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Abstract

In this paper, we propose an integrated Economic manufacturing quantity

(EMQ) model combining both the concepts of condition-based maintenance

(CBM) and imperfect manufacturing process. The manufacturing process is

modelled by two indicators. One possesses binary state, indicating whether the

manufacturing process is in-control or not. The other one is modelled by a ho-

mogeneous Gamma process, representing the degradation of the manufacturing

equipment. The system is inspected at the end of each production run, upon

which, the deterioration level can be perfectly observed, while two types of errors

may occur in revealing the state of the manufacturing process. Defective prod-

ucts can be fabricated when the manufacturing state degrades. An integrated

production and CBM policy is proposed. The objective is to develop the optimal

production lot-sizing and preventive maintenance threshold in order to minimize

the expected cost rate in the long-time horizon. We model the problem in the

framework of a semi-Markov decision process. The successive-approximations

method is applied to solve the problem numerically. The applicability of the

proposed model and some sensitivity analysis are presented in a numerical illus-

tration. It can provide theoretical reference to the decision-maker in production

and maintenance planning.
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1. Introduction

Planing production and maintenance are major issues that have been investi-

gated extensively in manufacturing systems. In the classical economic manufac-

turing quantity (EMQ) models, the commonly considered problems are how to

determine the lot sizing and inventory level, and how to schedule and sequence

the production operations [1, 2, 3, 4]. In maintenance modelling, the objective is

usually to minimize the maintenance cost or to maximize the system availabil-

ity, where decisions are only based on the health condition of the system [5, 6].

In effect, production planning and maintenance are highly coupled [7, 8, 9, 10].

Production performance is usually interrupted by various uncertainties such as

machine failures, material delays, human errors, quality failures, etc. Mainte-

nance activities can restore the equipment from breakdown/degradation to the

normal working state. It plays an important role in the smooth running of

the production process. In addition, maintenance scheduling should be coordi-

nated with production planning: when developing the maintenance policy, its

interruption to the production process should be considered. It has been shown

that the integrated consideration can lead to an increase of profit up to 40%

theoretically [11] . It is beneficial to jointly consider the problem of production

scheduling and maintenance planning.

In recent decades, condition-based maintenance has received enormous at-

tention due to the development of the monitor technique and the costless sensor

[12, 13, 14, 15]. It allows the decision-maker to schedule maintenance planning

by utilizing data related to the system condition, which is more accessible com-

paring to failure data. Considering the joint optimization of the production and

CBM scheduling problem, Peng and van Houtum [16] modelled the deteriora-

tion process of a manufacturing system by a continuous time and continuous

state process, the average cost rate in the long-run was employed to assess the

production and maintenance policy. Jafari and Makis [17, 18] studied a partially

observable deteriorating system with discrete states, self-announcing failure and

stochastic demand. They showed the advantages of conducting safety stock in
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minimizing the production and maintenance budget. Cheng et al. [19] focused

on a multi-component system with structural and economic dependencies. A

jointly Monte Carlo simulation technique and genetic algorithm were employed

to search for the optimal lot size and preventive maintenance (PM) threshold.

Based on the proportional hazards models with a continuous-state covariate

process, Zheng et al. [3] considered the joint optimization of the lot size and the

dynamic control limits in the framework of the semi-Markov decision process.

In most of the above studies, only one indicator is utilized to describe the

health condition of the equipment. In effect, there exist many scenarios where

utilizing one indicator is insufficient to describe the manufacturing process. On

the one hand, a manufacturing system may consist of multiple components to

complete its functionality synergistically, for instance, the redundancy system

[20, 21, 22], the load-sharing system [23, 24, 25]. It is essential to consider

the state of each component in the modelling of the degradation at the system

level. On the other hand, the manufacturing process may experience various

out-of-control scenarios due to various causes. Some may has multiple degra-

dation states that can be observed by sensors. Some are less predictable with

only failure state and working state. It is a general case where discrete and

continuous quantities are simultaneously involved in assessing the system oper-

ating condition. For example, during the hardening process, the electric motor’s

bearing may fail due to the natural fatigue, component damage, over loading,

or poor design [26]. Hence, to describe the condition of the manufacturing pro-

cess, indicators in both discrete and continuous state spaces are employed in

this study.

Imperfect inspection and production loss are considered in this work. Due

to human errors, technology and cost limitations, etc., inspection errors are

inevitable. It is more realistic to take them into account in production and

maintenance control problems. In the literature, they are generally classified as

the type-I error and type-II error [27, 28, 29, 30, 31]. The former indicates that

false alarm signal shows up when the considered system is in its normal state.

The latter implies that system failure is not revealed by the inspection such that
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we erroneously identify it as in its normal state. Both of them may cause neg-

ative effect on the production and maintenance management. Production loss

exists extensively in the manufacturing process. Defective items can be fabri-

cated when the machine state or the manufacturing process degrades. In this

context, Cheng et al. [32] considered that the proportion of defective items was

a function of the system deterioration which was modelled by a homogeneous

Gamma process. In the work of Khatab et al. [33], they utilized two defective

rates associating with the system degradation level to describe the quality loss.

Rivera-Gomez et al. [34] considered that the defective rate was a function of

the stage of the ageing process and the number of repairs.

In this study, we intend to develop an integrated EMQ and CBM model

where two indicators are utilized to describe the manufacturing process. In-

spection errors and production loss are also taken into account. With the above

considerations, this model is more realistic and flexible in describing many man-

ufacturing scenarios, where both discrete random variable and continuous-time

degradation process are utilized. It is also more complex and challenging when

decisions are made on the basis of two-dimensional information with errors. The

quality loss depends on both the equipment degradation and the state of the

manufacturing process. The main contributions of this study are as follows.

• We investigate the joint design of production and CBM control strategies.

• We utilize two indicators to describe the manufacturing process.

• The quality loss depends on both the equipment degradation and the state

of the manufacturing process.

• The impact of imperfect inspections with two types of errors are taken

into consideration in the joint design problem.

The rest of the paper is organized as follows. In Section 2, the model descrip-

tions including the system characteristics, the manufacturing process, etc., are

introduced. In Section 3, we present the CBM policy and formulate the assess-

ment cost function in the semi-Markov decision process. The problem is solved
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numerically and an illustrative example is illustrated in Section 4. Finally, we

make our conclusion in Section 5.

2. Model description

Consider a manufacturing machine that produces a single product with lot

size Q in each production run. The production and demand rates are respec-

tively p and d, p > d. The machine ceases to operate for (p− d)Q/d time period

whenever the lot sizing arrives at its target. Let τ be the production run, which

means that τ = Q/d. Once the inventory is empty, the manufacturing process

starts over. To ensure the system functionality and control the production bud-

get, the equipment is inspected at the end of each production run, where two

types of information can be obtained.

One is related to the system degradation modelled by a homogeneous Gamma

process. Let Yt represents the deterioration of the system at time t with prob-

ability density function

ψat,b(x) =
bat

Γ(at)
e−bx, x ≥ 0, (1)

where Γ is a gamma function with

Γ(at) =

∫ ∞

0

vat−1e−vdv.

Define σy as the first passage time corresponding to threshold y, y ≥ 0, which

is expressed as

σy = inf{t ≥ 0, Yt ≥ y}.

Let Gσy
(t) be the distribution function of σy, then it can be further expressed

as follows:

Gσy (t) = P(σy ≤ t) = P(Yt ≥ y) =
Γ(at, by)

Γ(at)
, (2)

where Γ(·, ·) is the incomplete Gamma function with

Γ(a, x) =

∫ ∞

x

za−1e−zdz.
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The corresponding density function of σy is defined as gσy (t),

gσy
(t) =

a

Γ(at)

∫ ∞

by

(ln(u)− ψ(at))uat−1 exp(−u)du, (3)

with

ψ(u) =
dln(Γ(u))

du
. (4)

The other one is a random variable indicating whether the manufacturing pro-

cess is identified as in-control or not. Define that

Xt =

 0, if the production process is identified as in-control at t,

1, if the production process is identified as out-of-control at t.

Let T be the sojourn time in the in-control state. Its cumulative density function

(CDF) and probability density function (PDF) are F (·) and f(·) respectively.

Define α and β as the type I and type II errors respectively, which can be given

as

α = P (Xt = 1 | T > t). (5)

β = P (Xt = 0 | T ≤ t). (6)

We will utilize the tuple
(
Xt, Yt

)
to represent the inspection information where

Xt is a discrete random variable and {Yt}t≥0 is a continuous stochastic process.

Hence,
(
Xt, Yt

)
contains the information about the health condition of the man-

ufacturing process. The impact of the health condition of the equipment on the

production is considered in this study. Suppose that whenever the degrada-

tion is severe, or the system is in the out-of-control state, defective items are

fabricated. The defective rate rd is given as

rd =


r01, Xt = 0, Yt > L, (7)

r10, Xt = 1, Yt ≤ L,

r11, Xt = 1, Yt > L.

Equation (7) indicates that all items are non-defective when the manufacturing

process is in control and the degradation of the system is less than the threshold
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L. Otherwise, defective items are inevitably fabricated with defective rates

depending on
(
Xt, Yt

)
. It is reasonable to assume that r01 < r11 and r10 < r11.

For the above system, we have modelled the impact of the health condition

of the equipment on the production. Due to ageing and degradation, defec-

tive items may occur and the idea production output is hard to achieve. We

therefore propose a CBM policy for the joint production and maintenance opti-

mization issue. We take the long-run expected cost occurred in the production

and maintenance process as the objective function. The production lot-sizing

Q and the condition-based maintenance threshold are employed as the decision

parameters. Details are presented in the next.

Figure 1: Illustration of preventive maintenance

3. Maintenance analysis

Assume that the production initiates from the perfect in-control state with

zero machine deterioration. At the end of each production run, the degradation
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level is perfectly revealed and the control state of the production process is

identified. Define the system state Sk as

Sk =

{
(k, y), if Xkτ = 0, Ykτ = y, (8)

(F , y), if Xkτ = 1, Ykτ = y,

where k signifies that the manufacturing process is regarded as in-control at

the kth inspection. F implies that the manufacturing process is identified as

out-of-control.

The maintenance policy is as follows.

case 1. If the degradation level y exceeds M , 0 < M < L, the system is

renewed immediately to state (0, 0), meaning that the degradation of the

system is restored to 0, and the production process is surely in-control as

in the beginning of the manufacturing process.

case 2. If system in state (F , y), y ≤M , the assignable cause is searched.

– If the out-of-control signal is validated, reactive maintenance is exe-

cuted to restore the system to the in-control state (0, y).

– If the alert is false, a compensatory maintenance is implemented to

adjust the in-control process to a as-good-as-new state (0, y).

case 3. Otherwise, no maintenance action is implemented and the machine

will experience an idle time of period Q/d.

For simplicity, assume that both the control process and the degradation

suspend during the idle period. Maintenance times are non-negligible. The

production process starts over after the idle period or when maintenance is

finalized, which occurs first. Figures 1 and 2 illustrate examples of case 1 and

case 2 respectively. The system state they can be categorized as follows.

• state (0, 0): the system is in its as-good-as-new state,

• state (k, y): the manufacturing process is identified as in-control at the

kth inspection since its last renewaland the degradation level of the system

is y, k ̸= 0, 0 < y ≤M,
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Figure 2: Illustration of adjustment of the control state

• state (0, y): the system undergoes reactive or compensatory maintenance

such that the control process is renewed and the degradation level of the

system is y, 0 < y ≤M ,

• state (PM10, y): the control process is renewed by the compensatory main-

tenance due to the false alarm, 0 < y ≤M ,

• state (PM11, y): the control process is renewed by the reactive mainte-

nance due to the right detection, 0 < y ≤M ,

• state MS1: the system is perfectly maintained when the degradation level

is between M and L.

• state MS2: the system is perfectly maintained when the degradation level

exceeds L.

9



Therefore, the state space of the maintained systems is

S =

{
(0, 0) ∪ {(k, y), k ∈ N, 0 < y ≤M} ∪ {(PM10, y), 0 < y ≤M}

∪{(PM11, y), 0 < y ≤M} ∪MS1 ∪MS2

}
.

We consider the long-run expected cost occurred in the production and main-

tenance process as the objective function where the optimal lot-sizing and the

PM threshold are determined. The problem is formulated in a semi-Markov

decision process where costs occurred in the manufacturing process include the

inspection cost, holding cost, shortage penalty and maintenance cost, etc. The

cost structure is as follows.

• The inspection cost to reveal the system state: cI

• The holding cost of each item is ch

• The restoration cost of a defective item is cd

• The time loss cost when the degradation level exceeds L is cl1 per unitary

time.

• The time loss cost due to the maintenance is cl2 per unitary time.

• The compensatory maintenance cost due to the false identification of the

system control state is cp0 with time tp0

• The cost to restore the system from the out-of-control state to the in-

control state is cp1 with time tp1

• The preventive renewal cost of the system is cp with time tp

• The maintenance cost is cf with constant time tf when the degradation

level exceeds L.

It is reasonable to assume that cf > cp > cp1 > cp0 and tf > tp > tp1 > tp0.

In the next, given the system state space S, the transition probabilities are

calculated.
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3.1. Transition probability

Due to the imperfect inspection with possible inspection error, define γk

as the probability that the manufacturing process is in-control given that the

system state is (k, y). Then γk can be represented as follows.

γk = ᾱkF̄ (kτ), (9)

where ᾱ = 1 − α with α the false alarm probability, F̄ = 1 − F with F the

cumulative density function of the sojourn time in the in-control process. γk

equals to the probability that the process is always in control and no type I error

has been made untill the kth inspection. Similarly, define ηk as the probability

that the manufacturing process is out-of-control given that the system state is

(k, y). It means that the manufacturing process shifts to the out-of-control state

between (i − 1)τ and iτ and it has not been revealed due to inspection errors

until the kth inspection. Hence, ηk can be derived as follows.

ηk =

k∑
i=1

(F (iτ)− F ((i− 1)τ))ᾱi−1βk−(i−1), (10)

where ᾱ = 1 − α with α the false alarm probability, β is the probability of

type-II error.

Let pA→B be the transition kernel corresponding to the state transition

from A to B. First, consider that the initial state is (k, x), then the system may

experience a production run without failure or alert, then

p(k,x)→(k+1,y) =

[
γk

γk + ηk
(
F ((k + 1)τ)− F (kτ)

F̄ (kτ)
β +

ᾱF̄ ((k + 1)τ)

F̄ (kτ)
) (11)

+
βηk

γk + ηk

]
ψaτ,b(y − x).

where γk and ηk have been presented in equations (9) and (10) respectively.

ψaτ,b has been given in equation (4). p(k,x)→(k+1,y) is the kernel that the degra-

dation goes for x to y in time period τ , meanwhile, the manufacturing process

is either in control and is well identified, or, it shifts to the out-of-control state

at the (k+1)th inspection and type II error is conducted. Whenever a out-of-

control signal is observed, the assignable cause is searched and if the alert turns

11



out to be false, then

p(k,x)→(PM10,y) =
γk

γk + ηk

αF̄ ((k + 1)τ)

F̄ (kτ)
ψaτ,b(y − x). (12)

Otherwise,

p(k,x)→(PM11,y) =

[
γk

γk + ηk

F ((k + 1)τ)− F (kτ)
F̄ (kτ)

β̄ +
β̄ηk

γk + ηk

]
ψaτ,b(y − x). (13)

Whenever the system is maintained, the transition probabilities can be further

expressed as

p(k,x)→MS1
= GσM−x

(τ)−GσL−x
(τ), (14)

p(k,x)→MS2
= GσL−x

(τ). (15)

where G is given in equation (2). Other transition kernels probabilities are

P(PM10,y)→(0,y) = 1, (16)

P(PM11,y)→(0,y) = 1,

PMS1→(0,0) = 1,

PMS2→(0,0) = 1.

In equations (11)-(16), ψ is the density function given in equation (1), γk and

ηk have been presented in equations (9) and (10). G is given in equation (2).

ᾱ = 1 − α with α the false alarm probability, β is the probability of type-II

error. F̄ = 1−F with F the cumulative density function of the sojourn time in

the in-control process.

3.2. Expected cost

First, the number of defected items during the manufacturing process with

various initial system state is calculated. When the system stays in state (k, y),

meaning that the manufacturing process is labelled as in-control at the kth

inspection since its last renewal time and the degradation level is y. Let Nd(k, y)

be the expected number of the defected items until the next decision epoch given

the initial system state (k, y), which can be further expressed by

Nd(k, y) =
γk

γk + ηk
Nd(k, y; γk) +

ηk
γk + ηk

Nd(k, y; ηk), (17)
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where Nd(k, y; γk) represents the expected number of the defective items given

that the manufacturing process is in the in-control process with all correct k

inspections and the degradation level is y, Nd(k, y; ηk) represents the scenario

that the out-of-control is not identified due to the type II errors by the kth

inspection. Given that the manufacturing process is in control with degradation

level y, the number of expected defective items can be calculated as follows.

Nd(k, y; γk) = r10pḠσL−y
(τ)

∫ τ

0

f(v + kτ)

F̄ (kτ)
(τ − v)dv (18)

+r01p
F̄ ((k + 1)τ)

F̄ (kτ)

∫ τ

0

(τ − t)dGσL−y
(t)

+r11p

∫ τ

0

∫ τ

0

f(v + kτ)

F̄ (kτ)
(τ −max(v, t))dvdGσL−y

(t)

Equation (18) can be explained as follows. On the right-hand side, the first

item represents the mean number of defective items when the process shifts to

the out-of-control state and the degradation level is less thant L. The second

item is the expected defective item when the manufacturing is in-control but

the degradation level exceeds L. The third item is the expected defective items

when the manufacturing process turns to be out-of-control and also, the degra-

dation level exceeds L. For the scenario that the out-of-control state is not well

identified due to type II error, Nd(k, y; ηk) can be derived.

Nd(k, y; ηk) = r10pτḠσL−y
(τ) +

∫ τ

0

(r10t+ r11(τ − t))dGσL−y
(t) (19)

= r10

∫ τ

0

ḠσL−y
(t)dt+ r11

∫ τ

0

GσL−y
(t)dt

In equations (18)-(19), r10, r01, r11 are the defective rates under different system

states given in equation (7), Ḡ = 1 − G with G presented in equation (2),

F̄ = 1 − F with F the cumulative density function of the sojourn time in the

in-control state, τ is the length of a production run, p is the production rate.

By substituting equations (18)-(19) into equation (17), the expected number of

defective items can be obtained.

Define Cs as the total expected cost during the manufacturing process from

system state s until the next decision epoch, s ∈ S. Then we have the following
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equations.

C(0,y) = cI +
(p− d)τ2ch

2
+ cdNd(k, y) + cl1

∫ τ

0

GσL−y
(t)dt (20)

C(k,y) = cI +
p(p− d)τ2ch

2d
+ cdNd(k, y) + cl1

∫ τ

0

GσL−y
(t)dt, k ̸= 0. (21)

The difference of equations (20) and (21) is that when k > 0, there exists extra
inventory cost from the end of a production run to the run-out of the inven-
tory. Whenever the maintenance actions are implemented, the corresponding
expected total costs are presented as follows.

C(PM10,y) = cp0 + cl2dmax
(
tp0 − (

Q

d
− τ), 0

)
+

(p− d)2τ2

2d
ch. (22)

C(PM11,y) = cp1 + cl2dmax
(
tp1 − (

Q

d
− τ), 0

)
+

(p− d)2τ2

2d
ch. (23)

CMS1 = cp + cl2dmax
(
tp − (

Q

d
− τ), 0

)
+

(p− d)2τ2

2d
ch. (24)

CMS2 = cf + cl2dmax
(
tf − (

Q

d
− τ), 0

)
+

(p− d)2τ2

2d
ch. (25)

In equations (20)-(25), The expected cost includes the maintenance cost, the

holding cost and the possible penalty when the maintenance time is long such

that shortage occurs. r10, r01, r11 are the defective rates under different system

states given in equation (7), Ḡ = 1 − G with G presented in equation (2),

F̄ = 1 − F with F the cumulative density function of the sojourn time in the

in-control state, τ is the length of a production run, p and d are respectively

the production rate and demand rate.

3.3. Expected sojourn time

Let Ts be the expected sojourn time until the next decision epoch when the

initial system state is s, s ∈ S. In effect, the expected sojourn time depends

only on the degradation level of the equipment. Whenever the system state

is s = (k, y), which means that the deterioration level is y at the end of the
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kth production run since the as-good-as-new state of the state, for any k ∈ N,

0 ≤ y ≤M , then the expected costs are

T(k,y) = (
Q

d
− Q

p
)I{k ̸=0} +

Q

p
, (26)

T(PM10,y) = max
(Q
d
− Q

p
, tp0

)
, (27)

T(PM11,y) = max
(Q
d
− Q

p
, tp1

)
, (28)

TMS1
= max

(Q
d
− Q

p
, tp

)
, (29)

TMS2 = max
(Q
d
− Q

p
, tf

)
. (30)

In equations (26) and (27), obviously that the expected time is equals to the

run-out of the inventory from the beginning of a production run if k = 0.

Otherwise, the expected time is the production run. In equations (28)-(30), the

expected time is either Q/d−Q/p, or the end of the maintenance, which occurs

first. I· is the indicator function, Q is the lot-size, p and d are respectively

the production and demand rates, tp0, tp1, tp and tf are the maintenance cost

presented in the cost structure. Hence, the expected sojourn time in each state

can be obtained.

To calculate the long-run expected cost rate of the system, define πs as the

stationary distribution that the system stays in s, s ∈ S, then the following

balance equations can be obtained.

π(k,y) = π(0,0)p(0,0)→(k,y)I{k=1} +

∫ y

0

π(k−1,x)p(k−1,x)→(k,y)dx, (31)

π(PM11,y) = π(0,0)p(0,0)→(PM11,y) +
∑
k∈N

∫ y

0

π(k,x)p(k,x)→(PM11,y)dx,

π(PM10,y) = π(0,0)p(0,0)→(PM10,y) +
∑
k∈N

∫ y

0

π(k,x)p(k,x)→(PM10,y)dx,

π(0,y) = πPM11,y + πPM10,y,

πMS1
= π(0,0)p(0,0)→MS1

+
∑
k∈N

∫ M

0

π(k,y)p(k,y)→MS1
dy,

πMS2 = π(0,0)p(0,0)→MS2
+

∑
k∈N

∫ M

0

π(k,y)p(k,y)→MS2
dy.
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with the normalization condition

π(0,0) +
∑
k∈N

∫ M

0

π(k,y)dy +

∫ M

0

π(PM11,y)dy +

∫ M

0

π(PM10,y)dy + πMS1
+ πMS2

= 1. (32)

Hence we can obtain C∞(Q,M) as

C∞(Q,M) =

∑
s∈{(0,0),MS1,MS2}

πsCs +
∑

k∈{N,PM10,PM11}

∫ τ

0

π(k,y)C(k,y)dy

∑
s∈{(0,0),MS1,MS2}

πsTs +
∑

k∈{N,PM10,PM11}

∫ τ

0

π(k,y)T(k,y)dy

. (33)

The optimal lot size and the preventive maintenance threshold can thus be

obtained as

(Q∗,M∗) = arg min
(Q,M)

C∞(Q,M).

We utilize the successive-approximations method in this study to solve equations

(31) and to calculate the long-run expected cost rate with the help of equation

(33). As the support of the deterioration state is continuous, we first discretize

it into N states where N is a large integer and the discretize step is δ = M
N .

Hence the deterioration state is Sd = {δ, 2δ, · · · ,M} and the system is said

to be in state k whenever its deterioration falls in ((k − 1)δ, kδ]. Besides, the

sojourn time in the in-control state is finite with sojourn threshold Tmax such

that 1−F (Tmax) < ζ where ζ is a predefined number that approximates 0. For

a given production run τ , denoted by nmax(τ) = ⌈Tmax

τ ⌉, where ⌈x⌉ represents

the ceil of x. Thus the state space of the system can be given by

Stotal = K × Sd ∪ (0, 0) ∪MS1 ∪MS2 ∪ PM10 × Sd ∪ PM11 × Sd, (34)

with K = {0, 1, · · · , nmax(τ)} and Sd = {δ, 2δ, · · · ,M}. We can derive the

stationary distribution and the function C∞(Q,M) respectively. Algorithm 1

gives the detail in calculating C∞(Q,M).
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Algorithm 1: The calculation of C∞(Q,M)

Input : Parameters a, b, α, β, L, r01, r10, r11, p, d, τ , M ch, cd, cI , cl1,

cl2, cp0, tp0, cp1, tp1, cp, tp, cf , tf , ζ, ϵ

Initialization;

(1). Initialize πs with constraint
∑

s∈Stotal

πs = 1;

(2). Determine nmax(τ) and Stotal by equation (34);

(3). Update πs with the discretized version of equation (31), noted as

πnew
s ;

while |πs − πnew
s | > ϵ, for some s ∈ Stotal, do

Update πs: πs ← πnew
s ;

Update πnew
s : by the discretized version of equation (31);

end

Calculate Cs by equations (20)-(25),∀s ∈ Stotal;

Calculate Ts by equations (26)-(30),∀s ∈ Stotal;

Output: Calculate C∞(Q,M) by equation (33).

4. Numerical illustrations

4.1. Model implication background

The proposed model can be considered in the context of a machining center

[32], which is responsible for boring holes to match the housings of cylindrical

gears. Suppose that the production rate p = 20 and the demand rate d = 10.

The quality of the hole, measuring by its diameter and depth, is related to the

degradation level of the boring cutter. It can be described by a homogeneous

Gamma process with pdf given in equation (1). The shape parameter is a = 1.5

and the scale parameter is b = 2. Besides, the manufacturing process may

become out-of-control. Assume that the sojourn time in the in-control state from

its initial state follows a Weibull distribution with cumulative density function

F (t) = 1− e−( t
u )v . (35)

Let u = 5, v = 1.2. It means that the process is more likely to enter into the
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out-of-control process due to ageing and usage. The expected sojourn time in

the in-control is uΓ(1+ 1
v ) which is 4.7 approximately. The probabilities of Type

I and Type II errors are α = 0.05, β = 0.2 respectively. Defective items are

fabricated when the degradation level exceeds L = 4 or when the process is in

the out-of-control state. The defective rates are r01 = 0.05, r10 = 0.1, r11 = 0.2

where r· has been defined in equation (7). Other parameters of the cost units

Table 1: Parameters of cost units and maintenance times
Parameters ch cd ch cl1 cl2 cp11 tp11

0.2 2 10 20 5 30 0.5

Parameters cp10 tp10 cp tp cf tf

1.5 25 0.5 50 1 180

and the maintenance time units are given in Table 1. The optimal production

lot-sizing and the PM threshold are calculated with the help of Algorithm 1. The

discretization step is 0.01 and we chose the precision ϵ = 10−4. The sojourn time

of the manufacturing process in the in-control state is truncated with ζ = 10−4.

The following results are obtained by utilizing Matlab2018b on a Windows 8

Core 64-Bits operating system.

4.2. Numerical analysis

4.2.1. Properties of the PM and system renewal probabilities

Table 2 demonstrates the preventive maintenance and renewal probabilities

in the steady state with various preventive maintenance threshold given Q = 50.

It is observed that both of the two probabilities show decreasing tendencies with

M . The proportion of system renewal due to PM decreases with M too. Because

with smaller M , the system inclines to enter into the preventive maintenance

zone. As the equipment is always replaced when the degradation level exceeds

L, one can imagine that the PM proportion decreases with M .
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Table 2: Preventive maintenance and renewal probabilities with various M

M 1.5 1.6 1.8 2 2.3

PM probability 0.3010 0.2892 0.2665 0.2447 0.2129

Renewal probability 0.3173 0.3077 0.2902 0.2748 0.2545

M 2.6 2.8 3 3.2 3.5

PM probability 0.1806 0.1581 0.1344 0.1093 0.0691

Renewal probability 0.2372 0.2270 0.2178 0.2092 0.1976

4.2.2. Properties of the optimal lot-sizing and PM threshold

Figure 3 illustrates the corresponding expected cost in the long-run C∞(Q,M).

The minimal cost arrives at 19.2981 with optimum M∗ = 2.3, indicating an equi-

librium between over-preventive maintenance and under maintenance. Figure

4 shows the variations of the expected cost rate with respect to the preven-

tive maintenance threshold M and the production run τ . The optimal lot size

and the preventive maintenance threshold are thus (Q∗,M∗) = (46, 2.3). In

each production run, the expected degradation amount equals to 1.725. The

equipment is highly likely to be replaced at the second production run. The

lot-sizing is Q∗ = 46, which will be run out at Q∗/d = 4.6, which can support

the customer demand during maintenance without shortage.

4.2.3. Properties of the expected number of defective items

Figure 5 shows the expected number of defective items fabricated given initial

system state (k, y) in the optimal scenario where (Q∗,M∗) = (46, 2.3). It is

observed that the mean number of defective items increases with both k and y.

Because the sojourn time of the manufacturing process in the in-control state

follows a Weibull distribution with v > 1. The equipment inclined to enter into

the out-of-control state with ageing. Therefore, the number of defective items

are expected to be an increasing function of k. Similarly, a larger degradation

level y indicates a worse health condition of the system, which can contribute

to the increase of defective products too.
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Figure 3: The variation of the long-run expected cost rate with different M .

Figure 4: The variation of the long-run expected cost rate with different M and τ .

4.2.4. Sensitivity analysis

In the next, some sensitivity analysis are conducted to show the charac-

teristics of the model. The variations of the optimal expected cost rate in the

long-run and the corresponding production and maintenance policy are analyzed
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Figure 5: The expected number of defective items Nd(k, y)

in Table 3.

First, we consider the variation of L, which is the threshold that defective

items are fabricated if the degradation level exceeds it. It is observed that for

a smaller L, both the optimal lot size Q∗ and the preventive threshold M∗

are smaller. The decision-maker need to be more conservative in developing

production and maintenance planning to mitigate the cost cd due to defective

products and cost cl1 due to the severe degradation of the equipment. Similarly,

for a system with faster deterioration, the production run and the preventive

maintenance threshold are smaller, where preventive maintenance is preferable

with lower cost and the probabilities of higher defective cost and to be main-

tained with a large maintenance cost of the system become smaller.

For the indicator representing whether the manufacturing process is in con-

trol or not, a Weibull distribution with two parameters u and v is utilized to

describe the sojourn time in the in-control state.Obviously that with a larger

u, the manufacturing process is more stable and stays longer in the in-control

state. Hence, less defective items are fabricated and the reactive/compensatory

maintenance cost are expected to be lower. With a smaller v, v > 1, similar
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characteristics can be observed.

Table 3: The optimum cost rate and the corresponding policies under various critical param-

eters.
L a b u v (Q∗,M∗) C∞(Q∗,M∗)

4 1 2 5 1.2 (46, 2.3) 19.3886

3.5 1 2 5 1.2 (40, 2.2) 20.2790

4 1.5 2 5 1.2 (40, 2.1) 22.2990

4 1 2.2 5 1.2 (48, 2.4) 18.8377

4 1 2 10 1.2 (42, 2.4) 19.4184

4 1 2 5 1 (46, 2.3) 19.3604

5. Conclusions

In this study, we have designed an integrated EMQ and CBM control policy

of a manufacturing system. We utilize two indicators to represent the health

condition of the production process. One is modelled by a homogenous Gamma

process, in continuous time with continuous state. The other one is described by

a binary random variable. This is a general assumption where discrete and con-

tinuous quantities are simultaneously involved in assessing the system operating

condition. We consider that the defective rate varies with the two indicators.

Another novelty of this study is that inspection errors are considered. It is more

realistic to consider the misidentification of the health condition as it seems in-

evitable in reality. For such a production system, we assess the production and

maintenance policy by the long-run expected average cost rate, where the hold-

ing cost, cost due to defective production and maintenance cost are considered.

The optimal lot-sizing and preventive maintenance threshold are decision pa-

rameters. The result may provide theoretical reference for the decision-maker

when developing integrated production and maintenance strategy.

This model could be further extended in the following perspectives. First, we

considered two indicators to represent the manufacturing system. It is more re-
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alistic and interesting to extend the study to the multi-indicator case, because a

manufacturing system may fail to operate due to multiple competing failures. In

addition, the assumption that indicators are independent is a strong condition.

Stochastic dependence becomes a common phenomenon in production systems,

especially the complex and Intelligent systems. Dependent indicators consid-

ering the coupling effect between the manufacturing process and the machine

degradation is an interesting topic.

Secondly, the manufacturing equipment is assumed to be a single-component

system. However, modern production systems are usually more and more com-

plex and intelligent. When structure dependence is involved and all components

contribute to the product quality, the optimal production and maintenance issue

is more challenging. A lot of work can be extended in this regard.

Thirdly, imperfect inspection is considered where two types of inspection

errors are assumed to be constant. In effect, the inspection errors may depend

on the ageing or usage of the system. Time-dependent or usage-dependent

inspection errors and the corresponding impact on the optimal integrated policy

can be explored.
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