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Abstract
For a Legendrian link Λ ⊂ 𝐽1𝑀 with 𝑀 = ℝ or 𝑆1,
immersed exact Lagrangian fillings 𝐿 ⊂ Symp(𝐽1𝑀) ≅

𝑇∗(ℝ>0 × 𝑀) of Λ can be lifted to conical Legendrian
fillings Σ ⊂ 𝐽1(ℝ>0 × 𝑀) of Λ. When Σ is embedded,
using the version of functoriality for Legendrian con-
tact homology (LCH) from Pan and Rutherford [J.
Symplectic Geom. 19 (2021), no. 3, 635–722], for each
augmentation 𝛼 ∶ (Σ) → ℤ∕2 of the LCH algebra of
Σ, there is an induced augmentation 𝜖(Σ,𝛼) ∶ (Λ) →

ℤ∕2. With Σ fixed, the set of homotopy classes of all
such induced augmentations, 𝐼Σ ⊂ 𝐴𝑢𝑔(Λ)∕∼, is a Leg-
endrian isotopy invariant of Σ. We establish methods to
compute 𝐼Σ based on the correspondence betweenMCFs
and augmentations. This includes developing a functo-
riality for the cellular differential graded algebra from
Rutherford and Sullivan [Adv. Math. 374 (2020), 107348,
71 pp.] with respect to Legendrian cobordisms, and prov-
ing its equivalence to the functoriality for LCH. For
arbitrary 𝑛 ⩾ 1, we give examples of Legendrian torus
knots with 2𝑛 distinct conical Legendrian fillings distin-
guished by their induced augmentation sets. We prove
that when 𝜌 ≠ 1 andΛ ⊂ 𝐽1ℝ, every 𝜌-graded augmenta-
tion ofΛ can be induced in this manner by an immersed
Lagrangian filling. Alternatively, this is viewed as a com-
putation of cobordism classes for an appropriate notion
of 𝜌-graded augmented Legendrian cobordism.
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1 INTRODUCTION

A fundamental holomorphic curve invariant of a Legendrian submanifold, Λ, is the Legendrian
contact homology (LCH) dg-algebra (differential graded algebra [DGA]), denoted as (Λ). As
part of the symplectic field theory (SFT) package, the LCH algebra is functorial for an appropriate
class of cobordisms. In this article we consider 1-dimensional Legendrian links in the 1-jet spaces,
𝐽1𝑀 with𝑀 = ℝ or 𝑆1, and exact Lagrangian cobordisms in the symplectization, 𝑆𝑦𝑚𝑝(𝐽1𝑀) =

ℝ × 𝐽1𝑀; throughout, our coefficient field isℤ∕2. ForΛ−,Λ+ ⊂ 𝐽1𝑀, such a cobordism,𝐿 ∶ Λ− →

Λ+, cylindrical overΛ− andΛ+ at the negative and positive ends of 𝑆𝑦𝑚𝑝(𝐽1𝑀), equipped with a
ℤ∕𝜌-valued Maslov potential induces a ℤ∕𝜌-graded DGAmap 𝑓𝐿 ∶ (Λ+) → (Λ−), cf. [13, 16].
In particular, when 𝐿 is an exact Lagrangian filling, that is, a cobordism 𝐿 ∶ ∅ → Λ, the induced
map

𝜖𝐿 ∶ (Λ) → ℤ∕2

is a 𝜌-graded augmentation which by definition is a unital ring homomorphism that satisfies
𝜖𝐿 ◦ 𝜕 = 0 and preserves a ℤ∕𝜌-grading on(Λ).
A natural question is:

Question 1.1. Which augmentations come from exact Lagrangian fillings?

While orientable exact Lagrangian fillings have been constructed for several classes of Leg-
endrian knots [16, 22, 38, 40], there are many augmentations that cannot be induced by any
orientable filling as obstructions to such fillings arise from the Thurston–Bennequin number of
Λ and from the linearized homology of the augmentation; see [7, 11, 13]. The main result of this
article shows that if one extends the setting to allow immersed cobordisms with double points,
then the algebra more closely matches the geometry. Indeed we prove that when 𝜌 is even, every
𝜌-graded augmentation can be induced by an orientable immersed exact Lagrangian filling.
An extension of the functoriality for LCH to immersed Lagrangian cobordisms is implemented

in [32] by working with a class of Legendrian cobordisms as follows. Applying a symplectomor-
phism 𝑆𝑦𝑚𝑝(𝐽1𝑀) ≅ 𝑇∗(ℝ>0 × 𝑀) an exact immersed Lagrangian cobordism, 𝐿 ⊂ 𝑆𝑦𝑚𝑝(𝐽1𝑀),
can be lifted to a Legendrian Σ ⊂ 𝐽1(ℝ>0 × 𝑀)with the cylindrical ends of 𝐿 translating to conical
ends for Σ and double points of 𝐿 becoming Reeb chords of Σ. See Section 2.4. When Σ is embed-
ded and equipped with a ℤ∕𝜌-valued Maslov potential, such a conical Legendrian cobordism,



370 PAN and RUTHERFORD

Σ ∶ Λ− → Λ+, induces a diagram of 𝜌-graded DGA maps

(Λ+)
𝑓Σ
→ (Σ)

𝑖Σ
↩ (Λ−), (1.1)

where (Σ) is generated by (Λ−) and the Reeb chords of Σ. Diagrams of the above form
are referred to in [32] as immersed DGA maps. There, a notion of homotopy for immersed
DGA maps is introduced, and the homotopy type of the immersed map (1.1) is shown to be
an invariant of the conical Legendrian isotopy type of Σ. When Σ ∶ ∅ → Λ is a conical Legen-
drian filling equipped with a choice of 𝜌-graded augmentation, 𝛼 ∶ (Σ) → ℤ∕2, we can then
define an induced augmentation 𝜖(Σ,𝛼) ∶ (Λ) → ℤ∕2 as the composition 𝜖(Σ,𝛼) = 𝛼 ◦𝑓Σ. This
generalizes the construction of induced augmentations from embedded Lagrangian fillings.
We can now state our first main result, where in the following we write 𝜖 ≃ 𝜖′ to indicate that

two augmentations are DGA homotopic.

Theorem 1.2. Let Λ ⊂ 𝐽1ℝ have the ℤ∕𝜌-valued Maslov potential 𝜇 where 𝜌 ⩾ 0, and let 𝜖 ∶
(Λ) → ℤ∕2 be any 𝜌-graded augmentation.

(1) If𝜌 ≠ 1, there exists a conical Legendrian fillingΣ ofΛwithℤ∕𝜌-valuedMaslov potential extend-
ing 𝜇 together with a 𝜌-graded augmentation 𝛼 ∶ (Σ) → ℤ∕2 such that 𝜖 ≃ 𝜖(Σ,𝛼). Moreover, if
𝜌 is even, then Σ is orientable.

(2) If 𝜌 = 1, then there exists a conical Legendrian cobordism Σ ∶ 𝑈 → Λ where 𝑈 is the standard
Legendrian unknot with 𝑡𝑏(𝑈) = −1 together with a 1-graded augmentation 𝛼 ∶ (Σ) → ℤ∕2

such that 𝜖 ≃ 𝛼 ◦𝑓Σ.

The algebra of the standard Legendrian unknot, 𝑈, is generated by a single Reeb chord 𝑏 of
degree 1. In the case where 𝜌 = 1, if the restriction of 𝛼 to (𝑈) ⊂ (Σ) sends 𝑏 to 0, then by
concatenating with the standard filling of𝑈 we see that 𝜖 can be induced by a pair (Σ′, 𝛼′) where
Σ′ is a conical Legendrian filling. However, in the case that 𝛼 restricts to the augmentation of
(𝑈) that maps 𝑏 to 1, we are not sure whether 𝜖 can be induced by a Legendrian filling. In fact,
we conjecture that this is not possible.

Conjecture 1.3. There is no conical Legendrian filling Σ of the Legendrian unknot𝑈 with 1-graded
augmentation 𝛼 ∶ (Σ) → ℤ∕2 such that the induced augmentation 𝜖(Σ,𝛼) maps the unique Reeb
chord 𝑏 to 1.

For the case of embedded Lagrangians, induced augmentations provide an effective means of
distinguishing Lagrangian fillings of a given Legendrian knot. The results of [32] show that these
induced augmentations are actually invariants of the associated conical Legendrian fillings. (Note
that conical Legendrian isotopy appears to be a much less restrictive notion of equivalence than
isotopy of the corresponding exact Lagrangians, since during the course of a Legendrian isotopy
any number of double points can be added and removed from the Lagrangian projections.)
A key new feature in the immersed case is that a single Legendrian filling, Σ, can induce more

than one augmentation ofΛ due to the dependence of the construction on the choice of augmenta-
tion𝛼 of(Σ). As a result, to obtain an invariant ofΣwe should consider the set of (DGAhomotopy
classes of) induced augmentations 𝐼Σ ⊂ 𝐴𝑢𝑔𝜌(Λ)∕∼. After developing methods to compute this
invariant induced augmentation set, we demonstrate that 𝐼Σ can be effective for distinguishing
conical Legendrian fillings in the following theorem.
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Theorem 1.4. For each 𝑛 ⩾ 1, there exists 2𝑛 distinct conical Legendrian fillings, Σ1, … , Σ2𝑛 of the
max-𝑡𝑏 Legendrian torus knot 𝑇(2, 2𝑛 + 1) such that

(i) the Σ𝑖 are all orientable with genus 𝑛 − 1 and have ℤ-valued Maslov potentials,
(ii) each Σ𝑖 has a single Reeb chord of degree 0,
(iii) and the induced augmentation sets satisfy 𝐼Σ𝑖 ≠ 𝐼Σ𝑗 when 𝑖 ≠ 𝑗.

Note that the Lagrangian projections𝐿1, … , 𝐿2𝑛 are immersedLagrangian fillings of𝑇(2, 2𝑛 + 1)

with a single double point. Moreover, the DGAs(Σ𝑖) are all isomorphic to one another, and thus,
do not distinguish the Σ𝑖 on their own.

1.1 Cobordism classes of augmented Legendrians

In the context of relative SFT type invariants [20], it is natural to consider Lagrangian cobordisms
betweenLegendrian submanifolds in the symplectization of a contactmanifold (ormore generally
in symplectic cobordisms with concave and convex ends modeled on the negative and positive
ends of symplectizations). In the following discussion, we refer to exact Lagrangian cobordisms
in 𝑆𝑦𝑚𝑝(𝐽1𝑀)with cylindrical ends as SFT-cobordisms. The relation defined by embedded SFT-
cobordisms, or even SFT-concordances, is not symmetric [8, 29], and hence, does not define an
equivalence relation on Legendrian links in 𝐽1𝑀. In fact, it is a major open question [10] in the
fieldwhether or not SFT-cobordisms define a partial order on the set of Legendrian isotopy classes
in 𝐽1ℝ.
The lack of a readily available symmetry is visible after lifting an SFT-cobordism to a conical

Legendrian cobordism Σ ⊂ 𝐽1(ℝ>0 × 𝑀) = 𝑇∗(ℝ>0 × 𝑀) × ℝ𝑧 in the difference in behavior at the
two ends ofΣ: asΣ approaches 0 (respectively,+∞) along theℝ>0 factor the cotangent coordinates
and the 𝑧-coordinates of Σ appear as those of Λ− (respectively, Λ+) but shrinking (respectively,
expanding). However, when one allows for SFT-cobordisms to be immersed, it becomes possi-
ble to reverse their direction as an expanding end can be modified to a shrinking end (and vice
versa) at the expense of creating some additional Reeb chords. Thus, the relation of conical Leg-
endrian cobordism is equivalent to another standard notion of Legendrian cobordism in 1-jet
spaces introduced by Arnold, cf. [1–3]. In Arnold’s definition, a Legendrian cobordism between
two Legendrians Λ0, Λ1 ⊂ 𝐽1𝑀 is a compact Legendrian, Σ ⊂ 𝐽1([0, 1] × 𝑀), whose restriction to
𝐽1({𝑖} × 𝑀) is Λ𝑖 . Seminal results in this theory of Legendrian (and also Lagrangian) cobordisms
were achieved by Audin, Eliashberg, and Vassiliev in the 1980s, including homotopy theoretic
characterizations of various Lagrange and Legendre cobordism groups. See [4, 18, 41].
For an alternate perspective on our main theorem, we can incorporate augmentations into

an Arnold-type cobordism theory. Define a 𝜌-graded augmented Legendrian to be a Leg-
endrian submanifold Λ ⊂ 𝐽1𝑀 equipped with a ℤ∕𝜌-valued Maslov potential and a 𝜌-graded
augmentation 𝜖 ∶ (Λ) → ℤ∕2. For compact Legendrian cobordisms Σ ⊂ 𝐽1([0, 1] × 𝑀) satisfy-
ing a suitableMorseminimum boundary condition (see Section 2.5), the LCHDGA of Σ is defined
as in [17], and contains (Λ0) and (Λ1) as sub-DGAs. We then declare two 𝜌-graded augmen-
tation Legendrians, (Λ0, 𝜖0) and (Λ1, 𝜖1), to be cobordant if there exists a pair (Σ, 𝛼) consisting
of a Legendrian cobordism equipped with a 𝜌-graded augmentation of(Σ) whose restriction to
(Λ𝑖) is homotopic to 𝜖𝑖 for 𝑖 = 0, 1. As a variant on Theorem 1.2 we obtain the following.

Theorem 1.5. Let 𝜌 ⩾ 0 be a non-negative integer, and let (Λ, 𝜖) be a 𝜌-graded augmented
Legendrian in 𝐽1ℝ.
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(1) If 𝜌 ≠ 1, then (Λ, 𝜖) is cobordant to ∅.
(2) If 𝜌 = 1, then (Λ, 𝜖) is either cobordant to ∅ or (𝑈, 𝜖1)where𝑈 is the standard Legendrian unknot

and 𝜖1 ∶ (𝑈) → ℤ∕2 satisfies 𝜖1(𝑏) = 1 on the unique Reeb chord of𝑈.

As in Conjecture 1.3, we expect that (𝑈, 𝜖1) is not null-cobordant, so that there should be exactly
one cobordism class when 𝜌 ≠ 1 and exactly two cobordism classes when 𝜌 = 1.
In a further article [31], we give a complete classification of cobordism classes of augmented

Legendrians in 𝐽1𝑆1. Interestingly, in 𝐽1𝑆1 it is often the case that cobordant Legendrians may
become non-cobordant once they are equipped with augmentations. We note that for long Leg-
endrian knots in ℝ3 a concordance group of similar spirit, incorporating quadratic at infinity
generating families as additional equipment rather than augmentations, is considered recently
in the work of Limouzineau [26].

1.2 Methods and outline

Our approach is based on working with certain algebraic/combinatorial structures equivalent to
augmentations called Morse complex families (MCFs) that were introduced by Pushkar (unpub-
lished) and studied by Henry in [23]. MCFs can be viewed as combinatorial approximations to
generating families of functions, as they consist of formal Morse complexes and handleslide data
assigned to a Legendrian submanifold. For 1-dimensional Legendrians, the work of Henry [23, 25]
establishes a bijection between equivalence classes of MCFs and homotopy classes of augmen-
tations. More recently, a correspondence between MCFs and augmentations for 2-dimensional
Legendrians was obtained in [36] using the cellular DGAwhich is a cellular model for LCH devel-
oped in the work of the second author and Sullivan [33–35]. The strategy of the present article is
to extend these methods to the case of Legendrian cobordisms, and then apply MCFs to compute
induced augmentation sets. In more detail, to prove Theorem 1.2 we accomplish the following
tasks (1)–(3). Note that (1) and (2) may be of some independent interest.

(1) We develop a functoriality of the cellular DGA for Legendrian cobordisms, and we extend the
equivalence with LCH from [33–35] to an isomorphism between the immersed LCH functor
from [32] and its cellular analog; see Proposition 4.9.

Although it seems crucial for this construction to be carried out in the broader setting of Leg-
endrian cobordisms and immersed DGA maps, this allows the cellular DGA to be applied just as
well for working with embedded SFT-cobordisms.

(2) We extend the correspondence between MCFs and augmentations to the case of 2-
dimensional Legendrian cobordisms. In particular, we give a method based on MCFs
for computing the induced augmentation sets of Legendrian cobordisms and fillings; see
Proposition 5.9.

In Section 6, we illustrate this method with examples and use it to prove Theorem 1.4. Making
use of (1) and (2), Theorem 1.2 is then reduced to the following construction.

(3) Given a 1-dimensional Legendrian knot, Λ ⊂ 𝐽1ℝ, with a 𝜌-graded MCF Λ with 𝜌 ≠ 1

(respectively, 𝜌 = 1), we produce a Legendrian filling Σ of Λ (respectively, a Legendrian
cobordism Σ ∶ 𝑈 → Λ) with a 2-dimensional 𝜌-graded MCF Σ extending Λ.



AUGMENTATIONS AND IMMERSED LAGRANGIAN FILLINGS 373

In Section 7 we provide such a construction via an induction on the complexity of the front pro-
jection of Λ. The resulting cobordism is built up out of elementary building blocks that include
those used in constructing decomposable, embedded Lagrangian cobordisms (Legendrian iso-
topies, pinch and unknot moves) as well as clasp moves that produce double points in the
Lagrangian projection. Care is taken to ensure that at each step theMCF can be extended over the
cobordism, and these considerations are simplified by making use of a standard form for MCFs
(the ‘𝑆𝑅-form’) introduced by Henry.

Remark 1.6. For embedded, decomposable SFT cobordisms, explicit computations of induced
DGA maps and in particular induced augmentations are possible via the results of [16], and this
approach has been commonly used in the literature. A possible alternate route to proving Theo-
rem 1.2 could be to extend the arsenal from [16] to include computations of the immersed DGA
map associated to the Clasp Move and attempt a similar inductive construction in this context.
Such a computation would be useful more generally for handling immersed Lagrangian cobor-
disms within the framework of [16]. We leave this as an interesting direction for possible future
research, while noting that the approach taken in the current article and [32] is independent of
[16] in both the foundations (based on [12, 14]) and computational methods (based on [33, 36]).

The remainder of the paper is organized as follows. In Section 2we collect background from [32]
on immersed DGA maps, conical Legendrian cobordisms, and the immersed LCH functor, 𝐹. In
addition, we discuss Morse minimum cobordisms and show that Theorem 1.5 follows from Theo-
rem 1.2. In Section 3, we establish some basic properties of induced augmentation sets associated
to immersed DGA maps including a composition formula and Legendrian isotopy invariance.
In Section 4, we review the cellular DGA and define a cellular LCH functor, 𝐹𝑐𝑒𝑙𝑙. We state an
isomorphism between the cellular LCH functor and the immersed LCH functor. The proof of
the isomorphism is an extension of [34, 35] that is sketched here with a more detailed argument
appearing in the preprint version of this article [30]. In Section 5, after reviewing the definition
of MCFs, we extend the correspondence between MCFs and augmentations of the cellular DGA
to the cobordism case and establish an MCF characterization of the induced augmentation set.
In Section 6, we make use of 𝐴-form MCFs to compute the induced augmentation sets for sev-
eral examples of Legendrian fillings, and we prove Theorem 1.4. In particular, we give explicit
examples of augmentations that can be induced by Legendrian fillings but cannot be induced by
any embedded fillings. Finally, the article concludes with Section 7 that, after recalling Henry’s
𝑆𝑅-form MCFs, provides the proof of Theorem 1.2. The reader who is content to blackbox the
characterization of the induced augmentation set in terms of MCFs can more quickly arrive at
the proof of Theorem 1.2 by omitting Sections 4, 5.3, and 6.

Remark 1.7. In the present article we restrict considerations to ℤ∕2-valued augmentations. This
is mainly because the isomorphism between the cellular DGA and LCH DGA proven in [33–35]
is only established with ℤ∕2 coefficients. We expect that a version of this isomorphism should
extend to a more general coefficient ring, for example, to the setting of the LCH DGA with fully
non-commutative ℤ[𝜋1(Λ)] coefficients which is appropriate for considering augmentations to
general rings. Assuming this point, the proof of Theorem 1.2 should be extendable to apply to
augmentations with values in an arbitrary field; see also the discussion on coefficients in [31, Sec-
tion 3.3]. The proof breaks down in the case of augmentations to a general ring, as the ability to
take multiplicative inverses of handleslide coefficients is crucial in extending the arguments in
Section 7.
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2 IMMERSED DGAMAPS AND COBORDISMS

In this section we review the algebraic and geometric setup from [32], and discuss two classes
of Legendrian cobordisms. Section 2.1 recalls a class of DGAs relevant for LCH, and records in
Proposition 2.1 a method for producing stable tame isomorphisms. In Section 2.2 we review the
concept of immersed DGAmaps and immersed homotopy and then discuss two equivalent char-
acterizations of composition. In addition, we recall the category, 𝔇𝔊𝔄

𝜌

𝑖𝑚
, of ℤ∕𝜌-graded DGAs

with immersedmaps constructed in [32], and its connectionwith the ordinary homotopy category
of DGAs,𝔇𝔊𝔄

𝜌

ℎ𝑜𝑚
; see Proposition 2.7.

Next, we turn to the geometric side with a brief review of Legendrians and LCH in the setting of
1-jet spaces in Section 2.3. Section 2.4 discusses conical Legendrian cobordisms and, after observ-
ing their connectionwith immersed Lagrangian cobordisms, recalls the construction of immersed
DGA maps from conical Legendrian cobordisms as in [32]. The construction is nicely encoded
in a functor, 𝐹, called the immersed LCH functor that plays a central role in this article. Finally,
Section 2.5 discusses Morse minimum Legendrian cobordisms, connects them with conical Leg-
endrian cobordisms, and provides a proposition that allows for Morse minimum cobordisms to
be used for computations with the immersed LCH functor. The section concludes by defining the
equivalence relation of 𝜌-graded augmented Legendrian cobordism and showing that Theorem 1.5
follows from Theorem 1.2.

2.1 Differential graded algebras

We work in the algebraic context of [32, Sections 2 and 3] that we will now briefly review. In
this article, DGAs, (, 𝜕), are defined over ℤ∕2 and are graded by ℤ∕𝜌 for some fixed 𝜌 ⩾ 0.
The differential, 𝜕, has degree −1 (mod 𝜌). We restrict attention to based DGAs where the
ℤ∕2-algebra  = ℤ∕2⟨𝑥1, … , 𝑥𝑛⟩ is free associative (non-commutative) with identity element
and is equipped with a choice of (finite) free generating set {𝑥1, … , 𝑥𝑛}; generators have degrees|𝑥𝑖| ∈ ℤ∕𝜌. Subalgebras (respectively, 2-sided ideals) generated by a subset 𝑌 ⊂  are notated as
ℤ∕2⟨𝑌⟩ (respectively, (𝑌)). Such a DGA (, 𝜕) is triangular if (with respect to some ordering
of the generating set) we have 𝜕𝑥𝑖 ∈ ℤ∕2⟨𝑥1, … , 𝑥𝑖−1⟩ for all 1 ⩽ 𝑖 ⩽ 𝑛. The coproduct of based
DGAs, ∗ , is the based DGAwhose generating set is the union of the generating sets of and
 and whose differential extends the differentials of  and . A stabilization of a DGA  is a
DGA of the form ∗ 𝑆 where 𝑆 has generating set of the form {𝑎1, 𝑏1, … , 𝑎𝑟, 𝑏𝑟} with differential
𝜕𝑎𝑖 = 𝑏𝑖 , 1 ⩽ 𝑖 ⩽ 𝑟.DGAmorphisms are unital, algebra homomorphisms that preserve the ℤ∕𝜌-
grading and commute with differentials. A stable tame isomorphism from  to  is a DGA
isomorphism 𝜑 ∶  ∗ 𝑆 →  ∗ 𝑆′ between stabilizations of  and  that is tame, that is, it is a
composition of isomorphisms that have a certain form on generators; see [32, Section 2.2]. We say
that DGAs are equivalent if they are stable tame isomorphic. Two DGA maps 𝑓, g ∶  →  are
DGA homotopic if they satisfy

𝑓 − g = 𝜕 ◦𝐾 + 𝐾 ◦ 𝜕

for some (𝑓, g)-derivation, 𝐾 ∶  → , where an (𝑓, g)-derivation is a degree 1 (mod 𝜌) lin-
ear map satisfying 𝐾(𝑥𝑦) = 𝐾(𝑥)g(𝑦) + (−1)|𝑥|𝑓(𝑥)𝐾(𝑦). When 𝜑 ∶  ∗ 𝑆 →  ∗ 𝑆′ is a stable
isomorphism, there is an associated DGA homotopy equivalence ℎ ∶  →  given by ℎ =

𝜋′ ◦ℎ ◦ 𝜄 where 𝜄 ∶  →  ∗ 𝑆 and 𝜋′ ∶  ∗ 𝑆′ →  are inclusion and projection.
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The following proposition is contained in [32, Propositions 2.3 and 2.5].

Proposition 2.1. Let (, 𝜕) be a DGA that is triangular with respect to the ordered generating set
{𝑥1, … , 𝑥𝑛}, and suppose that 𝜕𝑥𝑖 = 𝑥𝑗 + 𝑤 where 𝑤 ∈ ℤ∕2⟨𝑥1, … , 𝑥𝑗−1⟩.
(1) Then, ∕𝐼 where 𝐼 = (𝑥𝑖, 𝜕𝑥𝑖) is a triangular DGA with respect to the generating set

{𝑥1, … , 𝑗̂, … , 𝑖̂, … , 𝑥𝑛}, and there is a stable tame isomorphism

𝜑 ∶ ∕𝐼 ∗ 𝑆 → 

with 𝑆 = ℤ∕2⟨𝑦, 𝑧⟩. Moreover, 𝜑 = g ∗ ℎ where ℎ(𝑦) = 𝑥𝑖 , ℎ(𝑧) = 𝜕𝑥𝑖 , and g ∶ ∕𝐼 →  is
DGA homotopy inverse to the quotient map 𝑝 ∶  → ∕𝐼 via

g ◦𝑝 − 𝑖𝑑 = 𝜕 ◦𝐻 +𝐻 ◦ 𝜕,

where𝐻 ∶  →  is the (g ◦𝑝, 𝑖𝑑)-derivation satisfying𝐻(𝑥𝑗) = 𝑥𝑖 and𝐻(𝑥𝑙) = 0 for 𝑙 ≠ 𝑗.
(2) If  ⊂  is a based sub-DGA generated by 𝑌 ⊂ {𝑥1, … , 𝑥𝑛} and 𝑥𝑖, 𝑥𝑗 ∉ 𝑌, then 𝜑(𝑥𝑘) = 𝑥𝑘 for

all 𝑥𝑘 ∈ 𝑌.

(3) For 𝜑−1, the associated DGA homotopy equivalence 
𝜑−1

→ ∕𝐼 ∗ 𝑆
𝜋
→ ∕𝐼 has 𝜋 ◦𝜑−1 = 𝑝

where 𝑝 ∶  → ∕𝐼 is the quotient map.

Definition 2.2. A 𝜌-graded augmentation to ℤ∕2 of a ℤ∕𝜌-graded DGA, (, 𝜕), is a DGAmor-
phism 𝜖 ∶ (, 𝜕) → (ℤ∕2, 0)where the grading on ℤ∕2 is concentrated in degree 0 mod 𝜌. that is,
𝜖 is a ℤ∕2-algebra homomorphism from to ℤ∕2 that satisfies

𝜖 ◦ 𝜕 = 0, 𝜖(1) = 1,

and 𝜖(𝑥) ≠ 0 implies that |𝑥| = 0 ∈ ℤ∕𝜌.

2.2 Immersed DGAmaps

The main construction of [32] extends the functoriality of the LCH DGA to the case where the
domain category consists of Legendrians with a class of immersed Lagrangian cobordisms. To
accomplish this it is natural to also enlarge the class of morphisms in the target category of DGAs,
and this is done by introducing immersed DGA maps with a suitable notion of homotopy. Here,
we recall these notions which will be central in the remainder of the article.

Definition 2.3. Let (1, 𝜕1) and (2, 𝜕2) be triangular DGAs. An immersedDGAmap,𝑀, from
1 to2 is a diagram of DGA maps

𝑀 =

(
1

𝑓
→ 

𝑖
↩ 2

)
,

where  is a triangular DGA and 𝑓 and 𝑖 are DGAmaps such that 𝑖 is an inclusion induced by an
inclusion of the generating set of2 into the generating set of .
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Two immersed DGA maps 𝑀 = (1

𝑓
→ 

𝑖
↩ 2) and 𝑀′ = (1

𝑓′

→ ′
𝑖′

↩ 2) are immersed
homotopic if there exists a stable tame isomorphism 𝜑 ∶  ∗ 𝑆 →  ∗ 𝑆′ such that

∙ 𝜑 ◦ 𝑖 = 𝑖′ and
∙ 𝜑 ◦𝑓 ≃ 𝑓′ (DGA homotopy).

That is, the left (respectively, right) half of the diagram

is commutative up to DGA homotopy (respectively, fully commutative).

Definition 2.4. The composition 𝑀2 ◦𝑀1 of two immersed DGA maps 𝑀𝑘 = (𝑘

𝑓𝑘
→ 𝑘

𝑖𝑘
↩

𝑘+1), for 𝑘 = 1, 2 is given by 𝑀2 ◦𝑀1 = (1

𝑓
→ 

𝑖
↩ 3), where  = 1 ∗ 2∕({𝑖1(𝑥) −

𝑓2(𝑥) |𝑥 ∈ 2}) is the categorical push out of 𝑖1 and𝑓2 and𝑓 = 𝑝1 ◦𝑓1, 𝑖 = 𝑝2 ◦ 𝑖2with𝑝𝑘 ∶ 𝑘 →

 the projection maps. The algebra  is triangular with respect to the generating set obtained as
the union of the generators of 1 and 2 with the generators of2 removed. This is summarized
by the diagram:

There is an alternate characterization of composition of immersed maps, up to immersed

homotopy, as follows. Again, let𝑀𝑘 = (𝑘

𝑓𝑘
→ 𝑘

𝑖𝑘
↩ 𝑘+1), 𝑘 = 1, 2 be immersed DGAmaps. Let

𝑎1, … , 𝑎𝑚 denote the generators of2, and let ̂2 have free generating set 𝑎1, … , 𝑎𝑚 with degree
shift |𝑎𝑖| = |𝑎𝑖| + 1.

Proposition 2.5 [32, Proposition 3.6]. Suppose that (, 𝜕) is a triangular DGA such that

∙  = 1 ∗ ̂2 ∗ 2,
∙ for 𝑘 = 1, 2, 𝜕|𝑘

= 𝜕𝑘
, and

∙ for 1 ⩽ 𝑖 ⩽ 𝑚,

𝜕𝑎𝑖 = 𝑖1(𝑎𝑖) + 𝑓2(𝑎𝑖) + 𝛾𝑖, (2.1)

where 𝛾𝑖 ∈ (𝑎1, … , 𝑎𝑚).
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Then, there is an immersed homotopy

𝑀2 ◦𝑀1 ≃

(
1

𝑗1 ◦𝑓1
→ 

𝑗2 ◦ 𝑖2
↩ 3

)
,

where 𝑗𝑘 ∶ 𝑘 → 1 ∗ ̂2 ∗ 2 is the inclusion.

Note that differentials of the form (2.1) always exist on. For instance, one can define

𝜕𝑎𝑖 = 𝑖1(𝑎𝑖) + 𝑓2(𝑎𝑖) + Γ ◦ 𝜕𝑎𝑖, (2.2)

where Γ ∶ 2 →  is the unique (𝑖1, 𝑓2)-derivation satisfying Γ(𝑎𝑖) = 𝑎𝑖 .

Definition 2.6. For 𝜌 ∈ ℤ⩾0 fixed, we define a category 𝔇𝔊𝔄
𝜌

𝑖𝑚
whose objects are triangular

DGAs graded by ℤ∕𝜌 and whose morphisms are immersed homotopy classes of immersed DGA
maps. Define a related category𝔇𝔊𝔄

𝜌

ℎ𝑜𝑚
to have the same objects as𝔇𝔊𝔄

𝜌

𝑖𝑚
butwithmorphisms

given by DGA homotopy classes of ordinary DGA maps.

Proposition 2.7 [32, Propositions 3.9 and 3.10].For any𝜌 ∈ ℤ⩾0,𝔇𝔊𝔄
𝜌

𝑖𝑚
is a categorywith identity

morphisms given by the homotopy classes of the immersed maps(


𝑖𝑑
→ 

𝑖𝑑
↩ 

)
.

Moreover, there is a functor 𝐼 ∶ 𝔇𝔊𝔄
𝜌

ℎ𝑜𝑚
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
that is the identity on objects and has

𝐼

(
[1

𝑓
→ 2]

)
=

[(
1

𝑓
→ 2

𝑖𝑑
↩ 2

)]
,

and 𝐼 is injective on all hom-spaces.

We emphasize that the triangularity condition is used crucially in [32] in establishing the well-
definedness of compositions in𝔇𝔊𝔄

𝜌

𝑖𝑚
.

2.3 The Legendrian contact homology DGA and exact Lagrangian
cobordisms

Recall that the 1-jet space, 𝐽1𝐸, of an 𝑛-dimensionalmanifold,𝐸, has its standard contact structure
𝜉 = ker 𝛼 where 𝛼 = 𝑑𝑧 −

∑
𝑦𝑖𝑑𝑥𝑖 in coordinates (𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛, 𝑧) ∈ 𝑇∗𝐸 × ℝ = 𝐽1𝐸 aris-

ing from local coordinates (𝑥1, … , 𝑥𝑛) on 𝐸. A Legendrian submanifold,Λ, is an 𝑛-dimensional
submanifold that is tangent to 𝜉 everywhere. In this article, we will only need to consider Leg-
endrian submanifolds of dimension 𝑛 = 1 or 2, that is, Legendrian knots and surfaces. We use
the notations 𝜋𝑥 ∶ 𝐽1𝐸 → 𝐸 and 𝜋𝑥𝑧 ∶ 𝐽1𝐸 → 𝐽0𝐸 = 𝐸 × ℝ for the base and front projections.
Generically, outside of a codimension 1 subset Λ𝑐𝑢𝑠𝑝 ⊂ Λ consisting of cusp points (respectively,
cusp edge and swallowtail points) the front projection, 𝜋𝑥𝑧|Λ, of a Legendrian knot (respectively,
surface) is an immersion. Moreover, any 𝑝 ∈ Λ ⧵ Λ𝑐𝑢𝑠𝑝 has a neighborhood 𝑊 ⊂ Λ that is the
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1-jet, 𝑗1𝑓, of some local defining function 𝑓 ∶ 𝑈 → ℝ defined in a neighborhood 𝑈 ⊂ 𝐸 of
𝜋𝑥(𝑝). In particular,𝜋𝑥𝑧(𝑊) agrees with the graph of 𝑓. Suppose that𝐸 has boundary and𝑁 ⊂ 𝜕𝐸

is a boundary component. If Λ intersects 𝜋−1
𝑥 (𝑁) transversally (this is equivalent to the map 𝜋𝑥|Λ

being transverse to𝑁), then the restriction ofΛ to 𝐽1𝑁 is the Legendrian submanifoldΛ|𝑁 ⊂ 𝐽1𝑁

that is the image ofΛ ∩ 𝜋−1
𝑥 (𝑁) under the restriction map 𝜋−1

𝑥 (𝑁) → 𝐽1𝑁. The front projection of
Λ|𝑁 is the intersection of 𝜋𝑥𝑧(Λ) ⊂ 𝐸 × ℝ with 𝑁 × ℝ.
The standard Reeb vector field on 𝐽1𝐸 is 𝜕

𝜕𝑧
, and Reeb chords of Λ, that is, trajectories of 𝜕

𝜕𝑧
having endpoints on Λ, correspond to critical points of local difference functions, 𝑓𝑖,𝑗 = 𝑓𝑖 −

𝑓𝑗 , where𝑓𝑖, 𝑓𝑗 are local defining functions forΛwith𝑓𝑖 > 𝑓𝑗 . For 𝜌 ∈ ℤ⩾0, aℤ∕𝜌-valuedMaslov
potential 𝜇 for a 1- or 2-dimensional LegendrianΛ is a locally constantmap 𝜇 ∶ Λ∖Λ𝑐𝑢𝑠𝑝 → ℤ∕𝜌,
such that near each cusp point or edge, the value of 𝜇 at the upper sheet of the cusp is one more
than the value of 𝜇 at the lower sheet; such a Maslov potential exists if and only if 𝜌 is a divisor
of the Maslov number of Λ which is 2𝑟𝑜𝑡(Λ) when Λ is 1-dimensional, cf. [32, Section 4]. When
Λ is equipped with a choice of ℤ∕𝜌-valued Maslov potential, each Reeb chord, 𝑐, is assigned a
ℤ∕𝜌-grading by

|𝑐| = 𝜇(𝑐𝑢) − 𝜇(𝑐𝑙) + 𝑖𝑛𝑑(𝑓𝑖,𝑗) − 1 ∈ ℤ∕𝜌,

where 𝑐𝑢 and 𝑐𝑙 are the upper and lower endpoints of 𝑐 and 𝑖𝑛𝑑(𝑓𝑖,𝑗) is the Morse index of 𝑐 when
viewed as a critical point of the local difference function 𝑓𝑖,𝑗 = 𝑓𝑖 − 𝑓𝑗 (where 𝑓𝑖, 𝑓𝑗 are defining
functions for Λ near 𝑐𝑢 and 𝑐𝑙.) In the case that Λ is connected, the grading of Reeb chords is
independent of the choice of Maslov potential, but this is not true in the multi-component case.
In order to have a well-defined grading of Reeb chords (and also of the LCH algebra) we will

always work with Legendrians equipped with a choice of Maslov potential.

Definition 2.8. For 𝜌 ∈ ℤ⩾0, a 𝜌-graded Legendrian is a pair (Λ, 𝜇) consisting of a Legendrian
submanifold Λ ⊂ 𝐽1𝐸 together with a choice of ℤ∕𝜌-valued Maslov potential, 𝜇.

Remark 2.9. When the base space 𝐸 is oriented, a ℤ∕2-valued Maslov potential is equivalent to a
choice of orientation for Λ. [Indeed, given an orientation for Λ one defines a ℤ∕2-valued Maslov
potential, 𝜇 ∶ Λ ⧵ Λ𝑐𝑢𝑠𝑝 → ℤ∕2, to be 0 (respectively, 1) at points where the base projection ofΛ to
𝐸 is orientation preserving (respectively, reversing). Moreover, this procedure can be reversed to
produce an orientation from a ℤ∕2-valued Maslov potential.] Thus, ℤ∕2-graded Legendrians are
the same as oriented Legendrians, and anyℤ∕𝜌-graded Legendrianwith 𝜌 even has awell-defined
orientation (from reducing the Maslov potential mod 2).

For a 𝜌-graded Legendrian submanifold Λ in 𝐽1𝐸, SFT gives a Floer type invariant called the
LCHDGA (aka. the Chekanov–Eliashberg algebra) [9, 15, 19] that we will denote by ((Λ), 𝜕). It
is aℤ∕𝜌-graded triangular, based DGA overℤ∕2 generated by Reeb chords ofΛwithℤ∕𝜌-grading
arising from the choice of Maslov potential, 𝜇. The differential 𝜕 is defined by counting holomor-
phic disks either in 𝑇∗𝑀, cf. [15], or 𝑆𝑦𝑚𝑝(𝐽1𝑀), cf. [11], with boundary on either the cotangent
projection of Λ or the Lagrangian cylinder ℝ × Λ. According to [12], one can alternatively com-
pute the differential by counting gradient flow trees (GFTs) which are certain treeswhose edges
parametrize flow lines of gradients of local difference functions, −∇𝑓𝑖,𝑗 , with 𝑓𝑖,𝑗 > 0; see also
[34]. The ℤ∕𝜌-graded DGA ((Λ), 𝜕) is an invariant of (Λ, 𝜇) up to stable tame isomorphism.
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F IGURE 1 An exact Lagrangian cobordism from Λ− to Λ+.

The LCHDGA is functorial for exact Lagrangian cobordisms, and we will restrict our attention
to the case of cobordisms in the symplectization of 𝐽1𝑀. An exact Lagrangian cobordism𝐿 from
Λ− to Λ+ is an embedded surface in 𝑆𝑦𝑚𝑝(𝐽1𝑀) ∶= (ℝ𝑡 × 𝐽1𝑀, 𝑑(𝑒𝑡𝛼)) (as shown in Figure 1)
that

∙ agreeswith the cylinderℝ × Λ+ (respectively,ℝ × Λ−) when 𝑡 is very positive (respectively, very
negative); and

∙ there is a function g ∶ 𝐿 → ℝ such that (𝑒𝑡𝛼)|𝐿 = 𝑑g and g is constant for 𝑡 near ±∞. Such a
function g is called a primitive.

When Λ− is empty, we say that 𝐿 is an exact Lagrangian filling of 𝐿.
According to [13, 16, 17], an exact Lagrangian cobordism 𝐿 from Λ− to Λ+ induces a DGA map

𝑓𝐿 from (Λ+) to (Λ−). (For now, we suppress discussion of the grading.) When two such
cobordisms are isotopic through exact Lagrangian cobordisms, their induced DGAmaps are DGA
homotopic. Moreover, when two exact Lagrangian cobordisms 𝐿𝑖 , 𝑖 = 1, 2 fromΛ𝑖 toΛ𝑖+1 are con-
catenated together to form 𝐿2 ◦𝐿1 (by translating 𝐿2 in the positive 𝑡-direction, truncating the two
cobordisms, and gluing along a region of the form (𝑎, 𝑏) × Λ1), the induced DGA map 𝑓𝐿2 ◦𝐿1 is
DGA homotopic to 𝑓𝐿1 ◦𝑓𝐿2 . In summary, we have a functor between a suitably defined category
of Legendrian knots with morphisms exact Lagrangian cobordisms and the homotopy category
of DGAs.

2.4 Conical Legendrian cobordisms

In [32], functoriality for the LCH DGA was generalized to a class of immersed exact Lagrangian
cobordisms byworkingwith conical Legendrian cobordisms.Wenow review relevant results from
[32].
Let𝑀 be a 1-manifold. In 𝐽1(ℝ>0 × 𝑀), we denote the ℝ>0 coordinate by 𝑠.

Definition 2.10. LetΛ be a Legendrian link in 𝐽1𝑀 that is parametrized by 𝜃 ↦ (𝑥(𝜃), 𝑦(𝜃), 𝑧(𝜃)),
let 𝑓 ∶ 𝐼 → ℝ>0 where 𝐼 ⊂ ℝ>0 is an interval, and let 𝐴 ∈ ℝ be a constant. Define

𝑗1(𝑓(𝑠) ⋅ Λ + 𝐴) ⊂ 𝐽1(𝐼 × 𝑀)
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F IGURE 2 A sketch of a conical Legendrian cobordism in the front projection to 𝐽0(ℝ>0 × 𝑀).

to be the Legendrian that is parametrized by

(𝑠, 𝜃) ↦(𝑠, 𝑥(𝜃), 𝑓′(𝑠)𝑧(𝜃), 𝑓(𝑠)𝑦(𝜃), 𝑓(𝑠)𝑧(𝜃) + 𝐴)

= (𝑠, 𝑥, 𝑢, 𝑦, 𝑧) ∈ 𝐽1(𝐼 × 𝑀),

where (𝑠, 𝑥) are the coordinates on 𝐼 × 𝑀, (𝑢, 𝑦) are the coordinates on the cotangent fibers, and
𝑧 is the ℝ coordinate on 𝐽1(𝐼 × 𝑀) = 𝑇∗(𝐼 × 𝑀) × ℝ.

Note that the front projection of 𝑗1(𝑓(𝑠) ⋅ Λ + 𝐴) is obtained from 𝜋𝑥𝑧(Λ) by forming the
cylinder in the 𝑠-direction, multiplying 𝑧-coordinates by 𝑓(𝑠), and then shifting them by 𝐴.

Definition 2.11. A conical Legendrian cobordism Σ from Λ− to Λ+ is an embedded
Legendrian surface in 𝐽1(ℝ>0 × 𝑀) (see Figure 2) such that

∙ Σ has conical ends, that is, when 𝑠 > 𝑠+ (respectively, 𝑠 < 𝑠−) for some positive number 𝑠±, the
Legendrian surface Σ is 𝑗1(𝑠 ⋅ Λ± + 𝐴±) for some constant 𝐴±; and

∙ the intersection Σ ∩ 𝐽1([𝑠−, 𝑠+] × 𝑀) is compact.

Two conical Legendrian cobordisms from Λ− to Λ+ are conical Legendrian isotopic if they are
isotopic through conical Legendrian cobordisms from Λ− to Λ+.

Note that there is a contactomorphism between 𝐽1(ℝ>0 × 𝑀) and (𝑆𝑦𝑚𝑝(𝐽1𝑀) × ℝ𝑤, 𝑑𝑤 +

𝑒𝑡𝛼) (see [32] for details). Consider the image of Σ in 𝑆𝑦𝑚𝑝(𝐽1𝑀) × ℝ and then take the
Lagrangian projection to 𝑆𝑦𝑚𝑝(𝐽1𝑀). The resulting surface 𝐿 is an (immersed) exact Lagrangian
surface in 𝑆𝑦𝑚𝑝(𝐽1𝑀), and we call surfaces obtained in this manner good Lagrangian cobor-
disms from Λ− to Λ+. Note that the conical ends condition on Σ implies that 𝐿 has cylindrical
ends and that the primitive is constant on top and bottom cylinders. As long as the immersed
Lagrangians are equipped with such primitives, the construction is reversible, so we have a bijec-
tion between conical Legendrian cobordisms and good Lagrangian cobordisms; see, for example,
[32, Proposition 4.9]. Thus, conical Legendrian cobordisms generalize exact Lagrangian cobor-
disms from the embedded case to the immersed case. Conical Legendrian cobordisms can be
concatenated in a way that generalizes the concatenation of exact Lagrangian cobordisms; see
[32, Section 4.4].
The functoriality of the LCHDGA extends to conical Legendrian cobordisms, provided that the

induced maps are allowed to be immersed DGA maps.
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Theorem 2.12 [32]. A conical Legendrian cobordism Σ from Λ− to Λ+ induces an immersed DGA
map

𝑀Σ =

(
(Λ+)

𝑓
→ (Σ)

𝑖
↩ (Λ−)

)
,

satisfying the following.

(1) The DGA(Σ) is generated by Reeb chords of Σ and Reeb chords of Λ−.
(2) When Λ± and Σ are 𝜌-graded such that the ℤ∕𝜌-valued Maslov potential of Σ restricts to the

Maslov potentials on Λ±, all the DGAs(Λ+),(Σ), and(Λ−) inherit ℤ∕𝜌-gradings that are
preserved by 𝑓 and 𝑖.

(3) When two conical Legendrian cobordisms Σ and Σ′ from Λ− to Λ+ are conical Legendrian
isotopic, their induced immersed DGA maps are immersed homotopic.

(4) When Σ1 ∶ Λ1 → Λ2 and Σ2 ∶ Λ2 → Λ3 are concatenated, the immersed maps satisfy

𝑀Σ2 ◦Σ1
≃ 𝑀Σ1

◦𝑀Σ2
(immersed homotopy).

(5) WhenΣhas noReeb chords, that is, when it corresponds to an embedded exact Lagrangian cobor-
dism 𝐿, we have that(Σ) = (Λ−) and the 𝑓 map is DGA homotopic to the induced map 𝑓𝐿
from [16].

The construction of the immersed DGAmap is summarized as follows. Given a conical Legen-
drian cobordism Σ from Λ− to Λ+, we construct a Morse cobordism Σ̃ (as in [16]) by replacing the
conical ends 𝑗1(𝑠 ⋅ Λ± + 𝐴±) with standard Morse ends 𝑗1(ℎ±(𝑠) ⋅ Λ± + 𝐵±), where ℎ− (respec-
tively, ℎ+) are positive Morse functions with a single minimum (respectively, maximum). The set
of Reeb chords of Σ̃ is in bijection with the set of Reeb chords of Σ and Λ±. The DGA(Σ) is gen-
erated by the Reeb chords of Σ̃ that correspond to Reeb chords of Σ and Λ−, and the differential
is defined by the usual count of GFTs with respect to a suitable choice of metric g on ℝ>0 × 𝑀

having the form gℝ × g± near the critical points of ℎ± where gℝ is the Euclidean metric on ℝ>0

and g± are regular† metrics used for computing(Λ±). Moreover, the DGA(Λ−) is a sub-DGA
of (Σ) and the map 𝑖 is the natural DGA inclusion map. Finally, the DGA map 𝑓 is defined by
counting GFTs with positive puncture at one of the Λ+ Reeb chords of Σ̃ and with image to the
left of the local maximum of ℎ+.
In [32, Section 6.3], the construction of Theorem 2.12 is formulated as a functor

𝐹 ∶ 𝔏𝔢𝔤
𝜌

𝑖𝑚
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚

called the immersed LCH functor. The category 𝔏𝔢𝔤𝜌
𝑖𝑚

has objects (Λ, g , 𝜇) consisting of an
(embedded) 𝜌-graded Legendrian knot, Λ ⊂ 𝐽1𝑀, with Maslov potential, 𝜇, equipped with a
choice of regular metric, g , on 𝑀. Morphisms from (Λ−, g−, 𝜇−) to (Λ+, g+, 𝜇+) are conical Leg-
endrian isotopy classes of 𝜌-graded conical Legendrian cobordisms, Σ ∶ Λ− → Λ+, with Maslov
potentials, 𝜇, extending the Maslov potentials 𝜇− and 𝜇+.

†Here, regularmeans that (i) there are no GFTs for Λ of negative formal dimension and (ii) all 0-dimensional GFTs for
Λ are transversally cut out. See [12].
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Corollary 2.13. The correspondence

(Λ, g , 𝜇) ↦ (Λ, g , 𝜇),

(Σ, 𝜇) ↦ [𝑀Σ]

where [𝑀Σ] denotes the immersed homotopy class of the immersed map 𝑀Σ from Theorem 2.12
defines a contravariant functor 𝐹 ∶ 𝔏𝔢𝔤

𝜌

𝑖𝑚
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
.

2.5 Morse minimum cobordisms

Let [𝑎−, 𝑎+] ⊂ ℝ be a closed interval. A compact Legendrian Σ𝑚𝑖𝑛 ⊂ 𝐽1([𝑎−, 𝑎+] × 𝑀) is called a
Morseminimum cobordism from Λ− to Λ+ if there are neighborhoods𝑈− = [𝑎−, 𝑎− + 𝛿) and
𝑈+ = (𝑎+ − 𝛿, 𝑎+], for some 𝛿 > 0, such that Σ𝑚𝑖𝑛 has the form 𝑗1(ℎ±(𝑠) ⋅ Λ± + 𝐵±) in 𝐽1(𝑈± ×

𝑀) where ℎ± ∶ 𝑈± → ℝ>0 are positive Morse functions with unique critical points that are non-
degenerate local minima at 𝑎±.
As in [17], the LCH DGA of a Morse minimum cobordism(Σ𝑚𝑖𝑛) is well defined and can be

computed using GFTs with respect to a regular metric g on [𝑎−, 𝑎+] × 𝑀 having the form gℝ × g±
in a neighborhood of {𝑎±} × 𝑀 where g± are regular metrics for Λ±. Moreover, there are DGA
inclusions

𝑖± ∶ (Λ±) ↪ (Σ𝑚𝑖𝑛)

obtained via identifying Reeb chords of Λ± with the Reeb chords of Σmin located above {𝑎±} × 𝑀.
See also [32, Section 5.3].

Construction 2.14. Given Σmin one can form an associated conical Legendrian cobordism Σ𝑐𝑜𝑛𝑖𝑐 ⊂

𝐽1(ℝ>0 × 𝑀) by shifting the interval [𝑎−, 𝑎+] into [𝑎− + 𝑠0, 𝑎+ + 𝑠0] ⊂ ℝ>0, and modifying the
ends to have the form 𝑗1(ℎ̂±(𝑠) ⋅ Λ± + 𝐵±) with

ℎ̂− ∶ (0, 𝑎− + 𝑠0 + 𝛿) → ℝ>0, and ℎ̂+ ∶ (𝑎+ + 𝑠0 − 𝛿,+∞) → ℝ>0

chosen as follows.

∙ The function ℎ̂− has no critical points, is increasing on (0, 𝑎− + 𝑠0 + 𝛿), and satisfies

ℎ̂−(𝑠) = 𝑠, for 𝑠 ∈ (0, 𝑎− + 𝑠0],

ℎ̂−(𝑠) = ℎ−(𝑠 − 𝑠0), near 𝑠 = 𝑎− + 𝑠0 + 𝛿.

∙ The function ℎ̂+ has a unique critical point that is a non-degenerate local minimum at
𝑠 = 𝑎+ + 𝑠0, and satisfies

ℎ̂+(𝑠) = ℎ+(𝑠 − 𝑠0), for 𝑠 ∈ (𝑎+ + 𝑠0 − 𝛿, 𝑎+ + 𝑠0],

ℎ̂+(𝑠) = 𝑠, for 𝑠 ≫ 0.

Moreover, from a regular metric gmin for Σmin defined on [𝑎−, 𝑎+] × 𝑀 and having the form
gℝ × g± near {𝑎±} × 𝑀, we construct a metric g𝑐𝑜𝑛𝑖𝑐 on ℝ>0 × 𝑀 by shifting gmin by 𝑠0 in the
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F IGURE 3 AMorse minimum cobordism, an associated conical cobordism, and the cobordism Σ̃𝑐𝑜𝑛𝑖𝑐 used
in the proof of Proposition 2.15.

ℝ>0-direction and then extending to agree with gℝ × g− on (0, 𝑎− + 𝑠0] × 𝑀 and gℝ × g+ on
[𝑎+ + 𝑠0, +∞) ×𝑀.

Note that the conditions on ℎ̂− can be arranged with an appropriate choice of 𝑠0. See Figure 3.

Proposition 2.15. When Σ𝑚𝑖𝑛 ⊂ 𝐽1([𝑎−, 𝑎+] × 𝑀) is a Morse minimum cobordism from Λ− to Λ+

and Σ𝑐𝑜𝑛𝑖𝑐 is an associated conical cobordism as in Construction 2.14. Then, the immersed LCH
functor satisfies

𝐹(Σ𝑐𝑜𝑛𝑖𝑐) =

[
(Λ+)

𝑖+
→ (Σ𝑚𝑖𝑛)

𝑖−
↩ (Λ−)

]
.

Proof. A Morse cobordism Σ̃𝑐𝑜𝑛𝑖𝑐 (with a Morse minimum at the negative end and a Morse
maximum at the positive end) that can be used to compute the induced immersed map

𝑀Σ𝑐𝑜𝑛𝑖𝑐
=

(
(Λ+)

𝑓
→ (Σ𝑐𝑜𝑛𝑖𝑐)

𝑖
↩ (Λ−)

)
from Theorem 2.12 is obtained as follows.

(1) At the negative end of Σ𝑐𝑜𝑛𝑖𝑐, replace 𝑗1(ℎ̂−(𝑠) ⋅ Λ− + 𝐵−) with 𝑗1(ℎ−(𝑠 − 𝑠0) ⋅ Λ− + 𝐵−). This
matches the negative end of Σmin shifted by 𝑠0.

(2) At the positive end, replace the function ℎ̂+ with some ℎ̃+ ∶ (𝑎+ + 𝑠0 − 𝛿, 𝑠1 + 𝛿] → ℝ>0.
Here, 𝑠1 is chosen large enough so that ℎ̂+(𝑠) = 𝑠 for 𝑠 ⩾ 𝑠1 − 𝛿 and we require
∙ ℎ̃+(𝑠) = ℎ̂+(𝑠) for 𝑠 ∈ (𝑎+ + 𝑠0 − 𝛿, 𝑠1],
∙ ℎ̃+ is increasing on [𝑠1, 𝑠1 + 𝛿] and has a single critical point on this interval that is a non-
degenerate local maximum at 𝑠1 + 𝛿.

See Figure 3.

By definition, the DGA (Σ𝑐𝑜𝑛𝑖𝑐) is generated by those Reeb chords of Σ̃𝑐𝑜𝑛𝑖𝑐 that appear in the
region where 𝑠 < 𝑠1 + 𝛿. These Reeb chords are the same as the Reeb chords of Σmin but shifted
by 𝑠0 in the 𝑠 direction. Moreover, using metrics of the form gmin and g𝑐𝑜𝑛𝑖𝑐 as in Construction
2.14 to compute GFTs, because of the Morse minima all of the GFTs with positive punctures at
these chords are contained in the region [𝑎− + 𝑠0, 𝑎+ + 𝑠0] × 𝑀 and therefore coincide (up to the
shift in the 𝑠 direction) with the GFTs of Σmin; see, for example, [17]. Thus, (Σ𝑐𝑜𝑛𝑖𝑐) = (Σmin)

and the map 𝑖 agrees with 𝑖− by definition. The GFTs that define the map 𝑓 (by definition) have
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their unique positive punctures at the Reeb chords located at {𝑠1 + 𝛿} × 𝑀, and (because of the
local minimum of ℎ̃+ at 𝑠 = 𝑎+ + 𝑠0) have there images contained in (𝑎+ + 𝑠0, 𝑠1 + 𝛿) × 𝑀. In this
region, Σ̃𝑐𝑜𝑛𝑖𝑐 = 𝑗1(ℎ̃+(𝑠) ⋅ Λ+ + 𝐵+) and ℎ̃+ strictly increases, so the computation of such GFTs is
as in the case of the identity cobordism from Λ+ to itself found in [32, Proposition 6.15]. For each
Reeb chord, 𝑏, ofΛ+ there is a single gradient trajectory that connects the Reeb chords of Σ̃𝑐𝑜𝑛𝑖𝑐 at
𝑠 = 𝑠1 + 𝛿 corresponding to 𝑏 to the Reeb chord of Σ̃𝑐𝑜𝑛𝑖𝑐 at 𝑠 = 𝑎+ + 𝑠0 corresponding to 𝑏, and
these are the only rigid GFTs. It follows that 𝑓 = 𝑖+. □

As discussed in the introduction, Morse minimum cobordisms may be used to define an equiv-
alence relation on augmented Legendrians. Refer to a triple (Λ, 𝜇, 𝜖) consisting of a 𝜌-graded
Legendrian Λ ⊂ 𝐽1𝑀 with Maslov potential, 𝜇, and a 𝜌-graded augmentation, 𝜖 ∶ (Λ) → ℤ∕2,
as a 𝜌-graded augmented Legendrian.

Definition 2.16. Two 𝜌-graded augmented Legendrians (Λ𝑖, 𝜇𝑖, 𝜖𝑖), 𝑖 = 0, 1, in 𝐽1𝑀 are cobor-
dant if there exists a triple (Σ, 𝜇, 𝛼) consisting of aMorse minimum cobordism Σ ⊂ 𝐽1([0, 1] × 𝑀)

from Λ0 to Λ1 together with a Maslov potential 𝜇 extending the 𝜇𝑖 and a 𝜌-graded augmentation
𝛼 ∶ (Σ) → ℤ∕2 satisfying 𝛼|(Λ𝑖)

≃ 𝜖𝑖 (DGA homotopy).

It is straightforward to see that cobordism defines an equivalence relation on 𝜌-graded
augmented Legendrians.
We can now show that Theorem 1.2 implies Theorem 1.5 from the introduction.

Proof of Theorem 1.5. Given a 𝜌-graded augmented Legendrian (Λ, 𝜇, 𝜖), assuming Theorem 1.2,
there exists a conical Legendrian cobordism with ℤ∕𝜌-valued Maslov potential,

Σ ∶ ∅ → Λ (if 𝜌 ≠ 1) or Σ ∶ 𝑈 → Λ (if 𝜌 = 1),

together with a 𝜌-graded augmentation 𝛼 ∶ (Σ) → ℤ∕2 such that 𝜖 ≃ 𝛼 ◦𝑓Σ. Now, a Legendrian
isotopy that is compactly supported in the conical ends of Σmodifies Σ to have the form Σ𝑐𝑜𝑛𝑖𝑐 for
some Morse minimum cobordism Σmin as in Construction 2.14. Then, from Theorem 2.12 there is
an immersed DGA homotopy 𝑀Σ ≃ 𝑀Σ𝑐𝑜𝑛𝑖𝑐

that (after using Proposition 2.15 to evaluate 𝑀Σ𝑐𝑜𝑛𝑖𝑐
and replacing the stable tame isomorphism 𝜑 ∶ (Σmin) ∗ 𝑆 → (Σmin) ∗ 𝑆′ with its associated
homotopy equivalence) gives rise to a DGA homotopy commutative diagram:

Then, we can compute

𝜖 ≃ 𝛼 ◦𝑓Σ ≃ (𝛼 ◦ℎ) ◦ 𝑖+,

so that (Σmin, 𝛼 ◦ℎ) provides the cobordism of 𝜌-graded augmented Legendrians from ∅ (if 𝜌 ≠ 1)
or (𝑈, 𝜖1) (if 𝜌 = 1) to (Λ, 𝜖) as in the statement of Theorem 1.5 where 𝜖1 = 𝛼 ◦ℎ ◦ 𝑖−. □
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Remark 2.17.

(1) When 𝜌 is even, the cobordism Σ and Legendrians are canonically oriented by the Maslov
potential𝜇. If𝜌 is odd,Σmaybe orientable or not. In the odd case, a refined relation of oriented
cobordism for 𝜌-graded augmentation Legendrians arises from requiring that the Λ𝑖 and Σ

are additionally equipped with orientations. We leave the computation of such oriented, odd-
graded cobordism classes of augmented Legendrians in 𝐽1ℝ as an open problem.

(2) Without augmentations, Legendrian cobordism classes in 𝐽1ℝ are computed as follows; see,
for example, [3, Section 5.1]. Two Legendrians in 𝐽1ℝ are oriented cobordant if and only if
they have the same rotation number, while any two Legendrians in 𝐽1ℝ are non-oriented
cobordant. In particular, Theorem 1.5 implies the well-known result of Sabloff, see [37], that
if Λ ⊂ 𝐽1ℝ has an 𝜌-graded augmentation with 𝜌 even, then 𝑟𝑜𝑡(Λ) = 0.

(3) As Legendrians that admit augmentations exhibit significantly more rigid behavior than
general Legendrians, we do not see any a priori reason to expect that cobordism classes of
𝜌-graded augmented Legendrians should closely match the classical cobordism classes of
Legendrians. In fact, in the case of 𝐽1𝑆1 we will show in [31] that there are many exam-
ples of non-cobordant augmented Legendrians that become cobordant if one ignores the
augmentations.

3 IMMERSED DGAMAPS AND AUGMENTATIONS

A DGA morphism 𝑓 ∶  →  contravariantly induces a map on homotopy classes of augmen-
tations, 𝑓∗ ∶ 𝐴𝑢𝑔()∕∼ → 𝐴𝑢𝑔()∕∼. In Section 3.1, we consider analogous constructions for
immersedDGAmaps focusing on the induced augmentation set of an immersedDGAmap,𝑀, that
is a subset 𝐼(𝑀) ⊂ 𝐴𝑢𝑔()∕∼ × 𝐴𝑢𝑔()∕∼. We show that the induced augmentation set induced
by a conical Legendrian cobordism Σ is a Legendrian invariant of Σ. In addition, we make some
observations about the form of the augmentation set in the case of Legendrian fillings and embed-
ded Legendrian cobordisms. In Section 3.2 we show that immersed augmentation sets compose
as relations, and we record the effect of concatenating a conical Legendrian cobordism with the
(invertible) Legendrian cobordism arising from a Legendrian isotopy.

3.1 Induced augmentation sets

We work with ℤ∕𝜌-graded DGAs, with 𝜌 ⩾ 0 understood to be fixed. As such, when the grading
does not need to be emphasized, we may refer to 𝜌-graded augmentations simply as augmenta-
tions. We denote by𝐴𝑢𝑔𝜌() = 𝐴𝑢𝑔() the set of all (𝜌-graded) augmentations of to ℤ∕2, and
we write 𝐴𝑢𝑔()∕∼ for the set of all DGA homotopy classes of augmentations. In the case that
 = (Λ) is the DGA of some 𝜌-graded Legendrian knot or cobordism, we may shorten these
notations to 𝐴𝑢𝑔(Λ) and 𝐴𝑢𝑔(Λ)∕∼. A DGA map 𝑓 ∶  →  induces a pullback map

𝑓∗ ∶ 𝐴𝑢𝑔() → 𝐴𝑢𝑔(), 𝑓∗𝜖 = 𝜖 ◦𝑓,

and this gives a well-defined map on DGA homotopy classes also denoted as

𝑓∗ ∶ 𝐴𝑢𝑔()∕∼ → 𝐴𝑢𝑔()∕∼.
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Let𝑀 = (1

𝑓
→ 

𝑖
↩ 2) be an immersed DGA map. Then, the pullback construction results

in maps

𝐴𝑢𝑔(1)
𝑓∗

← 𝐴𝑢𝑔()
𝑖∗

→ 𝐴𝑢𝑔(2) and 𝐴𝑢𝑔(1)∕∼
𝑓∗

← 𝐴𝑢𝑔()∕∼
𝑖∗

→ 𝐴𝑢𝑔(2)∕∼.

The latter diagram is equivalent to the map

𝑖∗ × 𝑓∗ ∶ 𝐴𝑢𝑔()∕∼ → (𝐴𝑢𝑔(2)∕∼) × (𝐴𝑢𝑔(1)∕∼)

that we call the augmentation map induced by𝑀.

Definition 3.1. The induced augmentation set, 𝐼(𝑀), of an immersed DGAmap𝑀 = (1

𝑓
→


𝑖
↩ 2) is the image of the augmentation map,

𝐼(𝑀) = Im(𝑖∗ × 𝑓∗) ⊂ 𝐴𝑢𝑔(2)∕∼ × 𝐴𝑢𝑔(1)∕∼.

The induced augmentation set is an invariant of the immersed homotopy class of𝑀.

Proposition 3.2. Suppose that𝑀 = (1

𝑓
→ 

𝑖
↩ 2) and𝑀′ = (1

𝑓′

→ ′
𝑖′

↩ 2) are immersed
DGA maps that are immersed homotopic. Then, there is a bijection ℎ∗ ∶ 𝐴𝑢𝑔(′)∕∼

≅
→ 𝐴𝑢𝑔()∕∼

fitting into a commutative diagram

(3.1)

In particular, the induced augmentation sets satisfy 𝐼(𝑀) = 𝐼(𝑀′).

Proof. There exists a diagram

(3.2)

where 𝜑 is a DGA isomorphism such that

𝜑 ◦𝑓 ≃ 𝑓′ and 𝜑 ◦ 𝑖 = 𝑖′.
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Let ℎ = 𝜋′ ◦𝜑 ◦ 𝜄, where 𝜄 ∶  →  ∗ 𝑆 and 𝜋′ ∶ ′ ∗ 𝑆′ → ′ are the inclusions and projections,
be the associated homotopy equivalence from to′. Then, since themaps such as𝑓 ∶ 1 →  ∗

𝑆 in (3.2) are implicitly understood to mean 𝜄 ◦𝑓, the diagram (3.2) leads to a similar homotopy
commutative diagram (3.2)’ with the vertical map replaced with ℎ ∶  → ′.
Now, the association

 ⇝ 𝐴𝑢𝑔()∕∼,

g ∶  →  ⇝ g∗ ∶ 𝐴𝑢𝑔()∕∼ → 𝐴𝑢𝑔()∕∼

gives a well-defined contravariant functor from the category 𝔇𝔊𝔄
𝜌

ℎ𝑜𝑚
(where morphisms are

DGA homotopy classes of maps) to the category of sets. In particular, since ℎ is a homotopy equiv-
alence,ℎ∗ is a bijection, and since (3.2)’ is homotopy commutative, the diagram (3.1) is indeed fully
commutative. □

When Σ ∶ Λ− → Λ+ is a conical Legendrian cobordism with immersed DGA map, 𝑀Σ, as in
Theorem 2.12, we write 𝐼Σ = 𝐼(𝑀Σ) ⊂ 𝐴𝑢𝑔(Λ−)∕∼ × 𝐴𝑢𝑔(Λ+)∕∼ and refer to 𝐼Σ as the induced
augmentation set of Σ.

Corollary 3.3. Suppose that Σ, Σ′ ∶ Λ− → Λ+ are conical Legendrian cobordisms related by a
conical Legendrian isotopy. Then, there is a commutative diagram

(3.3)

that is, ℎ∗ is a bijection and 𝑖∗
Σ′
× 𝑓∗

Σ′
= (𝑖∗

Σ
× 𝑓∗

Σ
) ◦ℎ∗.

In particular, the induced augmentation set

𝐼Σ = Im(𝑖∗Σ × 𝑓∗Σ) ⊂ 𝐴𝑢𝑔(Λ−)∕∼ × 𝐴𝑢𝑔(Λ+)∕∼,

is an invariant of Σ.

Remark 3.4.

(1) To provide a more refined invariant of Σ, one can take multiplicities into account when
considering 𝐼Σ. For example, the function

𝐴𝑢𝑔(Λ−)∕∼ × 𝐴𝑢𝑔(Λ+)∕∼ → ℤ⩾0, ([𝜖−], [𝜖+]) ↦
|||(𝑖∗Σ × 𝑓∗Σ)

−1
(
([𝜖−], [𝜖+])

)|||
is a conical Legendrian invariant of Σ. A similar invariant (using a normalized count of
augmentations rather than homotopy classes) is studied for 1-dimensional Σ in [39].

(2) The set 𝐴𝑢𝑔(Λ±) can be equipped with the additional structure of an 𝐴∞-category whose
moduli space of objects is𝐴𝑢𝑔(Λ±)∕∼, cf. [5, 27], and one could hope for a further refinement
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of the augmentation map 𝑖∗
Σ
× 𝑓∗

Σ
to take this structure into account. In the case of embedded

cobordisms, such a refinement is made in [29].

3.1.1 The embedded case

When the conical Legendrian cobordism Σ ∶ Λ− → Λ+ corresponds to an embedded Lagrangian
cobordism, 𝐿, that is, when Σ has no Reeb chords,(Σ) = (Λ−) and 𝑖Σ = 𝑖𝑑(Λ−)

. Therefore, in
this case the augmentation map 𝑖∗

Σ
× 𝑓∗

Σ
is determined by the induced augmentation set

𝐼Σ =
{
([𝜖], 𝑓∗Σ[𝜖]) | [𝜖] ∈ 𝐴𝑢𝑔(Λ−)∕∼

}
⊂ 𝐴𝑢𝑔(Λ−)∕∼ × 𝐴𝑢𝑔(Λ+)∕∼, (3.4)

which is simply the function 𝑓∗
Σ
viewed as a relation.

More generally, when𝑀 = (1

𝑓
→ 2

𝑖𝑑
↩ 2) is the image of an ordinary DGAmap 𝑓 ∶ 1 →

2 under the functor from Proposition 2.7, the induced augmentation set for𝑀 is just the graph
of 𝑓∗.

3.1.2 Induced augmentations and immersed fillings

Let Σ be a conical Legendrian filling, or equivalently a good immersed Lagrangian filling. Since
Λ− = ∅, we have (Λ−) = ℤ∕2. Thus, 𝐴𝑢𝑔(Λ−) = 𝐴𝑢𝑔(Λ−)∕∼ consists of a single element, so
that we can view 𝐼Σ as a subset of𝐴𝑢𝑔(Λ+). To emphasize the analogy with the case of embedded
Lagrangian fillings, given an augmentation 𝛼 ∶ (Σ) → ℤ∕2, we use the notation

𝜖(Σ,𝛼) ∶ (Λ+) → ℤ∕2, 𝜖(Σ,𝛼) = 𝛼 ◦𝑓Σ,

and refer to 𝜖(Σ,𝛼) as the augmentation induced by Σ via 𝛼. Thus, the induced augmentation
set 𝐼Σ ⊂ 𝐴𝑢𝑔(Λ+) consists of those augmentations of Λ+ that can be induced by some choice of
augmentation for Σ.

3.2 Concatenation and induced augmentation sets

Let ℜ𝔢𝔩 denote the category whose objects are sets and morphisms are relations, that is, a mor-
phism 𝑅 ⊂ 𝐻𝑜𝑚ℜ𝔢𝔩(𝑋, 𝑌) is just a subset 𝑅 ⊂ 𝑋 × 𝑌. Given relations 𝑅 ⊂ 𝑋 × 𝑌 and 𝑆 ⊂ 𝑌 × 𝑍,
there composition is

𝑆 ◦𝑅 = {(𝑥, 𝑧) ∈ 𝑋 × 𝑍 |∃𝑦 ∈ 𝑌 such that (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑆}.

Observation 3.5.

(1) Any function 𝑓 ∶ 𝑋 → 𝑌 defines a relation Γ𝑓 = {(𝑥, 𝑓(𝑥)) |𝑥 ∈ 𝑋} ⊂ 𝑋 × 𝑌.
(2) Given any 𝑅 ⊂ 𝑋 × 𝑌 and g ∶ 𝑌 → 𝑍, we have

Γg ◦𝑅 = {(𝑥, g(𝑦)) | (𝑥, 𝑦) ∈ 𝑅} = (𝑖𝑑 × g)(𝑅).
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(3) If 𝑓 ∶ 𝑋 → 𝑌 is a bijection, and 𝑆 ⊂ 𝑌 × 𝑍,then

𝑆 ◦Γ𝑓 = (𝑓−1 × 𝑖𝑑)(𝑆).

Proposition 3.6. The induced augmentation set construction gives a contravariant functor
𝔇𝔊𝔄

𝜌

𝑖𝑚
→ ℜ𝔢𝔩,

 ⇝ 𝐴𝑢𝑔()∕∼

[𝑀] ⇝ 𝐼(𝑀).

In particular, the induced augmentation sets for a pair of conical Legendrian cobordisms, Σ𝑖 ∶
Λ𝑖+1 → Λ𝑖 , 𝑖 = 1, 2, satisfy

𝐼Σ1 ◦Σ2 = 𝐼Σ1 ◦ 𝐼Σ2 . (3.5)

Proof. Let 𝑀1 = (1

𝑓1
→ 1

𝑖1
← 2) and 𝑀2 = (2

𝑓2
→ 2

𝑖2
← 3) be immersed maps. The set

𝐼(𝑀2 ◦𝑀1) only depends on the immersed homotopy class of 𝑀2 ◦𝑀1. Thus, we can compute

it using the immersed map 1

𝑓1
→ 

𝑖2
← 3 as in Proposition 2.5 where  = 1 ∗ ̂2 ∗ 2 with

differential as in (2.2). That 𝐼(𝑀2 ◦𝑀1) = 𝐼(𝑀1) ◦ 𝐼(𝑀2) then follows from the following.

Claim. Let 𝑋 be the set of triples (𝛼1, 𝛼2, 𝐾) such that 𝛼𝑖 ∈ 𝐴𝑢𝑔(𝑖) and 𝐾 ∶ 2 → ℤ∕2 is a DGA
homotopy operator from 𝑖∗

1
𝛼1 to 𝑓∗2𝛼2, that is, a (𝑖

∗
1
𝛼1, 𝑓

∗
2
𝛼2)-derivation with 𝑖∗1𝛼1 − 𝑓∗

2
𝛼2 = 𝐾 ◦ 𝜕.

There is a bijection

𝑋 → 𝐴𝑢𝑔(), (𝛼1, 𝛼2, 𝐾) ↦ 𝛼,

where 𝛼 ∶  → ℤ∕2 satisfies 𝛼|𝑖
= 𝛼𝑖 and 𝛼(𝑎𝑖) = 𝐾(𝑎𝑖) for all generators 𝑎𝑖 ∈ 2.

To verify the claimnote that (𝛼 ◦ 𝜕)|𝑖
= 0 if and only if𝑖 is an augmentation. In addition, since

𝜕(𝑎𝑖) = 𝑖1(𝑎𝑖) + 𝑓2(𝑎𝑖) + Γ ◦ 𝜕𝑎𝑖 whereΓ(𝑎𝑖) = 𝑎𝑖 is an (𝑖1, 𝑓2)-derivation, the equation𝛼 ◦ 𝜕(𝑎𝑖) =
0 is equivalent to 𝑖∗

1
𝛼1(𝑎𝑖) + 𝑓∗

2
𝛼2(𝑎𝑖) = 𝐾 ◦ 𝜕𝑎𝑖 . □

In the case that the corresponding exact Lagrangian cobordism is embedded, we get a simpler
statement.

Proposition 3.7. Suppose that Σ ∶ Λ− → Λ+ is a conical Legendrian cobordism with embedded
Lagrangian projection, and let Σ′ ∶ Λ′

− → Λ− and Σ′′ ∶ Λ+ → Λ′′
+.

(1) Then,

𝐼Σ ◦Σ′ = (𝑖𝑑 × 𝑓∗Σ)(𝐼Σ′).

(2) If 𝑓∗
Σ
∶ 𝐴𝑢𝑔(Λ−)∕∼ → 𝐴𝑢𝑔(Λ+)∕∼ is a bijection, then

𝐼Σ′′ ◦Σ = ((𝑓∗Σ)
−1 × 𝑖𝑑)(𝐼Σ′′ ).

Proof. As discussed in 3.1.1, when Σ is embedded 𝐼Σ is the relation Γ𝑓∗
Σ
associated to the function

𝑓∗
Σ
. Thus, the formulas from Observation 3.5 can be applied. □
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An important case where (2) of Proposition 3.7 applies is when Σ is induced by a Legendrian
isotopy. We now briefly review a version of this construction.
Let Φ = {Λ𝑠}𝑠∈ℝ>0

be a Legendrian isotopy from Λ− to Λ+ so that Λ𝑠 ∶ ⊔
𝑐
𝑖=1

𝑆1 → 𝐽1𝑀 for 𝑠 ∈
ℝ>0 is a Legendrian embedding satisfyingΛ𝑠 = Λ− for 0 < 𝑠 ⩽ 1 andΛ𝑠 = Λ+ for 𝑠 ≫ 0. Writing

Λ𝑠(𝜃) = (𝑥(𝑠, 𝜃), 𝑦(𝑠, 𝜃), 𝑧(𝑠, 𝜃)),

there is a conical Legendrian cobordism

ΣΦ ∶ ℝ>0 × (⊔𝑐
𝑖=1

𝑆1) → 𝐽1(ℝ>0 × 𝑀) = {(𝑠, 𝑥, 𝑢, 𝑦, 𝑧)}

from Λ− to Λ+ associated to Φ that is parametrized by

ΣΦ(𝑠, 𝜃) =

(
𝑠, 𝑥(𝑠, 𝜃), 𝑧(𝑠, 𝜃) + 𝑠 ⋅

𝜕𝑧

𝜕𝑠
(𝑠, 𝜃) − 𝑠 ⋅ 𝑦(𝑠, 𝜃) ⋅

𝜕𝑥

𝜕𝑠
(𝑠, 𝜃), 𝑠 ⋅ 𝑦(𝑠, 𝜃), 𝑠 ⋅ 𝑧(𝑠, 𝜃)

)
.

It can be shown that after reparametrizing by an appropriate orientation preserving diffeomor-
phism, 𝛼 ∶ ℝ>0 → ℝ>0, the conical Legendrian cobordism corresponding to Φ′ = {Λ𝛼(𝑠)} will not
have Reeb chords. Indeed, with our setup, one can take 𝛼(𝑠) = 𝑠𝑎 with 𝑎 > 0 suitably small. See
[16, Section 6.1] for a version of this construction for exact Lagrangian cobordisms in 𝑆𝑦𝑚𝑝(𝐽1𝑀).

Corollary 3.8. Let Φ = {Λ𝑠}𝑠∈ℝ>0
be a Legendrian isotopy parametrized so that the conical Leg-

endrian cobordism ΣΦ does not have Reeb chords. Then, 𝑓∗
ΣΦ

∶ 𝐴𝑢𝑔(Λ−)∕∼ → 𝐴𝑢𝑔(Λ+)∕∼ is a
bijection. In particular, we have

𝐼ΣΦ ◦Σ′ = (𝑖𝑑 × 𝑓∗ΣΦ
)(𝐼Σ′) and 𝐼Σ′′ ◦ΣΦ = ((𝑓∗ΣΦ

)−1 × 𝑖𝑑)(𝐼Σ′′ ).

whenever Σ′ and Σ′′ are composable with ΣΦ.

Proof. Let Φ−1 be the inverse Legendrian isotopy {Λ1∕𝑠}𝑠∈ℝ>0
reparametrized, if necessary, to

ensure that ΣΦ−1 has no Reeb chords. Then, the immersed LCH functor satisfies

𝐹(ΣΦ) = [𝑀ΣΦ
] = 𝐼(𝑓ΣΦ) and 𝐹(ΣΦ−1) = [𝑀ΣΦ−1

] = 𝐼(𝑓ΣΦ−1
),

where 𝐼 ∶ 𝔇𝔊𝔄
𝜌

ℎ𝑜𝑚
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
is the functor from Proposition 2.7. There is a clear conical Leg-

endrian isotopy between ΣΦ ◦ΣΦ−1 (respectively, ΣΦ−1 ◦ΣΦ) and the identity cobordism 𝑗1(𝑠 ⋅ Λ+)

(respectively, 𝑗1(𝑠 ⋅ Λ−)). From functoriality, it follows that 𝐼(𝑓ΣΦ ◦𝑓ΣΦ−1 ) and 𝐼(𝑓ΣΦ−1 ◦𝑓ΣΦ) are
identity morphisms in 𝔇𝔊𝔄

𝜌

𝑖𝑚
, and since 𝐼 is injective on hom-sets, we conclude that 𝑓ΣΦ and

𝑓ΣΦ−1
are homotopy inverses. □

4 IMMERSEDMAPS AND THE CELLULAR DGA

In [33–35], a cellular version of LCH is introduced and shown to be equivalent to the usual LCH
DGA in the case of closed Legendrian surfaces. In Sections 4.1 and 4.2, we briefly review the cel-
lular DGA and extend its definition to the case of (compact) Legendrian cobordisms. The DGA of
the identity cobordisms is computed in Section 4.3 and shown to be a mapping cylinder DGA. In
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Section 4.4 a cellular version, 𝐹𝑐𝑒𝑙𝑙, of the immersed LCH functor is defined with a domain cate-
gory consisting of 𝜌-graded Legendrians equipped with some additional data and with compact
Legendrian cobordisms as morphisms. Finally, in Section 4.5 we state in Proposition 4.9 a precise
relationship between the immersed and cellular LCH functors, 𝐹 and 𝐹𝑐𝑒𝑙𝑙, that will allow us to
work with 𝐹𝑐𝑒𝑙𝑙 in place of 𝐹 when considering induced augmentation sets; see Corollary 4.12.
Specifically, after unifying the domain categories by precomposing with suitable functors, 𝐹 and
𝐹𝑐𝑒𝑙𝑙 become isomorphic. This isomorphism is an extension of the isomorphism between the cel-
lular and LCH DGAs for closed Legendrian surfaces from [33–35], and is presented here in a
condensed manner. A more detailed presentation appears in Appendices A and B of the preprint
version of this article [30].

4.1 Review of the cellular DGA

The cellular DGA construction requires as input a Legendrian knot or surface equipped with a
suitable polygonal decomposition of its base projection. Recall that for a generic 1-dimensional
Legendrian knot Λ ⊂ 𝐽1𝑀 the singularities of the front projection, 𝜋𝑥𝑧(Λ) ⊂ 𝑀 × ℝ, are cusp
points and crossings points (that is, transverse double points). Generically, front projections of
Legendrian surfaces have crossing arcs and cusp edges as codimension 1 singularities and triple
points (intersection of three smooth sheets of Λ), cusp-sheet intersections (where a smooth sheet
intersects a cusp edge), and swallowtail points as codimension 2 singularities. See, for example,
[3]; the front singularities for surfaces are illustrated in [33, Section 2.2].We say thatΛ has generic
front and base projections if the front singularities are generic, and the base projections (to𝑀)
of the different classes of front singularities are all self-transverse and transverse to one another.

Definition 4.1. Let Λ ⊂ 𝐽1𝑀 be a closed Legendrian submanifold with dimΛ = 1 or 2 hav-
ing generic front and base projections. A compatible polygonal decomposition for Λ is a
polygonal† decomposition,  = {𝑒𝑑𝛼}, of the base projection of Λ,

⊔2
𝑑=0

⊔𝛼 𝑒
𝑑
𝛼 = 𝜋𝑥(Λ) ⊂ 𝑀

(where the superscript 0 ⩽ 𝑑 ⩽ 2 denotes the dimension of a cell) such that the base projection of
the singular set of 𝜋𝑥𝑧(Λ) (crossings, cusps, swallow tail points, etc.) is contained in the 1-skeleton
of  . In addition, we require following.

(1) Each 1-cell is assigned an orientation.
(2) Each 2-cell is assigned an initial and terminal vertex, 𝑣0 and 𝑣1. If 𝑣0 = 𝑣1, then a preferred

direction around the boundary of the 2-cell is also chosen.
(3) At each swallowtail point, 𝑠0, the two polygonal corners that border the crossing arc near its

endpoint at 𝑠0 are labeled as 𝑆 and 𝑇.

Let (Λ, ) be a pair consisting of a closed Legendrian knot or surface, Λ ⊂ 𝐽1𝑀, together with
a choice of compatible polygonal decomposition. The cellular DGA of (Λ, ) will be denoted as
(Λ, ) or𝑐𝑒𝑙𝑙(Λ, ), and is defined as follows.

† By polygonal decomposition, we mean a CW-complex decomposition such that the boundary of each 2-cell consists of a
sequence of vertices and edges (with repeats allowed).
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Algebra
Given a cell, 𝑒𝑑𝛼, denote by {𝑆

𝛼
𝑝} the set of sheets of Λ above 𝑒𝑑𝛼. By definition, sheets above 𝑒

𝑑
𝛼 are

those components of Λ ∩ 𝜋−1
𝑥 (𝑒𝑑𝛼) not contained in any cusp edge. (Note: (i) Sheets are subsets

of Λ, not 𝜋𝑥𝑧(Λ), so that, for example, a crossing arc of 𝜋𝑥𝑧(Λ) above a 1-cell corresponds to two
sheets. (ii) A swallowtail point is considered to be a sheet above a 0-cell.) The algebra(Λ, ) is
the free unital, associative ℤ∕2-algebra whose generators are in bijection with triples (𝑒𝑑𝛼, 𝑆

𝛼
𝑖
, 𝑆𝛼

𝑗
)

where 𝑆𝛼
𝑖
and 𝑆𝛼

𝑗
are sheets above 𝑒𝑑𝛼 such that the inequality 𝑧(𝑆

𝛼
𝑖
) > 𝑧(𝑆𝛼

𝑗
) holds pointwise above

𝑒𝑑𝛼. We denote the generator associated to (𝑒
𝑑
𝛼, 𝑆

𝛼
𝑖
, 𝑆𝛼

𝑗
) as

𝑎𝛼
𝑖,𝑗
, 𝑏𝛼

𝑖,𝑗
, or 𝑐𝛼

𝑖,𝑗

when the dimension of 𝑒𝑑𝛼 is 0, 1, or 2, respectively.

Grading
A ℤ∕𝜌-grading on (Λ, ) arises from a choice of ℤ∕𝜌-valued Maslov potential, 𝜇, for Λ. The
ℤ∕𝜌-grading of generators is

|𝑎𝛼
𝑖,𝑗
| = 𝜇(𝑆𝛼

𝑖
) − 𝜇(𝑆𝛼

𝑗
) − 1, |𝑏𝛼

𝑖,𝑗
| = 𝜇(𝑆𝛼

𝑖
) − 𝜇(𝑆𝛼

𝑗
), |𝑐𝛼

𝑖,𝑗
| = 𝜇(𝑆𝛼

𝑖
) − 𝜇(𝑆𝛼

𝑗
) + 1.

(If 𝑆𝛼
𝑖
is a swallowtail point above a 0-cell, then take 𝜇(𝑆𝛼

𝑖
) to be the value of 𝜇 on the two sheets

that cross near 𝑆𝛼
𝑖
.)

Differential
The differential 𝜕 ∶ (Λ, ) → (Λ, ) is characterized on the generators of (Λ, ) by matrix
formulas whose precise form depends on the dimension of the associated cell 𝑒𝑑𝛼 ∈  . We review
these formulas here in the case that Λ does not have swallowtail points. See also [33, 36].

∙ For 0-cells: We choose a linear ordering of the sheets of Λ above 𝑒0𝛼 so that the 𝑧-coordinates
appear in non-increasing order

𝑧(𝑆𝛼
𝜄(1)

) ⩾ 𝑧(𝑆𝛼
𝜄(2)

) ⩾ ⋯ ⩾ 𝑧(𝑆𝛼
𝜄(𝑛)

)

and use it to place the generators, 𝑎𝛼𝑝,𝑞, into a matrix, 𝐴, whose (𝑖, 𝑗)-entry is 𝑎
𝛼
𝜄(𝑖),𝜄(𝑗)

when
𝑧(𝑆𝛼

𝜄(𝑖)
) > 𝑧(𝑆𝛼

𝜄(𝑗)
) and is 0 otherwise. When 𝜕 is applied entry-by-entry to 𝐴 we have

𝜕𝐴 = 𝐴2.

∙ For 1-cells: After a choice of linear ordering of sheets as above, we place the generators, 𝑏𝛼𝑝,𝑞,
associated to a 1-cell, 𝑒1𝛼, into an 𝑛 × 𝑛matrix, 𝐵. In addition, we form 𝑛 × 𝑛 boundary matri-
ces, 𝐴− and 𝐴+, associated to the initial and terminal vertices, 𝑒0− and 𝑒0+, of 𝑒

1
𝛼. The sheets

above 𝑒0± are identified with a subset of the sheets above 𝑒
1
𝛼 (since every sheet of 𝑒

0
± belongs to

the closure of a unique sheet of 𝑒1𝛼). Using this identification, we place the 𝑒
0
± generators, 𝑎

±
𝑝,𝑞,

into the corresponding rows and columns of the 𝑛 × 𝑛matrices𝐴±. Whenever two sheets of 𝑒1𝛼,
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𝑆𝛼
𝑘
and 𝑆𝛼

𝑘′
, meet at a cusp point above 𝑒0±, we place a 2 × 2 block of the form

𝑁 =

[
0 1

0 0

]

on the diagonal at the location of the two (possibly non-consecutive) rows and columns of 𝐴±

that correspond to 𝑆𝛼
𝑘
and 𝑆𝛼

𝑘′
with respect to the linear ordering of sheets of 𝑒1𝛼. All other entries

of 𝐴± are 0. The differential on the 𝑏𝛼𝑝,𝑞 satisfies

𝜕𝐵 = 𝐴+(𝐼 + 𝐵) + (𝐼 + 𝐵)𝐴−.

∙ For 2-cells: The sheets above a 2-cell, 𝑒2𝛼, are already linearly ordered by descending 𝑧-
coordinate, and using this ordering we place the generators 𝑐𝛼

𝑖,𝑗
into an 𝑛 × 𝑛-matrix, 𝐶. We

form 𝑛 × 𝑛 boundary matrices, 𝐴𝑣0
and 𝐴𝑣1

, associated to the initial and terminal vertices, 𝑣0
and 𝑣1, for 𝑒2𝛼 following the same procedure as in the 1-cell case. Additional boundary matrices
𝐵1, … , 𝐵𝑙 are associated to the 1-cells that appear around the boundary of 𝐶. We assume that the
numbering is such that 𝐵1, … , 𝐵𝑗 (respectively, 𝐵𝑗+1, … , 𝐵𝑙) are the boundary matrices for the
sequence of edges that appear along the path 𝛾+ (respectively, 𝛾−) where 𝛾± are the two paths
that travel around the boundary of 𝑒2𝛼 (in the domain of the characteristic map) from 𝑣0 to 𝑣1.
When 𝑣0 = 𝑣1, one of 𝛾± is constant (as specified by the choice of preferred direction around
𝜕𝑒2𝛼). The 𝐵𝑖 are formed using the same procedure as for the boundary matrices associated to
vertices except that the 2 × 2 𝑁 blocks that correspond to pairs of cusp sheets are replaced with
2 × 2 blocks of 0. The differential satisfies

𝜕𝐶 = 𝐴𝑣1
𝐶 + 𝐶𝐴𝑣0

+ (𝐼 + 𝐵𝑗)
𝜂𝑗 ⋯ (𝐼 + 𝐵1)

𝜂1 + (𝐼 + 𝐵𝑙)
𝜂𝑙 ⋯ (𝐼 + 𝐵𝑗+1)

𝜂𝑗+1 ,

where 𝜂𝑖 is +1 (respectively, −1) when the orientation of the 𝐵𝑖 edge agrees (respectively, dis-
agrees) with the orientation (from 𝑣0 to 𝑣1) of the corresponding path 𝛾±. Note that since the
𝐵𝑖 are strictly upper triangular, (𝐼 + 𝐵𝑖)

−1 = 𝐼 + 𝐵𝑖 + 𝐵2
𝑖
+⋯ + 𝐵𝑛−1

𝑖
.

Remark 4.2. To define 𝜕 in the case that Λ has swallowtail points, the following additions should
be made.

∙ The definition of the boundary matrices𝐴±,𝐴𝑣0
, and𝐴𝑣1

needs to be adjusted when the vertex
is a swallowtail point of Λ.

∙ Whenever a 2-cell contains one of the corners labeled 𝑆 or𝑇 at a swallowtail point, an additional
matrix need to be inserted into the product (𝐼 + 𝐵𝑗)⋯ (𝐼 + 𝐵1) or (𝐼 + 𝐵𝑙)⋯ (𝐼 + 𝐵𝑗+1).

These details may be found in [33] or [36] and are not needed for the arguments that follow.

Observation 4.3. Whenever  ′ ⊂  is a (CW) sub-complex, the collection of generators associated
to cells of  ′ form a sub-DGA of𝑐𝑒𝑙𝑙(Σ, ). Moreover, if  ′ is a decomposition of a curve or curve
segment𝐶 ⊂ 𝑀 such that the restriction ofΣ to𝐶 (as in Section 2.3) is a 1-dimensional Legendrian
knot Λ ⊂ 𝐽1𝐶, then this sub-DGA is precisely𝑐𝑒𝑙𝑙(Λ, 

′).
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4.2 The cellular DGA for compact Legendrian cobordisms

In extending the definition of the cellular DGA to Legendrian cobordisms, it is most natural to
consider compact cobordisms rather than conical cobordisms. The following definition coincides
precisely with a standard notion of Legendrian cobordism introduced by Arnold, cf. [1–3].

Definition 4.4. Given an interval 𝐼 ⊂ [0, 1] andΛ ⊂ 𝐽1𝑀, wewrite 𝑗1(1𝐼 ⋅ Λ) for theLegendrian
cylinder on Λ in 𝐽1(𝐼 × 𝑀). It is defined to be the product of Λ ⊂ 𝐽1𝑀 with the 0-section in 𝑇∗𝐼,
that is,

𝑗1(1𝐼 ⋅ Λ) = 0𝑇∗𝐼 × Λ ⊂ 𝑇∗𝐼 × 𝐽1𝑀 ≅ 𝐽1(𝐼 × 𝑀). (4.1)

The notation is chosen to be consistent with that of Definition 2.10 with 1𝐼 ∶ 𝐼 → ℝ>0 denoting
the constant function 1.
Let Λ0, Λ1 ⊂ 𝐽1𝑀. A compact Legendrian cobordism from Λ0 to Λ1, written Σ ∶ Λ0 → Λ1,

is a Legendrian surface Σ ⊂ 𝐽1([0, 1] × 𝑀) that, for some 𝜖 > 0, Σ agrees with the Legendrian
cylinder 𝑗1(1[0,𝜖] ⋅ Λ0) in 𝐽1([0, 𝜖] × 𝑀) and agrees with 𝑗1(1[1−𝜖,1] ⋅ Λ1) in 𝐽1([1 − 𝜖, 1], ×𝑀).

WhenΣ ∶ Λ0 → Λ1 is a compact Legendrian cobordism,wemodify the definition of compatible
polygonal decomposition for Σ to require that 𝜋𝑥(Σ) ∩ ({0} × 𝑀) and 𝜋𝑥(Σ) ∩ ({1} × 𝑀) are (CW)
sub-complexes of  , that we denote 0 and 1. Then, the definition of the cellular DGA extends
immediately to give DGAs(Σ, ) when Σ is a compact Lagrangian cobordism. Moreover, since
0 and 1 may be viewed as polygonal decompositions for Λ0 and Λ1, as in the Observation 4.3,
we have inclusion maps

𝑖0 ∶ (Λ0, 0) → (Σ, ) and 𝑖1 ∶ (Λ1, 1) → (Σ, ). (4.2)

4.3 The DGA of a product cobordism

Given a 1-dimensional Legendrian with compatible polygonal decomposition, (Λ, ), we now
compute the DGA of the product cobordism Σ = 𝑗1(1[0,1] ⋅ Λ) ⊂ 𝐽1([0, 1] × 𝑀). This will be a
useful ingredient in a few later arguments.
As a preliminary, use  to form the product decomposition,  ′, for 𝜋𝑥(Σ) = [0, 1] × 𝜋𝑥(Λ) as

follows: For each 𝑑-cell 𝑒𝑑𝛼 ∈  (here, 𝑑 = 0 or 1), decompose

[0, 1] × 𝑒𝑑𝛼 = {0} × 𝑒𝑑𝛼 ⊔ (0, 1) × 𝑒𝑑𝛼 ⊔ {1} × 𝑒𝑑𝛼

so that {𝑘} × 𝑒𝑑𝛼 are 𝑑-cells in  ′, for 𝑘 = 0, 1, and (0, 1) × 𝑒𝑑𝛼 is a (𝑑 + 1)-cell in  ′. Orient 1-cells of
the form {𝑘} × 𝑒1

𝛽
in the same direction as 𝑒1

𝛽
, and those of the form (0, 1) × 𝑒0𝛼 using the standard

orientation of (0,1). For each 2-cell, (0, 1) × 𝑒1
𝛽
choose the initial and terminal vertices 𝑣0 and 𝑣1 to

be {0} × 𝑒0− and {1} × 𝑒0+ where 𝑒
0
− and 𝑒

0
+ are the initial and terminal vertices of 𝑒

1
𝛽
. See Figure 4.

Let us fix notation for the generators of the cellular DGA(Σ,  ′). Observe that for any 𝑒𝑑𝛼 ∈  ,
the sheets ofΛ above 𝑒𝑑𝛼 are in bijection with the sheets of Σ above any of the {𝑘} × 𝑒𝑑𝛼 or (0, 1) × 𝑒𝑑𝛼
cells of  ′, so the generators associated to these cells are also in bijection with those of 𝑒𝑑𝛼.
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F IGURE 4 Notation for cells in  (left) and  ′ (right).

∙ For a 0-cell 𝑒0𝛼 ∈  with corresponding generators 𝑎𝛼
𝑖,𝑗
we notate the generators corresponding

to {0} × 𝑒0𝛼, {1} × 𝑒0𝛼, and (0, 1) × 𝑒0𝛼 as 𝑖0(𝑎
𝛼
𝑖,𝑗
), 𝑖1(𝑎𝛼𝑖,𝑗), and 𝑏

𝛼
𝑖,𝑗
.

∙ For a 1-cell 𝑒1
𝛽
∈  with corresponding generators 𝑏𝛽

𝑖,𝑗
we notate the generators corresponding

to {0} × 𝑒1
𝛽
, {1} × 𝑒1

𝛽
, and (0, 1) × 𝑒1

𝛽
as 𝑖0(𝑏

𝛽

𝑖,𝑗
), 𝑖1(𝑏

𝛽

𝑖,𝑗
), and 𝑐𝛽

𝑖,𝑗
.

In Proposition 4.5, the DGA of the product cobordism Σ is described as a mapping cylinder
DGA. We now briefly review the relevant definitions, referring the reader to [32, Section 2] for a
more thorough treatment in the present algebraic setting of triangular DGAs over ℤ∕2. Let 𝑓 ∶

(, 𝜕) → (, 𝜕) be a DGAmap between based DGAs. The standardmapping cylinder DGA
of 𝑓 is ( ∗ ̂ ∗ , 𝜕Γ)where ̂ has generators {𝑎𝑖} in correspondence with the generators {𝑎𝑖} of
 but with the degree shift |𝑎𝑖| = |𝑎𝑖| + 1. The differential, 𝜕Γ, satisfies

𝜕Γ| = 𝜕, 𝜕Γ| = 𝜕, and 𝜕Γ(𝑎𝑖) = 𝑓(𝑎𝑖) + 𝑎𝑖 + Γ ◦ 𝜕(𝑎𝑖),

where Γ ∶  →  ∗ ̂ ∗  is the unique (𝑓, 𝑖𝑑)-derivation satisfying Γ(𝑎𝑖) = 𝑎𝑖 .

Proposition 4.5. Given (Λ, ) with Λ ⊂ 𝐽1𝑀 and dimΛ = 1, let (Σ,  ′) be the product cobordism,
Σ = 𝑗1(1[0,1] ⋅ Λ) ⊂ 𝐽1([0, 1] × 𝑀) equipped with the product decomposition,  ′.

(1) For 𝑘 = 0, 1, the maps 𝑖𝑘 ∶ (Λ, ) → (Σ,  ′) that extend the correspondence of generators
are DGA isomorphisms from (Λ, ) onto the sub-DGAs 𝑘 ⊂ (Σ,  ′) associated to the
subcomplexes {𝑘} ×  ⊂  ′.

(2) Identifying the sub-algebra of(Σ,  ′) generated by the 𝑏𝛼
𝑖,𝑗
and 𝑐𝛽

𝑖,𝑗
with ̂0 using the grading

preserving bijection 𝑖0(𝑎𝛼𝑖,𝑗) ↔ 𝑏𝛼
𝑖,𝑗
and ˆ

𝑖0(𝑏
𝛽

𝑖,𝑗
) ↔ 𝑐

𝛽

𝑖,𝑗
gives a DGA isomorphism

𝜑 ∶ ((Σ,  ′), 𝜕)
≅
→ (0 ∗ ̂0 ∗ 1, 𝜕Γ)

with the standard mapping cylinder DGA of the map 𝑖1 ◦ 𝑖−10 ∶ 0 → 1.

Proof. (1) is obvious. For (2), 𝜑 is clearly an algebra isomorphism which is the identity on the𝑘,
so we just to check that 𝜕Γ ◦𝜑(𝑥) = 𝜑 ◦ 𝜕(𝑥) when 𝑥 = 𝑏𝛼

𝑖,𝑗
or 𝑐𝛽

𝑖,𝑗
. From the definition of 𝜕Γ, we

have
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𝜕Γ𝑖0(𝑎
𝛼
𝑖,𝑗
) = 𝑖1(𝑎

𝛼
𝑖,𝑗
) + 𝑖0(𝑎

𝛼
𝑖,𝑗
) + Γ ◦ 𝜕Λ𝑎

𝛼
𝑖,𝑗
, (4.3)

𝜕Γ
ˆ
𝑖0(𝑏

𝛽

𝑖,𝑗
) = 𝑖1(𝑏

𝛽

𝑖,𝑗
) + 𝑖0(𝑏

𝛽

𝑖,𝑗
) + Γ ◦ 𝜕Λ𝑏

𝛽

𝑖,𝑗
, (4.4)

where 𝜕Λ is the differential on(Λ, ) and Γ ∶ (Λ, ) → 1 ∗ ̂0 ∗ 0 is the (𝑖1, 𝑖0)-derivation
satisfying Γ(𝑥) = 𝑖0(𝑥) on generators.
Using matrix notation, this allows us to compute

𝜑 ◦ 𝜕(𝐵𝛼) = 𝜑(𝑖1(𝐴𝛼)(𝐼 + 𝐵𝛼) + (𝐼 + 𝐵𝛼)𝑖0(𝐴𝛼))

= 𝑖1(𝐴𝛼) + 𝑖1(𝐴𝛼)𝑖0(𝐴𝛼) + 𝑖0(𝐴𝛼) + 𝑖0(𝐴𝛼)𝑖0(𝐴𝛼)

= 𝑖1(𝐴𝛼) + 𝑖0(𝐴𝛼) + Γ(𝐴2
𝛼)

= 𝜕Γ(𝑖0(𝐴𝛼)) = 𝜕Γ ◦𝜑(𝐵𝛼),

and

𝜕Γ ◦𝜑(𝐶𝛽) = 𝜕Γ(𝑖0(𝐵𝛽)) = 𝑖1(𝐵𝛽) + 𝑖0(𝐵𝛽) + Γ(𝜕𝐵𝛽)

= 𝑖1(𝐵𝛽) + 𝑖0(𝐵𝛽) + Γ(𝐴+(𝐼 + 𝐵𝛽) + (𝐼 + 𝐵𝛽)𝐴−)

= 𝑖1(𝐵𝛽) + 𝑖0(𝐵𝛽) + Γ(𝐴+)(𝐼 + 𝑖0(𝐵𝛽)) + 𝑖1(𝐴+)𝑖0(𝐵𝛽)

+ 𝑖0(𝐵𝛽)𝑖0(𝐴−) + (𝐼 + 𝑖1(𝐵𝛽))Γ(𝐴−)

= 𝜑
(
𝑖1(𝐵𝛽) + 𝑖0(𝐵𝛽) + 𝐵+(𝐼 + 𝑖0(𝐵𝛽)) + 𝑖1(𝐴+)𝐶𝛽

+𝐶𝛽𝑖0(𝐴−) + (𝐼 + 𝑖1(𝐵𝛽))𝐵−
)

= 𝜑
(
𝑖1(𝐴+)𝐶𝛽 + 𝐶𝛽𝑖0(𝐴−) + (𝐼 + 𝐵+)(𝐼 + 𝑖0(𝐵𝛽)) + (𝐼 + 𝑖1(𝐵𝛽))(𝐼 + 𝐵−)

)
= 𝜑 ◦ 𝜕(𝐶𝛽).

At the fourth equality, it should be observed that when 𝐴− and 𝐴+ are the boundary matrices for
𝑒1
𝛽
associated to the vertices 𝑒0− and 𝑒

0
+, the boundary matrices 𝐵− and 𝐵+ for (0, 1) × 𝑒1

𝛽
associated

to the edges (0, 1) × 𝑒0− and (0, 1) × 𝑒0+ indeed satisfy𝜑(𝐵±) = Γ(𝐴±). [Note that when a [
0 1
0 0] block

appears on the diagonal of 𝐴± due to two sheets of 𝑒1𝛽 meeting at a cusp above 𝑒
0
±, since Γ(1) = 0

(any derivation has this property), the appropriate [0 0
0 0] block will appear in Γ(𝐴±).] □

4.4 Immersed DGAmaps from cobordisms via the cellular DGA

Our aim is to now define a cellular version of the immersed LCH functor 𝐹 ∶ 𝔏𝔢𝔤
𝜌

𝑖𝑚
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
from Corollary 2.13. Recall that the domain category for 𝐹 has 𝜌-graded Legendrians in 𝐽1𝑀

equipped with regular metrics as objects and has (conical Legendrian isotopy classes of) coni-
cal Legendrian cobordisms in 𝐽1(ℝ>0 × 𝑀) (equivalently, good immersed Lagrangian cobordisms
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in 𝑆𝑦𝑚𝑝(𝐽1𝑀)) as morphisms. For the cellular construction we instead work with a category of
compact cobordisms.
With 𝑀 = ℝ or 𝑆1 and 𝜌 ⩾ 0 fixed, define a cellular Legendrian cobordism category,

denoted as 𝔏𝔢𝔤𝜌
𝑐𝑒𝑙𝑙
, whose objects are triples (Λ,  , 𝜇) consisting of a 1-dimensional Legendrian

link, Λ ⊂ 𝐽1𝑀, together with a choice,  , of compatible polygonal decomposition, and a choice,
𝜇, of ℤ∕𝜌-valued Maslov potential. Morphisms from (Λ0, 0, 𝜇0) to (Λ1, 1, 𝜇1) are equivalence
classes of compact Legendrian cobordisms Σ ⊂ 𝐽1([0, 1] × 𝑀) from Λ− to Λ+ having generic base
and front projection and equippedwith aℤ∕𝜌-valuedMaslov potential extending 𝜇0 and 𝜇1. Here,
two cobordisms are considered equivalent if their front and base projections are combinatorially
equivalent. That is, Σ and Σ′ are equivalent if there is a homeomorphism 𝜙 ∶ ([0, 1] × 𝑀) × ℝ →

([0, 1] × 𝑀) × ℝ with 𝜙(𝜋𝑥𝑧(Σ)) = 𝜙(𝜋𝑥𝑧(Σ
′)) that is a composition of (i) a homeomorphism, 𝜙1,

of the [0, 1] × 𝑀 factor, and (ii) a homeomorphism, 𝜙2, that preserves the [0, 1] × 𝑀 factor. More-
over, 𝜙1 and 𝜙2 should be isotopic to the identity and equal to the identity in a neighborhood of
the boundary.

Remark 4.6.

(1) As with the category 𝔏𝔢𝔤𝜌
𝑖𝑚
, in the definition of morphisms Σ is not equipped with any addi-

tional structure beyond a choice of Maslov potential, for example, Σ is not equipped with a
polygonal decomposition.

(2) In contrast to 𝔏𝔢𝔤𝜌
𝑖𝑚
, we do NOT allow general Legendrian isotopies of Σ in the equivalence

relation used to define morphisms. This is because from the initial definition of our cellu-
lar LCH functor we will not check directly that the assignment of immersed DGA maps to
Legendrian cobordisms factors through general Legendrian isotopies. However, it will later
be established in Corollary 4.11 that the induced immersed DGA maps (considered up to
immersed homotopy) are indeed Legendrian invariants of Σ.

The next proposition defines the cellular LCH functor, 𝐹𝑐𝑒𝑙𝑙.

Proposition 4.7. There is a well-defined contravariant functor 𝐹𝑐𝑒𝑙𝑙 ∶ 𝔏𝔢𝔤
𝜌

𝑐𝑒𝑙𝑙
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
given by

(Λ, ) ⇝ 𝑐𝑒𝑙𝑙(Λ, ),

Σ ∶ (Λ0, 0) → (Λ1, 1) ⇝

[
𝑐𝑒𝑙𝑙(Λ1, 1)

𝑖1
→ 𝑐𝑒𝑙𝑙(Σ, 

′)
𝑖0
↩ 𝑐𝑒𝑙𝑙(Λ0, 0)

]
,

where  ′ is any choice of compatible polygonal decomposition for Σ that restricts to 𝑘 on {𝑘} × 𝑀,
𝑘 = 0, 1, and the maps 𝑖0 and 𝑖1 are as in (4.2).

Proof. To see that𝐹𝑐𝑒𝑙𝑙 iswell defined, it is enough to verify independence of the choice of ′. (Since
modifying (Σ,  ′) in a manner that preserves the combinatorics of the front and base projections
does not affect the cellular DGA.)
In [33, Section 4.2-4.4], it is shown in the case when Σ is a closed surface that any compatible

polygonal decompositions  ′ and  ′′ for Σ can be made the same after some sequence of the
following modifications and their inverses (see [33] for the precise meanings).

(1) Subdivide a 1-cell.
(2) Subdivide a 2-cell.
(3) Delete a 1-valent edge.
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(4) Switch the 𝑆 and 𝑇 decorations at a swallowtail point.

The proof extends with minor adjustments to the case of a compact cobordism. Moreover, if  ′

and  ′′ agree above 𝜕([0, 1] × 𝑀), then the polygonal decomposition of 𝜕([0, 1] × 𝑀) can be left
unchanged throughout the sequence of modifications. [To see this, follow the proof of [33, The-
orem 4.1], but treat all 0-cells (respectively, 1-cells) in 𝜕([0, 1] × 𝑀) as if they belong to what is
notated there as Σ2 (respectively, Σ1).]
If  ′ and  ′′ are related by one of the modifications (1)–(4), then [33, Theorems 4.2–4.5] pro-

vide stable tame isomorphisms 𝜑 ∶ 𝑐𝑒𝑙𝑙(Σ, 
′) ∗ 𝑆′ → 𝑐𝑒𝑙𝑙(Σ, 

′′) ∗ 𝑆′′. Moreover, in all cases 𝜑
can be seen to restrict to the identity on the sub-algebras 𝑐𝑒𝑙𝑙(Λ𝑘, 𝑘), 𝑘 = 0, 1. [For (1)–(3), 𝜑
is defined using the construction of Proposition 2.1, and generators from 𝑐𝑒𝑙𝑙(Λ𝑘, 𝑘) are never
among the generators that are canceled. For (4),𝜑 is the identity on all generators except for 1-cells
with endpoints at swallowtail points.] Thus, we will have identities 𝜑 ◦ 𝑖𝑘 = 𝑖𝑘, 𝑘 = 0, 1, so that 𝜑
provides the required immersed DGA homotopy.
To verify that 𝐹𝑐𝑒𝑙𝑙 preserves composition, suppose that  ′ and  ′′ are compatible polygo-

nal decompositions for a pair of composable (compact) cobordisms, Σ′ ∶ (Λ0, 0) → (Λ1, 1) and
Σ′′ ∶ (Λ0, 0) → (Λ1, 1). Since  ′ and  ′′ agree with 1 along Λ1, they can be glued to form
a well-defined compatible polygonal decomposition,  ′ ∪  ′′, on Σ′′ ◦Σ′. Moreover, when this
decomposition is used for computing, it is readily verified fromDefinition 2.4 that 𝐹𝑐𝑒𝑙𝑙(Σ′′ ◦Σ′) =
𝐹𝑐𝑒𝑙𝑙(Σ

′) ◦𝐹𝑐𝑒𝑙𝑙(Σ
′′).

Finally, we check that 𝐹𝑐𝑒𝑙𝑙 preserves identities. The identity morphism in
𝐻𝑜𝑚𝔏𝔢𝔤

𝜌

𝑐𝑒𝑙𝑙
((Λ, ), (Λ, )) is the product cobordism, Σ = 𝑗1(1[0,1] ⋅ Λ), and for computing

𝐹𝑐𝑒𝑙𝑙(Σ) we equip it with the product decomposition,  ′. The computation from Proposition 4.5
shows that the morphism 𝐹𝑐𝑒𝑙𝑙(Σ) is the immersed homotopy class of the immersed DGA map

𝐷 =

(
(Λ, )

𝑖1
→ (0 ∗ ̂0 ∗ 1, 𝜕Γ)

𝑖0
↩ (Λ, )

)
,

where0 and1 are two copies of(Λ, ) and (0 ∗ ̂0 ∗ 1, 𝜕Γ) is the standardmapping cylin-
der DGA for the identity map on(Λ, ). On the other hand, the identity morphism in𝔇𝔊𝔄

𝜌

𝑖𝑚
is just [𝐼] where 𝐼 is the immersed DGA map

𝐼 =

(
(Λ, )

𝑖𝑑
→ (Λ, )

𝑖𝑑
← (Λ, )

)
.

Note that the immersed map 𝐷 is obtained from two copies of 𝐼 precisely as in the statement of
Proposition 2.5, which therefore shows that𝐷 is immersed homotopic to 𝐼 ◦ 𝐼 = 𝐼 as required. □

4.5 Isomorphism between the cellular and immersed LCH functors

In this section, we state a precise relationship between the immersed and cellular LCH functors,
𝐹 and 𝐹𝑐𝑒𝑙𝑙.
The functors 𝐹 ∶ 𝔏𝔢𝔤

𝜌

𝑖𝑚
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
and 𝐹𝑐𝑒𝑙𝑙 ∶ 𝔏𝔢𝔤

𝜌

𝑐𝑒𝑙𝑙
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
have slightly different

domain categories. In 𝔏𝔢𝔤
𝜌

𝑖𝑚
(respectively, 𝔏𝔢𝔤𝜌

𝑐𝑒𝑙𝑙
), the objects are (closed, 1-dimensional)

𝜌-graded Legendrians in 𝐽1𝑀 equipped with a suitable choice of metric (respectively, polygo-
nal decomposition), while morphisms are equivalence classes of conical (respectively, compact)
𝜌-graded Legendrian cobordisms. For comparing the two functors, it is convenient to work with
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a third domain category whose objects again are 1-dimensional Legendrians equipped with some
additional data: an admissible transverse decomposition, ⋔. The role of ⋔ is to simultaneously
specify a compatible polygonal decomposition of Λ, ||, and a modification of Λ by a Legen-
drian isotopy to Λ̃ so that the cellular DGA of (Λ, ||) and the LCH DGA of Λ̃ are related by a
canonical homotopy equivalence (in fact, a stable tame isomorphism). This is precisely the role
of the transverse square decompositions from [34, Section 3] in the case of closed 2-dimensional
Legendrians.

Definition 4.8. With 𝜌 ∈ ℤ⩾0 and 1-dimensional 𝑀 fixed, define the transverse Legendrian
category, 𝔏𝔢𝔤𝜌⋔, to have objects (Λ, ⋔, 𝜇) where Λ ⊂ 𝐽1𝑀 is Legendrian, 𝜇 is a ℤ∕𝜌-valued
Maslov potential, and ⋔ is an admissible transverse decomposition for Λ as defined in [30,
Appendix A, Definition A.1]. Morphisms are compact 𝜌-graded Legendrian cobordisms up to
combinatorial equivalence of front and base projections (as in Section 4.4).

An admissible transverse decomposition of Λ is a cellular decomposition of a neighborhood
of the base projection, 𝜋𝑥(Λ) ⊂ 𝑀, that has cells transverse to the projection of the singular set
of 𝜋𝑥𝑧(Λ) and is subject to some technical restrictions that are useful for the detailed proof of
Proposition 4.9 but are not relevant when applying the proposition. For use of Proposition 4.9
in the remainder of the article, it will be sufficient to note that any 1-dimensional Legendrian
Λ ⊂ 𝐽1𝑀 with generic front and base projections admits an admissible transverse decomposition.
In [30, Appendix A], two functors are constructed

𝐺𝑠𝑡𝑑 ∶ 𝔏𝔢𝔤
𝜌
⋔ → 𝔏𝔢𝔤

𝜌

𝑖𝑚
, and 𝐺|| ∶ 𝔏𝔢𝔤𝜌⋔ → 𝔏𝔢𝔤

𝜌

𝑐𝑒𝑙𝑙
,

(Λ, ⋔) ↦ (Λ̃, g̃) (Λ, ⋔) ↦ (Λ, ||)
where Λ̃, called the standard geometric model for Λ with respect to ⋔, is Legendrian isotopic
to Λ with front and base projections combinatorially equivalent to those of Λ. The actions on
morphisms are as follows:

∙ Themorphism spaces in𝔏𝔢𝔤𝜌⋔ and𝔏𝔢𝔤
𝜌

𝑐𝑒𝑙𝑙
only depend onΛ and are the same in both categories,

and 𝐺|| acts as the identity on morphisms.
∙ Given a compact cobordism Σ fromΛ0 toΛ1, we can choose any conical Legendrian cobordism
Σ′ ⊂ 𝐽1(ℝ>0 × 𝑀) from 𝐺𝑠𝑡𝑑(Λ0) to 𝐺𝑠𝑡𝑑(Λ1) whose front and base projections are combinato-
rially equivalent to Σ (after truncating the conical ends). The conical Legendrian isotopy type
of Σ′ depends only on Σ, and we have 𝐺𝑠𝑡𝑑([Σ]) = [Σ′].

The standard geometric model, 𝐺𝑠𝑡𝑑(Λ, ⋔) = (Λ̃, g̃), is constructed so that the Reeb chords of
Λ̃ closely match the generators of the cellular DGA,(Λ, ||). In fact,(Λ̃, g̃) is isomorphic to a
stabilization of(Λ, ||), and an explicitly defined homotopy equivalence

𝑞Λ ∶ (Λ̃, g̃) → (Λ, ||)
that we call the canonical quotient map is identified in [30, Section A.4]. As 𝑞Λ is invertible in
the DGA homotopy category𝔇𝔊𝔄

𝜌

ℎ𝑜𝑚
, it follows that the immersed map

𝑄Λ =

[
(Λ̃, g̃)

𝑞Λ
→ (Λ, ||) 𝑖𝑑

↩ (Λ, ||)
]
∈ 𝔇𝔊𝔄

𝜌

𝑖𝑚

(which is the image of 𝑞Λ under the functor from Proposition 2.7) is an isomorphism in𝔇𝔊𝔄
𝜌

𝑖𝑚
.
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Proposition 4.9. The canonical quotient map construction,

(Λ, ⋔) ∈ 𝔏𝔢𝔤
𝜌
⋔ ↦ 𝑄Λ ∈ 𝐻𝑜𝑚𝔇𝔊𝔄

𝜌
𝑖𝑚
((Λ̃, g̃),(Λ, ||))

gives an isomorphism (invertible natural transformation) from the functor that is the composition

𝔏𝔢𝔤
𝜌
⋔

𝐺𝑠𝑡𝑑
→ 𝔏𝔢𝔤

𝜌

𝑖𝑚

𝐹
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚

to the functor

𝔏𝔢𝔤
𝜌
⋔

𝐺||
→ 𝔏𝔢𝔤

𝜌

𝑐𝑒𝑙𝑙

𝐹𝑐𝑒𝑙𝑙
→ 𝔇𝔊𝔄

𝜌

𝑖𝑚
.

That is, the 𝑄Λ are invertible, and for any compact Legendrian cobordism Σ ∶ (Λ−, 
⋔
−) → (Λ+, 

⋔
+)

with generic base and front projection we have a commutative diagram in𝔇𝔊𝔄
𝜌

𝑖𝑚
,

(4.5)

In summary, the following diagram is commutative up to a canonical isomorphismof functors:

A detailed proof of Proposition 4.9 is presented over the course of [30, Appendices A and B].
It is an extension of the isomorphism from [34, 35] for closed surfaces, and we provide here a
summary of the key points.

Sketch of Proof. The technical requirements in the definition of admissible transverse decom-
position are designed so that, with arbitrary (Λ−, 

⋔
−), (Λ+, 

⋔
+) ∈ 𝔏𝔢𝔤

𝜌
⋔ fixed, for any (compact)

Σ ∶ Λ− → Λ+ the construction of [34, Section 3] for closed surfaces generalizes to produce a trans-
verse square decomposition,⋔

Σ
, that in a closed collar neighborhood of 𝜕Σ = Λ− ∪ Λ+ agreeswith

the product of ⋔
− and ⋔

+ with the standard CW decomposition of a closed interval. Applying
the square-by-square coordinate construction from [35] using ⋔

Σ
produces an initial geometric

model for Σ, (Σ, g). The restriction of (Σ, g) to the negative boundary only depends on (Λ−, 
⋔
−),

and this restriction is the definition of 𝐺𝑠𝑡𝑑(Λ−, 
⋔
−) = (Λ̃−, g̃−). Similarly, 𝐺𝑠𝑡𝑑(Λ+, 

⋔
+) is the

positive boundary of (Σ, g). In addition, [34, Section 3] constructs from ⋔
Σ
a compatible decom-

position 
||
Σ
whose restriction to the boundary is independent of Σ and matches the 

||
± that

appear in 𝐺||(Λ±, 
⋔
±) = (Λ±, 

||
±). A technical point is that for computing the immersed DGA

map 𝐹 ◦𝐺𝑠𝑡𝑑(Σ) = [(Λ̃+, g̃+) → (Σ̃, g̃) ↩ (Λ̃+, g̃+)] we need to pick a specific (Σ̃, g̃) that is
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a conical version of Σ. This is done [30, Appendix B] by carefully modifying (Σ, g) in the collar
neighborhood of the boundary to be a Morse minimum cobordism and then applying the Con-
struction 2.14. As verified in [30, Appendix B], the square-by-square computation of LCH from
[34] still applies to produce an explicit stable tame isomorphism relating (Σ̃, g̃) and (Σ, 

||
Σ
).

Moreover, [30, Appendix A.6] uses this stable tame isomorphism to verify the commutativity of
(4.5). □

Remark 4.10. An arbitrary Legendrian Λ ⊂ 𝐽1𝑀 is related to one in the image of 𝐺𝑠𝑡𝑑 by a Leg-
endrian isotopy (which preserves the combinatorial appearance of the front projection). Thus
Proposition 4.9 allows the cellular DGA to be used for computing immersed maps 𝐹(Σ) induced
by a conical Legendrian cobordism Σ ∶ Λ− → Λ+ after possibly changing the Legendrians at the
ends from Λ± to Λ′

± by Legendrian isotopy. Composing Σ with cobordisms Σ+ ∶ Λ+ → Λ′
+ and

Σ− ∶ Λ′
− → Λ− induced by the isotopiesmodifiesΣ to a cobordismΣ′ ∶ Λ′

− → Λ′
+ towhich the cel-

lular computation of Proposition 4.9 can be applied directly. Moreover, if one wants to work with
the original Λ±, then the maps 𝐹(Σ−) and 𝐹(Σ+) can be explicitly computed as in [16, Section 6].

The following corollary of Proposition 4.9 shows that the immersed DGA maps associated to
a compact cobordism Σ by the cellular functor, 𝐹𝑐𝑒𝑙𝑙, only depend on the Legendrian isotopy
type of Σ.

Corollary 4.11. Given (Λ0, 0), (Λ1, 1) ∈ 𝔏𝔢𝔤
𝜌

𝑐𝑒𝑙𝑙
and compact cobordisms Σ and Σ′. If Σ and Σ′

are Legendrian isotopic rel. boundary, then 𝐹𝑐𝑒𝑙𝑙(Σ) = 𝐹𝑐𝑒𝑙𝑙(Σ
′) in𝔇𝔊𝔄

𝜌

𝑖𝑚
.

Proof.

Case 1. Suppose (Λ𝑘, 𝑘) = 𝐺||(Λ𝑘, 
⋔
𝑘
) for some admissible transverse decompositions ⋔

𝑘
forΛ𝑘,

𝑘 = 0, 1.
In this case, Proposition 4.9 allows us to compute in𝔇𝔊𝔄

𝜌

𝑖𝑚
,

𝐹𝑐𝑒𝑙𝑙(Σ) = 𝑄Λ1
◦𝐹(𝐺𝑠𝑡𝑑(Σ)) ◦𝑄

−1
Λ0

= 𝑄Λ1
◦𝐹(𝐺𝑠𝑡𝑑(Σ

′)) ◦𝑄−1
Λ0

= 𝐹𝑐𝑒𝑙𝑙(Σ
′).

[At the second equality we used that 𝐹(𝐺𝑠𝑡𝑑(Σ)) only depends on the conical Legendrian
isotopy type of 𝐺𝑠𝑡𝑑(Σ).]

Case 2. For general 0 and 1.

In this case, fix some choice of admissible transverse decompositions ⋔
𝑘

for Λ𝑘,
𝑘 = 0, 1. Let 𝐼𝑘 denote the product cobordism 𝑗1(1[0,1] ⋅ Λ𝑘) viewed as a morphism in
𝐻𝑜𝑚𝔏𝔢𝔤

𝜌

𝑐𝑒𝑙𝑙
((Λ𝑘, 𝑘), (Λ𝑘, 𝐺||(⋔

𝑘
)), and let Σ⋔ and Σ′⋔ denote Σ and Σ′ viewed as morphisms in

𝐻𝑜𝑚𝔏𝔢𝔤
𝜌

𝑐𝑒𝑙𝑙
((Λ0, 𝐺||(⋔

0
)), (Λ1, 𝐺||(⋔

1
)). Using Case 1, we compute

𝐹𝑐𝑒𝑙𝑙(Σ) = 𝐹𝑐𝑒𝑙𝑙(𝐼
−1
1 ◦Σ⋔ ◦ 𝐼0) = 𝐹𝑐𝑒𝑙𝑙(𝐼

−1
1 ) ◦𝐹𝑐𝑒𝑙𝑙(Σ⋔) ◦𝐹𝑐𝑒𝑙𝑙(𝐼0)

= 𝐹𝑐𝑒𝑙𝑙(𝐼
−1
1 ) ◦𝐹𝑐𝑒𝑙𝑙(Σ

′
⋔) ◦𝐹𝑐𝑒𝑙𝑙(𝐼0) = 𝐹𝑐𝑒𝑙𝑙(Σ

′). □

As in Section 3.1, given an immersed DGA map 𝑀 = (1

𝑓
→ 

𝑖
↩ 2) we write 𝐼(𝑀) =

𝐼𝑚(𝑖∗ × 𝑓∗) ⊂ 𝐴𝑢𝑔𝜌(1)∕∼ × 𝐴𝑢𝑔𝜌(2)∕∼ for the induced augmentation set of𝑀. According to
Proposition 3.2, 𝐼(𝑀) only depends on the immersed homotopy class of𝑀.
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Corollary 4.12. Let Σ ⊂ 𝐽1([0, 1] × 𝑀) be a compact Legendrian cobordism from Λ0 to Λ1. Let
⋔
𝑘
be an admissible transverse decomposition for Λ𝑘 , 𝑘 = 0, 1, and write 𝐺𝑠𝑡𝑑(Λ𝑘, 

⋔
𝑘
) = (Λ̃𝑘, g̃𝑘)

and 𝐺||(Λ𝑘, 
⋔
𝑘
) = (Λ𝑘, 

||
𝑘
). Then, the induced augmentation sets 𝐼Σ ∶= 𝐼(𝐹(𝐺𝑠𝑡𝑑(Σ))) and 𝐼𝑐𝑒𝑙𝑙Σ

∶=

𝐼(𝐹𝑐𝑒𝑙𝑙(𝐺||(Σ))) are related by
(𝑞∗Λ0

× 𝑞∗Λ1
)
(
𝐼𝑐𝑒𝑙𝑙Σ

)
= 𝐼Σ, (4.6)

where

𝑞∗Λ0
× 𝑞∗Λ1

∶ 𝐴𝑢𝑔𝜌(Λ0, 
||
0
)∕∼ × 𝐴𝑢𝑔𝜌(Λ1, 

||
1
)∕∼

≅
→ 𝐴𝑢𝑔𝜌(Λ̃0, g̃0)∕∼ × 𝐴𝑢𝑔𝜌(Λ̃1, g̃1)∕∼

is the bijection induced by the canonical quotient maps, 𝑞Λ𝑘
∶ (Λ̃𝑘, g̃𝑘) → (Λ𝑘, 

||
𝑘
).

Proof. Applying the functor from Proposition 3.6 to (4.5) produces the diagram of relations

(4.7)

As noted in 3.1.1, the induced augmentation sets associated to 𝑄Λ𝑘
are just the graphs of 𝑞∗

Λ𝑘
, so

Observation 3.5 (2) and (3) can be applied to arrive at (4.6). □

5 COMPUTATIONS VIAMORSE COMPLEX FAMILIES

With Corollary 4.12 we have seen that for a compact Legendrian cobordism, Σ, the two versions of
the induced augmentation sets, 𝐼𝑐𝑒𝑙𝑙

Σ
and 𝐼Σ, defined via the cellular and ordinary versions of the

LCH functor, 𝐹𝑐𝑒𝑙𝑙 and 𝐹, are equivalent invariants of Σ (in a canonical way). In this section, we
focus on obtainingmethods for computing 𝐼𝑐𝑒𝑙𝑙

Σ
based on an extension of correspondences between

augmentations andMCFs, cf. [23, 25, 36], to the case of 2-dimensional Legendrian cobordisms. In
Section 5.1, we review the definition of MCFs and include the present context of 2-dimensional
Legendrian cobordisms. In Section 5.2, we make use of a bijection between the set of equivalence
classes ofMCFs andDGAhomotopy classes of augmentions of the cellularDGA for 1-dimensional
Legendrians to establish a characterization of induced augmentation sets in terms of MCFs; see
Proposition 5.9. The section concludes in Section 5.3 with a discussion of𝐴-formMCFs, as defined
by Henry [23], which are particularly convenient for computing induced augmentation sets in
explicit examples.

5.1 Morse complex families

We now review the definition of MCFs for Legendrian knots and surfaces, as in [23, 36], allowing
for the case of Legendrian cobordisms.
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5.1.1 The 1-dimensional case

Let (Λ, 𝜇) ⊂ 𝐽1𝑀 be a 1-dimensional 𝜌-graded Legendrian knot. Recall that we use the respective
notations 𝜋𝑥 ∶ 𝐽1𝑀 → 𝑀 and 𝜋𝑥𝑧 ∶ 𝐽1𝑀 → 𝑀 × ℝ for the base and front projections.

Definition 5.1. A 𝜌-graded MCF for (Λ, 𝜇) is a pair  = (𝐻, {𝑑𝜈}) consisting of the following
items.

(1) A handleslide set 𝐻 which is a finite collection of points in 𝑀 such that each 𝑝 ∈ 𝐻 is
equipped with lifts 𝑢(𝑝), 𝑙(𝑝) ∈ Λ not belonging to cusp edges and satisfying 𝜋𝑥(𝑢(𝑝)) =

𝜋𝑥(𝑙(𝑝)) = 𝑝, 𝑧(𝑢(𝑝)) > 𝑧(𝑙(𝑝)), and 𝜇(𝑢(𝑝)) = 𝜇(𝑙(𝑝)). We refer to 𝑝 ∈ 𝐻 as a (formal)
handleslide of  with upper and lower endpoints at 𝑢(𝑝) and 𝑙(𝑝).

Denote by Λ𝑠𝑖𝑛𝑔 the base projection of the singular set of 𝜋𝑥𝑧(Λ) (crossings and cusps), and let
{𝑅𝜈} be the collection of path components of𝑀 ⧵ (𝐻 ∪ Λ𝑠𝑖𝑛𝑔). Note that above each 𝑅𝜈, the sheets
of Λ are totally ordered by their 𝑧-coordinates, so they can be enumerated as

𝑆𝜈1 , … , 𝑆𝜈𝑛𝜈
with 𝑧(𝑆𝜈1) > ⋯ > 𝑧(𝑆𝜈𝑛𝜈

).

We then haveℤ∕𝜌-graded vector spaces𝑉(𝑅𝜈) = Spanℤ∕2{𝑆𝜈𝑖 }where the grading is via theMaslov
potential |𝑆𝜈

𝑖
| = 𝜇(𝑆𝜈

𝑖
). We will sometimes omit the superscript 𝜈 in the notation for sheets.

(2) The second piece of information defining an MCF is a collection of strictly upper triangular
differentials {𝑑𝜈} of degree +1 mod 𝜌 making each (𝑉(𝑅𝜈), 𝑑𝜈) into a ℤ∕𝜌-graded cochain
complex. Here, the strictly upper triangular condition is that the matrix coefficient ⟨𝑑𝜈𝑆𝜈𝑞, 𝑆𝜈𝑝⟩
is 0 unless 𝑧(𝑆𝜈𝑝) > 𝑧(𝑆𝜈𝑞).

Moreover,𝐻 and {𝑑𝜈} are required to satisfy the following Axiom 5.2.

Axiom 5.2. Let 𝑅0 and 𝑅1 be connected components of 𝜋𝑥(Λ) ⧵ (𝐻 ∪ Λ𝑠𝑖𝑛𝑔) that border each other
at a point 𝑝 ∈ 𝐻 ∪ Λ𝑠𝑖𝑛𝑔.

(1) If 𝑝 ∈ 𝐻 is a handleslide with upper endpoint 𝑢(𝑝) ∈ 𝑆𝑢 and 𝑙(𝑝) ∈ 𝑆𝑙 , then the handleslide
map

ℎ𝑢,𝑙(𝑆𝑖) =

{
𝑆𝑖, 𝑖 ≠ 𝑙,

𝑆𝑢 + 𝑆𝑙, 𝑖 = 𝑙,

gives a chain isomorphism ℎ𝑢,𝑙 ∶ (𝑉(𝑅0), 𝑑0)
≅
→ (𝑉(𝑅1), 𝑑1).

(2) If 𝑝 is the base projection of a crossing between sheets 𝑆𝑘 and 𝑆𝑘+1, then the permutation map

𝑄(𝑆𝑘) = 𝑆𝑘+1, 𝑄(𝑆𝑘+1) = 𝑆𝑘, 𝑄(𝑆𝑖) = 𝑆𝑖, 𝑖 ∉ {𝑘, 𝑘 + 1}

is a chain isomorphism, 𝑄 ∶ (𝑉(𝑅0), 𝑑0)
≅
→ (𝑉(𝑅1), 𝑑1).

(3) Suppose that 𝑝 is a cusp point such that the two sheets of the cusp, 𝑆1
𝑘
and 𝑆1

𝑘+1
, exist above 𝑅1

but not above 𝑅0. Then, identifying sheets of 𝑅0 and 𝑅1 whose closures intersect at 𝑝 gives an
inclusion 𝜄 ∶ 𝑉(𝑅0) ↪ 𝑉(𝑅1) with

𝑉(𝑅1) = 𝜄(𝑉(𝑅0)) ⊕ 𝑉𝑐𝑢𝑠𝑝, 𝑉𝑐𝑢𝑠𝑝 = Spanℤ∕2{𝑆1𝑘, 𝑆
1
𝑘+1

}.
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We require that 𝜄 ◦𝑑0 = 𝑑1 ◦ 𝜄 and𝑑1𝑆1𝑘+1 = 𝑆1
𝑘
, that is, as a complex (𝑉(𝑅1), 𝑑1) is the split exten-

sion of (𝑉(𝑅0), 𝑑0) by (𝑉𝑐𝑢𝑠𝑝, 𝑑
′) where 𝑑′ maps the lower sheet of the cusp to the upper sheet of

the cusp.

Remark 5.3.

(1) The requirement in Axiom 5.2 (3) used here is stronger than in some other versions of the
definition, for example, in [23–25]. In the terminology of [23], with our definition we only
consider MCFs with ‘simple births and deaths’. The collection of equivalence classes of MCFs
is not affected by making this restriction; see [23, Proposition 3.17].

(2) If Λ ⊂ 𝐽1ℝ, then the collection of differentials {𝑑𝜈} is uniquely determined by Λ and𝐻, since
one can work from left to right and apply Axiom 5.2 to determine the {𝑑𝜈} inductively. How-
ever, it should be noted that not every handleslide set 𝐻 for Λ will produce an MCF. For
example, consider the case when 𝑅0 and 𝑅1 are separated by a crossing point, and 𝑑0 has
already been determined. If ⟨𝑑0𝑆𝑘+1, 𝑆𝑘⟩ ≠ 0, then the differential 𝑑1 = 𝑄 ◦𝑑0 ◦𝑄

−1 required
by Axiom 5.2 (2) will not be strictly upper triangular.

In figures, we picture handleslides as vertical segments connecting 𝑢(𝑝) and 𝑙(𝑝) on the front
projection ofΛ. When convenient, differentials 𝑑𝜈 may be indicated above 𝑅𝜈 by drawing a dotted
arrow from 𝑆𝑖 to 𝑆𝑗 whenever ⟨𝑑𝜈𝑆𝑗, 𝑆𝑖⟩ = 1. See, for example, Figures 5 and 9 below.

5.1.2 The 2-dimensional case

Consider a 2-dimensional 𝜌-graded compact Legendrian surface, (Σ, 𝜇) ⊂ 𝐽1𝑀 where dim𝑀 = 2.
We allow for 𝜕𝑀 ≠ ∅, but in this case require that Σ is properly embedded, for example, Σ could
be a compact Legendrian cobordism in 𝐽1([0, 1] × ℝ) or 𝐽1([0, 1] × 𝑆1). We again use the notation
Σ𝑠𝑖𝑛𝑔 ⊂ 𝑀 for the base projection of the singular set of 𝜋𝑥𝑧(Σ) (which now includes crossings,
cusps, and swallowtail points).

Definition 5.4. A 𝜌-graded MCF for Σ is a triple (𝐻0,𝐻−1, {𝑑𝜈}) consisting of following.

(1) A set of super-handleslide points, 𝐻−1 ⊂ 𝐼𝑛𝑡(𝑀) ⧵ Σ𝑠𝑖𝑛𝑔, equipped with upper and lower
endpoint lifts to Σ satisfying 𝜇(𝑢(𝑝)) = 𝜇(𝑙(𝑝)) − 1 for all 𝑝 ∈ 𝐻−1.

(2) A collection of handleslide arcs which is an immersion 𝐻0 ∶ 𝑋 → 𝑀 of a compact 1-
manifold, transverse to 𝜕𝑀. Aside from the exceptions at boundary points specified in Axiom
5.5 below, we require that 𝐻0 is transverse to 𝐻0 ∪ Σ𝑠𝑖𝑛𝑔 and that the only self-intersections
are at transverse double points in 𝐼𝑛𝑡(𝑀). In addition,𝐻0 should be equipped with upper and
lower endpoint lifts defined on the interior of 𝑋

𝑢, 𝑙 ∶ 𝐼𝑛𝑡(𝑋) → Σ, 𝜋𝑥 ◦𝑢 = 𝜋𝑥 ◦ 𝑙 = 𝐻0,

satisfying

𝑢(𝑠) > 𝑙(𝑠) and 𝜇(𝑢(𝑠)) = 𝜇(𝑙(𝑠)) ∀𝑠 ∈ 𝐼𝑛𝑡(𝑋).

Endpoints of handleslide arcs must satisfy Axiom 5.5 below.
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F IGURE 5 The three possible endpoints for handleslide arcs specified by Axiom 5.5 (1)–(3). The left column
depicts the base projection (to𝑀) of𝐻0 (in red),𝐻−1 (a green star), and Σ𝑠𝑖𝑛𝑔, (in blue). The center and right
columns depict slices of the front projection, 𝜋𝑥𝑧(Σ), at 𝑥2 = 𝑎 and 𝑥2 = 𝑏 with dotted black arrows from 𝑆𝑖 to 𝑆𝑗
used to indicate when ⟨𝑑𝑆𝑗, 𝑆𝑖⟩ = 1. In (3), a downward swallowtail point is pictured.

(3) A collection of differentials {𝑑𝜈} of degree +1 mod 𝜌 making each (𝑉(𝑅𝜈), 𝑑𝜈) into a ℤ∕𝜌-
graded cochain complex where {𝑅𝜈} is the collection of path components of 𝑀 ⧵ (𝐻−1 ∪

𝐻0(𝑋) ∪ Σ𝑠𝑖𝑛𝑔). Note that𝐻−1 ∪ 𝐻0(𝑋) ∪ Σ𝑠𝑖𝑛𝑔 is a stratified subset of𝑀 whose 1-dimensional
strata are handleslide arcs, crossing arcs, and cusp arcs. For each such 1-dimensional stratum,
we require that the complexes (𝑉(𝑅0), 𝑑0) and (𝑉(𝑅1), 𝑑1) that appear adjacent to the stratum
are related as in Axiom 5.2 (1)–(3).

Before stating Axiom 5.5 we introduce some convenient terminology. Above 𝑀 ⧵ Σ𝑠𝑖𝑛𝑔 sheets
of Σ are locally labeled 𝑆1, … , 𝑆𝑛 with descending 𝑧-coordinate. We will refer to a handleslide arc
that has its upper and lower lift on sheets 𝑆𝑖 and 𝑆𝑗 as an (𝑖, 𝑗)-handleslide. We caution that this
terminology only applies locally since the labeling of upper and lower sheets of a handleslide arc
may changewhen the arc passes throughΣ𝑠𝑖𝑛𝑔.Weuse a similar terminology for super-handleslide
points.
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Axiom 5.5. Endpoints of handleslide arcs can occur at transverse intersections of 𝐻0 and 𝜕𝑀. All
other endpoints of handleslide arcs occurring in the interior of𝑀 are as specified in the following.

(1) Suppose that 𝑝 ∈ 𝑀 is a transverse double point for 𝐻0|𝐼𝑛𝑡(𝑋) where a (𝑢1, 𝑙1)-handleslide arc
crosses a (𝑢2, 𝑙2)-handleslide arc. If 𝑙1 = 𝑢2, then at 𝑝 there is a single endpoint of a (𝑢1, 𝑙2)-
handleslide arc.

(2) Let 𝑝 ∈ 𝐻0 be a (𝑢, 𝑙)-super-handleslide point, and fix some region 𝑅𝜈 bordering 𝑝.
∙ For every 𝑖 < 𝑢 such that ⟨𝑑𝜈𝑆𝑢, 𝑆𝑖⟩ = 1, there is a single (𝑖, 𝑙)-handleslide arcwith an endpoint
at 𝑝.

∙ For every 𝑙 < 𝑗 such that ⟨𝑑𝜈𝑆𝑗, 𝑆𝑙⟩ = 1, there is a single (𝑢, 𝑗)-handleslide arc with an
endpoint at 𝑝.

(3) Let 𝑝 ∈ Σ𝑠𝑖𝑛𝑔 be the base projection of an upward swallowtail point, that is, one where in the
front projection the crossing arc appears below the third sheet that that limits to the swallowtail
point. The two cusp arcs in Σ𝑠𝑖𝑛𝑔 that meet at 𝑝 divide a small neighborhood 𝑁 ⊂ 𝑀 of 𝑝 into
halfs𝑁− and𝑁+ above which Σ has (𝑛 − 2) or 𝑛 sheets, respectively. Let 𝑘 be such that above𝑁−

(respectively, above 𝑁+) the sheets that border the swallowtail point are numbered 𝑆𝑘 (respec-
tively, 𝑆𝑘 , 𝑆𝑘+1, 𝑆𝑘+2) with 𝑆𝑘+1 and 𝑆𝑘+2 meeting along the crossing arc, 𝑐, that ends at 𝑝 and
is contained in𝑁+. Let (𝑉(𝑅0), 𝑑0) be the complex associated to the region, 𝑅0, that borders 𝑝 on
the same side as𝑁−.
∙ There are two (𝑘 + 1, 𝑘 + 2)-handleslide arcs contained in 𝑁+ and ending at 𝑝, one on each
side of 𝑐.

∙ For each 𝑖 < 𝑘 such that ⟨𝑑0𝑆𝑘, 𝑆𝑖⟩ = 1 there is a (𝑖, 𝑘)-handle slide arc in 𝑁+ with endpoint
at 𝑝.

When 𝑝 is a downward swallowtail, the requirement is symmetric. The sheets 𝑆𝑘 in𝑁− (respec-
tively, 𝑆𝑘, 𝑆𝑘+1, 𝑆𝑘+2 in 𝑁+) correspond now to sheets 𝑆𝑙−2 in 𝑁− (respectively, 𝑆𝑙, 𝑆𝑙−1, 𝑆𝑙−2).
There are now two (𝑙 − 2, 𝑙 − 1)-handleslide arcs in 𝑁+ on opposite sides of 𝑐 with endpoints
at 𝑝, and for each 𝑙 − 2 < 𝑗 with ⟨𝑑0𝑆𝑗, 𝑆𝑙−2⟩ = 1 there is an (𝑙, 𝑗 + 2)-handleslide arc in 𝑁+

with endpoint at 𝑝.

The three types of endpoints for handleslide arcs are pictured in Figure 5.

Remark 5.6.

(1) In Axiom 5.5 (2), if the condition holds for some region 𝑅𝜈 bordering 𝑝, then it holds for every
region that borders 𝑝.

(2) In Axiom 5.5 (3), in a neighborhood of a swallowtail point 𝑝, assume that a differential 𝑑0 has
been assigned to the region 𝑅0 that borders 𝑝 in 𝑁−. Then, as long as handleslide arcs are
placed in𝑁+ as specified by the axiom, there is always a unique way to assign differentials to
regions in 𝑁+ to produce an MCF near 𝑝.

(3) See [36, Section 6.1] for a further discussion of constructions of MCFs.

Note that when Σ and𝑀 are 2-dimensional and have boundary, an MCF  for Σ restricts to an
MCF for the 1-dimensional Legendrian Σ|𝜕𝑀 ⊂ 𝐽1(𝜕𝑀).

Definition 5.7. Let0 and1 be twoMCFs for a 1-dimensional Legendrian knotΛ ⊂ 𝐽1𝑀.We say
that 0 and 1 are equivalent if there exists an MCF  for the product cobordism 𝑗1(1[0,1] ⋅ Λ) ⊂
𝐽1([0, 1] × 𝑀) such that |{0}×𝑀 = 0 and |{1}×𝑀 = 1.
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Remark 5.8. The statement of Definition 5.7 is slightly different from the definition of equiva-
lence in [23–25]. These earlier works did not consider MCFs for 2-dimensional Legendrians and
instead present a collection of elementary moves on 1-dimensional MCFs with two MCFs 0 and
1 declared to be equivalent if they can be related by a sequence of elementary moves. The two
versions of the definitions are equivalent, since the elementary moves simply describe the bifur-
cations that occur along the slices, |{𝑡}×𝑀 , of a generic 2-dimensional MCF  for 𝑗1(1[0,1] ⋅ Λ)
as 𝑡 increases from 0 to 1. For instance, as numbered in [24, Section 4.3], Move 1 corresponds to
passing a critical point of 𝑡 ◦𝐻0; Moves 2–6 correspond to a transverse self-intersection of𝐻0 with
Move 6 demonstrating the handleslide endpoints required by Axiom 5.5 (1); Moves 7, 8, and 10 are
transverse intersections of 𝐻0 with the base projection of a crossing arc of 𝑗1(1[0,1] ⋅ Λ); Moves 9
and 11 are transverse intersections of𝐻0 and the base projection of a cusp arc; and Move 15 corre-
sponds to passing a super-handleslide point. The Moves 12–14 do not occur in our case since we
only consider MCFs with ‘simple births and deaths’, and this does not affect the resulting equiv-
alence classes. Indeed, when two such MCFs with only ‘simple births and deaths’ are related by
a sequence of the Moves 1–15, possibly passing through some MCFs with non-simple births or
deaths, we can always arrive at an alternate sequence of moves avoiding non-simple cusps by
treating the implicit handleslides discussed in [24] as explicit handleslides located near a cusp.
See [23, Proposition 3.17].

5.2 MCFs and augmentations

The following proposition characterizes the (cellular) induced augmentation set of a compact
Legendrian cobordism (see Section 3.2 for the definition) in terms of MCFs.

Proposition 5.9.

(1) For any (Λ,  , 𝜇) with Λ ⊂ 𝐽1𝑀 and dimΛ = 1, there exists a canonical bijection

Φ̂ ∶ 𝑀𝐶𝐹𝜌(Λ)∕∼ → 𝐴𝑢𝑔𝜌(Λ, )∕∼

between equivalence classes of 𝜌-gradedMCFs for (Λ, 𝜇) andDGAhomotopy classes of 𝜌-graded
augmentations of the cellular DGA(Λ, ).

(2) Let Σ ⊂ 𝐽1([0, 1] × 𝑀) be a compact 𝜌-graded Legendrian cobordism from (Λ0, 𝜇0, 0) to
(Λ1, 𝜇1, 1). Using the canonical bijections Φ̂ ∶ 𝑀𝐶𝐹𝜌(Λ𝑖)∕∼

≅
→ 𝐴𝑢𝑔𝜌(Λ𝑖, 𝑖)∕∼, the induced

augmentation set

𝐼𝑐𝑒𝑙𝑙Σ ⊂ 𝐴𝑢𝑔𝜌(Λ0, 0)∕∼ × 𝐴𝑢𝑔𝜌(Λ1, 1)∕∼

viewed as a subset

𝐼𝑀𝐶𝐹
Σ ⊂ 𝑀𝐶𝐹𝜌(Λ0, 0)∕∼ ×𝑀𝐶𝐹𝜌(Λ1, 1)∕∼

satisfies

𝐼𝑀𝐶𝐹
Σ =

{
([|Λ0

], [|Λ1
]) || ∈ 𝑀𝐶𝐹𝜌(Σ)

}
.

A detailed proof of this, including review of the relevant parts of [36], appears in the preprint
version of this article; see [30, Proposition 5.17 and 5.19]. We provide here a sketch.



408 PAN and RUTHERFORD

F IGURE 6 The allowed locations for handleslides in an 𝐴-form MCF.

Sketch of proof. Both (1) and (2) are consequences of a straightforward extension of the correspon-
dences between MCFs and augmentations from [36, Propositions 5.5 and 6.4] for closed surfaces
to the case of 2-dimensional cobordisms. These results produce augmentations of(Λ, ) (which
are viewed in [36] asChainHomotopy Diagrams) fromMCFs that are suitably transverse to  (aka
niceMCFs), and vice versa.
In particular, in the 1-dimensional case we have a map Φ from nice MCFs to augmentations

of (Λ, ). That Φ induces a bijection Φ̂ as in (1) is seen from applying the MCF/augmentation
correspondences to the product cobordism 𝑗1(1[0,1] ⋅ Λ). Indeed, the above Proposition 4.5 shows
that two augmentations of(Λ, ) are homotopic if and only if they extend to an augmentation
of 𝑗1(1[0,1] ⋅ Λ), and this characterization matches the definition of equivalence for MCFs. The
second statement (2) follows since in the cobordism case the correspondences can be made to
commute with the restrictions to the boundary components. □

5.3 𝑨-formMCFs

FromProposition 5.9 andCorollary 4.11,we see that 𝐼𝑀𝐶𝐹
Σ

is invariant ofΣup to Legendrian isotopy
rel. 𝜕Σ. Moreover, 𝐼𝑀𝐶𝐹

Σ
is equivalent in a canonical way to both the cellular induced augmenta-

tion set 𝐼𝑐𝑒𝑙𝑙
Σ

and, via Corollary 4.12, to the induced augmentation set 𝐼Σ of the conical version of Σ,
𝐺𝑠𝑡𝑑(Σ). For computing 𝐼𝑀𝐶𝐹

Σ
in explicit examples, it is convenient to have an efficient character-

ization of the sets,𝑀𝐶𝐹𝜌(Λ)∕∼, not requiring the cellular DGA which often has a large number
of generators. For Legendrian links in 𝐽1ℝ, work of Henry [23, 25], which we now review, gives
an explicit bijection 𝑀𝐶𝐹𝜌(Λ)∕∼ ↔ 𝐴𝑢𝑔𝜌(Λ𝑟𝑒𝑠)∕∼ where Λ𝑟𝑒𝑠 is the Ng resolution of Λ. Recall
that the DGA (Λ𝑟𝑒𝑠) has generators in bijection with the crossings and right cusps of the front
projection of Λ; see [28, Section 2].

Definition 5.10 [23]. A 𝜌-graded MCF  for a Legendrian link Λ ⊂ 𝐽1ℝ is in 𝐴-form if its
handleslides occur only in the following locations.

(1) Handleslides connecting the two crossing strands appear immediately to the left of some subset
of the crossings of 𝜋𝑥𝑧(Λ).

(2) In the case 𝜌 = 1, handleslides connecting the two strands that meet at a right cusp appear
immediately to the left of some subset of the right cusps of 𝜋𝑥𝑧(Λ).

(3) Near a right cusp, any number of additional handleslides may appear connecting the upper
(respectively, lower) strand of the right cusp to a strand above (respectively, below) the right
cusp. These handleslides are located to the right of the handleslide from (2), if it exists.

See Figure 6.
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Remark 5.11. The definition appears slightly different from that found in [23, 25] as the han-
dleslides from (3) are implicit handleslides in these references; see Remarks 5.3 (1) and 5.8.
Moreover, an 𝐴-form MCS is uniquely determined by its handleslides of type (1) and (2), since
the handleslides of type (3) are determined by the form of the complexes (𝑅𝜈, 𝑑𝜈) near right cusps.

Given an 𝐴-form MCF, , for Λ ⊂ 𝐽1ℝ we can define an algebra homomorphism

𝜖 ∶ (Λ𝑟𝑒𝑠) → ℤ∕2,

where for each crossing or right cusp 𝑏𝑖 ∈ (Λ𝑟𝑒𝑠) we set 𝜖(𝑏𝑖) to be 1 (respectively, 0) if a han-
dleslide connecting the two strands of the crossing or cusp appears (respectively, does not appear)
to the left of 𝑏𝑖 .

Proposition 5.12 [23, 25]. For any Λ ⊂ 𝐽1ℝ, the correspondence  ↦ 𝜖 defines a surjective map
from the set of 𝜌-graded 𝐴-form MCFs for Λ to 𝐴𝑢𝑔𝜌(Λ𝑟𝑒𝑠). Moreover, this induces a bijection

𝑀𝐶𝐹𝜌(Λ)∕∼
≅
→ 𝐴𝑢𝑔𝜌(Λ𝑟𝑒𝑠)∕∼.

Proof. In [23], a map Ψ̂ ∶ 𝑀𝐶𝐹𝜌(Λ)∕∼ → 𝐴𝑢𝑔𝜌(Λ𝑟𝑒𝑠)∕∼ is defined and shown to be surjective.
Moreover, this map has the property that when  is an 𝐴-form MCF, we have Ψ̂([]) = [𝜖], and
it is shown that every MCF is equivalent to an 𝐴-form MCF. Finally, in [25] it is shown that Ψ̂ is
injective. □

6 EXAMPLES

In this section, we apply the methods developed in Section 5 to compute induced augmentations
and augmentation sets for some particular Legendrian fillings. In Section 6.1, we give examples
of oriented Legendrian fillings inducing augmentations that cannot be induced by any oriented
embedded Lagrangian fillings. In Section 6.2, we prove Theorem 1.4 by constructing 2𝑛 Legen-
drian fillings of the Legendrian torus knot, 𝑇(2, 2𝑛 + 1), each with a single degree 0 Reeb chord,
and distinguished by their induced augmentation sets.

6.1 Initial examples

Before launching into examples, we summarize the method that we use for computing induced
augmentations and induced augmentation sets arising from a (compact) Legendrian filling,Σ. For
a 1-dimensional Legendrian,Λ, with admissible transverse decomposition ⋔, Proposition 5.9 and
Corollary 4.12 provide a commutative diagram of bijections and inclusions

𝑀𝐶𝐹𝜌(Λ)∕∼ ≅ 𝐴𝑢𝑔𝜌(Λ, ||)∕∼ ≅ 𝐴𝑢𝑔𝜌(Λ̃)∕∼,

∪ ∪ ∪

𝐼𝑀𝐶𝐹
Σ

≅ 𝐼𝑐𝑒𝑙𝑙
Σ

≅ 𝐼Σ̃

(6.1)

where, in the top row, from left to right the sets are the equivalence classes ofMCFs ofΛ; homotopy
classes of augmentations of the cellularDGAof (Λ, ||); and homotopy classes of augmentations of
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F IGURE 7 A conical Legendrian filling of Legendrian 41 constructed by a movie. The arrow indicates the
negative 𝑡 direction. Red vertical line segments indicates handle slides in the MCF.

the LCHDGA(Λ̃)where Λ̃ is Legendrian isotopic toΛ. (It is the standard geometricmodel from
Section 4.5.) The bottom row consists of the (equivalent) versions of the induced augmentation set
in these three different settings (where Σ̃ = 𝐺𝑠𝑡𝑑(Σ) is Σ with its positive end extended to become
a conical cobordism). The MCFs in 𝐼𝑀𝐶𝐹

Σ
are those that arise from restricting a 2-dimensional

MCF, Σ, for Σ to Λ. Thus, elements of 𝐼𝑀𝐶𝐹
Σ

(and so also induced augmentations in 𝐼Σ̃) may be
constructed by specifying a 2-dimensional MCF for Σ, and then observing its restriction to Λ. To
keep track of the different MCFs of Λ we use the further bijection from Proposition 5.12 with
augmentations of the Ng resolution,

𝑀𝐶𝐹𝜌(Λ)∕∼ ≅ 𝐴𝑢𝑔(Λ𝑟𝑒𝑠)∕∼

following Section 5.3. That is, once a 2-dimensional MCF has been restricted to the Legen-
drian boundary Λ, if necessary, we transform it by an equivalence into 𝐴-form to arrive at an
augmentation of Λ𝑟𝑒𝑠.
For the rest of the section, all of the augmentations we talk about are of Λ𝑟𝑒𝑠, and we will refer

to Reeb chords of Λ𝑟𝑒𝑠 as crossings and right cusps of the front projection.

Example 6.1. An augmentation that can be induced by a Legendrian filling for a knot that does
not have any oriented embedded Lagrangian fillings.

The work [32, Section 8.3] gives an infinite family of such knots without explicitly computing
the induced augmentations. One of them is the knot 41 shown in Figure 7 where a conical Legen-
drian filling is constructed by a clasp move (see Figure 17 below for a discussion of local moves for
constructing Legendrian cobordisms) followed by Reidemeister I moves and an unknotmove; the
pictures are slices of the front projection of the corresponding compact filling, Σ ⊂ 𝐽1([0, 1] × 𝑀),
with 𝑡 ∈ [0, 1] constant. As shown in [32, Section 8.3], the clasp move can be realized by a conical
Legendrian cobordism with a single Reeb chord, so that a conical version of Σ (after an appropri-
ate Legendrian isotopy) is a disk with a single double point in the Lagrangian projection. Figure 7
indicates the MCF for Σ as a movie of handleslides. Note that the handleslides that appear after
the Reidemeister I moves are as required in Axiom 5.5 (3). Using the correspondence between
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F IGURE 8 A non-orientable conical Legendrian filling of Legendrian 41 with embedded Lagrangian
projection. A 1-graded MCF inducing the augmentation 𝜖2 is pictured.

A-form MCFs and augmentations of Λ𝑟𝑒𝑠, the induced augmentation 𝜖1 sends the crossings 𝑏1
and 𝑏2 to 1 and all other Reeb chords to 0. Note that a ℤ-valued Maslov potential for 41 extends
(uniquely) over Σ, and the MCF for Σ is 0-graded. Correspondingly, 𝜖1 is the unique 0-graded
augmentation of Λ𝑟𝑒𝑠. As discussed in [32, Section 8.3], the 41 knot does not have any oriented
embedded Lagrangian fillings due to a restriction on the Thurston–Bennequin number.
We note that 41 does admit non-orientable embedded Lagrangian fillings. Such a filling, con-

structed via applying two pinch moves (see Figure 17) and then an unknot move, is pictured in
Figure 8. It induces the 1-graded augmentation 𝜖2 that sends 𝑏1, 𝑏2, 𝑎, and 𝑐 to 1 and other Reeb
chords to 0.

Question 6.2. Can the augmentation 𝜖1 induced by the Legendrian filling from Figure 7 also be
induced by a non-orientable embedded Lagrangian filling?

We suspect that the answer is no, but we do not know of any obstructions to such a
non-orientable filling that are currently available in the literature.

Example 6.3. Two augmentations for the same knot, one can be induced by an embedded
Lagrangian filling and one cannot.

Figure 9 shows a Legendrian of knot type 𝑚(821). The knot has a genus one embedded
Lagrangian filling constructed by doing three pinch moves (see Figure 17) and closing up the two
disjoint unknots (see the first row in Figure 9). The associated MCF induces the augmentation 𝜖1
that sends 𝑏1, 𝑏4, 𝑏5 to 1 and others to 0.
One the other hand, one can construct a conical Legendrian filling through doing three clasp

moves and then close up the unknot as shown in the movie in the second row of Figure 9. This is
a Legendrian disk with three Reeb chords. The associated MCF as shown in Figure 9 induces the
augmentation 𝜖2 that sends 𝑏1, 𝑏2, 𝑏4, and 𝑏5 to 1 and other Reeb chords to 0. This augmentation
cannot be induced by an embedded orientable Lagrangian filling since its linearized homology
has Poincare polynomial 𝑡−1 + 4 + 2𝑡. By Seidel’s Isomorphism [11, 12], if an augmentation was
induced by an embedded orientable genus g filling, using the ℤ∕2-grading on linearized homol-
ogy arising from a ℤ∕2-valued Maslov potential on the filling (such a Maslov potential exists by
orientability, see Remark 2.9), its Poincare polynomial with ℤ∕2-grading should be 𝑡 + 2g .

6.2 Proof of Theorem 1.4

The theorem provides examples of knots with an arbitrary (finite) number of immersed fillings,
all having isomorphic DGAs, but distinguished by induced augmentation sets.
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F IGURE 9 The first row gives an embedded Lagrangian filling of𝑚(821) constructed by a movie. The
second row gives a conical Legendrian filling of𝑚(821) through a movie. The arrow indicates negative 𝑡 direction.

Theorem 1.4. For each 𝑛 ⩾ 1, there exists 2𝑛 distinct conical Legendrian fillings, Σ1, … , Σ2𝑛 of the
max-𝑡𝑏 Legendrian torus knot 𝑇(2, 2𝑛 + 1) such that

(i) the Σ𝑖 are all orientable with genus 𝑛 − 1 and have ℤ-valued Maslov potentials,
(ii) each Σ𝑖 has a single Reeb chord of degree 0,
(iii) and the induced augmentation sets satisfy 𝐼Σ𝑖 ≠ 𝐼Σ𝑗 when 𝑖 ≠ 𝑗.

Note that each of the DGAs (Σ𝑖) is ℤ-graded with a single generator in degree 0 and the
differential is necessarily zero for grading reasons. Thus, they are all isomorphic.

Proof. Consider the Legendrian torus knot 𝑇(2, 2𝑛 + 1) as shown in Figure 10 part (𝑎). There
are 2𝑛 ‘eye shapes’ that one can do a clasp move on to get a (2, 2𝑛 − 1) Legendrian torus knot as
shown in part (𝑏). One can then do 2𝑛 − 2 pinch moves to the 𝑇(2, 2𝑛 − 1) knot and close the
unknot in part (𝑐). Let Σ𝑖 be the conical Legendrian filling of 𝑇(2, 2𝑛 + 1) that is constructed by
performing the first clasp move at the ‘eye shape’ between 𝑏𝑖 and 𝑏𝑖+1. According to the MCF
shown in Figure 10(b) and (𝑐), the pinching procedure on 𝑇(2, 2𝑛 − 1) induces an augmentation
of 𝑇(2, 2𝑛 − 1) that only sends 𝑐1 to 1 and all others to 0.
The clasp move produces a degree 0 Reeb chord, 𝑎 (see [32, Proposition 8.3] for the degree

computation) of the resulting conical Legendrian surface Σ𝑖 , and the rest of the cobordism can
be constructed without Reeb chords. Thus,(Σ𝑖) has two augmentations, 𝑎 ↦ 0 and 𝑎 ↦ 1, and
it follows that 𝐼Σ𝑖 can have at most two elements. In fact, 𝐼Σ𝑖 does have two elements induced
by the two MCFs of the conical Legendrian surface shown in Figure 11. For a subset 𝐼 of the set
{1, … 2𝑛 + 1}, denote by 𝜖𝐼 the algebra map from(𝑇(2, 2𝑛 + 1)) to ℤ∕2 that only sends {𝑏𝑖|𝑖 ∈ 𝐼}

to 1 and all other Reeb chords to 0. Then, Figure 11 shows

𝐼Σ𝑖 =

⎧⎪⎨⎪⎩
{𝜖{1}, 𝜖{3}}, if 𝑖 = 1

{𝜖{1}, 𝜖{1,𝑖,𝑖+2}}, if 1 < 𝑖 < 2𝑛

{𝜖{1}, 𝜖{1,2𝑛}}, if 𝑖 = 2𝑛. □



AUGMENTATIONS AND IMMERSED LAGRANGIAN FILLINGS 413

F IGURE 10 Part (𝑎) is a Legendrian (2, 2𝑛 + 1) torus knot and (𝑏) is a Legendrian (2, 2𝑛 − 1) torus knot.
Part (𝑐) is the unknot got after doing 2𝑛 − 2 pinch moves to 𝑇(2, 2𝑛 − 1).

F IGURE 11 Two MCFs for the clasp move constructing Σ𝑖 pictured in the base projection. These MCFs
extend the MCF from Figure 10(b) and (c) to all of Σ𝑖 . Columns (𝑎), (𝑏), (𝑐) are for 𝑖 = 1, 1 < 𝑖 < 2𝑛 and 𝑖 = 2𝑛,
respectively. The black dotted lines represent double points (in the front projection) and red lines represent
handleslides.
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7 EVERY AUGMENTATION IS INDUCED BY AN IMMERSED
FILLING

With the characterization of induced augmentation sets for Legendrian cobordisms in terms
of MCFs now in place, the present section establishes Theorem 1.2 from the introduction. For
convenience, we repeat the statement.

Theorem 1.2. Let Λ ⊂ 𝐽1ℝ have the ℤ∕𝜌-valued Maslov potential 𝜇 where 𝜌 ⩾ 0, and let
𝜖 ∶ (Λ) → ℤ∕2 be any 𝜌-graded augmentation.

(1) If𝜌 ≠ 1, there exists a conical Legendrian fillingΣ ofΛwithℤ∕𝜌-valuedMaslov potential extend-
ing 𝜇 together with a 𝜌-graded augmentation 𝛼 ∶ (Σ) → ℤ∕2 such that 𝜖 ≃ 𝜖(Σ,𝛼). Moreover, if
𝜌 is even, then Σ is orientable.

(2) If 𝜌 = 1, then there exists a conical Legendrian cobordism Σ ∶ 𝑈 → Λ where 𝑈 is the standard
Legendrian unknot with 𝑡𝑏(𝑈) = −1 together with an augmentation𝛼 ∶ (Σ) → ℤ∕2 such that
𝜖 ≃ 𝑓∗

Σ
𝛼.

Proof of Theorem 1.2. Note that the orientability of Σwhen 𝜌 is even follows from the existence of
the ℤ∕𝜌-valued Maslov potential on Σ. See Remark 2.9.
In view of Corollary 3.8, if Λ1 and Λ2 are Legendrian isotopic and the statement holds for

Λ1, then it also holds for Λ2. Therefore, we can replace Λ with its standard geometric model
𝐺𝑠𝑡𝑑(Λ, ⋔) with respect to some admissible transverse decomposition (see Section 4.5), so that
Corollary 4.12 and Proposition 5.9 apply to reduce Theorem 1.2 to Proposition 7.1 below. □

Proposition 7.1. Let Λ be any 𝜌-gradedMCF forΛ ⊂ 𝐽1ℝwith respect to theMaslov potential 𝜇.

(1) If 𝜌 ≠ 1, then there exists a compact Legendrian filling, Σ ⊂ 𝐽1([0, 1] × ℝ), of Λ with a Maslov
potential extending 𝜇 such that Λ can be extended to a 𝜌-graded MCF, Σ, on Σ.

(2) If 𝜌 = 1, then the same statement holds except that Σ is a compact Legendrian cobordism from
the Legendrian unknot𝑈 to Λ.

We will prove Proposition 7.1 at the end of this section after establishing some preliminaries
about extending MCFs over various elementary cobordisms.

7.1 Normal rulings and 𝑺𝑹-formMCFs

In [23], Henry introduced a class of MCFs (the ‘𝑆𝑅-form MCFs’) for 1-dimensional Legendrian
links that are in a clear many-to-one correspondence with the normal rulings of Λ. Moreover,
Henry proved that any MCF is equivalent to an 𝑆𝑅-form MCF. It will be convenient to make use
of this result in proving Proposition 7.1, so we briefly discuss the relevant definitions.
See any of [21, 24, 37] for a detailed definition of normal rulings for Legendrian links in 𝐽1ℝ.

Here, we recall that a normal ruling, 𝜎, for Λ ⊂ 𝐽1ℝ (where Λ has generic front and base projec-
tions) may be viewed as a continuous family of fixed-point free involutions, 𝜎𝑥0 ∶ Λ ∩ {𝑥 = 𝑥0} →

Λ ∩ {𝑥 = 𝑥0}, defined for 𝑥0 ∈ ℝ ⧵ Λ𝑠𝑖𝑛𝑔, that is, for all values of 𝑥0 such that 𝜋𝑥𝑧(Λ) has no cross-
ing or cusp along the vertical line 𝑥 = 𝑥0. For each connected component 𝑅𝜈 ⊂ ℝ ⧵ Λ𝑠𝑖𝑛𝑔 there is
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F IGURE 1 2 Near a crossing the two sheets that cross cannot be paired with one another by a normal ruling
𝜎. The figure indicates the allowed configurations for the crossing sheets and their companion sheets. (There may
be other sheets of Λ in between those pictured.).

a resulting involution on the sheets of Λ above 𝑅𝜈, notated simply as

𝜎 ∶ {𝑆𝜈
𝑖
} → {𝑆𝜈

𝑖
},

which partitions {𝑆𝜈
𝑖
} into a collection of disjoint pairs (because of the fixed-point free condition).

Moreover, if two regions𝑅𝑖 and𝑅𝑖+1 share a border at a cusp or crossing, then the pairings of sheets
above 𝑅𝑖 and 𝑅𝑖+1 are required to be related in a standard way. In particular, sheets that meet at
a cusp point are paired near the cusp point, and every crossing of 𝜋𝑥𝑧(Λ) is either a departure,
a return, or a switch for 𝜎 as in Figure 12. The degree of a crossing of 𝜋𝑥𝑧(Λ) with respect to
a ℤ∕𝜌-valued Maslov potential 𝜇 is defined to be the difference 𝜇(𝑢) − 𝜇(𝑙) ∈ ℤ∕𝜌 where 𝑢 and 𝑙
denote the upper and lower strands at the left side of the crossing. We say that 𝜎 is 𝜌-gradedwith
respect to 𝜇 if all switches of 𝜎 have degree 0 mod 𝜌. On each region 𝑅𝜈 ⊂ ℝ ⧵ Λ𝑠𝑖𝑛𝑔, we can use 𝜎
to define a standard ruling differential

𝑑𝜎𝜈 ∶ 𝑉(𝑅𝜈) → 𝑉(𝑅𝜈), 𝑑𝜎𝜈 𝑆
𝜈
𝑗
=

{
𝑆𝜈
𝑖
, 𝜎(𝑆𝜈

𝑗
) = 𝑆𝜈

𝑖
and 𝑧(𝑆𝜈

𝑖
) > 𝑧(𝑆𝜈

𝑗
),

0, else.
(7.1)

Definition 7.2. A 𝜌-graded MCF  = (𝐻, {𝑑𝜈}) for a 1-dimensional Legendrian link Λ is in
𝑆𝑅-form with respect to a 𝜌-graded normal ruling 𝜎 for Λ if the only handleslides of  are as
follows.

(1) At every switch of 𝜎, handleslides are placed as specified in Figure 13.
(2) At some subset of the degree 0 (mod 𝜌) returns of 𝜎, handleslides are placed as in Figure 13.
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F IGURE 13 The placement of handleslides near switches and some subset of the degree 0 returns of 𝜎 for
an SR-form MCF. When 𝜌 = 1, handleslides are also placed next to some collection of right cusps as indicated.

(3) In the 1-graded case, at some subset of the right cusps of Λ, a single handeslide connects the
two cusp strands near the cusp.

Remark 7.3.

(1) It can be shown that for any 𝜌-graded normal ruling 𝜎 of Λ and any chosen subset of the
𝜌-graded returns ofΛ (and also of the right cusps ofΛ in the 1-graded case), there is an 𝑆𝑅-form
MCF with handleslide set as in Figure 13.

(2) Whenever  = (𝐻, {𝑑𝜈}) is an SR-form MCF and 𝑅𝜈 ⊂ ℝ ⧵ (𝐻 ∪ Λ𝑠𝑖𝑛𝑔) is a region outside of
the collection of handleslides near switches, returns, and cusps, the differential 𝑑𝜈 agrees with
the standard ruling differential 𝑑𝜎𝜈 defined in (7.1).

The following proposition is [23, Theorem 6.17].

Proposition 7.4. Any 𝜌-graded MCF on a Legendrian link Λ ⊂ 𝐽1ℝ is equivalent to an SR-form
MCF with respect to some 𝜌-graded normal ruling of Λ.

7.2 Construction of MCFs

The following results from [23] and [36] are useful for constructing MCFs.

Proposition 7.5. Let Λ ⊂ 𝐽1𝑀 be a 1-dimensional Legendrian, and let 0 = (𝐻, {𝑑𝜈}) be an
𝜌-graded MCF for Λ.

(1) Suppose that𝐻′ is a handleslide set for the product cobordism 𝑗1(1[0,1] ⋅ Λ) ⊂ 𝐽1([0, 1] × 𝑀) as
in Definition 5.4 (2) (and without super-handleslide points) that agrees with 𝐻 when restricted
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to {0} × Λ and satisfies Axiom 5.5. Then, there is a unique 𝜌-graded MCF for 𝑗1(1[0,1] ⋅ Λ) that
agrees with 0 on {0} × Λ and has handleslide set𝐻′.

(2) Construct a handleslide set 𝐻′ for 𝑗1(1[0,1] ⋅ Λ) ⊂ 𝐽1([0, 1] × 𝑀) by extending each handleslide
point 𝑝 of 0 to a handleslide arc along [0, 1] × {𝑝}, and for some region 𝑅𝜈 ⊂ 𝑀 ⧵ (Λ𝑠𝑖𝑛𝑔 ∩ 𝐻)

and some 𝑖 < 𝑗 such that 𝜇(𝑆𝜈
𝑖
) = 𝜇(𝑆𝜈

𝑗
) − 1 placing a single (𝑖, 𝑗)-super handleslide point, 𝑞, in

the interior of [0, 1] × 𝑅𝜈 and adding handleslide arcs in [0, 1] × 𝑅𝜈 as specified by Axiom 5.5
(2) that connect 𝑞 to {1} × 𝑅𝜈 with monotonically increasing [0,1] component. Then, there is a
unique 𝜌-graded MCF for 𝑗1(1[0,1] ⋅ Λ) that agrees with 0 on {0} × Λ and has handleslide set
𝐻′.

Proof. In all cases, it needs to be shown that it is possible to produce the required collection of
differentials {𝑑𝜈} extending the given ones and so that Axiom 5.2 is satisfied. (1) and (2) are both
consequences of Proposition 3.8 from [23] which shows that the differentials {𝑑𝜈} can be extended
from [0, 𝑡0 − 𝜖] × 𝑀 to [0, 𝑡0 + 𝜖] × 𝑀 when a generic bifurcation of the 𝑡-slices of 𝐻 occurs at
𝑡 = 𝑡0. (2) corresponds to [23, Henry’s Move 17]. Alternatively, see [36, Proposition 6.3]. □

Next, wemake a sequence of observations (B1)–(B6) about extendingMCFs along various types
of elementary cobordisms that will form the building blocks for the proof of Proposition 7.1. In
all cases it should be observed that the Maslov potential for the given 1-dimensional Legendrian
extends in a unique way over the elementary cobordism, though we mostly leave this implicit.
Moreover, although we omit the terminology, all MCFs under consideration are 𝜌-graded.

(B1) If 0 and 1 are equivalent MCFs on Λ ⊂ 𝐽1ℝ, then there exists an MCF  on 𝑗1(1[0,1] ⋅ Λ) ⊂
𝐽1([0, 1] × ℝ) that restricts to 𝑖 above {𝑖} × ℝ, for 𝑖 = 0, 1.

Proof. This is the definition of equivalence. □

(B2) Let Λ𝑡, 0 ⩽ 𝑡 ⩽ 1 be a Legendrian isotopy, and consider the Legendrian surface Σ ⊂ 𝐽1([0, 1] ×

ℝ) such that the {𝑡} × ℝ slices of the front projection of Σ are the front projections of theΛ𝑡. Any
MCF on Λ0 extends over Σ.

Proof. It suffices to consider the case where the isotopy contains a single bifurcation of the front
or base projection, that is, a single Reidemeister move or an instance at which two singularities
(crossings or cusps) at different locations in the front diagram share the same 𝑥-coordinate. See
Figure 14.
Before applying the move, we apply (B1) together with Henry’s result (Proposition 7.4) to

assume that the given MCF 0 is in SR-form with respect to some normal ruling 𝜎.

∙ For a Type III move or any of the ‘Other’ moves (both directions): Use Proposition 7.5 to first
move all of the handleslides outside of the 𝑥-interval that contains the pictured part of the
diagram where the move occurs. Then, we apply the move, and check that there is a unique
way to assign differentials to the new region(s) that arise from the move so that Axiom 5.2
is satisfied.
This is a straightforward case-by-case check that we illustrate by considering the Type III

move in detail. (Other cases are left to the reader.) The 𝑡-slices before (respectively, after) the
move occurs intersect a sequence of 4 regions of𝜋𝑥(Σ) ⧵ (Σ𝑠𝑖𝑛𝑔 ∪ 𝐻), whichwe label𝑅𝐴,𝑅𝐵,𝑅𝐶 ,
and 𝑅𝐷 (respectively, 𝑅𝐴, 𝑅𝐵′ , 𝑅𝐶′ , and 𝑅𝐷); see Figure 15. The differentials on 𝑅𝐴, 𝑅𝐵, 𝑅𝐶 , and
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F IGURE 14 Generic bifurcations of the front and base projections during a Legendrian isotopy include the
Reidemeister moves I–III, and instances where two front singularities share the same 𝑥-coordinate (marked
‘Other’ in the figure). Vertical and horizontal reflections of all moves are allowed.

F IGURE 15 Labeling of the regions in the base projection near a triple point.

𝑅𝐷 are already specified by 0. Suppose that the three sheets that intersect at the triple point
are numbered as 𝑆𝜈

𝑘
, 𝑆𝜈

𝑘+1
, 𝑆𝜈

𝑘+2
above these regions. (Recall that above any particular region

we label sheets with decreasing 𝑧-coordinate, for example, the sheet labeled 𝑆𝐴
𝑘
becomes 𝑆𝐵

𝑘+1
when it passes through the crossing locus.) Write 𝑄𝑖 𝑖+1 for a linear map that interchanges the 𝑖
and 𝑖 + 1 sheets. According to Axiom 5.2 (2) we must define the differentials on 𝑅𝐵′ and 𝑅𝐶′ so
that the following maps are chain isomorphisms,

𝑄𝑘+1𝑘+2 ∶ (𝑉(𝑅𝐴), 𝑑𝐴)
≅
→ (𝑉(𝑅𝐵′), 𝑑𝐵′), and 𝑄𝑘 𝑘+1 ∶ (𝑉(𝑅𝐵′), 𝑑𝐵′)

≅
→ (𝑉(𝑅𝐶′), 𝑑𝐶′). (7.2)

In order for this to define a validMCFwe only need to check that Axiom 5.2 (2) is satisfied along
the border between 𝑅𝐶′ and 𝑅𝐷 , that is, we need to show that

𝑄𝑘+1𝑘+2 ∶ (𝑉(𝑅𝐶′), 𝑑𝐶′) → (𝑉(𝑅𝐷), 𝑑𝐷)

is a chain map. In view of (7.2), this is equivalent to the composition
𝑄𝑘+1𝑘+2 ◦𝑄𝑘 𝑘+1 ◦𝑄𝑘+1𝑘+2 ∶ (𝑉(𝑅𝐴), 𝑑𝐴) → (𝑉(𝑅𝐷), 𝑑𝐷) being a chain isomorphism. Since
we know that Axiom 5.2 is satisfied by 0, when we pass from 𝑅𝐴 to 𝑅𝐷 by way of 𝑅𝐵 and 𝑅𝐶
we see that 𝑄𝑘 𝑘+1 ◦𝑄𝑘+1𝑘+2 ◦𝑄𝑘 𝑘+1 ∶ (𝑉(𝑅𝐴), 𝑑𝐴) → (𝑉(𝑅𝐷), 𝑑𝐷) is a chain isomorphism, so
we can just note the braid relation 𝑄𝑘 𝑘+1 ◦𝑄𝑘+1𝑘+2 ◦𝑄𝑘 𝑘+1 = 𝑄𝑘+1𝑘+2 ◦𝑄𝑘 𝑘+1 ◦𝑄𝑘+1𝑘+2.

∙ For a Type I move (← direction): A crossing, 𝑏, a left cusp, 𝑐𝑙, and a right cusp, 𝑐𝑟, of Λ0 all
vanish at a swallowtail point, 𝑠, during the move. The crossing, 𝑏, must be a switch for 𝜎, so
under the SR-form assumption, when 𝜌 ≠ 1, the handleslides appearing near the crossing are
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F IGURE 16 Removing a handleslide at a return to prepare for a Type II move. The top row illustrates the
MCF on a sequence of 𝑡-slices with 𝑡 increasing. The bottom row depicts the MCF in the base projection. If the
return is as in the second or third column of Figure 12, there will be a second handleslide arc with endpoint at the
super-handleslide point. Neither of its endpoints are on the cusp sheets, so it can be moved away from the
pictured part of the front projection.

exactly those required to have endpoints at the swallowtail point by Axiom 5.5 (3). Extend these
to handleslide arcs with endpoints at 𝑠. Let 𝜕𝜈𝑙 (respectively, 𝜕𝜈𝑟 ) denote the differential from 0

assigned to the region 𝑅𝜈𝑙 (respectively, 𝑅𝜈𝑟 ) that borders 𝑐𝑙 on the left (respectively, 𝑐𝑟 on the
right). After the Type I move, 𝑅𝜈𝑙 and 𝑅𝜈𝑟 merge to become a single region, so it is important to
note that 𝜕𝜈𝑙 and 𝜕𝜈𝑟 agree. This is the case since by Remark 7.3 (2), they both agree with the
standard ruling differential for 𝜎.
When 𝜌 = 1, the 𝑆𝑅-form may also have a handleslide connecting the strands of 𝑐𝑟, and this

requires a preliminary step to remove the handleslide. This is done using Proposition 7.5 to alter
the handleslide set via the sequence of adjustments pictured in [31, Figure 16].

∙ For a Type I move (→ direction): To extend 0, we just add additional handleslide arcs with end
points at the swallowtail point as required byAxiom 5.5. Differentials for the new regions can be
defined since the handleslide set on the slices after the swallow tail point occurs is in SR-form
for the ruling 𝜎′ obtained from 𝜎 by making the new crossing into a switch. Alternatively, see
[36, Proposition 6.2].

∙ For a Type II move (← direction): Once again, the strategy is to use an equivalence to move
all of the handleslides out of the 𝑥-inteval, 𝐼, where the front diagram is pictured and then
perform the move. It is then routine to check that the required differentials can be defined to
complete the extension of 0 to . The two pictured crossings ofΛ0 are a departure followed by
a return, so (since 0 is in SR-form) the only handleslides that need to be moved are those that
may appear near the return. Figure 16 illustrates a 2-dimensional MCF on 𝑗1(1[0,1] ⋅ Λ) that will
remove all handleslides from 𝐼 as required. ThisMCF involves a single super-handleslide point,
so Proposition 7.5 (1) and (2) produce the required differentials. (A similar procedure applies
for the horizontally and/or vertically reflected versions of Move II.)

∙ For a Type II move (→ direction): There are no handleslides in the interval where the move
occurs. We perform the move and then check that the differentials may be extended. □

Remark 7.6. An alternate approach to establishing (B2) is made possible by the correspondence
between MCFs and augmentations. When Φ is a Legendrian isotopy from Λ− to Λ+, as in Sec-
tion 3.2, there is an invertible conical Legendrian cobordism, ΣΦ, with embedded Lagrangian
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F IGURE 17 The Clasp, Pinch, and Unknot Moves, pictured as front projection slices (left) and in the base
projection of the corresponding 2-dimensional cobordism (right). Shading in the base projection indicates the
region where the two cusp sheets exist.

F IGURE 18 The Cusp Tangency Move refers to the interchange of the far left and far right diagrams. This is
accomplished by a Type II Move and a Clasp Move, as pictured.

projection. Thus, because the induced augmentation set 𝐼Σ has the form found in Equation (3.4),
the calculation of 𝐼Σ in terms ofMCFs via Proposition 5.9 and Corollary 4.12 implies that anyMCF
for Λ− can be extended over (a compact version of) Σ.

Along with moves associated to 1-dimensional Legendrian isotopies, the generic front bifurca-
tions of the 𝑡-slices of a Legendrian cobordism include the Clasp Move, the Pinch Move, and
theUnknotMove as pictured in Figure 17. These moves correspond to a local maximum or min-
imum in the 𝑡-direction for the crossing locus (in the case of the Clasp Move) or the cusp locus
(for the Pinch and Unknot Move). It will also be convenient to consider a (non-generic) Cusp
TangencyMove pictured in Figure 18 which can be realized by a combination of the ClaspMove
with a Legendrian isotopy.

(B3)
(a) AnMCF can be extended along the→ direction of the ClaspMove if there is no handleslide

that connects the crossing sheets and has its 𝑥-coordinate between the two crossings.
(b) An MCF can be extended along the Cusp Tangency Move (either direction), provided that

there is no handleslide that connects the crossing strands and has its 𝑥-coordinate to the
left of the crossing.

See Figure 19.

Proof. Let Σ be the Legendrian surface corresponding to the Clasp Move (→), with Λ0 and Λ1

denoting the 1-dimensional slices before and after the move. Let 0 be an MCF for Λ0 with no
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F IGURE 19 The requirement on handleslides from (B3) that allows for MCFs to be extended through a
clasp move (left) or cusp tangency (right).

handleslides between the crossings. Then, there is a sequence of three adjacent regions 𝑅𝐴, 𝑅𝐵, 𝑅𝐶
for 0 where 𝑅𝐵 is between the crossings and 𝑅𝐴 and 𝑅𝐶 are to the left and to the right. Since
there are no handleslides between the crossings, we can define an MCF for Σ by extending all
handleslide points of 0 along straight line segments in the 𝑡-direction. Axiom 5.2 (2) for 0 shows
that the differentials on the two regions𝑅𝐴 and𝑅𝐵 agree, so that there is awell-defined differential
on the common region for Σ that contains them.
The Cusp TangencyMove follows from the first case of (B3) since the hypothesis restricting the

location of handleslides before the move implies that the move can be realized (in either direc-
tion) by a Type II Move followed by a Clasp Move (→ direction) in such a way that there are no
handleslides between the crossings when the Clasp Move is applied. □

(B4) An SR-form MCF for Λ associated to a 𝜌-graded normal ruling 𝜎 can be extended to a 𝜌-
gradedMCF on the elementary cobordism Σ arising from applying a PinchMove (→ direction)
to adjacent sheets of Λ, 𝑆𝜈

𝑘
and 𝑆𝜈

𝑘+1
, above a region where they are paired by 𝜎.

Note that the ℤ∕𝜌-valued Maslov potential 𝜇 for Λ extends over Σ since the fact that 𝜎 is 𝜌-
graded implies that 𝜇(𝑆𝜈

𝑘
) = 𝜇(𝑆𝜈

𝑘+1
) + 1mod 𝜌.

Proof. At the location of the pinch move, the differential for the SR-formMCF, 𝑑𝜈, is the standard
ruling differential for 𝜎. (See Remark 7.3 (2).) Thus, 𝑑𝜈𝑆𝑘+1 = 𝑆𝑘, and 𝑆𝑘 and 𝑆𝑘+1 do not appear
in the differentials of the other generators. That is, the complex for (𝑉(𝑅𝜈), 𝑑𝜈) splits as a direct
sum (𝑉(𝑅𝜈), 𝑑𝜈) = (𝐶1, 𝑑1) ⊕ (𝐶2, 𝑑2)with 𝐶2 spanned by {𝑆𝑘, 𝑆𝑘+1} and 𝐶1 spanned by the rest of
the sheets. Therefore, when we extend the MCF over the surface by using (𝐶1, 𝑑1) in the region
where 𝑆𝑘 and 𝑆𝑘+1 do not exist, Axiom 5.2 is satisfied. □

(B5) An MCF  can be extended along the Unknot Move (← direction), provided that there is no
handleslide connecting the two sheets of the unknot. (Note that such a handleslide cannot exist
if  is 𝜌-graded and 𝜌 ≠ 1.)

Proof. Using (B1) we can assume that  is in SR-form on the slice that precedes the unknot move.
It then follows that (i) there are no handleslides with endpoints on the unknot sheets, and (ii) in
the region where the unknot exists (𝑉(𝑅𝜈), 𝑑𝜈) = (𝐶1, 𝑑1) ⊕ (𝐶2, 𝑑2) where 𝐶1 is spanned by the
unknot sheets, 𝑆𝜈

𝑘
and 𝑆𝜈

𝑘+1
, and 𝑑𝜈𝑆𝜈𝑘+1 = 𝑆𝑘. Moreover, by Axiom 5.2 the differentials on the two

regions adjacent to the unknot both agree with 𝑑2. Thus,  extends in an obvious way over the
surface. □

(B6) Any MCF  can be extended along the← direction of the Pinch Move.
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F IGURE 20 The elementary tangles 𝑙𝑛−2,𝑛
𝑘

, 𝑟𝑛,𝑛−2
𝑘

, and 𝜎𝑛,𝑛
𝑘
. The picture illustrates 𝑙5,7

3
, 𝑟7,5

4
, and 𝜎6,6

4
from left

to right.

Proof. Again using (B1) we can assume that  has no handleslides near the two cusps that are
joined by the Pinch Move. From Axiom 5.2 the differentials agree in the two regions where the
cusp sheets exist, so that  extends over the surface. □

Remark 7.7. Although we will not need to use them in our proof of Theorem 1.2, it is also easy to
give necessary and sufficient conditions for an MCF to extend over the remaining moves.

(1) Any MCF can be extended over the Unknot Move (→ direction). (This is easy to see directly,
but also follows from the fact that there are conical Legendrian cobordisms realizing these
moves that have embedded Lagrangian projections; cf. [6, 16]. The same comment applies to
the← Pinch Move.)

(2) An MCF can be extended over the Clasp Move (← direction) if and only if ⟨𝑑𝜈𝑆𝑘+1, 𝑆𝑘⟩ = 0

where 𝑅𝜈 is the region where the crossings will appear and 𝑆𝑘 and 𝑆𝑘+1 are the two crossing
sheets.

7.3 Construction of the Legendrian filling

The front projection of a generic Legendrian Λ ⊂ 𝐽1ℝ can be represented as a word 𝑤Λ that is a
product (left to right concatenation) of elementary Legendrian tangles, each one ofwhich contains
a single crossing or cusp. We notate these elementary tangles as 𝑙𝑛−2,𝑛

𝑘
, 𝑟𝑛,𝑛−2

𝑘
, and 𝜎𝑛,𝑛

𝑘
in the

case of a tangle with a left cusp, right cusp, or crossing respectively, where 𝑛 ⩾ 2 and 1 ⩽ 𝑘 ⩽

𝑛 − 1. The superscripts indicate the number of strands of the tangle at its left and right vertical
boundaries, while 𝑘 is the numbering of the upper of the two strands that is involved with the
crossing or cusp when we number strands as 1 to 𝑛 from top to bottom. See Figure 20. In the
following, we suppress the superscripts from notation.

Proof of Proposition 7.1. Assume that Λ is an 𝜌-graded MCF for Λ ⊂ 𝐽1ℝ. We first prove the
proposition assuming 𝜌 ≠ 1, and then close by indicating the minor modifications to the proof
when 𝜌 = 1.
Let 𝑤Λ be the word representing the front projection of Λ, and note that if Λ ≠ ∅, then 𝑤Λ can

be written in the form

𝑤Λ = 𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡𝑌, (7.3)

where 𝑠, 𝑡 ⩾ 0 and 𝑌 contains no left cusps. (For example, just take the 𝑙𝑘 term to be the left cusp
of Λ with largest 𝑥-coordinate, and put 𝑠 = 𝑡 = 0.) See Figure 21.



AUGMENTATIONS AND IMMERSED LAGRANGIAN FILLINGS 423

F IGURE 2 1 The front projection corresponding to the word 𝑤Λ = 𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2 ⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2 ⋯𝜎𝑘+𝑡𝑌

when 𝑠 = 3 and 𝑡 = 2.

We prove the following statement by a nested induction. The outer induction is on 𝑐 and the
inner induction is on 𝑛.

Inductive statement
Suppose that𝑤Λ has 𝑐 left cusps, and if 𝑐 ⩾ 1, assume that𝑤Λ can be written in the form (7.3) such
that the length of 𝑌 is |𝑌| = 𝑛. Then, there exists a compact Legendrian filling Σ ⊂ 𝐽1([0, 1] × ℝ)

with a 𝜌-graded MCF  such that |Λ = Λ.
The case 𝑐 = 0 is trivial since Λ = ∅. For fixed 𝑐 ⩾ 1, assuming the statement holds for smaller

values of 𝑐, we establish the statement via induction on 𝑛. The case 𝑛 = 0 is vacuously true, since
𝑌 must have at least one right cusp. Assuming 𝑛 ⩾ 1, we write 𝑌 = 𝑧𝑌′ (allowing the possibility
that 𝑌′ is the empty word) where 𝑧 is an elementary tangle that is necessarily a right cusp or a
crossing, 𝑧 = 𝑟𝑗 or 𝑧 = 𝜎𝑗 . We consider cases depending on the vertical location of this right cusp
(in cases 1–5) or crossing (in cases 6–10). By symmetry we can assume 𝑗 ⩽ 𝑘. In addition, using
(B1) and Proposition 7.4 we can assume that Λ is in SR-form with respect to a 𝜌-graded normal
ruling 𝜎.

Case 1: 𝑧 = 𝑟𝑗 with 𝑗 ⩽ 𝑘 − 𝑠 − 2. Then, 𝑧 is a right cusp above all the sheets with cusps or
crossings in the product 𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡. So, a Legendrian isotopy
of Λmodifies the front diagram by

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡(𝑟𝑗𝑌
′)

→ (𝑋𝑟𝑗)𝑙𝑘−2𝜎𝑘−3𝜎𝑘−4⋯𝜎𝑘−2−𝑠𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌
′.

Use (B2) to extend Λ over the Legendrian isotopy. Then, the inductive hypothesis on
𝑛 applies to complete the construction of (Σ,).

Case 2: 𝑧 = 𝑟𝑘−𝑠−1. See Figure 22 for a summary of this case. Using a Legendrian isotopy, we
have

𝑤Λ → 𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝑟𝑘−𝑠−1𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌
′.

Note that we must have 𝑠 ⩾ 1, since otherwise a ‘zig-zag’ 𝑙𝑘𝑟𝑘−1 would occur in Λ. This
is not possible sinceMCFs do not exist for stabilized Legendrian links. The idea is to try
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(a)

(b)

F IGURE 22 The first line outlines the cobordism used in Case 2, Subcase A, and the second line outlines
the cobordism for Subcase B. Subcase A will necessarily occur before the front at the far right of (B) is reached.

to move the cusp 𝑙𝑘 up next to the 𝑟𝑘−𝑠−1. Consider the first crossing to the right of 𝑙𝑘,
𝑥 = 𝜎𝑘−1.

Subcase A: 𝑥 is a switch for 𝜎. Since  is in SR-form for 𝜎, we apply a → Pinch
Move to the right of 𝑥 (extending the MCF using (B4)) followed by a Type I
Reidemeister Move to produce an MCF on a surface with the slices

⋯ 𝑙𝑘𝜎𝑘−1⋯
(𝐵4)
→ ⋯ 𝑙𝑘𝜎𝑘−1𝑟𝑘𝑙𝑘 ⋯ → ⋯ 𝑙𝑘𝜎𝑘−2⋯𝜎𝑘−𝑠𝑟𝑘−𝑠−1𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌

′

→⋯𝜎𝑘−2⋯𝜎𝑘−𝑠𝑟𝑘−𝑠−1𝑙𝑘−2𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌
′.

Then, the inductive hypothesis on 𝑛 applies.
Subcase B: 𝑥 is not a switch for 𝜎. Then, it is a departure, so since Λ is in SR-form,
it has no handleslides connecting the crossing strands to the left of 𝑥 = 𝜎𝑘−1.
Then, we can apply (B3) to extend past the Cusp Tangency Move:

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝑟𝑘−𝑠−1𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌
′

(𝐵3)
→ 𝑋𝑙𝑘−1𝜎𝑘𝜎𝑘−2⋯𝜎𝑘−𝑠𝑟𝑘−𝑠−1𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌

′

→ 𝑋𝑙𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝑟𝑘−𝑠−1𝜎𝑘−2𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌
′.

We then repeat this argument with 𝑥 = 𝜎𝑘−2. Continuing in this manner, we
must encounter the switch case at some point; if not, the left cusp would eventu-
ally be moved next to the right cusp, and we would have anMCF for a stabilized
link which is impossible. (The front would have a ‘zig-zag’, 𝑙𝑘−𝑠𝑟𝑘−𝑠−1.)
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Case 3: 𝑠 ⩾ 1 and 𝑧 = 𝑟𝑘−𝑠. Then, the presence of the term 𝜎𝑘−𝑠𝑟𝑘−𝑠 shows that Λ is stabilized
which is impossible. (There is a standard Legendrian isotopy that will turn the ‘fish tail’
from the 𝜎𝑘−𝑠𝑟𝑘−𝑠 product into a ‘zig-zag’.)

Case 4: 𝑧 = 𝑟𝑗 with 𝑘 − 𝑠 < 𝑗 < 𝑘. Then, a Type IImove can be applied to produce a Legendrian
isotopy

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡(𝑟𝑗𝑌
′) → (𝑋𝑟𝑗−1)𝑙𝑘−2𝜎𝑘−3⋯𝜎𝑘−𝑠𝜎𝑘−1𝜎𝑘 ⋯𝜎𝑘−2+𝑡𝑌

′,

where the product 𝜎𝑘−3⋯𝜎𝑘−𝑠 just means the identity tangle if 𝑠 = 2. Again, we can
apply (B2) and then the inductive hypothesis on 𝑛 to produce (Σ,).

Case 5: 𝑧 = 𝑟𝑘.

Subcase A: 𝑠 = 𝑡 = 0. Then, we have a standard Legendrian unknot in the middle
of the diagram. As long as 𝜌 ≠ 1, there can be no handleslides connecting the
strands of this unknot, so we apply (B5) to extend  as we remove the unknot.
This decreases 𝑐, so that the inductive hypothesis applies.

Subcase B: Exactly one of 𝑠 > 0 or 𝑡 > 0. Then, we can apply a Type I Reidemeister
move to reduce the number of cusps. The (Σ,) is then constructed via (B2) and
the inductive hypothesis on 𝑐.

Subcase C: 𝑠 > 0 and 𝑡 > 0. If the crossing 𝜎𝑘−1 is a switch for the normal ruling 𝜎
associated to Λ, then we can apply a pinch move, as in case 2, followed by two
Type I moves to decrease 𝑐 while extending  via (B4) and (B2). If 𝜎𝑘−1 is not a
switch, then we apply a Cusp Tangency Move as in (B3) to arrive at

𝑋𝑙𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡𝑟𝑘𝑌
′.

At this point, case 4 (reflected vertically) applies.

Case 6: 𝑧 = 𝜎𝑗 with 𝑗 ⩽ 𝑘 − 𝑠 − 2. As in Case 1, move 𝑧 to the left of 𝑙𝑘 and then apply the
inductive hypothesis on 𝑛.

Case 7: 𝑧 = 𝜎𝑘−𝑠−1. Using a Legendrian isotopy, we can group 𝜎𝑘−𝑠−1 into the product

𝑋(𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡)(𝜎𝑘−𝑠−1𝑌
′)

→ 𝑋(𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘−𝑠−1𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡)𝑌
′,

and apply the inductive hypothesis on 𝑛.
Case 8: 𝑠 ⩾ 1 and 𝑧 = 𝜎𝑘−𝑠. Using an argument similar to Case 2, we attempt to apply cusp

tangency moves to move the left cusp directly next to 𝑧. Initially, assume 𝑘 − 1 > 𝑘 − 𝑠.
If the crossing 𝑥 = 𝜎𝑘−1 directly to the right of 𝑙𝑘 is a switch, we can apply a PinchMove
followed by a Type I Reidemeister Move to go from

⋯ 𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯
(𝐵4)
→ ⋯ 𝑙𝑘𝜎𝑘−1𝑟𝑘𝑙𝑘𝜎𝑘−2⋯ → ⋯ 𝑙𝑘𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡𝑌

′

→⋯𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘−𝑠𝑙𝑘𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡𝑌
′,

and then apply induction on 𝑛.
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If 𝑥 = 𝜎𝑘−1 is not a switch, then it is a departure. Then, we apply (B3) to extend 

during the sequence

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡(𝜎𝑘−𝑠𝑌
′)

(𝐵3)
→ 𝑋𝑙𝑘−1𝜎𝑘𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡𝑌

′

→ 𝑋𝑙𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘−𝑠𝜎𝑘𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡𝑌
′.

We repeat this argument until we either find a switch or arrive at a word of the form

𝑋𝑙𝑘−𝑠+1𝜎𝑘−𝑠𝜎𝑘−𝑠𝜎𝑘−𝑠+2⋯𝜎𝑘+𝑡𝑌
′.

If the first 𝜎𝑘−𝑠 is a switch, then the usual combination of Pinch Move and Type I
Reidemeister Move produces

𝑋𝑙𝑘−𝑠+1𝜎𝑘−𝑠𝜎𝑘−𝑠+2⋯𝜎𝑘+𝑡𝑌
′,

which has the form (7.3) with |𝑌′| = 𝑛 − 1 so that induction applies. If instead 𝜎𝑘−𝑠 is
a departure, then we can extend  over another Cusp Tangency Move and then apply a
Reidemeister II move:

𝑋𝑙𝑘−𝑠+1𝜎𝑘−𝑠𝜎𝑘−𝑠𝜎𝑘−𝑠+2⋯𝜎𝑘+𝑡𝑌
′ (𝐵3)→ 𝑋𝑙𝑘−𝑠𝜎𝑘−𝑠+1𝜎𝑘−𝑠𝜎𝑘−𝑠+2⋯𝜎𝑘+𝑡𝑌

′

→𝑋𝑙𝑘−𝑠+1𝜎𝑘−𝑠+2⋯𝜎𝑘+𝑡𝑌
′.

Again, we are able to use the inductive hypothesis on 𝑛.
Case 9: 𝑧 = 𝜎𝑗 with 𝑘 − 𝑠 < 𝑗 < 𝑘. Then, a Type III Reidemeister move can be applied:

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡(𝜎𝑗𝑌
′)

→ (𝑋𝜎𝑗−1)𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡𝑌
′.

We apply (B2) and then the inductive hypothesis on 𝑛 to produce (Σ,).
Case 10: 𝑧 = 𝜎𝑘.

Subcase A: 𝑠 = 𝑡 = 0. This case cannot occur since the appearance of the product
𝑙𝑘𝜎𝑘 would show that Λ is stabilized.

Subcase B: Exactly one of 𝑠 > 0 or 𝑡 > 0. Then, a Type II Move allows us to apply
induction on 𝑛. For instance, when 𝑠 > 0 and 𝑡 = 0,

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠(𝜎𝑘𝑌
′) →𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘𝜎𝑘−2⋯𝜎𝑘−𝑠𝑌

′

→𝑋𝑙𝑘−1𝜎𝑘−2⋯𝜎𝑘−𝑠𝑌
′.

Subcase C: Both 𝑠 > 0 and 𝑡 > 0. We have

𝑋𝑙𝑘𝜎𝑘−1⋯𝜎𝑘−𝑠𝜎𝑘+1⋯𝜎𝑘+𝑡(𝜎𝑘𝑌
′) → 𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘+1𝜎𝑘(𝜎𝑘−2⋯𝜎𝑘−𝑠)(𝜎𝑘+2⋯𝜎𝑘+𝑡)𝑌

′.
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If the 𝜎𝑘−1 is a switch, then we apply (B4) to do a PinchMove followed by a Type
I and Type II Move:

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘+1𝜎𝑘 ⋯
(𝐵4)
→ 𝑋𝑙𝑘𝜎𝑘−1𝑟𝑘𝑙𝑘𝜎𝑘+1𝜎𝑘 ⋯

→𝑋𝑙𝑘𝜎𝑘+1𝜎𝑘 ⋯

→𝑋𝑙𝑘+1(𝜎𝑘−2⋯𝜎𝑘−𝑠)(𝜎𝑘+2⋯𝜎𝑘+𝑡)𝑌
′

→(𝑋𝜎𝑘−2⋯𝜎𝑘−𝑠)(𝑙𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡)𝑌
′.

Finally, if 𝜎𝑘−1 is not a switch, we use (B3) and apply a Cusp Tangency Move
followed by a Type III Move:

𝑋𝑙𝑘𝜎𝑘−1𝜎𝑘+1𝜎𝑘 ⋯
(𝐵3)
→ 𝑋𝑙𝑘−1𝜎𝑘𝜎𝑘+1𝜎𝑘 ⋯

→𝑋𝑙𝑘−1𝜎𝑘+1𝜎𝑘𝜎𝑘+1(𝜎𝑘−2⋯𝜎𝑘−𝑠)(𝜎𝑘+2⋯𝜎𝑘+𝑡)𝑌
′

→(𝑋𝜎𝑘+1)𝑙𝑘−1(𝜎𝑘−2⋯𝜎𝑘−𝑠)(𝜎𝑘𝜎𝑘+1𝜎𝑘+2⋯𝜎𝑘+𝑡)𝑌
′.

Then, induction on 𝑛 applies.

This completes the proof when 𝜌 ≠ 1. The only place where the hypothesis 𝜌 ≠ 1 was used in
the above induction was Subcase A of Case 5 where (B5) was applied to remove a Legendrian
unknot component. When 𝜌 = 1, instead of applying (B5) for this subcase, we can simply apply a
Legendrian isotopy to move the unknot component to the left of the rest of the front. In this man-
ner, the inductive argument produces a cobordism Σ from a disjoint union of standard Legendrian
unknots (each with two cusps and no crossings) to Λ together with an MCF  on Σ extending Λ.
Finally, we can apply the (B6) to use the (←) direction of the PinchMove to join all of the unknots
into a single unknot via a cobordism. □
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