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Abstract

This paper develops a condition-based maintenance (CBM) model for a multi-

component system operating under a dynamic environment. The degradation

process of each component depends on both its intrinsic characteristic and the

common operating environment. We model the environment evolution by a

continuous-time Markov process, given which, the degradation increment of

each component is described by a Poisson distribution. System reliability is

firstly obtained, followed by a CBM policy to sustain system operation and en-

sure safety. In modelling the environmental effect on component degradation

processes, two scenarios are considered. The first scenario considers renewable

environment evolution while the second scenario on non-renewable environment

evolution. The problem is casted into the Markov decision process (MDP)

framework where the total expected discounted cost in the long-run horizon is

utilized as the optimization objective to assess the policy. Structural proper-

ties of the optimal maintenance policy are investigated under mild conditions,

which are further embedded into the value iteration algorithm to reduce the

computational burden in calculating the maintenance cost. Applicability of the

proposed model is illustrated through numerical examples.
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Notation

N Number of components in the system

Φ Set of components, Φ = {1, 2, · · · , N}

Sl Set of environment states, Sl = {0, 1, · · · ,m}

E1\E2 Set-theoretic difference of sets E1 and E2

Wt Environment state at time t

Li Failure state of component i, i ∈ Φ

x vector of length N representing the degradation state of the

system

xi the ith element in x denoting the degradation of component i

S Set of the system state

Sg Set of system degradation states under which the system is

functioning

S
(1)
g Subset of Sg under which all components are functioning

S
(2)
g Subset of Sg under which failures exist at the component level,

Sg = S
(1)
g ∪ S

(2)
g

λi(t, w) Parameter of the Poisson distribution corresponding to compo-

nent i in environment w, i ∈ Φ, w ∈ Sl

ot Realization of the system degradation at time t

Pwl(t,x) Probability that the degradation increment is x with environ-

ment state l given the initial brand-new state and environment

state l, w, l ∈ Sl.

P (t,x) Matrix form of Pwl(t,x)

Λi(t,x) Diagonal matrix with the (w,w)th entry λi(t, w), i ∈ Φ, w ∈ Sl

Λ(t,x) Diagonal matrix, Λ(t,x) =
∑
i∈Φ

Λi(t,x)

I{·} Indicator function

R(t;v) System reliability function at t given the initial brand new state

and the environment state v
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R(t;x,v) System reliability function at t given the initial degradation

state x and the environment state v

cI Inspection cost each time

cs Maintenance set-up cost each time

cpi Preventive replacement cost of component i

cri Corrective replacement cost of component i

cd Penalty of the system down-time per unitary time

cf System replacement cost

γ Parameter associated with the discounted factor

Cins(τ) Total expected inspection cost in the long-run horizon

κτ (·) Transition kenel

Dτ (x, w) Expected downtime during time period τ given the initial sys-

tem degradation x and environmental state w

Uτ (x, w) Expected cost until the next inspection epoch given the initial

system degradation x and environmental state w

Vτ (x, w) Value function when the environment is renewable, denoting

minimum expected total discounted maintenance cost in the

long-run horizon given the initial degradation state x and en-

vironmental state w

V̂τ (x, w) Value function when the environment is non-renewable, denot-

ing minimum expected total discounted maintenance cost in

the long-run horizon given the initial degradation state x and

environmental state w

1. Introduction

With the increasing demand on high quality and safety of systems/products,

reliability evaluation and maintenance planning become increasingly more im-

portant in improving system safety and reducing operation budget in industrial

field. Compared with the ideal laboratory environment, in practice, a system

usually operates in a time-varying environment which exerts impacts on system
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functionality and performance. For instance, the lifetimes of components in an

aircraft are related to the atmospheric operating condition such as pressure,

temperature, mechanical vibration [1]. One can imagine that during flying and

landing, the security requirements under the two scenarios are different. In the

oil and gas industry, the flows of gas, oil and water contribute to the corrosion of

throttle valves. In railway transportation, locomotive wheels have to be repro-

filed occasionally to reduce the roughness and imbalance among the wheels [2].

The roughness and imbalance is associated with various environmental factors

such as weather conditions, running speed, load, etc. It is therefore necessary

to take the operating environment into consideration in assessing system relia-

bility and developing maintenance strategies. Relevant studies have addressed

the above issues in the literature [3, 4, 5]. However, existing works mainly fo-

cus on reliability assessment of single-component systems. Models concerning

multi-component systems, especially multi-component degraded systems under

dynamic environment are rather limited. In recent decades, conditional-based

maintenance of multi-component degraded systems has received increasing at-

tention [6, 7]. Most of the existing studies consider that maintenance decisions

are based on the system, i.e., the states of components. However, in practical

operation, the health condition of a system depends not only on its manufac-

turing characteristics, but also on its working environment. For instance, the

degradation of blades in offshore and onshore wind turbine are supposed to be

different. Maintenance schedules should be adaptive to the working condition

of the system. To the best of the authors’ knowledge, little attention has been

paid to the influence of the environment on the maintenance decision-making.

This paper will develop a generic model of degraded systems with heteroge-

neous components under a dynamic working environment. We intend to derive

some system reliability measures and present how to make maintenance plan-

ning based on the observation: the state of system and the state of environment.

We consider the case that the system is periodically inspected, upon which,

the degradation level of each component and their working environment state

are fully and perfectly observed. A condition-based maintenance (CBM) model
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is constructed to prevent system failure: failed components are replaced, mean-

while, non-failed components can be preventively replaced, depending on their

degradation levels. In terms of the environmental impact, this study considers

two scenarios: the first one is that when the system is renewed, the working

environment can be restored to its initial friendly state. As stated in [3], in the

reliability analysis of the transmission system from a mining company, the wear

metals iron was chosen as the covariate related to the system health. Whenever

the system was replaced, this wear metals iron was removed and the environ-

mental effect could be reset to the initial state. The other scenario is that

the environment is independent of maintenance actions, such as the physical

weather. The two scenarios will be referred to as renewable and non-renewable

environment in the following contexts We formulate this problem into a Markov

decision process (MDP) [8, 9] and the total expected discounted cost is utilized

to assess the policy. Specifically, under some mild conditions, structural prop-

erties of the value function and the maintenance policy are derived. The main

contributions of this paper are summarized as follows.

• We investigate the reliability measures and a CBM policy for a system

with multiple heterogeneous degrading components where the system is

generic and no specific system configuration is assumed.

• We discuss both renewable and non-renewable environment effects on the

maintenance strategy and the corresponding maintenance cost.

• We provide exact system reliability measures and the impacts of the envi-

ronment on the system reliability and maintenance policy are examined.

• Under mild conditions, the structural properties of the maintenance policy

and the optimal maintenance cost are derived.

The rest of the paper is organized as follows. In Section 2, related literature

review is given. In Section 3, we present the model assumptions, including

description of the dynamic environment, system configuration and component

characteristics. The system reliability and conditional reliability function given
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the component internal degradation and the dynamic working environment are

presented. Section 4 focuses on the development of maintenance policy, and

formulates the problem into the MDP framework. Structural properties of the

optimal maintenance policy are investigated, which are further incorporated into

a value iteration algorithm for calculation purpose. Numerical illustrations are

presented to show the applicability of the proposed model in Section 5. Finally,

our conclusions and future research directions are provided in Section 6.

2. Literature review

In the literature, most researchers take the model proposed in [10] as the

first study concerning the environment impact on the system reliability where

damages induced by random shocks depended on environment conditions. Since

then, a bunch of studies have been developed [11, 12, 13, 14]. To model the effect

of the dynamic environment on the system health condition, various approaches

have been proposed. The proportional hazards rate model (PHM) and acceler-

ated failure time model (AFTM) are extensively utilized where the environment

effect is incorporated into the failure rate as a covariate [15, 16, 17, 18]. Markov

chain has also received considerable attention in modelling the variation of op-

erating condition, among which, a continuous time Markov chain (CTMC) is

implemented to the scenarios that the transition epochs are arbitrary. Shen

et al. [19] studied the availability and imperfect maintenance of a degrad-

ing system under a dynamic environment described by a CTMC. Under the

constraints of system availability and operating times, the number of optimal

imperfect actions were determined by minimizing the long term expected cost

rate. Zhang et al. [5] incorporated the impact of the environmental influence

on a degradation-threshold-shock model, where system reliability measures, ex-

pected total maintenance cost in the finite horizon and expected cost rate in the

infinite horizon were derived. Discrete time Markov chain (DTMC) is utilized

regarding cyclical transitions of the environment states. Zhao et al. [20] consid-

ered the conditional-based inspection and replacement policy of a non-monotone
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deteriorating system. The observable system degradation was the difference be-

tween two competing processes that depended on an environmental covariate

modelled by a DTMC.

In degradation modelling, for single-component systems, when the degrada-

tion state space is continuous, the Gamma process [21, 22, 23, 24] and Inverse

Gaussian process [25, 26] have been widely implemented to model the mono-

tonic degradation processes. Diffusion processes like Wiener process, Ornstein–

Uhlenbeck process are preferable in describing non-monotonic degradations [27,

28, 29, 30, 31]. When the degradation state is discrete, in general, most of

the studies assume that the degradation process exhibits Markov properties

[32, 33, 34, 35]. For example, Markov chain and compound Poisson process

have been widely used to model the degradation process of discrete states [see

36]. In fact, both the Gamma process and Inverse Gaussian process can be

treated as limits of compound Poisson process [21, 25]. For degrading systems

with multiple components, aside from modelling each component, dependency is

also an important characteristic which should be taken into account: stochastic

dependence, economic dependence, resource dependence, etc. are presented in

detail in [8].

In recent decades, conditional-based maintenance of multi-component de-

graded systems has received increasing attention due to advanced sensors and

the corresponding available data [6, 37, 29]. Poppe et al. [7] studied a hybrid

CBM policy where two degradation threshold of the monitored component were

determined to minimize the maintenance cost or the system downtime. Sun et

al. [38] considered a K-out-of-N system where the degradation of each compo-

nent was described by a Wiener process. They showed that the optimal main-

tenance policy was a multi-dimensional control limit policy. Similarly, Liu et

al.[9] studied the optimal inspection and replacement policy of a two-component

parallel system over a finite time horizon. The system was modelled by a bivari-

ate Gamma process. Several studies have considered multi-component systems

working under dynamic environment. For example, Zhang et al. [1] examined

the reliability of a k-out-of-n system under a dynamic environment, where each
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component possessed binary states. The authors investigated system reliability

measures such as the conditional reliability function, remaining useful life and

asymptotic availability. Shi et al. [39] developed a condition-based maintenance

policy of a degrading system where degradation and environmental observations

were utilized to update the posterior distributions of the failure model param-

eters. They reported that cost-saving could be achieved when the environment

information was incorporated in the decision making. Peng et al. [40] presented

a summary of the state of the arts on the reliability modelling of complex sys-

tems with consideration of the effects of dynamic environments. Through an

overview of the existing literature, it can be concluded that not much attention

has been paid to modelling the influence of the dynamic working environment on

multi-component systems. In addition, when considering maintenance interven-

tions, most of the existing works assume that perfect maintenance can restore

the system to the as-good-as-new state, meanwhile, the environment can be re-

stored to its initial state too. However, this assumption can be violated in some

situations. For instance, when the dynamic environment is seasons or weathers,

it is independent of maintenance actions and is non-adjustable. Both the two

scenarios should be taken into consideration.

3. Problem statement

3.1. System descriptions

In this study, we aim to develop a CBM model of a multi-component sys-

tem operating in dynamic environment modelled by CTMC Consider a system

consisting of N heterogeneous components. Denote the set of components as

Φ = {1, 2, · · · , N}. At the start of operation, it is assumed that all the com-

ponents are in the as-good-as-new state. The degradation level of component

i is categorized into Li + 1 different states, defined as 0, 1, · · · , Li, where state

0 represents the as-good-as-new state and state Li indicates the failure state.

It is assumed that each component goes through a monotonic degradation pro-

cess, where the degradation level is monotonically increasing if no maintenance
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action is executed. The degradation processes of components are assumed to be

independent of each other given the working environment, i.e., no interaction

among the components is considered. The degradation state of the system is

represented by x = (x1, x2, · · · , xN ) where xi is the ith entry of x.

The system works in a dynamic environment which is modeled by a CTMC

{Wt}t≥0 with a finite state space Sl = {0, 1, ...,M}, infinitesimal generator Q

and transition probability πij(t), i, j ∈ Sl. Under environment w, the internal

degradation increment of component j follows a Poisson distribution with pa-

rameter λj(t, w) by time t, j ∈ Φ, t ≥ 0. Thus the degradation evolution of each

component is characterized by its internal degradation and the working environ-

ment. The system state space is defined as S =
{
(x, w) : xi ∈ {0, 1, · · · , Li}, w ∈

Sl

}
where x = {x1, x2, · · · , xN} represents the system degradation state and w

represents the environment state.

3.2. Descriptions of the maintenance process

Suppose that the failures are non-self-announcing at both the system and

component level. The system is periodically inspected with interval τ . The

inspection is perfect upon which the environment state and the state of each

components can be fully observed. Upon inspection, the system is renewed to

the as-good-as-new state if it fails. If the system can still operate but failure

exists at the component level, then the failed components are replaced, at the

same time, each non-failed component can be preventively replaced, or remain

in its current state. Otherwise, if no component fails, then the decision-maker

can choose to:

• do nothing and wait for the next decision epoch;

• preventively replace some degraded components.

The inspection and replacement times are negligible. The cost items involved

in the maintenance policy include:

• Inspection cost: cI ,
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• Maintenance set-up cost: cs,

• The preventive maintenance cost of component i: cpi, i ∈ Φ,

• The corrective maintenance cost of component i: cri, cpi ≤ cri, i ∈ Φ,

• The system replacement cost: cf ,

• Downtime penalty per unitary time due to system failure: cd.

We intend to determine the optimal maintenance strategy, i.e., the inspection

interval and the corresponding maintenance policy that minimizes the long-run

total discounted inspection and maintenance cost.

4. Optimal maintenance policy

This section develops a CBM policy for the system operating in dynamic

environment, where the optimal policy is obtained in terms of the inspection

interval and maintenance action for each system state. We first present the

system reliability analysis, which is an essential part in measuring system fail-

ure probability and is also the stepping-stone for the subsequent maintenance

analysis.

4.1. Reliability analysis

For a new system, denote Pwl(t,x) as the probability that the system state

is (x, l) by time t given its initial state (0, w) at time 0, ot as the realization of

the system degradation state at time t. Then Pwl(t,x) can be expressed as

Pwl(t,x) = P
(
ot = (x1, x2, · · · , xN ),Wt = l | o0 = 0,W0 = w

)
. (1)

Define P (t,x) as the matrix corresponding to Pwl(t,x) which is a |M + 1| ×

|M + 1| matrix with the (w, l)th element as Pwl(t,x). Then the expression of

P (t,x) can be derived with the following lemma.
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Lemma 4.1. Let Λ(t) be a diagonal matrix with the (i, i)th element given as

Λii(t) =
∑
l∈Φ

λl(t, i). When x = 0, meaning that no degradation increment occurs

to each component, P (t,0) satisfies:

dP (t,0)

dt
= P (t,0)

(
Q−Λ(t)

)
, (2)

where Q is the infinitesimal generator of the CTMC. The initial value is

P (0,0) = I which is an identity matrix. In particular, when Λ(t) = Λ, mean-

ing that the degradation increment of each component under given environment

follows a homogeneous Poisson process, then P (t,0) can be further expressed by

P (t,0) = exp
(
(Q−Λ)t

)
. (3)

The detailed proof is given in Appendix A.1.

To calculate P (t,x) in a general case, let us define xi− = (x1, x2, · · · , xi−1, xi−

1, xi+1, · · · , xN ) as the system degradation state where only the degradation of

the ith component is 1 state less compared with x, while the other component

state are identical as x. Then the following lemma can be concluded.

Lemma 4.2. For system state x with xi < Li, ∀i ∈ Φ, P (t,x) satisfies

dP (t,x)

dt
= P (t,x)

(
Q−Λ(t)

)
+

∑
i∈Φ

P (t,xi−)Λi(t), (4)

where Q is the infinitesimal generator of the CTMC. Λi(t) is a diagonal matrix

with the (j, j)th element given as λi(t, j), i ∈ Φ, j ∈ Sl, and P (t,xi−) = 0 if

xi = 0. The initial value is P (0,x) = 0.

The detailed proof is provided in Appendix A.2. We have studied the scenario

that no failure at component level occurs. For the scenarios that failure occurs

at the component level, the following lemma can be used to derive P (t,x).

Lemma 4.3. For a non-failed system state x, where failures occur at the com-

ponent level, i.e. xi = Li for some i ∈ Φ, then P (t,x) can be expressed as:

dP (t,x)

dt
= P (t,x)

(
Q−

∑
i∈Φ,xi ̸=Li

Λi(t)
)
+
∑
i∈Φ

P (t,xi−)Λi(t), (5)
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where Q is the infinitesimal generator of the CTMC. Λi(t) is a diagonal matrix

with the (j, j)th element given as λi(t, j), i ∈ Φ, j ∈ Sl, and P (t,xi−) = 0

if xi = 0. xi− = (x1, x2, · · · , xi−1, xi − 1, xi+1, · · · , xN ). The initial value is

P (0,x) = 0.

The proof is omitted here as it is similar to the proof of Lemma 4.2.

It is worth mentioning that the exact expression of P (t,x) is intractable

due to the fact that Q and Λ(t) are not commute in general. We will turn

to numerical methods to solve the above differential equations. In this work,

we utilize the product-integration method to solve these equations. Details are

given in Appendix A.3. A special case is that if the state of each component is

binary, meaning that Li = 1, ∀i ∈ Φ, then the problem and associated solutions

can be found in [1].

The system reliability can be obtained based on the above lemmas. Denote

Sg as the set of the system degradation states under which the system is in the

functioning state. For instance, consider a two-component system with L1 = 1,

and L2 = 2. If it is a series system, then Sg = {(0, 0), (0, 1)}. If it is a parallel

system, then Sg = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}. If the system works if and

only if component 1 works, then Sg = {(0, 0), (0, 1), (0, 2)}.

The following theorem presents the system reliability and conditional relia-

bility functions.

Theorem 4.1. Let v = (v1, v2, · · · , vM ) represent the initial environment state

vector with vi representing the probability the the initial environment state is i,

i ∈ Sl. The system reliability function R(t;v) can be given as

R(t;v) = v
∑
y∈Sg

P (t,y)e. (6)

Given the initial degradation state level x with xi < Li, ∀i ∈ Φ, the conditional

reliability function R(t;x) can be derived as follows.

R(t;x,v) = v
∑
z∈Sg

P (t, z − x)e, (7)
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where e is a column vector where each entry is 1, P (t,y) has been presented in

Lemmas 4.1-4.3. P (t, z − x) = 0 if zi < xi for some i ∈ Φ.

4.2. Maintenance analysis

For simplicity in maintenance analysis, it is assumed that the Poisson dis-

tribution parameter is independent of the time t, i.e., for all i ∈ Φ, λi(t, w) =

λi(w), which is independent of t and related only to the working environment

in the following analysis. In this study, we consider two scenarios to model the

effect of maintenance actions on the environment. The first one is that when

the system is renewed, the working environment will also be restored to its ini-

tial friendly state. The other scenario is that the environment is independent

of maintenance actions, such as the physical weather. Both of the two cases

are studies in the subsequent maintenance modeling. We utilize the expected

discounted total cost in the long-run horizon to assess the maintenance perfor-

mance. Define exp(−γt) as the discounted factor, where γ ≥ 0. The long-run

discount total inspection cost is given as:

Cins(τ) = cI

∞∑
k=0

exp(−γkτ) =
cI

1− exp(−γτ)
. (8)

Since inspection is implemented at every τ intervals, the total discounted cost

can be obtained by summating the inspection component Cins(τ) and the main-

tenance cost at each inspection epoch. In the following, considering renewable

and non-renewable environmental affects upon maintenance respectively, we

will formulate the maintenance problem into a Markov decision process (MDP)

framework and value iteration algorithm will be used to calculate the mainte-

nance cost.

4.2.1. Maintenance policy for renewable environment state

If the environment state is renewable, when the system is replaced to the as-

good-as-new state, the environment is restored to its initial friendly state. Define

Sd as the set of the system degradation vectors, S(1)
g as the set of the system

degradation states where all components are in their non-failed states, and S
(2)
g
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as the set of the system degradation states where the system is functioning but

failures at the component level exist. Then Sg = S
(1)
g ∪ S

(2)
g represents the

set of the system degradation states denoting the system is functioning. Sd\Sg

represents the system degradation states when the system fails.

Denote Vτ (x, w) as the expected total discounted maintenance cost given

the initial system degradation state x and the environment state w. Hence, the

optimal inspection interval can be searched via

τ∗ = arg min
τ

[Cins(τ) + Vτ (0, 0)].

The Bellman equation of Vτ (x, w) can be expressed as

Vτ (x, w) =



cs + cf + Vτ (0, 0), if x ∈ Sd\Sg,

min
{
cs + C(x,y) + Vτ (y, wI{y ̸=0}),∀y ∈ M(x)

}
, if x ∈ S

(2)
g ,

min
{
Dτ (x, w) + e−γτUτ (x, w),

cs + C(x,y) + Vτ (y, wI{y ̸=0}),∀y ∈ M(x)

}
, if x ∈ S

(1)
g ,

(9)

where cI is the inspection cost, cs is the set-up cost, cf is the system replacement

cost. C(x,y) is the maintenance cost such that the degradation vector transfers

from x to y, expressed as

C(x,y) =
∑

i∈sr(x)

cri +
∑

j∈Φ\sr(x)

cpjI{yj=0}, (10)

where yj is the jth element in y. cp· and cr· are respectively the preventive and

corrective maintenance cost of the considered component. I{·} is the indicator

function. sr(x) is the set of failed components given the degradation observation

x. M(x) contains all the possible degradation states after the corresponding

maintenance action given the degradation vector x.

The Bellman equation can be interpreted as follows. Given the degradation

vector x, the state of each component and the operating environment can be

perfectly revealed. The decision can thus be made based on x. If x indicates

that the system enters into the failed state, then it is renewed with cost cf after
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which the system returns to the as-good-as-new state 0 and the environment

state is restored to the most friendly scenario. If the system is functioning

but failure occurs at the component level, i.e. x ∈ S
(2)
g , then the failed ones

should be replaced, preventive maintenance may also be implemented upon

the functioning components. When no component fails upon inspection, the

decision-maker can choose to do the preventive maintenance at component level

or system level, or do nothing and wait for the next inspection epoch. Under the

scenario that do nothing and wait for the next decision epoch, the cost consists

of the expected discounted downtime cost until the next inspection Dτ (x, w)

and the expected value function of the next inspection epoch Uτ (x, w). The

expected discounted downtime can be calculated as follows.

Dτ (x, w) = cd

∫ τ

0

e−γτ − e−γt

γ
dR(t;x,v(w)) (11)

where cd is the downtime cost per unitary time. R(t;x,v(w)) is the conditional

reliability function which has been presented in Theorem 4.1. We utilize v(w) is

the row vector that the wth element is 1 and others are 0, and τ is the inspection

period.

To obtain Uτ (x, w), the transition probabilities of the system states should

be calculated first. Define κτ

(
(x, w), (y, l)

)
as the probability that the system

degradation state transfers to y from x and the environment transfers from w

to l between two consecutive inspection epoch when the inspection interval is

τ . Then for y ∈ Sg, it follows

κτ

(
(x, w), (y, l)

)
= v(w)

∑
z∈Sg

P (t, z − x)e(l), (12)

P can be derived from Lemmas 4.1-4.3. e(l) is the column vector where the lth

element is 1 and others are 0. Based on the transition kernel, Uτ (x, w) can be

derived as follows.

Uτ (x, w) =
∑
y∈Sg

κτ

(
(x, w), (y, l)

)
Vτ (y, l) + (1−R(τ,x, v(w)))(cs + cf + Vτ (0, 0)), (13)

where Sg is the set of the system degradation vectors indicating that the system

is functioning, κτ is the transition probability given by equation (12), R is the
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reliability function given in Theorem 4.1, cs is the maintenance set-up cost, and

cf is the system replacement cost.

Based on the above Bellman equation, some structural properties of Vτ can

be obtained.

Lemma 4.4. Vτ (x, w) is a non-decreasing function in xi, ∀i ∈ Φ, where xi is

the ith element of x.

The proof is provided in Appendix B.1.

Lemma 4.4 indicates that the expected total maintenance cost in the long-

run horizon increases with the initial degradation states. With the monotonicity

property of the value function, we can have the following theorem that provides

insights for the optimal maintenance actions.

Theorem 4.2. For the system with state (x, w) and inspection interval τ , we

have the following statements:

• Given (x, w), if component i is replaced in the optimal policy, then for

systems with state (xi+, w), component i should also replaced.

• Given (x, w), if component i has not been replaced in the optimal policy,

then for systems with state (xi−, w), component i should also remain

unchanged.

where xi− = (x1, x2, · · · , xi−1, x
(−)
i , xi+1, · · · , xN ) is the system degradation

state where only the degradation of the ith component is less comparing to x,

and xi+ = (x1, x2, · · · , xi−1, x
+
i , xi+1, · · · , xN ) is the system degradation state

where only the degradation of the ith component is larger comparing to x.

The proof of Theorem 4.2 is provided in Appendix B.2. A special case is that

when all the components follow an identical Poisson distribution for the inter-

nal degradation process, i.e. λi(w) = λj(w), ∀i, j ∈ Φ, w ∈ Sl, the optimal

maintenance policy can be further simplified. Obviously, when the compo-

nent characteristics and the maintenance unitary costs are identical to all the

components, it is unnecessary to distinguish the components. In this case, if
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components are to be replaced, it is always optimal to replace the components

with the largest degradation states. In addition, the following corollary shows

the properties of the optimal maintenance policy.

Corollary 4.1. If all the components follow an identical Poisson distribution

for the internal degradation process, i.e., λi(w) = λj(w), ∀i, j ∈ Φ, w ∈ Sl,and

the maintenance costs are identical with cpi = cp < cr = cri for any i ∈ Φ.

Given the environment state w, the inspection interval τ , and initial system

degradation state x with corresponding ordered degradation x̃, where x̃i is the

ith largest element in x, it follows

• There exist a boundary l∗1(x̃2, x̃3, · · · , x̃n) between “Do nothing and wait

for the next decision epoch” and “replace 1 component”. When x̃1 <

l∗1(x̃2, x̃3, · · · , x̃n), “do nothing” is better, otherwise “replace 1 component”

is better.

• For i = 2, 3, · · · , n − 1, there exist a boundary li(x̃i+1, x̃i+2, · · · , x̃n) be-

tween “replace i − 1 components ” and “replace i components”. When

x̃i < li(x̃i+1, x̃i+2, · · · , x̃n), “replace i − 1 components” is better, other-

wise, “replace i components” is better.

Corollary 4.1 can be readily obtained based on Theorem 4.2, and therefore the

detailed proof is omitted to avoid repetition. However, it is difficult to develop

theoretical properties with respect to the environment state and the inspection

interval. We intend to evaluate the influence of the two factors numerically.

4.2.2. Maintenance policy for non-renewable environment states

In this section, we consider the case that the environment state is non-

renewable, meaning that if the system is in the failed states, then it is renewed

to state 0 as discussed in Section 4.2.1, while the environment state remains un-

changed. Other assumptions are as identical as those in Section 4.2.1. Likewise,
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the Bellman equation of the value function V̂τ (x, w) is given as follows.

V̂τ (x, w) =



cs + cf + V̂τ (0, w), if x ∈ Sd\Sg,

min
{
cs + C(x,y) + V̂τ (y, w),∀y ∈ M(x)

}
, if x ∈ S

(2)
g ,

min
{
Dτ (x, w) + e−γτUτ (x, w),

cs + C(x,y) + V̂τ (y, w),∀y ∈ M(x)

}
, if x ∈ S

(1)
g ,

(14)

where C(x,y) a has been given in equations (10), M(x) contains all the possible

degradation states after the corresponding maintenance action given the degra-

dation vector x. sr(x) is the set of failed components given the degradation

observation x. It can be observed that the only difference between equation (9)

and equation (14) lies in the effect of maintenance actions on the environmen-

tal states. In Section 4.2.1, when the environment is renewable, environment

state is renewed to 0 together with renewal of the system states. Otherwise, the

environment remain unchanged. When the environment is non-renewable, en-

vironment state is always remain unchanged whatever the maintenance actions

on the system (14).

Similar to Lemma 4.4, it can be readily proved that V̂ (x, w) is a non-

decreasing function in xi when other elements in x and w remain unchanged.

Unfortunately, it is difficult to obtain the monotonicity properties of the optimal

maintenance policy due to the non-renewal environmental affect. The proper-

ties of the maintenance policies will be examined numerically in the following

section. To further illustrate the applicability of the proposed model, A detailed

numerical examples are presented in Section 5. The value iteration algorithm is

implemented to calculate the value function Vτ where details are illustrated in

Algorithm 1. Similarly, V̂τ can be obtained numerically.

18



Algorithm 1: The value iteration algorithm
Input : Component set Φ, failure threshold Li i ∈ Φ, environment

state set Sl, infinitesimal generator Q, Poisson distribution

parameters λi(w), Sets S, Sd, Sg, S(1)
g , S(2)

g , M(x), unitary

costs, inspection period τ , discount γ, discretize step δ,

precision ϵ.

Compute P (iδ,x) using Eqs. (A.7) and (A.9) and Dτ (x, w);

Compute the transition probability κτ in Eq. (12) and C(x,y) in Eq.

(10);

Set V
(0)
τ (x, w) = 0, ∀(x, w) ∈ S;

while |V (m)
τ (x, w)− V

(m−1)
τ (x, w)| > ϵ, for some (x, w) ∈ Sd, do

for (x, w) ∈ Sd, do

if (x, w) ∈ Sd\Sg, then
calculate V

(m)
τ (x, w) = cs + cf + V

(m−1)
τ (0, 0)

else if (x, w) ∈ S
(2)
g , then

V
(m)
τ (x, w) = min

{
cs + C(x,y) + V

(m−1)
τ (y, wI{y ̸=0}),∀y ∈

M(x)
}

else

calculate U
(m)
τ (x, w) =

∑
(y,l)∈S

κ(x, w,y, l)V
(m−1)
τ (y, l);

calculate V
(m)
τ (x, w) = min

{
Dτ (x, w) + e−γτU

(m)
τ (x, w), cs +

C(x,y) + V
(m−1)
τ (y, wI{y ̸=0}),∀y ∈ M(x)

}
end

end

end

Output: For each (x, w) ∈ Sd, Vτ (x, w) = V
(m)
τ (x, w), ∀(x, w) ∈ Sd

and the corresponding maintenance policy.

5. A numerical example

So far, we have evaluated the system reliability and maintenance of a degrad-

ing system under a dynamic environment, where the system consists of multiple
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heterogeneous components. For many mechanical systems, they usually oper-

ate in a changing environment where the system degradation is highly related

to the environment. For instance, the degradations of chock valves depend on

the oil and gas flows in the subsea production system. The weather condition,

pressure and humidity play important roles in aircraft security. This model

can help the decision-maker to develop the inspection and maintenance policy,

and to estimate the maintenance cost which can help to control operation and

maintenance budget in practice. In this section, we present a numerical exam-

ple to illustrate the applicability of the proposed model. The following results

are obtained by utilizing Matlab2018b on a Windows 8 Core 64-Bits operating

system.

5.1. Reliability analysis

Consider a 3-component system in series that operates in a dynamic environ-

ment. Assume that the environment states can be classified into there types, for

instance, it can been classified as “friendly”, “mild” and “severe” according to

its impact on the system. The sojourn time in the friendly state is exponentially

distributed with mean 1/3. Whenever the environment change occurs, it will

transfer to the “mild” state with probability 1/3 and to the “severe” state with

probability 2/3. Similarly, the transition properties of the environment with

respect to the other states can be defined. We have the following infinitesimal

generator to represent the transition properties.

Q =


−3 1 2

1 −2 1

1 3 −4

 . (15)

Assume that under a harsher environment state, the failure rate of each com-

ponent becomes larger. The following matrix presents the failure rate of each

component under each environment state:

Λ =


0.6 0.7 0.8

0.6 0.65 0.7

0.7 0.8 0.9

 , (16)
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where the (i, j)th entry is the parameter of the Poisson distribution that is uti-

lized to describe the degradation increment of component j under environment

state i. The failure threshold is Li = 2, i ∈ Φ. Given the initial environment

state, by utilizing Theorem 4.1, the system reliability function can be obtained.

Figure 1 shows the variation of the system reliability function with various initial

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: System reliability R(t;v) with various initial environment states v

environment states. It can be observed that the reliability shows a decreasing

tendency under a harsher environmental state. As shown in Λ, for each compo-

nent, the parameter of the Poisson distribution increases with the environment

state, meaning that it is more easier to enter into the deteriorating or failure

state under a harsher initial environment.

Figure 2 shows the variation of the system reliability function with vari-

ous initial system degradation states given the initial environmental state v =

[1, 0, 0]. Figure 3 shows the influence of the system reliability with respect to

the system failure threshold L. As expected, when the initial degradation level

is higher or the failure threshold is smaller, the reliability function becomes

smaller as the system inclines to enter into the failure state.
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5.2. Illustration for maintenance models

Consider the system described in the above section for maintenance mod-

elling. To further illustrate the effectiveness of the proposed model, the failure
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Figure 2: System reliability R(t;x,v) with various initial system degradation states x
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Figure 3: System reliability R(t;v) with various failure thresholds L
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threshold of component i is changed to Li = 5, i ∈ {1, 2, 3}. The parameter

corresponding to the discount factor is γ = 0.1. Assume the unitary costs are

cs = 1, cI = 1.1, cd = 10, cf = 30 for i ∈ {1, 2, 3}, cpi = 1 + i , cri = cpi + 2 .

The discretize step is 0.01 and the precision is ϵ = 10−6.

5.2.1. Maintenance under renewable and non-renewable environment

Figure 4 shows the variation of the total expected maintenance cost under

various inspection intervals when the environment is renewable. It can be ob-

served that the total expected cost is a unimodal function with respect to the

inspection interval in the considered region. The optimum achieves at τ = 1

and the corresponding cost is 54.18.
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Figure 4: Total expected maintenance cost under various inspection intervals

Table 1 shows the variations of maintenance costs and the corresponding

maintenance actions under renewable and non-renewable environment given

τ = 1. The value function Vτ corresponds to the scenario with renewable

environment and V̂τ is associated with the non-renewable environment states.

“DN” means do nothing and wait for the next decision epoch. “RE+component

number” indicates the considered components are replaced. It can be observed

that given w, Vτ and V̂τ increase with xi, which verifies the statement of the
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monotonic property of the value function under the two scenarios. For each

x, with renewal environment states, it seems that the Vτ increases with the

environment state. Part of the reason might be that with a lower environment

state, the probability of having degradation increment is smaller as shown in Λ

from Eq. (16). In addition, we can observe that “RE12” is the optimal main-

tenance policy for system with initial degradation (2, 3, 0) and (2, 4, 0), which

coincides with Theorem 4.2. For each given (x, w), V̂τ (x, w) is always larger

than Vτ (x, w). This is due to the fact that the system benefits more from the

replacement when the environment is renewable.

In the subsequent analysis, we will focus on the scenario that the environ-

ment is renewable, while the analysis for non-renewable environment can be

conducted in a similar way. To further investigate the impact of the environ-

ment, we consider the case that the components are homogenous with Λ given

as

Λ =


0.6 0.6 0.6

0.7 0.7 0.7

0.8 0.8 0.8

 , (17)

while other parameters setting are remain unchanged. The optimal inspection

interval is τ∗ = 1.1 and the associated total expected cost is 50.73. Focusing

on the two scenarios where x3 = 0 and x3 = 4, the corresponding maintenance

policies are presented in Table 2. The (i, j)th entry represents the maintenance

policy given x1 = i − 1 and x2 = j − 1. It can be observed that for each

degradation state x, components are inclined to be replaced under environment

w = 3 than under environment w = 1. An interesting observation is that it may

be optimal to do maintenance with a lower initial system degradation but do

nothing with a higher degradation. For instance, under w = 3, components 2

and 3 are replaced when the initial system degradation is (0, 2, 4), while only

component 3 is replaced when the initial system degradation is (1, 2, 4).
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Table 1: Variations of value functions and corresponding maintenance policies with x and w

under renewable and non-renewable environments respectively

Environment Degradation Value function Maintenance Value function Maintenance

state w state x Vτ (x, w) policy V̂τ (x, w) policy

0 (0, 0, 0) 42.6159 DN 44.0840 DN

(0, 3, 0) 46.6159 RE2 48.0839 RE2

(2, 3, 0) 48.6159 RE12 50.0839 RE12

(2, 4, 0) 48.6159 RE12 50.0839 RE12

(0, 2, 3) 50.4292 RE3 51.9016 RE3

(1, 3, 3) 51.6190 RE23 53.0966 RE23

(2, 3, 3) 52.6159 RE123 54.0839 RE123

1 (0, 0, 0) 44.0321 DN 45.5709 DN

(0, 3, 0) 48.0320 RE2 49.5708 RE2

(2, 3, 0) 50.0320 RE12 51.5708 RE12

(2, 4, 0) 50.0320 RE12 51.5708 RE12

(0, 2, 3) 51.7348 RE3 53.3133 RE3

(1, 3, 3) 52.9907 RE23 54.5453 RE23

(2, 3, 3) 54.0320 RE123 55.5708 RE123

2 (0, 0, 0) 45.4052 DN 47.1440 DN

(0, 3, 0) 49.4051 RE2 51.1439 RE2

(2, 3, 0) 51.4051 RE12 53.1439 RE12

(2, 4, 0) 51.4051 RE12 53.1439 RE12

(0, 2, 3) 52.9811 RE3 54.7935 RE3

(1, 3, 3) 54.3187 RE23 56.0795 RE23

(2, 3, 3) 55.4051 RE123 57.1439 RE123

25



Table 2: Variations of the expected discounted maintenance costs with x and w

w = 1 w = 3

x3 = 0



DN DN DN RE2 RE2

DN DN DN RE2 RE2

DN DN DN RE12 RE12

RE1 RE1 RE12 RE12 RE12

RE1 RE1 RE12 RE12 RE12





DN DN DN RE2 RE2

DN DN DN RE2 RE2

DN DN DN RE12 RE12

RE1 RE1 RE1 RE12 RE12

RE1 RE1 RE1 RE12 RE12



x3 = 4



RE3 RE3 RE23 RE23 RE23

RE3 RE3 RE3 RE23 RE23

RE13 RE13 RE123 RE123 RE123

RE13 RE13 RE123 RE123 RE123

RE13 RE13 RE123 RE123 RE123





RE3 RE3 RE3 RE23 RE23

RE3 RE3 RE3 RE23 RE23

RE13 RE13 RE13 RE123 RE123

RE13 RE13 RE13 RE123 RE123

RE13 RE13 RE13 RE123 RE123



5.2.2. Comparison with other maintenance policies

To further illustrate the advantages of the proposed maintenance policy, we

compare it with two commonly used maintenance policies. The first one is the

degradation-threshold policy, where a common threshold governs the mainte-

nance of all components: each component is preventively replaced if its deteri-

oration level exceeds the threshold Xp and the system is renewed upon failure.

Table 3 shows the optimal total expected cost and the associated inspection in-

terval with different maintenance thresholds. It is observed that Xp = 2 is the

optimal threshold under which the optimal cost is 50.99, which is larger than

50.73 – the value obtained by our proposed model.

The second one is based on the working state of each component: upon

inspection, replace the failed components and do nothing to the non-failed com-

ponents. Hence, no PM actions is considered. Under this policy, the opti-

mal inspection and maintenance cost is 64.87 with inspection period τ∗2 = 6.2,

which is equal to the first degradation-threshold policy where the PM thresh-

old is 4. Given the initial environment v = [1, 0, 0], the system reliabilities are

R(τ∗;v) = 1, R(τ∗2 ;v) = 0.14. It is seen that the system is highly likely to

be maintained at failure under the second maintenance policy. Our proposed
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model is more reliable and economical.

Table 3: Optimal maintenance costs and the corresponding inspection intervals

Optimal inspection & cost Xp = 1 Xp = 2 Xp = 3 Xp = 4

Optimal inspection τ∗1 2.1 1.0 0.8 6.2

Optimal cost 51.95 50.99 58.03 64.87

5.2.3. Sensitivity analysis

In the section, sensitivity analysis is presented to investigate the impact of

parameter values on the optimal maintenance policy.

Impact of components’ degradation. When Λ is changed to We change Λ to

Λ̃ =


0.7 0.7 0.7

0.8 0.8 0.8

0.9 0.9 0.9

 , (18)

the optimum cost arrives at τ∗ = 0.8. and the associated total expected cost

is 60.72. It can be observed that when the failure probability is higher, the

maintenance cost is larger and the decision-maker prefers to inspect the system

more frequently, with a smaller inspection interval τ .

Impact of environmental variations. To consider the impact of the working

environment, let us consider the case where the infinitesimal generator is given

as

Q̃ =


−3 0.5 2.5

0.5 −2 1.5

1 3 −4

 . (19)

The optimum cost arrives at τ∗ = 1.1 and the associated total expected cost

is 51.62. which is larger than the value under Q. This is due to the fact that

with Q̃, when environment state transition occurs, the environment is inclined

to enter into a worse state, under which the probability of having degradation

increments is larger, thus a larger cost is expected.
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Impact of cost parameters. In the part, we examine the influence of the cost

parameters on the optimal maintenance policy: the optimal inspection interval

and maintenance cost. Tables 4 and 5 show the variation of the optimal mainte-

nance cost and the associated inspection interval with different cost parameters.

The ith element in cp is cpi, for i = 1, 2, 3. As expected, the maintenance cost

increases with the cost parameters, and the optimal inspection interval increases

with the inspection cost.

Table 4: Optimal maintenance costs and the corresponding inspection intervals with various

cp and cs

Cost units cp = [1.5, 2.5, 3.5] cp = [2.5, 3.5, 4.5] cs = 2 cs = 0.5

Optimal cost 48.38 52.95 54.25 48.83

Optimal inspection 1.1 1.2 1.3 1.1

Table 5: Optimal maintenance costs and the corresponding inspection intervals with different

cost units
Cost units cI = 1.0 cI = 1.1 cI = 1.2 cI = 1.3 cd = 12 cf = 32

Optimal cost 49.75 50.73 51.63 52.46 50.32 51.01

Optimal inspection 1.0 1.0 1.2 1.3 1.0 1.0

6. Conclusions

In this study, we have developed a condition-based maintenance model for

a multi-unit system with heterogeneous components that operates in a dynamic

environment. The environment evolution is modelled by a continuous-time

Markov chain. Given the environment states, the degradation increment of

each component is assumed to follow a specific Poisson distribution. The relia-

bility and conditional reliability functions of the system are derived considering

the internal degradation process and the environmental effects. Two scenarios

considering whether the environment can be renewed or not are studied when

developing maintenance policy. Structural properties of the maintenance policy
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given the inspection interval and the environment state are investigated in detail

and further incorporated into the value iteration algorithm to solve the MDP

model. We have also examined the influence of the working environment and

other parameters settings on the optimal maintenance decisions. It has shown

that under a harsher initial environment, the maintenance cost is expected to

be larger. The proposed policy has also been compared with the classical CBM

models with constant preventive thresholds, under which each component is re-

placed whenever its degradation level exceeds a predetermined value. It turns

out that our policy is more cost-effective in presenting system failures. This

work could be further extended in the following three aspects.

First, we have assumed that components are mutual independent given

the working environment. It would be more realistic to consider dependen-

cies among components such as the failure dependence, structural dependence,

spare limitations, etc.

Secondly, we have assumed that both the environment state and the degra-

dation state of each component are observable. When the system is partially

observable, inspection and maintenance decisions based on imperfect informa-

tion is more challenging and interesting.

Thirdly, we have supposed that the maintenance actions are perfect at the

component level, i.e., the state of each component is restored to the as-good-as-

new state after maintenance. Imperfect maintenance can be an interesting and

challenging topic in decision-makings for multi-component systems, at the cost

of a heavier computational burden.
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Appendix A. Proofs for system reliability

Appendix A.1. The proof of Lemma 4.1
Proof : Define ot = (x1, x2, · · · , xN ) as the realization of the system degra-

dation state at time t where xi represents the degradation state of component
i, i ∈ Φ, xi ∈ {0, 1, · · · , Li}. Let Pwl(t +∆,0) be the probability that the sys-
tem is in state 0 and the environment state is l by time t+∆ given the initial
degradation state 0 and the environment state w. Then we have that

Pwl(t+∆,0) =
∑
m∈Sl

Pwm(t,0)P(ot+∆ = 0,Wt+∆ = l | ot = 0,Wt = m)(A.1)

=
∑
m∈Sl

Pwm(t,0)πml(∆) exp
(
−

∑
i∈Φ

∫ t+∆

t

λi(θ,m)dθ
)
,

where πml(∆) is the transition probability from state m to l during time ∆,

which satisfies

πml(∆) ≈

 1 + qmm∆ if m = l,

qml∆ if m ̸= l.

(A.2)

Hence, equation (A.1) can be further expressed as:

Pwl(t+∆,0) =
(
Pwl(t,0) +

∑
m∈Sl

Pwm(t,0)qml∆
)(
1−

∑
i∈Φ

λi(t,m)∆
)
,

which yields to

dPwl(t,0)

dt
= −Pwl(t,0)

∑
i∈Φ

λi(t,m) +
∑
m∈Sl

Pwm(t,0)qml.

Writing in the matrix form, we have

dP (t+∆,0)

dt
= P (t,0)(Q−Λ(t)), (A.3)

where Q is the infinitesimal generator and Λ(t) is a diagonal matrix with the

(j, j)th element given by Λjj(t) =
∑
i∈Φ

λj(t, i), j ∈ Sl. In general, the exact

solution of equation (A.3) is intractable. A special case is that when Λ(t) is in-

dependent of t, i.e. Λ(t) = Λ, meaning that the changement of the degradation

under given environment state is constant, then P (t,0) can be given by

P (t,0) = exp
(
(Q−Λ)t

)
.

⋄
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Appendix A.2. The proof of Lemma 4.2

Proof : Let Pwl(t+∆,x) be the probability that the system is in state x and

the environment state is l by time t + ∆ given the initial degradation state 0

and the environment state w. It is seen that

Pwl(t+∆,x) =
∑
m∈Sl

Pwm(t,x)πml(∆) exp
(
−
∑
i∈Φ

∫ t+∆

t

λi(θ,m)dθ
)
,

+
∑
m∈Sl

∑
i∈Φ

Pwm(t,xi−)πml(∆)(1− exp(−λi(t,m)∆))

× exp
(
−

∑
j∈Φ\i

∫ t+∆

t

λj(θ,m)dθ
)
,

which yields to

dPwl(t,x)

dt
= −Pwl(t,x)

∑
i∈Φ

λi(t, l) +
∑
m∈Sl

Pwm(t,x)qml +
∑
i∈Φ

Pwl(t,x
i−)λi(t, l).(A.4)

It can be expressed in the matrix form as follows:

dP (t,x)

dt
= P (t,x)

(
Q−Λ(t)

)
+

∑
i∈Φ

P (t,xi−)Λi(t), (A.5)

where Q is the infinitesimal generator of the CTMC. Λi(t) is a diagonal matrix

with the (j, j)th element given as λi(t, j), i ∈ Φ, j ∈ Sl, and P (t,xi−) = 0 if

xi = 0. The initial value is P (t,x) = 0. ⋄

Appendix A.3. Calculations of reliability functions

To calculate the system reliability, In this study, we will solve this problem

by the product-integration method ([1]). To calculate P (t,0), as

dP (t,0)

dt
= P (t)(Q−Λ(t)), (A.6)

then P (t,0) can be numerically obtained as follows.

P (t,0) =

t/δ∑
i=0

(
I +M(iδ)δ

)
. (A.7)

where M(iδ) = (Q −Λ(iδ)), I is the identity matrix, δ is the discretized step

size.
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To calculate P (t,x) where xi < Li, ∀i ∈ Φ. As shown in Lemma 4.2, P (t,x)

satisfies

dP (t,x)

dt
= P (t,x)

(
Q−Λ(t)

)
+

∑
i∈Φ

P (t,xi−)Λi(t), (A.8)

Then P (t,x) can be obtained numerically as follows.

P (t,x) =

∫ t

0

N(θ)Π
t/δ
i=x/δ(I +M(iδ)δ)dθ, (A.9)

where M(iδ) = (Q − Λ(iδ)), N(θ) =
∑
i∈Φ

P (t,xi−)Λi(θ), δ is the discretized

step size, I is the identity matrix.

Similarly, P (t,x) in Lemma 4.3 can be calculated. Hence the system relia-

bility function can be obtained.

Appendix B. Proofs for maintenance modelling

Appendix B.1. The proof of Lemma 4.4

Before the proof, we first introduce the definition of stochastic orders.

Definition. Random variable X1 is said to be stochastically larger than

X2 if P(X1 > t) ≥ P(X2 > t), written as X1 ≻st X2.

A property of this stochastic order is that, if X1 ≻st X2, then for all increas-

ing functions g, the corresponding expectations satisfy E(g(X1)) ≥ E(g(X2)).

The above property will be utilized in the following proof.

Proof : We will prove the monotonicity of V by mathematical induction.

At the first iteration, set Vτ (x, w) = 0 for all system degradation state x and

environment state w.

Assume that Vτ (x, w) is a non-decreasing function in xi at the nth iteration

where xi is the degradation state of component i, i ∈ Φ. For simplicity, we drop

off “τ” and use V (n) to represent V at the nth iteration. Then at the n + 1th

iteration, if x /∈ Sg, from equation (9), V (n+1)(x, w) = cs + cf + V (n)(0, 0)

which is constant and satisfy the non-decreasing property. If x ∈ S
(2)
g , for all

y ∈ M(x), C(x,y) + V (n)(y, w) either remains constant or is a non-decreasing
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function of xi, which yields the non-decreasing property of V (n+1)(x, w) due to

that operator “min” keeps the monotonicity.

If x ∈ S
(1)
g , we need to prove the monotonicity of D(x, w) and U (n)(x, w).

According to the expression of the system reliability function in equation (7),

for initial system degradation states x and x(i−), clearly that R(t;x,v) ≤

R(t;x(i−),v) for any initial environment state vector v. Looking back at equa-

tion (11), we can conclude that D(x, w) is non-decreasing in xi, i ∈ Φ. In addi-

tion, U (n)(x, w) is the expectation of the value function given the system degra-

dation state x and the environment state w. Obvious that y | x ≻st y | x(i−)

and as V (n) is a non-decreasing function in xi, thus E
(
y | x

)
≥ E

(
y | x(i−)

)
which means that U (n)(x, w) is non-decreasing in xi. Thus we can conclude

that V (n+1)(x, w) is non-decreasing in xi when x ∈ S
(1)
g . Hence, V (x, w) is

non-decreasing in xi, i ∈ Φ. ⋄

Appendix B.2. The proof of Theorem 4.2

Proof : Define Ai(x, w) as the action set in which component i is not replaced

under each action. Define Vτ (a;x, w) as the value function that action a is

chosen in the decision-making given (x, w). Let ai be the optimal action given

(x, w) and assume that component i is replaced under ai, it means that ∀b ∈

Ai(x, w),

Vτ (ai;x, w) ≤ Vτ (b;x, w).

Given (x(i+), w), it is obvious that Ai(x
(i+), w) ⊆ Ai(x, w)and Vτ (ai;x

(i+), w) =

Vτ (ai;x, w). Due to the monotonicity of Vτ , ∀c ∈Ai(x
(i+), w),

Vτ (c;x, w) ≤ Vτ (c;x
(i+), w),

which yields that Vτ (ai;x
(i+), w) ≤ Vτ (c;x

(i+), w), indicating policy ai is better

than policies where component i is not replaced. The first statement in Theorem

4.2 is thus verified. Similarly, we can prove the second statement, which is

omitted here. ⋄
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