.25±0.37 87.86±0.36 85.66±0.51 64.11±1.09 57.47±1.16 50.98±1.55
GLC [37] 91.02±0.20 89.58±0.33 88.92±0.24 65.42±0.23 63.07±0.53 62.22±0.62
Meta-weight-net [7] 92.07±0.15 90.33±0.61 87.54±0.23 70.11±0.33 64.22±0.28 58.64±0.47
R-CE [53] 90.44±0.25 88.25±0.52 83.86±0.34 65.78±0.27 63.48±0.46 54.65±0.33
LOW [52] 92.13±0.37 72.77±0.71 68.35±0.35 70.09±0.42 50.45±0.47 42.19±0.28
SuperLoss [56] 92.37±0.35 89.19±0.71 84.23±0.46 70.12±0.53 63.35±0.28 54.87±0.66
WarPI [51] 92.23±0.67 90.93±0.34 89.87±0.29 70.15±0.26 65.52±0.31 62.37±0.43
Ours (MLP) 93.56±0.32 91.47±0.24 90.36±0.23 71.64±0.35 66.36±0.33 62.73±0.20
Ours (NRT w/o pruning) 93.79±0.25 92.14±0.18 90.64±0.20 71.38±0.21 66.78±0.17 63.14±0.34
Ours (NRT) 93.91±0.23 91.91±0.19 90.88±0.14 71.34±0.25 67.43±0.26 63.49±0.27

https://github.com/AI-Mathematical/Explainable-weighting-framework
https://github.com/AI-Mathematical/Explainable-weighting-framework
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TABLE 2
Test accuracy (%) of WRN-28-10 on CIFAR-10 and CIFAR-100 with varying noise rates under uniform noise.

Dataset Noisy CIFAR-10 Noisy CIFAR-100

Noise rate 0 0.4 0.6 0 0.4 0.6
Baseline 95.60±0.22 68.07±1.23 53.12±3.03 79.95±1.26 51.11±0.42 30.92±0.33
SPL [4] 90.81±0.34 86.41±0.29 53.10±1.78 59.79±0.46 46.31±2.45 19.08±0.57
Focal Loss [1] 95.70±0.15 75.96±1.31 51.87±1.19 81.04±0.24 51.19±0.46 27.70±3.77
Co-teaching [32] 88.67±0.25 74.81±0.34 73.06±0.25 61.80±0.25 46.20±0.15 35.67±1.25
D2L [33] 94.64±0.33 85.60±0.13 68.02±0.41 66.17±1.42 52.10±0.97 41.11±0.30
APL [36] 94.12±0.23 86.49±0.14 79.22±0.67 77.25±0.41 57.84±0.34 49.13±0.26
MentorNet [9] 94.35±0.42 87.33±0.22 82.80±1.35 73.26±1.23 61.39±3.99 36.87±1.47
L2RW [8] 92.38±0.10 86.92±0.19 82.24±0.36 72.99±0.58 60.79±0.91 48.15±0.34
GLC [37] 94.30±0.19 88.28±0.03 83.49±0.24 73.75±0.51 61.31±0.22 50.81±1.00
Meta-weight-net [7] 94.52±0.25 89.27±0.28 84.07±0.33 78.76±0.24 67.73±0.26 58.75±0.11
R-CE [53] 91.04±0.61 85.74±0.24 75.56±0.29 72.87±0.71 56.23±0.75 41.05±0.61
LOW [52] 94.24±0.27 67.25±0.48 51.46±0.53 74.87±0.25 50.25±0.66 36.32±0.37
SuperLoss [56] 94.55±0.55 86.43±0.17 79.42±0.23 78.89±0.44 55.64±0.71 41.34±0.46
WarPI [51] 94.67±0.44 89.73±0.61 84.44±0.69 78.68±0.52 67.90±0.43 59.04±0.19
Ours (MLP) 96.49±0.20 90.68±0.18 85.25±0.28 81.45±0.24 69.02±0.13 60.87±0.23
Ours (NRT w/o pruning) 96.31±0.25 90.65±0.19 85.73±0.24 81.72±0.18 69.56±0.21 61.51±0.18
Ours (NRT) 96.33±0.19 91.13±0.22 86.06±0.41 81.95±0.23 69.99±0.11 61.32±0.19

TABLE 3
Test accuracy (%) of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100.

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100

Imbalance factor 10 20 50 100 200 10 20 50 100 200
Baseline 86.39 82.23 74.81 70.36 65.68 55.71 51.14 43.85 38.32 34.84
Focal Loss [1] 86.66 82.76 76.71 70.38 65.29 55.78 51.95 44.32 38.41 35.62
Class-Balanced [5] 87.49 84.36 79.27 74.57 68.89 57.99 52.59 45.32 39.60 36.23
Class-Balanced Fine-tuning [38] 83.17 83.22 77.44 71.34 66.24 57.57 52.30 46.22 41.50 38.66
Class-Balanced Focal [1] 87.48 83.78 79.22 74.57 68.15 57.89 52.69 45.21 39.71 36.25
LDAM [39] 87.32 73.89 78.83 73.55 66.75 57.29 51.59 46.16 40.60 38.45
L2RW [8] 85.19 82.12 78.93 74.16 66.51 53.73 51.64 44.44 40.23 33.38
Meta-weight-net [7] 87.84 84.94 80.06 75.21 68.91 58.46 54.37 46.74 42.09 37.91
R-CE [53] 86.55 82.23 75.66 70.13 63.98 55.35 49.88 43.54 38.05 34.21
LOW [52] 87.55 83.46 76.42 72.78 67.23 55.42 51.93 44.64 38.88 35.21
SuperLoss [56] 85.98 82.45 75.23 70.62 64.75 55.28 50.99 42.74 38.46 34.56
Probe-and-allocate [50] 85.12 82.65 78.71 73.52 65.91 55.37 51.89 43.72 40.76 37.17
Ours (MLP) 89.11 86.37 81.91 77.33 70.99 59.35 55.12 48.06 42.97 39.25
Ours (NRT w/o pruning) 89.02 86.52 81.35 76.95 71.93 59.71 55.43 47.89 43.17 39.44
Ours (NRT) 89.53 86.87 82.83 77.71 72.06 60.14 55.71 48.54 43.58 39.71

addition, we compare the performance of NRT with and
without pruning. The training and testing configurations
used in Meta-weight-net [7] are followed. Regarding the
parameters in NRT, ε+ and Tr are fixed as 0.1 and 20
in all scenarios. ε− and c are searched in {0.1, 0.2, 0.3}
and {2, 3, 4}, respectively. The temperature τ is fixed as
0.1. The comparative results are shown in Tables 1 and
2. Considering our configuration is consistent with Shu et
al. [7], the results of the competing methods reported in
the Meta-weight-net paper are directly presented (some are
from their original papers).

Our interpretable weighting framework with either MLP
or NRT as the weighting network achieves the best per-
formance among the compared methods under all noisy
settings. The superiority of our method over Meta-weight-
net [7] indicates its effectiveness in weighting the sam-
ples when considering multiple weighting characteristics.
In addition, taking NRT as the weighting network achieves
comparable or even better performance than MLP. Thus, al-
though our framework is mainly designed for interpretabil-
ity, it also achieves commendable performance outcomes.

4.1.2 Imbalance Learning
The long-tailed CIFAR dataset compiled by Cui et al. [5]
is employed. ResNet-32 [35] is utilized as the backbone
network. Several robust weighting methods including meta-
learning-based methods are compared: Focal Loss [1],

Class-Balanced Loss [5], Label-Distribution-Aware Margin
(LDAM) Loss [39], LDAM-Standard Re-Weighting (LDAM-
DRW) [39], L2RW [8], R-CE [53], LOW [52], SuperLoss [56],
Probe and allocate [50], and Meta-weight-net [7]. The ex-
perimental configurations including the settings of NRT are
the same as those in the previous subsection. Ten images
per category in the validation set are selected as the meta
data [7]. The results are shown in Table 3. Our framework
still obtains the best performance among the compared
weighting methods. In addition, NRT achieves comparable
or even better performance than MLP.

4.1.3 Learning for Large Corpus
For fair comparisons, we adopt ResNet-50 [35] as the back-
bone network for iNaturalist 2018 (iNat 2018) [40] and pre-
train it on the ImageNet [41] and iNat 2017 [42] datasets. The
experimental configuration and compared methods follow
Li et al. [60]. The hyperparameter settings for NRT are the
same as those in the previous subsection. Table 4 presents
the experimental results on iNat 2018. Our interpretable
weighting framework yields the best performance among
the competing methods, verifying that our framework can
also achieve valuable weights in this scenario.

4.2 Importance of Weighting Characteristics
The interpretability of our framework helps us to analyze
the importance of each weighting characteristic during the
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TABLE 4
Test top-1 and Top-5 accuracy (%) on iNaturalist (iNat) 2018.

Dataset iNat 2018

Method Top-1 Top-5
CE 65.76 84.15
Class-Balanced [5] 66.43 84.17
Class-Balanced Focal [1] 61.12 81.03
BBN [44] 66.29 -
LDAM [39] 64.58 83.52
LDAM-DRW [39] 68.00 85.18
Meta-weight-net [7] 67.95 85.32
Meta-class-weight [45] 67.55 86.17
MetaSAug [60] 68.75 -
Ours (MLP) 70.15 86.94
Ours (NRT) 70.33 87.45

training process. Following the evaluation approach used
for conventional decision trees, the information gain is
adopted to measure the importance of the nine weighting
characteristics every five epochs. The results are shown in
Fig. 4. Under the noisy and standard scenarios, the char-
acteristic of category proportion (ζ·,5) is filtered out as all
categories have equal proportions. Three weighting char-
acteristics, including loss (ζ·,1), margin (ζ·,2), and gradient
norm (ζ·,3), are more important than others on noisy data,
as shown in Fig. 4(a). Besides, the weights in the previous
rounds (ζ·,7 and ζ·,9) are valid. For imbalanced data, margin
(ζ·,2), gradient norm (ζ·,3), and information entropy (ζ·,4)
are more effective, as shown in Fig. 4(b). Similar to the
finding regarding noisy data, the role of weights in the
previous rounds (ζ·,7 and ζ·,8) is also apparent, indicating
that the variation of weight is generally not mutated. On
standard data, margin (ζ·,2), gradient norm (ζ·,3), and infor-
mation entropy (ζ·,4) are of greater importance than others,
as shown in Fig. 4(c).

Four of the weighting characteristics (i.e., loss, margin,
gradient norm, and information entropy) are commonly uti-
lized to measure the learning difficulty of samples. We an-
alyze their effectiveness in noisy and imbalanced scenarios.
Three of them (i.e., loss, margin, and gradient norm) have
significant differences between noisy and clean samples, as
shown in Fig. 5. Noisy samples have a larger average loss,
a smaller average margin, and a larger average gradient
norm, indicating that noisy samples are harder to learn.
Consequently, the three characteristics can be adopted as
the difficulty measures on noisy data. As for imbalanced
data, all four measures have distinct differences between
samples in the head and tail categories, as shown in Fig. 6.
The samples in the tail categories have a larger average loss,
a smaller average margin, a larger average gradient norm,
and a larger average information entropy, indicating that
samples in the tail categories are harder to learn on average.
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Fig. 4. (a): The importance of the eight characteristics on CIFAR-10 with
40% flip noise; (b): The importance of the nine characteristics on CIFAR-
10 with an imbalance factor of 100; (c): The importance of the eight
characteristics on standard CIFAR-10.

4.3 Undiscovered Prior Modes of the Learned Weights

Existing studies generally assume that the prior mode of
sample weights is either easy-first (e.g., SPL) or hard-first
(e.g., Focal Loss) based on particular difficulty measures.
Our framework adopts a data-driven path and does not
assume any prior mode. This subsection explores the prior
modes contained in the weights learned by our framework.

4.3.1 Single Prior Modes
A single prior mode means that all samples in the training
set take the same prior pattern. Almost all existing weight-
ing strategies adopt this single way. For example, SPL and
CL are under the easy-first mode throughout training, while
Focal Loss and Class-Balanced Loss belong to the hard-
first mode. Our experiments reveal suitable scenarios for
these two priority modes. Spearman correlation is utilized
to measure the correlation between the weights and the
difficulty measures. These correlations indicate that a good
set of weights on the noisy (imbalanced) data adopts the
easy (hard)-first mode regardless of the employed difficulty
measure. For example, the average Spearman correlation
between the loss/margin/gradient norm and the weight on
the entire noisy data is −0.35/0.46/−0.45, indicating a mod-
erate negative/positive/negative correlation. Figs. 7(a) to (c)
show the correlations between the weights and the three
difficulty measures on the entire noisy data of the optimal
model, in which 300 pieces of data are randomly sampled
from the training data. These schemes all belong to the easy-
first mode, as samples with small losses, large margins, or
small gradient norms are easy to learn in general.

The learned weights of different types of samples under
the noisy and imbalanced scenarios are further analyzed.
Noisy samples have lower average weights than clean ones,
as shown in Figs. 8(a) and (b). Thus, a good set of weights
on noisy data should have larger values on clean samples,
making the model less disturbed by noise. In the imbalanced
classification, the average weights of the last five categories
are higher than those of the first five categories, as shown in
Figs. 8(c) and (d), indicating that a good set of weights on
imbalanced data should have larger values on the samples
in the tail categories. Therefore, we can obtain that the easy-
first mode is more suitable for noisy data and the hard-first
mode performs better on imbalanced data because noisy
samples and samples in tail categories are generally hard
ones, as stated in Section 4.2.

4.3.2 Hybrid Prior Modes
The hybrid prior mode refers to both the easy-first and
the hard-first modes appearing in partial samples in the
training set, while each existing weighting method adopts
the same prior mode for all samples. This novel prior mode
is observed from the weights learned by our framework.
Although the prior mode of the entire noisy data is easy-
first, we find that the prior mode of individual clean (noisy)
samples is hard (easy)-first regardless of the employed
difficulty measure (i.e., loss, margin, and gradient norm).
Thus, different prior modes are adopted by clean and noisy
samples. Alternatively, the hybrid prior mode is applied
to noisy data. Figs. 7(d) and (e) show the prior modes of
individual clean and noisy samples when the loss is used
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Fig. 5. The average loss, margin, gradient norm, and information entropy of clean and noisy samples on CIFAR-10 with 40% uniform noise.
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Fig. 6. The average loss, margin, gradient norm, and information entropy of samples in ten categories on CIFAR-10 with an imbalance factor of 200.
C1 to C10 are from the first head category to the last tail category.

as the difficulty measure. Loss and weight are positively
correlated on the clean samples with a correlation coefficient
of 0.33 and they are negatively correlated on the noisy
samples with a correlation coefficient of −0.61.

4.3.3 Shifting Prior Modes
The novel shifting prior mode can also be observed from the
learned weights. Under this paradigm, the prior mode of
the entire dataset transforms from easy (hard)-first to hard
(easy)-first during the training process, whereas the prior
modes in the previous studies were maintained as easy-first
or hard-first modes during the entire training procedure.
In our experiments involving imbalanced classification, the
prior mode is easy-first in the early training stage, and it
shifts to and maintains hard-first in the later training stage,
as shown in Fig. 9. The loss and the weight are negatively
correlated in the early training stage, that is, the larger
the loss, the smaller the weight, belonging to the easy-
first mode. In the later stage, they are positively correlated,
which belongs to the hard-first mode. The same findings
are also obtained under the other three difficulty measures
(i.e., margin, gradient norm, and information entropy). In
addition, the shifting prior mode does not appear on the
noisy datasets where the prior mode is always easy-first
during the entire training procedure.

We provide an explanation for this phenomenon. Given
that the weighting network is optimized on the meta data,

the small unbiased meta dataset plays a crucial role in guid-
ing the weighting network to assign appropriate weights
to samples. Additionally, for deep learning models, there
exists a tendency to prioritize the learning of easier samples
initially, gradually progressing towards more challenging
samples as the training progresses [49]. Consequently, dur-
ing the early training stage, the weighting network assigns
higher weights to easy samples. Thus, the easy-first mode
is adopted in both imbalanced and noisy-label learning
scenarios. Once the easy samples have been effectively
learned, the balanced meta data will guide the weighting
network to assign high weights on samples belonging to
tail categories in imbalanced learning scenarios, which are
generally hard ones. This facilitates the model to perform
well on balanced datasets. Thus, the prior mode of hard-
first is adopted in the medium and later training stages for
imbalanced learning. In the case of noisy data, the clean
meta data will always guide the weighting network to
assign high weights to clean samples, which are typically
easier than noisy samples, enabling the model to perform
well on clean datasets. Therefore, the easy-first mode is
maintained on noisy datasets.

4.4 Weighting Rules Derived from the Trained NRT

A large number of weighting rules can be obtained from the
trained NRT, which reflects how the combination of weight-
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Fig. 7. (a)-(c): Prior modes on CIFAR-10 with 20% flip noise when loss, margin, and gradient norm are adopted as the difficulty measure; (d) and
(e): Prior modes of individual clean (d) and noisy (e) samples on CIFAR-10 with 20% flip noise when the loss is adopted as the difficulty measure.
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Fig. 8. (a) and (b): Weights of noisy and clean samples on CIFAR-10 (a) and CIFAR-100 (b) with 20% flip noise; (c) and (d): Weights of samples in
the first and last five categories on CIFAR-10 (c) and CIFAR-100 (d) with an imbalance factor of 100.
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Fig. 9. Variation of the correlation coefficient between loss and weight
during training on CIFAR-10 with an imbalance factor of 100.

ing characteristics determines the sample weights. As stated
in Section 3.3, NRT is not concerned with the order of layers
in which the weighting characteristics are located during
the training process. As a means of visualizing the decision
trees, the hierarchical order of the weighting characteristics
is constructed using the information gain similar to that of
conventional decision trees. Specifically, the weights are first
clustered into three categories (i.e., low, medium, and high)
using k-means to calculate the information gain. Then, the
weighting characteristic with the highest information gain
is placed in the first layer.

Due to space limitations, we only display the first four
layers of the decision trees obtained at the last iteration
of the four training epochs on noisy CIFAR-10, as shown
in Fig. 10. The importance of weighting rules in decision
trees is measured based on the usage frequency of the rules,
which are shown below the leaf nodes. The most frequently
used weighting rules corresponding to the three levels of
weights are ζ·,7 ≥ 0.50& ζ·,3 < 0.12& ζ·,2 ≥ 0.87 → High,
ζ·,2 ≥ 0.75& ζ·,3 < 0.38& ·,7 < 0.50 → Medium, and
0.31 ≤ ζ·,2 < 0.71& ζ·,3 < 0.16& ζ·,1 < 0.02 → Low.
By analyzing the obtained weighting rules, the following
findings can be obtained:

• Most samples have relatively high weights in the
early training stage and relatively low weights in
the later training stage. As shown in Fig. 11(a), the
weighting rules at the 10-th epoch all correspond to
high or medium-level weights, whereas those at the
180-th epoch all correspond to low-level weights.

• As these rules are from noisy scenarios, they mainly
follow the easy-first mode. Specifically, a large mar-
gin (ζ·,2), a small gradient norm (ζ·,3), or their com-

TABLE 5
Accuracy (%) on imbalanced (with imbalance factors of 20 and 100)

and noisy (with 20% and 40% flip noise) CIFAR-10 with different values
of ε− and c.

ε− 20 100 c 20% 40%

0.1 86.82 77.18 1 91.28 89.63
0.2 86.87 77.62 2 91.76 90.36
0.3 86.41 77.71 3 92.14 90.67
0.4 85.93 76.97 4 91.87 90.88
0.5 85.30 76.03 5 90.66 89.25

bination is associated with relatively high weights.
• The weight in the current epoch is positively relevant

to that in the previous epoch (ζ·,7) of a sample.

4.5 Ablation Studies

As for the hyperparameters in NRT, the maximum number
of the cut points c and the deactivating threshold ε− are
crucial. The larger the value of c is, the wider the tree is. The
larger the value of ε− is, the higher the degree of pruning
is. We investigate how the performance of the proposed
interpretable weighting framework changes with different
c and ε− values. The results are shown in Table 5. The
performance is relatively stable when ε− locates in [0.1, 0.3].
A certain degree of pruning will improve the performance
but excessive pruning will inhibit it. In addition, c is suitable
to be selected in {2, 3, 4}. If its value is quite large, the model
is prone to overfitting, and the CUDA memory will increase.
If its value is quite small, the modeling ability of NRT will
weaken. In our experiments, all of the best results appear in
the case in which c belongs to {2, 3, 4}.

Moreover, ablation studies for the step sizes of the clas-
sifier η1 and the weighting network η2 are undertaken. The
outcomes are depicted in Fig. 11. Based on the findings, the
model attains optimal performance when the step sizes for
the classifier and the weighting network are set to 0.1 and
0.001, respectively.

4.6 Time Complexity

Our algorithm does not increase the training and inference
time complexity compared with other meta-learning meth-
ods, such as Meta-weight-net [7]. Moreover, by adjusting the
update frequency of the weighting network, the training ef-
ficiency can be further improved on the premise of ensuring
performance. In other words, the weighting network (i.e.,
MLP or NRT) does not need to be updated in each iteration
in many cases. We record the time cost on a Linux platform
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Fig. 10. Four decision trees obtained at the 10-th, 40-th, 100-th, and 180-th epochs on CIFAR-10 with 20% flip noise.
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Fig. 11. Ablation studies for the step sizes η1 (a) and η2 (b) in both imbal-
anced (CIFAR-10 with an imbalance factor of 20) and noisy (CIFAR-10
with 40% flip noise) learning scenarios.

with a 24Gb RTX 3090 GPU. When the weighting network is
updated in every iteration, the training of the Meta-weight-
net model consumes 14,820 seconds for 200 epochs on stan-
dard CIFAR-10 data, while the training of our interpretable
weighting framework consumes 15,006 seconds. In the case
of updating the weighting network every 20 iterations, the
training time for our framework is 2,560 seconds, which
is an improvement of 82.94% compared to updating the
weighting network in each iteration.

5 DISCUSSIONS

Our interpretable weighting framework well investigates
weighting mechanisms in a purely data-driven manner, as
well as solving the four questions presented in Section 1.

(i) The first question refers to the effectiveness of each
weighting characteristic. Based on our investigation,
two weighting characteristics, namely margin and
the norm of loss gradient, are generally more impor-
tant in three typical learning scenarios. Besides, the
loss characteristic has relatively high importance in

the noisy scenario. Information entropy is crucial in
imbalanced and standard scenarios. These weighting
characteristics should be given priority in the design
of future weighting schemes.

(ii) Our exploring indicates that a single weighting char-
acteristic can not sufficiently determine the impor-
tance of a training sample as shown in Fig. 12. Mul-
tiple weighting characteristics are involved in our
trained NRT. The weighting rules obtained from our
framework can inspire how the weighting character-
istics should be combined. For example, as shown in
Fig. 10, the margin and the gradient norm character-
istics are important in the noisy scenario. Moreover,
the model tends to assign higher weights to sam-
ples with large margins and small gradient norms.
Therefore, a weighting function that monotonically
increases with respect to the margin and monotoni-
cally decreases with respect to the gradient norm can
be constructed in the noisy scenario.

(iii) The third question refers to the prior mode. Through
analyzing the prior modes for the weights generated
by our interpretable weighting framework, a reliable
conclusion can be driven: both the easy-first and the
hard-first prior modes are reasonable. Nevertheless,
their applied scenarios are different. The easy-first
mode is more suitable for noisy scenes, and the hard-
first one is more suitable for the imbalanced scenario.
Our conclusion is supported by previous studies.
For example, Wu et al. [17] empirically found that
the typical easy-first weighting strategy CL mainly
works on noisy data.

(iv) Besides the easy-first and the hard-first modes, two
more delicate prior modes, namely the hybrid and
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Fig. 12. Four illustrative cases where a single weighting characteristic cannot well indicate the importance of a training sample. There are a total
number of 3 classes and Class1 is the ground truth class of the two samples. (a): The two samples have identical losses yet different other
characteristics (i.e., margin, gradient norm, and information entropy); (b): The two samples have identical margins yet different other characteristics;
(c): The two samples have identical information entropy yet different other characteristics; (d): The two samples have similar gradient norms yet
different other characteristics.
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the shifting modes, are observed. Alternatively, the
prior mode is not necessary to be fixed and single in
training, which answers the fourth question.

It is worth noting that the space complexity of NRT is
relatively high when numerous characteristics are utilized
due to the use of the Kronecker product. Nevertheless, this
issue can be avoided by training a forest with random sub-
space [46] on the basis of sacrificing certain interpretability.

Our framework also demonstrates its versatility in ex-
plaining other training components. We present two exam-
ples here. Firstly, our framework can help investigate the
mechanisms of logit adjustment, a widely utilized technique
that has shown success in various learning scenarios, such
as long-tail learning [57], [58] and implicit semantic data
augmentation [59], [60]. As the adjustment terms for the
logits of samples are also determined by the characteristics
of samples, the weighting network (i.e., NRT) in the frame-
work can be regarded as an adjustment network and the
adjustment terms can be generated. Thus, the mechanisms
of logit adjustment can be investigated through our inter-
pretable framework. Notably, if the logits for all classes are
perturbed, similar to the manner in LA [57], the dimension
of the output layer in NRT needs to be modified. Secondly,
our interpretable weighting framework has the potential to
provide insights into the mechanisms that determine the
weights assigned to different teacher networks in knowl-
edge distillation tasks [48]. However, the input of NRT is
supposed to be modified. Specifically, instead of relying on
the characteristics of samples, the characteristics of each
teacher network should be incorporated. Therefore, it is
worth noting that when our interpretable framework is
applied in other scenarios, the input or the dimension of
the output layer in NRT may need to be modified. Besides,
our interpretable framework has a limitation in that NRT is
primarily well-suited for tabular data. Thus, our framework
mainly well interprets the components that are determined
by tabular data.

6 CONCLUSIONS

In this study, a data-driven approach is adopted to inves-
tigate the weighting mechanism of a good set of sample
weights. To this end, an interpretable weighting framework
is constructed to infer the weights for training samples. It
contains a backbone classifier network and an elaborately
designed NRT as the weighting network. The comparison
of benchmark datasets indicates that the proposed inter-
pretable weighting framework can achieve quite compet-
itive performance. A package of weighting mechanisms
including the important sample characteristics, prior modes,
and combination rules is further revealed from the NRT
learned by our framework. These findings give reasonable
answers to the questions related to the weighting mecha-
nism issue. Weighting strategies with novel prior modes,
such as hybrid prior modes and shifting prior modes, based
on more effective weighting characteristics may be consid-
ered as a future research direction.
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