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1. Introduction

In this paper, we consider the low-regularity integration approach to solve numerically the general
KdV-type equation under the rough initial data on a torus:∂tu(t, x) + ∂3xu(t, x) +

1

k
∂x
(
u(t, x)k

)
= 0, x ∈ T, t > 0,

u(0, x) = u0(x), x ∈ T,
(1.1)

where T = (0, 2π), u(t, x) : R+ × T → R is the unknown and u0 ∈ Hs(T) is the given initial data
with some 0 ≤ s < ∞. Here the power index k > 0 is an arbitrary given integer and based on its
value, (1.1) is usually classified as: the (classical) KdV equation and the modified KdV equation
(mKdV) for k = 2 and k = 3 respectively; the generalized KdV equation (gKdV) for all k ≥ 4.
As a classical mathematical model to describe the dynamics of waves on shallow water surface, the
equation (1.1) has drawn extensive research interests from many different aspects.

Theoretically, the well-posedness of the Cauchy problem (1.1) has been intensively investigated,
particularly for the initial data u0 ∈ Hs with different regularity. Let us give a brief review here. The
global well-posedness theory for the classical KdV and the mKdV have been established respectively
for s ≥ −1 [20] and s ≥ 1

2 [6]. For the gKdV equation, the local well-posedness has been shown for

s ≥ 1
2 firstly by Keel, Staffilani, Takaoka and Tao [7], and Bao and Wu [3] later obtained the global

well-posedness in the quartic nonlinearity case of (1.1). Along the numerical aspect of (1.1), by
assuming that the solution is smooth enough, different kinds of discretization techniques including
the finite difference methods [8, 18], operator splittings [13, 14, 15, 37], finite elements [2, 5], spectral
methods [9, 26, 35] and discontinues Galerkin methods [1, 23, 43], have been proposed and analyzed
to solve the KdV-type model (1.1). However, when the solutions of the model are not smooth
enough, e.g., the rough data case, the above numerical methods will lose their accuracy and then
become less effective. In practice, the rough initial data may come from multiple reasons such as
measurements or noise [4, 16].

To tackle the rough data case and increase the temporal accuracy, the so-called low-regularity
integrator was firstly introduced by Ostermann and Schratz for nonlinear Schrödinger equations [30].
Compared with the traditional numerical discretizations, the low-regularity integrator is favoured
for reaching the optimal convergence rate with the less regularity requirement of the solution. Ever
since then, a trend has been started to design low-regularity integrators for important dispersive
models [21, 22, 24, 25, 28, 29, 31, 32, 33, 39, 40], where the models possess no internal mechanism
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to smoothen the rough data. As one of the big three dispersive models, the KdV-type equations
(1.1) have received special attentions. Hofmanovó and Schratz [12] considered the exponential-type

integrator [11], which is based on the twisted variable v = e∂
3
xtu and the Duhamel formula of (1.1)

at tn = nτ with τ > 0 the time step:

v(tn + τ, x) = v(tn, x)− 1

k

∫ τ

0

e(tn+s)∂
3
x∂x
(
e−(tn+s)∂

3
xv(tn + s, x)

)k
ds.

By letting v(tn + s, x) ≈ v(tn, x) in the above, the key ingredient is to find the integration for s
which in Fourier frequency space reads

1

k

∫ τ

0

∑
l=l1+l2+···+lk

e−i(tn+s)(l
3−l31−l

3
2−···−l

3
k)(il)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds.

When k = 2, owning to a key factorization formula l3 − l31 − l32 = 3ll1l2 for the phase function,
the above integral not only can be done exactly but also can be defined point-wisely in the physical
space. As proved in [12], the resulting integrator is first-order accurate in H1-norm for solving the
classical KdV equation with initial data from H3. The scheme therefore requires two additional
bounded derivatives of the solution to reach the first order accuracy, which is indeed lower than the
requirement of the splitting method [13] or the finite difference method [8]. Wu and Zhao extended
the result to the second-order scheme [41] and proposed later an improvement [42] to further reduce
the regularity requirement. These works are more or less based on the aforementioned factorization,
which however is not true for k ≥ 3. Fortunately for k = 3, i.e., the mKdV equation case, the
celebrated Muira transform helps to derive the corresponding low-regularity integrator [38]. For
k ≥ 4, none of the current techniques are available anymore, and so a thoroughly new development
is needed. On the other hand, it is known that with k ≥ 4 in (1.1), the gKdV equation is non-
integrable which differs its structure and dynamics significantly from the KdV and mKdV equations.
Non-smooth dynamical phenomena like the self-similar blowups and the dispersive shock waves are
of great interests in applications [19], and a low-regularity integrator would be a helpful addition
towards efficient and accurate simulations.

We hence focus on the gKdV equation case in this work, i.e., k ≥ 4 in (1.1), and we are going
to propose a low-regularity integrator that is explicit and efficient. By rigorous analysis, we prove
that the scheme provides the first order accuracy in Hγ for initial data from Hγ+2 for any γ ≥ 0.
Our key ideas include a new approximation technique for the phase function as

e−i(tn+s)(l
3−l31−l

3
2−···−l

3
k) ≈ e−i(tn+s)[l

3−l31−(l
3
2+···+l

3
k)],

and a new vital gauge transformation

w(t, x) = u
(
t, x+

1

2π

∫ t

0

∫
T
uk−1(ρ, x)dxdρ

)
to eliminate the stability issue from the frequency approximations. We thus name the scheme as
the gauge-transformed exponential integrator (GTEI). The rest of the paper is organized as follows.
In Section 2, we introduce some notations and tool lemmas that will be frequently used. The GTEI
scheme is derived in Section 3 followed by its convergence theorem, and the proof is accomplished
in Section 4. Numerical verifications are presented in Section 5.

2. Preliminary

In this section, we shall first give some notations and tool lemmas that will be used later for the
derivation and analysis of the scheme. Then, we will write some direct exponential schemes for the
gKdV equation as the benchmark of comparison.

2.1. Notation and tool lemma. To discretize the time axis, we denote τ = ∆t > 0 as the time
step and tn = nτ for n ∈ N as the grid points. For two quantities A and B, A . B or B & A
denotes A ≤ CB for some constant C > 0 whose value may vary line by line but independent of
τ, n.
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The Fourier transform of a function f(x) on T is defined by

F(f) = f̂(l) =
1

2π

∫
T

e−ilxf(x) dx, with the inversion f(x) =
∑
l∈Z

eilxf̂(l).

Note that f̂(0) = 1
2π

∫
T f dx, gives the average. The following classical properties hold:

‖f‖L2(T) =
√

2π
∥∥f̂∥∥

L2((dl))
(Plancherel); 〈f, g〉 =

∫
T
f(x)g(x) dx = 2π

∑
l∈Z

f̂(l)ĝ(l) (Parseval);

(̂fg)(l) =
∑
l1∈Z

f̂(l − l1)ĝ(l1) (Convolution).

The Sobolev space Hs(T) for s ≥ 0 has the equivalent norm:∥∥f∥∥
Hs(T) =

∥∥Jsf∥∥
L2(T) =

∥∥∥(1 + l2)
s
2 f̂(l)

∥∥∥
L2((dl))

,

where we denote the operator

Js = (1− ∂xx)
s
2 .

Moreover, we denote the inversion operator ∂−1x by

∂̂−1x f(ξ) =

{
(il)−1f̂(l), when l 6= 0,

0, when l = 0.

For a space-time function f(x, t), when there is no ambiguity we will omit the spatial variable x and
denote f(t) = f(x, t) for simplicity.

As a tool to overcome the absence of the algebraic property of Hs when s ≤ 1
2 , we will need the

Kato-Ponce inequality which was originally introduced in [17]. For our convergence analysis later,
it is convenient to apply the following special form established in [41, 42]. Let us directly quote it
here for brevity and refer the readers to [41, 42] for the proof.

Lemma 2.1. (Kato-Ponce inequality) Let f, g be the Schwartz functions. Then for s > 0, 1 < p ≤
∞, and 1 < p1, p2, p3, p4 ≤ ∞ with 1

p = 1
p1

+ 1
p2

, 1
p = 1

p3
+ 1

p4
, the following inequality holds:

∥∥Js(fg)
∥∥
Lp
≤ C

(
‖Jsf‖Lp1‖g‖Lp2 + ‖Jsg‖Lp3 ‖f‖Lp4

)
,

where the constant C > 0 depends on s, p, p1, · · · , p4. In particular, when s > 1
p , then∥∥Js(fg)

∥∥
Lp
≤ C‖Jsf‖Lp‖Jsg‖Lp ,

where the constant C > 0 depends on s, p.

Remark 2.2. The estimate above was originally obtained in whole space case, but it also holds for
the periodic functions, via replacing f by f(x)− f(0) and the zero extension.

Lemma 2.3. The following inequalities hold:
(i) For any γ ≥ 0, γ1 >

1
2 , f(x) ∈ Hγ(T), g(x) ∈ H1+γ+γ1(T), then〈

Jγf, Jγ(∂xf · g)
〉
. ‖f‖2Hγ‖g‖H1+γ+γ1 .

(ii) For any γ > 1
2 , f(x) ∈ Hγ(T), g(x) ∈ H1+γ(T), then〈

Jγf, Jγ(∂xf · g)
〉
. ‖f‖2Hγ‖g‖H1+γ .
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2.2. Direct exponential integrators. To motivate our new scheme in the next section, we con-
sider here some direct exponential integrators for the KdV equation (1.1) and point out their limi-
tations.

In the framework of exponential-type integrators [11], we begin with the Duhamel formula of
(1.1):

u(tn+1) = e−τ∂
3
xu(tn)−

∫ τ

0

e−(τ−s)∂
3
x

k
∂x
(
u(tn + s)k

)
ds. (2.1)

The simplest approach is to directly use u(tn + s) ≈ u(tn) in the above integral, which apparently
costs three spatial derivatives of the solution. Denote un ≈ u(tn), we obtain the scheme that will
be referred as EI1 :

un+1 = e−τ∂
3
xun − 1− e−τ∂

3
x

k∂2x
(un)

k
, n ≥ 0. (2.2)

Concerning the operator ∂x in the integrant of (2.1), EI1 in total needs four additional derivatives
of the solution to guarantee its accuracy. The request of four derivatives of the solution is too much

for rough data case. Therefore, one comes up with the filtered variable u(t) := et∂
3
xu(t) and (2.1)

becomes

u (tn+1) = u (tn)−
∫ τ

0

e(tn+s)∂
3
x

k
∂x

(
e−(tn+s)∂

3
xu (tn + s)

)k
ds.

Now the approximation u(tn + s) ≈ u(tn) loses only one derivative, and so

u (tn+1) ≈u (tn)−
∫ τ

0

e(tn+s)∂
3
x

k
∂x

(
e−(tn+s)∂

3
xu (tn)

)k
ds, (2.3)

which costs in total two additional derivatives at this level. To close the scheme, one needs to
further evaluate the above integration on the right-hand-side. Note that with the Fourier expansion
of u(tn), this integral can always be done exactly in the frequency space, but that would involve
k-th many convolutions. Certainly the direct computing of convolution is not welcome for practical
implementations, and one therefore look for chances to apply the fast algorithms.

For k = 2, the convolution can be factorized thanks to an elegant algebraic structure: (l1 + l2)3−
l31 − l32 = 3(l1 + l2)l1l2 [12], and so the integral in (2.3) can be done precisely in the physical space
where the fast Fourier transform (FFT) can then be applied. In the case, several low-regularity
integrators have been designed [41, 42]. For k = 3, although the algebraic structure for the three-
frequency case fail, a low-regularity integrator has also been established [38] very recently under the
help of Miura’s transform.

However for k ≥ 4, the previous techniques will all fail. There is no algebraic structure for factor-
izing nor magic Miura-type transform to reduce the power of nonlinearity. Further approximations
to the integral in (2.3) is definitely needed, which is quite difficult because of the complex resonance
structure from the high order nonlinearity. More precisely, one has to further approximate the op-

erator e±(tn+s)∂
3
x in (2.3), and this will certainly cost more derivatives. In such way, here we briefly

write down an approximation for (2.3) in the same spirit as in [38]: replace the Airy operator with

a Schrödinger operator [34], i.e., es∂
3
x ≈ eis∂

2
x , and

u(tn+1) ≈u(tn)− 1

k
Re

∫ τ

0

etn∂
3
x+is∂

2
x∂x

(
e−tn∂

3
xu(tn)

)k
ds

=u(tn) +
1

k
Re

[
ietn∂

3
x+iτ∂

2
x∂−1x

(
e−tn∂

3
xu(tn)

)k]
.

By inverting the filtered variable, it leads to the scheme that will be referred as EI2 :

un+1 = e−τ∂
3
xun +

1

k
Re
[
ie−τ∂

3
x+iτ∂

2
x∂−1x (un)

k
]
, n ≥ 0. (2.4)

The EI2 is proved to give the first order accuracy with the cost of three spatial derivatives in [38]
for the case k = 3. The result and proof can be straightforwardly extended to the case k ≥ 4.
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3. The new scheme and main theorem

In this section, we shall begin with the construction of our new exponential integrator for the
gKdV equation (1.1) based on the gauge transform. So in the following, k ≥ 4 is considered. Then,
we shall give the main result of the paper on the convergence of the scheme.

3.1. Gauge transformation. We introduce the gauge transform for the solution of (1.1) as

w(t, x) := u
(
t, x+

1

2π

∫ t

0

∫
T
u(ρ, x)k−1dxdρ

)
. (3.1)

Note that u(t, x) is a periodic function in x on T for every t, so
∫
T (u(t, x))

k−1
dx =

∫
T (w(t, x))

k−1
dx.

The transformation is invertible. Indeed, we have the inverse transform as

u(t, x) = w
(
t, x− 1

2π

∫ t

0

∫
T
w(ρ, x)k−1dxdρ

)
. (3.2)

Under the gauge transform (3.1), the equation (1.1) is transformed into the following equivalent
form,

∂tw(t, x) + ∂3xw(t, x) = −∂xw(t, x) · w(t, x)k−1 + ∂xw(t, x) · 1

2π

∫
T
w(t, x)k−1dx, (3.3)

with the initial value w(0, x) = u0(x) unchanged.
The purpose of this transform is to eliminate the resonance term coming up from the approxima-

tion of the nonlinearity later, which is the key to avoid the stability issue. This will become clear in
the detailed derivation below and the proof in the next section. Our strategy is to first construct the
numerical solution to (3.3), and then obtain the one of (1.1) by the inverse gauge transformation.

3.2. Derivation of the scheme. Based on (3.3), we construct the numerical solution in the frame-
work of the exponential-type time integrator. The Duhamel formula of (3.3) at some tn reads

w (tn+1) =e−τ∂
3
xw (tn)−

∫ τ

0

e−(τ−s)∂
3
x

[
∂xw(tn + s) · w (tn + s)

k−1
]
ds

+

∫ τ

0

e−(τ−s)∂
3
x

[
∂xw (tn + s) · 1

2π

∫
T
w (tn + s)

k−1
dx
]
ds.

By introducing the twisted variable v(t) := et∂
3
xw(t), the above formula can be rewritten as

v (tn+1) =v (tn)−
∫ τ

0

e(tn+s)∂
3
x

[ (
e−(tn+s)∂

3
x∂xv(tn + s)

)
·
(

e−(tn+s)∂
3
xv (tn + s)

)k−1 ]
ds

+

∫ τ

0

∂xv (tn + s) · 1

2π

∫
T

(
e−(tn+s)∂

3
xv (tn + s)

)k−1
dxds. (3.4)

Applying the approximation v (tn + s) ≈ v (tn), we have

v (tn+1) = v (tn) + I1(tn) + I2(tn) +Rn1 , (3.5)

where we denote

I1(tn) :=−
∫ τ

0

e(tn+s)∂
3
x

[ (
e−(tn+s)∂

3
x∂xv(tn)

)
·
(

e−(tn+s)∂
3
xv(tn)

)k−1 ]
ds, (3.6a)

I2(tn) :=

∫ τ

0

∂xv(tn) · 1

2π

∫
T

(
e−(tn+s)∂

3
xv(tn)

)k−1
dxds, (3.6b)
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and

Rn1 :=−
∫ τ

0

e(tn+s)∂
3
x

[ (
e−(tn+s)∂

3
x∂xv(tn + s)

)
·
(

e−(tn+s)∂
3
xv (tn + s)

)k−1
−
(

e−(tn+s)∂
3
x∂xv(tn)

)
·
(

e−(tn+s)∂
3
xv (tn)

)k−1 ]
ds

+

∫ τ

0

e(tn+s)∂
3
x

[ (
e−(tn+s)∂

3
x∂xv (tn + s)

)
· 1

2π

∫
T

(
e−(tn+s)∂

3
xv (tn + s)

)k−1
dx

−
(

e−(tn+s)∂
3
x∂xv (tn)

)
· 1

2π

∫
T

(
e−(tn+s)∂

3
xv (tn)

)k−1
dx
]
ds. (3.7)

The term Rn1 would be the truncation term. We shall show later in the detailed analysis that
Rn1 = O(τ2) and it depends on the second order derivative of the solution. Then to derive the
scheme based on (3.5), it remains to evaluate I1(tn) and I2(tn). In order to get a practically efficient
scheme as we discussed before, one should avoid convolutions in the Fourier frequency space. A
closed form with point-wise definition in the physical space would be the ultimate goal and the key
for approximating I1(tn) and I2(tn), because that would possibly allow us to apply fast algorithms.
This will be further cleared in the derivation below.

Before we step into the detailed calculations, let us first briefly describe the main ideas and their
motivations. By taking the Fourier transform on I1(tn), we get

Î1(tn, l) = −
∫ τ

0

∑
l=l1+l2+···+lk

e−i(tn+s)(l
3−l31−l

3
2−···−l

3
k)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds, (3.8)

where l, l1, l2, · · · , lk ∈ Z. As mentioned, the phase function l3− l31− l32−· · ·− l3k is the obstacle if we
integrate directly, since it cannot be factorized. To overcome this difficulty and meanwhile reduce
the cost of derivatives, we need to find a new technique to approximate the exponential term

e−is(l
3−l31−l

3
2−···−l

3
k).

With the EI2 (2.4) in mind which costs three derivatives for the first order accuracy, here we thus
aim for a first-order scheme with the cost of two derivatives at most. We begin by rewriting

l3 − l31 − l32 − · · · − l3k = α+ β,

where

α = l3 − l31 − (l2 + · · ·+ lk)3, β = (l2 + · · ·+ lk)3 − l32 − · · · − l3k.

Then, we split the exponential term into:

e−is(α+β) = e−isα + (e−isβ − 1)e−isα,

and so (3.8) is split into

Î1(tn, l)

=−
∑

l=l1+l2+···+lk

e−itn(l
3−l31−l

3
2−···−l

3
k)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)

∫ τ

0

e−isαds (3.9a)

−
∑

l=l1+l2+···+lk

e−itn(l
3−l31−l

3
2−···−l

3
k)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)

∫ τ

0

(e−isβ − 1)e−isαds.

(3.9b)

Noting l = l1 + l2 + · · ·+ lk, (3.9a) is factorable:

α = 3ll1(l2 + · · ·+ lk).

If l 6= 0, l1 6= 0, and l2 + · · ·+ lk 6= 0, we then find∫ τ

0

e−isαds =
e−iτα − 1

−iα
=

e−iτα − 1

−i3ll1(l2 + · · ·+ lk)
, (3.10)
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which implies that (3.9a) can be exactly defined pointwisely in the physical space. The three special
cases l = 0 or l1 = 0 or l2 + · · ·+ lk = 0 will have to be considered separately for (3.8). Let us here
quickly check the case l2 + · · ·+ lk = 0 in (3.8), where we can find∫ τ

0

∑
l=l1+...+lk
l2+···+lk=0

e−i(tn+s)(l
3−l31−l

3
2−···−l

3
k)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds

=
∑
l=l1

l2+···+lk=0

(il1)v̂(tn, l1)

∫ τ

0

e−i(tn+s)(−l
3
2−···−l

3
k)v̂(tn, l2) · · · v̂(tn, lk)ds

=∂xv(tn)

∫ τ

0

1

2π

∫
T

(
e−(tn+s)∂

3
xv(tn)

)k−1
dxds.

The above term matches precisely with the I2(tn) that we introduced in (3.6b), and so it will be
cancelled in (3.5) by I2(tn). Note that the term I2(tn) comes from (3.3) which is in fact induced by
the gauge transformation. Now our motivation to introduce the transformation becomes clear. If
one works directly on (1.1) without using the gauge transformation, the term ∂xv(tn) in the above
will present explicitly in the final scheme, which would cause unbalanced norms in the numerical
solution from n to n+1 and consequently lead to instability. As for (3.9b), it can be treated directly
as a truncation, since ∣∣(e−isβ − 1)e−isα

∣∣ ≤ s|β| and |β| .
∑
j 6=k 6=1

|lj |2|lk|.

The truncation error is therefore O(τ2) with the cost of only two spatial derivatives.
Now we are ready to present the derivation for the scheme. By the above discussion, we divide

(3.8) into the following terms:

Î1(tn, l) =−
∫ τ

0

∑
l=l1+l2+···+lk=0

e−i(tn+s)(α+β)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds (3.11a)

−
∫ τ

0

∑
l=l1+l2+···+lk 6=0

l1=0

e−i(tn+s)(α+β)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds (3.11b)

−
∫ τ

0

∑
l=l1

e−i(tn+s)(α+β)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds (3.11c)

−
∫ τ

0

∑
l=l1+l2+···+lk 6=0
l1 6=0,l2+···+lk 6=0

e−i(tn+s)(α+β)(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds. (3.11d)

For (3.11a), by the symmetry within l1, . . . , lk, we find

(3.11a) = −1

k

∫ τ

0

∑
l=l1+l2+···+lk=0

e−i(tn+s)(α+β)(il)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds = 0.

It is direct to have (3.11b) = 0 and (3.11c) = −Î2(tn, l). Hence, we have

Î1(tn, l) + Î2(tn, l) = (3.11d).

For (3.11d), it can be approximated as

(3.11d) = −
∫ τ

0

∑
l=l1+l2+···+lk 6=0
l1 6=0,l2+···+lk 6=0

e−itn(α+β)e−isα(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds+ R̂n2 (l), (3.12)
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where

R̂n2 (l) := −
∫ τ

0

∑
l=l1+l2+···+lk 6=0
l1 6=0,l2+···+lk 6=0

e−itn(α+β)
(
e−isβ − 1

)
e−isα(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)ds.

(3.13)

Therefore, (3.12) combined with (3.10) yields

(3.11d) =
∑

l=l1+l2+···+lk 6=0
l1 6=0,l2+···+lk 6=0

e−itn(α+β)
e−iτα − 1

3l(l2 + · · ·+ lk)
v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk) + R̂n2 (l).

The restriction l1 6= 0 can be removed, since when l1 = 0, we have α = 0 and the corresponding
term vanishes. Hence,

(3.11d) =
∑

l=l1+l2+···+lk 6=0
l2+···+lk 6=0

e−itn(α+β)
e−iτα − 1

3l(l2 + · · ·+ lk)
v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk) + R̂n2 (l).

The inverse Fourier transform of the above gives

I1(tn) + I2(tn) =− 1

3
etn+1∂

3
x∂−1x

[(
e−tn+1∂

3
xv(tn)

)
·
(

e−τ∂
3
x∂−1x

(
e−tn∂

3
xv(tn)

)k−1)]
+

1

3
etn∂

3
x∂−1x

[(
e−tn∂

3
xv(tn)

)
·
(
∂−1x

(
e−tn∂

3
xv(tn)

)k−1)]
+Rn2 . (3.14)

Plugging (3.14) into (3.5), we obtain

v (tn+1) =v (tn)− 1

3
etn+1∂

3
x∂−1x

[(
e−tn+1∂

3
xv(tn)

)
·
(

e−τ∂
3
x∂−1x

(
e−tn∂

3
xv(tn)

)k−1)]
+

1

3
etn∂

3
x∂−1x

[(
e−tn∂

3
xv(tn)

)
·
(
∂−1x

(
e−tn∂

3
xv(tn)

)k−1)]
+Rn1 +Rn2 . (3.15)

By inverting the twisted variable w(t) = e−t∂
3
xv(t) and dropping Rn1 , R

n
2 , we find the approximation:

w (tn+1) ≈Φ
(
w(tn)

)
,

with

Φ(f) :=e−τ∂
3
xf − 1

3
∂−1x

[(
e−τ∂

3
xf
)
·
(

e−τ∂
3
x∂−1x fk−1

)]
+

1

3
e−τ∂

3
x∂−1x

(
f · ∂−1x fk−1

)
. (3.16)

Finally, we invert the gauge transformation. Approximating the time integral in (3.2) by a Riemann
sum/left-rectangle rule, we obtain

u(tn, x) ≈ w
(
tn, x−

τ

2π

n−1∑
j=0

∫
T
w(tj , x)k−1dx

)
.

Accordingly, the detailed final form of the scheme is summarized as follows. Denote un = un(x) ≈
u(tn, x) as the numerical solution of (1.1) for n ≥ 0. The first-order gauge-transformed exponential
integrator (GTEI) for solving the gKdV equation (1.1) reads: w0(x) = u0(x), and for n ≥ 0,

un+1(x) = wn+1
(
x− τ

2π

n∑
j=0

∫
T
(wj(x))k−1dx

)
, wn+1(x) = Φ

(
wn(x)

)
. (3.17)

Practically, the above GTEI can be implemented as follows. The propagator Φ in (3.16) in space
can be discretized by the Fourier pseudo-spectral method [36]. With the help of the FFT, the
computational cost from wn to wn+1 is O(N logN) with N the number of spatial grid points. If one
is only interested in the value of u(t, x) at a specific time t, GTEI can proceed completely in wn till
t = tn and then perform the shift in space which can be done by trigonometric interpolations. Such
trigonometric interpolations can be accelerated via the non-uniform FFT [10] if the intermediate
values of u within [0, t] is frequently needed. Note that inside the space-shift in (3.17), one only needs
the average value of (wj(x))k−1 in space, so there is no need to store the full function wj(x) for all
j. The average of (wj(x))k−1 corresponds the zero-mode of its Fourier coefficient, or equivalently it
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can be obtained by a direct Riemann sum on the spatial grids. Concerning that the gKdV equations
may generate finite-time blowups, e.g., [5, 27], so the scheme (3.17) in principle would work before
the occurrence of blowups.

3.3. Main convergence result. For the proposed GTEI scheme, we have the following main result
on its convergence.

Theorem 3.1. Consider the gKdV equation (1.1) for any k ≥ 2. Let un be the numerical solution
obtained from the GTEI scheme (3.17) up to some fixed time T ∈ (0, T ∗) with T ∗ > 0 the maximum
time for the existence of the solution. Under the assumption that u0 ∈ Hγ+2(T) for some γ ≥ 0,
there exist constants τ0, C > 0 such that for any 0 < τ ≤ τ0 we have

‖u(tn, ·)− un‖Hγ ≤ Cτ, n = 0, 1 . . . ,
T

τ
,

where the constants τ0 and C depend on T , k and ‖u‖L∞((0,T );Hγ+2).

The above theorem tells that the proposed GTEI scheme is indeed first order accurate with the
cost of only two derivatives as desired, and so its regularity requirement is lower than the direct EIs
in Section 2.2. This fact would make it more accurate for solving the gKdV equations (1.1) under
the rough data case, and we will further illustrate this by numerical experiments later. The next
section will be devoted to the rigorous proof of Theorem 3.1.

4. The first-order convergence analysis

In this section, we give the rigorous proof of Theorem 3.1 for the convergence of the proposed
GTEI scheme (3.17). To do so, it is essential to firstly consider the convergence result on the
transformed equation (3.3). This is stated in the following proposition.

Proposition 4.1. Under the same assumptions of Theorem 3.1, let wn be the numerical solution
from (3.17) for the gauge-transformed gKdV equation (3.3) up to the fixed T > 0. Then, there exist
constants τ0, C > 0 such that for any 0 < τ ≤ τ0,

‖w(tn, ·)− wn‖Hγ ≤ Cτ, n = 0, 1, . . . ,
T

τ
, (4.1)

where the constants τ0 and C depend on T , k and ‖w‖L∞((0,T );H2+γ).

To establish (4.1), it is more convenient to work on the twisted variable v(t) = et∂
3
xw(t), since our

approximations in Section 3.2 are mainly made based on (3.4). Under the assumption of Theorem
3.1 or Proposition 4.1, note that we have u, v, w ∈ L∞((0, T );Hγ+2(T)). We shall denote L∞t H

s
x =

L∞((0, T );Hs(T)) for short. Defining vn := etn∂
3
xwn, we have

‖w(tn, ·)− wn‖Hγ = ‖v(tn, ·)− vn‖Hγ ,

and so it reduces to consider the difference between the numerical solution vn and the exact solution
v(tn) of (3.4). Noticing the calculations in (3.11)-(3.14), it is direct to check that

− 1

3
etn+1∂

3
x∂−1x

[(
e−tn+1∂

3
xv(tn)

)
·
(

e−τ∂
3
x∂−1x

(
e−tn∂

3
xv(tn)

)k−1)]
+

1

3
etn∂

3
x∂−1x

[(
e−tn∂

3
xv(tn)

)
·
(
∂−1x

(
e−tn∂

3
xv(tn)

)k−1)]
=−

∫ τ

0

∑
l=l1+l2+···+lk 6=0
l1 6=0,l2+···+lk 6=0

e−itn(α+β)e−isα(il1)v̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk)eilxds (4.2)

=−
∫ τ

0

e(tn+s)∂
3
x

[(
e−(tn+s)∂

3
x∂xv

)
·
(

e−s∂
3
x

(
e−tn∂

3
xv
)k−1)]

ds+
τ

2π
∂xv ·

∫
T

(
e−tn∂

3
xv
)k−1

dx.
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By (3.15), we then define the numerical propagator Φn for the twisted variable as

Φn
(
v
)

:=v −
∫ τ

0

e(tn+s)∂
3
x

[(
e−(tn+s)∂

3
x∂xv

)
·
(

e−s∂
3
x

(
e−tn∂

3
xv
)k−1)]

ds

+
τ

2π
∂xv ·

∫
T

(
e−tn∂

3
xv
)k−1

dx, (4.3)

and so we have

v
(
tn+1

)
− Φn

(
v(tn)

)
= Rn1 +Rn2 . (4.4)

We rewrite

v
(
tn+1

)
− vn+1 = v

(
tn+1

)
− Φn

(
v(tn)

)
−
[
Φn
(
vn
)
− Φn

(
v(tn)

)]
, (4.5)

and the proof of Proposition 4.1 then breaks down into the following two estimates:

• Local error:
∥∥v(tn+1

)
− Φn

(
v(tn)

)∥∥
Hγ
≤ Cτ2;

• Stability:
∥∥Φn

(
vn
)
− Φn

(
v(tn)

)∥∥
Hγ
≤ (1 + Cτ)‖v(tn)− vn‖Hγ .

4.1. Local error. The local error estimate is established in the following proposition.

Proposition 4.2. Let γ ≥ 0 and v ∈ L∞t H
2+γ
x , then for any γ0 ∈ [γ, 1 + γ], there exists some

constant C = C(‖v‖L∞t H2+γ
x

) > 0 such that∥∥v(tn+1

)
− Φn

(
v(tn)

)∥∥
Hγ0
≤ Cτ1+α, for α = 1 + γ − γ0.

By (4.4), the proof of Proposition 4.2 consists of the estimates for Rn1 and Rn2 given in the
following two lemmas in a sequel.

Lemma 4.3. Under the same setup as in Proposition 4.2,∥∥Rn1∥∥Hγ0 ≤ Cτ1+α.
Proof. According to the definition of Rn1 in (3.7), we rewrite

Rn1 =−
∫ τ

0

e(tn+s)∂
3
x

[ (
e−(tn+s)∂

3
x∂x
(
v(tn + s)− v(tn)

))
·
(

e−(tn+s)∂
3
xv (tn + s)

)k−1 ]
ds (4.6)

+ other similar terms,

where “other similar terms” are the terms that contain the difference v(tn + s) − v(tn) similar as
in (4.6). They can be estimated by the same manner presented below and so we omit the details
for them here for brevity. For (4.6), by Lemma 2.1 and Sobolev’s inequality, we have that for any
1
2 < γ1 ≤ 1,

‖(4.6)‖Hγ0 .
∫ τ

0

(∥∥Jγ0∂x(v(tn + s)− v(tn)
)∥∥
L2

∥∥(e−(tn+s)∂3
xv(tn + s)

)k−1∥∥
L∞

+
∥∥∂x(v(tn + s)− v(tn)

)∥∥
L2

∥∥Jγ0(e−(tn+s)∂3
xv(tn + s)

)k−1∥∥
L∞

)
ds

.
∫ τ

0

(∥∥∂x(v(tn + s)− v(tn)
)∥∥
Hγ0
‖v‖k−1

L∞t H
γ1
x

+
∥∥∂x(v(tn + s)− v(tn)

)∥∥
L2 ‖v‖k−1L∞t H

γ0+γ1
x

)
ds

.τ ‖v(tn + s)− v(tn)‖Hγ0+1 ‖v‖k−1
L∞t H

γ0+1
x

.

Denote a frequency decomposition as v =
∑
|l|≤M v̂eilx +

∑
|l|>M v̂eilx =: P≤Mv+P>Mv with some

M > 0 to be determined. Then,

‖v(tn + s)− v(tn)‖Hγ0+1 ≤
∥∥P≤M (v(tn + s)− v(tn))

∥∥
Hγ0+1 +

∥∥P>M (v(tn + s)− v(tn))
∥∥
Hγ0+1 .

By the Bernstein inequality, we have∥∥P≤M (v(tn + s)− v(tn))
∥∥
Hγ0+1 ≤M1−α ‖v(tn + s)− v(tn)‖Hγ0+α ,∥∥P>M (v(tn + s)− v(tn))
∥∥
Hγ0+1 ≤M−α ‖v(tn + s)− v(tn)‖Hγ0+1+α .
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On the one hand, by (3.3) the twisted variable v = v(t) satisfies ∂tv = ∂xv · 1
2π

∫
T(e−t∂

3
xv)k−1dx −

et∂
3
x [(∂xe−t∂

3
xv) · (e−t∂3

xv)k−1], and so by Lemma 2.1 we find

‖v(tn + s)− v(tn)‖Hγ0+α .τ ‖∂tv‖L∞t Hγ0+α
x

. τ ‖v‖k
L∞t H

γ0+α+1
x

.

Then, ∥∥P≤M (v(tn + s)− v(tn))
∥∥
Hγ0+1 ≤M1−ατ ‖v‖k

L∞t H
γ0+α+1
x

. (4.7)

On the other hand, clearly ‖v(tn + s)− v(tn)‖Hγ0+1+α . ‖v‖L∞t Hγ0+1+α
x

. Therefore,∥∥P>M (v(tn + s)− v(tn))
∥∥
Hγ0+1 ≤M−α‖v‖L∞t Hγ0+1+α

x
. (4.8)

Combining the estimates (4.7) and (4.8), we get

‖v(tn + s)− v(tn)‖Hγ0+1 ≤M1−ατ ‖v‖k
L∞t H

γ0+α+1
x

+M−α‖v‖
L∞t H

γ0+1+α
x

.

Choosing M = τ−1 and noting γ0 + 1 + α = 2 + γ, we have

‖v(tn + s)− v(tn)‖Hγ0+1 ≤ τα ‖v‖kL∞t Hγ+2
x

+ τα‖v‖L∞t Hγ+2
x

.

This implies that ‖(4.6)‖Hγ0 ≤ C
(
‖v‖L∞t H2+γ

x

)
τ1+α and the proof is completed. �

Lemma 4.4. Under the same setup as in Proposition 4.2,∥∥Rn2∥∥Hγ0 ≤ Cτ1+α.
Proof. By Plancherel’s identity, we have ‖Rn2 ‖2Hγ0 =

∑
l

|l|2γ0
∣∣R̂n2 (l)

∣∣2. By (3.13) and noting that∣∣eisβ − 1
∣∣ . (s|β|)α for 0 ≤ α = 1 + γ − γ0 ≤ 1,

we find ∣∣R̂n2 (l)
∣∣ ≤ ∫ τ

0

∑
l=l1+l2+···+lk 6=0
l1 6=0,l2+···+lk 6=0

(s|β|)α|l1||v̂(tn, l1)||v̂(tn, l2)| · · · |v̂(tn, lk)|ds.

By symmetry, we may assume that |l2| ≥ |l3| ≥ · · · ≥ |lk|. Then we get

|β| . |l2|2|l3|,

which gives ∣∣R̂n2 (l)
∣∣ ≤ τ1+α ∑

l=l1+l2+···+lk
|l2|≥|l3|≥···≥|lk|

|l1||l2|2α|l3|α|v̂(tn, l1)||v̂(tn, l2)| · · · |v̂(tn, lk)|.

To simplify the notations for presentations below, we denote ṽ(t, x) =
∑
k∈Z eikx|v̂(t, k)|. Then, we

have ̂̃v(t, k) = |v̂(t, k)| and

‖ṽ‖2Hγ0 =2π
∑
k∈Z

(1 + k2)γ0
∣∣̂̃vk(t)

∣∣2 = 2π
∑
k∈Z

(1 + k2)γ0 |v̂k(t)|2 = ‖v‖2Hγ0 .

Hence, we may abuse the notations and assume directly that v̂(tn, l) ≥ 0 for any l ∈ Z, otherwise

one may replace v by ṽ. According to this reduction, we further control R̂n2 (l) as∣∣R̂n2 (l)
∣∣ . τ1+α ∑

l=l1+l2+···+lk

|l1||l2|2α|l3|αv̂(tn, l1)v̂(tn, l2) · · · v̂(tn, lk).

Then by Plancherel’s identity, we have∥∥Rn2∥∥Hγ0 . τ1+α∥∥Jγ0 (J1v · J2αv · Jαv · vk−3
) ∥∥

L2 . (4.9)

Now the estimate of (4.9) is split into the following two cases:

Case 1: 0 ≤ α ≤ 1

2
; Case 2:

1

2
< α ≤ 1.
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Case 1: 0 ≤ α ≤ 1
2 . In this case, to apply Lemma 2.1, we take the following parameters: let

0 < ε� 1,

p1 =


2, when α = 0,(1

2
− ε
)−1

, when α > 0;
p2 =

{
+∞, when α = 0,

ε−1, when α > 0.

By Sobolev’s inequality and choosing ε small enough, we have the following embedding inequalities:

‖f‖Lp1 . ‖f‖Hα , ‖J2αf‖Lp2 . ‖f‖H1+α . (4.10)

Therefore, by (4.9), Lemma 2.1, (4.10) and Sobolev’s inequality, we obtain∥∥Rn2∥∥Hγ0 .τ1+α∥∥J1+γ0v(tn)
∥∥
Lp1

∥∥J2αv(tn)
∥∥
Lp2

∥∥Jαv(tn)
∥∥
L∞
‖v(tn)‖k−3L∞

+ τ1+α
∥∥J1v(tn)

∥∥
Lp1

∥∥J2α+γ0v(tn)
∥∥
Lp2

∥∥Jαv(tn)
∥∥
L∞
‖v(tn)‖k−3L∞

.τ1+α‖v‖
L∞t H

1+γ0+α
x

‖v‖L∞t H1+α
x
‖v‖L∞t H1+α

x
‖v‖k−3L∞t H

1
x

+ τ1+α‖v‖L∞t H1+α
x
‖v‖

L∞t H
1+γ0+α
x

‖v‖L∞t H1+α
x
‖v‖k−3L∞t H

1
x

.τ1+α‖v‖k
L∞t H

2+γ
x

.

Case 2: 1
2 < α ≤ 1. Noting that 2α ≤ 1 + α, 1 + γ0 + α = 2 + γ and Hα(T) ↪→ L∞(T), by (4.9) we

then have

‖Rn2 ‖Hγ0 .τ1+α
∥∥J1+γ0v(tn)

∥∥
L∞

∥∥J2αv(tn)
∥∥
L2

∥∥Jαv(tn)
∥∥
L∞
‖v(tn)‖k−3L∞

+ τ1+α
∥∥J1v(tn)

∥∥
L∞

∥∥J2α+γ0v(tn)
∥∥
L2

∥∥Jαv(tn)
∥∥
L∞
‖v(tn)‖k−3L∞

.τ1+α‖v‖
L∞t H

1+γ0+α
x

‖v‖L∞t H2α
x
‖v‖L∞t H1+α

x
‖v‖k−3L∞t H

1
x

+ τ1+α‖v‖L∞t H1+α
x
‖v‖

L∞t H
γ0+2α
x

‖v‖L∞t H1+α
x
‖v‖k−3L∞t H

1
x

.τ1+α‖v‖k
L∞t H

2+γ
x

.

This finishes the proof of the lemma. �

Proposition 4.2 is therefore proved by combining the results of Lemmas 4.3&4.4.

4.2. Stability. For short, we denote en = v(tn) − vn as the error, and we have the following
proposition stating the propagation of the error under two different norms.

Proposition 4.5. Let γ ≥ 0, γ0 ∈ ( 1
2 , 1 + γ) and v ∈ L∞t H2+γ

x , then∥∥Φn
(
v(tn)

)
− Φn

(
vn
)∥∥
Hγ
≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖Hγ + τ

2
5Q(‖en‖Hγ0 )‖en‖2Hγ ,∥∥Φn

(
v(tn)

)
− Φn

(
vn
)∥∥
Hγ0
≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖Hγ0 + τ−1‖en‖3Hγ ,

where Q(f) =
2k−4∑
l=0

Clf
l for some positive constants Cl depend only on k and ‖v‖L∞t H2+γ

x
.

Proof. By (4.3) and recalling that w(tn) = e−tn∂
3
xv(tn), wn = e−tn∂

3
xvn, we have

Φn
(
v(tn)

)
− Φn

(
vn
)

=en −
∫ τ

0

e(tn+s)∂
3
x

[
e−s∂

3
x∂xw(tn) · e−s∂

3
xw(tn)k−1

]
ds

+

∫ τ

0

e(tn+s)∂
3
x

[
e−s∂

3
x∂xw

n · e−s∂
3
x
(
wn
)k−1]

ds

+
τ

2π
∂xv(tn)

∫
T
w(tn)k−1dx− τ

2π
∂xv

n

∫
T

(
wn
)k−1

dx.
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Denote ẽn = w(tn)−wn, and then ẽn = e−tn∂
3
xen. By merging suitably the terms, we further obtain

Φn
(
v(tn)

)
− Φn

(
vn
)

=en −
∫ τ

0

e(tn+s)∂
3
x

{
e−s∂

3
x∂xw(tn) · e−s∂

3
x

[
C1ẽnw(tn)k−2 + C2ẽ

2
nw(tn)k−3 + · · ·+ Ck−1ẽ

k−1
n

]}
ds

+
τ

2π
∂xv(tn) ·

∫
T

[
C1ẽnw(tn)k−2 + C2ẽ

2
nw(tn)k−3 + · · ·+ Ck−1ẽ

k−1
n

]
dx

−
∫ τ

0

e(tn+s)∂
3
x

{
e−s∂

3
x∂xẽn · e−s∂

3
x

[
C̃1w(tn)k−1 + C̃2ẽnw(tn)k−2 + · · ·+ C̃kẽ

k−1
n

]}
ds

+
τ

2π
∂xen ·

∫
T

[
C̃1w(tn)k−1 + C̃2ẽnw(tn)k−2 + · · ·+ C̃kẽ

k−1
n

]
dx,

for some positive constants Cj , j = 1, · · · , k − 1 and C̃j , j = 1, · · · , k. Moreover, we denote

S0 :=−
∫ τ

0

e(tn+s)∂
3
x

{
e−s∂

3
x∂xw(tn) · e−s∂

3
x

[
C1ẽnw(tn)k−2 + C2ẽ

2
nw(tn)k−3 + · · ·+ Ck−1ẽ

k−1
n

]}
ds

+
τ

2π
∂xv(tn) ·

∫
T

[
C1ẽnw(tn)k−2 + C2ẽ

2
nw(tn)k−3 + · · ·+ Ck−1ẽ

k−1
n

]
dx,

and

Sj :=C̃j
τ

2π
∂xen ·

∫
T
ẽj−1n w(tn)k−jdx− C̃j

∫ τ

0

e(tn+s)∂
3
x

{
e−s∂

3
x∂xẽn · e−s∂

3
x

[
ẽj−1n w(tn)k−j

]}
ds,

(4.11)
for j = 1, . . . , k. Then, we may write

Φn
(
v(tn)

)
− Φn

(
vn
)

= en + S0 + S1 + · · ·+ Sk,

and for κ = γ or γ0, we have∥∥Φn
(
v(tn)

)
− Φn

(
vn
)∥∥2
Hκ
≤‖en‖2Hκ + 2

k∑
j=0

∣∣〈Jκen, JκSj〉∣∣+ (k + 1)

k∑
j=0

∥∥Sj∥∥2Hκ . (4.12)

The estimates for the right-hand-side of (4.12) are separated into the following three lemmas.

Lemma 4.6. For the part of S0 in (4.12), with κ = γ or γ0 we have∣∣〈Jκen, JκS0

〉∣∣+ ‖S0‖2Hκ ≤ τQ(‖en‖Hγ0 )‖en‖2Hκ .

Proof. By Lemma 2.1, Sobolev’s and Cauchy-Schwarz’s inequalities, we obtain that for any γ ≥ 0,

‖S0‖Hγ . τ‖∂xw(tn)‖Hγ+γ1 ‖ẽn‖L2

(
‖w(tn)‖k−2Hγ1 + ‖ẽn‖k−2Hγ1

)
+ τ‖∂xw(tn)‖Hγ1‖ẽn‖Hγ

(
‖w(tn)‖k−2Hγ1 + ‖ẽn‖k−2Hγ1

)
+ τ‖∂xw(tn)‖Hγ1 ‖ẽn‖L2‖w(tn)‖Hγ+γ1

(
‖w(tn)‖k−3Hγ1 + ‖ẽn‖k−2Hγ1

)
.

Here γ1 >
1
2 is an arbitrary constant. By choosing γ1 = min{γ0, 1} and noting ‖ẽn‖Hγ = ‖en‖Hγ ,

we get

‖S0‖Hγ ≤ Cτ‖en‖Hγ
(
1 + ‖en‖k−2Hγ0

)
, (4.13)

where the constant C depends only on k and ‖w‖L∞t H2+γ
x

. Similarly, since γ0 >
1
2 and noting that

γ0 < 1 + γ, we have

‖S0‖Hγ0 . τ‖∂xw(tn)‖Hγ0 ‖ẽn‖Hγ0
(
‖w(tn)‖k−2Hγ0 + ‖ẽn‖k−2Hγ0

)
≤ Cτ‖en‖Hγ0

(
1 + ‖en‖k−2Hγ0

)
. (4.14)

The estimates (4.13) and (4.14) together show that ‖S0‖Hκ ≤ Cτ‖en‖Hκ
(
1 + ‖en‖k−2Hγ0

)
for κ = γ

or γ0. Then, we find ‖S0‖2Hκ ≤ Cτ2‖en‖2Hκ
(
1 + ‖en‖2k−4Hγ0

)
and∣∣〈Jκen, JκS0

〉∣∣ ≤ ‖en‖Hκ‖S0‖Hκ ≤ Cτ‖en‖2Hκ
(
1 + ‖en‖k−2Hγ0

)
.

This proves the lemma by noting the definition of Q(·) in Proposition 4.5. �
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Lemma 4.7. For the part of S1 in (4.12), with κ = γ or γ0, it holds that∣∣〈Jκen, JκS1

〉∣∣+ ‖S1‖2Hκ ≤ Cτ‖en‖2Hκ .

Proof. We shall estimate the two quantities
〈
Jκen, J

κS1

〉
and

∥∥S1

∥∥2
Hκ

in a sequel. Firstly, for〈
Jκen, J

κS1

〉
, we have∣∣〈Jκen, JκS1

〉∣∣ ≤C̃1

∫ τ

0

∣∣∣〈Jκen, Jκe(tn+s)∂
3
x

{
e−s∂

3
x∂xẽn ·

[
e−s∂

3
xw(tn)k−1

]}〉∣∣∣ ds
+ C̃1

τ

2π

∣∣∣ ∫
T
w(tn)k−1dx

〈
Jκen, J

κ∂xen

〉∣∣∣
=C̃1

∫ τ

0

∣∣∣〈e−s∂
3
xJκẽn, J

κ
{

e−s∂
3
x∂xẽn ·

[
e−s∂

3
xw(tn)k−1

]}〉∣∣∣ds,
where we have used the fact 〈Jκen, Jκ∂xen〉 = 0. Then from Lemma 2.3 (i) with any γ1 >

1
2 , we

have that for κ = γ, ∣∣〈Jγen, JγS1

〉∣∣ . τ‖en‖2Hγ‖w(tn)‖k−1
Hγ+γ1+1 ≤ Cτ‖en‖2Hγ , (4.15)

where we have used the relationship γ + γ1 + 1 < 2 + γ, and the constant C = C(‖v(tn)‖H2+γ ). On
the other hand, by Lemma 2.3 (ii), since γ0 >

1
2 we have that for κ = γ0,∣∣〈Jγ0en, Jγ0S1

〉∣∣ . τ‖en‖2Hγ0‖w(tn)‖k−1
Hγ0+1 ≤ Cτ‖en‖2Hγ0 . (4.16)

The estimates (4.15) and (4.16) together give∣∣〈Jκen, JκS1

〉∣∣ ≤ Cτ‖en‖2Hκ . (4.17)

Next, we estimate
∥∥S1

∥∥2
Hκ

. By similar calculations as in (4.2), the Fourier transform of S1 reads

Ŝ1(l) = −C̃1

∫ τ

0

∑
l=l1+l2+···+lk
l2+···+lk 6=0

e−itn(α+β)e−isαil1ên(l1)v̂(tn, l2) · · · v̂(tn, lk)ds,

and it is straightforward to find out that

S1 =− 1

3
C̃1etn+1∂

3
x∂−1x

[(
e−τ∂

3
x ẽn

)
·
(

e−τ∂
3
x∂−1x w(tn)k−1

)]
+

1

3
C̃1etn∂

3
x∂−1x

[
ẽn · ∂−1x w(tn)k−1

]
− τ

2π
C̃1

∫
T
en ·

[
etn∂

3
x∂xw(tn)k−1

]
dx.

By Lemma 2.1, Sobolev’s and Hölder’s inequalities, we obtain∥∥Jκ∂xS1

∥∥
L2 .

∥∥∥Jκ [(e−τ∂
3
x ẽn

)
·
(

e−τ∂
3
x∂−1x w(tn)k−1

)]∥∥∥
L2

+
∥∥Jκ [ẽn · ∂−1x w(tn)k−1

]∥∥
L2

+ τ

∫
T

∣∣∣en · [etn∂3
x∂xw(tn)k−1

]∣∣∣ dx
.‖en‖Hκ‖w(tn)‖k−1Hκ+1 + τ‖en‖Hκ‖w(tn)‖k−1Hκ+1 . (4.18)

Then, based on (4.11) and using integration-by-parts, we find∥∥S1

∥∥2
Hκ

=
〈
JκS1, J

κS1

〉
=− C̃1

∫ τ

0

〈
JκS1, J

κe(tn+s)∂
3
x

{
e−s∂

3
x∂xẽn ·

[
e−s∂

3
xw(tn)k−1

]}〉
ds

+ C̃1
τ

2π

∫
T
w(tn)k−1dx ·

〈
JκS1, J

κ∂xen

〉
=C̃1

∫ τ

0

〈
Jκ∂xS1, J

κe(tn+s)∂
3
x

{
e−s∂

3
x ẽn ·

[
e−s∂

3
xw(tn)k−1

]}〉
ds

+ C̃1

∫ τ

0

〈
JκS1, J

κe(tn+s)∂
3
x

{
e−s∂

3
x ẽn ·

[
e−s∂

3
x∂xw(tn)k−1

]}〉
ds

− C̃1
τ

2π

∫
T
w(tn)k−1dx ·

〈
Jκ∂xS1, J

κen

〉
.
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By Cauchy-Schwarz’s inequality, we get∥∥S1

∥∥2
Hκ
.
∫ τ

0

∥∥Jκ∂xS1

∥∥
L2

∥∥∥Jκe(tn+s)∂
3
x

{
e−s∂

3
x ẽn ·

[
e−s∂

3
xw(tn)k−1

]}∥∥∥
L2
ds

+

∫ τ

0

∥∥JκS1

∥∥
L2

∥∥∥Jκe(tn+s)∂
3
x

{
e−s∂

3
x ẽn ·

[
e−s∂

3
x∂xw(tn)k−1

]}∥∥∥
L2
ds

+ τ
∥∥w(tn)

∥∥k−1
Lk−1

∥∥Jκ∂xS1

∥∥
L2‖en‖Hκ .

Hence, from (4.18), Lemma 2.1 and Sobolev’s inequality, we get that for any γ ≥ 0, 1
2 < γ1 ≤ 1,∥∥S1

∥∥2
Hγ
.τ
∥∥Jγ∂xS1

∥∥
L2

∥∥en∥∥Hγ∥∥w(tn)
∥∥
Hγ+γ1

+ τ
∥∥JγS1

∥∥
L2

∥∥en∥∥Hγ∥∥w(tn)
∥∥
Hγ+γ1+1

+ τ
∥∥w(tn)

∥∥k−1
Hγ1

∥∥Jγ∂xS1

∥∥
L2‖en‖Hγ

.τ‖en‖2Hγ
∥∥w(tn)

∥∥2k−2
H2+γ .

Similarly, we get that for any 1
2 < γ0 < 1 + γ,∥∥S1

∥∥2
Hγ0
.τ
∥∥Jγ0∂xS1

∥∥
L2

∥∥en∥∥Hγ0∥∥w(tn)
∥∥
Hγ0

+ τ
∥∥Jγ0S1

∥∥
L2

∥∥en∥∥Hγ0∥∥w(tn)
∥∥
Hγ0+1

+ τ
∥∥w(tn)

∥∥k−1
Hγ0

∥∥Jγ0∂xS1

∥∥
L2‖en‖Hγ0

.τ‖en‖2Hγ0
∥∥w(tn)

∥∥2k−2
H2+γ .

Therefore, it infers that for κ = γ or γ0,

‖S1‖2Hκ ≤ Cτ‖en‖2Hκ .
This combining with (4.17), yield the desired estimate of the lemma. �

Lemma 4.8. For the part of Sj in (4.12) with j ≥ 2, we have the following two estimates∣∣〈Jγ0en, Jγ0Sj〉∣∣+ ‖Sj‖2Hγ0 ≤ Q(‖en‖Hγ0 )‖en‖Hγ0
∥∥en∥∥2Hγ + τQ(‖en‖Hγ0 )‖en‖2Hγ0 , (4.19a)∣∣〈Jγen, JγSj〉∣∣+ ‖Sj‖2Hγ ≤ τ

2
5Q(‖en‖Hγ0 )

∥∥en∥∥3Hγ . (4.19b)

Proof. Hγ0-estimate for (4.19a). Similarly as for S1, we can find for Sj with j ≥ 2 in (4.11),

Sj =− 1

3
C̃je

tn+1∂
3
x∂−1x

[
e−τ∂

3
x ẽn · e−τ∂

3
x∂−1x

(
ẽj−1n w(tn)k−j

)]
+

1

3
C̃je

tn∂
3
x∂−1x

[
ẽn · ∂−1x

(
ẽj−1n w(tn)k−j

)]
− τ

2π
C̃j

∫
T
en · etn∂

3
x∂x
[
ẽj−1n w(tn)k−j

]
dx.

For the last term in the above, by integration-by-parts we have the identity:∫
T
en · etn∂

3
x∂x
[
ẽj−1n w(tn)k−j

]
dx =

∫
T
ẽn · ∂x

[
ẽj−1n w(tn)k−j

]
dx =

1

j

∫
T
ẽjn · ∂x

[
w(tn)k−j

]
dx.

Therefore, we further get that

Sj =− 1

3
C̃je

tn+1∂
3
x∂−1x

[
e−τ∂

3
x ẽn · e−τ∂

3
x∂−1x

(
ẽj−1n w(tn)k−j

)]
+

1

3
C̃je

tn∂
3
x∂−1x

[
ẽn · ∂−1x

(
ẽj−1n w(tn)k−j

)]
− τ

2π

C̃j
j

∫
T
ẽjn · ∂x

[
w(tn)k−j

]
dx.

(4.20)

Noting that 1
2 < γ0 < 1 + γ, by Lemma 2.1 and Sobolev’s inequality, we get∥∥Sj∥∥Hγ0 .∥∥∥e−τ∂

3
x ẽn · e−τ∂

3
x∂−1x

[
ẽj−1n w(tn)k−j

]∥∥∥
Hγ

+
∥∥∥ẽn · ∂−1x [

ẽj−1n w(tn)k−j
]∥∥∥
Hγ

+ τ
∣∣∣ ∫

T
ẽjn · ∂x

[
w(tn)k−j

]
dx
∣∣∣

.‖en‖2Hγ‖en‖
j−2
Hγ0

∥∥w(tn)
∥∥k−j
Hγ0

+ τ‖en‖2L2‖en‖j−2Hγ0

∥∥w(tn)
∥∥k−j
Hγ0+1

≤Q(‖en‖Hγ0 )
∥∥en∥∥2Hγ + τQ(‖en‖Hγ0 )

∥∥en∥∥2Hγ0 .
Then (4.19a) follows from the estimate above and the Hölder inequality.



16 B. LI, Y. WU, AND X. ZHAO

Hγ-estimate for (4.19b). With some M ≥ 1 to be determined, we consider a frequency decom-
position to (4.11) as:

Sj =− C̃j
∫ τ

0

e(tn+s)∂
3
x

{
e−s∂

3
x∂xP≤M ẽn · e−s∂

3
x

[
ẽj−1n w(tn)k−j

]}
ds (4.21a)

− C̃j
∫ τ

0

e(tn+s)∂
3
x

{
e−s∂

3
x∂xP>M ẽn · e−s∂

3
x

[
ẽj−1n w(tn)k−j

]}
ds+

C̃jτ

2π
∂xen ·

∫
T
ẽj−1n w(tn)k−jdx,

(4.21b)

and then we estimate the above two parts as follows. For (4.21a), by Lemma 2.1, we have that for
any γ ≥ 0,

‖(4.21a)‖Hγ .
∫ τ

0

∥∥∥e−s∂
3
x∂xP≤M ẽn · e−s∂

3
x

[
ẽj−1n w(tn)k−j

]∥∥∥
Hγ

ds

.
∫ τ

0

∥∥∥Jγe−s∂
3
x∂xP≤M ẽn

∥∥∥
L∞

∥∥∥e−s∂
3
x

[
ẽj−1n w(tn)k−j

]∥∥∥
L2

ds

+

∫ τ

0

∥∥∥e−s∂
3
x∂xP≤M ẽn

∥∥∥
L∞

∥∥∥Jγe−s∂
3
x

[
ẽj−1n w(tn)k−j

]∥∥∥
L2

ds.

Note that by Bernstein’s inequality, we have∥∥∥Jγe−s∂
3
x∂xP≤M ẽn

∥∥∥
L∞
.M

1
2

∥∥∥Jγe−s∂
3
x∂xP≤M ẽn

∥∥∥
L2
.M

3
2 ‖en‖Hγ ,

and similarly, ∥∥∥e−s∂
3
x∂xP≤M ẽn

∥∥∥
L∞
.M

3
2 ‖en‖L2 .

Using these two estimates, Lemma 2.1 and Sobolev’s inequality, we further obtain that for any
γ ≥ 0, γ1 >

1
2 ,

‖(4.21a)‖Hγ .τM
3
2

∥∥en∥∥L2‖en‖Hγ
∥∥en∥∥j−2Hγ1

∥∥w(tn)
∥∥k−j
Hγ+γ1

.

Choosing γ1 = min{γ0, 1}, then we have

‖(4.21a)‖Hγ ≤ τM
3
2Q(‖en‖Hγ0 )

∥∥en∥∥2Hγ . (4.22)

For (4.21b), similar as (4.20), we rewrite it as

(4.21b) =− 1

3
C̃je

tn+1∂
3
x∂−1x

[
e−τ∂

3
xP>M ẽn · e−τ∂

3
x∂−1x

(
ẽj−1n w(tn)k−j

)]
(4.23a)

+
1

3
C̃je

tn∂
3
x∂−1x

[
P>M ẽn · ∂−1x

(
ẽj−1n w(tn)k−j

)]
(4.23b)

+ C̃j
τ

2π
∂xP≤Men ·

∫
T
ẽj−1n w(tn)k−j dx (4.23c)

− τ

2π
C̃j

∫
T
P≤M∂xen · etn∂

3
x
[
ẽj−1n w(tn)k−j

]
dx (4.23d)

− τ

2π

C̃j
j

∫
T
ẽjn · ∂x

[
w(tn)k−j

]
dx, (4.23e)

and we estimate these five terms one by one.
For (4.23a), according to the frequency restriction, there exists some constant c = c(k) > 0 such

that

(4.23a) =− 1

3
C̃je

tn+1∂
3
x∂−1x P>cM

[
e−τ∂

3
xP>M ẽn · e−τ∂

3
x∂−1x

(
ẽj−1n w(tn)k−j

)]
− 1

3
C̃je

tn+1∂
3
x∂−1x

[
e−τ∂

3
xP>M ẽn · e−τ∂

3
x∂−1x P>cM

(
ẽj−1n w(tn)k−j

)]
.
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Therefore, by Beinstein’s inequality, Sobolev’s inequality and Lemma 2.1, we have that for any
γ ≥ 0, γ1 >

1
2 ,∥∥(4.23a)
∥∥
Hγ
.M−1

∥∥∥e−τ∂
3
xP>M ẽn · e−τ∂

3
x∂−1x

(
ẽj−1n w(tn)k−j

)∥∥∥
Hγ

+
∥∥∥Jγ [e−τ∂3

xP>M ẽn · e−τ∂
3
x∂−1x P>cM

(
ẽj−1n w(tn)k−j

)]∥∥∥
L1

.M−1
∥∥en∥∥Hγ ∥∥ẽj−1n w(tn)k−j

∥∥
Hγ

+
∥∥en∥∥Hγ ·M−1 ∥∥P>cM(ẽj−1n w(tn)k−j

)∥∥
Hγ

.M−1
∥∥en∥∥2Hγ∥∥en∥∥j−2Hγ1

∥∥w(tn)
∥∥k−j
Hγ+γ1

≤M−1Q(‖en‖Hγ0 )
∥∥en∥∥2Hγ .

Here γ1 = min{γ0, 1} is chosen in the last step. The term in (4.23b) can be treated similarly as
(4.23a), and we have ∥∥(4.23b)

∥∥
Hγ
≤M−1Q(‖en‖Hγ0 )

∥∥en∥∥2Hγ .
For (4.23c), using Lemma 2.1, Bernstein’s and Sobolev’s inequalities, we can find that for any γ ≥ 0,
1
2 < γ0 < 1 + γ,

‖(4.23c)‖Hγ .τ
∥∥∥∥∂xP≤Men · ∫

T
ẽj−1n w(tn)k−j dx

∥∥∥∥
Hγ
. τ ‖∂xP≤Men‖Hγ

∣∣∣∣∫
T
ẽj−1n w(tn)k−j dx

∣∣∣∣
.τM‖en‖Hγ

∥∥en∥∥L2

∥∥en∥∥j−2Hγ0

∥∥w(tn)
∥∥k−j
Hγ0
≤ τMQ(‖en‖Hγ0 )

∥∥en∥∥2Hγ .
For (4.23d), by Lemma 2.1 and Sobolev’s inequality, we get that for any γ ≥ 0, 1

2 < γ0 < 1 + γ,

‖(4.23d)‖Hγ .τ
∣∣∣∣∫

T
P≤M∂xen · etn∂

3
x
[
ẽj−1n w(tn)k−j

]
dx

∣∣∣∣ . τ ‖∂xP≤Men‖L2

∥∥ẽj−1n w(tn)k−j
∥∥
L2

.τM
∥∥en∥∥2L2

∥∥en∥∥j−2Hγ0

∥∥w(tn)
∥∥k−j
Hγ0
≤ τMQ(‖en‖Hγ0 )

∥∥en∥∥2Hγ .
For (4.23e), by Hölder’s and Sobolev’s inequalities, we obtain that for any 1

2 < γ0 < 1 + γ,

‖(4.23e)‖Hγ .τ
∥∥en∥∥2L2

∥∥en∥∥j−2Hγ0

∥∥w(tn)
∥∥k−j
H1+γ0

≤ τQ(‖en‖Hγ0 )
∥∥en∥∥2Hγ .

Then combining with the above five estimates for (4.23), we have∥∥(4.21b)
∥∥
Hγ
≤
(
M−1 + τM

)
Q(‖en‖Hγ0 )

∥∥en∥∥2Hγ . (4.24)

With the estimates (4.22) and (4.24) together, we obtain∥∥Sj∥∥Hγ ≤ (M−1 + τM
3
2

)
Q(‖en‖Hγ0 )

∥∥en∥∥2Hγ .
Choosing M = τ−

2
5 , it gives ∥∥Sj∥∥Hγ ≤ τ 2

5Q(‖en‖Hγ0 )
∥∥en∥∥2Hγ .

Again, (4.19b) follows from the estimate above and the Hölder inequality.
�

Now we continue to prove Proposition 4.5.
Hγ-estimate. By Lemmas 4.6-4.8, we conclude that∥∥Φn

(
v(tn)

)
− Φn

(
vn
)∥∥2
Hγ
≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖2Hγ + τ

2
5Q(‖en‖Hγ0 )‖en‖3Hγ ,

where Q(f) =
2k−4∑
l=0

Clf
l for some Cl > 0 depending only on k and ‖v‖L∞t H2+γ

x
. Using the facts

√
A+B −

√
A ≤ min{B/

√
A,
√
B}, for any A,B > 0, (4.25)

and
√

1 + Cτ ∼ 1 + Cτ when τ is small enough, we get∥∥Φn
(
v(tn)

)
− Φn

(
vn
)∥∥
Hγ
≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖Hγ + τ

2
5Q(‖en‖Hγ0 )‖en‖2Hγ .

Hγ0-estimate. Similarly as the above Hγ-estimate, using Lemmas 4.6-4.8, we can get∥∥Φn
(
v(tn)

)
− Φn

(
vn
)∥∥2
Hγ0
≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖2Hγ0 +Q(‖en‖Hγ0 )‖en‖Hγ0‖en‖2Hγ .
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By Hölder’s inequality, we further obtain∥∥Φn
(
v(tn)

)
− Φn

(
vn
)∥∥2
Hγ0
≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖2Hγ0 + τ−1‖en‖4Hγ .

Then by (4.25), we have∥∥Φn
(
v(tn)

)
− Φn

(
vn
)∥∥
Hγ0
≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖Hγ0 + τ−1‖en‖3Hγ .

This finishes the proof of Proposition 4.5. �

4.3. Bootstrap and proof of Proposition 4.1. Recall that en = vn − v(tn). Then by (4.5),

‖en+1‖Hκ ≤
∥∥Φn

(
vn
)
− Φn

(
v(tn)

)∥∥
Hκ

+
∥∥v(tn+1

)
− Φn

(
v(tn)

)∥∥
Hκ
,

for κ = γ ≥ 0 or κ = γ0 with max{ 12 , γ} < γ0 < 1 + γ. Therefore by Propositions 4.2&4.5, we get

‖en+1‖Hγ ≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖Hγ + τ

2
5Q(‖en‖Hγ0 )‖en‖2Hγ + τ2, (4.26a)

‖en+1‖Hγ0 ≤
[
1 + τQ(‖en‖Hγ0 )

]
‖en‖Hγ0 + τ−1‖en‖3Hγ + τ1+α, (4.26b)

for α = 1 + γ − γ0. Now we fix γ0 = 0.6 + γ (thus α = 0.4) and let

Xn = τ−1‖en‖Hγ + τ−0.4‖en‖Hγ0 ,

then by (4.26), we can get

Xn+1 ≤
[
1 + τQ

(
τ0.4Xn

)]
Xn + τ

7
5Q
(
τ0.4Xn

)
X2
n + τ2−0.4X3

n + Cτ.

Denote Q≥1(f) := Q(f)−C0 =
2k−4∑
l=1

Clf
l. Then choosing τ ≤ 1, the estimate above is simplified as

Xn+1 ≤
[
1 + C0τ +Q≥1

(
τ0.4Xn

)
τ
]
Xn + Cτ, (4.27)

for some C > 0 depending only on ‖v‖L∞t H2+γ
x

.

Now we claim that for some τ0 > 0 satisfying

Q≥1
(
τ0.40 C−10 Ce2C0T

)
≤ C0, (4.28)

we have for any 0 < τ ≤ τ0,

Xn ≤ Cτ
n∑
j=0

(1 + 2C0τ)j , for all 0 ≤ n ≤ T

τ
. (4.29)

Noting that X0 = 0, we use induction and assume that it holds till some 0 ≤ n0 ≤ T/τ − 1, i.e.,

Xn ≤ Cτ
n∑
j=0

(1 + 2C0τ)j , for any 0 ≤ n ≤ n0.

Note that n ≤ T/τ , we have the uniform bound of Xn as Xn ≤ C−10 Ce2C0T . Thus by (4.28), it
implies that Q≥1

(
τ0.4Xn

)
≤ C0 for any 0 ≤ n ≤ n0, and then by (4.27) we can find

Xn0+1 ≤
[
1 + C0τ +Q≥1

(
τ0.4Xn0

)
τ
]
Xn0

+ Cτ ≤ (1 + 2C0τ)Xn0
+ Cτ

≤ (1 + 2C0τ)Cτ

n0∑
j=0

(1 + 2C0τ)j + Cτ = Cτ

n0+1∑
j=0

(1 + 2C0τ)j .

Therefore, the claim (4.29) holds, and we have Xn ≤ C−10 Ce2C0T for any 0 ≤ n ≤ T/τ . By the
definition of Xn, this yields that for some C > 0,

‖vn − v(tn)‖Hγ ≤ Cτ, for any 0 ≤ n ≤ T

τ
.

This completes the proof of Proposition 4.1. �
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4.4. Proof of Theorem 3.1. Now, we can use Proposition 4.1 to give the proof of Theorem 3.1.
Let t = tn+1 in (3.2), and then by subtracting it from (3.17), we find

un+1(x)− u(tn+1, x)

=wn+1
(
x− τ

2π

n∑
j=0

∫
T
(wj(x))k−1dx

)
− w

(
tn+1, x−

τ

2π

n∑
j=0

∫
T
(wj(x))k−1dx

)
(4.30a)

+ w
(
tn+1, x−

τ

2π

n∑
j=0

∫
T
(wj(x))k−1dx

)
− w

(
tn+1, x−

1

2π

∫ tn+1

0

∫
T
w(ρ, x)k−1dxdρ

)
. (4.30b)

Hence, we have

‖un+1 − u (tn+1) ‖Hγ ≤ ‖(4.30a)‖Hγ + ‖(4.30b)‖Hγ . (4.31)

By a shift of variable, it is direct to have ‖(4.30a)‖Hγ ≤ ‖wn+1 − w(tn+1)‖Hγ . From Proposition
4.1, there exit constants C, τ0 depending on T , k and ‖w‖L∞((0,T );H2+γ(T)) such that

‖(4.30a)‖Hγ ≤ Cτ, 0 < τ ≤ τ0. (4.32)

For (4.30b), we further write it as

(4.30b)

=w
(
tn+1, x−

τ

2π

n∑
j=0

∫
T
(wj(x))k−1dx

)
− w

(
tn+1, x−

τ

2π

n∑
j=0

∫
T
w(tj , x)k−1dx

)
(4.33a)

+ w
(
tn+1, x−

τ

2π

n∑
j=0

∫
T
w(tj , x)k−1dx

)
− w

(
tn+1, x−

1

2π

∫ tn+1

0

∫
T
w(ρ, x)k−1dxdρ

)
. (4.33b)

Then,

‖(4.30b)‖Hγ ≤ ‖(4.33a)‖Hγ + ‖(4.33b)‖Hγ . (4.34)

For (4.33a), we have

‖(4.33a)‖Hγ .
∥∥∂xw(tn+1)

∥∥
Hγ

τ

2π

n∑
j=0

∫
T

∣∣∣(wj(x))k−1 − w(tj , x)k−1
∣∣∣dx. (4.35)

By Lemma 2.1, we have for γ0 ∈ ( 1
2 , 1 + γ),∫

T

∣∣(wj(x))k−1 − w(tj , x)k−1
∣∣dx .‖wj(x)− w(tj)‖L2

[
‖wj(x)‖k−2Hγ0 + ‖w(tj)‖k−2Hγ0

]
.

From (4.1), we have ‖wn‖Hγ0 ≤ C, where the constant C depends on T , k and ‖w‖L∞((0,T );H2+γ(T)).
This estimate combining with Proposition 4.1 yield that∫

T

∣∣(wj(x))k−1 − w(tj , x)k−1
∣∣dx ≤ Cτ.

Inserting the above into (4.35), we obtain

‖(4.33a)‖Hγ ≤ Cnτ2 ≤ Cτ. (4.36)

For (4.33b), similarly as (4.33a), we can get

‖(4.33b)‖Hγ .
∥∥∂xw(tn+1)

∥∥
Hγ

1

2π

n∑
j=0

∣∣∣ ∫ tj+1

tj

∫
T

[
w(tj , x)k−1 − w(ρ, x)k−1

]
dxdρ

∣∣∣. (4.37)
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Moreover, noting (3.3) we have for ρ ∈ [tj , tj+1],∣∣∣ ∫ tj+1

tj

∫
T

[
w(tj , x)k−1 − w(ρ, x)k−1

]
dxdρ

∣∣∣ . ∣∣∣ ∫ tj+1

tj

∫
T

∫ ρ

tj

∂tw(t) · w(t)k−2dtdxdρ
∣∣∣

.
∣∣∣ ∫ tj+1

tj

∫
T

∫ ρ

tj

∂3xw(t) · w(t)k−2dtdxdρ
∣∣∣ (4.38a)

+
∣∣∣ ∫ tj+1

tj

∫
T

∫ ρ

tj

∂xw(t, x) · w(t)k−2dtdxdρ
∣∣∣ (4.38b)

+
∣∣∣ ∫ tj+1

tj

∫
T

∫ ρ

tj

∂xw(t, x)
1

2π

∫
T
w(t, x)k−1dx · w(t)k−2dtdxdρ

∣∣∣. (4.38c)

For (4.38a), by integration-by-parts, Hölder’s inequality and Lemma 2.1, we get

(4.38a) .
∣∣∣ ∫ tj+1

tj

∫
T

∫ ρ

tj

∂2xw(t) · ∂x
[
w(t)k−2

]
dtdxdρ

∣∣∣
. τ2

∥∥∂2xw(t)
∥∥
L2

∥∥∂x[w(t)k−2
]∥∥
L2 . τ

2
∥∥w∥∥k−1

L∞((tn,tn+1);H2+γ)
.

For (4.38b), again by Hölder’s inequality and Sobolev’s inequality, we have

(4.38b) . τ2
∥∥∂xw(t)

∥∥
L2

∥∥w(t)k−2
∥∥
L2 . τ

2‖w‖k−1L∞((tn,tn+1);H2+γ).

Similarly for (4.38c), we have

(4.38c) . τ2‖w‖k−1
L∞t L

k−1
x
‖∂xw(t)‖L2

∥∥w(t)k−2
∥∥
L2 . τ

2‖w‖2k−2L∞((tn,tn+1);H2+γ).

Combining the three estimates, we obtain from (4.38) that∣∣∣∣∣
∫ tj+1

tj

∫
T

[
w(tj , x)k−1 − w(ρ, x)k−1

]
dxdρ

∣∣∣∣∣ ≤ Cτ2,
where C depends on T , k and ‖w‖L∞((0,T );H2+γ(T)). Putting this estimate into (4.37), we get

‖(4.33b)‖Hγ ≤ Cnτ2 ≤ Cτ. (4.39)

Combining (4.34), (4.36) and (4.39), we get

‖(4.30b)‖Hγ ≤ Cτ. (4.40)

Finally, plugging (4.32) and (4.40) into (4.31), we obtain that for 0 < τ ≤ τ0,

‖un+1 − u (tn+1) ‖Hγ ≤ Cτ,

where the constants τ0, C depend on T, k and ‖u‖L∞((0,T );H2+γ(T)). This proves Theorem 3.1. �

5. Numerical results

In this section, we will carry out numerical experiments of the presented schemes. They will be
devoted to verifying the convergence result in Theorem 3.1 and illustrating the advantage of GTEI
(3.17) for solving the gKdV equation (1.1). The two direct schemes, i.e., EI1 (2.2) and EI2 (2.4),
will be considered as the benchmark for comparisons.

To get an initial data with the desired regularity, we construct u0(x) for the gKdV equation (1.1)
by the following strategy [30]. Choose N > 0 as an even integer and discretize the spatial domain
T = (0, 2π) with grid points xj = j 2πN for j = 0, . . . , N . Take a uniformly distributed random vector

UN = rand(N, 1) ∈ [0, 1]N . Then, we define

u0(x) :=
|∂x,N |−sUN

‖|∂x,N |−θUN‖L∞
, x ∈ T, (5.1)
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Figure 1. Temporal error ‖u−un‖L2/‖u‖L2 of EI1, EI2, GTEI at tn = 1 for (1.1)
with k = 4 under u0 ∈ Hs for s = 4, s = 3, s = 2.

10
-3

10
-2

10
-4

10
-3

10
-2

-2 0 2

-0.5

0

0.5

1

Figure 2. Temporal error ‖u − un‖L2/‖u‖L2 of GTEI at tn = 1 (left) and the
solution profile u(t = 1, x) (right) for (1.1) with k = 5, 6, 7 under u0 ∈ H2.

where the pseudo-differential operator |∂x,N |−s for s ≥ 0 reads: for Fourier modes l = −N/2, . . .,
N/2− 1,

(
|∂x,N |−s

)
l

=

{
|l|−s, if l 6= 0,

0, if l = 0.

Thus, we get u0 ∈ Hs(T) for any s ≥ 0.
We implement the spatial discretizations of the numerical methods within discussions by the

Fourier pseudo-spectral method [36] with a large number of grid points N = 214 in the torus
domain T. We present the error u(tn, x)−un(x) in the L2 norm at the final time tn = T = 1, where
the ‘exact’ solution is obtained numerically by the EI2 scheme (2.4) with τ = 10−5. Firstly, we fix
k = 4 in the gKdV equation (1.1). Figure 1 shows the errors of GTEI (3.17), EI2 (2.4) and EI1
(2.2) by using different time step τ for the initial data u0 in H4 or H3 or H2 as defined in (5.1). In
Figure 2, we show the error of GTEI for solving (1.1) with several different k under u0 in H2.

The numerical results illustrate that the proposed GTEI scheme (3.17) is always first order
accurate in the L2-norm for solving (1.1) with u0 ∈ H2, which verifies the theoretical result. In
contrast, the two direct EIs need the solution to be smoother to reach the first order convergence
rate. Thus as a conclusion, the GTEI scheme (3.17) is more accurate for the gKdV equation (1.1)
under rough data.
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