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LRIP-Net: Low-Resolution Image Prior based
Network for Limited-Angle CT Reconstruction
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Abstract—In the practical applications of computed tomog-
raphy imaging, the projection data may be acquired within a
limited-angle range and corrupted by noises due to the limitation
of scanning conditions. The noisy incomplete projection data
results in the ill-posedness of the inverse problems. Based on
the observation that the low-resolution reconstruction problem
has better numerical stability, we propose a novel low-resolution
image prior based CT reconstruction model for limited-angle
reconstruction. More specifically, we build up a low-resolution re-
construction problem on the down-sampled projection data, and
use the reconstructed low-resolution image as prior knowledge for
the high-resolution limited-angle CT problem. The constrained
minimization problem is then solved by the alternating direction
method with all sub-minimization problems approximated by the
convolutional neural networks. Numerical experiments demon-
strate that our double-resolution network outperforms both the
variational method and popular learning-based reconstruction
methods on noisy limited-angle reconstruction problems.

Index Terms—Computed tomography, inverse problem, ill-
posedness, limited-angle, deep unrolling

I. INTRODUCTION

-RAY Computed Tomography (CT) is widely used for

clinical diagnosis, the quality of which directly affects
the judgment of the clinicians. The filtered back-projection
(FBP), algebraic reconstruction technique (ART), and simul-
taneous algebraic reconstruction technique (SART) are pop-
ular choices for the full scanned CT data. However, the
imaging system may collect incomplete projection data due
to the system’s geometric limitations and other factors. It
was proven that the reconstruction problem becomes highly
unstable with scanning angular range less than 27/3. For
more background, we refer to [17] and references therein.
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The aforementioned degenerated scanned data makes the direct
method and iterative methods suffer from severe streaking
artifacts and noise-induced artifacts [18], [21]. For limited-
angle CT reconstruction, various algorithms were proposed,
which can be broadly categorized into the regularization-based
method and learning-based method.

The regularization-based method has been applied to the
improperly posed problems and achieved great successes,
which are good choices for the limited-angle CT reconstruc-
tion problems. Since compressed sensing (CS) was proposed
by Candes, Romberg and Tao [9], various models and al-
gorithms have been proposed to improve the reconstruction
quality using the total variation (TV) for image reconstruction
problems [10], [28]. Sidky and Pan [33] developed the primal-
dual algorithm for solving the TV minimization problem,
which performed well concerning angular under-sampling
reconstruction. Ritschl er al. [32] presented a new method
for optimized parameter adaption for sparsity constrained
image reconstruction. Chen et al. [12] proposed the anisotropic
TV minimization method, which performed better than the
isotropic TV model for the limited-angle CT reconstruction.
Frikel [17] used the sparse regularization technique in combi-
nation with curvelets to realize an edge-preserving reconstruc-
tion. Cai et al. [7] developed an edge guided total variation
minimization reconstruction algorithm in dealing with high
quality image reconstruction. Xu et al. [39] combined the ¢;
norm of gradient and ¢y norm of gradient as the regularization
term and developed the efficient alternating edge-preserving
diffusion and smoothing algorithm, which can well preserve
the edges for limited-angle reconstruction problem.

In addition to TV-based regularization methods, high-order
regularization methods have also been investigated for degen-
erated scanned data. Niu et al. [30] presented a penalized
weighted least-squares scheme to retain the image quality
by incorporating the total generalized variation regularization.
Zhang et al. [43] introduced the curvature-driven Euler’s
elastica regularization to rectify large curvatures and kept the
isophotes smooth without erratic distortions. Cai et al. [8]
proposed the block matching sparsity regularization for CT
image reconstruction for an incomplete projection set. Wang
et al. [37] presented the guided image filtering-based limited-
angle CT reconstruction algorithm using wavelet frame. Xu ez
al. [40] combined the dictionary learning and image gradient
fy-norm into image reconstruction model for limited-angle
CT reconstruction. Wang et al. [36] considered minimizing
the ¢;/¢5 term on the gradient for a limited-angle scanning
problem in CT reconstruction. However, the aforementioned
regularization methods are usually time-consuming and suffer
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from tricky parameter tuning.

Due to the development of deep convolutional neural net-
works (CNNs) in a broad range of computer vision tasks,
deep learning methods become more and more popular in the
medical imaging field. With regard to limited-angle CT recon-
struction, Pelt and Batenburg [31] proposed an artificial neural
network-based fast limited-angle image reconstruction algo-
rithm, which can be regarded as a weighted combination of the
FBP method and some learned filters. Boublil et al. [4] utilized
a CNN-based model to integrate multiple reconstructed results.
Kang et al. [26] constructed a deep CNN model in the wavelet
domain, which trained the wavelet coefficients from the CT
images after applying the contourlet transform. Gupta et al.
[19] presented a new image reconstruction method, which
replaced the projector in a projected gradient descent with a
CNN. Adler and Oktem [1] proposed a deep neural network
by unrolling a proximal primal-dual optimization method and
replacing the proximal operators with a CNN. Chen et al. [11]
unfolded the field of experts regularized CT reconstruction
model into a deep learning network, all parameters of which
can be learned from the training process. Han and Ye [20] pro-
posed a new multi-resolution deep learning scheme based on
the frame condition to overcome the limitation of U-net. Zhang
et al. [44] presented a new deep CNN jointly reconstructs
CT images and their associated Radon domain projections,
and constructed a hybrid loss function to effectively protect
the important structure of images. Bubba et al. [6] developed
a hybrid reconstruction framework that fused model-based
sparse regularization with data-driven deep learning to solve
the severely ill-posed inverse problem of limited-angle CT.
Arridge et al. [2] attempted to provide an overview of methods
for integrating data-driven concepts into the field of inverse
problems and a solid mathematical theory. Wiirfl er al. [38]
mapped the Feldkamp-Davis-Kress algorithm to the neural net-
works by introducing a novel cone-beam back-projection layer
for limited-angle problems. Lin et al. [27] proposed an end-to-
end trainable dual-domain network to simultaneously restore
sinogram consistency and enhance CT images. Baguer et al.
[3] introduced the deep image prior approach in combination
with classical regularization and an initial reconstruction. Ding
et al. [14] came up with a method based on the unrolling
of a proximal forward-backward splitting framework with a
data-driven image regularization via deep neural networks.
Cheng et al. [13] proposed a novel reconstruction model to
jointly reconstruct a high-quality image and its corresponding
high-resolution projection data. Zang et al. [42] proposed
IntraTomo, a powerful framework that combines the benefits of
learning-based and model-based approaches for solving highly
ill-posed inverse problems. Hu et al. [22] developed a method
termed Single-shot Projection Error Correction Integrated Ad-
versarial Learning (SPECIAL) progressive-improvement strat-
egy, which could effectively combine the complementary
information contained in the image domain and projection
domain. Bubba er al. [5] proposed a novel CNN, designed
for learning pseudodifferential operators in the context of
linear inverse problems. Hu er al. [23] proposed a novel
reconstruction framework termed Deep Iterative Optimization-
based Residual-learning (DIOR) for limited-angle CT, which

combined iterative optimization and deep learning based on
the residual domain. Although the aforementioned learning-
based methods have achieved better reconstruction results than
the regularization-based methods, the high ill-posedness of
the limited-angle reconstruction problems still challenges the
reconstruction quality.

The incomplete projection data makes the inverse problem
towards the ill-posedness, becoming more and more sensitive
to noises. We observe that the low-resolution reconstruction
problems have better numerical stability than the correspond-
ing high-resolution reconstruction problems. Therefore, we
propose a novel low-resolution image prior based trainable
reconstruction approach for the limited-angle CT reconstruc-
tion. More specifically, we use the established reconstruction
method to obtain the low-resolution image from the down-
sampled raw measured data. In what follows, we build up the
constrained reconstruction problem, which is solved by the
alternating direction method. By approximating the resolvent
operators by CNNs, an end-to-end algorithm is gained to
reconstruct images from raw data. We evaluate the perfor-
mance of the proposed method on the American Association
of Physicists in Medicine (AAPM) Challenge dataset. By
comparing with the state-of-the-art reconstruction methods,
our algorithm is shown more effective in dealing with limited-
angle data contaminated by either Gaussian or Poisson noises.

The rest of the paper is organized as follows. We present
the double-resolution reconstruction method in Section II.
Section III is dedicated to explaining the details of our network
architecture, loss function, and optimization. We present the
numerical results on AAPM phantom CT dataset corrupted by
Gaussian noises and Poisson noises in Section IV. Finally, a
brief conclusion and possible future works are presented in
Section V.

II. THE DOUBLE-RESOLUTION RECONSTRUCTION METHOD
A. Double-resolution reconstruction model

The CT reconstruction problem aims to reconstruct clean
image w € X from the projection data f € Y with unknown
noise 4 € Y, whose mathematical formulation is:

f=Au+6, (1)

where the reconstruction space X and the data space Y are
typically Hilbert Spaces, A : X — Y is the forward operator
that models how an image gives rise to data in absence of
noise. When the light source is a fan beam, the dimension of
the system matrix is M x N with M and N given as follows

M = Nyiews X Npms, and N =n x n,

where Nyjews denotes the number of angles in the angular
interval for limited-angle CT reconstruction, Npi,s denotes
the number of units on the detector, and /N represents the
number of pixels of the input image. For CT reconstruction
problem (1), the condition number of the system matrix A
directly affects the stability of the solution [25]. The larger
the condition number of the system matrix, the more serious
the ill-posedness of the inverse problem, which may result in
the degradation of the numerical methods.
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Fig. 1. The condition number comparison for the system matrices with different image resolutions, where the down-sampling rate is used as 1/2, 1/4, and

1/8, respectively.

We investigate the condition numbers of the system matrix
with different image resolutions. More specifically, we define
the low-resolution image using the equidistant sampling with
the step size of 7. Then the dimension of the low-resolution
image u; becomes n/7 x n/7. For the low-resolution system
matrix A;, the geometric parameters are consistent with the
original system matrix A, i.e., the Nyjows and Npps of
A; being the same as A, and only the number of pixels
changes. The dimension of the low-resolution system matrix
A; becomes M x N/TQ. As shown in Fig. 1, we evaluate the
condition numbers of the system matrices on the limited-angle
reconstruction problem, where the angle range varies from
180° to 30°. We can observe that no matter which norm is used
to calculate the condition number, the smaller the resolution
of the image is, the smaller the condition number is.

Since large condition numbers lead to numerical instability
and severe sensitivity to noisy measurements [25], the low-
resolution image can be used as prior to improve the solution
of limited-angle CT reconstruction, where the low-resolution
image can be expressed by the down-sampling matrix D as
given below

u; = Du,

where u; is the down-sampled image and D” D is a diagonal
matrix with diagonal elements being either 1 or 0. Consider-
ing this, we propose the following constrained minimization
problem for CT reconstruction

in F(Au, f)+R
min - F(Au, f) + R(u) o

st. Du = uy,

where F(-) denotes the data fidelity term, and R(-) denotes
the regularization term.

B. Learned alternating direction algorithm

The constrained minimization problem (2) can be further re-
formulated into an unconstrained minimization problem using
the penalty method as follows

1
min - F(Au, f) + R(w) + 3 [|Du - wla, 3

where p is a positive regularization parameter. Because all
terms in (3) contain the variable w making the minimization
task difficult, we introduce an auxiliary variable u and rewrite
(3) as the following minimization problem

- - 1 1,
win F(Adi, ) + () + 5 | D~ il + 5 i~ ul},

where r is a positive parameter. The main advantage of
above minimization problem is that we can use the alternating
direction method to solve the multi-variable minimization
problem. The variables w and u can be estimated alternatively
by solving the following two energy minimization problems

1
min  F(Aaq, f) + R(a) + o | — “”37 “)

and

. 1 . 2, 1 2
min ool —ulf o [Du—wlf, )
respectively. The minimization (4) is a typical regularization
model, which can be solved by the learned primal-dual algo-
rithm as follows

phtl = arg min 7* (p, f) — (Adk,p) + £ ||lp - p*2,
. . . . - 2
aft! = arg m{inR(u) + <Au,pk+1> + % Hu — ukH2 ,

where F* denotes the adjoint operator of F, p is the dual
variable of u, T is a positive parameter. On the other hand, the
minimization problem (5) is a least squared problem, which
can be solved by the closed-form solution. To sum up, we
propose to use the following iterative scheme to solve the
minimization problem (4) and (5) in an alternative way

ubtl = (uZ + rD* D)~ (pa®, rD*wy),
P = (L r0F") (o, A f),
aftl = (T + roR) L (uk, A*pFtl),

where Z denotes the identity operator, A* and D* represent
the adjoint operators of the forward operator A and down-
sampling operator D, respectively.

In the followings, we intend to summarize the unrolled
alternating direction algorithm by the deep neural networks to
solve the low-resolution image prior based CT reconstruction
model (2); see Algorithm 1. In the algorithm, we use the total

(6)
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Fig. 2. The network of low-resolution reconstruction model. The down-sampled projection data is reconstructed using the learned primal-dual algorithm
to obtain the low-resolution image, where the proximal operators have been replaced with CNNs, and each block is composed of three convolution layers,

PReLU and residual connection.

I iterations to build up the Low-Resolution Image Prior based
network, which is shorted as LRIP-net in our work.

Algorithm 1 The Low-Resolution Image Prior based Network

0 ~0

1: Initialize p°, u®, @
2: for k=0,...,1, do
3: uk‘H — Ipu (ﬁk,D*ul);

4: pMtlTye(ph, AdF, f);

5 ,&k+1 Y Aga(ukH,A*pk“);
6

. return u’

Remark 1. We assume the constraint u = w holds uncondi-
tionally during the iterations process, where w1 is used to
update w** in the algorithm.

III. ALGORITHM IMPLEMENTATION

Our Low-Resolution Image Prior based Network (denoted
by LRIP-net) is generated based on Algorithm 1, which
is implemented in Python using Operator Discretization Li-
brary (ODL), the package Adler, the ASTRA Toolbox, and
Tensorflow 1.8.0. Tensorflow is a toolkit for dealing with
complex mathematical problems, it can be thought of as a
programming system in which you represent calculations as
graphs, mathematical operations as nodes, and communication
multidimensional data arrays as edges of graphs. ASTRA tool-
box is a MATLAB and Python toolbox of high-performance
GPU primitives for 2D and 3D tomography, the ODL is
a Python library for fast prototyping focusing on inverse
problems and the Adler is a toolkit that can quickly implement
neural network construction.

A. Network architecture

The unrolling strategy is a discriminative learning method
by unrolling an iterative optimization algorithm into a hier-
archical architecture. Fig. 2 depicts the network structures
of low-resolution reconstruction model, we use the classical
learned primal-dual reconstruction method [1] to obtain the
low-resolution solution u;, for which we can also adopt other
advanced learning-based methods or variational methods. Fig.

3 depicts the network structures of our LRIP-net, which has
three inputs including the incomplete projection data f, the
system matrix A, and the reconstructed low-resolution image
u;. More specifically, there are three blocks in each stage of
the high-resolution reconstruction, which correspond to the
three variables. As shown at the bottom of Fig. 3, each block
involves a 3-layer network.

The total depth of the network depends on the number of
stages contained in the network, which is chosen to balance
the receptive fields and the total number of parameters. The
proposed network introduces the residual structure for two
reasons: 1) the residual structure makes the network easier
to train and optimize because each update is only a small
offset, and 2) the skip connections can alleviate gradient
disappearance and gradient explosion caused by increasing
the depth of deep neural networks. The non-linear activation
functions are chosen as the Parametric Rectified Linear Units
(PReLU) function. As displayed in Fig. 3, we set the numbers
of channels in each stage as 7 — 32 — 32 — 5 for p,
6 — 32 — 32 — 5 for w and u, where the differences
in the numbers are due to the dimension of inputs. The
convolutions are set to be of the size 3 x 3 in our network.
Furthermore, we choose the Xavier initialization scheme for
the convolution parameters and the zero initialization for all
biases. The convolution stride is set as 1 and the padding
strategy is chosen as ‘SAME’ in the network.

B. Network loss and optimization

In the training stage, we use both Mean Squared Error
(MSE) and Structural Similarity Index (SSIM) as our loss
function defined below

L

L= 7 ; (ﬁMSE (wi,w) + pLssrar (i, uf)>, @)
where u; denotes the reconstructed image, w; denotes the ref-
erence image and p is a trade-off parameter. We assumed that
both the MSE loss and SSIM loss have the same contribution.
Thus, p is fixed as p = 1 for all experiments.

Our network updates each parameter through the backpropa-

gation of the stochastic gradient descent method in Tensorflow.
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Fig. 3. The network structure of our LRIP-Net: low-resolution image prior based reconstruction model. The reconstructed image is estimated by an iterative
unrolling algorithm, and each block corresponds to a variable update. The concrete structure of each block is presented at the bottom.

For a fair comparison, most experimental parameters are set
as the same as the PD-net and FSR-net. We adopt the adaptive
moment estimation (Adam) to optimize the learning rate by
setting the parameter 8 = 0.99 and other parameters to their
default values. The learning rate schedule is set according
to cosine annealing to improve training stability, the initial
learning rate 7, is set to 10~*. To further improve the training
stability, the global gradient norm clipping is performed by
limiting the gradient norm to 1. Besides, the batch size is set
to 1 for all experiments.

IV. NUMERICAL RESULTS

In this section, we evaluate our LRIP-net on limited-angle
reconstruction problems and compare it with several state-of-
the-art methods on a human phantom dataset.

A. Comparison algorithms

We adopt several recent CT reconstruction methods, both
the variational method and learning-based methods as given
below

o TV model: the TV regularized reconstruction model in
[33]. We tuned the balance parameter \ € [0.9, 2.5], the
step size for the primal value 7 € [0.5,0.9] and the
step size for the dual value o € [0.2,0.5] for different
experiments.

FBP-Unet: the FBP-Unet reconstruction in [24]. It is a
method combining the FBP reconstruction with the Unet
as the post-processing to improve image quality. We use
the Xavier to initialize the network parameters. And the
loss function is the mean squared loss of the reconstructed
image and the ground truth.

PD-net: the Learned Primal-Dual network in [1]. The
network is a deep unrolled neural network with 10 stages.
The number of initialization channels for primal values
and dual values is set to 5. The Xavier initialization and
the mean squared loss of the reconstructed image and the
ground truth are used in all experiments.

SIPID: the deep learning framework for Sinogram In-
terpolation and Image Denoising in [41]. The SIPID
network can achieve accurate reconstructions through
alternatively training the sinogram interpolation network
and the image denoising network. The Xavier initializa-
tion and the mean squared loss of the reconstructed image
and the ground truth are used in all experiments.
FSR-net: the Learned Full-Sampling Reconstruction
From Incomplete Data in [13]. The network is an iter-
ative expansion method that used the corresponding full-
sampling projection system matrix as a prior information.
To be specific, the IFSR-net guarantees the invertibility
of the system matrix, while the SFSR-net guarantees
numerical stability. The number of initialization channels
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Fig. 4. The values of loss function, PSNR and SSIM with respect to the numbers of epochs in our network, where the curves are evaluated on the human

phantom with 90° scanning angular range and 5% Gaussian noise.

for primal values and dual values is set as 6 and 7,
respectively. And the loss function is the mean square
error of the image domain and the Radon domain with
the weight « being 1.

B. Datasets and settings

We use the clinical data “The 2016 NIH-AAPM-Mayo
Clinic Low Dose CT Grand Challenge” [29], which contains
10 full-dose scans of the ACR CT accreditation phantom.
We select 9 data as the training profile and leave 1 data
for the evaluation, resulting in 2164 images of size 512x512
for the training and 214 images for the testing. We concern
with the limited-angle reconstruction problem in the numerical
experiments, for which the scanning angular interval is set
as 1 degree. The additive white Gaussian noises and Poisson
noises are introduced into the projected data to validate the
performance of reconstruction methods.

C. Parameter behavior

In the first place, we test the effect of the number of epoch
on the convergence in network training on the human dataset.
The values of the loss function, PSNR, and SSIM are plotted
in Fig. 4, which evidence the convergence of our LRIP-net.
Accordingly to plots, we fix the number of the epochs as k£ =
22 during the training in the following experiments.

Secondly, the amount of the parameters reflects the com-
plexity of the network. Table I lists the sizes of the parameters
for the learning-based models. Because each stage in our
model involves three 3-layer networks, our model has a total
of 90 convolution layers, which gives 3.6 x 10° parameters.
For the fairness of comparison, we set the stage number for
PD-net and FSR-net to be 20 and 10, respectively.

Finally, expanding the variable space is a common network
optimization technique, which allows the model to retain
some memory for the variables making the training process
more stable such as u = [u®,u® .. u®™)] and p =
[pM,p@ ... pN4)]. In Table II, we explore the influence
of the choices of N, and N, to reconstruction accuracy on
90° limited-angle data. As can be seen, the best accuracy is
achieved with IV;, = 5 and Ny = 5, which are fixed for all
experiments.

TABLE I
COMPARISON OF THE PARAMETERS AMONG THE LEARNING-BASED
METHODS.

Method Number of parameters

FBP-Unet 107

SIPID 2 x 107

PD-net 2.4 x 10°

FSR-net 4.9 x 10°

LRIP-net 3.6 x 10°
TABLE II

PERFORMANCE OF OUR LRIP-NET WITH RESPECT TO DIFFERENT
SETTINGS OF PARAMETERS.

Settings PSNR RMSE SSIM
Np=4,Ng =4 24.7973 0.0537 0.8783
Np=5Ng=5 24.9391 0.0528 0.8858
Np=6,Ng =6 24.8532 0.0532 0.8823
Np =T7,Nqg =7 24.8349 0.0534 0.8816

D. Experiments on data with Gaussian noises

In this subsection, we evaluate the performance of our
LRIP-net and other methods on limited-angle raw data cor-
rupted different noise levels. We let the default value of 7 to
be 7 = 1/2 to obtain the low-resolution image prior unless
otherwise specified. And the LRIP-net trained by the MSE
loss function is denoted by LRIP-netysg.

Table III displays the quantitative results of different meth-
ods on limited-angle data corrupted by 5% Gaussian noises.
The indexes used for evaluation are PSNR, RMSE, SSIM, and
running time. We observe that the reconstruction qualities of
all methods decrease as the scanning angle shrinks. It can be
found out that LRIP-nety;sg has obvious numerical advantage
compared to other comparison algorithms. After introducing
the SSIM loss into the loss function, the advantage of LRIP-
net /5 is further improved. Therefore, we suggest to use the
joint loss function in implementation. Our LRIP-net;,, can
provide better reconstruction accuracy with 0.6 dB, 0.9 dB,
0.9 dB higher PSNR than the SFSR-net on 150°, 120°, and
90° reconstruction problem, respectively. What is even more
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TABLE 11T
COMPARISON ON THE LIMITED-ANGLE DATA CORRUPTED BY 5%
GAUSSIAN NOISES IN TERMS OF PSNR, RMSE, SSIM AND RUN TIME

(MS).

Noise | Nyjew | Method PSNR | RMSE | SSIM | Time
FBP 13.5911 | 0.1162 | 0.4854 | 776

TV 25.8815 | 0.0631 0.8091 | 56532
FBP-Unet 23.8923 | 0.0793 | 0.8703 | 1033

SIPID 30.3275 | 0.0321 | 0.9276 | 1372

150° PD-net 30.3766 | 0.0313 | 0.9301 | 1113
IFSR-net 30.8763 | 0.0296 | 0.9303 | 1429
SFSR-net 30.9411 | 0.0279 | 0.9324 | 1582
LRIP-netyisg | 31.3745 | 0.0256 | 0.9404 | 1245

5% LRIP-net; /5 31.5957 | 0.0247 | 0.9426 | 1264
FBP 13.4418 | 0.1652 0.4008 | 602

TV 23.5852 | 0.0802 | 0.7891 | 60032
FBP-Unet 21.1637 | 0.0981 0.8072 | 1023

SIPID 27.0428 | 0.0416 0.9024 | 1346

120° PD-net 27.1539 | 0.0402 | 0.9037 | 1132
IFSR-net 28.0441 | 0.0385 | 0.9079 | 1417
SFSR-net 28.3263 | 0.0372 | 0.9103 | 1551
LRIP-netysg | 29.1888 | 0.0331 | 0.9354 | 1242
LRIP-net; /5 29.2763 | 0.0326 | 0.9361 | 1256

FBP 13.0314 | 0.2260 | 0.3881 | 430

TV 19.9501 | 0.0997 | 0.6918 | 54917
FBP-Unet 18.5181 | 0.1035 | 0.7481 | 1015

SIPID 22.7492 | 0.0626 | 0.8626 | 1363

90° PD-net 22.6047 | 0.0638 | 0.8612 | 1099
IFSR-net 23.9399 | 0.0572 | 0.8744 | 1382
SFSR-net 24.2494 | 0.0566 | 0.8761 | 1525
LRIP-netyisg | 24.9391 | 0.0528 | 0.8858 | 1218
LRIP-net; /o 25.1555 | 0.0516 | 0.8893 | 1247

important, compared to the SFSR-net, which is a dual-domain
reconstruction method introducing the full-sampling system
matrix as the prior knowledge, our model not only improves
the reconstruction quality but also saves the computational
time.

Fig. 5 presents the reconstruction results and residual im-
ages obtained by different methods for 90° limited-angle
reconstruction. As can be seen, the learning-based methods
outperform the direct method and TV model, which exhibit
serious artifacts in the missing angle region. Although the
denoiser introduced by the FBP-Unet can somehow deal
with the noises, the result still presents obvious artifacts.
Compared to the SIPID, PD-net and FSR-nets, our LRIP-
net; /5 can better preserve the image details and edges with
less information left in the residual images. Thus, both the
quantitative and qualitative results confirm that the low-to-
high double-resolution strategy can improve the reconstruction
accuracy for the limited-angle reconstruction problem.

As shown by Table III, the low-resolution image prior works
well on limited-angle reconstruction problems. However, there
is one issue left that how to choose the optimal down-
sampling rate to obtain the best performance. To make it
clearly, we compare the reconstruction results of our LRIP-
net with respect to different low-resolution priors, which are
obtained by the down-sampling rate of 1/2, 1/4, 1/8, 1/16

TABLE IV
COMPARISON BETWEEN THE PD-NET AND OUR LRIP-NET WITH
DIFFERENT LOW-RESOLUTION IMAGE PRIORS ON THE LIMITED-ANGLE
DATA CORRUPTED BY 5% GAUSSIAN NOISES.

Nyiew Method PSNR RMSE | SSIM Time
PD-net 30.3766 0.0313 0.9301 1113
LRIP-net; /5 31.5957 0.0247 0.9426 1264

150° LRIP-net; /4 32.7354 0.0231 0.9499 1240
LRIP-net; /g 32.8775 0.0218 0.9516 1231
LRIP-net; /16 32.3513 0.0241 0.9463 1227
LRIP-net; /35 31.5741 0.0253 0.9417 1124
PD-net 27.1539 0.0402 0.9037 1132
LRIP-net; /5 29.2763 0.0326 0.9342 1256

1200 LRIP-net; /4 30.0991 0.0313 0.9361 1239
LRIP-net; /g 30.8746 0.0286 0.9399 1227
LRIP-net; /16 30.2761 0.0306 0.9378 1217
LRIP-net; /35 28.9642 0.0358 0.9314 1211
PD-net 22.6047 0.0638 0.8612 1099
LRIP-net; /5 25.1555 0.0516 0.8893 1247

90° LRIP-net; /4 25.9716 0.0484 0.9041 1205
LRIP-net; /g 26.3553 0.0451 0.9117 1186
LRIP-net; /16 26.0759 0.0477 0.9068 1175
LRIP-net; /39 25.2476 0.0501 0.8934 1169

and 1/32, respectively. As shown in Fig. 6, the reconstruction
quality of our LRIP-net first increases and then decreases
as the down-sampling rate keeps decreases with the best
reconstruction results provided by the down-sampling rate of
1/8 for 150°, 120° and 90° limited-angle reconstruction. The
reason behind is that the quality of the low-resolution image
prior also degrades as the down-sampling rate becomes smaller
and smaller, which means there is a trade-off between the
resolution and quality of the low-resolution image prior. Even
though, our LRIP-net has the dominant advantages compared
to PD-net, which is built up by the reconstruction model
without low-resolution image prior. As can be seen from Table
IV, no matter what the down-sampling rate is, our LRIP-net
always has significant advantages over the PD-net. The visual
comparison on 90° limited-angle reconstruction are provided
in Fig. 7, where our reconstructions have smoother edges and
better details than PD-net.

We further increase the noise level contained in the raw
data to 10% white Gaussian noises and list the quantitative
results in Table V. It can be observed that the reconstruction
performance of the TV model is poor in the case of high-
level noises with PSNR dropping by 4 to 5 dB compared to
the previous experiments. On the other hand, the performance
of the learning-based methods is less sensitive to noises.
The SIPID method relying on the sinogram interpolation
works better than FBP-Unet. And the deep unrolling methods
(i.e., PD-net, IFSR-net, SFSR-net) outperform the traditional
iterative algorithm when the scanning range is limited and data
is corrupted by noises. Similar to the previous experiments,
compared with other deep learning algorithms, our LRIP-
nets give the reconstruction results with higher PSNR and
SSIM. Moreover, the low-resolution image obtained by the
projection data down-sampled with rate 1/8 always gives the
best reconstruction results with more than 2 dB PSNR and 0.05
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(a) FBP (c) FBP-Unet

(d) SIPID

(e) PD-net (f) SFSR-net (2) LRIP-net; /5

Fig. 5. Limited-angle reconstruction experiment of the AAPM phantom dataset with 90° scanning angular range and 5% Gaussian noises. Top row: the
reconstructed images by different methods. Bottom row: the associated residual images. The display window is set as [0, 1].
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Fig. 6. Comparisons of PSNR, RMSE and SSIM for the limited-angle reconstruction experiments on the AAPM phantom dataset corrupted by 5% Gaussian
noises, where the down-sampling rate is chosen as 1/2, 1/4, 1/8, 1/16 and 1/32, respectively, to generate the low-resolution image prior.

(a) PD-net (b) LRIP-net; /o (c) LRIP-net; /4

(f) LRIP-DGt1/32

(d) LRIP-netl/s

(e) LRIP-net; /14

Fig. 7. The visual comparison between the PD-net and our LRIP-net with low-resolution image prior of different resolutions on the limited-angle problem
with 5% Gaussian noises and 90° scanning angular range. The display window is set as [0, 1].

SSIM increments compared to the PD-net. Fig. 8 illustrates
the reconstructed images from different methodologies with
scanning angular range of 90° and 10% Gaussian noises.
It can be seen that the both TV model and the FBP-Unet
suffers from significant artifacts, which present distortions in
the angular range of the missing scan. Other learning-based
methods provides better visual qualities than FBP-Unet, and
our LRIP-net, /g still gives the best reconstruction result with
correct boundaries and fine structures.

E. Experiments on data with Poisson noises

Due to the statistical error of low photon counts, Poisson
noises are introduced and result in random thin bright and
dark streaks that appear preferentially along the direction of
the greatest attenuation [15]. Table VI lists the PSNR, RMSE,
and SSIM of different methods on raw data scanned within a
limited scanning angle and corrupted by Poisson noises, where
Poisson noises correspond to 100 incident photons per pixel
before attenuation. Unlike white Gaussian noises, the perfor-
mance of the TV model is significantly better than the post-
processing learning method FBP-Unet. And all other learning-
based methods work better than the TV model in terms of
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(i) LRIP-netyisk (j) LRIP-net; /5

(g) IFSR-net

(k) LRIP-net; /4 () LRIP-net; /g

Fig. 8. Limited-angle reconstruction experiments on the AAPM phantom dataset within 90° scanning angular range and 10% Gaussian noises. The display

window is set as [0, 1].

PSNR, RMSE and SSIM. Our LRIP-nets still provide the best
reconstruction accuracy among all the learning-based methods
for the scanning angle of 150°, 120°, and 90°, respectively.
It demonstrates that the LRIP-nets are also effective for data
contaminated by Poisson noises.

Fig. 9 manifests the reconstruction results of these methods
with scanning angular of 90°. It can be seen that both FBP and
FBP-Unet produce serious artifacts within the range of missing
angles. The TV model performs well in removing Poisson
noises, but it can not handle the artifacts very well. Similarly,
there left obvious artifacts on boundaries and different degrees
of missing in visceral tissues of the reconstruction images
obtained by the SIPID, PD-net and FSR-net. The visceral
tissue and boundaries of our LRIP-net reconstructions are
more intact and smoother, especially for the LRIP-net; g
which gives the ideal boundaries. The observation becomes
even apparent if we look at the zoom-in regions, where the
LRIP-nets can produce results with fine structures. Therefore,
we conclude that the low-resolution image prior can effectively
improve the qualities of the limited-angle CT reconstruction.

As far as the running time is concerned, since the FBP
is an analytical reconstruction algorithm, it gives the fastest
speed. On the other, the TV model is a traditional iterative
method, for which the running time is the longest. For the
deep learning-based methods, the running time increases with
the complexity of the network, but the overall difference is
not significant.

F. Discussions

The primal-dual network can be regarded as our model
without the low-resolution image prior. By comparing the
results in Table III, V and VI, even though both LRIP-net
and PD-net are trained by the MSE loss, the LRIP-net shows
significant advantages, always producing higher PSNR and
SSIM. Through such ablation study, it is shown that the low-
resolution image working as prior knowledge can effectively
improve the qualities of the reconstruction images. On the
other hand, we discuss the impact of the low-resolution image
to our LRIP-net, where the high quality priors obtained by
PD-net and poor quality priors obtained by FBP are used in
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Fig. 9. Limited-angle reconstruction experiment on the AAPM phantom dataset with 90° scanning angular range and Poisson noises. The display window

is set as [0, 1].

our LRIP-net. As shown in Table VII, two observations can
be concluded as follows

e Our LRIP-net with the FBP reconstructed image priors
always produce better reconstruction results than PD-
net (see Table III). Thus, our strategy to introduce the
low-resolution image as prior is not subject to the low-
resolution image reconstruction method.

e Our LRIP-net with the PD-net reconstructed image priors
always provide better reconstruction results than the
LRIP-net using FBP reconstructed image priors. It means
that the better the quality of a priori image, the better the
reconstruction result.

To sum up, the low-resolution image constraint in our model
(2) can help to find better solution from the null space, which
has been demonstrated by our numerical experiments.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a low-resolution image prior im-
age reconstruction model for the limited-angle reconstruction

problems. The constrained model was solved by the alter-
nating direction method with all sub-minimization problems
approximated by CNN blocks, which was trained end-to-end
from raw measured data. Numerical experiments on various
limited-angle CT reconstruction problems have successfully
demonstrated the advantages of our LRIP-net over the state-
of-the-art learning methods.

Although we illustrated that the low-resolution reconstruc-
tion problem has smaller condition number than the cor-
responding high-resolution problem, it still lacks theoretical
guarantee. Thus one future work is to investigate the observa-
tion with rigorous mathematical proof. Another possible future
research direction is to use image super-resolution methods
such as [16], [34] to establish more effective connection
between the low-resolution and high-resolution images for
solving the ill-posed CT reconstruction problems. Moreover,
we also would like to develop effective methods to fuse
the multi-scale information to obtain a priori image and to
implement our method on other reconstruction problems such
as digital breast tomosynthesis [35], which is a limited-angle
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TABLE V

COMPARISON ON LIMITED-ANGLE DATA CORRUPTED BY 10% GAUSSIAN

NOISES IN TERMS OF PSNR, RMSE, SSIM AND RUN TIME (MS).

TABLE VI

COMPARISON ON LIMITED-ANGLE DATA CORRUPTED BY POISSON NOISES

IN TERMS OF PSNR, RMSE, SSIM AND RUN TIME (MS).

Noise | Nyjew | Method PSNR | RMSE | SSIM | Time Nyiew | Method PSNR | RMSE | SSIM | Time
FBP 17.5464 | 0.1326 | 0.3914 | 640 FBP 19.1018 | 0.1108 | 0.6626 | 692
v 207502 | 0.0917 | 0.5070 | 54536 TV 28.4326 | 0.0378 | 0.8925 | 64075
FBP-Unet 21.8293 | 0.0810 | 0.7887 | 1179 FBP-Unet 232040 | 0.0691 | 0.8743 | 1134
SIPID 29.0276 | 0.0345 | 0.9193 | 1294 SIPID 287649 | 0.0371 | 09152 | 1298
PD-net 29.0084 | 0.0354 | 0.9193 | 1152 PD-net 28.8137 | 0.0362 | 0.9160 | 1288
150° | SFSR-net 29.4543 | 0.0336 | 0.9199 | 1631 150° | IFSR-net 29.4316 | 0.0337 | 09236 | 1512
IFSR-net 29.6694 | 0.0328 | 0.9231 | 1587 SFSR-net 30.0356 | 0.0314 | 0.9280 | 1649
LRIP-netygg | 30.1257 | 0.0304 | 0.9283 | 1390 LRIP-netygg | 30.2227 | 0.0307 | 0.9349 | 1324
LRIP-net; ;5 | 303367 | 0.0295 | 0.9335 | 1407 LRIP-net, /5 303342 | 0.0303 | 0.9338 | 1341
LRIP-net; /4 | 30.7131 | 0.0291 | 0.9359 | 1386 LRIP-net; /4 30.8961 | 0.0285 | 0.9366 | 1315
LRIP-net; /g | 30.8026 | 0.0288 | 0.9362 | 1375 LRIP-net, /g 311291 | 0.0277 | 09368 | 1308
FBP 14.8909 | 0.1801 | 0.2940 | 558 FBP 15.8807 | 0.1606 | 0.5243 | 599
v 18.4345 | 0.1065 | 0.4365 | 55592 TV 253223 | 0.0541 | 0.8386 | 62783
FBP-Unet 20.0065 | 0.0999 | 0.7465 | 1207 FBP-Unet 19.5694 | 0.1050 | 0.8201 | 1119
SIPID 26.6271 | 0.0461 | 0.8941 | 1311 SIPID 274079 | 0.0424 | 0.9012 | 1305
PD-net 26.7667 | 0.0458 | 0.8944 | 1221 PD-net 27.4054 | 0.0426 | 0.9007 | 1220
10% | 120° | SFSR-net 27.2079 | 0.0436 | 0.9034 | 1624 120° | IFSR-net 27.6385 | 0.0415 | 09107 | 1687
IFSR-net 27.2853 | 0.0432 | 0.9032 | 1539 SFSR-net 27.5545 | 0.0419 | 09115 | 1752
LRIP-netysg | 27.8333 | 0.0404 | 0.9083 | 1372 LRIP-netygp | 27.7244 | 0.0411 | 09142 | 1351
LRIP-net; 5 | 28.1961 | 0.0385 | 0.9196 | 1389 LRIP-net; /5 277481 | 0.0409 | 09157 | 1367
LRIP-net; /4 | 28.4371 | 0.0369 | 0.9221 | 1366 LRIP-net; 284571 | 0.0374 | 09206 | 1327
LRIP-net; ;5 | 29.1261 | 0.0349 | 0.9256 | 1361 LRIP-net; /g 295724 | 0.0332 | 09264 | 1311
FBP 12.3727 | 0.2406 | 0.2455 | 451 FBP 13.0830 | 02217 | 04747 | 495
v 15.9747 | 0.1956 | 0.4177 | 54633 TV 21.5935 | 0.1013 | 0.7908 | 63049
FBP-Unet 18.7582 | 0.1153 | 0.7252 | 1123 FBP-Unet 19.3228 | 0.1381 | 0.7854 | 1099
SIPID 23.6216 | 0.0664 | 0.8607 | 1302 SIPID 232017 | 0.0693 | 0.8552 | 1304
PD-net 23.6473 | 0.0657 | 0.8615 | 1136 PD-net 23.1127 | 0.0698 | 0.8546 | 1130
90° SFSR-net 237253 | 0.0651 | 0.8591 | 1585 90° IFSR-net 235283 | 0.0666 | 0.8711 | 1560
IFSR-net 24.2056 | 0.0616 | 0.8701 | 1457 SFSR-net 24.0277 | 0.0627 | 0.8733 | 1679
LRIP-netygg | 24.5125 | 0.0597 | 0.8840 | 1339 LRIP-netygp | 24.6883 | 0.0589 | 0.8803 | 1285
LRIP-net; /5 | 24.8153 | 0.0576 | 0.8975 | 1356 LRIP-net; /5 247223 | 0.0582 | 0.8816 | 1306
LRIP-net; ,, | 249712 | 0.0562 | 0.8984 | 1327 LRIP-net; /, 252347 | 0.0541 | 0.8892 | 1277
LRIP-net; ;5 | 25.9377 | 0.0457 | 0.9141 | 1319 LRIP-net; /g 259344 | 0.0505 | 0.8981 | 1265

x-ray tomography technique using low-dose high-resolution
projections.
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