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Abstract

We study the temporal linear instability of channel flow subject to a tensorial slip boundary con-
dition that models the slip effect induced by microgroove-type super-hydrophobic surfaces. The mi-
crogrooves are not necessarily aligned with the driving pressure gradient. Pralits et al. Phys. Rev.
Fluids 2, 013901 (2017) investigated the same problem and reported that a proper tilt angle of the
microgrooves about the driving pressure gradient can reduce the critical Reynolds number and that
the flow with a single superhydrophobic wall is much more unstable/less stable than that with two su-
perhydrophobic walls. In contrast, we show that the lowest critical Reynolds number is always realized
with two superhydrophobic walls, and we obtain critical Reynolds numbers significantly lower than the
reported. Besides, we show that the critical Reynolds number can be further reduced by increasing
the anisotropy in the slip length. As the tilt angle changes, there appears to be a strong correlation
between the strength of the instability and the magnitude of the cross-flow component of the base flow
incurred by the tilt angle. In case the tilt angles of the microgrooves differ on the two walls, the critical
Reynolds number increases as the difference in the tilt angles increases, i.e. two superhydrophobic
walls with parallel microgrooves give the lowest critical Reynolds number. The results are informative
for designing the microgroove-type wall texture to introduce instability at low Reynolds number chan-
nel flow, which may be of interest for enhancing mixing or heat transfer in small flow systems where
turbulence cannot be triggered.

1 Introduction
Significant velocity slip can be obtained by properly texturing the wall surfaces in viscous flows [1–7].
Slip boundary condition on a smooth wall is a simplified treatment of complex superhydrophobic surfaces.
This simplification has been applied to various flow problems ranging from linear stability analysis to flow
transition and even turbulent flows [8–22]. Among these, Refs. [13, 14, 17] particularly showed the
applicability of this simplification to linear stability, transition and even turbulence problems. Regarding
the linear stability analysis of slip channel flow, a few studies had concluded that velocity slip stabilizes
the flow and greatly increases the critical Reynolds number [9, 10, 21].

However, a few recent studies reported that velocity slip does not always stabilize the flow, but
can also destabilize the flow given a certain amount of anisotropy in the slip [15, 18, 19, 22, 23]. In
fact, the significant stabilizing effect concluded before was clarified to be only for two-dimensional (2-D)
perturbations. Three-dimensional (3-D) modes become dominant if sufficiently strong anisotropy in the
slip length (the usual measure of the slip effect) is taken into consideration, and can be destabilized by the
slip at Reynolds numbers far below the critical Reynolds number for 2-D modes. Among these studies,
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Refs. [15] and [18] considered a special case where the slip in streamwise and spanwise directions are
independent of each other, i.e.

λx
∂u

∂n
+ u = 0, λz

∂w

∂n
+ w = 0, (1)

at the channel wall, where x, y, z denote the coordinates in the direction of the driving pressure gradient
(will be simply referred to as the streamwise direction hereafter), wall normal and spanwise directions,
respectively, u and w the streamwise and spanwise velocities, and λx and λz the slip lengths associated
with u and w, respectively. In the cases of pure streamwise slip and pure spanwise slip, as considered by
[15], it was shown that the leading mode becomes 3-D when λx is larger than approximately 0.008 and
when λz is larger than 0.02, respectively. Streamwise slip only modestly increases the critical Reynolds
number compared to the no-slip case, whereas spanwise slip can greatly reduce the critical Reynolds
number to a few hundred when λz is increased to above 0.1. Ref. [18] conducted a thorough theoretical
study when slip is present in both directions and confirmed the findings of [15]. Their asymptotic analysis
also gives the analytic dependence of the critical Reynolds number on the slip length in the small slip
length regime.

In fact, the boundary condition (1) is highly idealized. For superhydrophobic surfaces with complex
textures, more realistically, the boundary condition should take the tensorial form [19, 24, 25]. For
parallel-microgroove-type textures, which is considered in this paper, Ref. [19] presented the boundary
condition [

u
w

]
+ Λ

∂

∂n

[
u
w

]
= 0 (2)

at the top and bottom walls, where n denotes the outward normal direction at the wall. The slip tensor
Λ takes the following form

Λ = Q

[
λ∥ 0
0 λ⊥

]
QT , with Q =

[
cos θ − sin θ
sin θ cos θ

]
, (3)

where λ∥ and λ⊥ are the eigenvalues of the slip tensor Λ, corresponding to the longitudinal (parallel to
the grooves) and transverse (perpendicular to the grooves) slip lengths, respectively, and θ is the angle
of the alignment of the microgrooves about the streamwise direction. When θ differs from 0◦ and 90◦,
u and w will be coupled with each other through the boundary condition (2). The boundary condition
(1) used in [15, 18] is actually the special case of (2) for θ = 0◦ and 90◦, i.e. when the microgrooves
are parallel with or perpendicular to the driving pressure gradient, as suggested by Refs. [26, 27]. With
boundary condition (2), Ref. [19] investigated the dependence of the critical Reynolds number on the
slip length and tilt angle θ thoroughly. The results showed that, with a non-vanishing tilt angle, the
leading mode also becomes 3-D and the critical Reynolds number can be reduced compared to the no-
slip case, and the authors also discussed about why Squire’s theorem does not necessarily hold in the
case of anisotropic slip. It was also reported that the destabilizing effect is much more prominent in
the case with a single superhydrophobic channel wall, and the destabilizing effect seemed to maximize
at a tilt angle close to θ = 45◦ for either a single or two superhydrophobic walls. Ref. [22] investigated
the linear stability and transition problem of channel flow subject to this type of boundary condition by
fixing θ = 45◦ and confirmed the destabilizing effect of the anisotropic slip. By considering the actually
alternate solid/gas configuration on microgrooved surfaces (modelled as no-slip/full slip regions) instead
of a smooth slippery wall with homogeneous slip lengths, Ref. [14] and [28] both reported destabilizing
effects of the microgrooves even with a zero tilt angle using a bi-global stability analysis, though didn’t
perform a parametric study of the effect of the anisotropy of the slip on the instability. All these studies
suggest the possibility of introducing instability or earlier transition in flow problems at lower Reynolds
numbers (compared to the no-slip case) by using properly textured superhydrophobic surfaces.

In this paper, linear stability of channel flow subject to the tensorial boundary condition (2) is con-
sidered and the aim is threefold. Firstly, to verify whether or not a single superhydrophobic wall indeed
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results in much lower critical Reynolds number than two superhydrophobic walls, as reported by [19].
Secondly, Ref. [19] only considered λ∥/λ⊥ = 2 in their analysis, while we consider a larger range of this
ratio up to 10 to investigate the possibility of lower critical Reynolds numbers than the reported. This is
because some studies have suggested larger values of this ratio [29]. Thirdly, we consider the stability in
the presence of two superhydrophobic walls where the microgrooves are non-parallel on the two walls. We
believe the results are informative for enhancing mixing, heat transfer and flow control by designing the
wall texture in small channel flow systems, where turbulence cannot be triggered due to the low Reynolds
number.

2 Methods
We consider the nondimensional incompressible Navier-Stokes equations

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∇2u, ∇ · u = 0 (4)

for a channel flow in Cartesian coordinates (x, y, z), where u = (u, v, w) denotes velocity vector, p de-
notes pressure, respectively. For comparison with [19], velocities are normalized by Ub, i.e. the average
streamwise velocity on the z− y channel cross-section, length by half gap width h and time by h/Ub, and
therefore the Reynolds number Re = Ubh/ν where ν is the kinematic viscosity of the fluid. The origin of
the y-axis is placed at the channel center.

2.1 The linearized equations
Here we denote the fully developed base flow as

U = U(y)ex +W (y)ez, (5)

where ex and ez are the unit vectors in the streamwise and spanwise directions, respectively. In the case
of two superhydrophobic walls with identical characteristics, i.e. θ and λ∥/λ⊥ are respectively identical
on the two walls, the basic flow is

U(y) = 1− y2 − 1/3

2λ∥ cos2 θ + 2λ⊥ sin2 θ + 2/3
, (6)

W (y) =
(λ∥ − λ⊥) cos θ sin θ

λ∥ cos2 θ + λ⊥ sin2 θ + 1/3
, (7)

where the spanwise component W is a constant. In the case where only the bottom wall is superhy-
drophobic, the basic flow is

U(y) = −y2 − 1 + (2l∥ cos2 θ + 2l⊥ sin2 θ)(y − 1)

2/3 + 2l∥ cos2 θ + 2l⊥ sin2 θ
, (8)

and
W (y) = − 2(l∥ − l⊥) cos θ sin θ(y − 1)

2/3 + 2l∥ cos2 θ + 2l⊥ sin2 θ
, (9)

where
l∥ =

λ∥

2 + λ∥ , l⊥ =
λ⊥

2 + λ⊥ , (10)

and the spanwise component W is a linear function of y. Note that the volume flux associated with the
streamwise component U is fixed following Ref. [19].
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Figure 1: The effect of the tilt angle θ on the base flow. (a) The maximum of W (y) over y. Note that for
the one-SH-wall case, W (y) maximizes at the slippery wall at y = −1. (b) The streamwise velocity at the
bottom slippery wall U(y = −1) and at the channel center U(y = 0). The slip parameters are λ∥ = 0.155
and λ⊥ = λ∥/2.

Obviously, a tilt angle differing from 0 and π/2 will result in a non-vanishing spanwise velocity com-
ponent in the base flow, i.e. a cross-flow component. Figure 1 shows the effect of the tilt angle on the base
flow for λ∥ = 0.155 and λ⊥ = λ∥/2. It can be seen that the cross-flow component is maximized slightly
above θ = π/4. The streamwise velocity at the channel center increases whereas the slip velocity at the
wall decreases with the tilt angle. The trends for U are expected given that λ∥ > λ⊥ and its volume flux
is fixed.

Note that, although we give the analytic form of the basic flows for the two specific cases, the form may
be much more complicated in more general cases, e.g. in cases where θ or the ratio λ∥/λ⊥ takes different
non-vanishing values on the two walls. It would be much easier to solve for the basic flow numerically
from the governing equations in these situations, and the numerical solution can also be used for the
linear stability analysis.

Introducing small disturbances u = (u, v, w) and linearizing the Navier-Stokes equations about the
base flow, we obtain the governing equation for u as the following,

∂u

∂t
+ u ·∇U +U ·∇u = −∇p+

1

Re
∇2u, ∇ · u = 0 (11)

with the condition Eqs. (2) and impermeability condition for u. In the following, we introduce three
different formulations for the eigenvalue analysis, i.e. primitive variable formulation, velocity-vorticity
formulation and direct simulation of the Navier-Stokes equations.

2.2 Primitive variable formulation (u− p formulation)
A disturbance is expressed in terms of Fourier modes along the wall-parallel directions,

q(x, y, z, t) = q̂(y)ei(αx+βz−ωt) + c.c., (12)

where α and β are the streamwise and spanwise wavenumbers, respectively, q̂ is the Fourier coefficient,
and c.c. denotes the complex conjugate. The complex angular frequency is denoted as ω = ωr + iωi

(subscript i denotes the imaginary part, subscript r denotes the real part) and ωi > 0 indicates a linear
instability. Plugging into Eqs. (11), we get

−iωq̂ = Lq̂. (13)

This is an eigenvalue problem, where
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L =


A −∂U

∂y 0 −iα

0 A 0 − ∂
∂y

0 −∂W
∂y A −iβ

iα ∂
∂y iβ 0

 , q̂ =


û
v̂
ŵ
p̂

 , (14)

A =
1

Re
(
∂2

∂y2
− α2 − β2)− iαU − iβW. (15)

We use a Chebyshev-collocation discretization in the wall-normal direction [30]. The operator L is a
4N × 4N complex matrix after discretization, where N is the number of grid points taken in the y
direction.

2.3 Velocity-Vorticity formulation (v − η formulation)
We also consider the velocity-vorticity formulation of the linearized Navier-Stokes equations [31] for cross-
validation. The linearized equations in this formulation read(

∂

∂t
+ U

∂

∂x
+W

∂

∂z

)
∇2v − d2U

dy2
∂v

∂x
− d2W

dy2
∂v

∂z
=

1

Re
∇4v, (16)(

∂

∂t
+ U

∂

∂x
+W

∂

∂z

)
η +

dU

dy

∂v

∂z
− dW

dy

∂v

∂x
=

1

Re
∇2η, (17)

where η = ∂u/∂z − ∂w/∂x is the y-component of the vorticity. Using the incompressibility condition, u
and w can be derived in spectral space as

û =
1

i(α2 + β2)

(
βη̂ − α

∂v̂

∂y

)
, (18)

ŵ =
1

i(α2 + β2)

(
−αη̂ − β

∂v̂

∂y

)
. (19)

Further, the boundary condition for η can be derived using the slip boundary condition (2). The same
Chebyshev-collocation discretization for the primitive variable formulation is used here for discretizing
the linear operators. Substituting into Eqs. (16) and (17), we get an eigenvalue problem

−iωq̂ = Lq̂, (20)

where

L = −i

[
Los 0
Lc Lsq

]
, q̂ =

[
v̂
η̂

]
, (21)

Los = −D−1
k [D2

k/(iRe)− αUDk + αD2U − βWDk + βD2W ], (22)

Lc = βDU − αDW, (23)

Lsq = αU + βW −Dk/(iRe), (24)

Dk = D2 − k2, k2 = α2 + β2. (25)

The operator L is a complex 2N × 2N matrix, where N is the number of grid points taken in the y
direction.
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Figure 2: The effects of the tilt angle on the distribution of eigenvalue ωi in the wavenumber plane.
Slip lengths are set to be λ∥ = 0.155 and λ⊥ = λ∥/2. (a) One-SH-wall with θ = 0 and Re = 10000.
(b) Two-SH-wall with θ = 0 and Re = 3 × 105. (c) One-SH-wall with θ = π/4 and Re = 1000. (d)
Two-SH-wall with θ = π/4 and Re = 1000. The bold line encloses the linearly unstable region in the
wavenumber plane.

2.4 Time-stepping the Navier-Stokes equations (DNS formulation)
For further validation of our eigenvalue calculations, we also solve the linearized Navier-Stokes equations
(11) using a Fourier-spectral-finite-difference scheme. Periodic boundary conditions are imposed and
Fourier spectral method is used for the spatial discretization in the streamwise and spanwise directions.
In the wall normal direction, a Chebyshev collocation method [30] is used for the spatial discretization.
For the channel geometry, the (α, β) mode of velocity and pressure field is expressed as Eqs. (12). The
integration in time is performed using a second-order-accurate Adams-Bashforth/backward differentiation
scheme [32]. The incompressibility condition and boundary condition (2) are imposed using the influence
matrix technique ([33, 34], see details in Appendix A). The largest eigenvalue of a given Fourier mode can
be calculated from the time-series of the amplitude of the velocity disturbances or modal kinetic energy
when the leading eigenmode has become dominant in the flow field.

The convergence test regarding the grid resolution and the cross validation of the three formulations
are shown in Appendix B.

3 Results
3.1 Distribution of eigenvalue in the wavenumber plane
In the no-slip case, the distribution of eigenvalue (ωi) is symmetric about β = 0, i.e. one only needs to
search in the first quadrant of the α−β wavenumber plane for unstable modes. Besides, the leading mode
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Pralits et al. (2017)

The present work

Figure 3: The critical Reynolds number as a function of the tilt angle θ for the two-SH-wall channel. (a)
λ∥ = 0.05; (b) λ∥ = 0.155. Our calculations are shown as red squares and the results of [19] are shown as
blue circles for comparison.

is 2-D according to Squire’s theorem so that practically one only needs to search the non-negative part of
the α−axis with β = 0 for the leading mode. However, when there is a tilt angle θ of the microgrooves,
a cross-flow component of the base flow appears and the symmetry of the base flow is broken. Therefore,
the distribution of the eigenvalue in the α − β plane should be changed by the tilt angle also, see an
example in figure 2. If θ = 0, clearly the cross-flow component W is zero, therefore, the distribution of ωi

appears to be symmetric about β = 0 as in the no-slip case, see figure 2(a, b). The difference between the
two slip settings is that the most unstable mode of the one-SH-wall case appears to be 2-D with β = 0,
whereas to be 3-D with a non-zero β in the two-SH-wall case. Similarly, the distribution of eigenvalue is
also symmetric about β = 0 if θ = π/2 because the cross-flow component W is zero also. If θ = π/4, the
cross-flow W is non-zero, and figure 2(c, d) shows that the symmetry in the distribution of ωi about β = 0
is broken. If considering α ≥ 0, the unstable region appears to be mainly located in the negative-β region,
i.e. the fourth quadrant in the wavenumber plane, and the flow is mainly stable in the first quadrant.
Note that the sign of the wavenumber determines the orientation of the wave structure. Therefore, to
search for unstable modes, one has to scan through the whole right half-plane instead of only the first
quadrant. Ref. [22] also shows this symmetry-breaking effect by the cross-flow resulting from the tilt
angle. In fact, this effect is also present in other problems with cross-flow-related instabilities, such as 3-D
boundary layer flow over swept wings [35, 36] and localized turbulent bands in channel flow [37, 38] under
no-slip boundary condition. The remaining part of this paper focuses on the critical Reynolds number
Recr, which can be obtained by searching for the first appearance of an unstable mode in the right half
wavenumber plane as Re increases.

3.2 Dependence of the critical Reynolds number on the angle θ

In this section, we set λ∥/λ⊥ = 2 as Ref. [19] and investigate the dependence of the critical Reynolds
number on the tilt angle θ of the microgrooves. All the calculations are performed using the u − p
formulation. Unless explicitly specified, the number of wall-normal grid points is set to 128 (half and
double resolutions give nearly the same leading eigenvalue in the parameter regime considered here, see
table 3 in Appendix B).

Figure 3 shows the critical Reynolds number as a function of the angle θ for λ∥ = 0.05 and λ∥ = 0.155
in the two-SH-wall channel. The results of [19] are also shown for comparison, which disagree with our
calculations for both slip lengths. The critical Reynolds numbers calculated here are much lower than
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Present work

two SH walls

one SH wall

Figure 4: (a,b) The critical Reynolds number as a function of the tilt angle θ for the one-SH-wall
channel. Our calculations are shown as green triangles and the results of [19] are shown as blue circles
for comparison. (c) The critical Reynolds number for two-SH-wall and one-SH-wall cases in the present
work are compared.

Figure 5: (a) The most unstable wavenumbers at the critical Reynolds number as functions of tilt angle
θ for two-SH-wall and one-SH-wall cases. (b) A close-up at small θ.
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Figure 6: The flow structure of the leading eigenmode for the one-SH-wall (a, b) and two-SH-wall (c, d)
cases with θ = 0 at the respective critical Reynolds number. In (a, b), the bottom wall is slippery, the
Reynolds number is Re = 7417 and the wavenumbers are (α, β) = (0.69, 0). In (c, d), the Reynolds number
is Re = 2.3×105 and the wavenumbers are (α, β) = (0.19,−0.65). The color shows the spanwise vorticity
on the bottom wall and vectors show the in-plane velocities. The magnitudes of the shown quantities are
arbitrary.

those of [19] for nearly all θ values. The largest difference is around θ = π/4 and is as large as an order of
magnitude in a wide range of θ, especially for the λ∥ = 0.155 case. Interestingly, for the λ∥ = 0.05 case,
our critical Reynolds numbers agree with that of [19] for θ = 0◦ and 90◦. In the λ∥ = 0.155 case, our
critical Reynold number is higher than that of [19] at θ = 0◦, whereas is lower by more than one order of
magnitude at θ = 90◦.

Similar calculations are performed for the one-SH-wall channel also. Figure 4 shows the critical
Reynolds number for λ∥ = 0.07 and 0.155. The disagreement between our results and Ref. [19] is still
noticeable, although smaller than the disagreement for the two-SH-wall channel. Our results give lower
critical Reynolds numbers for nearly all θ values. Nevertheless, the trends of Recr as θ changes in both
studies are similar, exhibiting a U-shape minimizing close to θ = π/4. In figure 4(c), the Recr for two-SH-
wall and one-SH-wall channels with λ∥ = 0.155 are compared. It can be seen that Recr is slightly lower
in the two-SH-wall case than in the one-SH-wall case, except for at vanishing θ, where the one-SH-wall
flow is much more unstable than the two-SH-wall flow. This observation disagrees with the conclusion of
[19] that the one-SH-wall case is much more unstable than the two-SH-wall case for all θ values under the
same slip parameters.

In order to understand why the critical Reynolds number differs largely close to θ = 0 for the one-
SH-wall and two-SH-wall cases, the critical wavenumbers as functions of θ for λ∥ = 0.155 are shown in
figure 5. It can be seen that, the critical wavenumbers experience complicated and sharp changes in the
small θ regime. In the one-SH-wall case, the streamwise wavenumber stays constant at about αc = 0.7
before suddenly drops to αc ≈ 0 as θ is increased to approximately 0.04, and the spanwise wavenumber
stays constant at βc = 0 (see figure 2a) before suddenly transitioning to about βc = −1.2 This change
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Figure 7: The flow structure of the leading eigenmode for the one-SH-wall (a, b) and two-SH-wall (c, d)
cases with θ = π/4 at the respective critical Reynolds number. In (a, b), the bottom wall is slippery,
the Reynolds number is Re = 486 and the critical wavenumbers are (α, β) = (0.04,−1.23). In (c, d), the
Reynolds number is Re = 429 and the critical wavenumbers are (α, β) = (0.12,−1.63). The color shows
the streamwise velocity in the top row and wall-normal velocity in the bottom row, and vectors show the
in-plane velocities. The magnitudes of the shown quantities are arbitrary.

indicates that the most unstable perturbation transitions sharply from a spanwise-invariant (β = 0) one
to a nearly streamwise-invariant (α ≈ 0) one as θ is increased in the small θ regime. In contrast, in the
two-SH-wall case, the most unstable perturbation is 3-D with non-vanishing αc and βc at θ = 0. However,
immediately above θ = 0, the most unstable perturbation transitions to a two dimensional streamwise-
invariant (α = 0) one, and then transitions to a nearly streamwise-invariant ones with extremely small
αc at about θ = 0.03 (≈ 1.7◦). The significant difference in the critical Reynolds number for θ = 0 is
attributed to the distinct flow characteristics in the small θ regime. For larger θ (⩾ 0.04 or 2◦), the most
unstable perturbations are always three dimensional with non-vanishing α and β and the trends as θ
changes in both cases are similar.

Further, the flow structure of the leading eigenmode at the critical Reynolds number is visualized in
figure 6 for θ = 0 and in figure 7 for θ = π/4. At θ = 0, the flow structure is very similar to the leading
eigenmode of the no-slip channel flow, featuring spanwise invariant roll cells filling the whole space between
the two walls, except for the region close to the bottom slippery wall. This is reasonable since the top
wall is no-slip and therefore the flow structure of the leading eigenmode, at least near the top wall, can
be expected to resemble that of the no-slip channel flow. Figure 6(a) shows that the spanwise vorticity
is reduced due to the slip at the bottom wall, suggesting that the slip at the bottom wall in fact plays a
stabilizing effect with this specific slip setting. This stabilizing effect results in a higher critical Reynolds
number compared with the no-slip channel flow (7417 vs. 3848). In the presence of two SH walls, the
leading eigenmode is 3-D, exhibiting straight flow structures tilted by an angle about the streamwise
direction, see figure 6(d). It is noticed from the vector plots in figure 6(b) that the wall-normal velocity
component is very small compared to the streamwise component, unlike the no-slip and the one-SH-wall
cases where the wall-normal velocity component is comparable to the streamwise one, e.g. see figure 6(a).

At θ = π/4, the leading modes at the respective critical Reynolds numbers in both slip settings are
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Figure 8: The phase speeds of the leading eigenmode for the λ∥ = 0.155 case. The corresponding
Reynolds numbers and wavenumbers are shown in figures 4(c) and 5. (a) Streamwise phase speed. (b)
Spanwise phase speed.

3-D straight structures (vortices and streaks) tilted about the streamwise direction, see figure 7. In the
one-SH-wall case, the flow structures are concentrated in the lower half of the channel, while fluctuations
are much weaker close to the upper no-slip wall. This flow structure is similar to that reported in [19]
where the authors termed it as a wall-vortex mode. It can be seen that the flow structure near the
bottom slippery wall closely resembles that in the same flow region in the two-SH-wall case, except for
some differences in the wavelengths and flow details. It is noted that the flow features long-streamwise-
wavelength (small-α) structures in both slip cases and the wavelength in the two-SH-wall case is relatively
smaller. Given the similarities in the leading eigenmode in the two cases, it can be expected that the
critical Reynolds numbers would be close, just as shown in figure 4(c). The flow structures in both cases
bear some similarities with the unstable modes of the cross-flow instability in 3-D boundary layer flow
over swept wings [35, 36]. For example, the flow exhibits tilted vortices and streaks orientated at small tilt
angles about the streamwise direction, i.e. the wave vectors are nearly perpendicular to the streamwise
direction (arctan |βα | ≈ 88◦ in the one-SH-wall case, see figure 7b, and ≈ 86◦ in the two-SH-wall case , see
figure 7d).

The streamwise and spanwise phase speeds of the leading eigenmode at the critical Reynolds number
with λ∥ = 0.155 are shown in figure 8, which are calculated as cx = ωr/α and cz = ωr/β, respectively,
where the frequency ωr can be either positive or negative because both forward-propagating and backward-
propagating waves are possible. It can be seen that cx is negative and cz is positive because ωr turns out
to be negative away from θ = 0◦ and 90◦. Because of the small angle arctan(α/β) of the wave structure
about the streamwise direction (see figure 7b,d), the streamwise wave speed cx is much larger than the
spanwise wave speed cz in magnitude. Close to θ = 0 and π/2, ωr is positive and so is cx, and cz is
negative given the opposite signs of α and β. Because α and β are comparable in absolute value, cx and
cz are also comparable in absolute value, and therefore the wave vector is neither nearly perpendicular
nor nearly parallel to the streamwise direction.

3.3 Dependence of the critical Reynolds number on λ∥

The slip-length ratio is still fixed at λ∥/λ⊥ = 2 in this study as in the section 3.2. Figure 9 shows the
critical Reynolds number as a function of the slip length λ∥ for two special angles θ = 0 and π/4. It can
be seen that the Recr in our calculation and from [19] nearly agree with each other for θ = 0, but differ
largely for θ = π/4 for all λ∥ values considered. The difference is more prominent in the two-SH-wall
case where our Recr’s are one-order of magnitude lower than those reported by [19]. The trend as λ∥
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Figure 9: The critical Reynolds number as a function of λ∥ with θ = 0 and θ = π/4. (a) One-SH-wall
case, (b) Two-SH-Wall case. The results of [19] are also plotted for comparison.

Figure 10: The critical streamwise (a) and spanwise (b) wavenumbers as functions of λ∥ with θ = 0 and
θ = π/4.

increases shows that Recr keeps decreasing but gradually levels off at some finite value for θ = π/4. For
θ = 0, at sufficiently large slip length, Recr in the one-SH-wall case monotonically decreases but that in
the two-SH-wall case keeps increasing as λ∥ increases, and the latter becomes orders of magnitude larger
than the former as the slip length is large.

The corresponding critical wavenumbers are shown in figure 10. For θ = 0, the critical streamwise
wavenumber α keeps decreasing as λ∥ increases, and α in the two-SH-wall case is smaller and decreases
more quickly than the one-SH-wall case. In the one-SH-wall setting, the critical β stays as zero for
all the λ∥ values considered, i.e. the flow structure is two-dimensional spanwise invariant as shown in
figure 6(a,b). In contrast, in the two-SH-wall setting, the flow structure is two-dimensional only at very
small λ∥, and the flow becomes three dimensional above λ∥ = 0.02. A similar phenomenon was reported
in Refs. [15, 18]. For θ = π/4, instead of a gradual decrease, α drops sharply from 1.02 in the no-slip
case to roughly 0.01 and 0.02 at λ∥ = 0.01 for the one-SH-wall and two-SH-wall cases, respectively, and
then monotonically increases with λ∥. Overall, the critical α is much lower than that with θ = 0 for the
one-SH-wall case for all λ∥ considered, whereas the two gradually get close as the λ∥ increases for the
two-SH-wall case. Similar sharp drop also occurs in the critical β, followed by a gradual increase with
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Figure 11: The streamwise (a) and spanwise (b) phase speeds of the most unstable eigenmodes as
functions of λ∥ with θ = 0 and θ = π/4.

λ∥. Therefore, with θ = π/4, the leading eigenmode is three dimensional for both one-SH-wall and two-
SH-wall settings even down to λ∥ = 0.01. It is noticed that the critical β is much larger than the critical
α for θ = π/4, i.e. the flow structures have large streamwise wavelengths and much smaller spanwise
wavelengths, similar to those shown in figure 7.

The corresponding critical phase speed of the leading eigenmode as a function of λ∥ is also shown in
figure 11. For θ = 0, the streamwise phase speed cx stays positive and nearly constant for both one-SH-
wall and two-SH-wall cases. The spanwise phase speed cz = 0 given that β remains zero in the one-SH-wall
case. In the two-SH-wall case, cz = 0 at small λ∥ but then sharply drops to a negative value and remains
negative as λ∥ increases further, in accordance to the variation of β as shown in figure 10(b). For θ = π/4,
cx gradually decreases and becomes negative as λ∥ is sufficiently large with θ = π/4 for both slip settings.
This indicates that the wave becomes back-propagating against the base flow in the streamwise direction
at sufficiently large slip lengths for θ = π/4. As α stays positive, this sign switch is due to the sign switch
of the frequency ωr. Consistent with the trend in ωr, cz is firstly negative and then becomes positive
as λ∥ increases (see the inset in figure 11b), given that the signs of α and β are opposite for both slip
settings, as seen in figure 10. Similarly, this indicates that the wave is firstly backward-propagating and
then turns forward-propagating in the spanwise direction as λ∥ increases.

3.4 The critical Reynolds number with larger λ∥/λ⊥

The slip length ratio λ∥/λ⊥ = 2 Ref. [19] used is based on the theoretical work of [25, 39, 40] for one-
dimensional texture modeled by periodic alternating no-slip and shear-free regions on the wall. This
ratio can be considered as a measure of the anisotropy in the slip length. In this section, we want to
investigate the influence of this ratio on the stability of the flow, particularly of larger ratios. In fact,
some studies suggested that this ratio can be significantly increased if the liquid is allowed to partially
penetrate into the grooves that contain gas pockets. For example, Ref. [29] showed that the transverse
slip length λ⊥ is more sensitive to the penetration (decreases more quickly with increasing penetration)
than the longitudinal slip length λ∥, and reported a ratio of up to 4.

Figure 12 shows the critical Reynolds number as a function of the tilt angle θ for a few larger values
of λ∥/λ⊥ up to 10. Fixing λ∥ = 0.1, we consider λ⊥ = 0.05, 0.3 and 0.01. It can be seen that the
critical Reynolds number decreases for all θ as the ratio increases. The critical Reynolds number can be
reduced to about 243 for the two-SH-wall case when the ratio is increased to 10. Ref. [19] analyzed the
applicability of the slip boundary condition with respect to the value of the slip length. Their analysis
suggested that, the upper limit of the non-dimensional slip length with which the boundary condition
(2) still applies is roughly 0.1. Overall, the two-SH-wall setting nearly always gives lower Recr than that
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Figure 12: (a) The critical Reynolds number as a function of the tilt angle θ for the one-SH-wall (solid
lines) and two-SH-wall (dashed lines) with λ∥ = 0.1 and λ∥/λ⊥ = 2, 10/3 and 10. (b) The minimum
critical Reynolds number over θ as a function of the slip length ratio λ∥/λ⊥.

given by the one-SH-wall setting for all slip-length ratios considered, except for very small θ values.

parameters θ1 θ2
λ∥ = 0.05, λ⊥ = 0.025 two-SH-wall 0.26π 0.27π

λ∥ = 0.07, λ⊥ = 0.035 one-SH-wall 0.25π 0.26π

λ∥ = 0.155, λ⊥ = 0.0775
one-SH-wall 0.26π 0.27π
two-SH-wall 0.26π 0.28π

λ∥ = 0.1, λ⊥ = 0.05
one-SH-wall 0.26π 0.27π
two-SH-wall 0.26π 0.28π

λ∥ = 0.1, λ⊥ = 0.03
one-SH-wall 0.26π 0.27π
two-SH-wall 0.26π 0.29π

λ∥ = 0.1, λ⊥ = 0.01
one-SH-wall 0.26π 0.28π
two-SH-wall 0.27π 0.3π

Table 1: Comparison of the tilt angle corresponding to the maximum spanwise velocity component in
the base flow, θ1, and the tilt angle corresponding to the lowest critical Reynolds number, θ2, at different
parameter settings.

We also compare with the limiting case of pure spanwise slip on both walls considered by [15], corre-
sponding to the two-SH-wall case with θ = π/2, λ∥ = λz being finite and λ⊥ = 0 (λ∥/λ⊥ → ∞) in the
present slip setting. For λz = 0.1, the critical Reynolds number given by [15] is 489. However, an infinite
slip-length ratio is certainly unrealistic and the ratio necessarily remains finite in experiments. For a finite
slip length ratio, our results at θ = 90◦ show higher critical Reynolds numbers compared to the limiting
case of Ref. [15]. Nevertheless, a proper tilt angle can greatly reduce the critical Reynolds number. As
shown in figure 12(b), the lowest critical Reynolds numbers are Recr ≈ 389 for the one-SH-wall case
with a ratio of 10/3 and Recr ≈ 283 with a ratio of 10 at a tilt angle of θ ≈ 54◦. The numbers for the
two-SH-wall case are Recr ≈ 335 and 243 for the two ratios at θ ≈ 54◦, respectively. Therefore, compared
to the pure spanwise slip case, lower critical Reynolds numbers can be achieved by using proper tilt angles
of the microgrooves with finite slip-length ratios.

Collecting all the data, in table 1 we show the correlation between the instability and the cross-flow
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Figure 13: (a) The growth rate γ of the most unstable mode for the two-SH-wall case with different tilt
angle θ on the two walls. Slip lengths are λ∥ = 0.155 and λ⊥ = λ∥/2. The angle is fixed at θ = 51◦ on
the top wall and is varied on the bottom wall. The Reynolds numbers is fixed at Re = 419. (b) The base
flow profiles U and W in case of θ = 51◦ on top wall and θ = −51◦ on the bottom wall. Slip lengths are
the same as in panel (a).

W by comparing the tilt angle that minimizes the critical Reynolds number and that maximizes the
magnitude of W . It can be seen that for all the cases with λ∥/λ⊥ = 2, the two angles are very close
to each other. For larger ratios with λ∥ = 0.1, the deviation between the two angles seems to increase
as the ratio increases, especially for the two-SH-wall setting. Overall, the two angles are rather close to
each other, indicating a strong correlation between the instability and the magnitude of the cross-flow
component in the base flow caused by the tilt angle of the microgrooves. This correlation can also be seen
by comparing figure 1(a) and figure 4(c).

3.5 With different tilt angles at the two walls
In Ref. [19] and in our previous sections, the microgrooves on the top and bottom walls were assumed
to be parallel to each other, i.e. the tilt angle θ is identical on both walls. In this section, we investigate
the case when θ differs at the two walls. We did not derive the analytical basic flow for this non-parallel
case, instead, we numerically solve for the basic flow from the governing equations. The following growth
rate calculations are performed using the DNS approach as described in section 2 and Appendix A.

For this study, we choose the two-SH-wall setting that gives the lowest critical Reynolds number
Recr = 419 with θ = 51◦ on both walls. We fix the tilt angle θ = 51◦ on the top wall while changing θ
at the bottom wall. Instead of searching for the critical Reynolds number directly, we fix the Reynolds
number to be Re = 419 and calculate the largest growth rate by scanning the wavenumber plane. In this
approach, a larger maximum growth rate would indicate a lower critical Reynolds number.

Figure 13(a) shows the maximum growth rate for a few tilt angles at the bottom wall. The data show
that the growth rate peaks at θ = 51◦, which is equal to the fixed tilt angle at the top wall. The flow
becomes linearly stable when the angles on the two walls deviate from each other, and the trend shows
a monotonic decrease as the difference increases, indicating that the lowest critical Reynolds number is
realized in the equal tilt angle setting, i.e. with parallel microgrooves on the two walls. We also tested
an extreme case where θ = −51◦ on the bottom wall, for which the base flow profiles are shown in figure
13(b). We obtained a growth rate of −0.0036 for the least stable mode, which is much lower than those
shown in figure 13(a), i.e. the flow is much more stable.
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4 Conclusions
The destabilizing effect of anisotropic slip of microgrooves, modeled by a tensorial slip boundary condition,
on channel flow is studied in this paper. Our results agree with Ref. [19] that a proper tilt angle of
the microgrooves with respect to the streamwise direction can significantly reduce the critical Reynolds
number for the onset of linear instability. With a proper tilt angle, the destabilizing effect of the slip
is already noticeable at a small slip length of λ∥ = 0.01. The instability seems to be related to the
cross flow caused by the tilt angle because the reduction in the critical Reynolds number is strongly
correlated with the magnitude of the the cross-flow component of the base flow. The instability bears
some similarities with the cross-flow instability of 3-D boundary layer flow over swept wings [35, 36].
However, the mechanism here may be different from the latter in that the cross-flow component of the
base flow here is not inflectional (either constant or linear) as it is in swept flows, as also pointed out by
Ref. [22]. Besides, 3-D leading instability can occur even if the cross-flow component of the base flow
vanishes (see also Refs. [15, 18]). The destabilizing mechanism of the anisotropic slip remains an open
problem.

However, overall our critical Reynolds numbers are much lower than those reported by Ref. [19]. In
contrast to the conclusion of [19], our results show that the two-SH-wall setting nearly always results in
a lower critical Reynolds number compared to the one-SH-wall setting. An exception is at very small θ
where the former may result in higher critical Reynolds numbers for some specific slip length settings, as
in the λ∥ = 0.155 and λ∥

λ⊥ = 2 case. The critical Reynolds number can be further reduced if the anisotropy
in the slip length is increased. These results are cross-validated by using three different formulations for
the eigenvalue calculation.

The results suggest that, if instability is preferred, tilt angles close to 0◦ and 90◦ should generally
be avoided. The tilt angle that maximizes the cross-flow component of the base flow nearly gives the
lowest critical Reynolds number and therefore is recommended. The microgrooves should be parallel on
top and bottom walls for realizing the lowest critical Reynolds number, because the flow becomes more
stable/less unstable when the difference in the angles at the two walls increases. Besides resulting in lower
critical Reynolds numbers, the two-SH-wall setting can cause instability at larger streamwise and spanwise
wavenumbers, i.e. shorter wavelengths, compared with the one-SH-wall setting, which may be preferable
in applications that require enhancing mixing. Besides, shorter wavelengths also pose less restriction on
the channel size in experiments if instability is to be induced. However, the nonlinear flow resulting from
the linear instability needs to be studied in order to eventually assess the enhancing effect.
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A The Navier-Stokes solver
The nondimensional linearized Navier-Stokes equations were given in the main text as (11). However, for
the ease of presentation here, we repeat them as following,

∂u

∂t
+U · ∇u+ u · ∇U = −∇p+

1

Re
∇2u , (26)

∇ · u = 0 , (27)

where U denotes the steady base flow, u and p denote perturbative velocity and disturbance, respectively.
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An semi-implicit second-order Adams-Bashforth/backward differentiation scheme [32] is used for time
integration. After the temporal discretization, Eq.(26) is rearranged into

3un+1 − 4un + un−1

2∆t
+ 2N(un)−N(un−1) = −∇pn+1 +

1

Re
∇2un+1, (28)

where n− 1, n and n+1 are the indices for the previous, current and next time steps, ∆t is the time step
size and

N(u) := U · ∇u+ u · ∇U (29)

is the advection term (the nonlinear convection term u·∇u can be included here for nonlinear simulations).
We set u−1 = u0, where u0 is the initial condition. Equation (28) can be rewritten as

Lun+1 = Re∇pn+1 − 2Re

∆t
un +

Re

2∆t
un−1 + 2ReN(un)−ReN(un−1), (30)

where
L := ∇2 − 3Re

2∆t
. (31)

Suppose that the velocity field at the nth time step is divergence-free, i.e., ∇ · un = 0, taking the
divergence of Eqs. (28), we obtain

3∇ · un+1 − 4∇ · un +∇ · un−1

2∆t
+ 2∇ ·N(un)−∇ ·N(un−1) =

−∇2pn+1 +
1

Re
∇2(∇ · un+1). (32)

Let ν = ∇ · un+1, Eqs. (32) can be rewritten as

3

2∆t
ν − 1

Re
∇2ν = −∇2pn+1 − 2∇ ·N(un) +∇ ·N(un−1) +

2

∆t
∇ · un − 1

2∆t
∇ · un−1 . (33)

If let pn+1 satisfy:

∇2pn+1 = −2∇ ·N(un) +∇ ·N(un−1) +
2

∆t
∇ · un − 1

2∆t
∇ · un−1 , (34)

then
3

2∆t
ν − 1

Re
∇2ν = 0 . (35)

According to the maximum principle [33], if we impose ν ≡ 0 on the boundary y = ±1, then ν ≡ 0 within
the whole flow domain. Therefore, to make the solution un+1 satisfies ∇ · un+1 = 0, it is only necessary
to solve Eqs. (34), where the boundary condition for pn+1 makes ∇·un+1 = 0 hold on the wall boundary,
besides the slip boundary condition (2). In the following, we show the influence matrix technique for
satisfying the required boundary conditions.

Suppose that we have the solutions at the time steps n and n− 1, we follow the following procedure
to obtain the solutions at time step n+ 1.

1.Let pn+1 be the solutions of Eq.(34) with the homogeneous Neumann boundary conditions, i.e.
∇2pn+1 = −2∇ ·N(un) +∇ ·N(un−1) +

2

∆t
∇ · un − 1

2∆t
∇ · un−1

∂pn+1

∂y
= 0, at y = ±1.

(36)
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Let un+1 be the solutions of Eqs. (30) with the homogeneous Dirichlet boundary conditions. Using pn+1,
a prediction un+1 can be obtained by solving{

Lun+1 = Re∇pn+1 − 2Re

∆t
un +

Re

2∆t
un−1 + 2ReN(un)−ReN(un−1)

un+1 = 0, at y = ±1.
(37)

Note that un+1 satisfies neither boundary condition (2) nor the divergence free condition at the channel
walls.

2. We define several basis functions, which can adjust the velocity on the boundary without affecting
the solution in the bulk. Let u†

i , i = 1, 2, satisfy the following equations and boundary conditions

Lu†1 = 0

u†1(x,+1, z) = 0

u†1(x,−1, z) = 1

v†1(x, y, z) = 0

w†
1(x, y, z) = 0



Lu†2 = 0

u†2(x,+1, z) = 1

u†2(x,−1, z) = 0

v†2(x, y, z) = 0

w†
2(x, y, z) = 0

. (38)

Similarly, u†
i , i = 3, 4, 5, 6 can be constructed to satisfy

u†3(x, y, z) = 0

Lv†3 = 0

v†3(x,+1, z) = 0

v†3(x,−1, z) = 1

w†
3(x, y, z) = 0



u†4(x, y, z) = 0

Lv†4 = 0

v†4(x,+1, z) = 1

v†4(x,−1, z) = 0

w†
4(x, y, z) = 0

. (39)



u†5(x, y, z) = 0

v†5(x, y, z) = 0

Lw†
5 = 0

w†
5(x,+1, z) = 0

w†
5(x,−1, z) = 1



u†6(x, y, z) = 0

v†6(x, y, z) = 0

Lw†
6 = 0

w†
6(x,+1, z) = 1

w†
6(x,−1, z) = 0

. (40)

Note that the boundary conditions for pn+1 must make ∇ · un+1 = 0 also hold on the boundary. There
are eight boundary conditions on the two walls in total, and two more basis functions associated with the
pressure are needed. Following [34], we construct u†

i , i = 7, 8 as the following:


∇2p† = 0

∂p†

∂y
(x,+1, z) = 0

∂p†

∂y
(x,−1, z) = 1

u†
7(x, y, z) = −∇p†




∇2p† = 0

∂p†

∂y
(x,+1, z) = 1

∂p†

∂y
(x,−1, z) = 0

u†
8(x, y, z) = −∇p†

. (41)

which can be used to adjust the pressure gradient at the boundary without affecting the right hand side
of the pressure Poisson equation in the bulk.

The desired solution un+1 can be constructed as

un+1 = un+1 +

8∑
i=1

aiu
†
i , (42)
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where ai’s are coefficients to be determined using the eight (four on each wall) boundary conditions for
un+1, i.e. Eqs. (2), impermeability condition v = 0 and the divergence free condition ∇ ·un+1 = 0 at the
boundary y = ±1.

Specifically, the equations for the coefficients ai’s read

[∑8
i=1 aiui(x,−1, z)∑8
i=1 aiwi(x,−1, z)

]
= Λ

∂

∂y

[
(un+1 +

∑8
i=1 aiu

†
i )(x,−1, z)

(wn+1 +
∑8

i=1 aiw
†
i )(x,−1, z)

]
[∑8

i=1 aiui(x,+1, z)∑8
i=1 aiwi(x,+1, z)

]
= −Λ

∂

∂y

[
(un+1 +

∑8
i=1 aiu

†
i )(x,+1, z)

(wn+1 +
∑8

i=1 aiw
†
i )(x,+1, z)

]
∑8

i=1 aivi(x,+1, z) = 0∑8
i=1 aivi(x,−1, z) = 0

∇ · (un+1 +
∑8

i=1 aiu
†
i )(x,+1, z) = 0

∇ · (un+1 +
∑8

i=1 aiu
†
i )(x,−1, z) = 0

. (43)

B Methods validation
Firstly, we validate our methods by calculating the eigenvalues using three different formulations de-
scribed above. We consider the two-SH-wall channel with three sets of parameters (see the details of the
parameters in table 2). The parameters are chosen such that Case (1) is nearly neutrally stable, Case
(2) stable and Case (3) unstable. The eigenspectra are shown in figure 14 and the leading eigenvalue
ωmax is given in table 2. For all these calculations, 128 Chebyshev grid points are used in the wall-normal
direction. It can be seen that the eigenspectra calculated using our u − p and v − η formulations agree
well with each other.

In the DNS formulation, the simulations are performed with 128 wall-normal Chebyshev grid points
and a time-step size of ∆t = 0.005. Figure 14(d) shows the time-series of the modal kinetic energy of
small perturbations from the DNS formulation. From the time series, the decay/growth rates (equivalent
to the imaginary part of the leading eigenvalue ωi) are calculated as

γ =
1

2

logKE(t2)− logKE(t1)

t2 − t1
, (44)

where γ denotes the growth rate, KE =
∫
V u2dV is the kinetic energy of disturbances, and t1 and t2

are two time instances in the exponential stage. Table 2 shows that the growth rate calculated by the
DNS formulation is very close to those by the u − p and v − η formulations. In summary, the excellent
agreement between the three different formulations serves as a convincing validation of our eigenvalue
calculation.

Besides, the grid convergence test for the Case (2) is performed by halving and doubling the grid num-
ber in the wall-normal direction. The results are shown in table 3. It is seen that, at least for calculating
the leading eigenvalue, 64 Chebyshev grid points are already sufficient for all three formulations.

We note that the flow becomes linearly unstable already at around Re = 781 (the Case 1) given
λ∥ = 0.05, λ⊥ = 0.025 and θ = π/4. The neutral curve in the α − Re plane for β = −1.76 is shown in
figure 15. In fact, the Case (1) is nearly at the nose of the neutral curve, i.e. Re = 781 is nearly the
critical Reynolds number at this slip setting. Ref. [19] considered the same slip length setting whereas
reported a critical Reynolds number around 9000 (see their FIG. 7), which according to our calculation
was much overestimated.
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Figure 14: (a-c) The eigenspectra calculated using the u− p formulation (circles) and v − η formulation
(crosses). The real and imaginary parts of the eigenvalues are denoted as ωr and ωi, respectively. The
parameters are detailed in table 2. Panels (a-c) correspond to Cases (1)− (3), respectively. In (d), using
the DNS formulation, the time-series of the kinetic energy (KE) of small perturbations in the three cases
are shown. The KE is normalized by its value at t = 0. The exponential growth/decay rate can be
calculated by Eqs. (44).
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Figure 15: The neutral curve (the bold line) in the α − Re plane for β = −1.76. The slip lengths are
λ∥ = 0.05 and λ⊥ = 0.025 with θ = π/4. The eigenvalue ωi is plotted as the colormap.
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parameters formulation ωmax = ωr + iωi

Case (1): Re = 781, α = 0.08, β = −1.76
u− p 0.017110308575336 + 0.000001843885042i
v − η 0.017110308575723 + 0.000001843884918i
DNS γ ≈ 0.000001843946995

Case (2): Re = 781, α = 0.5, β = −1.76
u− p 0.644618135325376 − 0.025061312033392i
v − η 0.644618135325378 − 0.025061312033401i
DNS γ ≈ −0.025062686949318

Case (3): Re = 1500, α = 0.08, β = −1.76
u− p 0.008702345386942 + 0.004892191113713i
v − η 0.008702345387000 + 0.004892191113705i
DNS γ ≈ 0.004892128712797

Table 2: Validation of the methods for the eigenvalue calculation. For all three test cases, we set λ∥ = 0.05,
λ⊥ = 0.025 and θ = π/4. The eigenvalue with the largest imaginary part, ωmax, is listed here, and the
eigenspectra are shown in figure 14(a-c). For the DNS formulation, we only calculate the growth/decay
rate of small disturbances according to Eqs. (44) using the time-series of the modal kinetic energy (see
figure 14d).

ωmax of Case (2)
N = 64 N = 128

u− p 0.644618135325379 - 0.025061312033393i 0.644618135325376 - 0.025061312033393i
v − η 0.644618135325376 - 0.025061312033392i 0.644618135325372 - 0.025061312033384i
DNS γ ≈ −0.025061672210072 γ ≈ −0.025061672210055

N = 256
u− p 0.644618135325380 - 0.025061312033398i
v − η 0.644618135325384 - 0.025061312033370i
DNS γ ≈ −0.025061672210053

Table 3: The grid resolution convergence test for Case (2) as shown in table 2. Grid numbers N = 64,
128 and 256 are considered for this test.
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