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Abstract. Graph Convolutional Network (GCN) is an important method for learning graph representations of nodes. For large-
scale graphs, the GCN could meet with the neighborhood expansion phenomenon, which makes the model complexity high and
the training time long. An efficient solution is to adopt graph sampling techniques, such as node sampling and random walk
sampling. However, the existing sampling methods still suffer from aggregating too many neighbor nodes and ignoring node
feature information. Therefore, in this paper, we propose a new subgraph sampling method, namely, Similarity-Aware Random
Walk (SARW), for GCN with large-scale graphs. A novel similarity index between two adjacent nodes is proposed, describing
the relationship of nodes with their neighbors. Then, we design a sampling probability expression between adjacent nodes
using node feature information, degree information, neighbor set information, etc. Moreover, we prove the unbiasedness of the
SARW-based GCN model for node representations. The simplified version of SARW (SSARW) has a much smaller variance,
which indicates the effectiveness of our subgraph sampling method in large-scale graphs for GCN learning. Experiments on six
datasets show our method achieves superior performance over the state-of-the-art graph sampling approaches for the large-scale
graph node classification task.

Keywords: Similarity-Aware Random Walk, Subgraph Sampling, Graph Convolutional Network, Large-scale Graphs, Random
Walk

1. Introduction

In recent years, graph representation learning [1–3] has received growing attention in machine learn-
ing. Graph Neural Network (GNN) [4–6] has achieved great success in various classification tasks on
graph data. Graph Convolutional Network (GCN) [7, 8] extends the classic Convolutional Neural Net-
work (CNN) to graph-structured data. Note that CNN can deal with regular data, such as images and
text, but fails to handle graph-structured data, e.g., social networks. Recently, many works [9–11] have
studied the GCN for graph-structured data. Graph convolution is essentially different from conventional
convolution. To be specific, the GCN updates the representation of the current node by aggregating the
information of its neighbor. For example, Kipf et al. [12] used a convolution-like operation to aggregate
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features of all adjacent nodes of each node and performed linear transformations to generate a new fea-
ture representation of each node. However, most existing methods have focused on shallow-layer GCN
and small-scale datasets. Scaling GCN to deeper layers of GCN is very challenging in large-scale graph
data learning. The main problem is the neighbor explosion phenomenon when aggregating the node
information, which makes the algorithm complexity high and the GCN training time too long.

Many graph sampling algorithms [13–15] have been proposed to reduce the training cost of GCN,
such as node sampling, layer sampling, subgraph sampling, etc. Specifically, Hamilton et al. [16] pro-
posed a node-wise sampling method, and Zou et al. [17] proposed a layer-wise sampling approach.
However, the neighborhood expansion problem still exists. The neighbor explosion problem means that
when considering higher-order neighbors or the graph scale growth, the recursive neighbor aggregation
will lead to a sharp increase in the number of neighbors. It makes an exponential relationship between
time complexity and graph size or GNN depth [18, 19]. More recent subgraph sampling methods have
been proposed to avoid the neighbor explosion [19–21]. Zeng et al. [20] adopted a graph-wise sampling
scheme to sample subgraphs for mini-batch training. They proposed four sampling algorithms, i.e., ran-
dom node-based sampler, random edge-based sampler, simple random walk-based sampler (SRW), and
multi-dimensional random walk-based sampler, among which the SRW performs best in their experi-
ments. However, the above-mentioned sampling methods did not consider the features of nodes in the
design of sampling probabilities. To bridge this gap, we propose a new subgraph sampling method,
namely, Similarity-Aware Random Walk (SARW)-based sampling for training GCN with large-scale
graphs.

The proposed SARW sampling strategy considers the similarity between the current node and the
next node using both features and degree information. In addition, the SARW merges both the similarity
and dissimilarity between nodes, which can adjust the impact of similarity by a parameter α. When α
is larger, the feature similarity will be considered more in the selection of the next node; when α is
smaller, feature dissimilarity will be considered more. The parameter is determined via a data-adaptive
method in practice. In the training step, subgraphs are sampled from the entire graph with SARW, and
a normalization technique is used to eliminate bias. At each iteration, a completed GCN is constructed
from subgraphs rather than edges or nodes across GCN layers. Compared with SRW in GraphSAINT
[20], the proposed SARW can obtain reliable subgraphs and has a much faster training speed. The
subgraphs from the SARW sampling method can reasonably describe the full graph, which leads to
better performance in GCN learning. Additionally, we proposed the simplified SARW (SSARW), which
does not consider node features in sampling, and the parameter α is zero. The next node with fewer
identical neighbors to the current node has a higher probability of being sampled by SSARW.

We evaluate our proposed approach on six large-scale graph datasets and explore the influence of the
number of sampling nodes for model training. We also study the training time of our method and the
training efficiency for different depths of GCN in our method. Experiments present that our method
achieves superior performance over the state-of-the-art sampling methods. The node number change in
the sampled subgraph has a smaller impact on our model than SRW within GraphSAINT, which indi-
cates that our method is stable and effective. Our source code is available on the GitHub website1. GCN
faces many challenges when applied to the real world, such as node neighbor explosion, memory limita-
tions, hardware limitations, and reliability issues. To address these challenges, subgraph sampling can be
used in various fields, including social networks, recommendation systems, industrial applications, and

1https://github.com/houlinlinvictoria/SARW.
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biomedical research. For instance, subgraph sampling can aid in predicting and recommending com-
modities on e-commerce platforms like Amazon and Taobao, as well as identifying user patterns on
social networking sites such as Reddit, Yelp, and Weibo.

The main contributions of our work are as follows:

• A new subgraph sampling method, namely, similarity-aware random walk (SARW), is proposed
for GCN learning on large-scale graphs. In the GCN training stage, we use the mini-batch training
strategy and the normalization technique to reduce the sampling bias.
• Under some mild conditions, our proposed sampling method, the simplified SARW (SSARW),

is unbiased towards node representations for GCN training. The corresponding variance is much
smaller than that of SRW in GraphSAINT. The effectiveness of our subgraph sampling algorithm
for GCN learning is demonstrated from the theoretical aspect.
• Experiments are conducted on six large graph datasets for node classification tasks. Results show

that our SARW outperforms the state-of-the-art sampling methods in F1 scores. In addition, we
study the effects of both the number of nodes in a sampled subgraph and the weight α in SARW.
We also study the training time of our method compared with GraphSAINT-SRW and the training
efficiency for different depths of GCN in our method.

2. Related Work

GNN has been successfully applied to various real-world domains, such as social media [22, 23], rec-
ommender systems [24, 25], text classification [26, 27], graph classification [28], node classification[29],
link prediction [30], community detection [31, 32], computer vision [33], etc. GCN [29, 34] is powerful
and effective in dealing with graph data, and can learn representations of nodes with desirable perfor-
mance. Bruna et al. [35] first proposed the application of an improved convolutional neural network
to graph data. In recent years, researchers [36, 37] have proposed some convolutional neural networks
for graphs. For example, Kipf et al. [12] proposed accelerating graph convolution calculations based on
Chebyshev expansion. However, these methods can only deal with relatively small datasets, which are
difficult to analyze large-scale graphs. The graph sampling technique [15, 38, 39] has been designed
to learn large-scale graphs with GCN. There are mainly three kinds of graph sampling methods, i.e.,
node-wise sampling [16, 40], layer-wise sampling [17, 41] and graph-wise sampling [18, 20].

Hamilton et al. [42] conducted graph convolutions on a part of nodes in the neighborhoods to reduce
the computational burden. Node-wise sampling is conducted only on a batch of nodes instead of the en-
tire graph. Chen et al. [43] proposed layer-wise sampling to tackle the over-expansion of neighborhoods,
where the nodes in each layer are only directly connected to the nodes in the next layer. But, the neigh-
borhood expansion problem still exists using node-wise sampling and layer-wise sampling. Therefore,
Zeng et al. [44] and Chiang et al. [18] performed mini-batches from subgraphs, which were obtained by
graph-wise sampling. Zeng et al. [44] designed a graph sampling method to maintain the connectivity
between the mini-batch of nodes. Chiang et al. [18] performed a preprocessing step, which calculated
non-overlapping clusters of a graph.

More recently, Zeng et al. [20] studied different sampling schemes for subgraphs that perform well.
Moreover, Cong et al. [39] proposed a variance reduction strategy with a fast convergence speed.
Hasanzadeh et al. [38] proposed a unified graph neural network architecture similar to the Bayesian
GNNs. More recent subgraph sampling methods have been designed [19, 21]. Bai et al. [19] proposed a
subgraph-based ripple walk training framework for the deep and large graph neural network. Zeng et al.
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[21] use a deep GNN to pass messages within a localized shallow sampled subgraph to improve both the
GNN efficiency and accuracy. However, many works ignored the important information when designing
sampling probabilities, that is, the features of nodes and common neighbor nodes. Our sampling method
is more effective and stable than Zeng et al. [20]. Generally, there are two ways to learn GCN, namely,
transductive learning [45, 46] and inductive learning [20, 42]. Note that our proposed SARW is suitable
for both of them and uses inductive learning in this paper.

3. Methodology

In this section, we will introduce the proposed method in detail. We propose a novel and general ran-
dom walk method SARW for GCN with large-scale graphs, and SARW has several variants according
to the different parameter α and similarity function. Advantages of our method contain that the proposed
method captures node similarity using both feature and common neighbor information, which addresses
the problem of aggregating too many neighbors and ignoring node features present in existing sampling
methods. We consider additional factors, and our algorithm takes into account that similar nodes may
have the same label, resulting in higher accuracy compared to other sampling methods. Furthermore, our
method allows for theoretical derivation of the sampling probability, which is a significant advantage.
The weaknesses of our method contain that the proposed sampling method can be performed relatively
quickly, but it only considers the first-order neighbors of each node during the sampling process. There-
fore, it does not take into account the potential influence of distant nodes, which may also have the same
label and similar attributes. Therefore, in the future, we will study these issues.

The SRW method is simplistic and does not take full advantage of the node attribute information.
In contrast, our proposed sampling method incorporates feature information, degree information, and
common neighbor set information to design the sampling probability node expression between adja-
cent nodes. We also introduce a cosine function to calculate the similarity index between two adjacent
nodes, which captures the similarity between nodes and describes the relationship between a node and
its neighbors. During the GCN training stage, we use the mini-batch training strategy and normalization
techniques to reduce the sampling bias and improve the accuracy of the training.

3.1. SARW
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Fig. 1. An example of neighborhoods of nodes 1 and 2.

For GraphSAINT, the simple random walk (SRW) is the most effective sampling method. However,
the SRW ignores the features. To alleviate the drawback of SRW, we propose a new sampling method
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SARW, which captures the nodes, edges, and features simultaneously. Suppose that G(V, E) is an un-
directed and attributed graph, where each node v ∈ V has a m-dimensional feature xv ∈ Rm. Let A and
D denote the adjacency matrix and the diagonal degree matrix of G, respectively. This paper considers
undirected and isomorphic graphs, so the neighbors of vertices in the graph have no order or direction.
During GCN training, the aggregation function constructed on purpose is permutation invariance (also
known as symmetry property). Permutation-invariant aggregations aim to permutate the input of an
aggregate function in various orders while keeping the output of the function remains unchanged. The
permutation invariance of aggregation functions ensures that GCN can be trained and applied to feature
sets of vertex neighbors in any order. So in our method, we also follow the permutation invariance.

For SRW, nodes are uniformly sampled from the current node’s neighbors. Intuitively, similar samples
with different labels are highly informative for training, while dissimilar samples with the same labels
are also highly informative for training. To motivate the SARW, we describe the similarity between two
adjacent nodes u and v by

S imG(u, v) =
1

f (deg(u), deg(v))

|N(u)|∑
i=1

|N(v)|∑
j=1

sim(xNi(u), xN j(v)), (1)

where f (deg(u), deg(v)) is a symmetric function about the degrees of u and v, such as min{deg(u), deg(v)},
deg(u)+deg(v), max{deg(u), deg(v)}, and deg(u)×deg(v), and deg(u) represents the degree of node u;
N(u) denotes the neighbor of node u; |N(u)| is the size of neighbor of node u; xNi(u) represents the input
feature vector of the i-th node in N (u). Note that node u is in the neighborhood of v and vice vase. An ex-
ample of neighborhoods of two nodes is shown in Figure 1. The neighbor of node 1 is N(1) = 2, 3, 5, 6, 7
and the neighbor of node 2 is N(2) = 1, 6, 7, 8, 9. The sim(·, ·) is a similarity function of two feature
vectors. In this paper, sim(·, ·) ∈ [0, 1] is based on the following cosine function,

sim
(

xNi(u), xN j(v)

)
=

1

2

{
1 + cos

(
xNi(u), xN j(v)

)}
=

1

2

1 +

〈
xNi(u), xN j(v)

〉
∥ xNi(u) ∥∥ xN j(v) ∥

 , (2)

where ⟨·, ·⟩ denotes the inner product of two vectors, and ∥ · ∥ denotes the Euclidean norm. To adjust
for the similarity between two nodes u and v, we propose a weighted version of S imG(u, v) for deriving
probability from u to v,

puv = α× similarity + (1− α)× dissimilarity

= αS imG (u, v) + (1− α) {1− S imG (u, v)} (3)

where α ∈ [0, 1] is a hyperparameter.
The main advantage of Equation (3) is that it can describe the relationship between two nodes by

feature-related statistics. Furthermore, it is more flexible for considering both the similarity and dissim-
ilarity with the hyperparameter α, which is determined via a data-adaptive method in practice. Note that
Equation (3) includes three special cases:
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• Case 1: For α = 0, then puv = 1 − S imG (u, v). In this case, the similarity statistic has a negative
effect on the probability from u to v.
• Case 2: For α = 1, then puv = S imG (u, v). In this case, the similarity of features has a positive

effect on the probability between nodes u and v.
• Case 3: If the features are missing or not considered2, i.e., xNi(u) = null, we define

sim(xNi(u), xN j(v)) =

{
1, if Ni(u) = N j(v)
0, if Ni(u) ̸= N j(v).

(4)

In this case, the Equation (1) is reduced to

S imG(u, v) =
1

f (deg(u), deg(v))

|N(u)|∑
i=1

|N(v)|∑
j=1

I(Ni(u) = N j(v))

=
1

f (deg(u), deg(v))
Cuv, (5)

where I is an indicator function and Cuv represents the number of common neighbors between the
node u and node v. As shown in Figure 1, C12 is 2. According to the definition of formula Cuv, it
can be seen that C13 = 0, C15 = 0, C16 = |{2}| = 1, C17 = |{2}| = 1, C12 = |{6, 7}| = 2.
Assuming that the next step tends to sample node 2, starting with node 1, because the number of
common neighbors between nodes 1 and 2 is two, which is greater than the number of common
neighbors between node 1 and its other neighbors. Using Formula 5 as an example, when the
similarity function is proportional to Cuv, the next step tends to sample node 2. Therefore, the
walking route is 1→ 2. It follows that Equation (3) is

puv = α
1

f (deg(u), deg(v))
Cuv + (1− α)

(
1− 1

f (deg(u), deg(v))
Cuv

)
. (6)

In Algorithm 1, we propose a novel SARW-based subgraph sampling method to perform the large-
scale graph node classification task. Because the probability distribution p is complicated, we adopt the
accept-reject sampling strategy. For v ∈ V , the GCN propagation rule (the aggregate function) of the
(l + 1)-layer in this paper is defined as [12, 20]:

xl+1
v = σ

(∑
u∈V

Ãvu(W l)T xl
u

)
, (7)

where Ã is the normalized adjacency matrix (i.e., Ã = D−1A), W l is the parameter of l-layer, σ is the
activation function. xl+1

v is the representation vector of node v in (l+1)-layer of GCN. After a subgraph

2When the feature dimension is high for some graphs, the computational complexity for SARW is relatively high.
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Algorithm 1 Subgraph sampling algorithm with SARW
Input: Training graph G(V, E); Sampling parameters: number of roots r; random walk length h; α
Output: Sampled graph Gs

1: Vroot ← r root nodes sampled uniformly at random from V .
2: Vs ← Vroot

3: for u ∈ Vroot do
4: for d = 1 to h do
5: Select v uniformly at random from u’s neighbors.
6: Generate a random number p ∈ [0, 1].
7: Compute

puv = αS imG(u, v) + (1− α) (1− S imG(u, v)).
8: if p ⩽ puv then
9: Vs ← Vs ∪ v

10: u← v
11: end if
12: end for
13: end for
14: return Gs = (Vs, Es)← Induce subgraph from G by nodes Vs.

Gs = (Vs, Es) is obtained by SARW, we consider a (l + 1)-layer node v and a l-layer node u. If v is
sampled (i.e., v ∈ Vs), we compute the aggregated feature of v as:

ζ l+1
v =

∑
u∈V

Ãuv

βuv
(W l)T xl

uIu|v

=
∑
u∈V

Ãuv

βuv
x̃l

uIu|v, (8)

where (W l)T xl
u = x̃l

u, and Iu|v is an indicator function for v ∈ Es, i.e.,

Iu|v =

{
1, if e(u, v) ∈ Es,
0, if v ∈ Vs and e(u, v) ̸∈ Es,

(9)

where e(u, v) represents the edge between u and v. The constant βuv is a normalization factor. Here, we
set βuv =

puv
pv

, where pv represents the probability of node u being visited in the sampling algorithm.
During the training stage, our model adopts the mini-batch training strategy and the normalization

technique to reduce the sampling bias [20], as follows:

Lbatch =
∑
v∈Gs

Lv

λv
, (10)
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where λv = |V| × pv is a normalization constant, Lv is the cross loss function value of the output layer
of node v, i.e.,

Lv = −Yv ln Ŷv, (11)

Yv is the real label of node v, Ŷi = so f tmax(Ẑ) is the prediction label, Z is the output of the last layer
of GCN, and the last decoder generally adopts so f tmax function. Therefore, The overall architecture
of the proposed model based on GCN is illustrated in Figure 2. Note that this paper focuses on the
problem of graph sampling suitable for big data GCN training. The data domains used in this paper
are isomorphic graphs and undirected graphs. It is well-known that GCNs work on isomorphic graphs,
which are graphs with a single type of edge and a single type of node. Non-isomorphic graphs, such
as heterogeneous graphs, refer to graphs with multiple types of nodes and edges. For the learning of
heterogeneous graphs, heterogeneous graph neural networks are typically used.

Fig. 2. The architecture of the proposed model.

3.2. The Simplified SARW

Fig. 3. An example about SRW and SSARW.

As mentioned earlier, when the dimension of node features is high, the similarity calculation for nodes
is time-consumption. Therefore, a simplified version of SARW is investigated in this subsection.
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In Case 3 of SARW with α = 0, the Equation (3) is simplified to

puv = 1− 1

f (deg(u), deg(v))

|N(u)|∑
i=1

|N(v)|∑
j=1

I(Ni(u) = N j(v))

= 1− Cuv

min{deg(u), deg(v)}
, (12)

where Cuv represents the number of common neighbors between the node u and node v. In this particular
case, our simplified SARW is similar to the random Walk by Li et al. [47]. For notational convenience,
we denote this particular case as SSARW in the remainder. Note that one particular type of the third case
of Equation (3) (i.e., in Case 3 of SARW with α = 0) equals SSARW.

The SSARW has a higher probability to select the next node, which has less common neighbors
with the current node and a larger degree. Figures 3 (a) and (b) are diagrams for SRW and SSARW,
respectively (the dark lines and nodes are sampled subgraphs). Figure 3 (c) gives an illustrative example
of a two-layer GCN on the sampled subgraph with SSARW. With the same experimental settings (the
same root node size and random walk length), the length of the subgraph coming from SSARW is much
longer than that of SRW. Moreover, the SRW is easy to fall into a circle and visits previously sampled
nodes.

Below, we conduct mathematical analysis for SSARW based on statistical sampling theory. A random
walk on a graph could be viewed as a finite Markov chain in mathematics. First, we introduce some pre-
liminaries. Let {Xt}k

t=1 be the Markov chain representing the sequence of visited nodes by the sampling
algorithm. Then Xt ∈ {u1, u2, · · · , uk}, where {u1, · · · , uk} is sampled node set. The stationary distri-
bution of SRW is π = {π(u)}u∈V , where π(u) = deg(u)(2|E|)−1 and π(u) represents the probability of
node u being visited when the random walk converges [48, 49]. The transition matrix of SRW, [Puv]u,v∈V
can be written as [47, 50]:

Puv =

{
1

deg(u) , if v ∈ N(u),

0, otherwise.
(13)

For SSARW, the transition matrix [Puv]u,v∈V can be derived by the acceptance probability (Equation
12) as the following formula [47]:

Puv =

{
p̃uv

1− p̃uu
, if v ∈ N(u),

0, otherwise,
(14)

where

p̃uv =


1

deg(u)(1−
Cuv

min{deg(u),deg(v)}), if v ∈ N(u),

1−
∑

k∈N(u) p̃uk, if v = u,
0, otherwise.

The stationary probability of node u can be derived as π(u) = Z × deg(u)(1 − p̃uu), where Z is the
normalization constant. We will use pu to denote the stationary probability in the following sections.
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Note that∑
u∈V

π(u) =
∑
u∈V

Z × deg(u)(1− p̃uu) = 1,

so

Z =
1∑

u∈V deg(u)(1− p̃uu)
.

In the following theorem, we establish the unbiasedness of node representations of SSARW-based
subgraph GCN learning.

Theorem 1. For SSARW-based subgraph GCN learning, let β = puv
pv

, then ζ l+1
v is an unbiased estimator

of the aggregation of v in the full (l+1)-th GCN layer, where puv = (1− Cuv
min{deg(u),deg(v)})

1
deg(u)(1− p̃uu)

and
pv = Z×deg(v)(1− p̃vv) is the probability of node u being visited when the SSARW sampling algorithm
converges, Z is a normalization constant with Z = 1∑

u∈V deg(u)(1−p̃uu)
, i.e., E(ζ l+1

v ) =
∑

u∈V Ãuv x̃l
u.

Proof. Under the condition that v is sampled, we get the expectation of the representation of node v in
the (l + 1)-th GCN layer as follows:

E
(
ζ l+1

v

)
= E

 ∑
u∈V, sample(u,v)

Ãuv

βuv
x̃l

u


= E

(∑
u∈V

Ãuv

βuv
x̃l

uIu|v

)

=
∑
u∈V

Ãuv

βuv
x̃l

uE
(
Iu|v
)
,

where sample(u, v) indicates nodes u and v are sampled, and

E
(
Iu|v
)
= 1× P((u, v) is sampled | v is sampled) + 0)

=
P((u, v) is sampled)

P(v is sampled)
.

Then, it can be derived that

E
(
ζ l+1

v

)
=
∑
u∈V

Ãuv
puv
pv

x̃l
u

P((u, v) is sampled)
P(v is sampled)

=
∑
u∈V

Ãuv x̃l
u.

Hence, E
(
ζ l+1

v

)
=
∑

u∈V Ãuv x̃l
u. This ends the proof. □
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The following Theorem 2 shows that the variance of SSARW-based subgraph GCN learning is much
smaller than that of SRW in GraphSAINT.

Theorem 2. For SRW and SSARW on GCN learning, if max{ Cuv
deg(u),

Cuv
deg(v)} ⩽ p̃uu, then we have a

comparison about the variance of node representations, i.e., Var(ζ|S S ARW) ⩽ Var(ζ|S RW).

Proof. Let {Xt}k
t=1 be the chain representing a sequence of nodes visited by the SSARW. Then Xt ∈ S ,

where S = {v1, v2, · · · , vn}, E is the set of edges, |E| is the size of set. So Xt = {v1, v2, · · · , vn}. The
transition matrix and stationary distribution of SSARW are shown above. The corresponding mini-batch
loss is calculated as Lbatch =

∑
v∈Gs

Lv
λv

in Section 3.1. Therefore, from Theorem 1, we have

E(Lbatch) =
1

|G|
∑

Gs∈G
Lbatch

=
1

|G|
∑

Gs∈G

∑
v∈Vs

Lv

λv

=
1

|V|
∑
v∈V

Lv,

where G is the sampled subgraphs. Define ζ to be the representation of all nodes in subgraph Gs, as
follows:

ζ =
∑

l

∑
v∈Gs

ζ l
v

pv
.

So, the expectation of ζ is as follows,

E(ζ) = E

(∑
l

∑
v∈Gs

ζ l
v

pv

)

= E

(∑
l

∑
v,u∈Gs

Ãvu

pvβuv
x̃l

uIvIu|v

)

=
∑

l

E

( ∑
v,u∈Gs

Ãvu

pvβuv
x̃l

uIvIu|v

)

=
∑

l

∑
v,u∈G

Ãvu x̃l
u.

Hence, E(ζ) =
∑

l Γl, we set Γl to represent

∑
v,u∈G

Ãvu x̃l
u = E

(∑
v∈Gs

ζ l
v

pv

)
.
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Thus, in the SSARW algorithm, the sampling variance of the representation vector ζ is:

Var(ζ|S S ARW) = Var

(∑
l

∑
v∈Gs

ζ l
v

pv

)
,

where pv = Z × deg(v)(1− p̃uu). In a similar way, we have the sampling variance of the representation
vector ζ in the SRW algorithm as follows:

Var(ζ|S RW) = Var

(∑
l

∑
v∈Gs

ζ l
v

p′v

)
,

where p′v =
deg(v)
2|E| is the stationary probability of SRW.

Then, we can deduce that

Var(ζ) = E
{
[ζ − E(ζ)]2

}
= E

{
[
∑

l

∑
v∈Gs

ζ l
v

pv
−
∑

l

Γl]
2

}

= E

{
[
∑

l

(
∑
v∈Gs

ζ l
v

pv
− Γl)]

2

}

= E

[∑
l

(
∑
v∈Gs

ζ l
v

pv
− Γl)

2

]
+ E

∑
l1 ̸=l2

(
∑
v∈Gs

ζ l1
v

pv
− Γl1)(

∑
v∈Gs

ζ l2
v

pv
− Γl2)


= E

[∑
l

(
∑
v∈Gs

ζ l
v

pv
− Γl)

2

]
+ 0

=
∑

l

E

[
(
∑
u,v

ζ l
v

pv
)2 − 2(

∑
v

ζ l
v

pv
)Γl + (Γl)

2

]

=
∑

l

{
E[(
∑

v

ζ l
v

pv
)2]− 2E(

∑
v

ζ l
v

pv
)Γl + (Γl)

2

}

=
∑

l

{
E[(
∑

v

ζ l
v

pv
)2]− Γ2

l

}

=
∑

l

E[
∑

v

(
ζ l

v

pv
)2 +

∑
v1 ̸=v2

ζ l
v1

pv1

ζ l
v2

pv2
]− Γ2

l


=
∑

l

E[
∑

v

1

p2v

p2v
p2vu

(Ãvu x̃l
u)

2IvIu|v) + E(
∑

v1 ̸=v2

ζ l
v1

pv1

ζ l
v2

pv2
)− Γ2

l


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=
∑

l

∑
u,v

(Ãvu x̃l
u)

2

pvu
+
∑

v1 ̸=v2

(Ãv1u1 x̃l
u1 Ãv2u2 x̃l

u2)− (Γl)
2


Hence, a larger puv will lead to a small Var(ζ).

For SRW, the transition probability from node u to v is p′uv = 1
deg(u) , where v ∈ N(u). For SSARW,

the corresponding transition probability is

puv =

(
1− Cuv

min{deg(u), deg(v)}

)
1

deg(u)(1− p̃uu)
.

It is easy to know that 0 ⩽ Cuv < deg(u), 0 ⩽ Cuv < deg(v), and deg(v) = {1, 2, 3...}, where deg(u) =
{1, 2, 3...}, and Cuv = {0, 1, 2, ...}.

(1) Case 1:
Suppose that deg(u) ⩽ deg(v), then we have

puv =

(
1− Cuv

deg(u)

)
1

deg(u)(1− p̃uu)

=
1

deg(u)
[(1− Cuv

deg(u)
)

1

1− p̃uu
].

From assumption, we have

max{ Cuv

deg(u),
Cuv

deg(v)
} = Cuv

deg(u)
⩽ p̃uu.

So, we have

(1− Cuv

deg(u)
)

1

1− p̃uu
⩾ 1.

Therefore, puv ⩾ 1
deg(u) = p′uv. Hence, we get

Var(ζ|S S ARW) ⩽ Var(ζ|S RW).

(2) Case 2:
If deg(v) < deg(u), we can derive that

puv =

(
1− Cuv

deg(v)

)
1

deg(u)(1− p̃uu)

=
1

deg(u)
[(1− Cuv

deg(v)
)

1

1− p̃uu
].

Similar, from assumption, we have

max{ Cuv

deg(u),
Cuv

deg(v)
} = Cuv

deg(v)
⩽ p̃uu.
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So, we get,

(1− Cuv

deg(v)
)

1

1− p̃uu
⩾ 1.

Therefore, puv ⩾ 1
deg(u) = p′uv. Hence, we get

Var(ζ|S S ARW) ⩽ Var(ζ|S RW).

In summary, for both different cases, Theorem 2 holds. This ends the proof. □

In addition, we supplement the proof of the unbiasedness of GraphSAINT-SRW using the knowledge
of Markov chain in statistics. By the relevant derivation of the transition matrix and stationary distribu-
tion of SRW, we obtain the Theorem 3.

Theorem 3. For the GraphSAINT-SRW, the ζ l+1
v is an unbiased estimator of the aggregation of v in the

full (l+1)-th GCN layer, if β = puv
pv

, where puv =
1

deg(u) and pv =
deg(v)
2|E| is the stationary probability, i.e.,

E(ζ l+1
v ) =

∑
u∈V Ãuv x̃l

u.

Proof. Let Xt
k
t=1 be the Markov chain representing the sequence of visited nodes by the SRW, where

Xt ∈ {v1, v2, · · · , vk}, {v1, v2, · · · , vk} is the sampled node set, E is the edges set, |E| is the size of
set. The transition matrix and stationary distribution of SRW are shown above. So, after sampling, the
expectation of the node representation in the GCN is as follows:

E
(
ζ l+1

v

)
= E

 ∑
u∈V,sample(u,v)

Ãuv

βuv
x̃l

u


= E

(∑
u∈V

Ãuv

βuv
x̃l

uIu|v

)

=
∑
u∈V

Ãuv

βuv
x̃l

uE
(
Iu|v
)

=
∑
u∈V

Ãuv

βuv
x̃l

uP((u, v) is sampled|v is sampled)

=
∑
u∈V

Ãuv
puv
pv

x̃l
u

P((u, v) is sampled)
P(v is sampled)

=
∑
u∈V

Ãuv x̃l
u

2|E|
deg(u)deg(v)

2|E|
deg(u)deg(v)

=
∑
u∈V

Ãuv x̃l
u.
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Hence, we can conclude that E
(
ζ l+1

v

)
=
∑

u∈V Ãuv x̃l
u. This completes the proof. □

4. Experiments

4.1. Data and Settings

In this section, we evaluate both SARW and its simplified case SSARW with node classification tasks
on six datasets, namely, Flickr, PPI, PPI-large version, Reddit, Yelp, and Amazon [20]. The details of
the six datasets are shown in Table 1. For our multi-classification task, “s” represents that each node
has a single label and “m” means multi-label. Our experiments are conducted under inductive and su-
pervised learning. Inductive learning refers to the training set without using the information of the test
set or verification set samples. Its advantage is that the information of known nodes can be used to gen-
erate embedding for unknown nodes. To evaluate the performance of SARW, we report the F1-micro
score and standard deviation (std). F1-micro calculates metrics globally by calculating the total number
of true positives, false negatives, and false positives, which is suitable for measuring multi-class imbal-
anced data. The larger the F1-micro, the smaller the standard deviation, indicating the better the model
performance. Our model is implemented using Tensorflow3 with Python 34. The experimental settings
and results of baselines are retrieved from published papers [20]. In this section, we call our sampling
methods on GCN learning by GraphSAINT-SARW and GraphSAINT-SSARW.

Dataset #Edges #Nodes Feature #Classes label Train:Val:Test
dimensions

Flickr 899,756 89,250 500 7 s 5.0: 2.5: 2.5

PPI 225,270 14,755 50 121 m 6.6: 1.2: 2.2

PPI-large 818,716 56,944 50 121 m 7.9: 1.1: 1.0

Reddit 11,606,919 232,965 602 41 s 6.6: 1.0: 2.4

Yelp 6,977,410 716,847 300 100 m 7.5: 1.0: 1.5

Amazon 132,169,734 1,598,960 200 107 m 8.5: 0.5: 1.0
Table 1

The details of the experimental datasets.

Similar to GraphSAINT-SRW [20], the fixed partitions of the training set, the verification set and the
test set are presented in the last column of Table 1. For example, the Amazon dataset is used to classify
products on the Amazon website. One node in the Amazon graph represents a product, and one edge
represents that the products of two nodes are purchased by the same user. Node features include the
information of all comments on the product, using word to vector technology. The label of each node
represents 107 categories of products, such as books, movies, shoes, etc. In the process of training, we
minimize the loss function using the Adam Optimizer with a learning rate being 0.01. We set the dropout

3https://www.tensorflow.org/
4https://www.python.org/
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rate as 0.1 or 0.2 (0.2 for Flickr, 0.1 for other datasets). The activation function is ReLu. The dimensions
of hidden vectors for those six datasets are 256, 512, 512, 128, 256, and 512, respectively. The depth of
GCN is set to 3 on Flickr, PPI-large, Yelp, and Amazon datasets. On PPI and Reddit datasets, the depth
of GCN is set to 4. Each experimental result in this section is an average of five runs. For the parameters,
we test multiple options and finally choose the best set of parameters. For the sampling process, the
hyperparameters will be introduced in the concrete experiments. Other datasets, configurations, system
specifications, and parameters are introduced in detail in the code.

4.2. Comparison with State-of-the-art Methods

To evaluate the performance of our GraphSAINT-SARW, we compare it with the following seven
baselines, including

• vanilla GCN [12] (2016) is a standard graph convolution neural network.
• GraphSAGE [42] (2017) randomly selects a fixed number of neighbor nodes for each node in a

graph to aggregate information.
• FastGCN [43] (2018) samples a fixed number of nodes in each layer and reconstructs the graph

convolution as an integral transform of the embedding function, which is faster than GraphSAGE.
• S-GCN [16] (2018) designs a sampling algorithm based on control variables, which allows the

GCN to sample any small neighbor scale during training.
• AS-GCN [41] (2018) designs an adaptive layer by sampling, which can effectively accelerate the

training of GCN.
• ClusterGCN [18] (2019) uses a graph cluster algorithm to cut the whole graph into several small

clusters. During training, multiple clusters are randomly selected to form subgraphs as a batch,
and then GCN is calculated on the sample graph.
• GraphSAINT-SRW [20] (2020) uses a simple random walk method to collect the graph from the

original graph. Multiple subgraphs are sampled in advance in the preprocessing stage, and mini-
batch acceleration can be carried out to improve efficiency.

In Table 2, we report the F1-micro scores for all competing methods on Flickr, Reddit, PPI, and PPI-
large datasets. The results of the top six methods are retrieved from published papers and we reproduce
the GraphSAINT-SRW method according to their released codes. In the experiments, the similarities
among nodes are calculated in advance, which does not increase the training time. The complexity of
similarity pre-calculation between the current node and the next node is deg(u)×d×d, which is related to
the degree of the current node u and the feature dimension d of nodes in a dataset. The space complexity
of the model is r×h+l×ns×ns×d, where ns and l represent the number of nodes in the subgraph and the
number of layers of GCN, respectively. Due to the complexity of similarity computation, experiments in
this part are conducted only on Flickr, Reddit, PPI and PPI-large datasets. For GraphSAINT-SARW, we
set the number of root nodes r of Flickr, Reddit, PPI, and PPI-large datasets as 6000, 2000, 1000, and
3000, respectively, which is the same as GraphSAINT-SRW. The length of walker h is set as 5 and 10.

Compared with the GraphSAINT-SRW, our GraphSAINT-SARW achieves high accuracy of improve-
ment on these three datasets. Specifically, on Reddit dataset, the F1-micro score of GraphSAINT-SARW
(with α = 1 and h = 10) is 1.13% higher than that of GraphSAINT-SRW. For PPI-large dataset, the
F1-micro score of GraphSAINT-SARW (with α = 0.75 and h = 10) is 1.87% higher than GraphSAINT-
SRW. The experimental results indicate that our method based on SARW sampling scheme is effective
for GCN training task on large-scale graph datasets. The F1-micro scores of GraphSAINT-SARW are
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Methods Flickr Reddit PPI PPI-large

baselines

vanilla GCN 0.4920 0.9330 0.5150 −

GraphSAGE 0.5010 0.9530 0.6370 −

FastGCN 0.5040 0.9240 0.5130 −

S-GCN 0.4820 0.9640 0.9630 −

AS-GCN 0.5040 0.9580 0.6870 −

ClusterGCN 0.4810 0.9540 0.8750 0.9030

GraphSAINT-SRW 0.5089 0.9592 0.9764 0.9326

GraphSAINT-
SARW (our)

α = 1, h = 5 0.5135 0.9650 0.9849 0.9458

α = 1, h = 5 0.5135 0.9650 0.9849 0.9458

α = 1, h = 10 0.5147 0.9679 0.9868 0.9504

α = 0.75, h = 5 0.5138 0.9649 0.9826 0.9471

α = 0.75, h = 10 0.5153 0.9671 0.9837 0.9513

α = 0.5, h = 5 0.5141 0.9645 0.9833 0.9379

α = 0.5, h = 10 0.5159 0.9657 0.9836 0.9395

α = 0.25, h = 5 0.5157 0.9646 0.9845 0.9462

α = 0.25, h = 10 0.5178 0.9663 0.9853 0.9480

α = 0, h = 5 0.5159 0.9691 0.9841 0.9488

α = 0, h = 10 0.5192 0.9705 0.9848 0.9496
Table 2

The F1-micro scores of the competing methods.

1.03%, 1.04% higher than those of GraphSAINT-SRW on Flickr, PPI datasets, respectively. In our ex-
periments, the maximum length of random walk is set as 10 with the following considerations: (a) in the
compared method GraphSANIT-SRW, the length of random walk is very short and only 2; and (b) in our
algorithm, root node r is set as 6000 on Flickr, Reddit, PPI, and PPI-large datasets. When the length of
random walk h is 10, enough nodes have been sampled to construct the subgraph. Moreover, we began
to discard some sampled nodes and then started to collect nodes as constructing subgraphs to ensure that
the mixing time was reached.

Table 3 shows the experimental results of the comparison between GraphSAINT-SARW without fea-
tures and GraphSAINT-SRW on six datasets. When features are not considered (Case 3), we set α as 0,
0.25, 0.5, 0.75, and 1, respectively. For GraphSAINT-SARW and GraphSAINT-SRW, we set the number
of root nodes r of Yelp and Amazon datasets as 1250 and 1500, respectively. The length of the walker
h is set as 10 on each dataset. Other settings are similar to those in Table 2. For all cases of α in this
experiment, our GraphSAINT-SARW outperforms the GraphSAINT-SRW. These results show that our
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Flickr Reddit PPI PPI-large Yelp Amazon

GraphSAINT-SRW 0.5089 0.9592 0.9764 0.9326 0.6500 0.8129

GraphSAINT-SARW (our)

α = 1, h = 10 0.5127 0.9695 0.9877 0.9498 0.6584 0.8194

α = 0.75, h = 10 0.5145 0.9672 0.9816 0.9453 0.6546 0.8219

α = 0.5, h = 10 0.5097 0.9615 0.9793 0.9395 0.6571 0.8178

α = 0.25, h = 10 0.5153 0.9689 0.9829 0.9402 0.6614 0.8211

α = 0, h = 10 0.5163 0.9698 0.9868 0.9431 0.6605 0.8215
Table 3

The F1-micro scores of GraphSAINT-SARW without feature and GraphSAINT-SRW.

sampling strategy is effective. Especially, for Flickr, Reddit and Yelp datasets, the performance becomes
better as the descending of α, which indicates sampling dissimilar nodes is effective for training. How-
ever, for PPI, PPI-large and Amazon datasets, the performance becomes better as the increasing of α,
which shows that sampling similar nodes is more desirable for graph learning.

4.3. The Performance of SSARW

In Table 4, we report the performance of SSARW and SRW with different settings on Flickr, PPI,
PPI-large version, Reddit, Yelp, and Amazon datasets in Table 1. The first column of Table 4 represents
the settings of the number of root nodes and the walker length. For the convenience of observation, we
draw Figures 4, 5, and 6, which show the trend of SSARW and SRW about F1 and std on Reddit, PPI,
and PPI-large datasets. The horizontal axis of Figure 4 is walker length when the number of root nodes
is 2000. In Figure 5, the number of root nodes is 3000, and the number of root nodes is 1000 in Figure 6.
Under some mild conditions, we can prove that the variance of SSARW can be smaller than the variance
of SRW in Section 3.2. However, it is very difficult to accurately give the measure of variance reduction,
and we provide some numerical results to verify the conclusion as shown in Table 4, Figures 4, 5 and 6.
Based on the survey results in our sample works, an increase of around 1-2% of F1-score is considered
significant. As shown in the Table 4, our model outperforms the baseline models in terms of F1-score,
lower standard deviation values, and shorter training time.

From the results, we have the following conclusions:

(1) For the same parameters, the SSARW has a higher F1-micro than SRW. Moreover, both the stan-
dard derivation and training time of SSARW are much smaller than those of SRW.

(2) For the fixed number of root nodes, the SSARW and SRW have better performances as the walker
length becomes longer. As the total number of sampling nodes increases, the training subgraph is
more close to the original graph.

(3) For the fixed number of root nodes, the SSARW is much better than SRW for a long walker length.
This suggests that a long walker length has a high classification accuracy.

(4) As the number of total sampled nodes increases, the standard deviation of SSARW decreases.
The standard deviation of SSARW is much smaller than SRW, and the accuracy of SSARW is
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metrics
SSARW SRW

metrics
SSARW SRW

F1-micro std F1-micro std F1-micro std F1-micro std

Flickr

6000× 2 0.5121 0.0030 0.5044 0.0078

Reddit

2000× 2 0.9623 0.0027 0.9590 0.0046

6000× 4 0.5159 0.0022 0.5099 0.0048 2000× 4 0.9645 0.0023 0.9591 0.0059

6000× 6 0.5158 0.0016 0.5093 0.0051 2000× 6 0.9679 0.0023 0.9582 0.0061

6000× 8 0.5163 0.0014 0.5089 0.0073 2000× 8 0.9680 0.0009 0.9593 0.0058

6000× 10 0.5174 0.0010 0.5094 0.0097 2000× 10 0.9695 0.0008 0.9592 0.0063

Yelp

1250× 2 0.6558 0.0039 0.6494 0.0024

PPI

1000× 2 0.9793 0.0035 0.9748 0.0062

1250× 4 0.6575 0.0032 0.6511 0.0030 1000× 4 0.98004 0.0019 0.976180 0.0052

1250× 6 0.6588 0.0030 0.6516 0.0021 1000× 6 0.9824 0.0014 0 0.9772 0.0048

1250× 8 0.6595 0.0017 0.6500 0.0029 1000× 8 0.9868 0.0006 0.9760 0.0047

1250× 10 0.6605 0.0015 0.6497 0.0027 1000× 10 0.9868 0.0034 0.9764 0.0051

PPI-large

3000× 2 0.9443 0.0015 0.9322 0.0086

Amazon

1500× 2 0.8142 0.0030 0.8087 0.0047

3000× 4 0.9479 0.0013 0.9392 0.0047 1500× 4 0.8170 0.0019 0.8112 0.0053

3000× 6 0.9490 0.0012 0.9378 0.0055 1500× 6 0.8196 0.0015 0.8127 0.0039

3000× 8 0.9497 0.0011 0.9415 0.0026 1500× 8 0.8209 0.0014 0.8132 0.0031

3000× 10 0.9504 0.0011 0.9406 0.0015 1500× 10 0.8215 0.0013 0.8129 0.0037

Table 4
The comparison between our SSARW and SRW on six datasets.

higher than SRW. However, the standard deviation of SRW is unstable. This demonstrates that our
SSARW sampling strategy is more reliable than SRW for the GCN training task on large-scale
graph datasets.

Fig. 4. The comparison between SSARW and SRW
on Reddit dataset.

Fig. 5. The comparison between SSARW and SRW
on PPI-large dataset.
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The comparison between GraphSAINT-SARW and GraphSAINT-SSARW is presented in Sections
4.2 and 4.3. The comparison results are shown in Tables 2, 3, 4. When h = 10, the F1-micro scores
of GraphSAINT-SARW are higher than those of GraphSAINT-SSARW on Flickr, Reddit, and PPI-
large datasets. This may be because the two methods both introduce degree information and neighbor
information, but SARW also introduces features and cosine similarity. Specially, when the number of
root nodes is set as 6000 and the length of the walker is set as 10, the F1-micro of GraphSAINT-SARW
is 0.5192 which is higher than that of GraphSAINT-SSARW 0.5174.

4.4. Addition Discussion

In addition, we discuss some additional experiments. The training time of the SARW and SSARW
methods are shorter. In Table 5, we compare the total training time and sampling time of our methods
and the GraphSAINT-SARW approach. The GCN depth and the number of root nodes are the same in
Table 2. The length of the walker is set as 10. We find the sampling time of the SARW and SSARW
methods are both slightly higher than SRW, which may be because our sample method requires some
judgment statements and calculations. However, the sampling time of our method is still a small order of
magnitude, and the sampled subgraphs can be sampled in advance without taking up training time. From
Table 5, the training time of the SARW and SSARW methods are less than that of the GraphSAINT-SRW
method, which shows the superiority of our method. Moreover, the training time of the SARW is shorter
than the SSARW, indicating that it is useful for SARW to consider the additional information of similar
nodes. The sampling time of the SARW is longer than the SSARW, which shows the computation of the
SARW is more complex.

In Figure 7, we evaluate the training efficiency for different depths of GCN. We compare SSARW
with GraphSAINT-SRW training on the two large graphs (Reddit and Flickr). We increase the number
of layers and measure the average time per training execution. The GCN depth is set to 2, 3, 4, 5 and 6.
Other settings are the same in Table 5. From Figure 7, the total training time of GraphSAINT-SSARW
and GraphSAINT-SRW are both roughly linear relationships with the GCN depth. This alleviates the
“neighbor explosion” phenomenon (i.e., when increasing the depth, the training cost of GCN increases
exponentially). Moreover, the training time of our method is less than that of the GraphSAINT-SRW
method on both two datasets.

SARW SSARW SRW
time (s) sampling training sampling training sampling training

Flickr 42.4280 6.0500 18.2786 7.2420 3.7210 10.3540

PPI 48.3760 351.8400 20.3636 508.4000 2.6052 550.6360

PPI-large 51.8480 473.9900 29.6550 544.8100 5.0976 617.9620

Reddit 44.2850 53.0600 20.2808 61.6840 8.4624 84.8680

Yelp 40.1790 216.1400 15.1790 258.9400 10.2380 314.1400

Amazon 64.7930 246.66 35.6620 337.1840 15.0460 451.6250

Table 5
The comparison between SARW, SSARW and SRW on sampling times and total training time for GCN.
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Fig. 6. The comparison between SSARW and SRW
on PPI dataset.

Fig. 7. The relationship between GCN depths and
training time.

5. Conclusion

In this paper, we propose a new subgraph sampling method, SARW, which uses the edges, features
and degree information to determine sampling probabilities. Our similarity-aware random walk sub-
graph sampling method achieves competitive performance for GCN training on large-scale graph data.
Furthermore, we implement a simplified version of SARW called SSARW, which does not consider node
features. We conduct a detailed theoretical analysis of SSARW, including unbiased learning of SSARW-
based subgraph GCNs and a variance analysis. Extensive experiments on public datasets demonstrate
the effectiveness of our proposed approach. Additionally, we study the influence of the sampling walker
length, the relationship between GCN depths and training time. We also compare the sampling time
between our method and the GraphSAINT-SRW method.

Our method addresses the problem of subgraph sampling on large-scale isomorphic and static graph
data, but it is not suitable for non-isomorphic and dynamic graphs. In the future, we plan to extend
our method to non-isomorphic and streaming graph data. Additionally, we aim to improve the manual
sampling parameters to automatic parameters.
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