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Class-Level Logit Perturbation
Mengyang Li*, Fengguang Su*, Ou Wu, Ji Zhang

Abstract—Features, logits, and labels are the three primary
data when a sample passes through a deep neural network.
Feature perturbation and label perturbation receive increasing
attention in recent years. They have been proven to be useful
in various deep learning approaches. For example, (adversarial)
feature perturbation can improve the robustness or even gener-
alization capability of learned models. However, limited studies
have explicitly explored for the perturbation of logit vectors. This
work discusses several existing methods related to class-level logit
perturbation. A unified viewpoint between regular/irregular data
augmentation and loss variations incurred by logit perturbation
is established. A theoretical analysis is provided to illuminate
why class-level logit perturbation is useful. Accordingly, new
methodologies are proposed to explicitly learn to perturb logits
for both single-label and multi-label classification tasks. Meta
learning is also leveraged to determine the regular or irregular
augmentation for each class. Extensive experiments on bench-
mark image classification data sets and their long-tail versions
indicated the competitive performance of our learning method.
As it only perturbs on logit, it can be used as a plug-in to fuse with
any existing classification algorithms. All the codes are available
at https://github.com/limengyang1992/lpl.

Index Terms—Data Augmentation, Long-tail Classification,
Multi-label Classification, Adversarial Training.

I. INTRODUCTION

THERE are several main paradigms (which may overlap)
among numerous deep learning studies, including new

network architecture, new loss, new data perturbation scheme,
and new learning strategy (e.g., weighting). Training data
perturbation mainly refers to feature and label perturbations.

Many data augmentation tricks can be viewed as feature
perturbation methods when the input is the raw feature (i.e.,
raw samples). For example, cropped or rotated images can
be seen as the perturbed samples of the raw images in
computer vision; sentences with modified words can also
be seen as the perturbed texts in text classification. Luo et
al. [1] proposed a powerful yet efficient approach to learn
effective representations for dynamically weighted directed
network. The linear bias vectors in their approach actually
belong to feature perturbation. Another well-known feature
perturbation technique is about the generation of adversarial
training samples [2], which attracts great attention in various
AI applications especially in computer vision [3] and natural
language processing [4]. Adversarial samples are those that

Manuscript received August 12, 2022; revised March 18, 2023; accepted
April 23, 2023. * denotes the equal contribution. This study is partially sup-
ported by NSFC 62076178, ZJF 2019KB0AB03, and TJF 22ZYYYJC00020,
19ZXAZNGX00050. (Corresponding author: Ou Wu.)
M. Li, F. Su and O. Wu are with Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China (e-mail: limengyang@tju.edu.cn; feng-
guangsu@tju.edu.cn; wuou@tju.edu.cn).
J. Zhang is with University of Southern Queensland, Queensland 4350,
Australia (e-mail: Ji.Zhang@usq.edu.au).

can fool the learned models. They can be obtained by solving
the following objective function:

xadv = x+ arg max
‖δ‖≤ε

l(f(x+ δ),y), (1)

where x is the input or the hidden feature; δ is the perturbation
term; ε is the perturbation bound; y is the one-hot label;
and xadv is the generated adversarial sample. A number of
methods have been proposed to optimize Eq. (1) [2], [5].
Adversarial samples can be used to train more robust models.

In label perturbation, the labels are modified or corrected to
avoid overfitting and noises. For example, a popular yet simple
training trick, label smoothing [6], generates a new label for
each sample according to y′ = y + λ( IC − y), where y is
the one-hot vector label; C is the number of categories; I
is a vector with all elements equaling to 1; ( IC − y) is the
perturbation term; and λ is a hyper-parameter. Other methods
such as Boostrapping loss [7], label correction [8], [9], and
Meta label corrector [10] can be seen as a type of label
perturbation. Mixup [11] can be attributed to the combination
of feature and label perturbation.

Logit vectors (or logits) are the outputs of the final fea-
ture encoding layer in most deep neural networks (DNNs).
Although logits are nearly indispensable in the DNN data
pipeline, only several learning methods in data augmentation
and long-tail classification directly (without optimization) or
implicitly employ class-level logit perturbation. Li et al. [12]
exerted a class-wise Gaussian augmentation in DNN training
and derived a logit perturbation-based training loss. Based
on the loss analysis of five representative methods, the loss
variations incurred by logit perturbation are highly related
to the purpose of regular/irregular augmentation1 on training
data. A theoretical analysis is conducted to reveal the connec-
tions among loss variations, performance improvements, and
class-level logit perturbation. Accordingly, new methodologies
are proposed to learn a class-level logit perturbation (LPL)
for single-label and multi-label learning tasks, respectively, in
this study. Meta learning is also utilized to judge whether a
sample should be regularly or irreglarly augmented. Extensive
experiments are run on benchmark data sets show the com-
petitiveness of our methodologies.

Parts of the results in this paper were published originally in
its conference version [13]. In our conference version, several
classical methods are rediscussed in terms of logit perturbation
and regular/irregular augmentation. A new method is proposed
to learn to perturb logits which can be used in implicit data
augmentation and long-tail classification contexts for single-
label classification tasks. Experimental results show that our

1In this study, irregular augmentation denotes the augmentation which aims
to reduce the (relative) performances of some categories. Accordingly, existing
augmentation methods are regular.
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method outperforms existing state-of-the-art methods related
to logit perturbation in both contexts. This paper extends our
earlier work in several important aspects:
• We conduct a theoretical analysis for the roles of logit

perturbation-based explicit irregular and regular augmen-
tations in learning for binary classification tasks. Two
typical scenarios, namely, class imbalance and variance
imbalance, are considered in our analysis.

• We extend our LPL to the multi-label classification,
which contains both class and variance imbalances,
and empirically validate its effectiveness on multi-label
benchmarks. Meta learning is also employed to infer the
perturbation directions of each category.

• Extensive experiments on large-scale long-tail data sets
such as iNaturalist are performed. Our method LPL still
achieves competitive results.

II. RELATED WORK

A. Data Augmentation

Data augmentation is prevalent in deep learning. In its
early stage, heuristic operations are utilized on raw samples,
such as image flip, image rotation, and word replacement in
sentences. Recently, advanced tricks are investigated, such as
mixup [11] and cutout [14]. Hu et al. [15] introduced rein-
forcement learning to automatically augment data. Although
these methods yield good results, the training complexity is
obviously increased when new training data are involved. Two
recent implicit data augmentation methods, ISDA [16], and
MetaSAug [17] demonstrate competitive performance. They
actually belong to logit perturbation methods. The advantage
of both ISDA and MetaSAug is that no additional training
data are generated and thus the training complexity is not
significantly increased. Nevertheless, ISDA fails in imbalance
learning and the training complexity of MetaSAug is still high.

In addition to the conventional data augmentation tech-
niques, researchers have attempted to apply feature augmenta-
tion in several challenging learning problems. For example,
Wu et al. [18] proposed a novel strategy to augment data
layer-by-layer to perform highly accurate representation for
high-dimensional and sparse data processing. Luo et al. [19]
conducted a pioneering study to introduce the feature augmen-
tation into the construction of nonnegative latent factor model,
which can effectively improve the model diversity.

In this study, the existing data augmentation is called regular
data augmentation. Irregular data augmentation, proposed in
this study, may be helpful when we intend to restrain the
(relative) performance of certain categories (e.g., to keep
fairness in some tasks).

B. Long-tail Classification

Real data usually conform to a skewed or even a long-
tail distribution. In long-tail classification, the proportions of
tail samples are considerably small compared with those of
head samples. Long-tail classification may be divided into
two main strategies. The first strategy is to design new
network architectures. Zhou et al. [20] designed a bilateral-
branch network (BBN) to learn the representations of head

and tail samples. BBN can balance the feature learning and
the performance on tail categories. Nevertheless, the whole
network becomes large. The second strategy is to modify
the training loss. In this way, the weighting scheme [21]
is the most common practice. Relatively larger weights are
exerted on the losses of the tail samples. Some studies adopt
regularization [22] for the training loss. Hu et al. [23] lever-
aged a new support vector machine with two soft margins to
alleviate the negative impact of class imbalance. Further, their
algorithm can also deal with noisy samples effectively. Besides
weighting and regularizing, some recent studies modify the
logits or augment the features to change the whole loss, such
as logit adjustment (LA) [24] and feature augmentation [19].
Zhao et al. [25] alleviated the negative influence of sparsity
of certain samples by using graph embedding. These new
methods achieve higher accuracy in many benchmark data
corpora compared with conventional techniques.

C. Multi-label Classification

Real data usually also contain multiple objectives. Unlike
the two single-label classification tasks mentioned above, there
are two main challenges in multi-label classification tasks,
namely, the co-occurrence of labels and the dominance of
negative samples [26], [27]. Wei et al. [28] investigated the
impact of labels on evaluation metrics for large-scale multi-
label learning and proposed to restrain labels that have less
impact on performance to speed up prediction and reduce
model complexity. Wu et al. [26] perturbed logits to emphasize
the positive samples of tail categories to prevent class-specific
overfitting. Some other studies focus on applying auxiliary
information to aid multi-label classification [29], [30]. For
example, Yu et al. [31] elaborated a novel manner to utilize
user click information to aid fine-grained image recognition.
The advantage of leveraging this type of information is that
hierarchical semantic relationship among words can be auto-
matically and effectively constructed. Extensive experiments
demonstrate the effectiveness and good extension capability
of their proposed methodology. In multi-label classification
task, weighting scheme [32] is also a typically used method.

D. Adversarial Training

Adversarial training is an important way to enhance the
robustness of neural networks [33], [34]. The most important
step in adversarial training is to generate adversarial training
examples in Eq. (1), which can be used to improve the robust-
ness of neural networks. Madry et al. [2] propose projected
gradient descent (PGD) to compute the adversarial training
samples. There are also some studies that attempt to leverage
regularization techniques to replace adversarial training and
avoid generating real adversarial samples [35].

III. METHODOLOGY

This section first discusses several typical learning methods
related to logit perturbation. Theoretical analysis is conducted
for logit perturbation. New algorithms are then proposed for
both single-label and multi-label learning tasks. Finally, meta
learning is employed to infer the perturbation direction.
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Fig. 1. The relative loss variations ( l
′−l
l

) of the three methods on different categories on different data sets. (a) and (b) show the relative loss variation of
ISDA on CIFAR100 and CIFAR10 respectively. (c), (d) and (e) show the relative loss variation of ISDA, LA, and LDAM on CIFAR100-LT with imbalance
ratio 100:1, respectively.

The notations and symbols are defined as follows. Let
S = {xi,yi}Ni=1 be a corpus of N training samples, where
xi is the input feature and yi is the label. In single-label
classification, yi is a one-hot vector. In multi-label classifi-
cation, yi = [yi,1, yi,2, · · · , yi,C ] ∈ {0, 1}C . Let C be the
number of categories and πc = Nc/N be the proportion of the
samples, where Nc is the number of the samples that contain
the cth category in S. Without loss of generality, we assume
that π1 > · · · > πc > · · · > πC .

Following Menon et al. [24] and Wu et al. [26], we
determine the head and tail categories based on Nc. The
larger Nc means that c is the head category index, and the
smaller Nc means that c is the tail category index. Following
Guo et al. [27], if yi,c = 1, xi is the positive sample of
category c; otherwise, xi is the negative sample of category
c. Let ui be the logit vector of xi which can be obtained by
ui = f(xi,W ), where f(·, ·) is the deep neural network with
parameter W . Let δi be the perturbation term of xi. Let L be
the entire training loss and `i be the loss of xi. The standard
cross-entropy (CE) loss is used throughout the study.

A. Logit Perturbation in Existing Methods

To enlighten our analysis, logit perturbation-based loss can
be written in the following form:

L=
∑

(xi,yi)
`(ui + δ̃i,yi), (2)

where δ̃i is the logit perturbation for xi. In class-wise logit
perturbation, δ̃is of samples in the same class are identical.

Logit adjustment (LA) [24]. This method is designed for
single-label long-tail classification [36]. The perturbation term
δi is as follows:

δi=δ̃=λ[logπ1, · · · , logπc, · · · , log πC ]
T
, (3)

where δ̃ is corpus-level vector2; δi is sample-level vector;
thus δis for all the samples are identical; and λ is a hyper-
parameter.

Previously, we assumed that π1 > · · · > πc > · · · > πC ;
hence, the losses of the samples in the first category (head)
are decreased, while those of the samples in the last category
(tail) are increased. The variations of the losses of the rest
categories depend on the concrete loss of each sample.

Implicitly semantic data augmentation (ISDA) [16].
ISDA is an implicit data augmentation method for single-label

2Corpus level is viewed as a special kind of class level in this study.

classification. Given a sample xi, ISDA modifies the cross
entropy loss with the following logit perturbation vector:

δi=δ̃k=
λ

2

 (w1 −wk)TΣk(w1 −wk)
...

(wC −wk)TΣk(wC −wk)

 , (4)

where Σk is the co-variance matrix for the kth category,
and wc is the network parameter for the logit vectors. Each
element of δi is non-negative. Therefore, the new loss of each
category is larger than the loss from the standard CE loss.

LDAM [37]. This method is designed for single-label long-
tail classification. Its perturbation term δi is as follows:

δi=δ̃k=λ[0, · · · ,−C(πk)−
1
4 , · · · , 0]

T
, (5)

which is also a category-level vector. The losses for all
categories are increased in LDAM.

Negative-tolerant Regularization (NTR) [26]. In this
method, a multi-label classification task is first decomposed
into C independent binary classification tasks. NTR defines
the following perturbation vector (δi):

δi=δ̃=− ψ[log(
N

N1
− 1), · · · , ( N

NC
− 1)]T . (6)

where ψ is non-negative in the experiments conducted by Wu
et al. [26]. δi is a corpus-level term vector. If N < 2Nc,
the loss will be reduced when yi,c=1, and the loss will be
increased when yi,c=0. When N > 2Nc, it is opposite.

Logit Compensation (LC) [27]. LC assumes that logits
conform to a normal distribution. For the positive samples,
the perturbation term δi is as follows:

δi=δ̃=[µp1, µ
p
2, · · · , µ

p
C ]. (7)

For the negative samples, the perturbation term δi is as
follows:

δi=δ̃=[µn1 , µ
n
2 , · · · , µnC ]. (8)

where µpc and µnc (c ∈ {1, · · · , C}) are the mean of the
positive and negative samples that can be learned. Both the two
perturbation items are corpus-level vectors. According to [27],
the magnitude of loss reduction for tail categories’ positive
samples is smaller than that for head categories’.

Logit perturbations result in the loss variations. Fig. 1 shows
the statistics for the relative loss variations incurred by ISDA,
LA, and LDAM for each category on a balanced data set
(CIFAR100 [38]) and two long-tail sets (CIFAR10-LT [39] and
CIFAR100-LT [39]) which are introduced in the experimental
section. The loss variations of all categories are positive using
ISDA. ISDA achieves the worst results on CIFAR100-LT [39]
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Fig. 2. The relative loss variations ( l
′−l
l

) of the two methods on different
categories on COCO-MLT. “pos” means the relative loss variations of positive
samples. “neg” means the relative loss variations of negative samples.

(shown in the experimental parts), indicating that the non-
tail-priority augmentation in long-tail problems is ineffective
(ISDA achieves relatively better results on CIFAR10-LT [39].).
Only the curves on CIFAR100-LT are shown for LA and
LDAM because similar trends can be observed on CIFAR10-
LT. The loss variations of head categories are negative, and
those of tail are positive using LA. All the variations are
positive yet there is an obvious increasing trend using LDAM.
Fig. 2 shows the statistics for the relative loss variations
incurred by NTR and LC in multi-label classification. The data
set COCO-MLT [26] is used. The relative loss variations of
positive samples and negative samples are counted separately.
In NTR, for positive samples, the loss variations of head
categories are less than 0, and those of tail are greater than 0.
However, the situation is opposite for negative samples. LC
and NTR have the similar trend of the relative loss variation,
but the relative loss variation of LC is less than 0.

We propose two conjectures based on the above observa-
tions and from a unified data augmentation viewpoint:

• If one aims to regularly augment the samples in a cate-
gory, the training loss of this category should be increased
after logit perturbation. The larger the loss increment is,
the greater the augmentation will be. Consequently, the
performance of this category will (relatively) increase.

• If one aims to irregularly augment the samples in a
category, then the loss of this category should be reduced
after logit perturbation. The larger the loss decrement
is, the greater the irregular augmentation will be. The
performance of this category will (relatively) decrease.

The above two conjectures are empirically supported by the
aforementioned five methods. For single-label classification, to
handle a long-tail problem, LA should regularly augment tail
samples and irregularly augment head ones. Hence, the losses
of tail samples are increased, and those of heads are decreased.
ISDA aims to regularly augment samples in all categories;
thus, the losses for all categories are increased. LDAM aims
to regularly augment tail samples more than head ones. Hence,
the increments of tail categories are larger than those of the
head. For multi-label classification task, the positive and the
negative ones need to be considered separately. For positive
samples, NTR regularly augments the tail categories and
irregularly augments the head categories. For negative ones,
the condition is opposite. Therefore, the losses of tails are
increased, whereas those of heads are decreased. LC aims to
irregularly augment all categories. For positive samples, the
reductions of head categories are larger than those of the tail.
For negative ones, the situation is opposite.

B. Theoretical Analysis for Logit Perturbation

To theoretically verify the reasonableness of the two con-
jectures, simple binary classification tasks are employed to
quantitatively investigate the relationship among loss varia-
tions, performance improvement, and logit perturbation. First,
a typical binary classification scenario, namely, learning on
imbalance training data, is considered. A large number of
studies on logit perturbation concerns imbalance learning.
The binary classification setting established by Xu et al. [40]
is followed. The data from each of the two classes Y =
{−1,+1} follow two Gaussian distributions, which are cen-
tered on θ = [η, · · · , η] (d-dimensional vector and η > 0) and
−θ, respectively. The data follow

y
u.a.r∼ {−1,+1}, (9)

x ∼
{
N
(
θ, σ2

+I
)

if y = +1
N
(
−θ, σ2

−I
)

if y = −1
. (10)

For a classifier f , the overall standard error is defined as
R(f) = Pr .(f(x) 6= y). We use R(f ; y) to denote the
standard error conditional on a specific class y. The class
“+1” is harder because an optimal linear classifier will give
a larger error for the class “+1” than that for the class “-
1” when σ2

+ > σ2
− [40]. Two types of class-level logit

perturbation are considered in our theoretical analysis. Let εc
be the perturbation bound. The first type of perturbation is
defined as follows:

δ̃∗c=arg max
||δ̃c||<εc

E(x,y):y=c[`(u+ δ̃c, c)]. (11)

The second type is defined as follows:

δ̃∗c=arg min
||δ̃c||<εc

E(x,y):y=c[`(u+ δ̃c, c)], (12)

where u = wTx + b. The first type implements regular
augmentation, while the second type implements irregular.

Assuming that the perturbation bounds between the two
classes satisfy that ε+ = ρ+ · ε and ε− = ρ− · ε. Now, the
variances of the data distributions in Eq. (10) for the two
classes are assumed to be equal, i.e., σ+ = σ−. Nevertheless,
the prior probabilities of the two classes P (y = +1) (P+) and
P (y = −1) (P−) are assumed to be different. Without loss
of generality, we assume P+ : P− = 1 : Γ and Γ > 1. That
is, class imbalance exists, and the class +1 and the class −1
are the tail and the head classes, respectively. We have the
following theorem:

Theorem 1. For the abovementioned binary classification
task, the logit perturbation bounds of classes “+1” and
“−1” are assumed to be ρ+ · ε (0 ≤ ρ+ · ε < η) and ε
(ρ− = 1), respectively. Only the first perturbation type is
utilized. The optimal linear classifier fopt that minimizes the
average classification error is

fopt = arg min
f

Pr .(S(u+ δ̃∗c ) 6= y), (13)

where u = f(x) = wTx + b; S(·) is the signum function (if
a ≥ 0, then S(a) = 1; else S(a) = −1). It has the intra-class
standard error for the two classes:



JOURNAL OF LATEX CLASS FILES 5

Fig. 3. Left: Natural errors R (fopt,−1) and R (fopt,+1) with varied ρ+
when the first perturbation type is used. Right: Total natural error R(fopt).

Fig. 4. Left: Natural errors R (fopt,−1) and R (fopt,+1) with varied ρ−
when the two perturbation types are used. Right: Total natural error R(fopt).

R (frob,−1) = Pr .

{
N (0, 1) <

A

2
+

logΓ

A
− ε√

dσ

}
,

R (frob,+1) = Pr .

{
N (0, 1) <

A

2
− logΓ

A
− ερ+√

dσ

}
,

(14)

where A = ε−2dη+ερ+√
dσ

.

The proof is attached in the appendix. Theorem 1 indicates
that the logit perturbation parameterized by ε and ρ+ influ-
ences performance of both classes. We then show how the
classification errors of the two classes change as ρ+ increases.

Corollary 1. For the binary classification task investigated in

Theorem 1, when Γ < e
((2d−1)η−ε)2

2dσ2 , as ρ+ increases, the logit
perturbations on Theorem 1 will decrease the error for class
“+1” and increase the error for class “−1”.

The proof is attached in the appendix. Corollary 1 indicates
that a larger scope of the first type of logit perturbation on a
class will increase the performance of the class. Note that a
larger scope of the first type of logit perturbation will result
in a large loss increment, and the first conjecture is supported
by Corollary 1. To better illuminate Corollary 1, we plot
R (fopt,−1), R (fopt,+1), and R(fopt) for a specific learning
task. Fig. 3 shows the results when the values of Γ, d, η, ε,
and σ are 2, 2, 1, 0.2, and 1, respectively.

Theorem 1 only considers the first type of logit perturbation.
When the second type of logit perturbation is also involved,
the following theorem can be obtained.

Theorem 2. For the abovementioned binary classification
task, that the perturbation bounds of both classes “+1” and
“−1” are assumed to be ε (ρ+ = 1) and ρ− ·ε (0 ≤ ρ− ·ε < η),
respectively. The first perturbation type is utilized for class
“+1”, and the second perturbation type is utilized for “−1”.
The optimal linear classifier fopt that minimizes the average
classification error is

fopt = arg min
f

Pr(S(u+ δ̃∗c ) 6= y). (15)

It has the intra-class standard error for the two classes:

R (fopt,−1) = Pr .

{
N (0, 1) <

A

2
+

logΓ

A
+

ερ−√
dσ

}
,

R (fopt,+1) = Pr .

{
N (0, 1) <

A

2
− logΓ

A
− ε√

dσ

}
,

(16)

where A = ε−2dη−ερ−√
dσ

.

The proof of Theorem 2 is similar to that of Theorem 1.
Likewise, we have the following corollary.

Corollary 2. For the learning task investigated in Theorem
2, when Γ > 1, as ρ− increases, the logit perturbations on
Theorem 2 will increase the accuracy for class “+1” and
decrease the accuracy for class “−1”.

According to Corollary 2, a larger scope of the second type
of logit perturbation on a class will decrease the performance
of the class. Note that a larger scope of the second type
of logit perturbation will result in a large loss decrement,
and the second conjecture is supported. Likewise, we plot
R (fopt,−1), R (fopt,+1), and R(fopt). Fig. 4 shows the
results for the specific learning task discussed in Fig. 3. In
this figue, the values of Γ, d, η, ε, and σ are 2, 2, 1, 0.2, and
1, respectively.

Theorems 1-2 and Corollaries 1-2 concern the class imbal-
ance issue, i.e., P+ 6= P−. However, in many binary tasks,
although the two involved classes are balanced, their corre-
sponding performances are still unequal. To this end, a more
general learning scenario is explored. The variances of the data
distributions in Eq. (10) for the two classes are assumed to be
unequal, i.e., σ+ 6= σ−. That is, variance imbalance exists.
Without loss of generality, we assume σ+ : σ− = 1 : K,
where K > 1. And P+ : P− = 1 : Γ also holds, where Γ > 1.
We have the following theorem.

Theorem 3. For the abovementioned binary classification
task, the bounds of classes “+1” and “−1” are assumed to
be ρ+ · ε and ρ− · ε (0 ≤ ρ+, ρ− <

η
ε ), respectively. Only the

first perturbation type is utilized. The optimal linear classifier
fopt that minimizes the average classification error is

fopt = arg min
f

Pr .(S(u+ δ̃∗c ) 6= y), (17)

where u = f(x) = wTx + b. It has the intra-class standard
error for the two classes:

R (fopt,+1)

= Pr .

{
N (0, 1) < −K

√
B2 + q(K,Γ)−B − ε · ρ+√

dσ
)

}
,

R (fopt,−1)

= Pr .

{
N (0, 1) < KB +

√
B2 + q(K,Γ)− ε · ρ−

K
√
dσ

}
,

(18)

where B = ε·ρ++ε·ρ−−2dη√
dσ(K2−1)

and q(K,Γ) =
2log(KΓ )

K2−1 .

Thus, training with different logit perturbation bounds for
the two classes can still influence the performance according
to Theorem 3. We then show how the classification errors of
the two classes change as ρ− or ρ+ increases.

Corollary 3. For the data distribution and logit perturbation
investigated in Theorem 3,

• if Ke
(2dη−ε)2

2dK2σ2 < Γ < Ke
2dη2

(K2−1)σ2 , then R (fopt,+1) >
R (fopt,−1). That is, class imbalance is the primary
challenge and class “+1” is harder than class “−1”.
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Fig. 5. Left: Natural errors R (fopt,−1) and R (fopt,+1) with varied ρ+
when the class imbalance is the primary challenge. Right: Total natural error
R(fopt).

Fig. 6. Left: Natural errors R (fopt,−1) and R (fopt,+1) with varied ρ−
when the variance imbalance is the primary challenge. Right: Total natural
error R(fopt).

Then if ρ− = 1 and the first logit perturbation type is
used, the error of class “+1” decreases and the error of
class “−1” increases, as ρ+ increases;

• if K > Γ, then R (fopt,+1) < R (fopt,−1). That is,
variance imbalance is the primary challenge and class
“−1” is harder than class “+1”. If ρ+ = 1 and the first
logit perturbation type is used, the error of class “+1”
increases and the error of class “−1” decreases, as ρ−
increases.

The first conjecture can also be justified by Corollary 3.
Likewise, we plot R (fopt,−1), R (fopt,+1), and R(fopt).
Figs. 5 and 6 show the results. As shown in Fig. 5, increasing
ρ+ can decrease the error of class “+1” and increase the error
of class “−1”. The values of K, Γ, d, η, ε, and σ are 3,
3.5, 2, 1, 0.1 and 1, respectively. In Fig. 6, increasing ρ− can
decreases the error of class “−1” and increase the error of
class “+1”. The values of K, Γ, d, η, ε, and σ are 2.5, 1.1,
2, 1, 0.2 and 1, respectively.

When both types are utilized, we can obtain the following
conclusion. When class “−1” is harder than class “+1”, if
the first logit perturbation type is used for class “−1” and the
second logit perturbation is used for class “+1”, then the error
of class “−1” will decrease and the error of class “+1” will
increase. Similarly, when class “+1” is harder than class “−1”,
if the first logit perturbation is used for class “+1” and the
second logit perturbation type is used for class “−1”, then the
error of class “+1” will decrease and the error of class “−1”
will increase. That is, the second conjecture is also justified.

C. Logit Perturbation Method for Single-label Learning

On the basis of our conjectures and theoretical investigation,
we establish the following new training loss:

L=
∑
c∈Na

∑
xi∈ Sc

min
‖δ̃c‖≤εc

`(softmax(ui + δ̃c),yi)

+
∑
c∈ Pa

∑
xi∈ Sc

max
‖δ̃c‖≤εc

`(softmax(ui + δ̃c),yi),
(19)

where εc is the perturbation bound related to the extent of
augmentation; Na is the index set of categories which should

Fig. 7. Overview of the logit perturbation-based new loss. Four solid circles
denote four categories. Two categories are regularly augmented via loss
maximization and the rest two are irregularly augmented via minimization.

be irregularly augmented; Pa is the index set of categories
which should be regularly augmented; and Sc is the set of
samples in the cth category. The loss maximization for the Pa
categories is actually the category-level adversarial learning
on the logits; the loss minimization for the Na categories
is the opposite. Fig. 7 illustrates the calculation of the logit
perturbation-based new loss in Eq. (19).

The split of the category set (i.e., Na and Pa) and the
definition (calculation) of εc are crucial for the learning with
Eq. (19). Category set split determines the categories that
should be regularly or irregularly augmented. Meanwhile, the
value of εc determines the augmentation extent.

Category set split. The split depends on specific learning
tasks. Two common cases are explored in this study. The first
case splits categories according to their performances. In this
case, Eq. (19) becomes the following compact form:

L =
∑

c
{S(τ − q̄c)×∑

xi∈ Sc

max
‖δ̃c‖≤εc

[`(softmax(ui + δ̃c),yi)S(τ − q̄c)]}, (20)

where τ is a threshold, yi,c = 1, and q̄c is calculated by

q̄c=
1

Nc

∑
xi∈Sc

qi,c =
1

Nc

∑
xi∈Sc

exp(ui,c)∑
c′ exp(ui,c′)

. (21)

When τ = mean(q̄c) =
∑C
c=1 q̄c/C, Eq. (20) indicates

that if the performance of a category is below the mean
performance, it will be regularly augmented. Meanwhile, when
the performance is above the mean, it will be irregularly
augmented. When τ > max

c
{q̄c}, all the categories will be

regularly augmented as in ISDA.

Algorithm 1 PGD-like Optimization
Input: The logit vectors (ui) for the cth category in the current
mini-batch, εc, and α.

1: Let u0
i = ui for the input vectors;

2: Calculate Kc by b εcα c;
3: for k = 1 to Kc do
4: δ̃k+1

c = α
Nc

∑
j:yj,c=1(softmax(ukj )−yj) for maximiza-

tion; or δ̃k+1
c = − α

Nc

∑
j:yj,c=1(softmax(ukj )−yj) for

minimization;
5: uk+1

i := uki + δ̃k+1
c .

6: end for
Output: δ̃c = uKci − ui
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Algorithm 2 Learning to Perturb Logits
Input: S, τ , max iteration T , hyper-parameters for PGD-
like optimization, and other conventional training hyper-
parameters.

1: Randomly initialize W .
2: for t = 1 to T do
3: Sample a mini-batch from S.
4: Update τ if it is not fixed (e.g., mean(q̄c) is used) and

split the category set.
5: Compute εc for each category using Eq. (24) if varied

bounds are used.
6: Infer δ̃c for each category using a PGD-like optimiza-

tion method for Eq. (20) in balanced classification, Eq.
(22) in long-tail classification, or Eq. (25) in multi-label
classification.

7: Update the logits for each sample and the loss.
8: Update W with SGD.
9: end for

Output: W

The second case is special for a long-tail problem, and it
splits categories according to the proportion order of each
category. Eq. (19) becomes the following compact form:

L =
∑

c
{S(c− τ)×∑

xi∈Sc

max
‖δ̃c‖≤εc

[`(softmax(ui + δ̃c),yi)S(c− τ)]}, (22)

where τ is a threshold and yi,c = 1. In Eq. (22), the tail
categories locate in Pa and will be regularly augmented.

Eqs. (20) and (22) can be solved with an optimization
approach similar to PGD [2]. We propose a more specific
optimization method called PGD-like optimization based on
PGD. First, we have the derivative

∇δ̃c`(softmax(ui + δ̃c),yi)|0 = softmax(ui)− yi. (23)

According to the derivative of the CE loss function with
respect to logit vector in Eq. (23), our PGD-like optimization
method can be implemented simply. The PGD-like optimiza-
tion in Algorithm 1 involves two hyper-parameters: step size

Fig. 8. Illustrative example for ISDA. Both categories are regularly augmented
(new samples are virtually generated) according to feature distributions.

Fig. 9. Illustrative example for LPL. Samples near the classification boundary
are virtually generated or deleted.

Fig. 10. The binary decomposition for a multi-label task.

and number of steps. Let α be the step size, and Kc be the
number of steps (#steps) for category c. The α is searched in
{0.01, 0.02, 0.03}. The PGD-like optimization is detailed in
Algorithm 1.

Bound calculation. The category with a relatively low/high
performance should be more regularly/irregularly augmented;
the category closer to the tail/head should be more regu-
larly/irregularly augmented. We define

εc=ε+∆ε |τ − q̄c| ,

or εc=

{
ε+ ∆ε q̄cq̄1 c ≤ τ
ε+ ∆ε q̄Cq̄c c > τ

. (24)

In Eq. (24), the larger the difference between the performance
(q̄c) of the current category and the threshold τ , or the larger
the ratio q̄c/q̄1 (and q̄C/q̄c), the larger the bound εc. This
notion is in accordance with our previous conjecture. When ∆ε
in Eq. (24) equals to zero, the bound is fixed. The algorithmic
steps of our LPL for single-label learning are in Algorithm 2.

Comparative Analysis. We compare the perturbations in
ISDA and our LPL in terms of data augmentation.

In the ISDA’s rationale, new samples are (virtually instead
of really) generated based on the distribution of each category.
Fig. 8 shows the (virtually) generated samples by ISDA. In the
right case, the regular augmentation for head category may
further hurt the performance of the tail category. ISDA fails
in the long-tail problem. Li et al. [17] leverage meta learning
to adapt ISDA for the long-tail problem.

In contrast with the above-mentioned methods, our proposed
LPL method conducts regular or irregular augmentation ac-
cording to the directions of loss maximization and minimiza-
tion. According to our Corollaries 1-3, loss maximization will
force the category to move close to the decision boundary (i.e.,
the category is regularly augmented or virtual samples are
generated for this category). By contrast, loss minimization
will force the category to be far from the boundary (i.e.,
the category is irregularly augmented or samples are virtually
deleted for this category). Fig. 9 shows an illustrative example.

D. Logit Perturbation Method for Multi-label Learning

Multi-label learning is usually decomposed into C binary
learning tasks as shown in Fig. 10. Each class is taken turns to
be selected as positive and the rest classes are negative. As a
results, multi-label learning becomes a series of binary learn-
ing problems. Basically, the learning algorithms for binary
tasks can be directly utilized for multi-label learning. However,
compared with conventional single-label binary tasks, both
variance imbalance and class imbalance usually exist in each
of the C tasks, simultaneously. First, variance imbalance exists
in each of the C tasks. The reason lies in that negative samples
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Fig. 11. An illustrative example for the variance imbalance and class imbalance in multi-label learning. “+” means the positive samples. “−” means the
negative samples. (a) shows a multi-label learning task (C = 3). Different colors mean those samples with one label or more labels. (b) shows the case of
variance imbalance. (c) shows the case of class imbalance.

in each of the C tasks actually come from the remaining C−1
classes, whereas positive samples in each task come from only
one class. Naturally, the variance of the negative samples is
larger than that of the positive ones as shown in Fig. 11 (b).

Theoretically, the negative samples require the first type of
logit perturbation and the positive samples require the second
type. Second, class imbalance may exist in each of the C
tasks as shown in Fig. 11 (c). However, the class imbalance
degrees for tasks in which the positive samples are from the tail
categories are larger than those for tasks in which the positive
samples are from the head categories. Therefore, according to
Corollaries 1 and 2, the negative samples require the second
type of logit perturbation, and the positive samples require the
first type of logit perturbation (especially for the tasks when
the positive samples belong to tail categories).

Obviously, there is a contradiction between the two cases.
To deal with variance imbalance, the negative samples should
perform the first type of logit perturbation. Meanwhile, to deal
with class imbalance, the negative samples should perform the
second type of logit perturbation. Corollary 3 demonstrates
that the perturbation type depends on the primary challenge
of class or variance imbalances. Consequently, we extend Eq.
(22) to the following form for multi-label learning.

L =
1

C ×N
∑

(xi,yi)

C∑
c=1

S(c− τ)×

{ max
|δ̃c|≤εc

yi,c log(1 + e−ui,c+δ̃c)× S(c− τ)

+ min
|δ̃c|≤εc

(1− yi,c) log(1 + eui,c−δ̃c)× S(c− τ)},

(25)

where δ̃c is a scalar, and τ is a hyperparameter (threshold)
for the category split. This new loss can effectively tune the
cooperation of the two types of logit perturbation by setting
an appropriate value of τ . There are three typical settings
for τ , namely, τ = 0, 1 < τ < C, and τ = C + 1.
The first setting only considers class imbalance and the third
setting only considers variance imbalance. Our theoretical
analysis (Theorem 3 and Corollary 3) indicates that both class
and variance imbalance should be considered in multi-label
learning. Therefore, the second setting is adopted in this study.

If 1 < τ < C, then S(c − τ) ≡ 1 when c > τ and
S(c − τ) ≡ −1 when c < τ . When c < τ , the positive
samples perform the second type of logit perturbation and the
negative samples perform the first type of logit perturbation.
This is reasonable because the cth class belongs to the head
categories and thus variance imbalance rather than the class
imbalance is the primary concern. When c > τ , the positive
samples perform the first type of logit perturbation and the

negative samples perform the second type of logit perturba-
tion. This is reasonable because the cth class belongs to the
tail categories, and class imbalance rather than the variance
imbalance becomes the primary concern in learning.

Similarly, we can perform PGD-like maximization and
minimization as Algorithm 1. The algorithmic steps of our
LPL for multi-label learning are also in Algorithm 2.

E. Meta learning-based Logit Perturbation Method (MLPL)

In our LPL, the category set split for Na and Pa depends
on heuristic rules. In Eq. (20), the two sets are determined
by comparing the performance of a category with the mean
performance. In Eq. (22), the two sets are determined accord-
ing to the proportion order of each category. This subsection
introduces a meta learning-based strategy to split categories.
First, the objective function is reformulated as follows:

L =
∑

(xi,yi)

{αc × `(softmax (ui + δmaxc ) ,yi)

+βc × `
(
softmax(ui + δminc ,yi

)
}

s.t. αc + βc = 1 and αc, βc ∈ {0, 1},

(26)

where c satisfies yi,c = 1; δmaxc and δminc are calculated
by Algorithm 1, respectively; αc and βc are the combination
weights for the category c. When αc = 1, the category c
belongs to Pa.

In our proposed heuristic rules, Na and Pa are determined
by the performance or the proportion of each category as used
in Eqs. (20) and (22). Both performance and proportion are
the characteristics of a category. In MLPL, they are determined
according to more characteristics of each category, including
training dynamics (e.g., average loss, average performance,
and average margin) and category proportion. Specifically, we
assume that αc and βc depend on the training dynamics and
proportion of the category c and are produced by a weighting
network gθ(·) parameterized by θ. The input of gθ(·) consists
of four quantities including average loss, average prediction,
average margin, and the proportion. Indeed, our category split
rules used in Eqs. (20) and (22) can be viewed as a heuristic
definition for gθ(·).

MLPL learns gθ(·) following the training manner used in
Meta-weight-net [41] on the basis of a meta dataset Sm =
{(xmi ,ymi )}Mi=1. The updating of the backbone network and
the weighting network is as follows:

Ŵ t(θ) = W t−1 − η1
1

N

∂L
∂W

∣∣
W t−1 , (27)

where η1 is the learning rate. θ is updated after receiving
feedback from the backbone network as follows:

θt = θt−1 − η2
1

M

∂Lm
∂θ

∣∣
θt−1 , (28)
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TABLE I
MEAN VALUES AND STANDARD DEVIATIONS OF THE TEST TOP-1 ERRORS

FOR ALL THE INVOLVED METHODS ON CIFAR10.
Method WRN-28-10 ResNet-110
Basic 3.82 ± 0.15% 6.76 ± 0.34%
Large Margin 3.69 ± 0.10% 6.46 ± 0.20%
Disturb Label 3.91 ± 0.10% 6.61 ± 0.04%
Focal Loss 3.62 ± 0.07% 6.68 ± 0.22%
Center Loss 3.76 ± 0.05% 6.38 ± 0.20%
Lq Loss 3.78 ± 0.08% 6.69 ± 0.07%
CGAN 3.84 ± 0.07% 6.56 ± 0.14%
ACGAN 3.81 ± 0.11% 6.32 ± 0.12%
infoGAN 3.81 ± 0.05% 6.59 ± 0.12%
ISDA 3.60 ± 0.23% 6.33 ± 0.19%
ISDA + Dropout 3.58 ± 0.15% 5.98 ± 0.20%
LPL (mean + fixed εc) 3.39 ± 0.04% 5.83 ± 0.21%
LPL (mean + varied εc) 3.37 ± 0.04% 5.72 ± 0.05%
MLPL (fixed εc) 2.82 ± 0.09% 5.36 ± 0.11%
MLPL (varied εc) 2.43 ± 0.05% 4.91 ± 0.09%

TABLE II
MEAN VALUES AND STANDARD DEVIATIONS OF THE TEST TOP-1 ERRORS

FOR ALL THE INVOLVED METHODS ON CIFAR100.
Method WRN-28-10 ResNet-110
Basic 18.53 ± 0.07% 28.67 ± 0.44%
Large Margin 18.48 ± 0.05% 28.00 ± 0.09%
Disturb Label 18.56 ± 0.22% 28.46 ± 0.32%
Focal Loss 18.22 ± 0.08% 28.28 ± 0.32%
Center Loss 18.50 ± 0.25% 27.85 ± 0.10%
Lq Loss 18.43 ± 0.37% 28.78 ± 0.35%
CGAN 18.79 ± 0.08% 28.25 ± 0.36%
ACGAN 18.54 ± 0.05% 28.48 ± 0.44%
infoGAN 18.44 ± 0.10% 27.64 ± 0.14%
ISDA 18.12 ± 0.20% 27.57 ± 0.46%
ISDA + Dropout 17.98 ± 0.15% 26.35 ± 0.30%
LPL (mean + fixed εc) 18.19 ± 0.07% 26.09 ± 0.16%
LPL (mean + varied εc) 17.61 ± 0.30% 25.42 ± 0.07%
MLPL (fixed εc) 17.27 ± 0.10% 25.05 ± 0.13%
MLPL (varied εc) 16.87 ± 0.06% 24.76 ± 0.11%

where η2 is learning rate for meta learning; Lm =∑
(xi,yi)

`(softmax (umi ) ,ymi ) is the loss on Sm and umi =

f(xmi , Ŵ
t(θ)). Finally, the backbone network is updated with

new αc and βc in Eq. (26) based on θt as follows:

W t(θt) = W t−1 − η1
1

N

∂L
∂W

∣∣
W t−1 . (29)

IV. EXPERIMENTS

Our proposed LPL and MLPL are first evaluated on tasks
that involve data augmentation, long-tail classification, and
multi-label classification. We then perform additional exper-
iments to analyze the properties of our method. These experi-
ments are conducted on a Linux platform equipped with four
RTX3090 graphics cards, each with a capacity of 24 GB.

A. Experiments on Data Augmentation

Datasets and competing methods. In this subsection, two
benchmark image classification data sets, namely, CIFAR10
[38] and CIFAR100 [38], are used. Both data consist of 32×32
natural images in 10 classes for CIFAR10 and 100 classes for
CIFAR100. There are 50,000 images for training and 10,000
images for testing. The training and testing configurations
used in [16] are followed. Several classical and state-of-the-art
robust loss functions and (semantic) data augmentation meth-
ods are compared: Large-margin loss [42], Disturb label [43],

Focal Loss [32], Center loss [44], Lq loss [45], CGAN [46],
ACGAN [47], infoGAN [48], ISDA, and ISDA + Dropout.

The Wide-ResNet-28-10 (WRN-28-10) [49] and ResNet-
110 [50] are used as the base neural networks. Considering
that the training/testing configuration is fixed for both sets,
the results of the above competing methods reported in the
ISDA paper [16] are directly presented (some are from their
original papers). The training settings for the above base neural
networks also follow the instructions of ISDA paper and its
released codes. Our LPL algorithm has two variants.
• LPL (mean+fixed bound). In this version, the optimiza-

tion in Eq. (20) is used. Mean denotes that the threshold
is mean(q̄c). Fixed bound means that the value of εc is
fixed and identical for all categories during optimization.
It is searched in {0.1, 0.2, 0.3, 0.4}.

• LPL (mean+varied bound). In this version, the optimiza-
tion in Eq. (20) is used. Theoretically, varied bound
means that the value of εc is varied according to Eq. (24).
However, the varied bounds in the same batch make the
implementation more difficult and increase the training
complexity. In our implementation, we choose to set a
varied number of updating steps for each category in our
PGD-like optimization. ∆ε is searched in {0.1, 0.2}.

Correspondingly, MLPL also has two variants, MLPL (fixed
bound) and MLPL (varied bound). MLPL no longer needs to
split categories, and its bound calculation method is consistent
with that of LPL. The hyperparameter settings in the meta
learning part follow those of Shu et al. [41]. Likewise, we
created a meta data set by randomly selecting 10 images per
class from the training set.

The Top-1 error is used as the evaluation metric. The
performances of the base neural networks with the standard CE
loss are re-run before running our methods to conduct a fair
comparison. Almost identical results are obtained compared
with the published results in the ISDA [16].

Results. Tables I and II present the results of all competing
methods on the CIFAR10 and CIFAR100, respectively. Our
LPL (two versions) performs almost better than all the com-
parative methods on both backbone networks. Additionally,
when utilizing meta learning strategies, our MLPL shows
further improvement. ISDA performs second best. Only in the
case of WRN-28-10 on CIFAR100, LPL (mean+fixed εc) is
inferior to ISDA, indicating that when the backbone network
is powerful in feature learning, the improvement brought by
logit perturbation is limited or even ineffective under fixed
perturbation bound.

Both LPL and MLPL produce better results when using
varied bounds compared to using fixed bounds. This com-
parison indicates the rationality of our motivation that the
category with relatively low (high) performance should be
more regularly (irregularly) augmented. In the final part of this
section, more analyses will be conducted to compare ISDA
and our method. Naturally, the varied threshold will further
improve the performances.

B. Experiments on Long-tail Classification
Datasets and competing methods. In comparison with the

conference version of the paper, we supplement the exper-
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iments with real-world data sets. In the synthetic data set
experiment, the long-tail versions of CIFAR10 and CIFAR100
compiled by Cui et al. [39] are used and called CIFAR10-LT
and CIFAR100-LT, respectively. The training and testing con-
figurations used in [24] are followed. In the real-world data set
experiment, large-scale data sets iNaturalist 2017 (iNat2017)
[51] and iNaturalist 2018 (iNat2018) [52] with extremely
imbalanced class distributions are used. iNat2017 contains
579,184 training images categorized into 5,089 classes, with an
imbalance factor of 3919/9. iNat2018 consists of 435,713 im-
ages distributed among 8,142 classes, with an imbalance factor
of 1000/2. Several classical and state-of-the-art robust loss
functions and semantic data augmentation methods are com-
pared: Class-balanced cross-entropy loss [16], Class-balanced
fine-tuning [53], Meta-weight net [41], Focal Loss [32], Class-
balanced focal loss [39], LDAM [37], LDAM-DRW [37],
ISDA + Dropout, and LA.

In the synthetic data set experiment, Menon et al. [24]
released the training data when the imbalance ratio (i.e.,
π1/π100) is 100:1; hence, their data and reported results for
the above competing methods are directly presented. When
the ratio is 10:1, the results of ISDA+Dropout and LA are
obtained by running their released codes. The results of the rest
methods are from the study conducted by Li et al. [17]. The
hyper-parameter λ in LA is searched in {0.5, 1, 1.5, 2, 2.5}
according to the suggestion in [24]. Similar to the experiments
in [24], ResNet-32 [50] is used as the backbone network. The
results presented are the average of five repeated runs.

In the real-world data set experiment, the results of the
above competing methods reported in [24] are directly pre-
sented. The results of LA on iNat2018 are from the original
paper [24]. The other results, such as ISDA+dropout and LA
on iNat2017, are obtained by running their released codes.
Likewise, the hyper-parameter λ in LA is searched in {0.5,
1, 1.5, 2, 2.5}. Similar to the experiments in [26], ResNet-
50 [50] is used as the backbone network. All results are the
average of five repeated runs.

LPL have two variants: LPL (varied threshold + fixed
bound) and LPL (varied threshold + varied bound). The
threshold τ is searched in {0.4C, 0.5C, 0.6C}. In the fixed
bound version, the value of ∆ε is set to 0, and ε is searched
in {1.5, 2.5, 5}. In the varied bound version, the value of ε
is set to 0, and ∆ε is searched in {1.0, 2.0, 3.0}. Similarly,
MLPL has two variants: MLPL (fixed bound) and MLPL
(varied bound). The category set split is determined by αc
and βc with a threshold of 0.5, slightly different from the
bound calculation of LPL. The hyperparameter settings in the
meta learning part follow those of Shu et al. [41]. Following
Li et al. [17], for our meta data, we chose five images per
class from the iNat2017 training set and two images per class
from the iNat2018 training set. We mainly aim to compare
methods that only modify the training loss. Other methods,
such as BBN [20], which focus on the new network structure
are also not included in the comparisons.

Results. The Top-1 error is also used. Table III shows the
results of all the methods on the CIFAR100-LT data. On the
ratios 100:1 and 10:1, MLPL (varied εc) yields the lowest Top-
1 errors. It exceeds the best competing method LA by 1.26%

TABLE III
TEST TOP-1 ERRORS ON CIFAR100-LT (RESNET-32).

Ratio 100:1 10:1
Class-balanced cross-entropy loss 61.23% 42.43%
Class-balanced fine-tuning 58.50% 42.43%
Meta-weight net 58.39% 41.09%
Focal Loss 61.59% 44.22%
Class-balanced focal loss 60.40% 42.01%
LDAM 59.40% 42.71%
LDAM-DRW 57.11% 41.22%
ISDA + Dropout 62.60% 44.49%
LA 56.11% 41.66%
LPL (varied τ + fixed εc) 58.03% 41.86%
LPL (varied τ + varied εc) 55.75% 39.03%
MLPL (fixed εc) 55.34% 38.62%
MLPL (varied εc) 54.85% 38.37%

TABLE IV
TEST TOP-1 ERRORS ON CIFAR10-LT (RESNET-32).

Ratio 100:1 10:1
Class-balanced cross-entropy loss 27.32% 13.10%
Class-balanced fine-tuning 28.66% 16.83%
Meta-weight net 26.43% 12.45%
Focal Loss 29.62% 13.34%
Class-balanced focal loss 25.43% 12.52%
LDAM 26.45% 12.68%
LDAM-DRW 25.88% 11.63%
ISDA + Dropout 26.45% 12.98%
LA 22.33% 11.07%
LPL (varied τ + fixed εc) 23.97% 11.09%
LPL (varied τ + varied εc) 22.05% 10.59%
MLPL (fixed εc) 21.79% 10.27%
MLPL (varied εc) 21.43% 9.78%

and 3.29% on the ratios 100:1 and 10:1, respectively. Table
IV shows the results of all the methods on the CIFAR10-
LT data. MLPL (varied εc) continues to achieve the lowest
Top-1 error rates on both ratios. Table VI shows the results
of all the methods on the iNat2017 and iNat2018. For real-
world long-tail data sets, it still exceeds LA 1.63% and
1.80%, respectively. On all the comparisons, ISDA obtains
poor results. On CIFAR100-LT, ISDA achieves the worst
performances on both ratios. This result is expected because
ISDA aims to regularly augment all categories equally and
does not favor tail categories, which may lead to tail categories
suffering from this regular augmentation. Nevertheless, ISDA
has a better performance on CIFAR10-LT than on CIFAR100-
LT. In Fig. 1 (b), the loss increments of tail categories are
larger than those of head. That is, larger augmentations are
exerted on tail categories.

We listed the Top-1 errors of LA and LPL (varied τ + varied
εc) on Table VII to better present the comparison. When the
ratio is smaller, the improvements (error reductions) are rela-
tively larger. This result is reasonable because when the ratio
becomes small, the effectiveness of LA will be subsequently
weakened. When the imbalance ratio is one, indicating that
there is no imbalance, LA will lose effect; however, our LPL
can still augment the training data effectively.

C. Experiments on Multi-label Classification

Datasets and competing methods. In this part, the long-
tail multi-label versions of VOC [54] and MS-COCO [55]
compiled by Wu et al. [26] are used and called VOC-MLT and
COCO-MLT, respectively. The training and test configurations
used in [26] are followed. The training set of VOC-MLT
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TABLE V
RESULTS OF MAP BY OUR METHODS AND OTHER COMPARING APPROACHES ON VOC-MLT AND COCO-MLT.

Datasets VOC-MLT COCO-MLT
Method total head medium tail total head medium tail
ERM 70.86% 68.91% 80.20% 65.31% 41.27% 48.48% 49.06% 24.25%
Re-Weighting 74.70% 67.58% 82.81% 73.96% 42.27% 48.62% 45.80% 32.02%
Focal Loss 73.88% 69.41% 81.43% 71.56% 49.46% 49.80% 54.77% 42.14%
Re-Sampling 75.38% 70.95% 82.94% 73.05% 46.97% 47.58% 50.55% 41.70%
RS-Focal 76.45% 72.05% 83.42% 74.52% 51.14% 48.90% 54.79% 48.30%
ML-GCN 68.92% 70.14% 76.41% 62.39% 44.24% 44.04% 48.36% 38.96%
OLTR 71.02% 70.31% 79.80% 64.95% 45.83% 47.45% 50.63% 38.05%
LDAM 70.73% 68.73% 80.38% 69.09% 40.53% 48.77% 48.38% 22.92%
CB-Focal 75.24% 70.30% 83.53% 72.74% 49.06% 47.91% 53.01% 44.85%
R-BCE 76.34% 71.40% 82.76% 75.22% 49.43% 48.77% 53.00% 45.33%
R-BCE-Focal 77.39% 72.44% 83.16% 76.77% 52.75% 50.20% 56.52% 50.02%
R-BCE+NTR 78.65% 73.16% 84.11% 78.66% 52.53% 50.25% 56.33% 49.54%
R-BCE-Focal+NTR 78.94% 73.22% 84.18% 79.30% 53.55% 51.13% 57.05% 51.06%
R-BCE+LC 78.08% 73.10% 83.49% 77.75% 53.68% 50.58% 57.10% 51.90%
R-BCE-Focal+LC 78.66% 72.74% 83.45% 79.52% 53.94% 50.99% 57.47% 51.88%
R-BCE+LPL (varied τ + fixed εc) 78.64% 73.00% 82.81% 79.74% 53.97% 50.23% 57.36% 52.79%
R-BCE+LPL (varied τ + varied εc) 79.02% 72.39% 82.14% 81.64% 54.35% 51.48% 57.72% 52.42%
R-BCE-Focal+LPL (varied τ + fixed εc) 79.17% 73.33% 83.56% 80.27% 54.37% 51.14% 57.68% 52.85%
R-BCE-Focal+LPL (varied τ + varied εc) 79.57% 73.47% 83.95% 80.87% 54.76% 50.78% 58.12% 53.81%

TABLE VI
TEST TOP-1 ERRORS ON REAL-WORLD DATASETS (RESNET-50).

Method iNat2017 iNat2018
Class-balanced cross-entropy loss 42.02% 33.57%
Class-balanced fine-tuning 41.77% 34.16%
Meta-weight net 37.48% 32.50%
Focal Loss 38.98% 72.69%
Class-balanced focal loss 41.92% 38.88%
LDAM 39.15% 34.13%
LDAM-DRW 37.84% 32.12%
ISDA + Dropout 43.37% 39.92%
LA 36.75% 31.56%
LPL (varied τ + fixed εc) 38.47% 32.06%
LPL (varied τ + varied εc) 35.86% 30.59%
MLPL (fixed εc) 35.47% 30.17%
MLPL (varied εc) 35.12% 29.76%

is sampled from train-val set of VOC2012, containing 1142
images from 20 categories, with a maximum of 775 images
per category and a minimum of 4 images per category. A
total of 4952 images from the VOC2007 test set are used
for evaluation. COCO-MLT is sampled from MS COCO-2017
dataset, containing 1,909 images from 80 categories, with a
maximum of 1,128 images per category and a minimum of 6
images per category. 5,000 images from the MS COCO-2017
test set are used for evaluation.

We mainly compare NTR and LC that perturb logit. The
code of LC is not open sourced. To keep the consistency
of the experimental setup, we conduct both comparison ex-
periments on the basis of R-BCE [26]. Several classical and
state-of-the-art robust loss functions and multi-label meth-
ods are compared: Empirical Risk Minimization (ERM), Re-
Weighting, Focal Loss [32], Re-Sampling [56], ML-GCN [57],
OLTR [58], LDAM [37], CB-Focal [39], R-BCE [26], R-
BCE-Focal [26], R-BCE + NTR [26], R-BCE-Focal + NTR
[26], R-BCE + LC [27], R-BCE-Focal + LC [27].

Wu et al. [26] released the training data and code. Hence,

TABLE VII
THE ERROR REDUCTION OF LPL (VARIED τ+VARIED ε) OVER LA ON THE

TWO DATA SETS.
Ratio 100:1 10:1
LA 56.11% 22.33% 41.66% 11.07%
LPL 55.75%

(-0.36%)
22.05%
(-0.28%)

39.03%
(-2.63%)

10.59%
(-0.48%)

their data and reported results for the above competing meth-
ods are directly presented. The experimental results of LC are
reimplemented from the original paper’s formula. Similar to
the experiments in [26], ResNet-50 [50] is used.

Our methods have two variants: LPL (varied threshold +
fixed bound) and LPL (varied threshold + varied bound). The
threshold τ is searched in {0.4C, 0.5C, 0.6C}. In the fixed
bound version, the value of ∆ε is set to 0, and ε is searched
in {0.05, 0.1, 0.15}. In the varied bound version, the value
of ε is set to 0, and ∆ε is searched in {0.1, 0.2, 0.3}. Other
experimental setups such as training epochs follow NTR.

Results. The evaluation metric mAP is used. Table V shows
the results of all the methods on VOC-MLT and COCO-MLT.
Our method achieves competitive or better results. R-BCE-
Focal+LPL (varied τ + varied εc) achieves the best results on
VOC-MLT and COCO-MLT. R-BCE-Focal+LPL (varied τ +
varied εc) outperforms R-BCE-Focal + NTR by 0.63% and
1.21%, respectively, and outperforms R-BCE-Focal + LC by
0.91% and 0.82%, respectively. In the comparison experiment,
R-BCE-Focal+LPL (varied τ + varied εc) exceeds R-BCE-
Focal by 2.18 % on VOC-MLT and by 2.01 % on COCO-
MLT, respexctively. Similarly, when our method is added to
the baseline R-BCE, our method can further improve the
performance. The effectiveness of LPL is well proven.

D. More Analysis and Discussion for Our Method

Improvements on existing methods. Our LPL method
seeks the perturbation via an optimization scheme. In ISDA
and LA, the perturbations are directly calculated rather than
optimization. A natural question arises, that is, whether the
perturbations in existing methods further improved via our
method. Therefore, we propose a combination method with
the following loss in imbalance image classification:∑

c∈Na

∑
xi∈Sc

min
‖δ̃c‖≤εc

l(softmax(ui + λ logπ + δ̃c),yi)

+
∑

c∈Pa

∑
xi∈Sc

max
‖δ̃c‖≤εc

l(softmax(ui + λ logπ + δ̃c),yi),

where logπ = [log π1, · · · , log πC ]. When all εcs are zero,
the above-mentioned loss becomes the loss of LA; when λ is
zero, the above loss becomes our LPL (with fixed bound). We
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TABLE VIII
NUMBER OF PARAMETERS AND TEST TOP-1 ERRORS OF ISDA AND LPL WITH DIFFERENT BASE NETWORKS.

Method #Params CIFAR10 CIFAR100
ResNet-32+ISDA 0.5M 7.09 ± 0.12% 30.27 ± 0.34%
ResNet-32+LPL (mean + fixed εc) 0.5M 7.01 ± 0.16% 29.59 ± 0.27%
ResNet-32+LPL (mean + varied εc) 0.5M 6.66 ± 0.09% 28.53 ± 0.16%
SE-Resnet110+ISDA 1.7M 5.96 ± 0.21% 26.63 ± 0.21%
SE-Resnet110+LPL (mean + fixed εc) 1.7M 5.87 ± 0.17% 26.12 ± 0.24%
SE-Resnet110+LPL (mean + varied εc) 1.7M 5.39 ± 0.10% 25.70 ± 0.07%
WRN-16-8+ISDA 11.0M 4.04 ± 0.29% 19.91 ± 0.21%
WRN-16-8+LPL (mean + fixed εc) 11.0M 3.97 ± 0.09% 19.87 ± 0.02%
WRN-16-8+LPL (mean + varied εc) 11.0M 3.93 ± 0.10% 19.83 ± 0.09%

conducted experiments on CIFAR10-LT100 and CIFAR100-
LT100. The results are shown in Table IX. ResNet-32 is used
as the basic model. The value of λ is searched in {0.5, 1, 1.5,
2, 2.5}. The threshold τ is set as 4 and 40 on CIFAR10 and
CIFAR100, respectively. Other parameters follow the setting
in the previous experiments.

The combination of LA+LPL achieves the lowest errors in
both comparisons, indicating that LPL can further improve the
performance of existing SOTA methods. Similarly, ISDA can
also be improved in the same manner.

Fig. 12. Relative loss variations of our LPL on two balanced data sets, two
long-tail data sets, and two multi-label data sets. “pos” means the relative loss
variations of positive samples, while “neg” means those of negative samples.

TABLE IX
TEST TOP-1 ERRORS OF THREE METHODS ON TWO DATA SETS.

Method CIFAR10-LT100 CIFAR100-LT100
LA 22.33% 56.11%
LPL 22.05% 55.75%

LA+LPL 21.46% 53.89%

TABLE X
RESULTS OF MAP BY OUR METHODS AND OTHER COMPARING

APPROACHES ON MS-COCO.
Method MS-COCO
R-BCE+NTR 83.65%
R-BCE+LC 84.51%
R-BCE+LPL (varied τ + varied εc) 85.43%

More comparisons with ISDA. ISDA claims that it does
not increase the number of parameters compared with the
direct learning with the basic DNN models. Our method also
does not increase the number of model parameters. The reason
lies in that the perturbation terms are no longer used in the
final prediction.

Table VIII shows the comparisons between ISDA and LPL
(two variants) on three additional base DNN models, namely,
SE-ResNet110 [59], Wide-ResNet-16-8 (WRN-16-8) [49] ,
and ResNet-32. The numbers of parameters are equal for ISDA
and LPL. Nevertheless, the two variants of our method LPL
outperform ISDA on both data sets under all the five base
models. Nevertheless, the increment becomes smaller when
more powerful base neural networks are used.

Loss variations of LPL during training. For single-label
classification, we plot the loss variations of LPL on two
balanced and two long-tail data sets to assess whether our
method LPL is in accordance with the two conjectures. The
curves are shown in Fig. 12 (a) and (b). On the balanced data,
the relative loss variations are similar to those of ISDA; on
the long-tail data, the losses of head categories are reduced,
whereas those of tail ones are increased, which is similar
to those of LA. For the multi-label classification, Fig. 12
(c) shows the results. In comparison with NTR and LC, our
method LPL focuses more on the tail categories according to
the trends of relative loss reduction.

More comparisons with NTR and LC. We also compare
our method with NTR and LC on the original multi-label
dataset MS-COCO. MS-COCO contains 122,218 images with
80 different labels, which is divided to a training set with
82,081 images and a test set with 40,137 images. In this part,
ResNet-110 is used as base neural network and the input size
is 448×448. Other setups follow Subsection C in Section IV.
Table X shows the results. The evaluation metric mAP is used.
Once again, our method achieves the competitive results. R-
BCE+LPL (varied τ + varied εc) outperforms R-BCE+NTR
and R-BCE+LC by 1.78% and 0.86%, respectively.

Possible extensions for our method. In our future work,
two extensions will be considered. The first is the application
of logit perturbation into important areas such as bioinformat-
ics [60], [61]. Hu et al. [62] presented a comprehensive survey
for computational models in bioinformatics and pointed out
that serious class imbalance exists in protein–protein interac-
tions prediction. The second is to apply logit perturbation for
high challenging issues such as learning for high-dimensional
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and incomplete data [63], [64].

V. CONCLUSIONS

This study investigates the class-level logit perturbation in
deep learning. Two conjectures for the relationship between
(logit perturbation-incurred) loss increment/decrement and
regular/irregular data augmentation are proposed. To support
the two conjectures, theoretical investigation is performed in
the presence of class imbalance and variance imbalance. On
the basis of the two conjectures and our theoretical findings,
new methodologies are introduced to learn to perturb logits
during DNN training for both single-label and multi-label
learning tasks. Two key components of LPL, namely, category-
set split and boundary calculation, are investigated. Meta learn-
ing is also leveraged to determine the perturbation direction.
Extensive experiments on data augmentation (for balanced
classification), long-tail classification, and multi-label classi-
fication are conducted. LPL achieves the best performances in
both situations under different basic networks. If meta data is
avaliable, LPL achieves better performance with meta learning.
Existing methods with logit perturbation (e.g. LA) can also be
improved by using our method.
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APPENDIX

A. Proof for Theorem 1

Proof. Xu et al. [40] proved that w = 1 when the data
distribution in Eq. (10) is given (Lemma 1 in [40]). According
to Lemma 1 in [40], we can easily prove that when P+ : P− =
1 : Γ and Γ > 1, w = 1 holds. Thus, f(x) =

∑d
i=1 xi + b.

Then Eq. (13) can be written as follows:

b∗ = arg min
b

Pr .(S(

d∑
i=1

xi + b+ δ̃∗c ) 6= y). (30)

Now, we can calculate the optimal b∗ when the logit
perturbation is used. Then, the optimal linear classifier is
f(x) =

∑d
i=1 xi + b∗. We use Rlp(f) to denote the error

after logit perturbation.

Rlp(f) ∝ Γ · Pr .(∃‖δ̃−|| ≤ ε, S(u+ δ̃−) 6= −1 | y = −1)

+ Pr .(∃‖δ̃+|| ≤ ε · ρ+, S(u+ δ̃+) 6= +1 | y = +1)

= Γ · Pr .(S(u+ ε) 6= −1 | y = −1)

+ Pr .(S(u− ε · ρ+) 6=+1 |y=+1)

= Γ · Pr .

{
d∑
i=1

xi + b+ ε > 0 | y = −1

}

+ Pr .

{
d∑
i=1

xi + b− ε · ρ+ < 0 | y = +1

}
.

(31)

According to Eq. (31), we have

Rlp(f) ∝ Γ · Pr .

{
N (0, 1) < −

√
dη

σ
+
b+ ε√
dσ

}

+ Pr .

{
N (0, 1) < −(

√
dη

σ
+
b− ε · ρ+√

dσ
)

}
.

(32)

The optimal b∗ to minimize Rlp(f) is achieved at the point
that ∂Rlp(f)

∂b = 0. Then we can get the optimal b∗:

b∗ =
1

2
ε(ρ− 1) +

dσ2logΓ

ε− 2dη + ε · ρ+
. (33)

By taking b∗ into R (fopt,−1) and R (fopt,+1), we can get
the theorem.

R (fopt,−1) = Pr .

{
N (0, 1) < −

√
dη

σ
+

b∗√
dσ

}

= Pr .

{
N (0, 1) <

A

2
+

logΓ

A
− ε√

dσ

}
,

R (fopt,+1) = Pr .

{
N (0, 1) < −(

√
dη

σ
+

b∗√
dσ

)

}

= Pr .

{
N (0, 1) <

A

2
− logΓ

A
− ε · ρ+√

dσ

}
,

(34)

where A = ε·ρ+−2dη+ε√
dσ

.

B. Corollary 1

Proof. According to Eq. (34), we compute the partial deriva-
tives of b∗rob with respect to ρ to proof the corollary.

∂b∗

∂ρ+
=
ε

2
− dεσ2logΓ

(ε− 2dη + ε · ρ+)2
. (35)

When ∂b∗

∂ρ+
> 0, b∗ increases as ρ+ increases. We reorganize

∂b∗

∂ρ > 0 to get the following equation.

logΓ <
(ε+ ε · ρ+ − 2dη)2

2dσ2
. (36)

The minimum value of the right-hand term of inequality (36)
is taken at ρ+ = 2dη−ε

ε . But obviously, we have 2dη−ε
ε > η

ε .
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So we bring ρ+ = η
ε into the right-hand side of inequality

(36), and we get the following inequality.

Γ < e
((2d−1)η−ε)2

2dσ2 . (37)

When Eq. (37) holds, b∗ is a monotonically increasing function
of ρ+. According to Eq. (34), the corollary holds.

C. Proof for Theorem 3

Proof. Like the proof in Theorem 1, we can get the following
equations.

Rlp(f) ∝ Pr .(∃‖δ̃+|| ≤ ε · ρ+, S(u+ δ̃+) 6= +1 | y = +1)

+ Γ · Pr .(∃‖δ̃−|| ≤ ε · ρ−, S(u+ δ̃−) 6= −1 | y = −1)

= Γ · max
‖δ̃−‖≤ε·ρ−

Pr .(S(u+ δ̃−) 6= −1 | y = −1)

+ max
‖δ̃+‖≤ε·ρ+

Pr .(S(u+ δ̃+) 6= +1 | y = +1)

= Γ · Pr .

{
d∑
i=1

xi + b+ ε · ρ+ > 0 | y = −1

}

+ Pr .

{
d∑
i=1

xi + b− ε · ρ+ < 0 | y = +1

}
.

(38)

According to Eq. (38), we have

Rlp(f) ∝= Γ · Pr .

{
N (0, 1) <

1

K
(−
√
dη

σ
+
b+ ε · ρ−√

dσ
)

}

+ Pr .

{
N (0, 1) < −(

√
dη

σ
+
b− ε · ρ+√

dσ
)

}
.

(39)

The optimal b∗ to minimize Rlp(f) is achieved at the point
that ∂Rlp(f)

∂b = 0. Then we can get the optimal b∗:

b∗ =
1

K2 − 1
(ε(ρ− +K2ρ+)− dη(K2 + 1)

+K

√
(ερ− + ερ+ − 2dη)2 + 2d(K2 − 1)σ2log(

K

Γ
)).

(40)

Therefore, the optimal standard error rates for the two
classes can be obtained respectively.

R (fopt,+1) = Pr .

{
N (0, 1) < −(

√
dη

σ
+

b∗√
dσ

)

}

= Pr .

{
N (0, 1) < −K

√
B2 + q(K,Γ)−B − ερ+√

dσ
)

}
,

R (fopt,−1) = Pr .

{
N (0, 1) <

1

K
(−
√
dη

σ
+

b∗√
dσ

)

}

= Pr .

{
N (0, 1) < KB +

√
B2 + q(K,Γ)− ερ−

K
√
dσ

}
,

(41)

where B = ερ−+ερ+−2dη√
dσ(K2−1)

and q(K,Γ) =
2log(KΓ )

K2−1 .

D. Corollary 3
Proof. When ρ− = 0 and ρ+ = 0, we have

b∗ =
1

K2 − 1
(−dη(K2 + 1)

+K

√
4d2η2 + 2d(K2 − 1)σ2log(

K

Γ
)).

(42)

Let U+ and U− be as follows.

U+ = −(

√
dη

σ
+

b∗√
dσ

); U− =
1

K
(−
√
dη

σ
+

b∗√
dσ

). (43)

It is easy to verify that when Ke
(2dη−ε)2

2dK2σ2 < Γ < Ke
2dη2

(K2−1)σ2 ,
U+ > U− holds. Therefore we have R (fopt,+1) >
R (fopt,−1), that is, class “+1” is harder than class “−1”.

When Ke
(2dη−ε)2

2dK2σ2 < Γ < Ke
2dη2

(K2−1)σ2 , Eq. (44) holds.

∂b∗

∂t
=
K2ε+ K2ε(ε+ερ+−2dη)

K
√

(ε+ερ+−2dη)2+2d(K2−1)σ2log(KΓ )

K2 − 1
≤ 0.

(44)
When ∂b∗

∂ρ+
<= 0, the error of class “+1” decreases and the

error of class “−1 increases as ρ+ increases. Similarly, we can
also prove other cases.
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