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Which Samples Should be Learned First:
Easy or Hard?

Xiaoling Zhou and Ou Wu

Abstract—Treating each training sample unequally is prevalent
in many machine learning tasks. Numerous weighting schemes
have been proposed. Some schemes take the easy-first mode,
whereas some others take the hard-first one. Naturally, an
interesting yet realistic question is raised. Given a new learning
task, which samples should be learned first, easy or hard? To
answer this question, both theoretical analysis and experimental
verification are conducted. First, a general objective function
is proposed and the optimal weight can be derived from it,
which reveals the relationship between the difficulty distribution
of the training set and the priority mode. Two novel findings
are subsequently obtained: besides the easy-first and hard-first
modes, there are two other typical modes, namely, medium-
first and two-ends-first; the priority mode may be varied if the
difficulty distribution of the training set changes greatly. Second,
inspired by the findings, a flexible weighting scheme (FlexW)
is proposed for selecting the optimal priority mode when there
is no prior knowledge or theoretical clues. The four priority
modes can be flexibly switched in the proposed solution, thus
suitable for various scenarios. Third, a wide range of experiments
is conducted to verify the effectiveness of our proposed FlexW
and further compare the weighting schemes in different modes
under various learning scenarios. On the basis of these works,
reasonable and comprehensive answers are obtained for the easy-
or-hard question.

Index Terms—Priority mode, learning difficulty, weighting
strategy, easy-first, hard-first, bias-variance trade-off.

I. INTRODUCTION

ANY machine learning models, in particular neural

networks, are sensitive to the weights of training sam-
ples. Treating each training sample unequally can improve
the learning performance of these models [1]-[4]. The cues
and inspirations for the design of the weighting methods are
usually derived from the following two aspects:

o Context-inspired weighting methods. Tasks such as fraud
detection [5] and medical diagnosis [6] are cost-sensitive.
Different samples have unequal importance according
to their gains or costs. Therefore, samples with high
gains/costs should be assigned with high weights.

o Characteristics-inspired weighting methods. Training
samples are different from each other in characteristics,
such as data quality [7]-[9], sample neighbors [10],
margin [11], and category distribution [2], [12], [13].
In some tasks, samples in the minority categories are
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generally more difficult to learn well, so these samples
should be assigned with high weights. In some other
tasks, some labels of samples are of low confidence or
with high noise, so these samples should be assigned with
low weights.

Context-inspired weighting methods are usually defined in a
heuristic manner and are only employed in particular applica-
tions. In contrast, characteristics-inspired weighting strategies
have received increasing attention in recent years due to
their effectiveness and universality. Data characteristics are
related to an intrinsic property of training samples, namely,
learning difficulty. Most related studies split training samples
into easy/hard or easy/medium/hard according to their learning
difficulty [14], [15]. In some schemes, hard samples are
assigned with high weights, which is called the hard-first
mode. For example, Lin et al. [3] proposed Focal loss in
object detection, which significantly improves the detection
performance. In some other schemes, easy samples have higher
weights than hard ones, which is called the easy-first mode.
For example, Kumar et al. [16] proposed Self-paced Learning
(SPL), which sets the weights of hard samples to zero with
a threshold. The threshold is gradually increased to ensure
that more hard samples can participate in the next training
epochs. These two priority modes, namely, easy-first and hard-
first, appear to contradict each other, yet both demonstrate
effectiveness in specific learning tasks. Consequently, a natural
question is raised. Which samples should be learned first
facing a new learning task, easy or hard? Indeed, several
studies have proposed similar concerns. For example, Wang
et al. [15] raised a similar question about “easy-first versus
hard-first” under the context of Curriculum Learning (CL).

To answer the question (called the “easy-or-hard” question
for brevity), partial observations and conclusions in existing
studies are summarized, and preliminary answers are obtained,
which are as follows:

o The weights for noisy samples should be decreased,
making the model less disturbed by noise [17], [18]. In
other words, the easy-first mode will be more effective
in training data with heavy noise.

« If easy samples are excessive, the hard-first mode is pre-
ferred. For example, in the application of Focal loss [3],
hard samples are assigned with high weights in object
detection tasks. In imbalanced learning, head categories
(i.e., categories with a relatively large proportion of
samples) are relatively easy in general, and thus easy
samples are excessive when a high imbalance exists [19].

e According to the human learning mechanism, easy sam-
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TABLE I
SEVERAL TYPICAL WEIGHTING METHODS.
Method Weighting scheme Domain Scenario Measure Priority mode | Granularity
Noun Phrase Coreference
SPL- . . _«n . n § NLP Image Classification . . ’
Binary [16] ming,e[o,1)n L(w, A1) =70 wily = N30 w; v Object Localization Loss Easy-first Sample
(Standard)
. , , Multimedia Event Detection .
SPL-Log [20] ming e £(w, A1) = S0y wili + S0, (Gwi — €¥1/log€) € =1 A cv (Standard) Loss Basy-first Sample
Multimedia Event Detection
SPLD [21] minw, v E(w, v; X, 7) = 30 oL (i, f (x5, W) = ATy v — 7l vll2,1, st v € [0, 1] cv Action Recognition Loss Easy-first Sample
(Standard)
Dense Object Detection . . -
Focal loss [3] L(y) = —(1—p)7log(p) Ccv (Imbjalanced) Predicted probability Hard-first Sample
QFL [22] L(o,B) = Z{\:l (— lyi — o? (1 — yi)log(1 — &) +y: log(c))) Ccv Dense( Object Del)ecllon Predicted probability Hard-first Sample
ComAl _ o om Handwritten Digit Recognition N "
AdaBoost [23] w; = w]™ exp (am) Ccv (Standard) Error Hard-first Sample
- Image Classification Empirical category
G-RW [24] we = (1/re)? | 5, (1/ry,)” cv Ol()jecl Detection froquency Hard-first Category
- Language Modeling
Curr?(.ulum w; < wj, Yy (z:) < v (z5) NLP Shape Recognition Prior knowledge Easy-first Sample
Learning [25] 3 J cv
(Standard)
Self-paced . _<xn . Matrix Factorization, .
Curriculum Wity vefo. B(W, v, A, ¥) T Zé:\lpqu (¥ir9 (i W) + (Vi ) Ccv Multimedia Event Detection C:nr:%::sm Easy-first Sample
Learning [26] stv (Standard)
Balanced w (w5,t) = [1 — o (diff (2;) - e”") Instance Segmentation, Human response
Curriculum i . ok cv Object Detection time and Mixed mode Sample
Learning [27) —(1 — a) - (imgVisited (z;) - e~ 7")] (Standard) Diversity
GAIRAT [11] w; = (14 tanh (A +5 x (1 =2 x k(2i,5:) /K))) /2 cv Im‘"‘gfsgjjj‘r?jja“"“ Margin Hard-first Sample
b .,Cnljzg 2] we=(1-p8)/(1-p8Ne),B€0,1) (&% Image Classification Category proportion Hard-first Category
Truncated _ [0, llcE >0Ay; =1 Data Recommendation § .
loss [17] L = { ZFE, otherwise mining (Noisy) Loss Easy-first Mixture
Data Recommendation . -
R-CE [17] £ = —pPlog(p) mining (Noisy) Predicted probability Easy-first Sample
P Image Classification . -
LOW [19] R(w; A) = —w 'V, + AJw — 1| cv fmame D Gradient norm Hard-first Sample
NLP Image Classification
JTT [28] L(LE)= ()uw Z(J,“%)EE I+ Z(_,,,] ;) EE l‘,,) cv Sentiment Analysis Loss Hard-first Partial data
(Standard)
. Object Detection
SuperLoss [18] L(li,03) = (li — ) wi + A (log url)2 CV Image Retrieval Loss Easy-first Sample
(Noisy)
Cyber Intrusion Detection . .
g . (1-pij) X : - . Predicted probability ) N
DWB [13] Lowe = — 5 2iey X5 w; iz log (pij) — pij (1 — pij) Ccv Skin (If;sl;(a)lr;i:{g)noms and Category proportion Hard-first Sample

* SPL means Self-paced Learning. SPLD means Self-paced Learning with Diversity. QFL means Quality Focal loss. G-RW means Generalized Re
-weight. GAIRAT means Geometry-aware Instance-reweighted Adversarial Training. R-CE means Reweighted Cross-Entropy loss. LOW means
Learning Optimal samples Weights. JTT means Just Train Twice. DWB means Dynamically Weighted Balanced loss.

ples should be learned first.

Theoretical analysis based on the bias-variance trade-off

The above answers are far from satisfactory for the “easy-
or-hard” question because there are still some deep concerns:

@
(i)

(iii)

(iv)

Are there any other possible priority modes besides the
easy-first and hard-first modes?

The second answer listed above refers to the difficulty
distribution of training samples. What is the relationship
between the difficulty distribution and the priority mode?
The priority mode is fixed during the training procedure
in nearly all existing studies. Can the priority mode be
changed during the entire training process?

When there is no prior knowledge or theoretical clues
such as noise and difficulty distribution discussed in the
preliminary answers, is there an effective and universal
solution to assign weights on training samples?

To solve the four subproblems listed above, both theoretical
and empirical investigations are conducted and comprehensive
answers are obtained. Our contributions are summarized as
follows:

theory is then carried out.

« An effective and universal weighting solution is proposed

for selecting the optimal priority mode when there is
no prior knowledge or theoretical clues. Our proposed
solution can be flexibly switched among the four modes
(i.e., easy-first, medium-first, hard-first, and two-ends-
first) only by changing its hyperparameters, while existing
weighting methods can only achieve partial modes.

o Extensive experiments on various learning tasks under

different scenarios are conducted on benchmark datasets.
The empirical observations further support our main
theoretical conclusions. Thus, an in-depth and compre-
hensive answer to the easy-or-hard question is obtained.
In addition, our proposed weighting method achieves
competitive results in all the above learning scenarios.

II. RELATED WORK

o Preliminary observations and conclusions from existing
studies are summarized. Four unsolved subproblems are
raised according to the gap between the question and the
summarized preliminary answers.

o To theoretically explore the “easy-or-hard” question, a
general objective function is constructed for the difficulty-
based sample weights. It reveals the relationship between
the learning difficulty distribution and the priority mode.

A. Description of Symbols

We define the symbols including the main symbols in
Table I. Let T = {(x;,y;)}}Y, be a set of N training samples,
where z; is the input feature and y; is the associated label.
Let C be the number of categories and y; € {1,...,C}. Let
r. be the empirical category frequency of the c-th category.
The training loss is denoted as L. Let w; and [; be the weight
and loss of the i-th sample. Let p; € [0, 1] be the predicted
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TABLE 11
FIVE CATEGORIES OF DIFFICULTY MEASURES AND THEIR CORRESPONDING TYPICAL METHODS.
Measure Method Number Scenario
SPL-Binary (2010), SPL-Log (2014), Cost-sensitive SPL (2016),
Prediction Focal loss (2017), QFL (2020), ASL (2020), SuperLoss (2020), 11 Standard, Noisy, Imbalanced

Truncated loss (2021), JTT (2021), DWB (2021), R-CE(2021)

Category proportion Class-balanced loss (2019), G-RW (2021), DWB (2021) 3 Imbalanced
Gradient GHM(2019), LOW (2021) 2 Imbalanced
Margin GAIRAT (2021) 1 Standard

Uncertainty FOCI (2020) 1 Noisy

* ASL means Asymmetric loss. GHM means Gradient Harmonizing Mechanism. FOCI means Focus On Clean and Informative samples.

probability of sample x; for the ground truth. Let d; be the
i-th sample’s learning difficulty, which can be approximated
by other values, such as [, and 1 — p;. w® is defined as the
weight of the c-th category when the category-wise weighting
strategy is utilized.

B. Existing Weighting Methods

Table I lists some typical weighting methods in previous
literature. The core of a weighting scheme is its weighting
function for the input samples. According to the granularity
of the weighting methods, the weighting functions can be
sample-wise, category-wise, or their mixtures. According to
the priority mode, existing weighting schemes can be divided
into easy-first and hard-first. Their application scenarios (i.e.,
standard, imbalanced, and noisy) are also presented. The
methods in Table I are inspired by a (partial) particular view of
the data characteristics, and thus each method only implements
one priority mode. Although some of them can achieve more
than one priority modes with some minor changes, only one
mode is used in their previous applications. For example, if
the hyperparameter + in Focal loss [3], which is a typical
weighting method for object detection, is negative, the easy-
first mode can be achieved. Nevertheless, almost all applica-
tions of Focal loss choose the hard-first mode (i.e., v > 0).

Both two priority modes are widely adopted in various
learning scenarios according to the characteristics of training
data. Hard-first weighting schemes are commonly used for
imbalanced data. For example, Focal loss [3] is inspired by the
observation that easy samples are excessive in object detection
datasets relative to hard ones. Thus, it assigns relatively high
weights to hard samples and relatively low weights to easy
samples, which greatly improves the detection performance.
Class-balanced loss [2] exerts high weights on samples in tail
categories (i.e., categories with a relatively small proportion of
samples), which is a typical method for imbalanced learning.
Learning Optimal samples Weights (LOW) [19] forces the
model to focus on less represented or more challenging
samples and works well for imbalanced data. Dynamically
Weighted Balanced loss (DWB) [13] sets higher weights on
hard-to-train instances based on the category proportion and
the predicted probability of ground truth.

Easy-first weighting methods are verified to be effective on
noisy data. SPL [18] sets the weights of samples with large
losses to zero with a threshold. The threshold is gradually
increased to ensure that more hard samples can participate in
subsequent epochs. SuperLoss [16] downweights the contri-
bution of samples with large losses to decrease the impact

of noisy samples. There are some easy-first schemes inspired
by clues other than loss. CL [25], [29] is motivated by
human learning that easy samples should be learned first.
The observations from an empirical study [4] imply that the
easy-first paradigm CL mainly takes effect in noisy scenarios.
Some recent CL methods adopt more complicated priority
modes [27], [30], [31]. In Balanced CL [29], on the basis of
the easy-first mode, the selection of samples has to be balanced
under certain constraints to ensure diversity across image
regions [30] or categories [27]. Therefore, Balanced CL adopts
the mixed mode. In Teacher-student CL [31], the curriculum
of the student network is learned by its corresponding teacher
network. Thus, its priority mode depends on the interaction
between the student and teacher networks.

C. Measures for Learning Difficulty of Samples

Learning difficulty is an intrinsic property of training sam-
ples, which depends on various factors that are related to data
characteristics, including data quality [7]-[9], [32], sample
neighbors [10], margin [11], and category distribution [2],
[19], [33]. The lower the quality of a sample is, the larger
the learning difficulty of the sample will be; the more het-
erogeneous samples in the neighborhood of a sample are, the
larger the learning difficulty of the sample will be; the smaller
the margin of a sample has, the larger the learning difficulty
of the sample will be; the smaller a category is, the larger the
learning difficulty of samples in this category will be. Most
existing difficulty measures are defined by heuristics, which
can be divided into the following five categories.

o Prediction-based measures. This category mainly em-
ploys the loss [16], [18] or the predicted probability
of the ground truth [3], [34] as the difficulty measure.
The motivation is that a large loss (or a small predicted
probability of ground truth) indicates a large difficulty.

o Category proportion-based measures. This category uti-
lizes the category proportion [2], [13] as the difficulty
measure. The intuition is that the smaller the category
proportion, the harder the samples in this category.

o Gradient-based measures. This category adopts the loss
gradient [19] as the difficulty measure. The motivation is
that the larger the norm of the loss gradient, the harder
the sample [19].

e Margin-based measures. Margin [11] means the distance
from the sample to the decision boundary. The motivation
is that a small margin indicates a large learning difficulty.

o Uncertainty-based measures. This category utilizes the
uncertainty of a sample to measure its learning difficulty.
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Fig. 1. Four typical cases of the real and optimal difficulty distributions of the training data. (The green and blue lines represent popt(d) and p¢r(d) where

Popt (d) is assumed to be uniform. The red line represents the curve of 7(d).)

Samples with large uncertainties are generally considered

hard ones [35].
Table II lists the five categories of difficulty measures and
their corresponding typical methods. Prediction-based mea-
sures (i.e., loss and predicted probability of ground truth) are
the most widely used. Four recent methods, including Just
Train Twice [28], Truncated Loss [17], Reweighted Cross-
Entropy loss (R-CE) [17], and DWB [13] still use the loss
as the difficulty measure. In addition, this category is simple
yet effective in various learning scenarios [3], [16], [34].

III. THEORETICAL INVESTIGATION

A general theoretical framework is lacking to pursue the
learning difficulty-based sample weights in existing studies.
To conduct theoretical analyses, a general objective function
is first proposed.

A. A General Objective Function
Learning difficulty-based weighted loss L, is defined as:

Lq= %Ziwi(di)liv 9]

where w; depends on d;, and N is the number of samples in
the training set. The sample weights can adjust the difficulty
distribution of the training samples. Let d(x) be the learning
difficulty of z. Let P,y [d(x)]" and P;.[d(z)] be the optimal
and real difficulty distributions of the training data, and
their corresponding densities are denoted as pop[d(w)] and
per[d(z)]. Let Py.[d(z)] be the new difficulty distribution of
the training set with the weights of samples and py,[d(x)]
wld(x)]psr[d(x)], where Dy [d(x)] is the density of Py,.[d(x)].
Theoretically, the optimal weights can be pursued with the
following objective function:

win K L(Pypld(2)]| | Popeld()]), @)

where KL is the Kullback-Leibler divergence [36] between
the two distributions. According to Eq. (2), the optimal weight
for a training sample z is?

Popt[d()]
prrld(x)]

UIf there are sufficient data in the validation set, the optimal difficulty
distribution of the training set is similar to the difficulty distribution of the
validation set (the whole space).

2The case of pi-[d(z)] = 0 is not considered as the value of w*[d(z)] is
meaningless in this case.

w*[d(z)] 3)

In the following discussion, x is omitted for brevity. If the
optimal and real difficulty distributions of the training data
are the same, then all samples are equally important.

If helpful information (e.g., partial data characteristics cues)
is available and reasonable assumptions are accessible, an
appropriate value for w*(d) can be obtained. The form of the
optimal weight (i.e., Eq. (3)) can explain a lot of weighting
strategies. For example, if the learning difficulty of samples in
the same category is assumed to be equal (different categories
have different learning difficulties) and p,p:(d) is assumed to
be uniform, then the reciprocal of category proportion is the
optimal weight for each sample which is commonly employed
in imbalanced data [2]. Gradient Harmonizing Mechanism
(GHM) [8] can also be explained by Eq. (3). Its weighting

function is
w(g) =1/GD(g),

N

4
GDlo) = 10 (01.9). @

k=1

where GD(g) is the gradient density which denotes the num-
ber of examples lying in the region centered at g with a length
of € and normalized by the length of the region [.. Thus, GHM
utilizes the norm of gradient g as the difficulty measure and
assumes Popi(g) to be uniform. Therefore, p;-(9) = GD(g)
and the reciprocal of the gradient density is the optimal weight.

B. Four Typical Priority Modes

Based on Eq. (3), a new concept, the relative learning
difficulty 7(d), is introduced, which is denoted as the likeli-
hood ratio 7(d) = popt(d)/per(d). It measures the insufficient
degree of samples with difficulty d. If 7(d) < 1, then samples
with learning difficulty d are excessive in the training set.
The smaller the 7(d) is, the more excessive the samples
with difficulty d are. According to Eq. (3), w*(d) x 7(d).
Therefore, these samples should have relatively low weights.
On the contrary, if 7(d) > 1, then samples with learning
difficulty d are insufficient in the training set. The larger the
7(d) is, the more insufficient the samples are. According to
Eq. (3), high weights should be assigned to these samples.
Thus, samples with large relative difficulty should be assigned
with high weights.

Because the two cases of excessive and insufficient samples
are complementary, we only need to analyze the typical cases
of excessive samples. Four typical cases, including excessive
easy/medium/hard/both easy and hard samples in the training
data, can be obtained and discussed as follows:
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(1) If hard samples are excessive in the training data,
then the relative difficulty 7(d) is small for hard sam-
ples. Thus, hard samples should be assigned with relatively
low weights. Alternatively, the “easy-first” mode should be
adopted. Fig. 1(a) illustrates this case where pop(d) is as-
sumed to be uniform and 7(d) decreases on d.

(2) If easy samples are excessive in the training data,
then the relative difficulty 7(d) is small for easy samples.
Thus, easy samples should be assigned with relatively low
weights. Alternatively, the “hard-first” mode should be uti-
lized. Fig. 1(b) illustrates this case and 7(d) increases on d.

(3) If medium-difficult samples are excessive in the training
data, then 7(d) will be small for medium-difficult samples.
Thus, samples with medium difficulty should be assigned
with relatively low weights. Alternatively, the “two-ends-first”
mode should be adopted. Fig. 1(c) illustrates this case and
7(d) decreases at first and then increases on d.

(4) If both easy and hard samples are excessive in the
training data, then 7(d) is small for both easy and hard
samples. Thus, both easy and hard samples should be assigned
with relatively low weights. Alternatively, the “medium-first”
mode should be taken. Fig. 1(d) illustrates this case and 7(d)
increases at first and then decreases on d.

According to the above analysis, the following answers to
Subproblems (i) and (ii) are obtained:

o For Subproblem (i), besides the easy-first and hard-first
modes, at least two other typical priority modes exist,
namely, medium-first and two-ends-first. Indeed, these
two modes have been utilized in existing studies. For
example, GHM [8] decreases the weights of over-hard
(noise) samples on the basis of the hard-first mode. Thus,
in our study, GHM is under the medium-first mode. Yang
et al. [37] proposed the Self-paced Balance Learning,
whose priority mode is a combination of the easy-first
and hard-category-first modes. Thus, this priority mode
is an approximation of the two-ends-first mode.

o For Subproblem (ii), Eq. (3) well reveals the relationship
between the priority modes and the two learning difficulty
distributions of the training set, namely, P, (d) and
P;,.(d). In addition, samples with a large/small relative
difficulty 7(d) should be assigned with high/low weights.

C. Analysis based on the Bias-variance Trade-off Theory

The bias-variance trade-off theory is a basic theory for the
qualitative analysis of the generalization error for models [38].
In this section, it is used to support that when easy/hard
samples are excessive, the priority mode of hard/easy-first
should be adopted. It also indicates that the optimal model
complexity can be changed by weighting the training samples.

Let T be a random training set and f(z|T") be the trained
model on 7. The bias-variance trade-off is based on the
following learning error [39]:

Err = ExyBr (|ly— f (@ |T)|3]
= Bias®> + Variance + 6. ©)
=~ BiasT + VarT,

where 6. refers to the noise term. It indicates that the bias and
variance terms will decrease and increase if the model com-
plexity c increases [40]. Minimum learning error is achieved
when the sum of the partial derivatives of the two terms with
respect to the model complexity c is equal to zero. Training
samples can be divided into easy, medium, and hard according
to their learning difficulty. Therefore, the sample space can
be divided into three corresponding regions, namely, Rcqsy,
Ronedium, and Rpqrq>. Thus, the generalization errors for
f(z|T) in the three regions can be obtained. The learning
error for f(x|T) in Reqsy is as follows:

2
Erreasy = E($7y)€RewaT [”y —f (Z‘ |T)||2
~ BiasTeqsy + VarTeqsy.

(6)

Likewise, we can define the learning error in the R,,cdium
and Rpq,-q regions. According to the law of total expectation,
the entire learning error can be decomposed into

Err = peasyETTeasy + pmediumETTmedium + phardETThard7

@)
where Deqsy, Pmedium, and pparq are the possibilities of a
random sample coming from Reqsy, Rmedium, and Ryqrd,
respectively. Naturally, peqsy +Pmedium +Pharda = 1. Based on
the bias-variance trade-off theory on the entire sample space,
we propose the following assumption:

Assumption 1: For all the three bias (e.g., BiasTeqsy)
and variance terms (e.g., Varlcasy) of Reasy, Rmedium,
and Rp.rq, the bias and variance terms are decreasing and
increasing functions with respect to the model complexity
c, respectively. Both the partial derivatives of the bias and
variance terms with respect to ¢ are increasing functions.

According to Assumption 1, minimum learning error for
each region is achieved when the sum of the partial derivatives
of its bias and variance terms with respect to ¢ equals to zero.
Let c* be the optimal model complexity for the entire sample
space when the minimum Err is attained. Likewise, let ¢z,
and c ., be the optimal model complexities for R.,s, and
Rpard, respectively. The following assumption is proposed:

Assumption 2: 7., < ¢ <} g

With Assumption 2, we have the following propositions.

Proposition 1: If weights higher than one are exerted on
the samples in Rj,q, and the weights for samples in other
regions remain one, then the new optimal model complexity
;.. Over the entire space will be larger than c*. Alternatively,
the complexity of the optimal model is increased.

Proposition 2: If weights higher than one are exerted on
samples in the R.,s,, and the weights for samples in other
regions remain one, the new optimal model complexity c},.,,
over the entire space will be smaller than c*. Alternatively, the
complexity of the optimal model is decreased.

A theoretical analysis for Proposition 1 is shown in the
Appendix. Proposition 1 supports that when easy samples are
excessive in the training set, the trained model will become
quite simple and underfitting. Thus, hard samples should be

3In our theoretical analysis, we assume that samples can be divided into
easy, medium, and hard ones according to their learning difficulty. However, it
is challenging and unnecessary to strictly distinguish which category a sample
belongs to in real applications.
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assigned with high weights to increase the complexity of the
model. Alternatively, the hard-first mode should be adopted.
Proposition 2 supports that when hard samples are excessive
in a training set, the easy-first mode should be utilized. These
two propositions further support the two conclusions that we
have discussed in Section III-B.

D. Varied Priority Mode

Subproblem (iii) concerns whether the fixed priority mode
during the training procedure is always optimal. The “fixed
mode” means that only one priority mode is adopted during
the whole training procedure, while the “varied mode” means
that different priority modes are used in different training
stages. According to Eq. (3), the priority mode of the optimal
weight depends on the relative difficulty 7(d). If 7(d) is
fixed during the training procedure, the priority mode adopted
should not be varied. For example, when “category proportion”
is used as the difficulty measure [2], 7(d) will be fixed
during the training process. Note that although the priority
mode remains unchanged on some occasions, the weights
of samples are still variable to achieve lower generalization
errors of models [40]. The reason is that the learning difficulty
of samples varies at each epoch as the performance of the
trained model varies during training. With the improvement
of the model performance, the learning difficulties of most
samples will be decreased. For example, many studies leverage
training loss to measure learning difficulty. The losses of most
samples will decrease from one epoch to the next and thus their
learning difficulties can be viewed as decreasing.

In general, 7(d) depends on both p,(d) and py,(d).
Although po,¢(d) is unknown, it is fixed during the training
process. Therefore, the answer to Subproblem (iii) is subject
to pi-(d). As described in Section II-C, the learning difficulty
of samples is commonly measured by some heuristic factors
such as loss and the norm of loss gradient in existing studies.
These factors are changeable during the training procedure,
s0 py-(d) is not fixed during the training process. If the
variation of p;,.(d) is significant, then 7(d) will change greatly.
Theoretically, the priority mode may be varied if p:.(d)
changes drastically. For example, when the loss is used as the
difficulty measure, there will be numerous samples with a large
loss in the early training stage, as shown in Fig. 1(a). With
the enhancement in the model performance, easy samples will
dominate the training set if the training set has no significant
deviations (e.d., heavy noise), as shown in Fig. 1(b). Thus,
during the training process, the easy-first mode should be
adopted in the initial training stage, and the hard-first mode
should be adopted gradually.

Based on the above analysis, an answer to Subproblem (iii)
is obtained. The priority mode is not absolutely fixed during
the training procedure, and it should be varied if py.(d)
changes significantly.

E. Flexible Weighting Function

If there is no prior knowledge, theoretical clues, or empirical
observations, the self-paced paradigm may be helpful as it is
inspired by human learning mechanisms. However, this pattern

0.0 0.5 1.0 1.5
Easy t Hard
Fig. 2. The curve of f(t) when v = 2.

does not work in all scenarios [4], [41]. To explore a more
universal and effective solution (answer) to Subproblem (iv),
a weighting strategy that can achieve all four priority modes
should be proposed. Specifically, a weighting function is de-
fined with the condition that all the four typical priority modes
described in Section III-B can be achieved when different
values of hyperparameters are taken. Thus, the selection of
the appropriate priority mode is transformed into the problem
of hyperparameter selection (optimization).

Let A be the hyperparameter(s) of a weighting function. D
is defined as the domain of the learning difficulty of training
samples. 2 is defined as the domain of the hyperparameter A.
According to the four typical weight curves shown in Fig. 1,
a weighting function w(d;A), which can achieve the four
priority modes, should satisfy the following three conditions:

(1) w(d;A) >0, V¥d € D when A € Q.

(2) A hyperparameter grouped with d, which can make the
curve horizontally shift, is required. It ensures that any
segment of the curve can be taken when d € D.

(3) w(d;A) should contain a local maximum and a local
minimum under the same or different values of A € €.

Condition (3) guarantees that the medium-first and two-
ends-first modes can be implemented. Specifically, if a selected
segment contains a local minimum, then the two-ends-first
priority mode is realized; if a selected segment contains a local
maximum, then the medium-first priority mode is realized.

Let « and y be two hyperparameters. We propose a weight-
ing function that can achieve all four priority modes, namely,
Flexible Weighting Function (FlexW), which is

w; = (d; + a)Ve Vit (8)

FlexW satisfies all the abovementioned conditions, and thus it
can achieve all four priority modes. If v is an even number
or a + d; > 0, then Condition (1) holds. Condition (2) is
also obviously satisfied. We analyze whether Condition (3) is
satisfied. To simplify the form, d + « is denoted as ¢. Thus,
the weighting function becomes

f(t)=tTe . ©)
Taking the derivative of Eq. (9), we obtain
F (8 = 4t e (1 — 1),

Regardless of the value of +, the function either has both a
local maximum and a local minimum or contains only a local
maximum or a local minimum. Thus, Condition (3) is satisfied.

(10)
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Fig. 3. The weight curves of four priority modes achieved by FlexW with different values of hyperparameters using 1 — p as the difficulty measure.

Fig. 2 shows the curve of f(t) = t7e™ 7" when v = 2.
If segment (a) is selected, then the “easy-first” priority mode
is implemented; if segment (b) or (c) is selected, then the
“hard-first” mode is implemented; if segments (a) and (b) are
both selected, then the “two-ends-first” mode is implemented;
if segments (c) and (d) are both selected, then the “medium-
first” mode is implemented. Considering that d € D, which
segment(s) is/are selected depends on the horizontal shift
hyperparameter «. If ~y is set to zero, then the weights of
all samples are equal to one, and thus CE loss with FlexW
degenerates into the ordinary CE loss.

When different values of o and  are chosen, different
priority modes can be achieved by FlexW. Following Focal
loss [3], 1 —p is utilized to approximate the learning difficulty
of samples. Fig. 3 shows the weight curve examples including
“easy-first” (Fig. 3(a)), “medium-first” (Fig. 3(b)), “hard-first”
(Fig. 3(c)) and “two-ends-first” (Fig. 3(d)), when different
values of « and y are chosen. Therefore, only the hyperparam-
eters in FlexW are needed to be changed without changing the
entire weighting function when facing different learning tasks.
Our experimental evaluation of different scenarios indicates
the considerable flexibility of the proposed FlexW.

Based on the above analysis, an answer to Subproblem (iv)
is obtained. When there is no prior knowledge or theoretical
clues for the learning task, a weighting function (e.g., FlexW)
that can achieve all four priority modes should be adopted.
To select the optimal priority mode for a learning task,
grid search can be utilized to search hyperparameters in the
hyperparameter intervals corresponding to the four priority
modes. Once the optimal hyperparameters are determined, the
optimal mode is subsequently obtained. Using meta-learning to
learn the hyperparameters is another effective way to optimize
the hyperparameters in FlexW *, which has become a standard
technique for hyperparameter selection [42], [43]. The meta-
learning strategy of Shu et al. [44] can be followed. Grid
search is mainly utilized in our experiments as meta-learning
relies on an additional high-quality meta dataset.

IV. EXPERIMENTAL INVESTIGATION

Section III performs theoretical investigations of the four
subproblems listed in Section I. This section conducts exten-
sive experiments for various learning tasks under different sce-
narios. Our theoretical analyses are adaptable to all difficulty
measures, while 1 — p is adopted as the difficulty measure in
our experiments as with multiple methods do [3], [34]. The

4Grid search and meta-learning are also applicable when the prior knowl-
edge for priority mode selection is insufficient.
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Fig. 4. Accuracy of three methods on noisy (left) and clean (right) samples
of CIAFR10 with 40% flip noise.

experimental results verify the effectiveness and universality
of our proposed weighting method FlexW.

A. Image Classification with Noisy Labels

1) Experimental settings: Two benchmark image classifi-
cation datasets, namely, CIFAR10 and CIFAR100 [45], are
adopted. Each sample is a 32 x 32 image from 1 out of 10 or
100 categories. Pair-flip and uniform label noises are simulated
following the manner of Shu et al. [1]. Wide ResNet-28-10
(WRN-28-10) [46] and ResNet-32 [47] are adopted as the
backbone classifier networks for the flip and uniform noises,
respectively. Each experimental run is five times with different
seeds for parameter initialization and label noise generation.

The comparison methods include Baseline, which directly
trains the backbone network with CE loss; four easy-first
methods (SPL (Binary, Log, and Poly modes) [16], [20], [48],
SuperLoss [18], R-CE [17], and Information-theoretic loss
(Lpar) [49]), and three hard-first methods (Focal loss [3],
LOW [19], and Quality Focal loss (QFL) [22]). The weights
of all samples are equal to one when the backbone network is
trained with CE loss. The networks are trained using SGD
with momentum 0.9, weight decay 5 X 104, and initial
learning rate 0.1. The batch size is set to 128. The values of
and « in FlexW for easy/hard/medium/two-ends-first modes
are searched in {-1,-0.5,-0.4,—0.2} x {0.1,0.2,0.3}
/ {0.2,04,0.5,1} x {0.1,0.2,0.3} / {0.2,0.4,0.5,1} x
{0.4,0.6,0.8} / {—1,—-0.5,—0.4,—0.2} x {0.4,0.6,0.8}, re-
spectively.

2) Results: Adding noise changes the difficulty distribution
of the training set, resulting in excessive hard samples in the
training set relative to the entire space. To analyze the perfor-
mance of the easy-first and hard-first modes on noisy data, the
specific accuracy of SPL-Binary, Focal loss, and FlexW (easy-
first) on individual noisy and clean samples are analyzed, as
shown in Fig. 4. From the left figure, the schemes with the
easy-first mode (i.e., SPL-Binary and FlexW (easy-first)) have
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TABLE III
TEST ACCURACY (%) OF RESNET-32 ON CIFAR10 AND CIFAR100 UNDER FLIP NOISE. THE BEST AND THE SECOND-BEST RESULTS ARE BOLD AND
UNDERLINED. * MEANS THE SPL MANNER IS COMBINED INTO FLEXW.

Dataset Ratio  Baseline  SPL-Binary ~SPL-Log  Focal loss  SuperLoss R-CE  SPL-Poly LOW  Lpag QFL | FlexW (hard-first) ~ FlexW (easy-first) | FlexW (easy-first*)
CIFARIO 20% 76.83 87.03 89.50 86.45 89.19 88.25 88.76 7277 8670  79.87 82.25 90.46 90.96
40% 70.77 81.63 84.01 80.45 84.23 83.86 83.98 6835  84.00 7287 75.45 85.13 85.64
CIFAR100 20% 50.86 63.63 63.82 61.87 63.35 63.48 63.21 50.45 - 51.54 53.55 64.95 65.48
40% 43.01 53.51 53.20 54.13 54.87 54.65 54.72 42.19 49.83 45.88 55.87 55.50
TABLE IV
TEST ACCURACY (%) OF WRN-28-10 ON CIFAR10 AND CIFAR100 UNDER UNIFORM NOISE.
Dataset Ratio  Baseline ~ SPL-Binary SPL-Log Focal loss  SuperLoss R-CE ~ SPL-Poly LOW  Lpar QFL FlexW (hard-first) ~ FlexW (easy-first) | FlexW (easy-first*)
CIFARI0 40% 68.07 86.41 7750 75.96 86.43 85.74 79.34 6725 8590 7237 7428 87.64 88.15
60% 53.12 53.10 53.40 51.87 79.42 75.56 58.34 5146 79.60 4821 52.63 80.56 81.87
CIFAR100 40% 5111 55.11 5494 51.19 55.64 56.23 56.55 50.25 - 49.49 50.85 58.48 5772
60% 30.92 36.56 37.17 27.70 41.34 41.05 40.45 36.32 26.54 35.22 42.15 42.89
TABLE V
PERFORMANCE OF FOUR PRIORITY MODES ACHIEVED BY FLEXW ON 0.01 0.02 0.01 0.01 0.02 0.03
CIFAR10 WITH 20% AND 40% FLIP NOISE.
- - - - - Focal SPL-Pol DSC TL SPLD  SPL-IR
Ratio  Easy-first ~Medium-first ~ Hard-first ~ Two-ends-first Y
20% 90.46 88.87 82.25 80.13
Ak 8513 BSBL 7545 7506 C ——
0.2 0.4 0.6 0.8 1.0

lower accuracy on noisy samples compared with the hard-
first method (i.e., Focal loss) before 140 epochs. From the
right figure, SPL-Binary and FlexW (easy-first) consistently
outperform Focal loss on clean samples. Therefore, the easy-
first methods make the model less disturbed by noise.

To further reduce the negative influence of quite hard
samples in the early training stage, the manner for dealing
with quite hard samples in SPL is combined into our FlexW.
It further improves the model performance in some cases. The
weighting function of FlexW with SPL manner is

v = | A= pita)empire) g <)
v 0, I; >\ ’

where A is a threshold defined in SPL [16], which is gradually
increased to ensure that more hard samples can participate in
the next epochs of training.

Under two types of noise with varying noise ratios, we
compare FlexW with some advanced weighting methods in
different priority modes, as shown in Tables III and IV. The
results of Focal loss are from Shu et al. [1]. FlexW under
the easy-first mode achieves the best performance. In addition,
the easy-first methods (e.g., SuperLoss and FlexW (easy-first))
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Fig. 5. (a): results of ASO significance test on CIFAR10 with 20% flip noise.
(b): results of ASO test on CIFAR100 with 60% uniform noise.

Fig. 6. Results of ASO significance test for the comparison between FlexW
(easy-first) and other methods on SST-2 with 20% noise.

perform better than the hard-first ones (e.g., Focal loss and
LOW) on noisy data. In some cases, the performance of the
hard-first methods is close to or even better than that of
the Baseline, mainly due to the imperfect difficulty measure.
Alternatively, using only loss to distinguish noisy samples
from hard ones is not completely accurate, as discussed
by Shin et al. [32], especially for asymmetric label noise.
Accordingly, the hard-first priority mode will increase not only
the weights of noisy samples but also those of clean hard
ones. Increasing the weights of clean hard samples may have a
positive influence on model training. If the positive influence is
more significant than the negative influence of noisy samples,
then the model performance may be improved.

More ablation studies implemented by FlexW with four
priority modes are conducted on CIFAR10 with 20% and 40%
flip noise. The results are shown in Table V, indicating that the
medium-first mode also achieves good performance on noisy
data. Therefore, the easy/medium-first modes are more suitable
than the hard-first ones for noisy data. The experimental results
are consistent with our theoretical analysis for Subproblem (ii),
as shown in Sections III-B and III-C.

TABLE VI
TEST ACCURACY (%) OF COMPETING METHODS ON NOISY SST-2.

Dataset SST-2  20% 40% 60%
Baseline 93.50 91.58 87.57 69.55
Focal loss 93.57 88.58 8437 65.27
SPL-Poly 94.16 9224 88.84 75.36
DSC 9426 89.48 8538 6691
TL 93.65 89.36 8543 67.24
SPLD 93.68 9242 88.26 76.12
SPL-IR 93.85 92,58 88.64 75.87
FlexW (easy-first) 9451 94.01 89.82 77.29
FlexW (medium-first) 94.80 93.14 89.23 76.02
FlexW (hard-first) 9491 89.86 86.03 66.84
FlexW(two-ends-first)  94.75 89.82 84.78 58.58
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TABLE VII
TEST ACCURACY (%) ON IMBALANCED CIFAR10 AND CIFAR100 WITH DIFFERENT IMBALANCE FACTORS. * MEANS THE CATEGORY-WISE
HYPERPARAMETER IS COMBINED INTO FLEXW.

Dataset Long-tailed CIFAR10 Long-tailed CIFAR100
Imbalance factor 200 100 50 20 10 200 100 50 20 10
Baseline 65.68 7036 74.81 8223 86.39 | 34.84 3832 4385 51.14 5571
Focal loss-v=1 6529 7038 76.71 82776 86.66 | 35.62 3841 4432 5195 5578
Focal loss-y=0.5 64.00 7033 76.72 82.89 86.81 | 3500 38.69 44.12 51.10 55.70
Focal loss-y=2 64.88 69.59 76.52 83.23 8632 | 3475 38.39 4370 51.02 55.00
SPL-Binary 65.64 7094 76.82 8241 87.09 | 3556 38.16 4277 5091 56.70
SPL-Log 62.05 7046 75.64 82.66 86.62 | 33.08 38.51 41.71 49.71 54.79
SPL-Poly 6498 7056 7533 8245 87.02 | 3444 3853 4278 50.55 56.13
SPL-Linear 62.09 6485 72.19 80.68 86.32 | 33.24 37.05 4238 49.61 55.16
Cost-sensitive SPL 65.84 7029 7488 8245 86.78 | 35.12 38.39 4467 5198 5537
Class-balanced 68.77 72.68 78.13 84.56 8790 | 3556 38.77 4479 5194 57.57
Class-balanced Focal | 68.15 74.57 79.22 83.78 87.48 | 36.23 39.60 4521 5259 57.99
LDAM 66.75 7355 78.83 83.89 87.32 | 3653 40.60 46.16 51.59 57.29
SuperLoss 64.75 70.62 7523 8245 8598 | 3456 3846 4274 5099 5528
R-CE 63.98 70.13 75.66 8223 86.55 | 3421 38.05 43.54 4988 5535
LOW 67.23 72778 7642 83.46 8755 | 3521 38.88 4464 5193 5542
FlexW (easy-first) 64.82 7096 76.89 82.54 87.12 | 3484 38.64 4372 50.78 56.72
FlexW (hard-first) 69.64 75.81 80.13 8535 88.86 | 37.81 41.72 4698 5341 58.82
FlexW (hard-first*) 70.27 7533 80.56 85.64 88.50 | 37.54 4231 47.77 5385 59.29

To further demonstrate the superiority of FlexW, the sig-
nificance test is conducted. The Almost Stochastic Order
(ASO) [50] method is used, which returns a value €.y,
expressing (an upper bound to) the amount of violation of
stochastic order. If €,,;, < 7 (where 7 is 0.5 or less), then
the corresponding algorithm can be declared as superior. €,y
can also be interpreted as a confidence score. The lower
it is, the more sure the conclusion. The results on noisy
CIFAR10 and CIFARIO0 datasets are shown in Fig. 5, in
which all the obtained ¢,,;,s for the comparison between
FlexW (easy-first) and other methods are smaller than 0.05,
indicating that using ASO with a confidence level 0.05, the
score distribution of FlexW (easy-first) based on three random
seeds is stochastically dominant (€,,;, = 0.05) over other
compared methods on noisy CIFAR data.

B. Text Classification with Noisy Labels

1) Experimental settings: The Stanford Sentiment Tree-
bank (SST-2) [51] dataset is adopted. Its training set contains
67,000 movie reviews, and the test set contains 18,000 reviews.
The labels of samples are randomly flipped, and the values of
the noise ratio are set to 20%, 40%, and 60%, respectively.
BERT-base [52] model is applied as the backbone network.
The experimental configuration follows that of Devlin et
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al. [52], and the hyperparameter setting of FlexW is the
same as that in Section IV-A. The comparison methods in-
clude Baseline, which trains the backbone network with CE
loss; three hard-first methods (Focal loss [3], Tversky loss
(TL) [53], and Sgrensen—Dice Coefficient loss (DSC) [53]),
and three easy-first approaches (SPL-Poly [48], Self-paced
Learning with Diversity (SPLD) [21], and Self-paced Implicit
Regularizer (SPL-IR) [54]).

2) Results: The comparing results are shown in Table VI.
The easy-first methods, including SPLD, SPL-Poly, SPL-IR,
and FlexW (easy-first), achieve good performance, while the
hard-first ones perform poorly. From the ablation studies of
FlexW, FlexW (medium-first) also obtains competitive perfor-
mance. Thus, the easy-first and medium-first modes are more
suitable for noisy data. Alternatively, the weights for noisy
samples should be decreased.

As with Section IV-A, ASO is employed to demonstrate
the significance of FlexW on noisy SST-2 data. The results
are shown in Fig. 6, in which all obtained €,,;,s for the
comparison between FlexW (easy-first) and other methods are
smaller than 0.05, indicating that using ASO with a confidence
level 0.05, the score distribution of FlexW (easy-first) based on
three random seeds is stochastically dominant (€, = 0.05)
over other compared methods on noisy SST-2.
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Fig. 7. (a): the accuracy of the three methods for ten categories on CIFAR10
for Categories 1 and 10 on CIFAR10 with an imbalance factor of 20.
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Fig. 8. (a) and (b): the average weights of the first/last five head/tail categories on CIFAR100 with an imbalance factor of 100. (c): the proportion of hard

samples in each category in CIFAR10 with an imbalance factor of 100.

C. Image Classification with Imbalanced Datasets

1) Experimental settings: Long-tailed versions of CIFAR
benchmarks with different imbalance factors compiled by
Cui et al. [2] are used. ResNet-32 [47] is adopted as the
backbone. The compared methods include Baseline, which
trains the backbone network with CE loss; four hard-first
methods (Focal loss [3], Label-Distribution-Aware Margin
loss (LDAM) [55], Class-balanced loss [2], and LOW [19])),
three easy-first methods (SPL (Binary, Log, Poly, and Linear
modes) [16], [20], [48], SuperLoss [18], and R-CE [17]),
and an approximated two-ends-first method (Cost-sensitive
SPL [37]). Other experimental settings are the same as those
in Section IV-A.

2) Results: For imbalanced training data, the proportion of
easy samples is larger than that of the entire space, as shown in
Fig. 1(b). To study the performance of the hard-first and easy-
first priority modes on imbalanced data, the accuracy for each
category is analyzed on CIFAR10 with an imbalance factor
of 20. Fig. 7(a) indicates that the methods under the hard-
first mode (i.e., FlexW (hard-first) and Focal loss) increase the
accuracy of most tail categories compared with those under the
easy-first mode (i.e., SPL-Binary). For example, FlexW (hard-
first) improves the accuracy of tail categories 6, 7, 8, 9, and 10,
and Focal loss increases the accuracy of tail categories 5, 7,
8, and 10. Fig. 7(c) shows that the hard-first methods improve
the accuracy of the last tail category significantly. Since the
first head category contains a large number of samples, all
three methods perform well, as shown in Fig. 7(b). Thus, for
imbalanced data, an effective weighting scheme should focus
on improving the performance of the tail categories, which
can be achieved by the hard-first mode.

Inspired by the manner of dealing with the imbalance in
Focal loss, a category-wise hyperparameter is introduced in
FlexW. The weighting function of FlexW combined with the
category-wise hyperparameter is

w; = ¢y, (1 — p; +a)Te YA 7Pite), (12)

where c,, is the category-wise hyperparameter which can
further increase the weights for samples in tail categories. It
can be set to two for tail categories 6-10 (71-100) and one for
other categories in CIFAR10 (CIFAR100), respectively.
Table VII compares some advanced methods under vari-
ous imbalance factors. The results of Focal loss-y=1, Class-
balanced, Class-balanced Focal, and LDAM are from Li et

TABLE VIII
TEST ACCURACY (%) OF COMPETING METHODS ON TWO PI DATASETS.

Dataset MRPC  QQP
Baseline 88.05 91.42
Focal loss 88.46 91.91
SPL-Poly 86.84 90.38
DSC 88.78 92.27
TL 88.71 92.12
SPLD 85.99 90.85
SPL-IR 86.12 90.74
FlexW (easy-first) 86.78 91.25
FlexW(medium-first) 88.24 92.08
FlexW (hard-first) 89.73 93.35
FlexW (two-ends-first) 87.32 90.68

al. [56]. The performance of the hard-first methods (e.g.,
FlexW (hard-first(*)), Class-balanced loss, Class-balanced Fo-
cal loss) generally surpasses that of the easy-first methods
(e.g., SPL and FlexW (easy-first)). In addition, FlexW under
the hard-first mode achieves the best results, and the category-
wise hyperparameter further improves the model performance
in some cases. The performance of SPL is approaching that of
Focal loss in some cases. It is because the easy-first methods
can improve the accuracy of head categories. However, these
methods further enlarge the gap between the head and tail
categories which is not desirable.

Figs. 8(a) and (b) show the average weights of samples
in the first five head (a) and last five tail (b) categories of
CIFAR100, reflecting the contribution of samples in each
category to the model. The weights of the five head categories
drop quickly, whereas those of the tail categories remain high
during the entire training process. It indicates that the hard-first
mode increases the influence of samples in the tail categories
on the model. Fig. 8(c) shows the proportion of hard samples
(with [; > logl0) in each category. The tail categories have
larger proportions of hard samples than head ones, which
supports the common sense that samples in the tail categories
are harder to learn than those in the head on average.

The experimental results are in accordance with our theoret-
ical analysis for Subproblem (ii), as shown in Sections III-B
and III-C. The trained model will be underfitting when easy
samples are excessive, as shown in Fig. 1(b). To appropriately
increase the complexity of the trained model, the hard-first
mode should be adopted. Furthermore, the significance of the
performance of FlexW is also verified by ASO and indicates
that the score distribution of FlexW (hard-first) based on three
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TABLE IX
MAPS (%) OF SIX WEIGHTING SCHEMES ON FOUR VOC DATASETS.

Dataset | FL (hard-first)  FL (easy-first) | FlexW (hard-first)  FlexW (easy-first) ~ FlexW (medium-first)  FlexW (two-ends-first)
VOC-e 75.21 66.96 76.84 71.70 73.25 66.88
VOC-h 66.62 68.30 67.67 69.25 67.64 65.74
VOC-m 55.74 62.36 60.14 62.71 58.76 63.25
VOC-b 61.75 57.72 61.43 59.54 63.58 58.66

random seeds is stochastically dominant (€,,;, = 0.05) over
other compared methods on imbalanced CIFAR data using
ASO with a confidence level 0.05.

D. Paraphrase Identification with Imbalanced Datasets

1) Experimental settings: Category imbalance is a com-
mon data bias in various natural language processing tasks
such as Tagging and Machine Reading Comprehension. In
this subsection, two Paraphrase Identification (PI) datasets
are adopted, namely, Microsoft Research Paraphrase Corpus
(MRPC) [57] and Quora Question Pairs (QQP) [58]. MRPC
contains sentence pairs automatically extracted from online
news, with human annotations of whether the sentence pairs
are semantically equivalent. Its category distribution is imbal-
anced. There are 6,800 pairs in total. 68% of them are positive,
and 32% of them are negative. QQP is a collection of question
pairs from the community question-answering website Quora.
Its category distribution is also imbalanced. There are over
400,000 question pairs in total. 37% of them are positive, and
63% of them are negative. We adopt BERT-base [52] as the
backbone network. The experimental configuration of Li et
al. [53] is followed. The comparison methods include Baseline,
which trains the backbone network with CE loss; three hard-
first methods (Focal loss [3], TL [53], and DSC [53]), and
three easy-first methods (SPL-Poly [48], SPLD [21], and SPL-
IR [54]). The hyperparameter setting of FlexW is the same as
that in Section I'V-A.

2) Results: The results are shown in Table VIII. The hard-
first methods (e.g., DSC and FlexW (hard-first)) perform better
than the easy-first ones (e.g., SPLD and FlexW (easy-first)) on
imbalanced text data, which is in accordance with our analysis
in Sections III.B and III.C. In addition, the results of the ASO
significance test manifest that using ASO with a confidence
level 0.05, the score distribution of FlexW (hard-first) based on
three random seeds is stochastically dominant (€;,;, = 0.05)
over other compared methods on QQP data.

E. Object Detection with Different Difficulty Distributions

1) Experimental settings: Dense object detection is a typi-
cal application where the distribution of easy and hard samples
is imbalanced. PASCAL VOC [59], [60] is utilized whose
training set consists of VOC2007 and VOC2012 train and
validation sets with a total of 16,551 samples. As the training
set contains excessive easy samples [3], it is denoted as
VOC-easy (VOC-e). To investigate other difficulty distribution
cases, we compiled three training sets based on the training
set of VOC: dataset with excessive hard samples (VOC-
h), dataset with excessive medium-difficult samples (VOC-
m), and dataset with both excessive easy and hard samples
(VOC-b). All three artificially constructed training sets contain

TABLE X
TEST ACCURACY (%) UNDER THE HARD-FIRST AND VARIED MODES
ACHIEVED BY FLEXW ON IMBALANCED CIFAR10 AND CIFAR100.

Dataset Imbalance 200 100 50 20 10
Hard-first 6964 7581 8013 8535 88.86

CIFARIO G ied mode  69.98 7623 8071 8454  88.00
Hard-first 3781 4172 4698 5341 5882

CIAFRIO0  y; ied mode 3734 4185 4525 5397 5723

8,000 images. For VOC-h, 7,000 images are those with the
largest loss-conf values in the original VOC training set.
The remaining 1,000 images are randomly selected from the
training data except for the hardest 7,000 ones. VOC-m is
composed of 8,000 images with moderate loss-conf values in
the range of [0.8,1.8]. VOC-b is composed of 4,000 images
with the smallest loss-conf values and 4,000 images with
the largest loss-conf values in the original VOC training set.
VOC2007 test is adopted as the test set with a total of 4,952
samples. YOLOv4 [61] and the weight pre-trained by Darknet
[62] are adopted. The optimizer we used is SGD, where the
momentum and weight decay are set to 0.9 and 5 x 10~%. The
initial learning rate is 1 x 10~%, and the final learning rate is
1x1075. We use a batch size of 4 images. The hyperparameter
setting of FlexW is the same as that in Section IV-A.

In this experiment, we reveal an interesting fact that Focal
loss (FL) can also implement the easy-first mode when its
hyperparameter  is negative. The performance of the six
weighting schemes (FL (easy-first), FL (hard-first), FlexW
(easy-first), FlexW (hard-first), FlexW (medium-first), FlexW
(two-ends-first)) on the four datasets is shown in Table IX.

2) Results: The two hard-first schemes, including FlexW
(hard-first) and FL (hard-first), obtain better results on VOC-
e, which contains excessive easy samples. In contrast, when
the dataset contains excessive hard samples, the easy-first
methods (i.e., FlexW (easy-first) and FL (easy-first)) achieve
better performance. For VOC-m, FlexW (two-ends-first) gets
the best performance, and FlexW (easy-first) gets the second-
best performance. For VOC-b, FlexW (medium-first) and FL
(hard-first) obtain the best and second-best performance.

The experimental results are consistent with the four conclu-
sions obtained in our theoretical analysis for Subproblems (i)
and (ii), as shown in Section III-B. Furthermore, FlexW
achieves competitive performance on object detection tasks.

F. Performance of Varied Priority Mode

As mentioned in Section III-D, if the difficulty distribution
of the training set changes drastically during the training pro-
cess, the corresponding priority mode should also be varied. To
demonstrate the varied mode is more effective in some cases,
we manually switch the priority mode during the training
process. When loss is used as the difficulty measure, the
difficulty distribution of the training set will change as training
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TABLE XI
TEST ACCURACY (%) OF COMPETING METHODS ON STANDARD CIFAR DATA USING WRN-28-2.
Dataset Focal loss SPL SuperLoss SPLD LOW DIHCL MCL DoCL | FlexW (easy-first)  FlexW (hard-first)  FlexW (medium-first) ~ FlexW (two-ends-first) ~ FlexW (meta)
CIFARI0 93.89 93.76 94.45 94.37 94.52 94.88 94.34 95.26 94.51 95.84 94.87 93.28 96.29
CIFAR100 74.79 75.26 75.75 75.67 74.61 77.05 75.87 77.58 78.14 77.56 77.53 75.99 78.73
TABLE XII
TEST ACCURACY (%) OF COMPETING METHODS ON STANDARD CIFAR DATA USING VGG-16.
Dataset SPL Inverse-SPL SPLD LOW  Focal loss DIHCL MCL DoCL | FlexW (easy-first)  FlexW (hard-first) ~ FlexW (medium-first) ~ FlexW (two-ends-first) ~ FlexW (meta)
CIFARTO  93.07 93.43 9332 9390  93.78 9389 9345 9411 9391 94.72 9356 92.78 9527
CIFARIO0  71.88 71.76 72.51 72.44 71.49 72.81 72.27 73.15 73.76 72.47 72.84 71.34 74.31
progresses. Using FlexW, the varied mode is investigated on TABLE XIII
imbalanced CIFAR data. In the early training stage, most HYPERPARAMETER INTERVALS CORRESPONDING TO FOUR PRIORITY
’ MODES OF FLEXW WITH STABLE PERFORMANCE.
samples have large losses. Thus, the easy-first mode should
be uti]ized. Alternatively, the hyperparameters in FICXW (i,e,, Priority mode Easy-first Medium-first Hard-first Two-ends-first
Interval [-0.6,-0.4]1x[0.1,0.3] [0.4,0.6]1x[0.4,0.6] [0.4,0.6]x[0.1,0.3] [-0.6,-0.4]x[0.4,0.6]

a and ) should be searched in the interval of the easy-first
mode. v = —0.5 and o = 0.1 are employed in the first
100 epochs. With the model trained better, easy samples are
excessive because hard samples are mostly samples in tail
categories. Thus, the hard-first mode should be adopted to
improve the classification performance of the tail categories
in later periods. In this stage, the hyperparameters in FlexW
should be searched in the intervals of the hard-first mode.
v = 0.5 and a = 0.1 are adopted in the remaining epochs.

Table X shows the performance of FlexW with the varied
priority mode and hard-first mode. The results indicate that
the varied mode achieves better performance than the fixed
mode in some cases, which is in accordance with our analysis
in Section III-D. The priority mode does not need to remain
fixed, and it should be varied if the difficulty distribution of
the training set changes significantly.

G. Image Classification with Standard Datasets

1) Experimental settings: Standard CIFAR10 and CI-
FARI100 [45] datasets are utilized in this experiment. The
five hard-first methods (Focal loss [3], LOW [19], Curriculum
Learning by Dynamic Instance Hardness (DIHCL) [63], Min-
imax curriculum learning (MCL) [64], and Curriculum Learn-
ing by Optimizing Learning Dynamics (DoCL) [65]), the three
easy-first methods (SPL [16], SuperLoss [18], and SPLD [21]),
our proposed FlexW (easy-first, hard-first, medium-first, and
two-ends-first), and FlexW with meta-learning are compared
on WRN-28-2 [46], as shown in Table XI. In addition, the
two easy-first methods (SPL-Binary [16] and SPLD [21]), the
six hard-first methods (Inverse-SPL [66], LOW [19], Focal
loss [3], DIHCL [63], MCL [64], and DoCL [65]), FlexW
(easy-first, hard-first, medium-first, and two-ends-first), and
FlexW with meta-learning are compared on VGG-16 [67], as
shown in Table XII. For VGG-16, we adopt a slightly modified
version [67], which contains only one fully-connected layer.
Experimental settings are the same as those in Section IV-A.
For FlexW with meta-learning, the construction of meta data
follows the manner of Shu et al. [1].

2) Results: Tables XI and XII show that there is no clear
judgment among all the priority modes on standard data. For
example, the hard-first and easy-first modes perform better on
standard CIFAR10 and CIFAR100, respectively. Our proposed
FlexW outperforms three advanced CL methods, including
DIHCL, MCL, and DoCL. In addition, using meta-learning

to optimize the hyperparameters in FlexW can obtain better
performance. The experimental results are consistent with the
answer for Subproblem (iv), which is stated in Section IIL.E.
Weighting methods that can implement all four priority modes
(e.g., FlexW) should be utilized when there is no prior
knowledge or theoretical clues. Grid search and meta-learning
strategies can be adopted to select the optimal hyperparam-
eters. Once the optimal hyperparameters are determined, the
optimal priority mode can be obtained.

H. Selection of Hyperparameters in FlexW

For the convenience of application, we give the hyperparam-
eter intervals with stable performance corresponding to the
four priority modes, as shown in Table XIII. If the optimal
priority mode can be pre-determined, grid search can be used
to search hyperparameters within specific intervals.

When no prior knowledge exists, both grid search and meta-
learning methods can be utilized to select the optimal hyper-
parameters (i.e., priority modes), as stated in Section IIL.E. It
is worth noting that FlexW can be flexibly switched among
the four priority modes only by changing its hyperparameters.
Alternatively, when facing a new learning task, only the
values of hyperparameters in FlexW are needed to be changed
without changing the entire weighting function.

V. ANSWERS AND DISCUSSIONS

According to the aforementioned theoretical analyses and
empirical observations, a comprehensive answer is obtained
for our investigated “easy-or-hard” question:

o No universal fixed optimal priority mode exists for an
arbitrary learning task.

o Except for the easy-first and hard-first priority modes,
there are two other typical priority modes, namely,
medium-first and two-ends-first.

o The weights for noisy samples should be decreased. Thus,
the priority modes of easy-first and medium-first are more
effective on noisy data.

o The relationship between the difficulty distribution and
the priority mode can be analyzed based on Eq. (3).
Samples with large/small relative difficulty should be
assigned with high/low weights. Thus, four conclusions
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can be obtained: (1) If there are excessive easy samples in
the training data, the hard-first mode should be adopted.
(2) If there are excessive hard samples, the easy-first
mode should be adopted. (3) If there are excessive
medium-difficult samples, the two-ends-first mode should
be adopted. (4) If there are both excessive easy and hard
samples, the medium-first mode should be adopted.

o The priority mode is not necessary to be fixed during
training. If the difficulty distribution of the training data
changes significantly during the training process, the
priority mode should also be varied.

o If there is no prior knowledge or theoretical clues, the
weighting schemes (e.g., FlexW) which can achieve all
four priority modes should be adopted. Which mode is
more appropriate depends on the results of the hyperpa-
rameter tuning.

The above answer indicates that the measurement of the
learning difficulty of samples is crucial as the weight is directly
determined by the difficulty distribution of the training set. In
most existing studies, the learning difficulty is approximated
by the loss (or the predicted probability of ground truth) [3],
[16], which is shown in Table II. Although reasonable, an
ideal solution should fully consider factors, including loss, the
neighbor of samples, category distribution, and noise level.
This study will be the focus of our future work.

Another critical issue is the judgment of whether
easy/medium/hard samples are excessive in the training set.
Prior knowledge of the training set, such as noise level and
category proportion, can help us with this issue. If there is
not any prior knowledge but the learning difficulty of each
sample is accessible, the excess of easy/medium/hard samples
should be judged according to the difference between the
difficulty distributions of the entire sample space and the
training dataset. It is impractical to utilize the distribution
of the entire sample space. A feasible way is to take the
difficulty distribution of the validation set as a reference, as the
validation set is generally regarded as unbiased. If which kinds
of samples are excessive can not be determined, weighting
strategies that can achieve all four modes (e.g., FlexW) should
be adopted. Both the grid search and meta-learning methods
can be utilized to select the optimal hyperparameters of FlexW.

VI. CONCLUSIONS

This study focuses on an interesting and important question
about the choices of priority modes for learning tasks. A deep
investigation of this question facilitates understanding various
existing weighting schemes and choosing an appropriate pri-
ority mode for a new learning task. First, a general objective
function is proposed, which offers an explanation of the
relationship between the difficulty distribution of the training
set and the priority mode. This objective function provides
a comprehensive view to analyze the “easy-or-hard” question
theoretically. Second, several theoretical answers are obtained
based on the general objective function. Two other typical
priority modes, namely, medium-first and two-ends-first, are
revealed. In addition, the priority mode is not necessary to
be fixed during the training process. Third, an effective and

universal weighting solution (i.e., FlexW) is proposed when
there is no prior knowledge or theoretical clues. This solution
alleviates the defects of existing schemes that only single or
partial priority mode(s) can be implemented. Fourth, extensive
experiments for various tasks are conducted under different
data characteristics. Finally, a comprehensive answer to the
“easy-or-hard” question is obtained according to the theoretical
analysis and empirical evaluation.

APPENDIX
A. Theoretical Analysis for Propositions 1 and 2

A strict proof for Proposition 1 is challenging. We give the
proof under a special case that the weights exerted on R,
are identical. Without loss of generality, the weights on each
sample in Rj,,.q are denoted as (1 + €), where € > 0.

Let BiasT(c) and VarT(c) be the bias and variance terms
defined in Eq. (5) in Section III-C, respectively. Minimum
learning error is achieved when the sum of the partial deriva-
tives of the two terms with respect to the model complexity
c is equal to zero. Let ¢* be the optimal model complexity
when the minimum learning error is achieved. We yield

OErr 0BiasT(c) OVarT(c)
dc | dc o + dc o (13)
According to Assumptions 1 and 2, we have
OBiasTeqsy(c) OVarTeasy(c)
dc + oc > 0’
2 (c) i 2 (c) g (1
BiasTharda(c VarThaerda(c
e + e <0.

Let Peasy> Pmedium, and pperq be the probabilities that a
random sample coming from Rcqsy, Rimedium, and Rpqpq, re-
spectively. Naturauy’ Peasy + Pmedium +Phard = 1. According
to the law of total expectation, the error in the entire sample
space can be split into three regions and calculated separately.
Thus, we yield

*

+ PharaErrhara(c’),
BiasT(c") = peasyBiasTeasy(c”) + Pmedium BiasTmedium (c)
+ PraraBiasThara(c”),
VarT(c*) = peasyVarTeasy () + pmediumV arTmedium (c*)
+ prardVarThara(c).

ET’I"(C*) = peasyErreasy (C*) + pmediumErTmedium(C*)
)

When the weights (1 + ¢€) are exerted on samples in Rhi:?
then BiasT(c*) and VarT(c*) become
BiasT(c") = peasyBiasTeasy(c”) + Pmedium BiasTmedium(c”)
+ Prara BiasThard + €pharaBiasThara(c’),
VarTe(c") = peasyVarTeasy(c”) + pmedivm V arTmedium(c*)
+ prardVarTharda(c”) + €praraV arThara(c”).

(16)

Based on Egs. (14) and (16), we have

0BiasT(c) n OVarT.(c)

8C o 80 c*
OVarThar OBiasTh,,
=0+ ephara aTah alc) + iasThara(c) ) <0.
c o de o

(17)
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Fig. 9. (a): loss gradients of different weighting methods. (b) loss gradients of FlexW with four priority modes. (c) weights curves of FlexW with four priority

modes.

Accordingly, the model complexity should be increased to
attain the new balance between the bias and variance terms.
Alternatively, the new optimal model complexity c,.,, will be
larger than c*. The proof for Proposition 2 is with a similar

inference manner.

B. Gradient Analysis of FlexW

The weighting strategies affect the training process by
influencing the loss gradients of samples. To better understand
FlexW, the gradient of the loss function with FlexW is
analyzed. The loss gradient of CE loss with FlexW is:

ac _oc oy
dz dp 0z
=p(1=p)(1—p+a)~le77Pralc (18)
(71og pl(p — @) - —L2),
p
where p = 1—5-% The gradient of CE loss with FlexW is in

comparison to the gradients of CE loss, Focal loss [3], CE
loss with SPL-Log [20], and ASL [34].

Fig. 9(a) shows the gradients of different weighting strate-
gies. Under CE loss, harder samples have larger gradients
than easier ones. Focal loss increases the gradients of hard
samples. However, it is sensitive to noise. ASL decreases the
gradients of quiet-hard samples. Fig. 9(b) shows the gradients
of the four variants of FlexW with CE loss. The weight
curves of the four variants are shown in Fig. 9(c). When the
easy/medium/hard/two-ends-first mode of FlexW is utilized,
the loss gradients of easy/medium/hard/both easy and hard
samples are increased compared with those under CE loss.
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