IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 1

A Segmented-edit error-Correcting Code with
Re-synchronization Function for DNA-based
Storage Systems

Zihui Yan, Cong Liang, and Huaming Wu, Senior Member, IEEE

Abstract—As a powerful tool for storing digital information in chemically synthesized molecules, DNA-based data storage has
undergone continuous development and received increasingly more attention. Efficiently recovering information from large-scale DNA
strands that suffer from insertions, deletions, and substitution errors (collectively referred to as edit errors), is one of the major
bottlenecks in DNA-based storage systems. To cope with this challenge, in this paper, we provide a segmented-edit error-correcting
code with the re-synchronization function, termed the DNA-LM code. Compared with the previous segmented-error-correcting codes, it
has a systematic structure and does not require the endpoint of the received segment as pre-requisite information for decoding. In the
case that the number of edit errors exceeds the edit error-correcting capability of a segment, it can easily regain synchronization to
ensure that the subsequent decoding continues. Both encoding and decoding complexity is linear in the codeword length. The
redundancy of each segment is [log k1 + 6 quaternary symbols, where k is the length of the message segment. We further generalize
the decoding algorithm to deal with duplicated DNA strands, whereas it still maintains linear time complexity in the codeword length
and the number of duplications. Simulations under a stochastic edit errors model show that, at a low raw error rate of the “next-gen”
sequencing, our code can enable error-free decoding by concatenating with the (255,223) RS code.

Index Terms—DNA-based storage system, Segmented-edit error-correcting codes, Synchronization errors, VT codes.

1 INTRODUCTION

ITH the rapid development of the Internet of Things
W (IoT) and intelligent applications, a large amount of
new data is collected by different types of sensors on a
daily basis [1], which leads to increasing demand for storage
systems [2]. Along with the development of Deoxyribonu-
cleic Acid (DNA) synthesis and sequencing technologies,
DNA has become a promising storage medium for mass
data storage due to its longevity and enormous information
density. In recent years, the DNA-based storage system has
received extensive attention [3], [4], [5], [6], [7], [8].

In a typical DNA-based storage system based on next-
generation sequencing technologies (i.e., the Illumina se-
quencing technology), as depicted in Fig. 1, digital data is
fragmented into pieces and encoded into short DNA strands
that usually do not exceed 300 nucleotides due to the limita-
tion of the synthesizing and sequencing technologies. These
DNA strands are duplicated and spatially disordered in the
experimental system. During the sequencing process, some
DNA strands may get lost, which are called dropouts. This
process is characterized as a shuffling-sampling channel [9].
Meanwhile, insertions, deletions, and substitutions may be
introduced into individual DNA strands due to biological
mutations. These errors are characterized as an insertion,
deletion, and substitution (IDS) channel [10], [11]. For con-
venience, we refer to a single insertion or deletion as an
indel error, and a single insertion, deletion, or substitution as

e Z. Yan, C. Liang and H. Wu are with the Center for Applied Mathematics,
Tianjin University, Tianjin, China, 300072.
E-mail: {yanzh, cong.liang, whming|@tju.edu.cn

(Corresponding author: Huaming Wu)

an edit error. Following the above model, one of the related
information-theoretic problems is the reliable transmission
over the DNA-based storage channel. Error-correcting codes
are required to ensure accurate recovery of the information
stored on DNA strands.

Reconstructed message

Message DNA strands

l Segmentation

=)

l Outer encoder

l Outer decoder

sembly

T

Fig. 1. A typical DNA-based data storage system.

To cope with dropouts and edit errors, a typical approach
is to introduce a concatenated coding scheme. The outer
code is used to correct erasures and substitutions after
adding indexes to DNA strands [9]. Whereas the inner code
is used to correct edit errors in individual DNA strands.
Classic error-correcting codes for memoryless channels,
such as the Reed-Solomon (RS) code [12], the Low-Density
Parity-Check (LDPC) code [13], and Luby Transform (LT)
code [7], [14] have shown reliable performance as the outer
code. In contrast, the study on edit errors has received

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 2
TABLE 1
Comparison of edit correction coding schemes.
Davey Abroshan
Parameter RS code [7], [18])Press et al. [12] and Sima et al. [15] and Cai et al. [20]? Cai et al. [21° This work
Mackey [11] Venkataramana [19]
Error correction substitutions stqchastlc st(?chastlc +-deletions 'segmented ‘segmented s'mgle segmented
edit errors edit errors indel errors indel errors edit error edit errors
Encoding structure systematic systematic systematic systematic non-systematic | non-systematic systematic systematic
Redundancy (bits) / / / 4tlogn + O(log n) log(n+1)+16 2logn+24 |logn + O(loglogn) +16|2logk + 12
Decoding complexity O(nlogn) o) O(nlogn) O(n2+1) O(n) O(n) O(n) O(n)

! For consistency, the table describes schemes that were designed for inner codes. Works on [7], [18] used conventional RS codes to select

error-free readouts, whereas work on [12] designed a new code, termed HEDGES, which is capable to correct stochastic edit errors.
2 Theoretical results of the works on [19], [20] are provided here, in which no practical systematic encoding algorithm is given.
3 Presented here is the work in [21, Theorem 7], a systematic encoding algorithm found in [22].

limited attention in the literature. Although some attempts
have been made to this problem, there is still a lack of a
practical and efficient algorithm that performs on large-scale
data, as will be discussed next. Thus, the most important
objective of our work is, specifically, to provide an improved
edit error correction code for reliable communication over
the IDS channel.

We assume the requirements for the inner code to in-
clude two essential features: (i) the ability to correct stochas-
tic edit errors; (ii) the encoding and decoding complexity
should ideally be linear because of the need for large-scale
dataset usage.

However, previous well-studied codes for correcting
stochastic edit errors, such as the HEDGES code [12], the
watermark code [11], and the g-ary r-deletion-correcting
codes presented by Sima et al. [15], all require more than
linear time to decode (see in Table 1). Additionally, the
code introduced in [16] that can correct insertions, dele-
tions, and transpositions also takes polynomial time in the
codeword length to encode and decode. The work [10]
provided an edit error-correcting algorithm for convolu-
tional codes based on the BCJR algorithm. However, for a
(n, k, m) convolutional code, its decoding operations perform
in polynomial time in (k +m). A recent survey on such codes
is shown in [17]. Unfortunately, all of these codes are not
optimal due to their decoding complexity.

Another feature of DNA-based storage that needs to be
accounted for is its error rate over the inner channel. Analy-
sis of the experimental data based on the Illumina sequenc-
ing technology indicates that the conventional DNA-based
storage system suffers a low raw error rate, almost 1% [7],
[8], [23]. For example, the experiment in [8] obtained that
the average nucleotide error rate per position is 0.6%, with
0.4% substitutions, 0.2% deletions, and 0.04% insertions.
This inspired us to design the edit error-correcting code
from a new perspective, i.e., to build a structure that can
be kept synchronized against stochastic errors based on the
segmented error correction code.

In this work, to achieve efficient encoding and decoding
for large-scale DNA storage, we design a new edit error-
correcting code for the IDS channel with low complexity,
low redundancy, and the ability to integrate information
from multiple reads, termed DNA-LM code (a hybrid Lev-

enshtein code and marker code for the DNA-based storage
system). The codeword of the DNA-LM code implicitly con-
tains disjoint segments, each of which consists of two parts
called the marker codeword and the data-block codeword.
The marker codeword is 2 quaternary symbols encoded
from its adjacent segments. The data-block codeword has
a generalized Levenshtein code structure encoded from the
message segment. Our contributions are as follows.

o We provide a new segmented-edit error-correcting
code with linear time complexity for both encoding
and decoding, much lower than that of previous
DNA-based storage systems [7], [10], [12], [18] (see
in Table 1).

o We design a new code structure such that each code-
word segment can correct a single edit error without
knowing its endpoint and regain the synchroniza-
tion of the next segment, which is particularly dif-
ferent from conventional segmented-error-correcting
codes [19], [20], [24]. When multiple edit errors oc-
cur in a segment, our code marks this segment as
erasures and easily resyncs to continue decoding
subsequent segments. The redundancy per segment
is [log k1+6 quaternary symbols (k is the length of the
message segment), which is also lower than previous
segmented-error-correcting codes.

o We generalize our decoding algorithm so that it can
decode duplicated DNA strands. The superiority of
our work is that trace reconstruction can be per-
formed simply from our code structure, and can
work in conjunction with error correction, while the
overall decoding still has linear time complexity.

o To test the edit error-correcting capability of our
code, we implement its encoding and decoding al-
gorithms and simulate them under a stochastic error
channel. Simulations show that the DNA-LM code
is also stable against stochastic edit errors and can
achieve the required low decoding error rate with
an appropriate number of segments. In particular,
by concatenating with an efficient outer code (e.g.,
the (255,223) RS code), this cascade coding scheme is
capable to achieve error-free decoding.

This paper is organized as follows. In Section 2, we intro-
duce the DNA alphabet, the inner channel model for DNA

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 3

storage, and provide three coding schemes of segmented-
edit error-correcting codes over the quaternary alphabet. In
Section 3, we present our new DNA-LM code and prove
its edit error-correcting capability. In Section 4, we provide
a linear decoding algorithm of our code. In Section 5, we
describe how to generalize our code in the case of duplica-
tions. In Section 6, we discuss the capacities of the DNA-LM
code, including the code rate, the algorithm complexity, and
the decoding error rate. We also test the performance of the
cascade coding scheme by concatenating our DNA-LM code
and the (255,223) RS code. Finally, we conclude the paper in
Section 7.

2 PRELIMINARIES AND PROBLEM DEFINITION
2.1 DNA Alphabet

DNA strands consist of chains made from four types of
nucleotide subunits with different bases: adenine (A), cy-
tosine (C), guanine (G), and thymine (T). We map these
four DNA nucleotides D = {A,T,G,C} to the quaternary
alphabet X = {0, 1, 2,3}, as follows:

A0 Tel Ceo2 Ge3.

Given any DNA sequence oo € DV, it could be one-to-
one mapped to a quaternary sequence x € V. As a result,
we focus on the codes over the quaternary alphabet in this
work.

2.2 Problem definition: Designing Edit error-correcting
codes for IDS channels

The main problem we consider is to correct edit errors
over the IDS channel introduced in [10], [11]. Let x =
(x1, X2, . . ., X,) denote the information sequence, Enc : ¥ —
X" denote an encoder map. Then the codeword is Enc(x) =
¢, which will be transmitted over the IDS channel. Let
y = (31, ¥2, ..., yn) denote the channel output sequence, and
Dec : ¥V — 3k denote a decoder map. Here, the length of
the channel output sequence N is random and depends on
the insertion and deletion probabilities. Our objective is to
design an encoder map Enc and a decoder map Dec such
that (i). Enc has the lowest possible redundancy, (ii). both
Enc and Dec have linear complexity, and (iii). the Hamming
distance between Dec(y) and x is as small as possible.
Here, the most commonly used performance measure is the
nucleotide-error rate, denoted NER.

For illustration, the transition process characterizing a
single use of the channel is shown in Fig. 2. At the channel
use of x;, three events may occur: (i). With probability p;, an
insertion event occurs where a uniformly random symbol is
inserted into the received stream; (ii). With probability pg,
the enqueued symbol x; is deleted; (iii). With probability
pr =1 - p; — p,, the enqueued symbol x; is transmitted, i.e.,
put into the received stream, with a probability of suffering
a substitution error. We assume that error probabilities are
independent and identically distributed (i.i.d.).

2.3 Related Work

The segmented-edit error channel was introduced by Liu
and Mitzenmacher [24], and subsequently studied by

Py

P

N

\ ; e Substitution
Transmission
Py

_/'

1-p,

Fig. 2. The transmission probabilities of a single symbol in the IDS
channel.

Abroshan et al. [19]. Recently, it has been applied to
the DNA-based storage system [20]. In these studies, the
segmented-edit error channel model refers to a channel
where input sequences are implicitly divided into disjoint
segments, with at most one insertion or deletion occurring
in each segment. Each segmented codeword contains fixed-
pattern prefixes and suffixes to determine the boundaries
between segments. Since a substitution should be consid-
ered as a deletion plus an insertion, these codes can not cope
with substitutions. To avoid confusion in this paper, we call
the above codes the segmented-indel error-correcting codes,
and call a code that could correct one indel error or one sub-
stitution in each segment a segmented-edit error-correcting
code. Besides, these codes are greedily constructed and
thereby have no systematic encoding algorithm. The the-
oretical performance of these codes is shown in Table 1.

Given that previous segmented-indel error-correcting
codes are not robust to substitutions, and they have not been
provided with practical coding algorithms, we have not
been able to compare the numerical results of the decoding
performance between our codes and them. We follow the
same assumption of segmented errors and design modified
coding schemes which can correct edit errors. We concate-
nate the marker code [25] (the marker codeword) with qua-
ternary single-indel/edit error-correcting codes (the data-
block codeword) to form segments. The marker can play a
similar role to the prefix/suffix of segmented-indel error-
correcting codes. We set the sequence “001” as the marker,
which is inspired by [19]. The difference is that in order to
achieve systematic encoding, we separate the marker from
the codeword. We now provide three representative single-
edit error-correcting codes as codeword components.

To correct a single edit error, we have a celebrated class
of the Varshamov-Tenengolts (VT) code [26]. The VT code
originally refers to a class of binary algebraic block codes
that consists of all binary vectors of length n belonging to

VTam(n) = {x €{0.1)": Yix=a (mod m)},)
i=1

where m is a predetermined integer. a is an integer with
0 < a < m—1, usually called the syndrome or the remainder
of the sequence x. Levenshtein [27] later proved that for
m > n+1 and a fixed integer @ with 0 < a < m -1,
the VT codes are asymptotically optimal single-indel error-
correcting codes. Levenshtein also showed that when m >
2n, the VT code can correct an edit error. The structure of
(1) has been generalized to many forms, which are often
referred to as VT codes collectively. The following are classic

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 4

quaternary VT codes.

2.3.1 The Tenengolts Code for Non-Binary Alphabets

Tenengolts first generalized the VT codes to non-binary
alphabets in 1984 [28]. For any g-ary sequence s =

(51,82, -+, sn), Tenengolts defined a corresponding (n — 1)-
length auxiliary binary sequence Ay = (a1, a2, ,@n-1),
where ; = 0 if 5; < s;—1 and otherwise a; = 1. For any

0<a<n-1and 0 < b < ¢, the Tenengolts code is defined
as follows:
n n-1
Tengp(n) 2 {s €Z, :Z s; = b(mod q), Z ia; = a(mod n)},
i=1 i=1
where Teng, p(n) is a single-indel error-correcting code.
Unfortunately, Tenengolts did not provide an efficient
algorithm for encoding a message into such a code with
this algebraic structure. Only recently, Abroshan et al. [29]
proposed an encoder to systematically map a k-bits message
sequence onto a n-length g-ary codeword. Therefore, we
term it Encoder TA (introduced by Tenengolts and encoded
by Abroshan et al.).

2.3.2 The Interleaved Binary Encoder

A systematic encoding method for the binary VT code that
can correct a single indel error was first introduced in 1998
by Abdel-Gaffar and Ferreira [30]. Later, Saowapa et al. [31]
adopted it to get a systematic encoder for codes that can
correct a single edit error. We call it Encoder SS (satisfied
systematic code structure and encoded by Saowapa), and
briefly restate the linear encoding method here since we
will utilize this method for an interleaved encoding scheme
below.

Encoder SS: For any message sequence x =
{x1,x2, -, xx} € {0,1}%, encoder SS sticks it into a codeword
y = SS8(x) € VI,2,(n), where k = n — [logn] — 1. The
encoder inserts “parity” bits at dyadic positions, i.e., cpi,
for 0 <i <t -2 and ¢,, and attaches message symbols to
other positions, to ensure that Y7 ; iy; = a (mod 2n). Here,
t = n — k is the number of redundancy bits.

Example: Given a message sequence x = 01011 and a
fixed syndrome a = 0, we have n = 10, t = 5 and m = 20. The
codeword y = (y1,y2,---,¥y10) should satisfy that Z}El iy; =
z;%:l 271y, 1 410-y10+0-3+1-5+0-6+1-7+1-9 = 0 (mod 20).
Then expand 19-10 = 9 into the binary form 1-23+1-2°. We
obtain the codeword 1000101111, where bits with overbars
are check bits.

Since we are interested in codes over the quaternary
alphabet, it is also quite intuitive to construct a code by
interleaving two binary Levenshtein codewords. Here we
call it Encoder IBS (obtained by interleaving two binary VT
codes and encoded by Saowapa) and describe it in detail.

Interleaved Sequence: For a sequence y =
Oy H,yk) € ZK, let y; =)150)2O + yl@Z1 be the
binary form of symbol y;, then set y©@ = (yio),~~ ,yﬁo)),

y@® = (yil), --,y'). Here, we say that y is the interleaved
sequence of y@ and y®, and denote it by y@® || y©.
Encoder IBS: The IBS code is defined as:

IBSia(m) = {y = y® | y®@ 1 x = x® || x® e 34,

y® = Encoder SS(x®) € VT, ,(n).i = 0, 1},

where k = n - [log,(n)] — 1. Obviously, the I1BSi 4(n) code
is a single-edit error-correcting code over the quaternary
alphabet.

Example: Given a message x = 02312 and a fixed syn-
drome a = 0, we have n = 10 and m = 20. we expand
the message into 01101 || 00110, then encode $S(01101) =
0000110010 and $S(00110) = 1101011000. Hence, we have
the codeword y = 0000110010 || 1101011000 = 1101231020.

2.3.3 The Order-Optimal Code

Cai et al. [21] provided a single-edit error-correcting code
over the quaternary alphabet by enforcing the k-sum bal-
anced constraint on the message sequence and appending
the syndrome next to it. Here we call it Encoder Cai.
In general, the redundancy of n-length VT codewords is
Klogn + o(logn) bits, where K is a constant that varies by
code structure. Small K is preferred to ensure a high code
rate. The redundancy of Encoder Cai is log n+0O(log log n)+16
bits. It has K = 1, as a result, it was called order-optimal. This
code has an efficient code rate when » is large (say n > 512).
However, when the message sequence is short the advan-
tage of order-optimality is impacted because some constant
redundant bits are always required, which decreases the
practical code rate when 7 is small (see in Table 1).

More recently, this work was extended in [32], which
provides another simpler proof of the result on optimal
redundancy and a single-edit error-correcting code with
lower redundancy (modified from Encoder Cai). Since it
does not provide a practical coding algorithm, we will focus
more on Encoder Cai in the next subsection.

2.4 Quaternary Segmented-indel/edit Error-correcting
Code Construction

Armed with the above typical VT codes, we now construct
new segmented-indel/edit error-correcting codes by con-
catenating the marker with each VT codeword. For illustra-
tion, the code structure is shown in Fig. 3. Each codeword
segment includes a data-block codeword and a marker
codeword. We use a fixed pattern "001" as the marker code,
which is a conventional choice [19], [25]. We use the codes
described above in turn to be the data-block codeword, and
call the concatenated codes the 4-ary TA-Marker code, the
IBS-Marker code, and the Cai-Marker code, respectively.
Since markers can be used to locate the segment bound-
aries and regain synchronization, these codes can correct
segmented-indel errors (the TA-Marker code) or segmented-
edit errors (the IBS-Marker code and the Cai-Marker code).
However, since re-synchronization can only rely on mark-
ers, they may not be robust enough to stochastic edit errors.

3 THE DNA LEVENSHTEIN-MARKER CODE

In this section, we present a new segmented-edit error-
correcting code, which is more robust than codes described
in Section 2.3 in that it can correct a single edit error in
each codeword segment including the marker, and has a
double guarantee for re-synchronization. This code is de-
signed over the quaternary alphabet for DNA-based storage
applications, and we term it the DNA Levenshtein-Marker
(DNA-LM) code.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 5

Message

| Msg segment 1 | Msg segment 2 | | Msg segment € |

Codeword

sequence | Codeword segment £ |

| Codeword segment 1 | Codeword segment 2 |
7 s

| Data-block codeword | Marker codeword '001' |

Fig. 3. The concatenated encode structure of data-block codewords and
Sellers marker codewords.

3.1 The Structure of DNA-LM Code

As depicted in Fig. 4, the DNA-LM code is concatenated by a
series of segmented codewords. Each codeword segment is
systematically encoded by the DNA segment-Levenshtein-
Marker (DNA-sLM) code, which is concatenated by a
marker code and a data-block code. We call the redesigned
marker code the marker. Each data-block codeword consists
of four components, namely, the message, the check, the
separator, and the syndrome. The separator and the marker
work collaboratively to detect whether an indel error exists
and locate which component contains it. The check detects
and locates the substitution. If the edit error is in the mes-
sage, the syndrome will correct it. Otherwise, the error-free
message will correct other components. By majority vote,
the marker, the separator, and the syndrome can further
regain the synchronization of the next segment.

In practice, the encoder first divides the message se-
quence into several short segments, then encodes each mes-
sage segment into a DNA-sLM codeword, and finally con-
catenates them together to construct a complete codeword
(Fig. 4). Here, the first segment does not need the marker to
keep synchronization, so the encoder omits it.

Before giving the structure of the DNA-sLM code, we
define some important symbols as follows:

« Define Syn : {0,1}* — [0,2k) as the syndrome of a
binary sequence, where

K
Syn(z) = Z iz; (mod 2k).)
i1
We use BSyn(z) to represent the binary form of
Syn(z).
For any message sequence x = x™1 || x(©, we define
the function /BSyn : TF — X7 to satisfy

IBSyn(x) = BSyn(xM) || BSyn(x®), 3)

where xM, x©@ ¢ {0,1}* and ¢ = [log(2k)]. We call
IBSyn(x) the syndrome of x.

o Define Ck : ¥ — 3 as the check function of the
message x, where

k
Ck(x) = Z x (mod 4). 4)
i=1
« Define Sp : ¥ — I as the separator function.
Specifically, Sp(a, b, c) satisfies, if a + 2 # b,c, set
Sp(a,b,c) =a+2,ifa+3 # b,c, set Sp(a,b,c) =a+3,
otherwise, Sp(a, b,c) = a + 1.

« Define Mk : 33 — I as the marker function, which
is the same as the definition of the separator function
Sp.

Then, the structure of the DNA-sLM code is defined as
follows.

Definition 1. The DNA-sLM code C, is defined as

C= {(m,m,xl,xz,--~ S Xk G, 5, S, 8, @1, -+ 5 ay) € RO
c= Ck(X], X2yttt ,Xk), (ala an, - - 7at) = [BS)’”(XL X2, 0t y-xk)y
s = Sp(c, a1, ap),m = Mk(f, x1, xz)},

where f is the last symbol of the previous codeword segment. We
call (m,m) the marker, x = (x1,x,- -, xx) the message, (c) the
check, (s, s, s) the separator, and a = (ay, ay, - - - , a,) the syndrome.

Example: Let the message sequence be x = 013210 with
two segments x; = 013 and x, = 210. To obtain the first
codeword segment, we have x® = 011 and x(ll) = 001,
then Syn(xgo)) = 5 and Syn(x(ll%) = 3, thus IBSyn(xq) =
011 || 101 = 123, Ck(x1) = 0, and Sp(0,1,2) = 3. Here, we
omit its marker, so the codeword is 0130333123. For the
second codeword segment, we have Mk(3,2,1) = 0, and
other parts are obtained similarly to the first segment, thus
it is 002103222012. The entire codeword is

y = 0130333123002103222012. (5)

3.2 Proof of Error-Correcting Capability of DNA-LM
Code

In this subsection, we show that the DNA-LM code can cor-
rect segmented edit errors and regain synchronization after
each segment decoding. For conventional segmented-indel
error-correcting codes [19], [20], since the prefix and the
suffix within a segment do not have errors simultaneously,
they can mutually ensure that the segment boundary can
be recognized. In analogy with them, markers in our code
structure play the same role as segment prefixes of their
codes. However, our code structure has no suffixes to iden-
tify segment endpoints. Instead, we elaborately design the
DNA-LM code structure so that it can both correct a single
edit error and regain synchronization. The following dis-
cussion is conducted under the condition that the received
segmented codeword has an undetermined endpoint.

Theorem 1. The DNA-sLM code can correct a single edit error
and identify the starting position of the next segment. As a result,
the DNA-LM code can correct segmented edit errors through
iterative decoding of the DNA-sLM code.

Before proving this theorem, we need to establish some
lemmas. Levenshtein has proved that codes have structure
(1) with m = 2n can correct an edit error [27]. Based on
this, Lemma 1 shows that the syndrome can detect the
edit error even when the boundary of a received codeword
is unknown. Inspired by Levenshtein’s proof (in which
determines the type of error based on the length of the
sequence) [27], our proof further shows that our decoder
may detect errors even if it is uninformed of the boundary
by using a distinct code structure. Lemma 2 proves that our
data block code is able to correct a single edit error, the
idea of which is derived from [28]. Lemma 3 further proves

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 6

Message

sequence Msg segment 1 Msg segment 2 L Msg segment €
Codeword
sequence Codeword segment 1 | Codeword segment 2 |] Codeword segment £
Marker codeword | Data-block codeword
e b e
s 1
A | 1
H 1
Marker| Message Check | Separator | Syndrome | |
1
1

Fig. 4. The structure of the proposed DNA Levenshtein-Marker codeword.

that if an edit error occurs in the marker, our code can still
detect it and obtain the correct message. Finally, Lemma 4
shows that our code can determine where the segment ends
after decoding. It indicates that the decoding of the DNA-
sLM code can be performed segment-by-segment so that the
DNA-LM code is capable of correcting segmented edit errors
and keeping synchronization.
For a k-length message, we define

Dijns(x) = {;ins ex": (x1,- Xj—1,75 Xjse ooy Xg-1) # x}7
Dyer(x) 2 {Xaer € T 1 (X1, -+ Xj1, Xjuds + 5 Xes) # X,
Dgup(x) = {fsub €ex = (X1, -+, Xj-1,1s Xj+1," " s X)) # x} ,

to represent the first k elements of a received DNA-sLM
codeword which has an insertion, a deletion, and a substitu-
tion error in the data-block, respectively. Here, if a deletion
occurs, the subsequent symbol will be added. And if an
insertion occurs, x; will be truncated.

Lemma 1. For any sequence X € Dips(x) U Dger(x) U Dygyypp(x),
IBSyn(x) # IBSyn(x).

Proof. We first consider the insertion error. Let @® and @V
be syndromes of Eﬁg)s and Efi)s, where fﬁ}fs | Eﬁ?l)s = Xins. And
let a©, aDbe the correct syndrome of x(® and x™, where
x® || x@ = x. We assume that IBSyn(Xins) = IBSyn(x), so
that @ = a@and a® = V. Without loss of generality, we
omit the superscript, it follows that

k=1
a—a=kx —le- —jr (mod 2k).

i=j

If r =0, since 0 < Zf:_jlxi < k-1, we have a -a =
0 (mod 2k) if and only if xj,-- -, xx_1, x¢ are all equal to 0.
And if r = 0, since j < j +Zf=‘j1x,~ < k,wehavea—-a=0
(mod 2k) if and only if xj, - - -, xx—1, x¢ are all equal to 1. This
is contrary to our assumption x ¢ D;,s(x), so the assumption
does not hold. The same could be proved for the deletion
and substitution errors. |

Since the encoding of the data-block code is independent
of the marker code, we first show the edit error-correcting
capability of the data-block code.

Lemma 2. The data-block code can correct a single edit error.

Proof. For any message x, denote its data-block codeword
asy = (x,¢,5,5,s,a). Let the error domain obtained from y
via at most one edit error be

D(y)= {r :r is obtained from y via an edit error} U {y}

The data-block code is a single-edit error-correcting code
if and only if for different data-block codewords y1 # ya,

D(y1) N D(y2) = 0.

We first discuss about the error domain D(y). Let r’l‘
denote the first k elements of r. Take ¢ = Ck(r’l‘), and
a = IBS yn(r’f). We first define some events to represent
diverse error cases.

« Suppose D(Ck) represents the event in which the
received sequence satisfies the following form:

D(Ck)2{r : i1 = Ck(r})}.

We can see that D(Ck) is the subset of D(y), and if
the message and the check are both correct in the
received sequence, the received sequence r should
belong to D(Ck). However, the opposite is not cor-
rect.

« Suppose D(Sp-1), D(Spo), and D(Sp.1) respectively
represent events in which the received sequence sat-
isfies the following form:

D(Spo)2{r : ris2 = Fia3 = Iieals
D(Sps1) 2{r : riss = riea = riss # resn s
D(Sp-1) 2 {r : rie1 = riea = a3 # resa}-

It is obvious that D(Sp_1), D(Spy), and D(Sp,1) are
subsets of D(y) as well. Assuming that the separator
is correct, then if there is no indel error in the message
and the check, r € D(Spy); if there is a deletion in the
message or the check, r € D(Sp_1); and if there is an
insertion in the message or the check, r € D(Sp+1).
Besides, due to the structure of the separator, it is
apparent that D(Sp_1), D(Spo) and D(Sp.1) are mutu-
ally disjoint. If the separator is incorrect, the received

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 7

sequence will not satisfy any of the above forms. We
use D(Sp) = D(Sp-1) UD(Spo) U D(Sp+1) to represent
the event that the separator is correct.

« Suppose D(Syn_1), D(Syng) and D(Syn.1) represent
events, respectively, in which the received sequence
satisfies the following form:

D(Syn;) = {r D (Pha5ais Thtborin * = * » Thebdert+i)
= 1BSyn(r’)} 0 (D(spi) U DISPY°),

where i € {-1,0,+1}. We use i = +1, -1, and 0
to indicate the symbol-shift of the syndrome. If the
message and the syndrome are correct in the received
sequence, r should satisfy one of the above forms.
We use D(Syn) = D(Syn_1) U D(Synp) U D(Syniq)
to represent the event that the syndrome and the
message are both correct.

Armed with the above definitions, we define the follow-
ing events,

D(81) 2D(Ck) N D(Spo) N D(Syno);
D(Sy) 2 (Z)(Ck)mZ)(Syn)) u (Z)(Ck)ﬂZ)(Spo))

U)N i)
ie{—l,O,+1}(D(Sp) D(Syn))

D($5) 2 (D(CK)* N D(Spo) N D(Syno)’)

v (DspynDesymy). ©)
ie{-1,+1}

Then, when a single edit error occurs, we can make obser-
vations:

o If the whole received segment has no edit error, r
should belong to set D(S1);

o If the message is correct but the other part has an edit
error, we can see that r € D(S;). The proof is obvious.
Based on our assumptions, when the message is
correct, at most only one function of the check, the
separator, or the syndrome does not match the mes-
sage. For example, r € D(Sp_1) represents an event
where the separator is correct but moved forward by
one position, which indicates that a deletion occurred
before the separator. In this case, the syndrome must
also move one position forward. Otherwise, the re-
ceived sequence r has an error in both the check
and the syndrome, which contradicts our hypothesis.
Secondly, since the message is correct, IBSyn(r¥) is
equal to the received syndrome (x4, 7k+5, * * , Tk+3+1),
which means that r satisfies D(Syn_1). Therefore,
when the message is correct and the check is deleted,
r satisfies D(Sp-1) N D(Syn_1).

o If the message has an edit error, r € D(S3). The proof
is as follows. If a substitution occurs in the message,
IBSyn(r’l‘) will not be equal to (rk+5, Fk+6, * =+ » Tk+dt),
so that r ¢ D(Synp). And because the separator and
the check match the original message, according to
Lemma 1, r € D(Ck)° N D(Spg) N D(Syng)°. The same
relations can be obtained when an insertion occurs in
the message, r € D(Sp+1) N D(Syni1)¢; when a dele-
tion occurs in the message, r € D(Sp_1) N D(Syn_1)°.

In summary, D(S;) indicates that the whole data-block
codeword has no edit error; D(S,) indicates that the message
is correct and we decode the first k-symbols of the received
sequence as the message segment; D(S3) indicates that the
message has an edit error. Furthermore, it is easy to Figure
out that D(S1) € D(S), and D(S2) N D(S3) = 0, D(Sp) U
D(S3) = D(y). Here, due to space constraints, we omit the
proof.

Suppose that there are two different codewords yi,y»,
and a received sequence r, which simultaneously belongs
to D(y1) and D(y,). Assume that the message segments of
codewords y1 and y, are x1 and x;, respectively.

On the one hand, if the received sequence r belongs
to D(S3), the message is incorrect and both the separator
and the syndrome are correct. In this case, the position of
the syndrome is uniquely determined by checking which
event of D(Spg), D(Sp-1), and D(Sp41) satisfies. Since the
syndrome is fixed, x1® and x,® belong to the same VT
codebook, for s = 0,1. However, for any VT codebook
described in (1), if m = 2n where n is the codeword length (in
our code, there should be k), then their edit error distance
and the Hamming distance are both at least 3. This conflicts
with the assumption that there is only one edit error within
the received sequence r. On the other hand, if r belongs to
the set D($,), the message in r is correct. We have x1 = x,
and y1 = y,. This contradicts the assumption.

Based on the above discussion, we can see those error
domains of different codewords are disjoint. It means that
the data-block code can decode each error sequence into a
unique codeword.

m|

Lemma 2 proved that the data-block code is a single-edit
error-correcting code, which can be regarded as a situation
where the marker codeword is always correct. Based on this,
we now prove that the DNA-sLM code is still a single-edit
error-correcting code even when the marker codeword has
one edit error.

TABLE 2
Table for error types in the received sequence.

Error type‘ Marker ‘ Check ‘Separator‘Remainder
sub | (am)or(mx) | D(Cho)| D(Spo) | D(Syno)
del | m | D(Ck)| D(Sp-) | D(Syn_1)

ins |(x,m,m) o (m, x,m)| D(CK.1)| DSpn) | D(Syn.)

Lemma 3. The DNA-sLM code can correct an edit error.

Proof. Assuming that the received sequence is r. For the
consistency of proof, let (r_1, rp) denote the first two symbols
of r, which is presumably the marker. We can determine the
correctness of the marker code by checking the first two
symbols of the received sequence. If r_; = rp, it means that
there is no edit error in the marker, and then Lemma 2
works. If rg # rq, it indicates that an edit error occurred
in the marker code due to the specific design of the marker
function. It remains to show that the edit error-correcting
capability could be realized in this case.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 8

Following previous notations, let D(Ck,,) denote the
event that the received sequence satisfies:

Ck((rler’ 24ms " s rk+m)) = TIk+l+m-

The definitions of D(Sp,,) and D(Syn,,) are the same as
Lemma 2. Here m = 1,0, 1 indicates the symbol-shift. Table
2 lists the events that the received sequence satisfies when
different types of errors occur in the marker.

Here, x can be an arbitrary symbol in X except for m. Let
the error domain of codeword y after taking one edit error
in the marker be

Dmarker(y) = {r :r is obtained from y by one edit error, r_1¢r0>.

We now prove that the sets D,,4,ker(y) for different y € C
are disjoint.

The structure of the separator ensures that the correct
separator meets only one event in Table 2, so that the k + 1
to 2 symbols before the separator are determined to be the
message. In other words, Dyarker(¥1) # Dmarker(¥2) if y1 #
Y2.

The above analysis shows that when the received se-
quence satisfies any event in the above list, we do not use the
marker to find the beginning of the data-block codeword.
Instead, we use the position of the separator to detect the
edit error in the marker to regain synchronization.]

To summarize, Lemma 3 shows that the DNA-sLM code
is a single-edit error-correcting code. Next, we will show
that the beginning of the next segment can be determined
by the special structure of the DNA-sIM code so that the
decoding can be performed segment-by-segment.

Lemma 4. In the case of an edit error within the first segment,
the decoder can determine the segmented endpoint to keep syn-
chronization, thereby continuing to decode the next segment.

Proof. The proof is divided into two parts as follows. Firstly,
consider the case of no edit error within the syndrome, i.e.,

r €(D(CH) N DSy Uie(-10.41) (D(Sp) 0 D(Symy)).

In such a situation, it is easy to find the boundary of the
syndrome. After the syndrome, it is the beginning of the
next segment. Secondly, consider the case of an incorrect
syndrome. For brevity, because the separator is correct and
can be located, we use r to represent the remaining sequence
trimmed after the separator. And we use a = IBSyn(x) to
represent the syndrome calculated by the message. Let

D(My) = {(”t, Tils Fea2: 43) D10 = Tegl # Qg Tig2 # Vt+1},
D(Mp) = {(”t» Teals T142, F143) S Fral = T142 # at>,
D(M3) = {(rt, Tegls Vea2 Fe43) D T30 = 143 # Qg Ty = at}-

Recall that the marker function should satisfy the rule:
m ¢ {a, b, c}, if m is inserted between a and b, c. Therefore,
D(M1), D(M;) and D(M3) are pairwise disjoint sets. And
they represent the cases of one deletion, one substitution,
and one insertion in the syndrome, respectively, while the
marker of the next segment is correct. Then we can trim
the received sequence before the correct marker and decode
the next segment. However, if the received sequence is not

in any above sets, it means that the marker of the next
segment has an edit error. Under the assumption that a
single edit error within each segment, the separator of the
next segment is correct to help the decoder relocate the
message and regain synchronization. Therefore, the received
sequence can re-synchronize itself after decoding the current
segment. O

Based on the above lemmas, we now prove Theorem
1. According to Lemma 2 and Lemma 3, we obtained that
the first segment can correct an edit error whether the edit
error is in the marker codeword or the data-block codeword.
According to Lemma 4, after decoding the first segment, the
decoder can determine the beginning of the next segment, so
that codeword segments can be decoded in sequence. This
means that the DNA-LM code is a segmented-edit error-
correcting code.

4 DECODER OF THE DNA LEVENSHTEIN-MARKER
CODE

In this section, we show the decoding algorithm of the DNA-
LM code. Denote a received sequence as r. The decoding
algorithm is performed segment-by-segment. Specifically,
each round contains two phases: decoding the message of
the first segment and regaining the synchronization of the
next segment.

Step 1: Decode the foremost message segment.

o Case 1: r; = rp. The decoder first removes (r1, ;) and
restarts r. Then according to Lemma 2 (6), when the
remaining sequence r € D(S,), the message is correct
and is the first k symbols of r. When r € D(S3), the
error type of the message x is as follows:

1) r e D(Spo) © x has a substitution;
2) r e D(Sps1) © x has an insertion;
3) r e D(Sp-1) © x has a deletion.

The decoder uses the correct syndrome, the ¢ sym-
bols after the separator, to correct two de-interleaved
binary message sequences through the Levenshtein
decoder.

o Case2: r # r. According to Lemma 3, the de-
coder checks which i € -1,0,1 makes r satisfy
D(Ck;) N D(Sp;) N D(Syn;), and sets the message as
(F+3) -+ * o Fiewin2))-

o Case 3: the received sequence does not satisfy any
above events. It indicates that more than one edit
error within the segment. In this situation, the decod-
ing fails. Each corresponding position of this message
segment is marked as an erasure symbol e, waiting
to be recovered by outer codes.

Step 2: Locate the start of the subsequent segment.

o In Case 1 and Case 2, the start of the subsequent
segment is determined according to Lemma 4, and
the decoder will restart r from this point;

o InCase 3, the decoder will scan the received sequence
sequentially to detect subsequence (a,m, m, b, c) and
(a,s,s,s,b,c), where m = Mk(a, b,c) and s = Sp(a, b, ¢).
They jointly point to the position of the next segment
with high probability.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 9

Step 3: Repeat steps 1-2 until all segments are decoded.

Following the above steps, the sequence r can be de-
coded segment-by-segment. In particular, Step 2 shows that
the specially designed structure of the data-block code
provides a second guarantee for keeping and regaining
synchronization of the whole sequence, while the first is
the marker code. It makes the decoding of the subsequent
segment to still have a chance to process smoothly, even
when multiple edit errors occur in a segment.

5 CODING FOR DUPLICATIONS

Recall that in a typical DNA-based storage system, digital
information is synthesized into many short DNA strands,
and each of these strands is massively miscopied through
the sequencing process [23]. Errors generated in DNA syn-
thesis will be inherited and appear in the corresponding
sequencing readouts. We suppose that error patterns due
to synthesis are clustered into a class since they are hardly
discarded directly by the algorithm below, but rather need
to be corrected by the decoding algorithm. Without loss of
generality, we assume that the remaining error patterns of
these duplications are independent, and the positions of edit
errors within a readout are uniformly random.

To deal with these duplications, a typical approach is
to perform a multiple sequence alignment (MSA) of the
received sequences and the subsequent a majority decision
on the alignment [33], [34]. However, because edit errors
make sequence alignment extremely difficult, it is thought
to be the stage that takes up the most space and time
in DNA-based information storage [10]. For instance, the
time complexity of a popular MSA algorithm "MUSCLE" is
O(MN?* + M®N), where N and M are the length and number
of sequences, respectively. Moreover, in experiments for
DNA storage, the MSA procedure usually requires more
than 100 times the sequencing depth to recover data [7],
[8].

In this section, we provide a joint decoding algorithm
that combines our code structure and our decoding algo-
rithm with the reconstruction of traces, skipping the com-
plex MSA process. This idea is inspired by the algorithms
introduced in [10], which also combines its unique code
structure (i.e., the convolutional code) with duplications’
decoding via the BCJR algorithm. Compared to MSA tech-
niques, our decoding strategy can process over a single
sequence case. Furthermore, some algorithms examine the
trace reconstruction problem over a fixed number of se-
quences [35], [36]. However, these works process only un-
coded sequences, whereas we focus on coded transmissions.

We illustrate the generalized decoding method through
the following example.

r1 = 0130333123 0003222012;
ro = 010333123 00103222012.

where y is the codeword of (5), ri and r, are its two
duplications with different edit errors.

The decoder operates in two phases. In the first phase,
the decoder identifies whether a sequence satisfies the event
D(Spo) through the sliding window algorithm. If there are
many qualifying sequences, this message segment will be
obtained by the majority voting algorithm. Otherwise, the

decoder will check whether the unique qualifying sequence
belongs to event D(S,), in the same way as the algorithm
described in section 4. In the example above, r; satisfies
the event D(Spp), thus the decoder will operate on it. In
the second phase, the decoder deals with the case that none
of the sequences satisfy the event D(Spg) or further D(S,),
but there exist sequences satisfying the event D(Sp_1) or
D(Sp+1), such as the second segment of r,. The message can
be obtained by decoding such sequences. However, there
could be possible that no sequence satisfies the event D(Sp),
causing the decoding to fail and this message segment to be
marked as erasures. Besides, this decoding algorithm also
proceeds segment-by-segment, as described in Section 4.

Assuming edit errors are i.i.d. on the DNA strands, it is
apparent that the number of qualifying sequences increases
with the number of duplications, which further achieves
higher coding performance gains. However, we note that
duplications also come with an added cost to the sequencing
process. Again, our code can work on any scale of duplica-
tions.

6 CODE CAPABILITY

In this section, we analyze the coding performance of the
DNA-LM code. We use N and n to represent the length of
the DNA-LM codeword and DNA-sLM codeword encoded
by the K and k message symbols, respectively. We use I to
indicate the number of segments.

6.1 Code Complexity Analysis

For each length-k segment, the encoding procedure consists
of calculating four main components of the DNA-sLM code:
the syndrome, the check, the separator, and the marker. All
of these calculations can be accomplished in linear time. The
decoding algorithm of one segment can also be computed in
time O(n). Since the encoding and the decoding of the entire
sequence are performed sequentially among segments, the
entire encoding or decoding process can be completed in
time O(N).

In the case of decoding m duplicated DNA strands,
both the majority voting algorithm and the error correction
algorithm work on at most m sequences. Therefore, the time
complexity is O(mN).

6.2 Code Rate Analysis

We first consider the segmented code rate of the DNA-LM
code. Since the DNA-LM code is concatenated by a series of
DNA-sLM codeword segments, and the marker of the first
segment is omitted to reduce redundancy, the segmented
code rate is asymptotically close to the integrated code rate.
As illustrated in Definition 1, there are three symbols for the
separator, one symbol for the check, [log k] symbols for the
syndrome, and two symbols for the check in each segment
with k-length message symbols. Thus, the segmented code
rate of the DNA-LM code is

R 2k bits
~ k+[logk]+6 symbol’

@)

By simulations, we plotted the segmented code rates
of the DNA-LM code, the 4-ary TA-Marker code, the IBS-
Marker code and the Cai-Marker code with varied segment

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 10

2.00

1.75 1

1.501

1.251

1.00

0.751

0.50 - 4-ary TA-Marker

—— IBS-Marker
Cai-Marker
—— DNA-LM

Segmented code rate, R (bit/symbol)

0.251

L e e e e S S B S B e e e
0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200
Length of the message segment, k

(a) Varied lengths of the message segment

2.00

1.75 1

1.50 1

1.251

1.00 1

0.75 1

Code rate, R (bit/symbol)

0.50 1 4-ary TA-Marker

—— IBS-Marker
0.25 Cai-Marker
—— DNA-LM

0.00

T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 0 11 12
Number of the message segment, /

(b) Varied numbers of the message segment (K = 180)

Fig. 5. The code rate of our codes. (a) shows the segmented code rate versus the length of the message segments (in nucleotides). (b) shows the
code rate versus the number of the message segment with the fixed message sequence length K = 180.

10°
10—1 4
o
Q
o
w
=
w2l S Perror - free (8)
4-ary TA-Marker
—— IBS-Marker
Cai-Marker
—— DNA-LM

T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 12 14 1.6 1.8 2.0
DNA mutation error rate, pr (%)

(a) Different DNA mutation error rates

10°
4-ary TA-Marker
—— IBS-Marker
Cai-Marker
—— DNA-LM
o
Q
>4
w 107*
=

T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12
Number of the message segment, /

(b) Different segment numbers

Fig. 6. NER performance. (a) shows the NER as the function of the DNA mutation error probability, where pr increases from 0 to 2%. (b) shows the
NER as the function of the segment number with the DNA mutation error probability pr = 0.01.

lengths, as shown in Fig. 5(a). These curves show that when
the length of the message segment is less than 200, the
segmented code rate of IBS-Marker code is the highest. The
DNA-LM code has a slightly higher code rate than the 4-
ary TA-Marker code, ranking second. The Cai-Marker code
has the lowest code rate when the length is below 200.
This is because the codeword segment of the Cai-Marker
code requires some constant redundant symbols, although
its segmented code is order optimal asymptotically. Indeed,
the difference between the segmented code rate of these
codes gets smaller as the length of the message segment
increases. Furthermore, we calculated the code rate when
the segment number [varies with a fixed total message
length K (Fig. 5(b)). As expected, when we divided the
message into more segments, we observed a lower code rate.

6.3 Decoding Error Rate

We now test the edit error-correcting capability of our codes
through the inner channel introduced in Section 2.2. Under
the channel assumptions, the error probabilities are shown
in Table 3.

Given that the codeword sequence is concatenated by
[such segments, the probability of at most one edit error

TABLE 3
Table for error probabilities.

Total error number|Insertion Deletion Substitution| Probability

0 | o0 0 0 | pe(1-ps)
1 \ 1 0 | pa

1 | o0 0 1 | pips

1 | 1 0 0 pip:(1 - ps)
1 | 1 1 0 | pipa

1 Given that a deletion after a random insertion can be seen as
a substitution, this case also introduces only one edit error.

within each segment as
Pp = (pf +npy '), ®)

where pg = p;(1-ps) and p1 = patp:pstpip:(1-psHpipa- This is
the lower bound on the theoretical probability of error-free
decoding.

Next, we tested NER of the DNA-LM code, the 4-ary
TA-Marker code, the IBS-Marker code, and the Cai-Marker
code at varied conditions through simulations. The NER is
defined as the ratio of the total number of residual incorrect
symbols and erasures compared to the original message

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 11

sequence. We assumed that the DNA mutation error rate per
nucleotide pr = p; + pq + ps, and ps : p; : pa =2 :1:1, which
roughly approximates the proportion of errors in Illumina
sequencing. The parameters and their default values are
listed in Table 4. Without losing generality, we first consider
the case where m = 1, i.e., there are no duplications.

TABLE 4
Parameters used for the simulations.

Parameter Paraphrase Default value

K length of the message sequence 180

k length of the message segment 30

l number of the segments 6

m number of duplications 1

pr DNA mutation error rate 0.01
T number of simulations 10000

We first plotted the NER as a function of the DNA
mutation error rate. As shown in Fig. 6(a), when the
hyper-parameters (k, I, pr) are the same, the DNA-LM code
achieves the lowest nucleotide error rate. The 4-ary TA-
Marker code shows the worst performance because it can
only correct indel errors but no substitutions. The IBS-
Marker code and the Cai-Marker code achieve a moderate
performance, due to the limitation that they can only cor-
rect a single edit error in each data-block codeword, while
edit errors in marker codewords may disrupt synchroniza-
tion. We further compared the lower bound of the theo-
retical probability of error-free decoding (8) (dotted line)
with simulations (solid lines). Simulations indicate that our
segmented-edit error-correcting codes have achieved better
performance than theoretical results. This is because our
encoders and decoders are carefully designed to cope with
some, although not all, multiple edit errors within segments
to avoid out-of-sync events. Fig. 6(b) illustrates that the NER
of codes decreases as the number of segments increases. It
is reasonable to assume that it can achieve a lower NER by
separating sparse errors into different segments.

To investigate the bias in edit error-correcting capabili-
ties of different segments, we plotted the NER per position
in Fig. 7. The curve of the DNA-LM code seems more volatile
than other codes, but this is due to the setting of the coordi-
nate system. All curves show a small jump between adjacent
segments, as decoding may lose synchronization if multiple
edit errors within a segment. In addition, we noticed a slight
decrease in the last segment. One explanation is that the
boundary of the last segment is determined by the length of
the sequence so that the decoding can be re-synchronized.

To focus more on the DNA-LM code, we further plotted
the NER as a function of the DNA mutation error rate with
varied numbers of segments (Fig. 8). It shows that the NER
decreases significantly as the number of segments increases.
Besides, since the code rate increases with the number of
segments (Fig. 5(b)), there is a trade-off between the code
rate and the NER. In practice, the error probabilities may

10°
4-ary TA-Marker
—— IBS-Marker
Cai-Marker
—— DNA-LM

NER, Pe (%)

10-14

=)
N
o

40 60 80 100 120 140 160 180
Symbol position

Fig. 7. NER performance at different positions in the message se-
quence.

not be identically distributed among positions. Since the
encoding of each message segment is independent of each
other, one can set the lengths of message segments to vary
with the error probability within DNA strands. For exam-
ple, considering that the two ends of the DNA strand are
more prone to errors [23], the encoder can choose a shorter
segment length towards the ends of the DNA strands.

10°

4-ary TA-Marker
—— IBS-Marker
Cai-Marker

—— DNA-LM
T T T T T T T T T T T T
1 2 0 11 12

Number of the message segment, /

Fig. 8. NER performance of the DNA-LM code with varied numbers of
the message segment.

/

T T
1.0 2.0 30 4.0 5.0 6.0 7.0 80
DNA mutation error rate, pr (%)

10°

10-14

10—4 4

Fig. 9. NER performance of the DNA-LM code with varied numbers of
duplications.

As depicted in Fig. 9, we can observe how the NER
decreases with the number of duplications. In agreement

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022 12

with the results of Section 5, the NER is significantly lower
for multiple reads as compared to a single read.

100 4

10-14

o

-]

[

=

g

@ 10724 .

)

]

S

sl A —e— DNA-LMr=1.43

—— DNA-LMr=1.25

10-3 4 —#— DNA-LM r=1.01

HDEGES r=1.31
HDEGES r=1.05
HDEGES r=0.87

T T T T T T T

1 2 3 5 7 10 15
DNA mutation error rate, pr (%)

Fig. 10. Byte error rate performance of the cascade coding scheme.

Finally, we verified that the messages could be recovered
without error via concatenating an outer code (specifically,
(255,223) RS code) to our DNA-LM code, but only up to a
maximum tolerable error rate that increased with decreasing
code rate. As an initial validation of coding performance, we
first randomly generated messages of length 223 x 31 bytes.
Second, as the outer encoding, we used a concatenated
coding scheme to produce 255 strands via an outer code (i.e.,
the (255,223) RS code) and appended a unique 1-byte prefix
(i-e., 0 to 255) to each strand as the index. Third, as the inner
encoding, we encoded each strand of length 128 quaternary
symbols via our DNA-LM code with the segment of length
(16,32, 64), yielding DNA strands of length (214, 174, 152). To
simulate the overall DNA storage channel, we pooled and
shuffled all of the strands and then duplicated them as if
sequencing to depth 5, i.e., each strand was duplicated a
Poisson random number of times, with a mean of 5. We
further induced stochastic edit errors to each strand in the
pool based on the inner channel model, where the total
error rate p, traversed {0.01,0.02,0.03,0.05,0.07,0.10,0.15}
and p : p; : pg =1:1:1. We constructed a statistical error
model to analyze the byte error rate.

As a result, Fig. 10 shows the byte error rate as a
function of the DNA mutation error rate. We also plotted the
decoding performance of [12], in which the inner code is the
HEDGES code and the outer code is the same (255,223) RS
code. The HEDGES code is a well-designed convolutional
code and is able to correct stochastic edit errors, however, its
decoding complexity is O(2"). The comparison indicates that
at close code rates, although our DNA-LM code performs
poorly at high raw error rates, it allows a higher raw error
rate for error-free decoding than [12]. Specifically, the DNA-
LM code with rate » = 1.47 is capable of error-free decoding
at 1% DNA mutation error rate (i.e., via the “next-gen”
sequencing).

7 CONCLUSION

In this work, we have designed a new segment-edit error-
correcting code, called the DNA-LM code. Each codeword
segment is a concatenation of a marker codeword and a
data-block codeword. It is distinctive in that it does not
require segment endpoints as a prerequisite for decoding,

but rather can decode segment by segment through its
special structure. Another advantage of the DNA-LM code is
that its data-block code also has the same re-synchronization
function as the marker code, but without the additional code
redundancy. It makes the DNA-LM code more likely than
other segment-error-correcting codes to restart decoding,
even if multiple edit errors occur within a segment. Fur-
thermore, it can be simply generalized to decode duplicated
DNA strands. Simulations showed that the DNA-LM code is
capable of error-free decoding for the “next-gen” sequencing
readouts via concatenating with an efficient outer code (e.g.,
the (255,223) RS code).

To summarize, the DNA-LM code is useful when the
amount of data increases: (i) its codewords are systematic;
(ii) it only takes linear time complexity for encoding and
decoding; (ii) it allows varying the code rate, with corre-
spondingly greater tolerance of edit errors at lower code
rates; (iv) it produces erasures when segmented decoding
fails, making it easier for outer code to recover the residual
errors; (v) when generalized to decoding duplicated DNA
strands, it still maintains linear time complexity; (vi) it
enables error-free decoding at a low row error rate. Given
this, the DNA-LM code can be applied to a wide range
of storage systems with synchronization errors, especially
being used as an inner code in the DNA-based storage
system.

For future work, in order to cope with more complex
error cases and effectively correct the burst errors that may
occur in a DNA strand, we will further combine a class of
burst-error-correcting codes (e.g., RS codes) with our DNA-
LM code.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Pro-
gram of China (grant No. 2020YFA0712100), the National
Natural Science Foundation of China (grant No. 12001401
and 62071327) and Tianjin Science and Technology Planning
Project (grant No. 22ZYYY]C00020).

REFERENCES

[1] E Tavella, A. Giaretta, T. M. Dooley-Cullinane, M. Conti, L. Coffey,
and S. Balasubramaniam, “DNA molecular storage system: Trans-
ferring digitally encoded information through bacterial nanonet-
works,” IEEE Transactions on Emerging Topics in Computing, vol. 9,
no. 3, pp. 1566-1580, jul 2021.

[2] S. Ebrahimi, R. Salkhordeh, S. A. Osia, A. Taheri, H. R. Rabiee, and
H. Asadi, “RC-RNN: Reconfigurable cache architecture for storage
systems using recurrent neural networks,” IEEE Transactions on
Emerging Topics in Computing, vol. 10, no. 3, pp. 1492-1506, 2021.

[3] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital
information storage in dna,” Science, vol. 337, no. 6102, pp. 1628
1628, 2012.

[4] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. Leproust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature,
vol. 494, 01 2013.

[5] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark,
“Robust chemical preservation of digital information on DNA in
silica with error-correcting codes,” Angew Chem Int Ed Engl, vol. 54,
no. 8, pp. 2552-2555, 2015.

[6] S.M.H.T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 1, no. 3, pp. 230-248, 2015.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO., 2022

(7]

(8]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. Erlich and D. Zielinski, “DNA fountain enables a robust and
efficient storage architecture,” Science, vol. 355, no. 6328, pp. 950
954, 2017.

L. Organick, S. D. Ang, Y. J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, and
B. Nguyen, “Random access in large-scale DNA data storage,”
Nature Biotechnology, vol. 36, no. 3, 2018.

I. Shomorony and R. Heckel, “DNA-based storage: Models and
fundamental limits,” IEEE Transactions on Information Theory,
vol. 67, no. 6, pp. 3675-3689, 2021.

I. Maarouf, A. Lenz, L. Welter, A. Wachter-Zeh, E. Rosnes, and
A. G. i. Amat, “Concatenated codes for multiple reads of a DNA
sequence,” IEEE Transactions on Information Theory, pp. 1-1, 2022.
M. Davey and D. Mackay, “Reliable communication over channels
with insertions, deletions, and substitutions,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 687-698, 2001.

W. Press, J. Hawkins, S. Jones, J. Schaub, and I. Finkelstein,
“HEDGES error-correcting code for DNA storage corrects in-
dels and allows sequence constraints,” Proceedings of the National
Academy of Sciences, vol. 117, no. 31, pp. 18 489-18 496, 2020.

S. Chandak, K. Tatwawadi, B. Lau, J. Mardia, M. Kubit, J. Neu,
P. Griffin, M. Wootters, T. Weissman, and H. Ji, “Improved
read/write cost tradeoff in DNA-based data storage using LDPC
codes,” in 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2019, pp. 147-156.

M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002, pp. 271-280.

J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion
correcting codes,” in 2020 IEEE International Symposium on Infor-
mation Theory (ISIT), 2020, pp. 769-774.

L. Schulman and D. Zuckerman, “Asymptotically good codes cor-
recting insertions, deletions, and transpositions,” IEEE Transactions
on Information Theory, vol. 45, no. 7, pp. 2552-2557, 1999.

B. Haeupler and A. Shahrasbi, “Synchronization strings and codes
for insertions and deletions—a survey,” IEEE Transactions on Infor-
mation Theory, vol. 67, no. 6, pp. 3190-3206, 2021.

P. L. Antkowiak, J. Lietard, M. Z. Darestani, M. M. Somoza, W. J.
Stark, R. Heckel, and R. N. Grass, “Low cost DNA data storage
using photolithographic synthesis and advanced information re-
construction and error correction,” Nature communications, vol. 11,
no. 1, pp. 1-10, 2020.

M. Abroshan, R. Venkataramanan, and A. Guillén i Fabregas,
“Coding for segmented edit channels,” IEEE Transactions on In-
formation Theory, vol. 64, no. 4, pp. 3086-3098, 2018.

K. Cai, H. M. Kiah, M. Motani, and T. T. Nguyen, “Coding for
segmented edits with local weight constraints,” in 2021 IEEE
International Symposium on Information Theory (ISIT), 2021, pp.
1694-1699.

K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen,
“Correcting a single indel/edit for DNA-based data storage:
Linear-time encoders and order-optimality,” IEEE Transactions on
Information Theory, vol. 67, no. 6, pp. 3438-3451, 2021.

D. C. H. Tan, “Single edit correcting code,”
https:/ /github.com/dtch1997 /single-edit-correcting-code.git.
R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the
DNA data storage channel,” Scientific reports, vol. 9, no. 1, pp. 1-12,
2019.

Z. Liu and M. Mitzenmacher, “Codes for deletion and insertion
channels with segmented errors,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 224-232, 2010.

F. Sellers, “Bit loss and gain correction code,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 35-38, 1962.

R. Vars8amov and G. Tenengolts, “A code which corrects single
asymmetric errors,” Avtomat. i Telemeh, vol. 26, no. 4, pp. 288-292,
1965.

V. L. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet physics. Doklady, vol. 10, pp. 707-
710, 1965.

G. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion,” IEEE Transactions on Information Theory, vol. 30, no. 5,
pp. 766-769, 1984.

M. Abroshan, R. Venkataramanan, and A. G. I. Fabregas, “Efficient
systematic encoding of non-binary VT codes,” in 2018 IEEE Inter-
national Symposium on Information Theory (ISIT), 2018, pp. 91-95.
K. A. Abdel-Ghaffar and H. C. Ferreira, “Systematic encoding of
the Varshamov-Tenengol’ts codes and the Constantin-Rao codes,”

[31]

[32]

[33]

[34]

[35]

[36]

13

IEEE Transactions on Information Theory, vol. 44, no. 1, pp. 340-345,
1998.

K. Saowapa, H. Kaneko, and E. Fujiwara, “Systematic dele-
tion/insertion error correcting codes with random error correction
capability,” in Proceedings of the 14th International Symposium on
Defect and Fault-Tolerance in VLSI Systems, 1999, pp. 284-292.

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu, “Beyond single-
deletion correcting codes: Substitutions and transpositions,” IEEE
Transactions on Information Theory, pp. 1-1, 2022.

R. C. Edgar, “MUSCLE: multiple sequence alignment with high
accuracy and high throughput,” Nucleic acids research, vol. 32, no. 5,
pp. 1792-1797, 2004.

K. Reinert, T. H. Dadi, M. Ehrhardt, H. Hauswedell, S. Mehringer,
R. Rahn, J. Kim, C. Pockrandt, J. Winkler, E. Siragusa, G. Urgese,
and D. Weese, “The SeqAn C++ template library for efficient
sequence analysis: A resource for programmers,” Journal of Biotech-
nology, vol. 261, pp. 157-168, 2017.

M. Cheraghchi, J. Ribeiro, R. Gabrys, and O. Milenkovic, “Coded
trace reconstruction,” in 2019 IEEE Information Theory Workshop
(ITW), 2019, pp. 1-5.

S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin,
“Trellis BMA: Coded trace reconstruction on IDS channels for
DNA storage,” in 2021 IEEE International Symposium on Information
Theory (ISIT), 2021, pp. 2453-2458.

Zihui Yan received the B.S. degree in math-
ematics from Sichuan University, Chengdu,
China, in 2018. She is currently working to-
ward the PhD degree at Tianjin University, Tian-
jin, China, under the supervision of Professor
William Y.C. Chen. Her main interests include
error control coding and communication algo-
rithms.

Cong Liang received her B.S. degree from
Peking University in 2012 and her Ph.D. degree
from Yale University in 2018. She is currently
working at the Center for Applied Mathematics,
Tianjin University. Her research interests include
applications of statistical methods in engineering
and biology.

Huaming Wu received his B.E. and M.S. de-
grees from Harbin Institute of Technology, China
in 2009 and 2011, respectively, both in electrical
engineering. He received the Ph.D. degree with
the highest honor in computer science at Freie
Universitat Berlin, Germany in 2015. He is cur-
rently an Associate Professor at the Center for

< Applied Mathematics, Tianjin University, China.
4 His research interests include edge computing,
internet of things, complex networks, and DNA

storage.

