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Abstract

In this paper, we study the integrated production-maintenance optimization
problem of a multi-component deteriorating machine. The deterioration of each
component is described by a discrete-time Markov chain with finite state space.
To meet a constant demand, production planning is scheduled based on the sys-
tem deterioration and the inventory level. We consider the mutual dependence
between the production and the system deterioration. For each component,
its deterioration transition probabilities depends on its own characteristics and
its production quantity. Production yield is stochastically decreasing with the
system deterioration. Maintenance is scheduled immediately if at least one
component failure occurs. Otherwise, the decision-maker need to determine
whether to schedule a preventive maintenance or to continue producing. We
formulate the problem into a Markov decision process framework. The total
discounted costs including the production costs, maintenance costs and hold-
ing/backlogging costs in the infinite horizon is obtained. Some structural prop-
erties of the optimal policy with respect to the machine condition, the inventory

level are presented under mild conditions. The proposed model is further exam-
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ined by a numerical example, where the properties of the production and main-
tenance planning and the corresponding cost are investigated. It can provide
theoretical reference in managing the production and maintenance problems in
multiple production lines.

Keywords: Production-deterioration dependence; Random yield; Parallel

production system; Joint optimization; Markov decision process

1. Introduction

In manufacturing engineering and management, lot-sizing is a critical quan-
tity for manufacturers in developing efficient production strategies in order to
maximize their profit or minimize the budget. For instance, the economic man-
ufacturing quantity (EPQ) models [1, 2, 3, 4] have been extensively studied
to achieve the above objectives. When considering the optimal production lot-
sizing, random yield has received increasing attention in recent decades. Yield
loss exists in various production in situ: in the Liquid Crystal Display (LCD)
manufacturing process, yield loss can reach 50% or even higher [5]. Electronic
fabrication/vibrations, environmental variations, equipment deteriorations, hu-
man errors in delivery, etc., can also result in yield with uncertainty. Scheduling
production policies without taking the random yield into consideration may in-
duce biased estimations of profit or unexpected holding/backlogging cost. Hen-
ing and Gerchak [6] presented a comprehensively analysis of a general period-
ical reviewed production/inventory model with random yield. Some structural
properties of the cost and order point were examined with general production,
holding/backlogging costs structures. Relevant works can be seen in [7, 8, 9, 10]
where the impact of random yield on the production planning were examined.
It is essential to take random yield into consideration in developing production
schedules.

In the literature, one may notice that production scheduling and mainte-
nance planning are usually studied separately. Production scheduling mainly

focus on maximizing the profit or minimizing the budget by meeting the cos-



tumer demand and controlling the production lot-sizing, inventory cost, etc.[11,
12, 13, 14, 15]. A hidden assumption is that the manufacturing equipment never
deteriorates/fails and can always fulfill its functionality. The study of machine
maintenance always put emphasis on when to inspect, repair the system in order
to minimize the relevant maintenance cost [16, 17, 18, 19] or to maximize the
system availability [20, 21, 22, 23, 24, 25]. However, production and machine
deterioration are usually mutual dependent. One can imagine that with the
deterioration of the production equipment, the yield loss may become more and
more significant. An example is the wear out of drill bits in a machine shop
presented in [26]: due to the wear out of drill bits in a machine shop, product
quality will deteriorate and the functioning components in a circuit manufactur-
ing line may decrease. On the other hand, with a heavier production mission,
the equipment may deteriorate faster, where many load-sharing systems can be
regarded as examples. For instance, concerning the cascading failure in a power
grid [27, 28], the transmission lines are more likely to be failed when its under-
taking load is larger. Therefore, It is necessary to jointly consider the production
and maintenance problems. In this framework, Sloan and Shanthikumar [29]
investigated the integrated production and maintenance scheduling problem of
a multiple-product, single-machine production system. Sloan [26] and Xiang
et al. [30] examined the joint optimization of production quantity and main-
tenance planning, where the yield rate depended on the equipment condition.
The former modeled the random yield with a binomial yield model and the
latter assumed that the yield was stochastically proportional to the production
input. Rather than focusing on establishing structural properties of the pro-
duction and maintenance policy, Rokhforoz and Fink [31] considered a joint
dynamic maintenance and production scheduling model, where they proposed
an algorithm using model predictive control and Benders decomposition to solve
the large-scale mixed-integer problem with coupling constraints. El Cadi et al.
[32] investigated an integrated production and preventive maintenance (PM)
problem with dependence between the system deterioration and production.

They considered that the machine failure and product quality were operation-



dependent, where the age of the machine was a function of the number of items
produced. Therefore, the increasing machine age leaded to an increasing system
failure rate and an increasing proportion of defective products. uit het Broek
et al. [33, 34] have considered the balance between the production rate and
the system deterioration. It is seen that rarely work has been done with the
consideration of the mutual dependence between the production and machine
deterioration. In this study, we will take a step in this regard. The impact
of the mutual dependence on the production and maintenance cost and the
corresponding decision is examined.

Considering the configurations of the production systems, single-component
systems are widely investigated, where a production mission is assigned to
one single component. Considering multi-component production systems, tra-
ditional EPQ models with consideration of maintenance strategies have been
proposed [35, 36, 37], where the optimal lot-sizing and preventive maintenance
threshold were determined. However, the above studies assume that the lot-
sizing is fixed and non-adjustable and the yield is perfect. Liu et al. [38] exam-
ined the condition-based maintenance for multi-component batch production
where maintenance cost and system downtime were minimized. Their model
focused on the maintenance problems, not on production scheduling.

In effect, as far as the authors know, no study has considered multi-component
production systems with production-deterioration dependence and random yield.
In this study, we intend to examine a parallel production system where com-
ponents work together to satisfy the costumer demand. In jointly modelling of
production and maintenance of parallel production systems, there exist several
challenges. The first one is that when developing production plannings, the
decision-maker needs to designate a specific workload to each component on the
basis of the states of all components and the information of inventory level, cus-
tomer demand, etc. It is more complex than dealing with the single-component
system, where generally the size of the decision parameters is small. Secondly,
stochastic dependence may exist among component failures and among produc-

tion yields. Due to that components work together to satisfy the customer de-



mand, one component may undertake more workload if some other components
fail. In the work of Hao et al. [39], they discussed how to adjust the workload in
a load-sharing system to mitigate the system failure and production loss. The
yield rates of each component can be dependent due to the common working
environment [16, 40]. In addition, maintenance of parallel production systems
is complex: opportunistic maintenance can be implemented to components with
severe degradations to minimize the interruption to the production process and
to increase the system availability. On the other hand, during maintenance,
it needs to determine the production activity of the non-maintained compo-
nents. In this paper, we simplify the study by assuming that when maintenance
is implemented, no production is allowed and the production is scheduled for
all components immediately after the maintenance. This is possible in some
circumstances, the whole system needs to be suspended when maintenance is
implemented, even though some components can still operate physically. For
instance, in continuous casting, a roller system consisting of multiple roller con-
veyors is subjected to heat, scaling, etc. It has high maintenance frequency
and to implemented maintenance, it is necessary to stop the whole system to
provide an accessible environment for the repairmen [41].

In this work, we consider the production and maintenance scheduling of a
periodic-review, multi-component parallel production system. At each period,
the policy decides whether or not to schedule maintenance ( correctively or
preventively) then to produce or how much to produce for each production unit
if maintenance is not initiated. The problem is casted in to a Markov decision
process framework [42, 43, 44] where we take the total discounted expected
production and maintenance cost as the objective function. More details will be

presented in the next section. The main contribution of this work are as follows.

e We study an integrated production-maintenance optimization problem of

a parallel production system with random yield.

¢ We model and examine the dependence between production quantity and

system deterioration.



o We investigate structural properties of the production and maintenance

actions.

e The impact of random yield, production-deterioration dependence on the

optimal production and maintenance planning are discussed.

The paper proceeds as follows. Section 2 introduces the problem descrip-
tions, the system production, demand deterioration and the corresponding costs
units, etc. In Section 3, we first consider a special case with two-component par-
allel system, where structural properties of the integrated policy is presented.
Then a general N-component system is studied. Some numerical analysis are
further given in Section 4 to demonstrate the characteristics and advantages
of the proposed policy. We further present the conclusions and some future

perspectives in Section 5.

2. Problem statement

We consider a N-component parallel production system that produces a
single-product with interacted yield and system deterioration. The components
can be heterogeneous with different production capacities and deteriorations.
They work together to meet the product demand. Components are labelled
as component 1, component 2, ---, component N, S, = {1,2,--- | N}. The
deterioration of each component is modelled by a Markov chain with transition
probability matrix depending on its own characteristic and the undertaken pro-
duction load. The deterioration state set of component i is S; = {1,2,---, M;},
where “1” represents the perfect working state and M; is the failure state of
component i. Once component 7 enters into state M;, it cannot leave this state

) be the deterioration of

unless maintenance intervention is executed. Let X,(f
component ¢ in period n, ¢ € S,, n =0,1,2,---. In this study, we suppose that
the state transition probability of each component depends on its workload,
i.e., its production input quantity. Given its production input quantity g, the

transition probabilities are given as follows.



where p'?) (q) satisfies
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where v < m, i€ S,, ¢=0,1,---. Equation (1) implies that the deterioration

of each component depends on its own characteristic and its input work load.
Equation (2) indicates the increasing failure rate property of a component with
multiple discrete states [45, 46]. It means that given the input quantity, each
component inclines to go to worse condition if initially, its deterioration is more

(@)

severe. In addition, p,

(¢) is supposed to be non-decreasing with respect to g,
meaning that with a heavier production load, the system condition deteriorates
faster, 1 <o <1 < M;,.

A main novelty of this study is that we consider the interactions between
production quantity and the deterioration process. Not only the production
quantity has an impact on the system deterioration, the system deterioration
also plays a role in the production realization. Given that the deterioration
of component 7 is v and the input quantity is ¢, its output quantity Yq(i)(v) is

stochastically proportional to q. Yq(i) (v) can be expressed as
Y (0) = Uq, (3)

where US" is a random variable on support [0,1]. It is reasonable to assume
that with a severe degradation state, the yield rate is lower stochastically, i.
e., EUf,i) > EUl(i) for v < [,i € S,, where E represents the expectation of the
considered random variable. In addition, we call the yield is perfect if the output
quantity equals to the input quantity, i.e. Yq(i')(?)) =q.

Hence, we have modelled the interactions between the production and the
deterioration of each component. The production capacity of component i is
Q;, for simplicity, assume that the capacities @); are all positive integers and the
inputs are integers too. The product demand rate is assumed to be a constant
d per period. Unsatisfied demands are backlogged.

At the beginning of each period, based on the states of the components and

the inventory level, production and maintenance decisions are made. When



maintenance is implemented, production is suspended for non-maintained com-
ponents. It is then scheduled for all components immediately after the main-
tenance decision is made. If failure occurs at component level, failed compo-
nent(s) should be maintained immediately. Meanwhile, it should be decided
whether or not to perform preventive maintenance to the non-failed ones. If all
components operate, the decision maker should decide whether to preventively
maintain the deteriorated component(s), or to carry out production planning
directly by determining the input production quantity for each production com-
ponent. Maintenance is supposed to be perfect and instantaneous. The cost
structure includes maintenance related cost, holding/backlogging cost and pro-
duction cost that are given as follows.

The maintenance set-up cost is cs. The preventive and corrective mainte-
nance costs of component % are cp; and c.; respectively, ¢, < cei,t € S,. Given
the inventory level s and the produce input quantity ¢, the production and
holding/backlogging cost h(s, q), where ¢ is the total input production quantity
which is the summation of the two production components. The objective is
to determine the optimal production and maintenance schedule that minimizes

the total expected discounted cost incurred during the production process.

3. Production and maintenance modelling and properties

In this section, we first investigate the explicit special case considering a two-
component production system and then extend the results to general multiple

component production systems.

8.1. Two-component production system

We utilize a triple (s,z1,z2) to represent the system state where s is the
inventory level, z; and x5 are the deterioration state of component 1 and 2
respectively. The state space is R x S1 x Sy. Given (s,z1,x3), the decision-
maker can chose to perform maintenance then to produce or to produce and

distribute a production quantity to each component. Therefore, the system



state upon the subsequent period can be fully determined given the current
system state and the production & maintenance action. We will derive the
total expected discounted cost in the framework of the Markov decision process.
Define V (s, x1,z2) as the expected discounted production and maintenance cost

in the infinite-time horizon. The Bellman equations can be expressed as

Cs + Ce1 + ce2a +V(s,1,1), if
min{cs + caa + V(s,1,22),¢s + caa + ¢p2 + V(s,1,1)}, if
Vs, 21, 22) = min{cs + cea + V(s,21,1),¢5 + ce2 + ¢p1 + V(s,1,1)}, if

min{cs +cp1 + V(s 1,22), ¢ + cpo + V(s, 21, 1),

4:€[0,Q;]
i=1,2

(4)

where J(s, 1,22, q1,q2) satisfies

J(s,71,%2,q1,q2) = h(s—d,q1 +q)

1 = Ml,l’g = MQ,
T, = M17.’L‘2 < M27

T < Mlva = M27

Cs+cp1 +ep2+V(s,1,1), min J(s,21,22,q, qg)}, otherwise,

(5)

+7 Z pill)@l ((11)]95022)@2 (g2)Eq1 2V (s + Uﬁ)m + Uw(g)(h —d, &1, &2).

#1€51,82€852
7y is the discount factor. ¢, is the set-up cost of maintenance, cp; are c.; are the
preventive and corrective maintenance costs respectively. h(-,-) is the holding
cost.

Equations (4) and (5) can be explained as follows. Upon inspection, if at
least one component enters into the failure state, then the failed one(s) should
be correctively replaced immediately, meanwhile, the non-failed component can
be either preventively replaced or left unchanged. The cost includes the main-
tenance set-up cost, replace cost. If the two components are operating, the
decision-maker can chose to preventively replace the deteriorated component(s),
or to produce directly, where the production input quantities for the two compo-
nents need to be decided. J(s,x1,x2,q1,q2) represents the expected production
and maintenance cost of the next inspection when the system state is (s, z1, z2)
and the production input of component ¢ is ¢;, ¢ = 1,2. E; 2 represents the

expectation with respect to Uﬁ) and Uﬁ). pill)il (q1) and pfz)iz (¢q2) are the tran-



sition probabilities that have been given in equation (2). In the next, some

characteristics of the optimal policy are presented.
Proposition 1. V(s,z1,x2) is non-decreasing in x;, i = 1,2.

Proof. The value iteration is implemented to prove the monotonicity. We utilize
a subscript to label each iteration. Suppose that Vy(s,z1,22) = 0 for all initial
system state. Obviously that V(s,z1,22) is non-decreasing with x;. Assume
that at the kth interation, Vj(s,z1,x2) is non-decreasing in xz;. Then at the

(k + 1)st iteration, Vj41(s,z1,22) can be expressed as

Cs + Ce1 + o2 + Vigr1(s, 1, 1), if @1 =M,z = Mo,
min{cs + Ce1 + Vk+1($, 171‘2)7 Cs + Ce1 + Cp2 + Vk+1(8, 1, 1)}, if 1= My, x2 < Ma,
Vis1(s, 21, 22) = min{cs + ce2 + Vit1(s, 21, 1), ¢s + co2 + cp1 + Viy1(s,1,1)}, if 21 < My, z2 = Mo,

min{cs + cp1 + Vig1(s, 1, @2), ¢s + cp2 + Viga (s, 21, 1),

Cs +CP1 +CP2+‘//<?+1(87171)7 g[l(}rég ]Jk+1(8ﬂL'1,.fL’2,(]1./(]2)}7 OthCI‘WiSC./
7:€[0,Q;
(6)

i=1,2
where Jy11(s, 21, T2, q1,q2) satisfies

Jk+1(57$17$2',QI7QZ) = h(s_d7Q1+QQ) (7)

Y P;(I;qu (611)1);(1;22);;;2 (42)B12Vie(s + UM @y + U go — d, &1, 2).
#1€51,82€55
We will prove that Jxy1(s,x1,22,q1,q2) is non-decreasing in z; for any ¢; €
{0,1,---,Q;},i = 1,2. As h(s,q) is independent of x1, we only need to prove
that the second item in equation (7) is non-decreasing in z1. Due to that pill)il (9)

has increasing failure rate, it is seen that > pill)il (ql)p(Q) (¢2)E1 2 Vi (s+

N < $2f2
&1 €851,82€852

g(c})ql + Ug)qg —d,I1,%9) is increasing in z; with the assumption that Vj is
increasing in xy. Therefore, Jxy1(s,1,22,q1,q2) is increasing in x;. From
equation (6), Vi41(s,1,22) and Viy1(s,1,1) are independent of x1. It is only
need to prove that Vi41(s,z1,1) is non-decreasing in x1. Viy1(s,x1,1) can be

expressed by

Viet1(s,z1,1) = min{es + cp1 + Vg (s, 1, 1), g[lol% ]Jk+1(371317 1,q1,92))}-
qi s

1=1,2

10



Obviously that it is non-decreasing in z1. Therefore, all items on the right-hand
side of the last item in equation (6) are non-decreasing in z;. We have shown
that Vii1(s,x1,z2) is non-decreasing in x7. Similarly, Viy1(s,z1,22) is non-
decreasing in x5. Therefore, we can conclude that V' (s, z1, x2) is non-decreasing
inz;,1=1,2. ¢

Based on the monotonicity of V', we can obtain the following proposition

concerning the maintenance policy.

Proposition 2. Given the system state (s, x1,x2), the maintenance policy has

the following properties.

o If component 1 is preventively replaced, then it is also replaced for the

system with initial state (s,z7,x9), 2T > x1.

o If component 2 is preventively replaced, then it is also replaced for the

system with initial state (s,x1,x%),xt > z.

o If the two components are replaced, then they are also replaced for the

system with initial state (s,x],23), 7 > x1,25 > 2o.

The results can be derived directly with the help of Proposition 1 and it is thus
omitted here. In the next, we present a property with respect to the inventory
level. We assumed that unsatisfied demands are backlogged in this study and
the inventory level s indicates the backlogged demand amount when s < 0. The
following proposition shows the monotonicity of the value function when h is
non-decreasing with s, meaning that the backlogging cost is non-decreasing with

the backlogged amount.

Proposition 3. When the yield is perfect, if h(s,q) is non-increasing in s and
non-decreasing in q when s < 0, then V(s,x1,x2) is non-increasing in s for

s <0.
Proof. When the output quantity is perfect, i.e. :E“ =1,47 = 1,2. Let

Li(s,x1,x2) represents the minimum of Jg(s,z1,x2,q1,g2) with respect to ¢;

11



and go. Then Lj41(s,x1,x2) can be expressed as

L , X1, = in h(s—d, 8
kt1(8, 1, 2) qig[lé%i] (s q) (8)

1=1,2

v > Y (@)l (e2)Vils + g — d, i, 32),

#1€51,22€52
where ¢ = q1 + g2 representing the total yield. The value iteration is utilized to
prove the theorem in the next. Let Vp(s,z1,22) = 0 be the value function at
beginning given any system initial state (s, 21, 22). Assume that Vj, is decreasing
when s < 0, we first prove that Lgy1(s,21,22) is decreasing in s by the the
following two scenarios.

(1). If s < d—Q1—Q2, the value s+q—d < 0 for any q. So Vi (s+q—d, z1,x2)
is non-increasing with s. As h(s,q) is non-increasing in s, form equation (8), we
know that Lgy1(s,21,x2) is decreasing in s when s < d — Q1 — Q2.

(2). If d—Q1—Q2 < s <0, then there exist ¢ such that s+§—d = 0. For the
input production less than ¢, Lyy1(s,-,-) is non-increasing in s. Hence, to find
the minimum of L1 (s, -, ), we can narrow the searching range to [¢, Q1 + Q2]
Liy1(s,21,22) can be written as
Liya(s,x1,29) = min h(s —d,q1 + ¢2) (9)

4:€[0,Q:],i=1,2
q1+q2€[3,G+1,+,Q1+Q2]

1 2 L
+ E Pil)@l (Q1)p;(32)@2 (@2)Vi(s +q +q2 —d,21,22),
£1€81,52E€82

due to the assumption that Vj is non-increasing with s when s < 0. For system
with initial state (s — 1,21, x2), similarly, Lyy1(s — 1,21, 22) can be expressed
as follows.

Liy1(s —1L,w1,m2) = min h(s—1—d,q1 +q2)

4:€[0,Q;],i=1,2
q1+q2€[G+1,4+2,--- ,Q1+Q2]

(10)

+v Z pill)@l (Q1)pii)j2 (@2)Vie(s —14+q +q —d, &1,22)

£1€S51,T2€82
q:€[0,Q;],i=1,2 ( q1+ g2 )
q1+¢2€[G,G+1, ,Q1+Q2—1]

+7 Z pill);gl ((11)]95522)@2 (@2)Vi(s+q +q2 — d,21,22).

£1€S51,82€82

12



Equations (9) and (10) are the minimum of J with ¢; and g2 given in equation
(8). The second equality in equation (10) holds when we replace ¢ + g2 with
q1 + g2 + 1. As h is non-increasing in s and non-decreasing in ¢, we know
that Lgy1(s,21,22) < Lgy1(s— 1,1, x2). From the statements in equations (1)
and (2), we can conclude that Lgy1(s,x1,z2) is decreasing in s,s < 0. Hence,
Vir1(s, 21, x2) is decreasing in s and we can conclude that V' is decreasing in s
when s < 0. ©.

The following theorem can thus be obtained directly from proposition 3.

Theorem 3.1. Assume that h(s,q) is non-increasing in s and non-decreasing
in g when s < 0. When the yield is perfect and the system is in the non-failed
state, if the inventory level is negative, the optimal decision is either to perform
maintenance then to produce or to schedule production directly with an amount
that can restore the inventory to a non-negative level or to the maximum capacity

if the inventory level is less than d — Q1 — Qo.

In the next, we consider that h(s,q) is expressed as

h(s,q) = coq + cn(s + @) lsrg>01 — co(s + @) lgstg<0} (11)

where ¢y, c, and ¢, are non-negative and finite numbers, ¢y < ¢. I is the
indicator function. When h is defined as in equation (11), the following theorem

can be derived.

Theorem 3.2. If Vo(-) = 0 for any system state, v < 1. When the yields of
component 1 and 2 are perfect, and the deteriorations are independent of the
production amount, given the system state (s,x1,x2), the decision maker can
either chose to schedule maintenance then to produce or to produce directly. If
produce directly, the optimal total input quantity is q* (s, x1,x2), which is given

as
r 0K (g;8,%1,
Q1+ Qe, if PEEsrt2) (e + o),
q"(s,z1,72) = 4 0, if%f““) > ¢y — Co,

maz(0, min(Q1 + Qa,d = s)), if — (co+cp) < Hligea) <

13
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where K(q; s,x1,x2) =7 > p(zll)jlpix EV(s+q—d,21,22).

~ ~ :E2
21€851,22€852

Proof. Let K(q;s,x1,22) = 7y > @) 53 EV(s+q—d,&1,%2). Itis

pil/‘lii‘lpl‘Qii‘Q
£1€81,52€82
seen that when the production input quantity and the deterioration of each
component is independent, given the system state (s, x1,x2), J(s,21,22,q1,q2)
depends on ¢; and ¢ only through their summation ¢; 4+ g2, not on the specific
value of each one. Thus we rewrite J(s,21,z2,q1,q2) as J(s,21,x2,q) in the

next. The left derivative of J(s, 1, z2,q) with ¢ satisfies

J(s,x1,T9,q 0K (q;s,z1,x
(&]N = co + clisrq_ds0) — coliorqdc<oy + (&112)’ (12)

Therefore the monotonicity of J can be divided into the following three scenar-

ios.

(1). If %j““) < —(cg + ¢n),Vq, then we know that J(s,z1,22,q) is

non-increasing in ¢ and the minimum of J(-) achieves at Q1 + Q2.

(2). It %’;1’”) > ¢p — cp, Vg, then %ﬁ;“’q) is always non-negative

and J is non-decreasing with ¢ and thus ¢*(s, 21, 22) = 0.

(3). If —(co+cn) < %jl’“) < (ep — o), Vg, then d — s is the signal
changing point of J(-) from negative to positive. Hence, if d—s € [0,Q1 +
Q2], the optimum ¢*(s,z1,22) = d — s. Otherwise, ¢*(s,z1,22) = 0 if
d—s < 0and ¢*(s,z1,22) = Q1+ Q2 if d— s > 0. In a word, the optimum
is rna,X(O7 min(Q1 + Q2,d — s)) o

3.2. General multi-component production systems

Consider a general N-component production system, let (s, ) be the system
state where s is the inventory level and @ = (21,22, - ,2n), € Sg = 51 x5z %
-+« x Sy. x; is the system deterioration with z; representing the deterioration

of component i, i € S,. Define V(s,x) as the discounted optimal production

14



and maintenance cost in the long-run. It satisfies:

Cs + Zfil Cei T V(57 1)7

V(s,z) = { min{cs + Clz,y) + V(s,y), vy € A(z)},

min{min{c; + C(z,y) + V(s,y),Vy € A(z)}, H[léré? I, a)}
1=1,2 '
(13)

where J(s,x, q) satisfies

J(s,2.q) = h(s — d, Zqz )+ ST Y, qﬂEVHZU”) o) —d, &), (14

eSS,

with ¢ = (q1, 92, -+ ,qn), & = (&1,22, - ,Zn). 1 is a 1 x N vector with 1s. ¢,
is the set-up cost of maintenance. C(x,y) is the maintenance cost in the case

that the system deterioration vector transfers from a to y, expressed as:

y) = Z Cpilly,—oy + Z (cej — ¢pj)

i€S, JESe ()

with I as the indicator function. A(x) consists of all possible system deterio-
ration states after the corresponding maintenance action given the deteriora-
tion state @. h(-,-) is the holding cost. By equation (13), the discounted total
production and maintenance cost can be obtained by the iteration algorithm
numerically.

In effect, for the general case, the monotonicity of the value function in
Proposition 1 still holds: it can be proved that V(s,z) is non-decreasing with
x;, 1 € S, if the increasing failure rate property in equation (2) holds for all
components. A consequent property of the maintenance action is that, if com-
ponent i is replaced with system state (s,x1,z9, -+ ,x;, -+ ,2n), then it will

also be replaced with system state (s, 1,22, ,z; ,xx) where z;7 > ;.

¥
Similarly, Proposition 3, Theorems 3.1 and 3.2 are properties of the value func-
tion with respect to the inventory level, they are also validated in the general

multi-component production system.

15
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4. Numerical illustration

4.1. Optimal production and maintenance policy of a two-component system

Consider a parallel production system with two deteriorating components.
The state space of component i is S; = {1,2,3,4,5} with M; = 5 represent-
ing the failure state of component ¢. The maximum production capacity of

component ¢ is @; = 5, ¢ = 1,2. The transition probabilities of component 1 are

0.95—-0.1xgq, ifz=2a o< M,

Pey

(@) =4 005+01xq ifd=a+1,2< M, (15)
0, otherwise,

and ps\i)lyMl (¢9) =1 for any ¢ € {0,1,--- ,Q1}. For component 2, assume that

09—-0.1xgq, ify=yg, y< M,,

2
P@)=0014+01xq ifg=y+1y<M, (16)
0, otherwise,
and pg\?z’Mz (q) = 1forany q € {0,1,--- ,Q2}. The deterioration of component 2

is faster than that of component 1 under each production input load q. Random
yield depends on the deterioration of the system state and is supposed to be uni-
formly distributed, that is, US” is uniformly distributed on [ug,?m (v), u%@x(v)],
1=1,2. Let uld, = [1,0.9,0.8,0.7] be the vector where the vth element repre-
sents u%w(v) Define ugi)m =[0.7,0.6, 0.5, 0.2] where the vth element represents
ug,?m (v), ¢ = 1,2. It is seen that as the system deteriorates, the expected yield
rate is expected to become lower. The demand per period is d = 1. Suppose
that the production and holding/backlogging cost h(s, q) is defined as in equa-
tion (11) where ¢y = 4, ¢, = 1, ¢, = 10. The maintenance cost units are ¢s = 1,
cp1 = Cp2 = 50, cc1 = ¢z = 200. The discount factor is v = 0.9. In this case
study, the inventory space is truncated to s € [—40,40] with discretized step
01 = 0.1, where the inventory level are highly unlikely to reach out the above

interval. We utilize the value iteration algorithm to find the value function in

16
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Figure 1: The variations of the value function with various initial system states

the next and the precision is € = 0.001. The following results are obtained by

utilizing Matlab2018b on a Windows 8 Core 64-Bits operating system.

4.1.1. General results

Figure 1 shows the variations of the value function with various initial system
states. As stated in Proposition 1, the value function is non-decreasing with the
state of component ¢ given the inventory level and the state of component 3 — ¢,
1 =1,2. It is also decreasing with s when s < 0, indicating the economic loss
due to the backlogged production. In addition, when the deteriorations of the
two components are settled, it seems that the value function is convex over the
inventory level.

Figure 2 presents the characteristics of the optimal maintenance actions
given initial system state (s,z1,22). In each subfigure, xzo is given and the
maintenance actions changes with s and z;. It can be observed as stated in
Proposition 2 that, given (s, z1, 22), if component 1 is replaced, then it will also

be replaced for system with initial state (s, 27, 22), #1 < 7. Similar property
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Figure 2: The optimal maintenance actions with different initial inventory and deterioration

levels
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can be observed for component 2. The optimal action depends not only on the

system deterioration, but also on the inventory level.

p 5 .
‘ E‘
3
2
1
0
1 2 3 4 5 1 2 3 4 5

Initial state of component 1 Initial state of component 1

Initial inventory level
Initial inventory level

(a) za =1 (b) z2 =2

- 5
4

3

2

1

0

=‘

1 2 4 5

3
Initial state of component 1

Initial inventory level

(c) z2 =3

Figure 3: The optimal production input quantity of component 1 under different initial in-

ventory and deterioration levels

Figure 3 illustrates the production and maintenance planning of component
1 where “-1” indicates maintenance action is implemented. It is seen that in all
the above cases, when the inventory level is negative, it is either to produce with
the maximal capacity (@1 = 5) or to implement maintenance, which is coincide

with Theorem 3.1.
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Figure 4: The value function V (s, 1, 1) and the production policy with (s, z1,1) under perfect

yield scenario
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4.1.2. Comparison results

Some comparison analysis is given in the subsequent paragraphs to illustrate
the characteristics of the production-maintenance optimization problem.
(1). Comparison with the perfect yield case. Figure 4 presents the value func-
tions V'(s,1,1) under random yield and perfect yield. It is seen that it is more
cost-saving in the perfect yield scenario. The figure in case (b) gives the pro-
duction policy of the perfect yield case when the initial state of component 2
is o = 1. Comparing with the policy in the random yield situation, as illus-
trated in case (a) of Figure 3, maintenance is implemented earlier with smaller

deterioration state of component 1 under perfect yield sceanario.

1000

T T
—p— Dependent

—&— Independent, Slight deterioration
— - — - Independent, Severe deterioration | |

900
\

Value function V(s, 2, 2)

0 . . . . . . .
-40 -30 -20 -10 0 10 20 30 40
Initial inventory level s

Figure 5: The variation of the value function with respect to s given that z1 = zo =2

(2). Comparison with the production-deterioration independent case. We
consider the case when the production and system deterioration process are in-
dependent. Two independent cases are studied where the deterioration transi-
tion probability of component 7 is given as ]522 = pg(O) and ﬁi’g = pg(i’)) where
p% (¢) has been presented in equations (15) and (16). We consider that the yield
is always perfect in this comparison example. Figure 5 shows the variation of

the value function V (s, 2,2) in different scenarios. It is seen that when the pro-

duction and deterioration are independent, the value function is smaller when
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1
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Figure 6: The maintenance policies of the PD-independent case (left. with slight deterioration)

and PD-dependent case

the deterioration of the two components are slight, i.e. when ]3:(62 = pg (0). In
the dependent case, the probability transition depends on the production input
quantity, which could be larger or smaller that the independent cases. The op-
timal maintenance policies under the two scenarios are given in Figure 6, where
the deterioration state of component 2 is zo = 2. For the PD-independent
case, maintenance policy is independent of the inventory level. For the PD-
dependent case, it is seen that the maintenance depends on the system state

and the inventory level.

4.1.8. Sensitivity analysis

In the next, some sensitivity analysis are conducted to show the variations of
the production and maintenance cost and the corresponding policy with different
parameters setting. We change the mentioned parameters each time and others
are remain unchanged.

Figure 7 shows the variation of the value function with respect to the in-
ventory level given 1 = 2, z9 = 3 under different system production capacities.
Figure 8 presents the corresponding production input quantities for the two
components where “-1” means that maintenance is implemented and no pro-

duction is initiated. It is seen that when the inventory level is negative and
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Figure 7: The variations of the value function V(s,2,3) under different system production

capacities

rather low, it is either to implement maintenance or to produce directly with
input quantity that can restore the inventory level to the non-negative level.
However, when the inventory is rather large, it seems that produce nothing
(¢1 = ¢2 = 0) and wait for the next decision epoch is the optimal action. In this

situation, the capacity has no influence on the value function.

o

IS
-

©

Production input q , of component 1
Production input g , of component 2

o

Inventory level Inventory level

Figure 8: The variation of the production input quantity with respect to the inventory level

given that 1 = 2,220 =3

Figure 9 presents the variation of the value function with respect to the

23



inventory level and consumer demand. As expected, when the yield rate is
higher, the cost induced in the production process is lower. When both the
yield and demand are higher, the cost may become larger or smaller, depending

on the initial inventory level.
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Figure 9: The variation of the value function with respect to the inventory level and demand

given that z1 = 2,22 =3

4.2. Optimal production and maintenance policy of a three-component system

Table 1: The operating time with various production capacities

Production capacity Operating time

Q;=51=1,2,3 4462.1s
Qi=4,1=1,2,3 2584.4s
Qi=3,1=1,2,3 1370.6s

In the next, we consider a three-component production system. Assume
that M; = 4, Q; = 5, i = 1,2,3. The transition probabilities of component 1
is given as in equation (15). Then transition probabilities of component 2 and

component 3 are given as in equation (16). Uf,i) is uniformly distributed on
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Figure 10: The variation of the value function with respect to the initial system state

[ug,?m(v),u%)ax(v)], where ulh, = [1,0.9,0.8] with the vth element represent-
ing usﬁ)az(v) Similarly, uffl)m = [0.7,0.6,0.5] where the vth element represents

“gi)m (v),v=1,2,3 and i = 1,2,3. The demand amount d is 1. The costs units,
discount factor and discretized step are as given in the two-component system,
which are ¢ = 1,c9 = 4,¢c, = 1,¢, = 10, ¢ = 50, ¢ = 200, 7 = 1,2,3. The
truncated inventory space is [—40, 40], the discount factor is v = 0.9, discretized
step is 61 = 0.1 and the precision is € = 0.001. Table 1 shows the operating time
with various production capacities.

Figure 10 shows the variation of the value function V (s, x1, xo, x3) with the
initial system state. Similar to the two-component system, the value function
increases with the system deterioration. Table 2 further presents the value func-
tion and the corresponding production and maintenance policy. “DN” means
no maintenance is implemented and “RE23” implies that components 2 and 3
are replaced. For each system state (s,xz1,z2,23), concerning the maintenance
policy, the control-limit property with the deterioration of each component can
be observed. For the production scheduling, it depends on the inventory level

and the system deterioration with no monotonic property. For instance, the
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production planning for system with deterioration (1,2,3) can be produce with

the full system capacity (s = —35, Q;=5, i=1, 2, 3), or produce nothing and

wait for the next period to decide (s = 30, @Q; = 0,7 = 1,2,3) or to produce

with partial capacity (s =0, Q1 = Q3 =0,Q2 =1. )

Table 2: Variation of the value function and the production and maintenance policy

Initial inventory = System deterioration Value function

Maintenance & Production

(1,1, 1) 1858.7 DN, Q; =5,i=1,2,3.
-35 (1,2,2) 2189.0 Re23, Q; = 5,i =1,2,3.
(1,2, 3) 2189.0 Re23, Q; = 5,i=1,2,3.
(2, 3, 4) 2334.9 Re23, Q1 = 0,Qs = Q3 = 5.
(1,1, 1) 1619.2 DN, Q; =5,i=1,2,3.
-30 (1,2,2) 2057.5 DN, Q; =5,i=1,2,3.
(1,2, 3) 2189.0 Re23, Q; = 5,i =1,2,3.
(2,3, 4) 2334.9 Re23, Q1 =0,Qs = Q3 = 5.
(1,1, 1) 593.4 DN, Q1 = Q3 =0,Q5 = 1.
0 (1,2,2) 987.7 DN, Q1 = Q3 =0,Q- = 1.
(1,2, 3) 1341.2.0 DN, Q1 = Q3 =0,Q, = 1.
(2, 3, 4) 2334.9 Re23, Q1 = Q3 =0,Q; = 1.
(1,1, 1) 600.3 DN, Q; =0,i=1,2,3.
30 (1,2,2) 947.9 DN, Q; =0,i=0,2,3.
(1,2, 3) 1343.9 DN, Q; =0,i=0,2,3.
(2,3, 4) 2334.9 Re23, Q; = 0,i =0,2,3.

Table 3 presents the variation of the value function with the cost units where

other parameters remain unchanged. As expected, the production and mainte-

nance cost increases with the cost parameters.

5. Conclusion

In this paper, we have proposed an integrated production and maintenance

optimization of a multi-component deteriorating production system For each
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Table 3: Variation the value function with cost units

Costs units System state Value function

(0,1,1,1) 568.8

cei = 150,i=1,2,3 (0,1, 2,2) 945.9
(0, 2, 3, 4) 2232.4

(0,1,1, 1) 606.9

cpi =80,1=1,2,3 (0,1, 2, 2) 1011.9
(0,2, 3, 4) 2402.5

(0,1,1, 1) 520.0

cp =8 0,1, 2,2) 862.8

(0, 2, 3, 4) 2037.6

(0,1,1,1) 650.2

co=06 0,1, 2,2) 1070.9

(0, 2, 3, 4) 2511.8

component, its deterioration is described by a discrete-time Markov chain, de-
pending on the production input quantity. The yield rate depends on the de-
terioration of the component, that is, the yield rate is stochastically decreasing
with respect to the component deterioration level. At each period, based on the
observed inventory level and the equipment condition, production and mainte-
nance plannings are jointly determined. We have shown some structural prop-
erties of the value function and the optimal policy. The impact of the mutual
dependence and other parameters on the cost function and the corresponding
production and maintenance policy are further analyzed through a numerical
example. The above consideration may provide some managerial insights to
the decision-maker when developing production strategies. This work can be
further extended in the following directions.

First, we have assumed that the deterioration of each component depends
on its own characteristic and its production input quantity. It could be more

realistic to consider the stochastic dependence among components due to the
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shared working condition. Secondly, we have considered a single product with
one-stage manufacturing process with constant demand. The problem will be-
come more complex if we consider multiple manufacturing process with random
demand, where it takes multiple stages with stochastic component failures and
random yields in each stage. Thirdly, the dependence between production and
system health condition may be more complex and more studies in this direc-
tions are worth to be conducted. We have studied the scenario where the yield
is stochastically proportional to the component deterioration. Some non-linear
relations could be investigated.

In addition, maintenance time is supposed to be negligible in this work. In
some production scenarios, for instance, for the offshore wind farm, maintenance
delay is a practical issue and it is necessary to wait for a non-negligible time

period before maintenance crew arrives. This is also an interesting topic.
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