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Abstract. In 1980, Bressoud conjectured a combinatorial identity Aj = Bj for j = 0
or 1, where the function Aj counts the number of partitions with certain congruence
conditions and the function Bj counts the number of partitions with certain difference
conditions. Bressoud’s conjecture specializes to a wide variety of well-known theorems in
the theory of partitions. Special cases of his conjecture have been subsequently proved by
Bressoud, Andrews, Kim and Yee. Recently, Kim resolved Bressoud’s conjecture for the
case j = 1. In this paper, we introduce a new partition function Bj which can be viewed
as an overpartition analogue of the partition function Bj introduced by Bressoud. By
means of Gordon markings, we build bijections to obtain a relationship between B1 and
B0 and a relationship between B0 and B1. Based on these former relationships, we further
give overpartition analogues of many classical partition theorems including Euler’s parti-
tion theorem, the Rogers-Ramanujan-Gordon identities, the Bressoud-Rogers-Ramanujan
identities, the Andrews-Göllnitz-Gordon identities and the Bressoud-Göllnitz-Gordon i-
dentities.
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1 Introduction

Bressoud [10] proved and conjectured some partition identities involving the partition
function Bj, which counts the number of partitions with certain difference conditions (see
Definition 1.6). The main objective of this paper is to introduce a new partition function
Bj which can be regarded as an overpartition analogue of the partition function Bj. We
establish a relationship between B1 and B0 and a relationship between B0 and B1. Based
on these two relationships, we obtain overpartition analogues of many classical partition
theorems including Euler’s partition theorem, the Rogers-Ramanujan-Gordon identities,
the Bressoud-Rogers-Ramanujan identities, the Andrews-Göllnitz-Gordon identities and
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the Bressoud-Göllnitz-Gordon identities. It should be noted that the relationship between
B1 and B0 plays a crucial role in the proof of Bressoud’s conjecture for j = 0 in the
subsequent paper [25].

Let us recall some common notation and terminologies on partitions from [5, Chapter
1]. A partition π of a positive integer n is a finite non-increasing sequence of positive
integers π = (π1, π2, . . . , π`) such that

∑`
i=1 πi = n. An overpartition of n is a partition

of n such that the first occurrence of a part can be overlined.

For example, there are five partitions of 4:

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1),

whereas there are fourteen overpartitions of 4:

(4), (4̄), (3, 1), (3̄, 1), (3, 1̄), (3̄, 1̄), (2, 2), (2̄, 2),

(2, 1, 1), (2̄, 1, 1), (2, 1̄, 1), (2̄, 1̄, 1), (1, 1, 1, 1), (1̄, 1, 1, 1).

We impose the following order on the parts of an overpartition:

1 < 1̄ < 2 < 2̄ < · · · . (1.1)

Let π = (π1, π2, . . . , π`) be an ordinary partition (resp. an overpartition) with π1 ≥
π2 ≥ · · · ≥ π` ≥ 1. The number of parts of π is called the length of π, denoted `(π). The
weight of π is the sum of parts, denoted |π|.

In 1961, Gordon [22, p. 394] found an infinite family of combinatorial generalizations
of the Rogers-Ramanujan identities, which has been known as the Rogers-Ramanujan-
Gordon theorem.

Theorem 1.1 (Rogers-Ramanujan-Gordon). For k ≥ r ≥ 1, let B1(−; 1, k, r;n) denote
the number of partitions π = (π1, π2, . . . , π`) of n, where πi ≥ πi+k−1 + 2 for 1 ≤ i ≤
`− k + 1, and at most r − 1 of the πi are equal to 1. For k ≥ r ≥ 1, let A1(−; 1, k, r;n)
denote the number of partitions of n into parts 6≡ 0,±r (mod 2k+1). Then, for k ≥ r ≥ 1
and n ≥ 0,

A1(−; 1, k, r;n) = B1(−; 1, k, r;n).

An analytic proof of Theorem 1.1 was given by Andrews [3]. He discovered the fol-
lowing generating function version of Theorem 1.1, which has been called the Andrews-
Gordon identity: For k ≥ r ≥ 1,∑
N1≥···≥Nk−1≥0

qN
2
1+···+N2

k−1+Nr+···+Nk−1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q; q)Nk−1

=
(qr, q2k−r+1, q2k+1; q2k+1)∞

(q; q)∞
. (1.2)

From now on, we assume that |q| < 1 and adopt the standard notation [5]:

(a; q)∞ =
∞∏
i=0

(1− aqi), (a; q)n =
(a; q)∞

(aqn; q)∞
,
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and
(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

In 1979, Bressoud [9] extended the Rogers-Ramanujan-Gordon theorem to even mod-
uli, which has been called the Bressoud-Rogers-Ramanujan theorem.

Theorem 1.2 (Bressoud-Rogers-Ramanujan). For k > r ≥ 1, let B0(−; 1, k, r;n) denote
the number of partitions π = (π1, π2, . . . , π`) of n, where πi ≥ πi+k−1 + 2 for 1 ≤ i ≤
`−k+1, at most r−1 of the πi are equal to 1, and for 1 ≤ i ≤ `−k+2, if πi ≤ πi+k−2+1,
then

πi + · · ·+ πi+k−2 ≡ r − 1 (mod 2).

For k > r ≥ 1, let A0(−; 1, k, r;n) denote the number of partitions of n into parts 6≡ 0,±r
(mod 2k). Then, for k > r ≥ 1 and n ≥ 0,

A0(−; 1, k, r;n) = B0(−; 1, k, r;n).

Furthermore, Bressoud [10] obtained the following generating function version of The-
orem 1.2: For k > r ≥ 1,∑

N1≥···≥Nk−1≥0

qN
2
1+···+N2

k−1+Nr+···+Nk−1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q2; q2)Nk−1

=
(qr, q2k−r, q2k; q2k)∞

(q; q)∞
. (1.3)

Motivated by the Rogers-Ramanujan-Gordon identities, Andrews [2] found an infinite
family of the combinatorial generalizations of the Göllnitz-Gordon identities, which has
been referred to as the Andrews-Göllnitz-Gordon theorem.

Theorem 1.3 (Andrews-Göllnitz-Gordon). For k ≥ r ≥ 1, let B1(1; 2, k, r;n) denote the
number of partitions π = (π1, π2, . . . , π`) of n such that no odd part is repeated, where
πi ≥ πi+k−1 + 2 with strict inequality if πi is even for 1 ≤ i ≤ ` − k + 1, and at most
r − 1 of the πi are less than or equal to 2. For k ≥ r ≥ 1, let A1(1; 2, k, r;n) denote the
number of partitions of n into parts 6≡ 2 (mod 4) and 6≡ 0,±(2r − 1) (mod 4k). Then,
for k ≥ r ≥ 1 and n ≥ 0,

A1(1; 2, k, r;n) = B1(1; 2, k, r;n).

In 1980, Bressoud [10] extended the Andrews-Göllnitz-Gordon theorem to even moduli,
which has been called the Bressoud-Göllnitz-Gordon theorem.

Theorem 1.4 (Bressoud-Göllnitz-Gordon). For k > r ≥ 1, let B0(1; 2, k, r;n) denote the
number of partitions π = (π1, π2, . . . , π`) of n such that no odd part is repeated, where
πi ≥ πi+k−1 + 2 with strict inequality if πi is even for 1 ≤ i ≤ `− k + 1, at most r − 1 of
the πi are less than or equal to 2, and for 1 ≤ i ≤ `− k + 2, if πi ≤ πi+k−2 + 2 with strict
inequality if πi is odd, then

πi + · · ·+ πi+k−2 ≡ r − 1 + Vπ(πi) (mod 2),
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where Vπ(t) denotes the number of odd parts not exceeding t in π. For k > r ≥ 1, let
A0(1; 2, k, r;n) denote the number of partitions of n into parts not congruent to 2k − 1
(mod 4k − 2) may be repeated, no part is congruent to 2 (mod 4), no part is multiple of
8k − 4, and no part is congruent to ±(2r − 1) (mod 4k − 2). Then, for k > r ≥ 1 and
n ≥ 0,

A0(1; 2, k, r;n) = B0(1; 2, k, r;n).

Bressoud [10] derived the following generating function versions of Theorem 1.3 and
Theorem 1.4: For j = 0 or 1 and (2k + j)/2 > r ≥ 1,∑

N1≥···≥Nk−1≥0

(−q1−2N1 ; q2)N1q
2(N2

1+···+N2
k−1+Nr+···+Nk−1)

(q2; q2)N1−N2 · · · (q2; q2)Nk−2−Nk−1
(q4−2j; q4−2j)Nk−1

=
(q2; q4)∞(q2r−1, q4k−2r−1+2j, q4k−2+2j; q4k−2+2j)∞

(q; q)∞
.

(1.4)

For j = 0 or 1, it is evident that the generating function of Aj(1; 2, k, r;n) defined in
Theorem 1.3 and Theorem 1.4 equals the right-hand side of (1.4). Hence, the sum on
the left-hand side of (1.4) can be considered as the generating function of Bj(1; 2, k, r;n)
defined in Theorem 1.3 and Theorem 1.4. More precisely, when j = 1, the identity (1.4)
can be viewed as the generating function version of Theorem 1.3, and when j = 0, the
identity (1.4) can be seen as the generating function version of Theorem 1.4.

Bressoud obtained a far-reaching partition theorem utilizing an extension of Watson’s
q-analogue of Whipple’s theorem (see [10, Theorem 1]). Throughout this paper, we assume
that α1, α2, . . . , αλ and η are integers such that

0 < α1 < · · · < αλ < η, and αi = η − αλ+1−i for 1 ≤ i ≤ λ. (1.5)

When λ is odd, observing that η = α(λ+1)/2 +αλ+1−(λ+1)/2 = 2α(λ+1)/2, we see that η must
be even in such case.

Theorem 1.5 (Bressoud). For j = 0 or 1 and (2k + j)/2 > r ≥ λ ≥ 0,∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q(2−j)η; q(2−j)η)Nk−1

×
λ∏
s=1

(−qη−αs−ηNs ; qη)Ns
λ∏
s=2

(−qη−αs+ηNs−1 ; qη)∞

=
(−qα1 , . . . ,−qαλ ; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
+j), qη(2k−λ+j); qη(2k−λ+j))∞

(qη; qη)∞
.

(1.6)

This theorem reduces to many infinite families of identities. For example, setting
λ = 0, η = 1 and j = 1 or 0, we recover (1.2) and (1.3) respectively. Setting λ = 1, η = 2
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and α1 = 1, we come to (1.4). To give a combinatorial interpretation of (1.6), Bressoud
introduced two partition functions.

Definition 1.6 (Bressoud). For j = 0 or 1 and k ≥ r ≥ λ ≥ 0, define the partition
function Bj(α1, . . . , αλ; η, k, r;n) to be the number of partitions π = (π1, π2, . . . , π`) of n
satisfying the following conditions:

(1) For 1 ≤ i ≤ `, πi ≡ 0, α1, . . . , αλ (mod η);

(2) Only multiples of η may be repeated;

(3) For 1 ≤ i ≤ `− k + 1, πi ≥ πi+k−1 + η with strict inequality if η | πi;

(4) At most r − 1 of the πi are less than or equal to η;

(5) For 1 ≤ i ≤ `− k + 2, if πi ≤ πi+k−2 + η with strict inequality if η - πi, then

[πi/η] + · · ·+ [πi+k−2/η] ≡ r − 1 + Vπ(πi) (mod 2− j),

where Vπ(t) denotes the number of parts not exceeding t which are not divisible by η
in π and [ ] denotes the greatest integer function.

Definition 1.7 (Bressoud). For j = 0 or 1 and (2k + j)/2 > r ≥ λ ≥ 0, define the
partition function Aj(α1, . . . , αλ; η, k, r;n) to be the number of partitions of n into parts
congruent to 0, α1, . . . , αλ (mod η) such that

(1) If λ is even, then only multiples of η may be repeated and no part is congruent to
0,±η(r − λ/2) (mod η(2k − λ+ j));

(2) If λ is odd and j = 1, then only multiples of η/2 may be repeated, no part is congruent
to η (mod 2η), and no part is congruent to 0,±η(2r − λ)/2 (mod η(2k − λ+ 1));

(3) If λ is odd and j = 0, then only multiples of η/2 which are not congruent to η(2k−
λ)/2 (mod η(2k − λ)) may be repeated, no part is congruent to η (mod 2η), no
part is congruent to 0 (mod 2η(2k− λ)), and no part is congruent to ±η(2r− λ)/2
(mod η(2k − λ)).

Bressoud [10] posed the following conjecture.

Conjecture 1.8 (Bressoud). For j = 0 or 1, (2k + j)/2 > r ≥ λ ≥ 0 and n ≥ 0,

Aj(α1, . . . , αλ; η, k, r;n) = Bj(α1, . . . , αλ; η, k, r;n).

This conjecture specializes to many infinite families of combinatorial identities. For
example, setting λ = 0, η = 1 and j = 1 or 0, we find that it reduces to Theorem 1.1 and
Theorem 1.2 respectively. For λ = 1, η = 2, α1 = 1 and j = 1 or 0, we see that it boils
down to Theorem 1.3 and Theorem 1.4 respectively.

As remarked by Bressoud [10], it is not difficult to see that the generating function of
Aj(α1, . . . , αλ; η, k, r;n) is equal to the right-hand side of (1.6).
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Theorem 1.9 (Bressoud). For j = 0 or 1 and (2k + j)/2 > r ≥ λ ≥ 0,∑
n≥0

Aj(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
+j), qη(2k−λ+j); qη(2k−λ+j))∞

(qη; qη)∞
.

(1.7)

Nevertheless, it does not seem easy to prove that the left-hand side of (1.6) is indeed
the generating function of Bj(α1, . . . , αλ; η, k, r;n). In this regard, Bressoud [10] posed
the following conjecture.

Conjecture 1.10 (Bressoud). For j = 0 or 1 and (2k + j)/2 > r ≥ λ ≥ 0,∑
n≥0

Bj(α1, . . . , αλ; η, k, r;n)qn

=
∑

N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q(2−j)η; q(2−j)η)Nk−1

×
λ∏
s=1

(−qη−αs−ηNs ; qη)Ns
λ∏
s=2

(−qη−αs+ηNs−1 ; qη)∞.

Andrews [4] proved Conjecture 1.8 for η = λ+ 1 and j = 1. Kim and Yee [28] showed
that the conjecture holds for j = 1 and λ = 2. In fact, they proved that Conjecture 1.10 is
true for j = 1 and λ = 2 with the aid of Gordon markings introduced by Kurşungöz [29,30].
Recently, Kim [27] resolved Conjecture 1.8 for the case j = 1. To this end, she established
the following theorem.

Theorem 1.11 (Bressoud-Kim). For k ≥ r ≥ λ ≥ 0,∑
n≥0

B1(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
+1), qη(2k−λ+1); qη(2k−λ+1))∞

(qη; qη)∞
.

(1.8)

It is clear that Conjecture 1.8 for j = 1 is an immediate consequence of (1.7) and
(1.8).

The main objective of this paper is to give overpartition analogues of the partition
function Bj and the partition function Aj introduced by Bressoud and to establish over-
partition analogues of some classical partition theorems. The overpartition analogues of
classical partition theorems have caught much attention, see, for example, Chen, Sang
and Shi [12–14], Choi, Kim and Lovejoy [15], Corteel and Lovejoy [16], Corteel, Lovejoy
and Mallet [17], Corteel and Mallet [18], Dousse [19, 20], Goyal [23], He, Ji, Wang and
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Zhao [24], He, Wang and Zhao [26], Kurşungöz [31], Lovejoy [32, 33, 35–37], Lovejoy and
Mallet [38], Raghavendra and Padmavathamma [39], and Sang and Shi [41].

Lovejoy [32] established overpartition analogues of the Rogers-Ramanujan-Gordon the-
orem for the cases i = 1 and i = k, and the general case was obtained by Chen, Sang
and Shi [13]. In Theorem 1.12 and for the rest of this paper, we adopt the following
convention: For positive integers t and b, we define t± b (resp. t± b) as a non-overlined
part (resp. an overlined part) of size t ± b. The parts in an overpartition are ordered as
in (1.1).

Theorem 1.12 (Chen-Sang-Shi). For k ≥ r ≥ 1, let B1(−; 1, k, r;n) denote the number
of overpartitions π = (π1, π2, . . . , π`) of n, where πi ≥ πi+k−1 + 1 with strict inequality if
πi is non-overlined for 1 ≤ i ≤ `− k + 1, and at most r − 1 of the πi are equal to 1. For
k > r ≥ 1, let A1(−; 1, k, r;n) denote the number of overpartitions of n such that non-
overlined parts 6≡ 0,±r (mod 2k), and for k = r, let A1(−; 1, k, k;n) denote the number
of overpartitions of n into parts not divisible by k. Then, for k ≥ r ≥ 1 and n ≥ 0,

A1(−; 1, k, r;n) = B1(−; 1, k, r;n).

Chen, Sang and Shi [13] gave the following generating function version of Theorem
1.12: For k ≥ r ≥ 1,∑

N1≥···≥Nk−1≥0

qN
2
1+···+N2

k−1+Nr+···+Nk−1(1 + q−Nr)(−q1−N1 ; q)N1−1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q; q)Nk−1

=
(−q; q)∞(qr, q2k−r, q2k; q2k)∞

(q; q)∞
.

Corteel, Lovejoy and Mallet [17] established an overpartition analogue of the Bressoud-
Rogers-Ramanujan theorem for the case i = 1, and the general case was obtained by Chen,
Sang and Shi [14].

Theorem 1.13 (Chen-Sang-Shi). For k ≥ r ≥ 1, let B0(−; 1, k, r;n) denote the number
of overpartitions π = (π1, π2, . . . , π`) of n, where πi ≥ πi+k−1 + 1 with strict inequality if
πi is non-overlined for 1 ≤ i ≤ `− k + 1, at most r − 1 of the πi are equal to 1, and for
1 ≤ i ≤ `− k + 2, if πi ≤ πi+k−2 + 1 with strict inequality if πi is overlined, then

πi + · · ·+ πi+k−2 ≡ r − 1 + V π(πi) (mod 2).

For k ≥ r ≥ 1, let A0(−; 1, k, r;n) denote the number of overpartitions of n such that
non-overlined parts 6≡ 0,±r (mod 2k − 1). Then, for k ≥ r ≥ 1 and n ≥ 0,

A0(−; 1, k, r;n) = B0(−; 1, k, r;n).

In Theorem 1.13 and for the rest of this article, V π(t) (resp. V π(t)), as used by Corteel,
Lovejoy and Mallet [17], stands for the number of overlined parts not exceeding t (resp.
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t) in π. For example, for an overpartition π = (7, 7, 6, 5, 5, 2), we have V π(5) = 1 and
V π(5) = 2.

The following generating function version of Theorem 1.13 was given by Sang and
Shi [41]: For k > r ≥ 1,

∑
N1≥···≥Nk−1≥0

qN
2
1+···+N2

k−1+Nr+···+Nk−1(1 + q−Nr)(−q1−N1 ; q)N1−1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q2; q2)Nk−1

=
(−q; q)∞(qr, q2k−r−1, q2k−1; q2k−1)∞

(q; q)∞
.

In this paper, we introduce two new partition functions Bj(α1, . . . , αλ; η, k, r;n) and
Aj(α1, . . . , αλ; η, k, r;n) and build connections between Bj(α1, . . . , αλ; η, k, r;n) and Bj(α1

, . . . , αλ; η, k, r;n).

Definition 1.14. For j = 0 or 1 and k ≥ r ≥ λ ≥ 0, define Bj(α1, . . . , αλ; η, k, r;n) to be
the number of overpartitions π = (π1, π2, . . . , π`) of n subject to the following conditions:

(1) For 1 ≤ i ≤ `, πi ≡ 0, α1, . . . , αλ (mod η);

(2) Only multiples of η may be non-overlined;

(3) For 1 ≤ i ≤ `− k + 1, πi ≥ πi+k−1 + η with strict inequality if πi is non-overlined;

(4) At most r − 1 of the πi are less than or equal to η;

(5) For 1 ≤ i ≤ `−k+ 2, if πi ≤ πi+k−2 + η with strict inequality if πi is overlined, then

[πi/η] + · · ·+ [πi+k−2/η] ≡ r − 1 + V π(πi) (mod 2− j).

Definition 1.15. For j = 0 or 1 and (2k − j)/2 ≥ r ≥ λ ≥ 0, define the partition
function Aj(α1, . . . , αλ; η, k, r;n) to be the number of overpartitions of n satisfying πi ≡
0, α1, . . . , αλ (mod η) such that

(1) If λ is even, then only multiplies of η may be non-overlined and there is no non-
overlined part congruent to 0,±η(r − λ/2) (mod η(2k − λ+ j − 1));

(2) If λ is odd and j = 1, then only multiples of η/2 may be non-overlined, no non-
overlined part is congruent to η(2k − λ)/2 (mod η(2k − λ)), no non-overlined part
is congruent to η (mod 2η), no non-overlined part is congruent to 0 (mod 2η(2k −
λ)), no non-overlined part is congruent to ±η(2r − λ)/2 (mod η(2k − λ)), and
no overlined part is congruent to η/2 (mod η) and not congruent to η(2k − λ)/2
(mod η(2k − λ));
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(3) If λ is odd and j = 0, then only multiples of η/2 may be non-overlined, no non-
overlined part is congruent to η (mod 2η), no non-overlined part is congruent to
0,±η(2r − λ)/2 (mod η(2k − λ − 1)), and no overlined part is congruent to η/2
(mod η).

Observe that for an overpartition π counted by Bj(α1, . . . , αλ; η, k, r;n) (resp. Aj(α1,
. . . , αλ; η, k, r;n)) without overlined parts divisible by η, if we change the overlined parts in
π to non-overlined parts, then we get an ordinary partition counted by Bj(α1, . . . , αλ; η, k,
r;n) (resp. A1−j(α1, . . . , αλ; η, k−1+j, r;n)). Hence we say that Bj(α1, . . . , αλ; η, k, r;n)
(resp. Aj(α1, . . . , αλ; η, k, r;n)) can be considered as an overpartition analogue of Bj(α1,
. . . , αλ; η, k, r;n) (resp. Aj(α1, . . . , αλ; η, k, r;n)). In this case, V π(t) reduces to the nota-
tion Vπ(t) introduced by Bressoud [10].

By means of Gordon markings, we build bijections to obtain the following relationships
between Bj(α1, . . . , αλ; η, k, r;n) and Bj(α1, . . . , αλ; η, k, r;n).

Theorem 1.16. For k ≥ r ≥ λ ≥ 0 and k > λ,∑
n≥0

B1(α1, . . . , αλ; η, k, r;n)qn = (−qη; qη)∞
∑
n≥0

B0(α1, . . . , αλ; η, k, r;n)qn.

Theorem 1.17. For k > r ≥ λ ≥ 0 and k − 1 > λ,∑
n≥0

B0(α1, . . . , αλ; η, k, r;n)qn = (−qη; qη)∞
∑
n≥0

B1(α1, . . . , αλ; η, k − 1, r;n)qn.

For k − 1 > λ,∑
n≥0

B0(α1, . . . , αλ; η, k, k;n)qn = (−qη; qη)∞
∑
n≥0

B1(α1, . . . , αλ; η, k − 1, k − 1;n)qn.

We also derive the generating function of Aj(α1, . . . , αλ; η, k, r;n).

Theorem 1.18. For j = 0 or 1 and (2k − j)/2 ≥ r ≥ λ ≥ 0,∑
n≥0

Aj(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ,−qη; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
−1+j), qη(2k−λ−1+j); qη(2k−λ−1+j))∞

(qη; qη)∞
.

(1.9)

By Theorem 1.2 and Theorem 1.16 with λ = 0 and η = 1, we find that for k > r ≥ 1,∑
n≥0

B1(−; 1, k, r;n)qn =
(−q; q)∞(qr, q2k−r, q2k; q2k)∞

(q; q)∞
.
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Combining with Theorem 1.18 with λ = 0, η = 1 and j = 1, we can recover Theorem 1.12
for k > r ≥ 1. By Theorem 1.4 and Theorem 1.16 with λ = 1 and η = 2, we find that for
k > r ≥ 1,∑

n≥0

B1(1; 2, k, r;n)qn =
(−q2; q2)∞(−q; q2)∞(q2r−1, q4k−2r−1, q4k−2; q4k−2)∞

(q2; q2)∞
.

Applying Theorem 1.18 with λ = 1, η = 2 and j = 1, we obtain a new overpartition
analogue of the Andrews-Göllnitz-Gordon theorem.

Theorem 1.19. For k > r ≥ 1, let B1(1; 2, k, r;n) denote the number of overpartitions
π = (π1, π2, . . . , π`) of n such that (1) only even parts may be non-overlined; (2) πi ≥
πi+k−1 + 2 with strict inequality if πi is non-overlined for 1 ≤ i ≤ ` − k + 1; (3) at most
r − 1 of the πi are less than or equal to 2.

For k > r ≥ 1, let A1(1; 2, k, r;n) denote the number of overpartitions of n such that
(1) no non-overlined part is congruent to 2k− 1 (mod 4k− 2); (2) no non-overlined part
is congruent to 2 (mod 4); (3) no non-overlined part is congruent to 0 (mod 8k− 4); (4)
no non-overlined part is congruent to ±(2r − 1) (mod 4k − 2); (5) no overlined part is
congruent to 1 (mod 2) and not congruent to 2k− 1 (mod 4k− 2)). Then, for k > r ≥ 1
and n ≥ 0,

A1(1; 2, k, r;n) = B1(1; 2, k, r;n).

The generating function version of Theorem 1.19 will be given in our subsequent
paper [25]. It should be mentioned that Lovejoy [33] obtained an overpartition analogue
of the Andrews-Göllnitz-Gordon theorem for r = k and He, Ji, Wang and Zhao [24] found
an overpartition analogue for the general case.

In view of Theorems 1.11, 1.17 and Theorem 1.18 for j = 0, we obtain the following
overpartition analogue of Bressoud’s Conjecture 1.8 for j = 0.

Theorem 1.20. For k ≥ r ≥ λ ≥ 0, k − 1 > λ and n ≥ 0, we have

A0(α1, . . . , αλ; η, k, r;n) = B0(α1, . . . , αλ; η, k, r;n).

The generating function version of Theorem 1.20 can be derived with the aid of Bailey
pairs.

Theorem 1.21. For k ≥ r > λ ≥ 0,∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q2η; q2η)Nk−1

× (−qη+ηNλ ; qη)∞

λ∏
s=1

(−qη−αs−ηNs ; qη)Ns
λ∏
s=2

(−qη−αs+ηNs−1 ; qη)∞

=
(−qα1 , . . .− qαλ ,−qη; qη)∞(q(r−

λ
2
)η, q(2k−r−

λ
2
−1)η, q(2k−λ−1)η; q(2k−λ−1)η)∞

(qη; qη)∞
. (1.10)
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Combining Theorem 1.18 for j = 0, Theorem 1.20 and Theorem 1.21, we obtain the
following generating function of B0(α1, . . . , αλ; η, k, r;n), which can be regarded as the
overpartition analogue of Bressoud’s Conjecture 1.10 for j = 0.

Theorem 1.22. For k ≥ r > λ ≥ 0 and k − 1 > λ,∑
n≥0

B0(α1, . . . , αλ; η, k, r;n)qn

=
∑

N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q2η; q2η)Nk−1

× (−qη+ηNλ ; qη)∞

λ∏
s=1

(−qη−αs−ηNs ; qη)Ns
λ∏
s=2

(−qη−αs+ηNs−1 ; qη)∞.

Theorem 1.20 and Theorem 1.21 specialize to overpartition analogues of a number
of classical partition theorems. Setting λ = 0, η = 1, k = 3 and r = 2, we obtain an
overpartition analogue of Euler’s partition theorem [21]. Recall that Euler’s partition
theorem states that for n ≥ 1, the number of partitions of n into odd parts equals the
number of partitions of n into distinct parts.

Theorem 1.23. Let B0(−; 1, 3, 2;n) denote the number of overpartitions π = (π1, π2, . . . ,
π`) of n, where πi ≥ πi+2 + 1 with strict inequality if πi is non-overlined for 1 ≤ i ≤ `− 2,
and for 1 ≤ i ≤ ` − 1, if πi ≤ πi+1 + 1 with strict inequality if πi is overlined, then
πi + πi+1 ≡ 1 + V π(πi) (mod 2). Let A0(−; 1, 3, 2;n) denote the number of overpartitions
of n such that no non-overlined part is congruent to ≡ 0,±2 (mod 5). Then, for n ≥ 0,

A0(−; 1, 3, 2;n) = B0(−; 1, 3, 2;n).

The generating function version takes the form:∑
N1≥N2≥0

qN
2
1+N

2
2+N2(1 + q−N2)(−q1−N1 ; q)N1−1

(q; q)N1−N2(q
2; q2)N2

=
(−q; q)∞(q2, q3, q5; q5)∞

(q; q)∞
.

For an overpartition π = (π1, π2, . . . , π`) counted by B0(−; 1, 3, 2;n), if there are no
overlined parts in π, then V π(πi) = 0 for 1 ≤ i ≤ `. This implies that πi + πi+1 is odd if
πi ≤ πi+1+1. Hence we deduce that πi > πi+1 for 1 ≤ i ≤ `−1. Therefore, π is a partition
into distinct parts. For this reason, Theorem 1.23 can be perceived as an overpartition
analogue of Euler’s partition theorem.

Putting λ = 0 and η = 1 in Theorem 1.20, we are led to the overpartition analogue
of the Bressoud-Rogers-Ramanujan theorem due to Chen, Sang and Shi [14]. In a similar
way, Theorem 1.21 yields the generating function version found by Sang and Shi [41].
Setting λ = 1 and η = 2 in Theorem 1.20, we find an overpartition analogue of the
Bressoud-Göllnitz-Gordon theorem.
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Theorem 1.24. For k > 2 and k ≥ r ≥ 1, let B0(1; 2, k, r;n) denote the number of
overpartitions π = (π1, π2, . . . , π`) of n such that only even parts may be non-overlined,
πi ≥ πi+k−1 + 2 with strict inequality if πi is non-overlined for 1 ≤ i ≤ `− k + 1, at most
r − 1 of the πi are less than or equal to 2, and for 1 ≤ i ≤ ` − k + 2, if πi ≤ πi+k−2 + 2
with strict inequality if πi is overlined, then

[πi/2] + · · ·+ [πi+k−2/2] ≡ r − 1 + V π(πi) (mod 2).

For k > 2 and k ≥ r ≥ 1, let A0(1; 2, k, r;n) denote the number of overpartitions of n such
that no non-overlined part is congruent to 2 (mod 4), no non-overlined part is congruent
to 0,±(2r− 1) (mod 4k− 4), and no overlined part is congruent to 1 (mod 2). Then, for
k > 2, k ≥ r ≥ 1 and n ≥ 0,

A0(1; 2, k, r;n) = B0(1; 2, k, r;n).

He, Wang and Zhao [26] established an overpartition analogue of the Bressoud-Göllnitz-
Gordon theorem. Putting λ = 1 and η = 2 in Theorem 1.21, we get the generating
function version of Theorem 1.24: For k ≥ r > 1,

∑
N1≥···≥Nk−1≥0

q2(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−2Nr)

(q2; q2)N1−N2 · · · (q2; q2)Nk−2−Nk−1
(q4; q4)Nk−1

× (−q1−2N1 ; q2)N1(−q2−2N2 ; q2)N2−1(−q2+2N1 ; q2)∞

=
(−q; q2)∞(−q2; q2)∞(q2r−1, q4k−2r−3, q4k−4; q4k−4)∞

(q2; q2)∞
.

This paper is organized as follows. In Section 2, we present a proof of Theorem 1.18.
In Section 3, we introduce the notions of Gordon marking, reverse Gordon marking, and
(k − 1)-bands of an overpartition counted by B1(α1, . . . , αλ; η, k, r;n). Furthermore, we
give a criterion to determine whether an overpartition counted by B1(α1, . . . , αλ; η, k, r;n)
is counted by B0(α1, . . . , αλ; η, k, r;n) as well. In Section 4, we define the forward move
and the backward move based on the Gordon marking and the reverse Gordon marking
of an overpartition counted by B1(α1, . . . , αλ; η, k, r;n). These operations allow us to
provide a combinatorial proof of Theorem 1.16. Section 5 is devoted to a combinatorial
proof of Theorem 1.17. In Section 6, we give a proof of Theorem 1.21 with the aid of
Bailey pairs. In Section 7, we discuss possible directions for future work.

2 Proof of Theorem 1.18

As mentioned in the introduction, the function Aj(α1, . . . , αλ; η, k, r;n) can be viewed
as the overpartition analogue of Aj(α1, . . . , αλ; η, k, r;n) introduced by Bressoud [10].
Similar to the case for Aj(α1, . . . , αλ; η, k, r;n), it is not difficult to establish the generating

12



function of Aj(α1, . . . , αλ; η, k, r;n) stated as in Theorem 1.18. For completeness, we
include a detailed derivation.

Proof of Theorem 1.18. Clearly, the right-hand side of (1.9) can be interpreted as the
generating function of Aj(α1, . . . , αλ; η, k, r;n) when λ is even. It remains to show that the
right-hand side of (1.9) is also the generating function of Aj(α1, . . . , αλ; η, k, r;n) when λ
is odd. When λ is odd, it is clear from (1.5) that η = α(λ+1)/2 + αλ+1−(λ+1)/2 = 2α(λ+1)/2.
This implies that η must be even in this event.

When j = 1, by definition, we have for k > r ≥ λ ≥ 0,∑
n≥0

A1(α1, . . . , αλ; η, k, r;n)qn

= (−qα1 , . . . ,−qα(λ−1)/2 ,−qα(λ+3)/2 , . . . ,−qαλ ,−qη; qη)∞(−qη(2k−λ)/2; qη(2k−λ))∞

× (qη(2r−λ)/2, qη(4k−2r−λ)/2, qη(2k−λ)/2; qη(2k−λ))∞(q2η(2k−λ); q2η(2k−λ))∞(qη; q2η)∞
(qη/2; qη/2)∞

.

(2.1)

Since η is even, we find that

(qη; q2η)∞
(qη/2; qη/2)∞

=
(qη/2,−qη/2; qη)∞

(qη/2, qη; qη)∞
=

(−qη/2; qη)∞
(qη; qη)∞

, (2.2)

and

(−qη(2k−λ)/2, qη(2k−λ)/2; qη(2k−λ))∞(q2η(2k−λ); q2η(2k−λ))∞ = (qη(2k−λ); qη(2k−λ))∞. (2.3)

Substituting (2.2) and (2.3) into (2.1), and noting that α(λ+1)/2 = η/2, we obtain that for
k > r ≥ λ ≥ 0,∑

n≥0

A1(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ,−qη; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
), qη(2k−λ); qη(2k−λ))∞

(qη; qη)∞
.

(2.4)

When j = 0, by definition, we have for k ≥ r ≥ λ ≥ 0,∑
n≥0

A0(α1, . . . , αλ; η, k, r;n)qn

= (−qα1 , . . . ,−qα(λ−1)/2 ,−qα(λ+3)/2 , . . . ,−qαλ ,−qη; qη)∞

× (qη(2r−λ)/2, qη(4k−2r−λ−2)/2, qη(2k−λ−1); qη(2k−λ−1))∞(qη; q2η)∞
(qη/2; qη/2)∞

.

(2.5)
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Substituting (2.2) into (2.5), we obtain that for k ≥ r ≥ λ ≥ 0,∑
n≥0

A0(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ,−qη; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
−1), qη(2k−λ−1); qη(2k−λ−1))∞

(qη; qη)∞
.

(2.6)

Combining (2.4) and (2.6), we conclude that (1.9) holds when λ is odd. This completes
the proof.

3 The (reverse) Gordon marking and (k − 1)-bands

The main objective of this section is to give a criterion to determine whether an over-
partition counted by B1(α1, . . . , αλ; η, k, r;n) is also counted by B0(α1, . . . , αλ; η, k, r;n).
Let j = 0 or 1 and let λ, k and r be integers such that k ≥ r ≥ λ ≥ 0. Let
Bj(α1, . . . , αλ; η, k, r) denote the set of overpartitions counted by Bj(α1, . . . , αλ; η, k, r;n)
for n ≥ 0. Let Bj(α1, . . . , αλ; η, k, r) denote the set of partitions counted by Bj(α1, . . . ,
αλ; η, k, r;n) for n ≥ 0. As mentioned in the introduction, we could use Bj(α1, . . . , αλ; η, k,
r) to denote the set of overpartitions in Bj(α1, . . . , αλ; η, k, r) without overlined parts di-
visible by η. For π ∈ Bj(α1, . . . , αλ; η, k, r), we call π a Bj-overpartition for short.

The Gordon marking of an ordinary partition was introduced by Kurşungöz in [29,
30]. Kim [27] introduced the Gordon marking of an ordinary partition in B1(α1, . . . , αλ;
η, k, r), which generalizes the Gordon marking of an ordinary partition. The Gordon
marking of an overpartition was defined by Chen, Sang and Shi [13]. Now we define the
Gordon marking of a B1-overpartition. Bear in mind that the parts in an overpartition
are ordered as follows:

1 < 1̄ < 2 < 2̄ < · · · .

For positive integers t and b, we define t ± b (resp. t ± b) as a non-overlined part of size
t± b (resp. an overlined part of size t± b).

Definition 3.1 (Gordon marking). For k ≥ r ≥ λ ≥ 0, let π = (π1, π2, . . . , π`) be an
overpartition satisfying (1) and (2) in Definition 1.14. Assign a positive integer to each
part of π as follows: First, assign 1 to π`. Then, for each πi, assign s to πi, where s is
the smallest positive integer that is not used to mark the parts πm such that m > i and
πm ≥ πi − η with strict inequality if πi is overlined. Denote the Gordon marking of π by
G(π).

It can be seen that for each πi, the mark of πi is the smallest positive integer that is not
used to mark the parts after πi in [πi−η, πi] (resp. (πi−η, πi)) if πi is non-overlined (resp.
overlined). Assume that π` is assigned with 1. Then the part πm of π is in [πi − η, πi]
(resp. (πi− η, πi)) means that πi− η ≤ πm ≤ πi (resp. πi− η < πm < πi). For notational
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convenience, we use I(πi − η, πi) to denote the interval [πi − η, πi] if πi is non-overlined,
or the interval (πi − η, πi) if πi is overlined.

For example, let π be an overpartition in B1(1, 5, 9; 10, 5, 4) given by

π = (80, 80, 80, 70, 70, 69, 60, 60, 55, 51, 50, 49, 45, 41, 39, 35,

29, 20, 20, 20, 11, 10, 9, 5, 1).
(3.1)

The Gordon marking of π is given by

G(π) = (801, 804, 802, 701, 703, 692, 604, 601, 552, 513, 504, 491, 452, 413, 391, 352,

291, 204, 203, 202, 111, 104, 93, 52, 11),
(3.2)

where the subscript of each part represents the mark in the Gordon marking.

For k ≥ r ≥ λ ≥ 0, let π = (π1, π2, . . . , π`) be an overpartition satisfying (1) and
(2) in Definition 1.14. If the condition (3) in Definition 1.14 is also fulfilled, that is, for
1 ≤ i ≤ ` − k + 1, πi ≥ πi+k−1 + η with strict inequality if πi is non-overlined, then
for each πi, the number of parts after πi belonging to I(πi − η, πi) is at most k − 2, so
the marks in the Gordon marking of π do not exceed k − 1. For the overpartition π in
B1(1, 5, 9; 10, 5, 4) defined in (3.1), by (3.2), we see that the largest mark in G(π) is 4.

If we assign a mark to each part starting with the largest part instead, then the
resulting marking will be called the reverse Gordon marking.

Definition 3.2 (Reverse Gordon marking). For k ≥ r ≥ λ ≥ 0, let π = (π1, π2, . . . , π`)
be an overpartition satisfying (1) and (2) in Definition 1.14. Assign a positive integer to
each part of π as follows: First assign 1 to π1. Then, for each πi, assign s to πi, where s
is the smallest positive integer that is not used to mark the parts πm such that m < i and
πm ≤ πi + η with strict inequality if πi is overlined. Denote the reverse Gordon marking
of π by RG(π).

Analogously, for each πi, the mark of πi is the smallest positive integer that is not
used to mark the parts before πi belonging to I(πi, πi + η). Furthermore, for π in
B1(α1, . . . , αλ; η, k, r), the marks in the reverse Gordon marking of π do not exceed k− 1.

For the overpartition π in B1(1, 5, 9; 10, 5, 4) defined in (3.1), the reverse Gordon mark-
ing of π reads

RG(π) = (801, 802, 803, 701, 704, 692, 601, 603, 552, 514, 501, 493, 452, 414, 391, 352,

291, 202, 203, 204, 111, 102, 93, 54, 11),

from which we see that the largest mark in RG(π) is 4.

We proceed to give a criterion to determine whether a B1-overpartition is also a B0-
overpartition. Let π = (π1, π2, . . . , π`) be an overpartition in B1(α1, . . . , αλ; η, k, r). If
there are no k − 1 consecutive parts πi, πi+1, . . . , πi+k−2 in π such that

πi ≤ πi+k−2 + η with strict inequality if πi is overlined, (3.3)
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then by Definition 1.14, we see that π is also in B0(α1, . . . , αλ; η, k, r). Assume that there
exist k − 1 consecutive parts πi, πi+1, . . . , πi+k−2 in π satisfying (3.3). By definition, π is
not in B0(α1, . . . , αλ; η, k, r) if

[πi/η] + · · ·+ [πi+k−2/η] ≡ r + V π(πi) (mod 2).

It follows that π is an overpartition in B0(α1, . . . , αλ; η, k, r) if and only if for any k − 1
consecutive parts πi, πi+1, . . . , πi+k−2 in π satisfying (3.3), we have

[πi/η] + · · ·+ [πi+k−2/η] ≡ r − 1 + V π(πi) (mod 2). (3.4)

The above k − 1 consecutive parts satisfying (3.3) will be called a (k − 1)-band of π
in this sense that the difference between the largest element and the smallest element in
a (k − 1)-band is at most η. For the (k − 1)-band {πi+l}0≤l≤k−2, if {πi+l}0≤l≤k−2 satisfy
the congruence condition (3.4), then we say that the (k − 1)-band {πi+l}0≤l≤k−2 is even.
Otherwise, we say that it is odd.

For example, let π be the overpartition in B1(1, 5, 9; 10, 5, 4) defined in (3.1), where
k = 5. There are twelve 4-bands in π. It can be checked that all of them are even.

{80, 80, 70, 70}, {70, 69, 60, 60}, {60, 60, 55, 51}, {60, 55, 51, 50},
{55, 51, 50, 49}, {51, 50, 49, 45}, {50, 49, 45, 41}, {29, 20, 20, 20},
{20, 20, 20, 11}, {20, 20, 11, 10}, {11, 10, 9, 5}, {10, 9, 5, 1}.

For the overpartitions π in B1(α1, . . . , αλ; η, k, r), we see that π is an overpartition in
B0(α1, . . . , αλ; η, k, r) if and only if all (k− 1)-bands of π are even. For k ≥ r ≥ λ ≥ 0, let
π be an overpartition in B1(α1, . . . , αλ; η, k, r). For each (k − 1)-band {πi+l}0≤l≤k−2 of π,
it is easy to see that the marks of πi+l are distinct in the Gordon marking and the reverse
Gordon marking of π. Hence there exists one part in {πi+l}0≤l≤k−2 marked with k − 1 in
the Gordon marking and the reverse Gordon marking of π.

Next we show that we may restrict our attention to certain special (k − 1)-bands to
determine whether π is an overpartition in B0(α1, . . . , αλ; η, k, r). Such special (k − 1)-
bands will be classified into two kinds depending on the positions of the (k − 1)-marked
parts of the Gordon marking or the reverse Gordon marking in the (k − 1)-bands.

The (k − 1)-bands of the first kind will be concerned with the case in which the (k − 1)-
marked part in the Gordon marking is the largest element in the band. Assume that
there are N parts marked with k − 1 in G(π), and denote these (k − 1)-marked parts by
g̃1(π) > g̃2(π) > · · · > g̃N(π). For each (k − 1)-marked part g̃p(π) in G(π), the number
of the (k − 1)-bands of π including g̃p(π) is at most k − 1. We claim that there is a
(k−1)-band of π such that g̃p(π) is the largest element of this (k−1)-band. Assume that
g̃p(π) is the s-th part πs of π. By Definition 3.1, we deduce that there exist k − 2 parts
πm such that m > s and πm ≥ πs− η with strict inequality if πs is overlined. This implies
that πs, πs+1, . . . , πs+k−2 in π satisfy (3.3), that is, {πs+l}0≤l≤k−2 is a (k − 1)-band of π.
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Furthermore, the (k − 1)-marked part g̃p(π) is the largest element of this (k − 1)-band.
So the claim is proved. Such a (k − 1)-band is called the (k − 1)-band induced by g̃p(π),
denoted {g̃p(π)}k−1. Obviously, {g̃1(π)}k−1, {g̃2(π)}k−1, . . . , {g̃N(π)}k−1 of π are disjoint.

For example, for the overpartition π given in (3.1), there are five 4-marked parts in
G(π), namely, g̃1(π) = 80, g̃2(π) = 60, g̃3(π) = 50, g̃4(π) = 20 and g̃5(π) = 10. The
4-bands induced by g̃1(π), g̃2(π), g̃3(π), g̃4(π) and g̃5(π) are illustrated in G(π) below:

G(π) = (801,

{80}4︷ ︸︸ ︷
804, 802, 701, 703, 692,

{60}4︷ ︸︸ ︷
604, 601, 552, 513,

{50}4︷ ︸︸ ︷
504, 491, 452, 413, 391, 352,

291, 204, 203, 202, 111︸ ︷︷ ︸
{20}4

, 104, 93, 52, 11︸ ︷︷ ︸
{10}4

).

We now consider the (k − 1)-bands of the second kind under the condition that the
(k − 1)-marked part in the reverse Gordon marking is the smallest part in the band.
Assume that there are M parts marked with k − 1 in RG(π), namely, r̃1(π) > r̃2(π) >
· · · > r̃M(π). By the same reasoning, we see that there is a (k−1)-band of π in which r̃p(π)
is the smallest element. Such a (k − 1)-band is called the (k − 1)-band induced by r̃p(π),
denoted {r̃p(π)}k−1. Clearly, {r̃1(π)}k−1, {r̃2(π)}k−1, . . . , {r̃M(π)}k−1 of π are disjoint.

For example, for the overpartition π given in (3.1), there are five 4-marked parts in
RG(π), which are r̃1(π) = 70, r̃2(π) = 51, r̃3(π) = 41, r̃4(π) = 20 and r̃5(π) = 5. The
4-bands induced by r̃1(π), r̃2(π), r̃3(π), r̃4(π) and r̃5(π) are displayed below:

RG(π) = (801,

{70}4︷ ︸︸ ︷
802, 803, 701, 704, 692,

{51}4︷ ︸︸ ︷
601, 603, 552, 514,

{41}4︷ ︸︸ ︷
501, 493, 452, 414, 391, 352,

291, 202,203, 204︸ ︷︷ ︸
{20}4

, 111, 102, 93, 54︸ ︷︷ ︸
{5}4

, 11).

It remains to show that the (k− 1)-bands of π induced by the (k− 1)-marked parts in
G(π) or RG(π) are enough to determine whether π is an overpartition in B0(α1, . . . , αλ; η,
k, r). For this purpose, we need the following property relating G(π) and RG(π).

Proposition 3.3. For k ≥ r ≥ λ ≥ 0, let π be an overpartition in B1(α1, . . . , αλ; η, k, r).
Assume that there are N parts marked with k − 1 in the Gordon marking of π, say,
g̃1(π) > g̃2(π) > · · · > g̃N(π), and there are M parts marked with k − 1 in the reverse
Gordon marking of π, say, r̃1(π) > r̃2(π) > · · · > r̃M(π). Then N = M . Moveover, for
each 1 ≤ i ≤ N , we have g̃i(π) ∈ {r̃i(π)}k−1 and r̃i(π) ∈ {g̃i(π)}k−1, where {g̃i(π)}k−1
(resp. {r̃i(π)}k−1) is the (k − 1)-band of π induced by g̃i(π) (resp. r̃i(π)).

Proof. For N = 0, there are no (k− 1)-marked parts in G(π), and so there are no (k− 1)-
bands in π. This implies that there are no (k− 1)-marked parts in RG(π). It follows that
M = 0. Conversely, if M = 0, then N = 0.
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We next consider the case M,N > 0. We first prove that M ≥ N . For each fixed
(k − 1)-marked part g̃i(π) in G(π), where 1 ≤ i ≤ N , assume that g̃i(π) is the gi-th
part of π = (π1, π2, . . . , π`), that is, g̃i(π) = πgi . Since πgi is the largest element in the
(k − 1)-band induced by πgi , we find that the parts

πgi ≥ πgi+1 ≥ · · · ≥ πgi+k−2

are in the (k− 1)-band of π induced by πgi . Moreover, the marks of these parts in RG(π)
are distinct. It follows that there exists ti such that 0 ≤ ti ≤ k − 2 and πgi+ti is marked
with k−1 in RG(π). Since the (k−1)-bands {g̃1(π)}k−1, {g̃2(π)}k−1, . . . , {g̃N(π)}k−1 of π
are disjoint, the parts πg1+t1 , πg2+t2 ,. . . , πgN+tN are distinct, which are marked with k− 1
in RG(π). This means that M ≥ N . A similar argument yields N ≥ M . We conclude
that M = N . Note that the above proof also indicates that r̃i(π) = πgi+ti , which implies
that r̃i(π) ∈ {g̃i(π)}k−1 for 1 ≤ i ≤ N . Similarly, g̃i(π) ∈ {r̃i(π)}k−1 for 1 ≤ i ≤ N , and
thus the proof is complete.

For example, for the overpartition π given in (3.1), there are five 4-marked parts in
G(π), and in the meantime there are five 4-marked parts in RG(π).

We are now in a position to present the main result of this section.

Theorem 3.4. For k ≥ r ≥ λ ≥ 0, k − 1 > λ and N ≥ 0, let π = (π1, π2, . . . , π`) be
an overpartition in B1(α1, . . . , αλ; η, k, r) with N parts marked with k − 1 in G(π) (resp.
RG(π)), say g̃1(π) > g̃2(π) > · · · > g̃N(π) (resp. r̃1(π) > r̃2(π) > · · · > r̃N(π)). Then π
is an overpartition in B0(α1, . . . , αλ; η, k, r) if and only if for all 1 ≤ i ≤ N , {g̃i(π)}k−1
(resp. {r̃i(π)}k−1) are even. In particular, for λ = k − 1, the assertion holds if there are
no overlined parts divisible by η in π.

For example, the overpartition π given in (3.1) is also an overpartition in B0(1, 5, 9; 10, 5,
4). To prove Theorem 3.4, we need the following lemma.

Lemma 3.5. For k ≥ r ≥ λ ≥ 0 and k−1 > λ, let π = (π1, π2, . . . , π`) be an overpartition
in B1(α1, . . . , αλ; η, k, r), and let {πc+l}0≤l≤k−2 and {πd+l}0≤l≤k−2 be two (k−1)-bands of π.
If πc > πd and πc ≤ πd+k−2 +2η with strict inequality if πc is overlined, then {πc+l}0≤l≤k−2
and {πd+l}0≤l≤k−2 are of the same parity. In particular, for λ = k−1, the assertion holds
if there are no overlined parts divisible by η in π.

The above lemma enables us to establish the following proposition, which, together
with Proposition 3.3, leads to Theorem 3.4.

Proposition 3.6. For k ≥ r ≥ λ ≥ 0 and k − 1 > λ, let g̃p(π) be a (k − 1)-marked part
in the Gordon marking of an overpartition π in B1(α1, . . . , αλ; η, k, r). Then the (k − 1)-
bands of π including g̃p(π) and the (k − 1)-band induced by g̃p(π) are of the same parity.
In particular, for λ = k− 1, the assertion holds if there are no overlined parts divisible by
η in π.
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For example, for the overpartition π given in (3.1), the 4-bands induced by g̃1(π),
g̃2(π), g̃3(π), g̃4(π) and g̃5(π) are all even. Moreover, for any 1 ≤ p ≤ 5, the (k− 1)-bands
including g̃p(π) and the (k − 1)-band induced by g̃p(π) are of the same parity.

It should be mentioned that for λ = k − 1, if there is an overlined part divisible
by η in π, then a (k − 1)-band of π including the (k − 1)-marked part g̃p(π) may have
a different parity from that of the (k − 1)-band induced by g̃p(π). For example, let
π = (21, 20, 15, 11, 9, 5) be an overpartition in B1(1, 5, 9; 10, 4, 3), where λ = 3, k = 4,
η = 10 and r = 3. The Gordon marking of π is

G(π) = (213, 202, 151, 113, 92, 51),

from which we see that there are two 3-marked parts g̃1(π) = 21 and g̃2(π) = 11, and
so we get the 3-band {11, 9, 5} induced by g̃2(π) = 11 along with a 3-band {20, 15, 11}
including g̃2(π) = 11. Apparently, the 3-band {11, 9, 5} is even, since

[11/10] + [9/10] + [5/10] = 1 ≡ r − 1 + V π(11) (mod 2),

and the 3-band {20, 15, 11} is odd, since

[20/10] + [15/10] + [11/10] = 4 ≡ r + V π(20) (mod 2).

In the remainder of this section, we present the proofs of Lemma 3.5 and Proposition
3.6.

Proof of Lemma 3.5. To show that {πd+l}0≤l≤k−2 and {πc+l}0≤l≤k−2 are of the same parity,
we write

[πd+k−2/η] + · · ·+ [πd/η] ≡ a+ V π(πd) (mod 2), (3.5)

where a = r − 1 or r. Trivially, {πd+l}0≤l≤k−2 is even when a = r − 1, and {πd+l}0≤l≤k−2
is odd when a = r.

We intend to prove that

[πc+k−2/η] + · · ·+ [πc/η] ≡ a+ V π(πc) (mod 2), (3.6)

where a is given as in (3.5). Since {πd+l}0≤l≤k−2 and {πc+l}0≤l≤k−2 are (k − 1)-bands of
π, we have

πd ≥ πd+1 ≥ · · · ≥ πd+k−2,

where πd ≤ πd+k−2 + η with strict inequality if πd is overlined, and
(3.7)

πc ≥ πc+1 ≥ · · · ≥ πc+k−2,

where πc ≤ πc+k−2 + η with strict inequality if πc is overlined.
(3.8)

Under the condition πc > πd, we have c < d. Assume that d = c + t where t ≥ 1. Given
that π = (π1, π2, . . . , π`) is an overpartition in B1(α1, . . . , αλ; η, k, r), for 1 ≤ i ≤ `−k+ 1,

πi ≥ πi+k−1 + η with strict inequality if πi is non-overlined. (3.9)
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It follows that there are at most 2k− 2 parts of π belonging to I(πc − 2η, πc). Therefore,
by πd+k−2 ≥ πc − 2η, we deduce that 1 ≤ t ≤ k − 1, and so for 1 ≤ t ≤ l ≤ k − 2,

πc+l = πd+l−t. (3.10)

Combining (3.7) and (3.8), we find that πc+t = πd ≤ πd+k−2 + η with strict inequality
if πd is overlined. Noting that (d + k − 2) − (c + t − 1) = k − 1, using (3.9), we obtain
that πc+t−1 ≥ πd+k−2 + η with strict inequality if πc+t−1 is non-overlined. It follows
that πc+t < πc+t−1. The same argument yields πd+k−1−t < πd+k−2−t. To summarize,
the overlapping structure of {πc+l}0≤l≤k−2 and {πd+l}0≤l≤k−2 can be described as follows,
depending on two cases.

For 1 ≤ t < k − 1, we have

πd+k−2 ≤ · · · ≤ πd+k−1−t < πd+k−2−t ≤ · · · ≤ πd

‖ ‖
πc+k−2 ≤ · · · ≤ πc+t < πc+t−1 ≤ · · · ≤ πc.

For t = k − 1, we have

πd+k−2 ≤ · · · ≤ πd < πc+k−2 ≤ · · · ≤ πc.

We are now ready to prove (3.6). By (3.10), we have

[πc+k−2/η] + · · ·+ [πc+t/η] + [πc+t−1/η] + · · ·+ [πc/η]

= [πd+k−2−t/η] + · · ·+ [πd/η] + [πc+t−1/η] + · · ·+ [πc/η]

= [πd+k−2/η] + · · ·+ [πd/η]

+[πc+t−1/η] + · · ·+ [πc/η]− ([πd+k−2/η] + · · ·+ [πd+k−1−t/η]) ,

and by (3.5), we find that in order to show (3.6), it suffices to show that

[πc+t−1/η] + · · ·+ [πc/η]− ([πd+k−2/η] + · · ·+ [πd+k−1−t/η])

≡ V π(πc)− V π(πd) (mod 2). (3.11)

We consider the following two cases.

Case 1: πc is non-overlined. In this case, πc is divisible by η, so we may write πc =
(b + 2)η. In view of the condition that πd+k−2 ≥ πc − 2η = bη, together with (3.9), we
find that πd+k−1−t < πc − η = (b+ 1)η and πc+t−1 > (b+ 1)η. Hence

bη ≤ πd+k−2 ≤ · · · ≤ πd+k−1−t < (b+ 1)η,

and
(b+ 1)η < πc+t−1 ≤ · · · ≤ πc = (b+ 2)η.
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This implies that for k−1−t ≤ l ≤ k−2, [πd+l/η] = b, and for 0 ≤ l ≤ t−1, [πc+l/η] = b+1
if πc+l is overlined, or [πc+l/η] = b+ 2 if πc+l is non-overlined. Consequently,

[πc+t−1/η] + · · ·+ [πc/η]− ([πd+k−2/η] + · · ·+ [πd+k−1−t/η])

≡ V π(πc)− V π(πd) (mod 2),

and so (3.11) is confirmed.

Case 2: πc is overlined. Set α0 = 0. Then we may write πc = (b+ 1)η + αs, where
0 ≤ s ≤ λ. Using the condition that πd+k−2 > πc − 2η = (b− 1)η + αs and the relation
(3.9), we deduce that πc+t−1 ≥ πd+k−2 + η > bη + αs and πd+k−1−t ≤ πc − η = bη + αs, so
that

(b− 1)η + αs < πd+k−2 ≤ · · · ≤ πd+k−1−t ≤ bη + αs, (3.12)

and
bη + αs < πc+t−1 ≤ · · · ≤ πc = (b+ 1)η + αs. (3.13)

Assume that there are f1 parts πd+l in (3.12) satisfying (b− 1)η + αs < πd+l ≤
(b− 1)η + αλ. For such a part πd+l, we have [πd+l/η] = b − 1. Assume that there are
f2 parts πd+l in (3.12) satisfying bη ≤ πd+l ≤ bη + αs. For such a part πd+l, we have
[πd+l/η] = b.

Assume that there are f3 parts πc+l in (3.13) satisfying bη + αs < πc+l < (b + 1)η. In
this case, we have [πc+l/η] = b. Assume that there are f4 parts πc+l in (3.13) satisfying
πc+l = (b+1)η, which gives [πc+l/η] = b+1. Assume that there are f5 parts πc+l in (3.13)
satisfying (b+ 1)η < πc+l ≤ (b+ 1)η + αs, which implies [πc+l/η] = b+ 1. To sum up, we
get

[πc+t−1/η] + · · ·+ [πc/η]− ([πd+k−2/η] + · · ·+ [πd+k−1−t/η])

= bf3 + (b+ 1)f4 + (b+ 1)f5 − (b− 1)f1 − bf2,

and
V π(πc)− V π(πd) = f3 + f5. (3.14)

We proceed to show that f1 = f3 + f4 and f2 = f5. By means of (3.9), we obtain
f2 + k − t− 1 + f3 + f4 ≤ k − 1, that is, f2 + f3 + f4 ≤ t. Since f1 + f2 = t, we have

f1 ≥ f3 + f4. (3.15)

To prove
f1 ≤ f3 + f4, (3.16)

we consider three cases:

(1) If t = k− 1, then f3 + f4 + f5 = t = k− 1. Using the condition that k− 1 > λ, we
have

f1 + f5 ≤ (λ− s) + (s+ 1) = λ+ 1 ≤ k − 1.
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This yields (3.16).

(2) If 1 ≤ t < k − 1 and πd < (b+ 1)η, then (b+ 1)η > πd = πc+t ≥ πc+k−2 > bη + αs,
and so we may write πd = bη + αg with g > s. It follows that πd+k−2 > (b− 1)η + αg.
Since

bη + αs < πd+k−2−t ≤ · · · ≤ πd = bη + αg,

we find that
k − t− 1 ≤ g − s. (3.17)

Given the condition that k − 1 > λ, we obtain

f1 + f5 ≤ (λ− g) + (s+ 1) = (λ+ 1)− g + s ≤ k − 1− g + s. (3.18)

Combining (3.17) and (3.18) gives f1 + f5 ≤ t. Since f3 + f4 + f5 = t, we arrive at (3.16).

(3) If 1 ≤ t < k − 1 and πd ≥ (b+ 1)η, then πd+k−2 ≥ πd − η ≥ bη, and so

bη ≤ πd+k−2 ≤ · · · ≤ πd+k−1−t ≤ bη + αs.

This implies that f1 = 0, which leads to (3.16).

Returning to the special case there are no overlined parts divisible by η in π, we have
f5 ≤ s, and so (3.16) is also valid for λ = k − 1. To sum up, (3.16) is justified for all
cases. Combining with (3.15), we conclude that f1 = f3 + f4.

It is now clear that f2 = f5 since f1 + f2 = f3 + f4 + f5 = t and f1 = f3 + f4. Thus,

[πc+t−1/η] + · · ·+ [πc/η]− ([πd+k−2/η] + · · ·+ [πd+k−1−t/η])

= bf3 + (b+ 1)f4 + (b+ 1)f5 − (b− 1)f1 − bf2

= bf3 + (b+ 1)f4 + (b+ 1)f5 − (b− 1)(f3 + f4)− bf5

= f3 + 2f4 + f5

≡ f3 + f5 (mod 2). (3.19)

Substituting (3.14) into (3.19), we reach (3.11), and this completes the proof.

We conclude this section with a proof of Proposition 3.6 resorting to Lemma 3.5.

Proof of Proposition 3.6. Given a (k − 1)-marked part g̃p(π) in G(π), we like to show
that a (k − 1)-band of π including g̃p(π) has the same parity as that of the (k − 1)-
band of π induced by g̃p(π). Assume that g̃p(π) is the gp-th part of π = (π1, π2, . . . , π`) in
B1(α1, . . . , αλ; η, k, r), that is, πgp = g̃p(π), then {πgp+l}0≤l≤k−2 is the (k−1)-band induced
by g̃p(π) = πgp . Assume that {πc+l}0≤l≤k−2 is a (k − 1)-band of π including g̃p(π) = πgp
and gp = c+ t, where 1 ≤ t ≤ k − 2. Since π is an overpartition in B1(α1, . . . , αλ; η, k, r),
we have πgp−1 ≥ πgp+k−2 + η with strict inequality if πgp+k−2 is non-overlined. By the
definition of (k − 1)-bands, we have πgp ≤ πgp+k−2 + η with strict inequality if πgp+k−2 is
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overlined. Thus, πgp−1 > πgp , and so πc ≥ πc+t−1 = πgp−1 > πgp . The assumption that
{πgp+l}0≤l≤k−2 and {πc+l}0≤l≤k−2 are (k − 1)-bands indicates

πgp+k−2 ≥ πgp − η = πc+t − η ≥ πc+k−2 − η ≥ πc − 2η,

with strict inequality if πc is overlined. Thus, the conditions of Lemma 3.5 are satisfied,
thereby {g̃p(π)}k−1 and {πc+l}0≤l≤k−2 are of the same parity. This completes the proof.

4 Proof of Theorem 1.16

The main objective of this section is to give a combinatorial proof of Theorem 1.16. The
relationship between B1 and B0 stated in Theorem 1.16 plays a crucial role in the proof
of Bressoud’s conjecture for the case j = 0 in a subsequent paper [25].

Let Dη denote the set of partitions with distinct parts divisible by η. Theorem 1.16 is
equivalent to the following combinatorial statement.

Theorem 4.1. Let λ, k and r be integers such that k ≥ r ≥ λ ≥ 0 and k > λ. There is
a bijection Φ between Dη × B0(α1, . . . , αλ; η, k, r) and B1(α1, . . . , αλ; η, k, r), namely, for
a pair (ζ, µ) ∈ Dη × B0(α1, . . . , αλ; η, k, r), we have π = Φ(ζ, µ) ∈ B1(α1, . . . , αλ; η, k, r)
such that |π| = |ζ|+ |µ|.

The bijection Φ is constructed via merging ζ and µ to produce an overpartition π
in B1(α1, . . . , αλ; η, k, r). Recall that B0(α1, . . . , αλ; η, k, r) is the set of overpartitions in
B0(α1, . . . , αλ; η, k, r) without overlined parts divisible by η. Assume there are N parts
marked with k−1 in RG(µ) and let ζ = (ηζ1, . . . , ηζc, ηζc+1 . . . , ηζc+m) be a partition in Dη
with ζ1 > · · · > ζc > N ≥ ζc+1 > · · · > ζc+m > 0. In fact, the bijection Φ consists of two
steps. The first step is to merge the parts ηζc+1, ηζc+2, . . . , ηζc+m and µ. The second step
is to merge the remaining parts ηζ1, ηζ2, . . . , ηζc of ζ and µ to generate certain ovelined
parts divisible by η. As will be seen, the overpartition ν obtained in the first step is in
B1(α1, . . . , αλ; η, k, r). In the meantime, there are no overlined parts divisible by η in ν.
Eventually, the resulting overpartition π of the second step is in B1(α1, . . . , αλ; η, k, r).

To describe the map Φ, we introduce the forward move and the backward move which
are defined on the Gordon marking of a B1-overpartition and the reverse Gordon marking
of a B1-overpartition. A precise description of the first merging operation will be given
later based on the restricted forward move and the restricted backward move and an
explanation of the second merging operation will be provided by means of the (k − 1)-
insertion operation and the (k − 1)-separation operation.

4.1 The forward move and the backward move

Definition 4.2 (The forward move). For k > λ and N ≥ 1, let π be an overpartition
satisfying (1), (2) and (3) in Definition 1.14. Assume that there are N parts marked with
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k − 1 in RG(π), say r̃1(π) > r̃2(π) > · · · > r̃N(π). For 1 ≤ p ≤ N , the forward move φp
is defined as follows: add η to each of r̃1(π), r̃2(π), . . . , r̃p(π) and rearrange the parts in
non-increasing order to obtain a new overpartition, denoted φp(π).

For example, let π be the overpartition given in (3.1). Below is the reverse Gordon
marking of π:

RG(π) = (801,

{70}4︷ ︸︸ ︷
802, 803, 701, 704, 692,

{51}4︷ ︸︸ ︷
601, 603, 552, 514,

{41}4︷ ︸︸ ︷
501, 493, 452, 414, 391, 352,

291, 202,203, 204︸ ︷︷ ︸
{20}4

, 111, 102, 93, 54︸ ︷︷ ︸
{5}4

, 11).
(4.1)

There are five 4-marked parts in RG(π). Applying the forward move φ3 to π in (3.1), we
obtain

φ3(π) = (80, 80, 80, 80, 70, 69, 61, 60, 60, 55, 51, 50, 49, 45, 39, 35,

29, 20, 20, 20, 11, 10, 9, 5, 1).

The following proposition gives several properties of φp(π).

Proposition 4.3. For k > λ and N ≥ 1, let π = (π1, . . . , π`) be an overpartition satisfying
(1), (2) and (3) in Definition 1.14. Assume that there are N parts marked with k − 1 in
RG(π), say r̃1(π) > r̃2(π) > · · · > r̃N(π). For 1 ≤ p ≤ N , let ω = (ω1, . . . , ω`) = φp(π).
Then

(1) For 1 ≤ i ≤ `, ωi ≡ 0, α1, . . . , αλ (mod η);

(2) Only multiples of η may be non-overlined in ω;

(3) There are at most k− 1 marks in G(ω) and there are N parts marked with k− 1 in
G(ω), say g̃1(ω) > g̃2(ω) > · · · > g̃N(ω);

(4) Let {r̃i(π)}k−1 be the (k− 1)-band of π induced by r̃i(π). Then g̃i(ω) = r̃i(π) + η for
1 ≤ i ≤ p, and g̃i(ω) ∈ {r̃i(π)}k−1 for p < i ≤ N .

For example, let π be the overpartition in B1(1, 5, 9; 10, 5, 4) given in (3.1), and let
ω = φ3(π). Then the Gordon marking of ω is given by

G(ω) = (801,

{80}4︷ ︸︸ ︷
804, 803, 802, 701, 692,

{61}4︷ ︸︸ ︷
614, 603, 601, 552,

{51}4︷ ︸︸ ︷
514, 503, 491, 452, 391, 352,

291, 204, 203, 202, 111︸ ︷︷ ︸
{20}4

, 104, 93, 52, 11︸ ︷︷ ︸
{10}4

).
(4.2)

It can be readily checked that ω satisfies the properties (1)-(4) in Proposition 4.3.
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Proof of Proposition 4.3. To prove (1) and (2), it suffices to show that for 1 ≤ i ≤ p,
r̃i(π) +η cannot be repeated in ω if the part r̃i(π) is overlined. We now assume that r̃i(π)
is overlined, so the new generated part r̃i(π) + η is also overlined. There are two cases.

Case 1: Assume that r̃i(π) + η is not a part of π. It is obvious that the generated
overlined part r̃i(π) + η appears only once in ω.

Case 2: Assume that π contains an overlined part πt = r̃i(π) + η. We claim that
πt is marked with k − 1 in RG(π). Since π satisfies the condition (3) in Definition
1.14, the marks in RG(π) do not exceed k − 1. Assume that r̃i(π) is the ri-th part of
π = (π1, π2, . . . , π`), that is, πri = r̃i(π). Then {πri−l}0≤l≤k−2 is the (k − 1)-band induced
by r̃i(π). It follows that the marks of the parts πri−k+2, . . . , πri are distinct in RG(π) and
πri is marked with k − 1. This implies that the marks of πri−k+2, . . . , πri−1 in RG(π) are
distinct and less than k − 1. Suppose to the contrary that the mark of πt in RG(π) is
less than k − 1. Consequently, there is a part πri−m (1 ≤ m ≤ k − 2) in the (k − 1)-
band {πri−l}0≤l≤k−2 such that the mark of πri−m is the same as the mark of πt. Since
πri < πri−m < πri+η and πt = πri+η, we obtain πri−m < πt < πri−m+η, and so the marks
of πt and πri−m are distinct. But this is impossible under the prior assumption. Therefore,
the mark of πt is k− 1 in RG(π), as claimed. In other words, we have r̃i−1(π) = πt. This
enables us to employ the forward move to add η to r̃i−1(π). In the end, the generated
overlined part r̃i(π) + η occurs only once in ω.

We now turn to the properties (3) and (4). Assume that r̃i(π) is the ri-th part of
π = (π1, π2, . . . , π`), that is, πri = r̃i(π). In fact, the forward move consists of two
steps. First, remove the (k − 1)-marked parts πr1 , πr2 , . . . , πrp from π and denote the
resulting overpartition by π(1). Since the largest mark in RG(π) is k − 1 and the parts
removed from π are marked with k − 1 in RG(π), the marks of the remaining parts in
RG(π(1)) are the same as those in RG(π). This implies that the marks of the parts of
π(1) not less than πrp do not exceed k − 2. Therefore, there are N − p parts marked
with k − 1 in RG(π(1)), denoted r̃1(π

(1)), . . . , r̃N−p(π
(1)), for which r̃i(π

(1)) = r̃i+p(π) and
{r̃i(π(1))}k−1 = {r̃i+p(π)}k−1 for 1 ≤ i ≤ N − p. In light of Proposition 3.3, we find that
there are also N − p parts marked with k− 1 in G(π(1)), denoted g̃1(π

(1)), . . . , g̃N−p(π
(1)),

for which g̃i(π
(1)) ∈ {r̃i(π(1))}k−1. Meanwhile, the marks of the parts not less than πrp in

G(π(1)) do not exceed k− 2. So we deduce that g̃i(π
(1)) ∈ {r̃i+p(π)}k−1 for 1 ≤ i ≤ N − p.

The second step is to insert πr1 + η, πr2 + η, . . . , πrp + η into π(1) and to rearrange the
parts in non-increasing order to obtain ω. We wish to show that for 1 ≤ i ≤ p, πri + η
is marked with k − 1 in G(ω). We claim that πri > πri+1. For 1 ≤ i ≤ p, since πri is
the (k − 1)-marked part in RG(π), we know that {πri−l}0≤l≤k−2 is the (k − 1)-band of π
induced by πri , which ensures that πri−k+2 ≤ πri + η with strict inequality if πri−k+2 is
overlined. Under the assumption that π satisfies the condition (3) in Definition 1.14, we
have πri−k+2 ≥ πri+1 + η with strict inequality if πri−k+2 is non-overlined. But πri−k+2 ≤
πri + η with strict inequality if πri−k+2 is overlined, so we conclude that πri > πri+1, as
claimed.

We continue to prove that πri+η is marked with k−1 inG(ω). Based on the assumption
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that π satisfies the condition (3) in Definition 1.14, we obtain that πri−k+1 ≥ πri + η with
strict inequality if πri−k+1 is non-overlined, which implies that for 1 ≤ i ≤ p,

πri + η, and πri−k+2, . . . , πri−1

are parts of ω. Noting that πri > πri+1 and πri−k+1 ≥ πri + η with strict inequality if
πri is non-overlined, it is clear that the mark of the part πri + η in G(ω) is the smallest
positive integer that is not used to mark πri−k+2, . . . , πri−1. Recalling that the marks of
the parts of π(1) not less than πrp in G(π(1)) do not exceed k − 2, the marks of the parts
πri−k+2, πri−k+3, . . . , πri−1 in G(ω) are less than k − 1 for 1 ≤ i ≤ p. Thus, the mark of
πri +η in G(ω) is k−1. Meanwhile, the marks of remaining parts in G(ω) are the same as
in G(π(1)). Therefore, we reach the conclusion that there are N parts marked with k − 1
in G(ω), and so the properties (3) and (4) are verified. This completes the proof.

For example, for the overpartition π in B1(1, 5, 9; 10, 5, 4) with the reverse Gordon
marking given in (4.1), there are five 4-marked parts in RG(π). Then ω = φ3(π) can
be constructed via two steps: The first step is to remove r̃1(π) = 70, r̃2(π) = 51, and
r̃3(π) = 41 from π to get π(1), whose reverse Gordon marking reads

RG(π(1)) = (801, 802, 803, 701, 692, 601, 603, 552, 501, 493, 452, 391, 352,

291, 202,203, 204︸ ︷︷ ︸
{20}4

, 111, 102, 93, 54︸ ︷︷ ︸
{5}4

, 11).

It can be checked that the marks of parts in RG(π(1)) are the same as those in RG(π).
On the other hand, below is the Gordon marking of π(1)

G(π(1)) = (801, 803, 802, 701, 692, 603, 601, 552, 503, 491, 452, 391, 352,

291, 204, 203, 202, 111, 104, 93, 52, 11).

Evidently, the 4-marked parts 204 and 104 in G(π(1)) are in the 4-bands {29, 20,20, 20}
and {11, 10, 9, 5} of π(1), respectively. In the second step, we insert r̃1(π) + 10 = 80,
r̃2(π) + 10 = 61, and r̃3(π) + 10 = 51 into π(1) to get ω, whose Gordon marking is
displayed in (4.2). As anticipated, the marks of r̃1(π) + 10 = 80, r̃2(π) + 10 = 61, and
r̃3(π) + 10 = 51 in G(ω) are 4. Meanwhile the marks of remaining parts in G(ω) are the
same as in G(π(1)). Therefore, ω satisfies the properties (1)-(4) in Proposition 4.3.

In parallel to the forward move, we now turn to the definition of the backward move
relying on the Gordon marking of a B1-overpartition.

Definition 4.4 (The backward move). For k > λ and N ≥ p ≥ 1, let ω be an overparti-
tion satisfying (1), (2) and (3) in Definition 1.14. Assume that there are N parts marked
with k− 1 in G(ω), denoted g̃1(ω) > g̃2(ω) > · · · > g̃N(ω), for which g̃p(ω) ≥ η + α1. The
backward move ψp is defined as follows: subtract η from each of g̃1(ω), g̃2(ω), . . . , g̃p(ω)
and rearrange the parts in non-increasing order to obtain a new overpartition, denoted
ψp(ω).
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For example, for the overpartition ω = φ3(π) with five 4-marked parts in G(ω) as in
(4.2), the backward move ψ3 transforms ω back to π in (4.1).

The backward move ψp possesses the following properties with respect to certain over-
partitions satisfying (1), (2) and (3) in Definition 1.14.

Proposition 4.5. For k > λ and N ≥ p ≥ 1, let ω be an overpartition satisfying (1),
(2) and (3) in Definition 1.14. Assume that there are N parts marked with k − 1 in
G(ω), denoted g̃1(ω) > g̃2(ω) > · · · > g̃N(ω), for which g̃p(ω) ≥ η + α1, and assume
that g̃p(ω) is a part in any (k − 1)-band of ω belonging to I(g̃p(ω) − 2η, g̃p(ω)). Let
π = (π1, . . . , π`) = ψp(ω). Then

(1) For 1 ≤ i ≤ `, πi ≡ 0, α1, . . . , αλ (mod η);

(2) Only multiples of η may be non-overlined in π;

(3) There are at most k − 1 marks in RG(π) and there are N parts marked with k − 1
in RG(π), say r̃1(π) > · · · > r̃N(π);

(4) Let {g̃i(ω)}k−1 be the (k − 1)-band of ω induced by g̃i(ω). Then r̃i(π) = g̃i(ω) − η
for 1 ≤ i ≤ p, and r̃i(π) ∈ {g̃i(ω)}k−1 for p < i ≤ N .

Proof. To prove (1) and (2), it suffices to show that for 1 ≤ i ≤ p, the part g̃i(ω) − η
occurs exactly once in π if g̃i(ω) is overlined. We now assume that g̃i(ω) is overlined, so
that the generated part g̃i(ω)− η is also overlined. There are two cases:

Case 1: Assume that the part g̃i(ω)−η does not appear in ω. In this case, it is obvious
that the generated part g̃i(ω)− η occurs exactly once in π.

Case 2: Assume that ω contains the overlined part ωti = g̃i(ω)− η, where 1 ≤ i ≤ p.
Using the same argument as in the proof of Proposition 4.3, it can be shown that ωti is
marked with k − 1 in G(ω), where 1 ≤ i ≤ p.

We proceed to show that if ω satisfies the condition that g̃p(ω) is a part in any (k−1)-
band of ω belonging to I(g̃p(ω) − 2η, g̃p(ω)), then ω does not contain the overlined part
g̃p(ω) − η. Suppose to the contrary that ω contains the overlined part g̃p(ω) − η. Since
g̃p(ω)− η is marked with k − 1 in G(ω), we have

g̃p+1(ω) = g̃p(ω)− η, (4.3)

where g̃p+1(ω) is also overlined. Assume that g̃p+1(ω) is the gp+1-th part of ω = (ω1, ω2, . . . ,
ω`), that is, ωgp+1 = g̃p+1(ω). Then {ωgp+1+l}0≤l≤k−2 is the (k− 1)-band induced by ωgp+1 ,
which, together with (4.3), leads to

ωgp+1+k−2 > ωgp+1 − η = g̃p(ω)− 2η.

By (4.3), we have
ωgp+1 = g̃p(ω)− η < g̃p(ω),
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from which {ωgp+1+l}0≤l≤k−2 is a (k− 1)-band of ω belonging to I(g̃p(ω)− 2η, g̃p(ω)). But
g̃p(ω) is not a part in {ωgp+1+l}0≤l≤k−2, which contradicts the condition that g̃p(ω) is a
part in any (k − 1)-band of ω belonging to I(g̃p(ω)− 2η, g̃p(ω)). This means that ω does
not contain the overlined part g̃p(ω) − η. Using the fact that g̃i(ω) − η is marked with
k − 1 in G(ω), we have g̃i+1(ω) = g̃i(ω) − η where 1 ≤ i < p. Applying the backward
move to ω, we get the overpartition π in which the part g̃i(ω) − η appears exactly once.
So we have verified the properties (1) and (2).

We now turn to the properties (3) and (4). Similarly, the backward move consists of
two steps. First, remove the (k − 1)-marked parts g̃1(ω), . . . , g̃p(ω) from ω and denote
the resulting overpartition by ω(1). Along the same lines of reasoning as in the proof
of Proposition 4.3, we deduce that the marks of the remaining parts in RG(ω) are the
same as those in RG(ω(1)). This implies that there are N − p parts marked with k − 1
in RG(ω(1)), denoted r̃1(ω

(1)) > · · · > r̃N−p(ω
(1)), for which r̃i(ω

(1)) ∈ {g̃i+p(ω)}k−1.
We proceed to demonstrate that r̃1(ω

(1)) ≤ g̃p(ω) − 2η with strict inequality if g̃p(ω) is
non-overlined. Suppose to the contrary that r̃1(ω

(1)) ≥ g̃p(ω) − 2η with strict inequality
if g̃p(ω) is overlined. Since r̃1(ω

(1)) ∈ {g̃p+1(ω)}k−1, we have r̃1(ω
(1)) ≤ g̃p+1(ω). Note

that g̃p+1(ω) ≤ g̃p(ω) − η with strict inequality if g̃p+1(ω) is non-overlined. We obtain
that r̃1(ω

(1)) ≤ g̃p(ω) − η with strict inequality if r̃1(ω
(1)) is non-overlined. Assume that

r̃1(ω
(1)) is the r1-th part of ω(1) = (ω

(1)
1 , ω

(1)
2 , . . . , ω

(1)
` ), that is, ω

(1)
r1 = r̃1(ω

(1)). Then

{ω(1)
r1−l}0≤l≤k−2 is the (k− 1)-band induced by ω

(1)
r1 , which implies that ω

(1)
r1−k+2 ≤ ω

(1)
r1 + η

with strict inequality if ω
(1)
r1 is overlined. But, r̃1(ω

(1)) ≤ g̃p(ω)− η with strict inequality

if r̃1(ω
(1)) is non-overlined, it follows that ω

(1)
r1−k+2 < g̃p(ω). Therefore, we conclude

that {ω(1)
r1−l}0≤l≤k−2 is a (k − 1)-band of ω(1) belonging to I(g̃p(ω) − 2η, g̃p(ω)). By the

construction of ω(1), we see that {ω(1)
r1−l}0≤l≤k−2 is also a (k − 1)-band of ω belonging

to I(g̃p(ω) − 2η, g̃p(ω)). However, g̃p(ω) is not in {ω(1)
r1−l}0≤l≤k−2, which contradicts the

condition that g̃p(ω) is a part in any (k− 1)-band of ω belonging to I(g̃p(ω)− 2η, g̃p(ω)).
Hence r̃1(ω

(1)) ≤ g̃p(ω)− 2η with strict inequality if r̃1(ω
(1)) is non-overlined.

The second step is to insert g̃1(ω)−η, . . . , g̃p(ω)−η into ω(1) and to rearrange the parts
in non-increasing order to obtain π. It can be shown that the mark of g̃i(ω)− η in RG(π)
is equal to k − 1 for 1 ≤ i ≤ p. Furthermore, the remaining parts not less than g̃p(ω)− η
in RG(π) are the same as in RG(ω(1)). We need to show that the marks of remaining
parts less than g̃p(ω)− η in RG(π) are the same as in RG(ω(1)). We first verify that the
marks of the parts πi of π such that g̃p(ω)− 2η ≤ πi < g̃p(ω)− η with strict inequality if
g̃p(ω) is overlined in RG(π) are the same as those in RG(ω(1)). Since r̃1(ω

(1)) ≤ g̃p(ω)−2η
with strict inequality if g̃p(ω) is non-overlined, the marks of the parts πi of π such that
g̃p(ω)− 2η ≤ πi < g̃p(ω)− η with strict inequality if g̃p(ω) is overlined are less than k− 1
in RG(ω(1)). But the mark of g̃p(ω)− η is k − 1, we infer that the marks of the parts πi
of π such that g̃p(ω) − 2η ≤ πi < g̃p(ω) − η with strict inequality if g̃p(ω) is overlined in
RG(π) are the same as those in RG(ω(1)). Thus, the marks of the parts πi of π such that
πi ≤ g̃p(ω)− 2η with strict inequality if g̃p(ω) is non-overlined in RG(π) are the same as
in RG(ω(1)). Therefore, the marks of remaining parts less than g̃p(ω) − η in RG(π) are
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the same as in RG(ω(1)). It follows that there are N parts marked with k − 1 in RG(π),
and so the properties (3) and (4) are verified. This completes the proof.

We now furnish an example to illustrate Proposition 4.5. Let ω be the overpartition in
B1(1, 5, 9; 10, 5, 4) with the Gordon marking given by (4.2). There are five 4-marked parts
inG(ω), namely, g̃1(ω) = 80, g̃2(ω) = 61, g̃3(ω) = 51, g̃4(ω) = 20 and g̃5(ω) = 10. It can be
checked that there are no 4-bands of ω belonging to I(g̃3(ω)−2η, g̃3(ω)). The overpartition
π = ψ3(ω) can be constructed as follows: First, remove g̃1(ω) = 80, g̃2(ω) = 61, and
g̃3(ω) = 51 from ω to get ω(1). We have

G(ω(1)) = (801, 803, 802, 701, 692, 603, 601, 552, 503, 491, 452, 391, 352,

291, 204, 203, 202, 111︸ ︷︷ ︸
{20}4

, 104, 93, 52, 11︸ ︷︷ ︸
{10}4

).

It can be checked that the marks of parts in G(ω(1)) are the same as those in G(ω). The
reverse Gordon marking of ω(1) is given by

RG(ω(1)) = (801, 802, 803, 701, 692, 601, 603, 552, 501, 493, 452, 391, 352,

291, 202,203, 204, 111, 102, 93, 54, 11),

from which we see that the 4-marked parts 20 and 5 inRG(ω(1)) are also in {20}4 and {10}4
of ω(1), respectively. Then π can be obtained by inserting g̃1(ω)−10 = 70, g̃2(ω)−10 = 51,
and g̃3(ω)− 10 = 41 into ω(1). Below is the reverse Gordon marking of π

RG(π) = (801, 802, 803, 701, 704, 692, 601, 603, 552, 514, 501, 493, 452, 414, 391, 352,

291, 202,203, 204, 111, 102, 93, 54, 11).

Notice that g̃1(ω)− 10 = 70, g̃2(ω)− 10 = 51, and g̃3(ω)− 10 = 41 are marked with 4 in
RG(π). The marks of the remaining parts in RG(π) are the same as those in RG(ω(1)).

We remark that the condition in Proposition 4.5 that g̃p(ω) is a part in any (k−1)-band
of ω belonging to I(g̃p(ω)−2η, g̃p(ω)) is necessary. For example, let ω be an overpartition
in B1(1, 5, 9; 10, 5, 4) having the Gordon marking

G(ω) = (801, 804, 803, 802, 701, 692, 614, 603, 601, 552, 514, 503, 491, 452, 404, 403, 391, 352,

291, 204, 203, 202, 111, 104, 93, 52, 11).

There are six 4-marked parts in G(ω), namely, g̃1(ω) = 80, g̃2(ω) = 61, g̃3(ω) = 51,
g̃4(ω) = 40, g̃5(ω) = 20 and g̃6(ω) = 10. Furthermore, ω has three 4-bands {49, 45, 40, 40},
{45, 40, 40, 39} and {40, 40, 39, 35} in the interval (31, 51).

The overpartition π = ψ3(ω) can be obtained by subtracting η = 10 from each of
g̃1(ω) = 80, g̃2(ω) = 61, and g̃3(ω) = 51, and so we get

RG(π) = (801, 802, 803, 701, 704, 692, 601, 603, 552, 514, 501, 493, 452, 414, 401, 405, 393, 352,

291, 202,203, 204, 111, 102, 93, 54, 11).
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Because of the occurrence of the 5-marked part 40 in RG(π), the property (3) in Propo-
sition 4.5 is violated.

4.2 The restricted moves

To describe the first step of the bijection Φ in Theorem 4.1, we will restrict the (k − 1)-
forward move and the (k−1)-backward move to two subsets of B1(α1, . . . , αλ; η, k, r). We
assume that λ, k and r are integers such that k ≥ r ≥ λ ≥ 0 and k > λ. Recall that
Bj(α1, . . . , αλ; η, k, r) denotes the set of overpartitions in Bj(α1, . . . , αλ; η, k, r) without
overlined parts divisible by η. We will be concerned with the following two subsets of
B1(α1, . . . , αλ; η, k, r).

• For N ≥ p ≥ 1, let Be(α1, . . . , αλ; η, k, r|N, p) denote the set of overpartitions γ
in B1(α1, . . . , αλ; η, k, r) such that there are N parts marked with k − 1 in RG(γ),
denoted r̃1(γ) > r̃2(γ) > · · · > r̃N(γ), and for all 1 ≤ i ≤ p, the parity of {r̃i(γ)}k−1
is the same as that of {r̃p+1(γ)}k−1.

• For N ≥ p ≥ 1, let Bd(α1, . . . , αλ; η, k, r|N, p) denote the set of overpartitions γ
in B1(α1, . . . , αλ; η, k, r) such that there are N parts marked with k − 1 in RG(γ),
denoted r̃1(γ) > r̃2(γ) > · · · > r̃N(γ), and for all 1 ≤ i ≤ p, the parity of {r̃i(γ)}k−1
is opposite from the parity of {r̃p+1(γ)}k−1.

Notice that there are no (k − 1)-bands {r̃N+1(γ)}k−1 in γ. In this case, we define the
parity of the empty band to be even, and so Be(α1, . . . , αλ; η, k, r|N,N) is a subset of
B0(α1, . . . , αλ; η, k, r).

The following theorem shows that the forward move φp gives rise to a bijection between
Be(α1, . . . , αλ; η, k, r|N, p) and Bd(α1, . . . , αλ; η, k, r|N, p).

Theorem 4.6. For N ≥ p ≥ 1, the forward move φp is a bijection between Be(α1, . . . , αλ; η,
k, r|N, p) and Bd(α1, . . . , αλ; η, k, r|N, p). Moreover, for γ ∈ Be(α1, . . . , αλ; η, k, r|N, p),
let ϑ = φp(γ), we have |ϑ| = |γ|+ pη.

For example, let γ be the overpartition in B1(1, 5, 9; 10, 5, 4), whose reverse Gordon
marking reads

RG(γ) = (811,

{70}4︷ ︸︸ ︷
802, 803, 711, 704, 692,

{55}4︷ ︸︸ ︷
611, 603, 592, 554,

{41}4︷ ︸︸ ︷
501, 492, 453, 414,

391, 352, 291, 212,203, 204︸ ︷︷ ︸
{20}4

, 111, 102, 93, 54︸ ︷︷ ︸
{5}4

).

There are five 4-marked parts in RG(γ). Moreover, it can be checked that the 4-bands
induced by r̃1(γ) = 70, r̃2(γ) = 55, r̃3(γ) = 41, r̃4(γ) = 20 are all even. Therefore, γ is an
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overpartition in Be(1, 5, 9; 10, 5, 4|5, 3). Let ϑ = φ3(γ). Then the reverse Gordon marking
of ϑ is given by

RG(ϑ) = (

{80}4︷ ︸︸ ︷
811, 802, 803, 804, 711,

{60}4︷ ︸︸ ︷
692, 653, 611, 604, 592,

{45}4︷ ︸︸ ︷
511, 503, 492, 454,

391, 352, 291, 212, 203, 204︸ ︷︷ ︸
{20}4

, 111, 102, 93, 54︸ ︷︷ ︸
{5}4

).

There are five 4-marked parts in RG(ϑ) and the 4-bands induced by r̃1(ϑ) = 80, r̃2(ϑ) = 60
and r̃3(ϑ) = 45 are odd, whereas the 4-band induced by r̃4(ϑ) = 20 is even. This indicates
that ϑ is an overpartition in Bd(1, 5, 9; 10, 5, 4|5, 3). Clearly, we have |ϑ| = |γ|+ 30.

To prove Theorem 4.6, we establish two lemmas. From now on, we shall use f≤η(γ)
to denote the number of parts less than or equal to η in an overpartition γ.

Lemma 4.7. For N ≥ p ≥ 1, let γ be an overpartition in Be(α1, . . . , αλ; η, k, r|N, p)
and let ϑ = φp(γ). Then ϑ is an overpartition in Bd(α1, . . . , αλ; η, k, r|N, p). Moreover,
|ϑ| = |γ|+ pη.

Proof. Clearly, γ is an overpartition in B1(α1, . . . , αλ; η, k, r) with N parts marked with
k − 1 in RG(γ). In view of Proposition 4.3, we find that ϑ = φp(γ) satisfies (1), (2)
and (3) in Definition 1.14. Furthermore, there are N parts marked with k − 1 in RG(ϑ).
Thus, to prove that ϑ belongs to Bd(α1, . . . , αλ; η, k, r|N, p), it suffices to verify that the
following conditions hold:

(A) f≤η(ϑ) ≤ r − 1;

(B) For 1 ≤ i ≤ p, {r̃i(ϑ)}k−1 and {r̃p+1(ϑ)}k−1 have opposite parities.

Condition (A). It is readily seen that f≤η(ϑ) equals either f≤η(γ) or f≤η(γ) − 1. Under
the condition f≤η(γ) ≤ r − 1, we get f≤η(ϑ) ≤ r − 1.

Condition (B). By the property (3) in Proposition 4.3, there are N parts marked with
k − 1 in G(ϑ), denoted g̃1(ϑ) > g̃2(ϑ) > · · · > g̃N(ϑ). It follows from Proposition 3.3 that
there are also N parts marked with k− 1 in RG(ϑ), denoted r̃1(ϑ) > r̃2(ϑ) > · · · > r̃N(ϑ)
such that g̃i(ϑ) ∈ {r̃i(ϑ)}k−1 for 1 ≤ i ≤ N . This implies that {r̃i(ϑ)}k−1 is a (k − 1)-
band including g̃i(ϑ). Utilizing Proposition 3.6, we obtain that for each 1 ≤ i ≤ N ,
{r̃i(ϑ)}k−1 and {g̃i(ϑ)}k−1 have the same parity. Therefore, to prove that {r̃i(ϑ)}k−1 and
{r̃p+1(ϑ)}k−1 have opposite parities for 1 ≤ i ≤ p, we are obliged to show that {g̃i(ϑ)}k−1
and {g̃p+1(ϑ)}k−1 have opposite parities for 1 ≤ i ≤ p.

For 1 ≤ i ≤ N , let
r̃i,1(γ) ≥ · · · ≥ r̃i,k−2(γ) ≥ r̃i(γ)

be the parts in the (k − 1)-band of γ induced by r̃i(γ), and let

g̃i(ϑ) ≥ g̃i,2(ϑ) ≥ · · · ≥ g̃i,k−1(ϑ)
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be the parts in the (k − 1)-band of ϑ induced by g̃i(ϑ). Write

[r̃i,1(γ)/η] + · · ·+ [r̃i,k−2(γ)/η] + [r̃i(γ)/η] ≡ ai(γ) + V γ(r̃i,1(γ)) (mod 2),

and

[g̃i(ϑ)/η] + [g̃i,2(ϑ)/η] + · · ·+ [g̃i,k−1(ϑ)/η] ≡ ai(ϑ) + V ϑ(g̃i(ϑ)) (mod 2),

where ai(γ) (resp. ai(ϑ)) either equals r − 1 or r for 1 ≤ i ≤ N and aN+1(γ) (resp.
aN+1(ϑ)) = r − 1 with the convention that the empty band is even.

Since γ belongs to Be(α1, . . . , αλ; η, k, r|N, p), where 1 ≤ p ≤ N , we have for 1 ≤ i ≤ p,

ai(γ) = ap+1(γ). (4.4)

We proceed to show that {g̃i(ϑ)}k−1 and {g̃p+1(ϑ)}k−1 have opposite parities for 1 ≤ i ≤ p,
or equivalently, for 1 ≤ i ≤ p,

ai(ϑ) 6= ap+1(ϑ). (4.5)

The proof of Proposition 4.3 justifies the following relation for 1 ≤ i ≤ p,

r̃i(γ) + η ≥ r̃i,1(γ) ≥ · · · ≥ r̃i,k−2(γ)

q q q
g̃i(ϑ) ≥ g̃i,2(ϑ) ≥ · · · ≥ g̃i,k−1(ϑ).

(4.6)

We claim that for 1 ≤ i ≤ p,

V ϑ(g̃i(ϑ)) = V γ(r̃i,1(γ)). (4.7)

Recall that V π(t) (resp. V π(t)) stands for the number of overlined parts not exceeding t
(resp. t) in π.

Owing to the relation (4.6), we deduce that for 1 ≤ i ≤ p,

V γ(r̃i,1(γ))− V ϑ(g̃i,2(ϑ)) =

{
1, if r̃i(γ) 6≡ 0 mod η,

0, otherwise,
(4.8)

and

V ϑ(g̃i(ϑ))− V ϑ(g̃i,2(ϑ)) =

{
1, if g̃i(ϑ) 6≡ 0 mod η,

0, otherwise.
(4.9)

By definition, g̃i(ϑ) = r̃i(γ) + η, and so g̃i(ϑ) is divisible by η if and only if r̃i(γ) is
divisible by η. Therefore, combining (4.8) and (4.9) gives (4.7), and hence the claim is
proved.
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Invoking the relation (4.6), we find that for 1 ≤ i ≤ p,

[g̃i(ϑ)/η] + [g̃i,2(ϑ)/η] + · · ·+ [g̃i,k−1(ϑ)/η]

= [(r̃i(γ) + η)/η] + [r̃i,1(γ)/η] + · · ·+ [r̃i,k−2(γ)/η]

= [r̃i(γ)/η] + [r̃i,1(γ)/η] + · · ·+ [r̃i,k−2(γ)/η] + 1

≡ ai(γ) + V γ(r̃i,1(γ)) + 1 (mod 2).

It follows from (4.7) that ai(ϑ) ≡ ai(γ) + 1 (mod 2) for 1 ≤ i ≤ p. In view of (4.4), we
obtain that for 1 ≤ i ≤ p,

ai(ϑ) ≡ ap+1(γ) + 1 (mod 2). (4.10)

We next show that
ap+1(γ) = ap+1(ϑ). (4.11)

From Proposition 3.6, we know that the parity of {r̃p+1(ϑ)}k−1 is the same as that of
{g̃p+1(ϑ)}k−1. On the other hand, the construction of the forward move φp indicates
that the parity of {r̃p+1(γ)}k−1 is the same as that of {r̃p+1(ϑ)}k−1, and so the parity of
{r̃p+1(γ)}k−1 agrees with that of {g̃p+1(ϑ)}k−1. Thereby, we get (4.11). Combining (4.10)
and (4.11) gives (4.5). It follows that {g̃i(ϑ)}k−1 and {g̃p+1(ϑ)}k−1 have opposite parities
for 1 ≤ i ≤ p, and so {r̃i(ϑ)}k−1 and {r̃p+1(ϑ)}k−1 have opposite parities for 1 ≤ i ≤ p.
Hence the condition (B) is satisfied.

We have shown that ϑ ∈ Bd(α1, . . . , αλ; η, k, r|N, p). It is routine to verify that |ϑ| =
|γ|+ pη, and thus the proof is complete.

Lemma 4.8. For N ≥ p ≥ 1, let ϑ be an overpartition in Bd(α1, . . . , αλ; η, k, r|N, p) and
let γ = ψp(ϑ). Then γ is an overpartition in Be(α1, . . . , αλ; η, k, r|N, p). Furthermore,
|γ| = |ϑ| − pη.

Proof. In order to show that γ is an overpartition in Be(α1, . . . , αλ; η, k, r|N, p), we need
to prove that γ satisfies (1), (2) and (3) in Definition 1.14 and there are N parts marked
with k − 1 in RG(γ), denoted r̃1(γ) > r̃2(γ) > · · · > r̃N(γ). Moreover, the following
conditions are also required:

(A) f≤η(γ) ≤ r − 1;

(B) the parity of {r̃i(γ)}k−1 is the same as that of {r̃p+1(γ)}k−1 for 1 ≤ i ≤ p.

Now we consider (1), (2) and (3) in Definition 1.14. Assume that g̃1(ϑ) > g̃2(ϑ) > · · · >
g̃N(ϑ) are the (k−1)-marked parts in the Gordon marking of ϑ ∈ Bd(α1, . . . , αλ; η, k, r|N, p).
By Proposition 4.5, it is necessary to prove that

(C) g̃p(ϑ) ≥ η + α1;
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(D) g̃p(ϑ) is a part in any (k − 1)-band of ϑ belonging to I(g̃p(ϑ)− 2η, g̃p(ϑ)).

Condition (C). Given that ϑ ∈ Bd(α1, . . . , αλ; η, k, r|N, p), combining Proposition 3.3 and
Proposition 3.6, we realize that {g̃i(ϑ)}k−1 and {g̃p+1(ϑ)}k−1 have opposite parities for
1 ≤ i ≤ p. Suppose to the contrary that g̃p(ϑ) < η + α1, which means that g̃p(ϑ) ≤ η. In
this case, we have p = N . Observing that g̃N(ϑ) is marked with k − 1 in G(ϑ), so we get
f≤η(ϑ) = k − 1, that is, r = k. Assume that

g̃N(ϑ) ≥ g̃N,2(ϑ) ≥ · · · ≥ g̃N,k−1(ϑ)

are the parts in the (k − 1)-band of ϑ induced by g̃N(ϑ). Under the condition that
{g̃N(ϑ)}k−1 and {g̃N+1(ϑ)}k−1 have opposite parities and the convention that the empty
band is even, we deduce that {g̃N(ϑ)}k−1 is odd, that is,

[g̃N(ϑ)/η] + [g̃N,2(ϑ)/η] + · · ·+ [g̃N,k−1(ϑ)/η] ≡ r + V ϑ(g̃N(ϑ)) (mod 2). (4.12)

On the other hand, since g̃N(ϑ) ≤ η, we obtain that

[g̃N(ϑ)/η] + [g̃N,2(ϑ)/η] + · · ·+ [g̃N,k−1(ϑ)/η]

= f≤η(ϑ)− f<η(ϑ) = k − 1− f<η(ϑ),
(4.13)

where f<η(ϑ) denotes the number of parts of ϑ less than η. Recall that V ϑ(g̃N(ϑ)) counts
the number of overlined parts of ϑ not exceeding g̃N(ϑ). Again, under the assumption
g̃N(ϑ) ≤ η, we have V ϑ(g̃N(ϑ)) = f<η(ϑ). Since r = k, (4.13) can be written as

[g̃N(ϑ)/η] + [g̃N,2(ϑ)/η] + · · ·+ [g̃N,k−1(ϑ)/η] = r − 1− V ϑ(g̃N(ϑ)),

which contradicts (4.12). Hence g̃p(ϑ) ≥ η + α1.

Condition (D). Suppose that there is a (k − 1)-band belonging to I(g̃p(ϑ) − 2η, g̃p(ϑ))
which does not contain g̃p(ϑ) as a part, and let

ϑm ≥ ϑm+1 ≥ · · · ≥ ϑm+k−2

be the parts in this (k− 1)-band, that is, ϑm ≤ ϑm+k−2 + η with strict inequality if ϑm is
overlined, ϑm < g̃p(ϑ) and ϑm+k−2 ≥ g̃p(ϑ)−2η with strict inequality if g̃p(ϑ) is overlined.
In view of Lemma 3.5, we deduce that {g̃p(ϑ)}k−1 and {ϑm+l}0≤l≤k−2 are of the same
parity.

Now, since {ϑm+l}0≤l≤k−2 is a (k−1)-band of ϑ, there is a part, say ϑm+t (0 ≤ t ≤ k−2),
marked with k− 1 in G(ϑ). But ϑm < g̃p(ϑ), so we get ϑm+t = g̃p+1(ϑ). This implies that
{ϑm+l}0≤l≤k−2 is a (k − 1)-band of ϑ including g̃p+1(ϑ). By Proposition 3.6, we deduce
that {g̃p+1(ϑ)}k−1 and {ϑm+l}0≤l≤k−2 are of the same parity. It follows that the parity
of {g̃p+1(ϑ)}k−1 is the same as that of {g̃p(ϑ)}k−1, which contradicts the condition that
ϑ ∈ Bd(α1, . . . , αλ; η, k, r|N, p), that is, the parity of {g̃p+1(ϑ)}k−1 is opposite from the
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parity of {g̃p(ϑ)}k−1. Therefore, g̃p(ϑ) is a part in any (k − 1)-band of ϑ belonging to
I(g̃p(ϑ)− 2η, g̃p(ϑ)).

Up to now, we have shown that ϑ satisfies the conditions (C) and (D). In view of
Proposition 4.5, we see that γ satisfies (1), (2) and (3) in Definition 1.14 and there are N
parts marked with k − 1 in RG(γ). We still have to show that γ satisfies the conditions
(A) and (B).

Condition (A). By the condition (C), we have g̃p(ϑ) ≥ η + α1. We now consider two
cases: (1) If g̃p(ϑ) > 2η, then f≤η(γ) = f≤η(ϑ) ≤ r − 1. (2) If η + α1 ≤ g̃p(ϑ) ≤ 2η, then
f≤η(γ) = f≤η(ϑ) + 1. In this case, we claim that f≤η(ϑ) < r− 1. Suppose to the contrary
that f≤η(ϑ) = r − 1. Assume that

g̃p(ϑ) ≥ g̃p,2(ϑ) ≥ · · · ≥ g̃p,k−1(ϑ)

are the parts in the (k − 1)-band of ϑ induced by g̃p(ϑ). Then

[g̃p(ϑ)/η] + [g̃p,2(ϑ)/η] + · · ·+ [g̃p,k−1(ϑ)/η]

≡ V ϑ(g̃p(ϑ))− f<η(ϑ) + fη(ϑ)

≡ f≤η(ϑ) + V ϑ(g̃p(ϑ)) (mod 2),

which implies that {g̃p(ϑ)}k−1 is even since f≤η(ϑ) = r−1. Given that ϑ ∈ Bd(α1, . . . , αλ; η,
k, r|N, p), we see that the parity of {g̃p(ϑ)}k−1 is opposite from the parity of {g̃p+1(ϑ)}k−1.
It follows that {g̃p+1(ϑ)}k−1 is odd, and so {g̃p+1(ϑ)}k−1 is nonempty. On the other hand,
since g̃p+1(ϑ) ≤ g̃p(ϑ) − η ≤ η, it is ensured by Lemma 3.5 that the parity of {g̃p(ϑ)}k−1
is the same as that of {g̃p+1(ϑ)}k−1, which leads to a contradiction. Hence f≤η(ϑ) < r− 1
when η + α1 ≤ g̃p(ϑ) ≤ 2η, and so f≤η(γ) ≤ r − 1.

Condition (B). Utilizing the property (4) in Proposition 4.5, we find that for 1 ≤ i ≤ p,
r̃i(γ) = g̃i(ϑ) − η. The reasoning in the proof of Lemma 4.7 can be adapted to deduce
that the parity of {r̃i(γ)}k−1 is the same as that of {r̃p+1(γ)}k−1 for 1 ≤ i ≤ p.

Thus we conclude that γ is an overpartition in Be(α1, . . . , αλ; η, k, r|N, p). It is manifest
from the construction of ψp that |γ| = |ϑ| − pη. This completes the proof.

Proof of Theorem 4.6. Let γ ∈ Be(α1, . . . , αλ; η, k, r|N, p). Utilizing Lemma 4.7, we find
that φp(γ) belongs to Bd(α1, . . . , αλ; η, k, r|N, p). In view of the property (4) in Proposition
4.3, we deduce that ψp(φp(γ)) = γ.

Analogously, let ϑ ∈ Bd(α1, . . . , αλ; η, k, r|N, p). Invoking Lemma 4.8, we get ψp(ϑ) ∈
Be(α1, . . . , αλ; η, k, r|N, p). By virtue of the property (4) in Proposition 4.5, we obtain
that φp(ψp(ϑ)) = ϑ.

Thus, we arrive at the assertion that the forward move φp is a bijection between
Be(α1, . . . , αλ; η, k, r|N, p) and Bd(α1, . . . , αλ; η, k, r|N, p). This completes the proof.
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4.3 The (k − 1)-insertion and the (k − 1)-separation

As mentioned before, a merging operation is needed in the construction of the bijection Φ
between Dη×B0(α1, . . . , αλ; η, k, r) and B1(α1, . . . , αλ; η, k, r). The main objective of this
subsection is to present a description of this merging operation in terms of the (k − 1)-
insertion operation and the (k−1)-separation operation. To be more specific, the merging
operation is meant to take the parts divisible by η and the parts of the overpartition in
B1(α1, . . . , αλ; η, k, r) to generate certain overlined parts divisible by η. As a result, we
get an overpartition π in B1(α1, . . . , αλ; η, k, r). To this end, we shall prepare two subsets
of B1(α1, . . . , αλ; η, k, r). Assume that a = η or αi for some 1 ≤ i ≤ λ.

• For s ≥ N ≥ 0, let B a<(α1, . . . , αλ; η, k, r|N, s) denote the set of overpartitions τ in
B1(α1, . . . , αλ; η, k, r) satisfying

(1) There are N parts marked with k−1 in RG(τ), denoted r̃1(τ) > r̃2(τ) > · · · >
r̃N(τ);

(2) Assume that p is the smallest integer satisfying r̃p+1(τ) + η ≤ (s− p)η + a
with the convention that r̃N+1(τ) = −∞. Then the largest overlined part ≡ a
(mod η) in τ is less than (s− p)η + a;

(3) If f≤η(τ) = r − 1, s = N ≥ 1 and a 6= η, then r̃N(τ) ≤ η;

(4) If s = N = 0 and a 6= η, then f≤η(τ) < r − 1.

• For s ≥ N ≥ 0, let B a=(α1, . . . , αλ; η, k, r|N, s) denote the set of overpartitions σ in
B1(α1, . . . , αλ; η, k, r) subject to the following conditions:

(1) There exists an overlined part ≡ a (mod η) in σ, and assume that the largest
overlined part ≡ a (mod η) in σ is tη + a;

(2) Let σ̂ be the overpartition obtained by removing tη + a from σ. Then there
are N parts marked with k− 1 in G(σ̂), denoted g̃1(σ̂) > g̃2(σ̂) > · · · > g̃N(σ̂);

(3) Assume that p is the smallest integer such that g̃p+1(σ̂) < tη + a with the
convention that g̃N+1(σ̂) = −∞. Then s = p+ t.

For example, let N = 5, s = 6 and a = 10 and let τ be the overpartition in
B1(1, 5, 9; 10, 5, 4) with the reverse Gordon marking

RG(τ) = (851, 802, 803, 751, 704, 692, 611, 603, 592, 554, 501, 492, 453, 414,

391, 352, 291, 202,203, 204, 111, 102, 93, 54, 11).
(4.14)

There are five 4-marked parts r̃1(τ) = 70, r̃2(τ) = 55, r̃3(τ) = 41, r̃4(τ) = 20 and r̃5(τ) = 5
in RG(τ). Then p = 3 is the smallest integer such that 30 = r̃p+1(τ) +η ≤ (s− p)η + a =
40. Meanwhile, the largest overlined part divisible by 10 in τ is 20, which is less than

(s− p)η + a = 40. So τ is an overpartition in B 10

< (1, 5, 9; 10, 5, 4|5, 6).
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Next example is concerned with determining whether an overpartition in B1(α1, . . . , αλ;
η, k, r) belongs to B a=(α1, . . . , αλ; η, k, r|N, s). Let N = 5, s = 6, a = 10 and let

σ = (85, 80, 80, 80, 75, 69, 65, 61, 60, 59, 51, 50, 49, 45, 40,

39, 35, 29, 20,20, 20, 11, 10, 9, 5, 1)
(4.15)

be an overpartition in B1(1, 5, 9; 10, 5, 4). The largest overlined part divisible by 10 of σ
is 40, and so t = 3. Removing 40 from σ, we get σ̂ with the Gordon marking

G(σ̂) = (852, 804, 803, 801, 752, 691, 654, 613, 602, 591, 514, 503, 491, 452,

391, 352, 291, 204,203, 202, 111, 104, 93, 52, 11).
(4.16)

There are five 4-marked parts g̃1(σ̂) = 80, g̃2(σ̂) = 65, g̃3(σ̂) = 51, g̃4(σ̂) = 20 and
g̃5(σ̂) = 10 in G(σ̂) and p = 3 is the smallest integer such that 20 = g̃p+1(σ̂) < 40. Indeed,

p+ t = s holds. Thus, we conclude that σ is an overpartition in B 10

= (1, 5, 9; 10, 5, 4|5, 6).

We next give the definition of the (k−1)-insertion operation, which serves as a bijection
between B a<(α1, . . . , αλ; η, k, r|N, s) and B a=(α1, . . . , αλ; η, k, r|N, s).

Definition 4.9 (The (k − 1)-insertion). For s ≥ N ≥ 0, let τ be an overpartition in
B a<(α1, . . . , αλ; η, k, r|N, s) with N parts marked with k − 1 in RG(τ), denoted r̃1(τ) >

· · · > r̃N(τ). Assume that p is the smallest integer such that 0 ≤ p ≤ N and (s− p)η + a ≥
r̃p+1(τ) + η. The (k− 1)-insertion Ias : τ → σ is defined as follows: first apply the forward

move φp to τ to get τ ′ = φp(τ), then insert (s− p)η + a into τ ′ as an overlined part of σ.

It should be understood that when p = 0, the forward move φp is considered as the
identity map, that is, φp(τ) = τ . In this paper, we adopt the (k−1)-insertion with a = η.
The case a = α1 will be used in our second paper [25].

For example, take the overpartition τ in B 10

< (1, 5, 9; 10, 5, 4|5, 6) whose reverse Gor-
don marking is given in (4.14). In this case, p = 3 is the smallest integer such that
(s− p)η + a = 40 ≥ 30 = r̃p+1(τ) + η, where s = 6 and a = 10. Applying the forward
move φ3 to τ , we get

τ ′ = (85, 80, 80, 80, 75, 69, 65, 61, 60, 59, 51, 50, 49, 45,

39, 35, 29, 20,20, 20, 11, 10, 9, 5, 1),

whose Gordon marking agrees with the one in (4.16). Inserting (s− p)η + a = 40 into

τ ′, we obtain σ = Ias (τ) as in (4.15), which belongs to B10

= (1, 5, 9; 10, 5, 4|5, 6). Clearly,
|σ| = |τ |+ 70.

Theorem 4.10. For s ≥ N ≥ 0, the (k−1)-insertion Ias is a bijection between B a<(α1, . . . ,
αλ; η, k, r|N, s) and B a=(α1, . . . , αλ; η, k, r|N, s). Moreover, for τ ∈ B a<(α1, . . . , αλ; η, k, r|N,
s), let σ = Ias (τ), we have |σ| = |τ |+ sη + a.
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The proof of the above theorem consists of three parts. Lemma 4.11 shows that the (k−
1)-insertion is a map from B a<(α1, . . . , αλ; η, k, r|N, s) to B a=(α1, . . . , αλ; η, k, r|N, s). Lem-
ma 4.13 provides a map (that is, the (k−1)-separation) from B a=(α1, . . . , αλ; η, k, r|N, s) to
B a<(α1, . . . , αλ; η, k, r|N, s). Then we will finish the proof of Theorem 4.10 by confirming
that the (k − 1)-insertion and the (k − 1)-separation are inverses of each other.

Lemma 4.11. For s ≥ N ≥ 0, let τ be an overpartition in B a<(α1, . . . , αλ; η, k, r|N, s)
and let σ = Ias (τ). Then σ is an overpartition in B a=(α1, . . . , αλ; η, k, r|N, s). Moreover,
|σ| = |τ |+ sη + a.

Proof. To prove that σ belongs to B a=(α1, . . . , αλ; η, k, r|N, s), we must verify the following
conditions:

(A) There exists an overlined part ≡ a (mod η) in σ, and assume that the largest
overlined part ≡ a (mod η) in σ is tη + a;

(B) Let σ̂ be the overpartition obtained by removing tη + a from σ. Then there are N
parts marked with k − 1 in G(σ̂), denoted g̃1(σ̂) > g̃2(σ̂) > · · · > g̃N(σ̂);

(C) Let p be the smallest integer such that g̃p+1(σ̂) < tη + a. Then we have p+ t = s;

(D) f≤η(σ) ≤ r − 1;

(E) The marks in G(σ) do not exceed k − 1.

Condition (A). Let r̃1(τ) > · · · > r̃N(τ) be the (k − 1)-marked parts in RG(τ). Assume
that p is the smallest integer such that 0 ≤ p ≤ N and

(s− p)η + a ≥ r̃p+1(τ) + η. (4.17)

By the choice of p, we find that for p ≥ 1 and 1 ≤ i ≤ p,

(s− i+ 1)η + a < r̃i(τ) + η. (4.18)

Since τ ∈ B a<(α1, . . . , αλ; η, k, r|N, s), the largest overlined part ≡ a (mod η) in τ is less

than (s− p)η + a. By the construction of Ias , together with (4.18), we deduce that the
largest overlined part ≡ a (mod η) in σ is (s− p)η + a, that is, t = s− p.

Condition (B). Since σ̂ is the overpartition obtained by removing tη + a from σ, by the
construction of Ias , we find that σ̂ = φp(τ). In view of Proposition 4.3, we know that there
are N parts marked with k − 1 in G(σ̂), denoted g̃1(σ̂) > g̃2(σ̂) > · · · > g̃N(σ̂).

Condition (C). From the proof for the condition (A), we observe that the largest overlined
part ≡ a (mod η) in σ is (s− p)η + a, that is, t = s − p. We attempt to show that p is
the smallest integer such that g̃p+1(σ̂) < tη + a. By Proposition 4.3, we get

g̃i(σ̂) = r̃i(τ) + η for 1 ≤ i ≤ p, and r̃i(τ) ≤ g̃i(σ̂) ≤ r̃i,1(τ) for p < i ≤ N,
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where r̃i,1(τ) ≥ · · · ≥ r̃i,k−2(τ) ≥ r̃i(τ) are the parts in the (k − 1)-band of τ induced by
r̃i(τ). It follows that for 1 ≤ i ≤ p,

g̃i(σ̂) = r̃i(τ) + η > (s− i+ 1)η + a, (4.19)

and
g̃p+1(σ̂) ≤ r̃p+1,1(τ) ≤ r̃p+1(τ) + η,

with strict inequality if r̃p+1(τ) is overlined. Consequently, in view of (4.17), we deduce
that g̃p+1(σ̂) < tη + a. But, by (4.19), we find that g̃i(σ̂) > tη + a for 1 ≤ i ≤ p, from
which it follows that p is the smallest integer such that tη + a > g̃p+1(σ̂).

Condition (D). By the construction of σ̂, we know that f≤η(σ̂) ≤ r − 1. To show that
f≤η(σ) ≤ r − 1, we consider the following two cases:

Case 1: If (s− p)η + a > η, then f≤η(σ) = f≤η(σ̂) ≤ r − 1.

Case 2: If (s− p)η + a ≤ η, then p = s and a 6= η. Moreover, because of the choice of
p, we further have s = p = N . We now encounter two subcases.

Subcase 2.1: If f≤η(τ) < r − 1, then f≤η(σ) = f≤η(σ̂) + 1 ≤ f≤η(τ) + 1 ≤ r − 1.

Subcase 2.2: If f≤η(τ) = r−1, then N ≥ 1. Based on the fact that s = p = N ≥ 1 and
the condition (3) in the definition of B a<(α1, . . . , αλ; η, k, r|N, s), we see that r̃N(τ) ≤ η.
In the case p = N , we may employ the forward move to add η to r̃N(τ) in τ to get
f≤η(σ̂) = f≤η(τ)− 1. Hence f≤η(σ) = f≤η(σ̂) + 1 = f≤η(τ) = r − 1.

Condition (E). Recall that the marks in G(σ̂) do not exceed k − 1 and σ is obtained by
inserting (s− p)η + a into σ̂. To show that the marks in G(σ) do not exceed k−1, it is e-
nough to prove that there are no (k−1)-bands of σ̂ in ((s− p− 1)η + a, (s− p+ 1)η + a).
Suppose to the contrary that there exists a (k − 1)-band {σ̂m+l}0≤l≤k−2 of σ̂ in

((s− p− 1)η + a, (s− p+ 1)η + a), namely,

(s− p+ 1)η + a > σ̂m ≥ σ̂m+1 ≥ · · · ≥ σ̂m+k−2 > (s− p− 1)η + a.

From the construction of the (k−1)-insertion, we find that {σ̂m+l}0≤l≤k−2 is also a (k−1)-
band of τ . Hence there is a (k − 1)-marked part σ̂m+t (0 ≤ t ≤ k − 2) in RG(τ).

Case 1: σ̂m < r̃p(τ). In this case, r̃p+1(τ) ≥ σ̂m+t > (s− p− 1)η + a, which contra-
dicts (4.17).

Case 2: σ̂m > r̃p(τ). Setting i = p in (4.18) gives (s− p+ 1)η + a < r̃p(τ) + η, whence

σ̂m < (s− p+ 1)η + a < r̃p(τ)+η. Consequently, r̃p(τ) is a part of τ in (σ̂m−η, σ̂m), that
is, σ̂m − η < r̃p(τ) < σ̂m. Since {σ̂m+l}0≤l≤k−2 is a (k − 1)-band of σ̂, there are exactly
k−2 parts of σ̂ after σ̂m belonging to I(σ̂m−η, σ̂m). Recalling that r̃p(τ) does not appear
in σ̂, we infer that there are exactly k− 1 parts of τ after σ̂m belonging to I(σ̂m− η, σ̂m).
This implies that there is one part belonging to I(σ̂m − η, σ̂m) marked with k in RG(τ),
which is again a contradiction since the marks in RG(τ) are supposed not to exceed k−1.
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Therefore, there are no (k−1)-bands of σ̂ in ((s− p− 1)η + a, (s− p+ 1)η + a). That
is to say, the marks in G(σ) do not exceed k − 1 after inserting (s− p)η + a into σ̂, and
so the condition (E) is verified.

Thus, we have shown that σ is an overpartition in B1(α1, . . . , αλ; η, k, r). Clearly,
|σ| = |τ |+ sη + a. This completes the proof.

We now define the (k − 1)-separation, which plays the role of the inverse map of the
(k − 1)-insertion.

Definition 4.12 (The (k − 1)-separation). For s ≥ N ≥ 0, let σ be an overpartition in
B a=(α1, . . . , αλ; η, k, r|N, s) with the largest overlined part ≡ a (mod η) being tη + a. The
(k−1)-separation J a

s : σ → τ is defined as follows: First remove tη + a from σ to produce
σ̂, and then apply the backward move ψs−t to σ̂ to obtain τ .

The following lemma states that the (k − 1)-separation has the specified image set.

Lemma 4.13. For s ≥ N ≥ 0, let σ be an overpartition in B a=(α1, . . . , αλ; η, k, r|N, s),
and let τ = J a

s (σ). Then τ is an overpartition in B a<(α1, . . . , αλ; η, k, r|N, s). Moreover,
|τ | = |σ| − sη − a.

Proof. To prove that τ belongs to B a<(α1, . . . , αλ; η, k, r|N, s), we need to check the fol-
lowing conditions:

(A) There are N parts marked with k−1 in RG(τ), denoted r̃1(τ) > r̃2(τ) > · · · > r̃N(τ);

(B) Assume that p is the smallest integer such that r̃p+1(τ) + η ≤ (s− p)η + a. Then

the largest overlined part ≡ a (mod η) in τ is less than (s− p)η + a;

(C) f≤η(τ) ≤ r − 1;

(D) If s = N = 0 and a 6= η, then f≤η(τ) < r − 1;

(E) If f≤η(τ) = r − 1, s = N ≥ 1 and a 6= η, then r̃N(τ) ≤ η.

Condition (A). Assume that the largest overlined part ≡ a (mod η) in σ is tη + a. Let
σ̂ be the overpartition obtained by removing tη + a from σ. By definition, there are
N parts marked with k − 1 in G(σ̂), denoted g̃1(σ̂) > g̃2(σ̂) > · · · > g̃N(σ̂). Assume
that p is the smallest integer such that tη + a > g̃p+1(σ̂). Since σ is an overpartition in
B a=(α1, . . . , αλ; η, k, r|N, s), we have p + t = s. To show that the condition (A) holds, in
view of Proposition 4.5, it suffices to verify the following statements:

(A1) g̃p(σ̂) ≥ η + α1;

(A2) g̃p(σ̂) is a part in any (k − 1)-band of σ̂ belonging to I(g̃p(σ̂)− 2η, g̃p(σ̂)).
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Condition (A1). Since tη + a does not appear in σ̂, the minimality of p implies that
tη + a < g̃p(σ̂). Under the condition that the marks in G(σ) do not exceed k − 1, it is

obvious that there are no (k − 1)-bands of σ̂ in ((t− 1)η + a, (t+ 1)η + a). Let

g̃p(σ̂) ≥ g̃p,2(σ̂) ≥ · · · ≥ g̃p,k−2(σ̂)

be the parts in the (k − 1)-band of σ̂ induced by g̃p(σ̂). Then

g̃p,k−2(σ̂) ≥ g̃p(σ̂)− η > (t− 1)η + a.

Consequently, g̃p(σ̂) ≥ (t+ 1)η + a since there are no (k− 1)-bands of σ̂ in ((t− 1)η + a,

(t+ 1)η + a). Using the fact that the largest overlined part ≡ a (mod η) in σ̂ is less than
tη + a, we are led to the strict inequality

g̃p(σ̂) > (t+ 1)η + a, (4.20)

which yields (A1).

Condition (A2). Suppose to the contrary that there is a (k − 1)-band of σ̂ belonging to
I(g̃p(σ̂)− 2η, g̃p(σ̂)) that does not contain g̃p(σ̂) as a part, and let

σ̂m ≥ · · · ≥ σ̂m+k−2

be the parts in this (k − 1)-band. We assume that σ̂m+l (0 ≤ l ≤ k − 2) is a part in this
(k − 1)-band marked with k − 1 in G(σ̂). Evidently, σ̂m+l ≤ σ̂m < g̃p(σ̂). We claim that
σ̂m+l > g̃p+1(σ̂). According to (4.20), we get

(t− 1)η + a < g̃p(σ̂)− 2η ≤ σ̂m+k−2 ≤ · · · ≤ σ̂m. (4.21)

As mentioned before, there are no (k − 1)-bands of σ̂ in ((t− 1)η + a, (t+ 1)η + a), and
so it follows from (4.21) that σ̂m ≥ (t+ 1)η + a. In fact, we attain the strict inequality
σ̂m > (t+ 1)η + a owing to the fact that the largest overlined part ≡ a (mod η) in σ̂
is less than tη + a. The assumption that {σ̂m+l}0≤l≤k−2 is a (k − 1)-band ensures that

σ̂m+k−2 ≥ σ̂m − η. Noting that σ̂m > (t+ 1)η + a, we obtain that σ̂m+k−2 > tη + a. But
g̃p+1(σ̂) < tη + a, we arrive at

σ̂m+l ≥ σ̂m+k−2 > tη + a > g̃p+1(σ̂),

as claimed. Thus, we conclude that g̃p+1(σ̂) < σ̂m+l < g̃p(σ̂). However, σ̂m+l is marked
with k−1 in G(σ̂), which leads to a contradiction since there are no (k−1)-marked parts
in G(σ̂) between g̃p(σ̂) and g̃p+1(σ̂). This confirms the condition (A2).

With the conditions (A1) and (A2) in hand, Proposition 4.5 guarantees that there are
N parts marked with k − 1 in RG(τ). In addition, it gives that

r̃i(τ) = g̃i(σ̂)− η for 1 ≤ i ≤ p, and g̃i,k−1(σ̂) ≤ r̃i(τ) ≤ g̃i(σ̂) for p < i ≤ N. (4.22)
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Thus, we have proved that τ satisfies the condition (A).

Condition (B). We aim to show that p is also the smallest integer such that r̃p+1(τ)+η ≤
(s− p)η + a, where p is defined to be the smallest integer such that g̃p+1(σ̂) < tη + a.
Applying (4.22) with i = p+ 1 yields that r̃p+1(τ) ≤ g̃p+1(σ̂) < tη + a. Let

r̃p+1,1(τ) ≥ · · · ≥ r̃p+1,k−2(τ) ≥ r̃p+1(τ)

be the parts in the (k − 1)-band of τ induced by r̃p+1(τ). Then

r̃p+1,1(τ) ≤ r̃p+1(τ) + η < (t+ 1)η + a.

Since {r̃p+1(τ)}k−1 is also a (k − 1)-band of σ̂ and there are no (k − 1)-bands of σ̂ in

((t− 1)η + a, (t+ 1)η + a), we deduce that

r̃p+1(τ) ≤ (t− 1)η + a = (s− p− 1)η + a. (4.23)

Combining (4.20) and (4.22), we find that

r̃p(τ) = g̃p(σ̂)− η > tη + a = (s− p)η + a.

Hence for 1 ≤ i < p,

r̃i(τ) ≥ r̃i+1(τ) + η ≥ · · · ≥ r̃p(τ) + (p− i)η > (s− i)η + a. (4.24)

By inspection of (4.23) and (4.24), we conclude that p is the smallest integer such that
r̃p+1(τ) + η ≤ (s− p)η + a. On the other hand, by the definition of Jas , we obtain that

the largest overlined part ≡ a (mod η) in τ is less than (s− p)η + a, and so the condition
(B) is justified.

Condition (C). To show that f≤η(τ) ≤ r − 1, we consider three cases:

Case c1: p = 0. In this case, τ = σ̂, so f≤η(τ) ≤ f≤η(σ̂) ≤ r − 1.

Case c2: p ≥ 1 and g̃p(σ̂)− η > η. In this case, f≤η(τ) = f≤η(σ̂) ≤ f≤η(σ) ≤ r − 1.

Case c3: p ≥ 1 and g̃p(σ̂) − η ≤ η. In this case, f≤η(τ) = f≤η(σ̂) + 1. It follows
from (4.20) that η ≥ g̃p(σ̂) − η > tη + a, and so f≤η(σ̂) = f≤η(σ) − 1. Hence f≤η(τ) =
f≤η(σ̂) + 1 = f≤η(σ) ≤ r − 1.

Condition (D). If s = N = 0 and a 6= η, then τ is obtained by removing a from σ. This
implies that f≤η(τ) = f≤η(σ)− 1 < r − 1.

Condition (E). There are two cases.

Case e1: If g̃p(σ̂)− η ≤ η, then p = N and r̃N(τ) = g̃N(σ̂)− η ≤ η.

Case e2: If g̃p(σ̂)− η > η, then f≤η(σ̂) = f≤η(τ). The condition f≤η(τ) = r−1 implies
that f≤η(σ̂) = r − 1. We claim that p < N in this case. Suppose to the contrary that
p = N . If so, we have t = s−p = N −p = 0. This implies that σ̂ is obtained by removing
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a from σ, and thus f≤η(σ̂) = f≤η(σ)− 1 < r− 1, which contradicts f≤η(σ̂) = r− 1. Hence
we have p < N . In light of (4.23), we obtain that

r̃N(π) ≤ r̃N−1(π)− η ≤ · · · ≤ r̃p+1(π)− (N − p− 1)η ≤ (s−N)η + a = a < η.

Therefore, we have proved that the condition (E) is fulfilled.

So far we have accomplished the task of showing that τ is an overpartition in B a<(α1, . . . ,
αλ; η, k, r|N, s). Evidently, |τ | = |σ| − sη − a. This completes the proof.

We are now ready to give a proof of Theorem 4.10 based on Lemma 4.11 and Lemma
4.13.

Proof of Theorem 4.10. Let τ ∈ B a<(α1, . . . , αλ; η, k, r|N, s). Utilizing Lemma 4.11, we
find that Ias (τ) belongs to B a=(α1, . . . , αλ; η, k, r|N, s). Appealing to the condition (C)
in the proof of Lemma 4.11 and the property (4) in Proposition 4.3, we deduce that
J a
s (Ias (τ)) = τ .

Conversely, let γ ∈ B a=(α1, . . . , αλ; η, k, r|N, s). Invoking Lemma 4.13, we know that
J a
s (γ) ∈ B a<(α1, . . . , αλ; η, k, r|N, s). By virtue of the condition (B) in the proof of Lemma

4.13 and the property (4) in Proposition 4.5, we obtain that Ias (J a
s (γ)) = γ.

Therefore, the map Ias is a bijection between B a<(α1, . . . , αλ; η, k, r|N, s) and B a=(α1, . . . ,
αλ; η, k, r|N, s). This completes the proof.

The following theorem gives a criterion to determine whether an overpartition in
B a=(α1, . . . , αλ; η, k, r|N, s) is also an overpartition in B a<(α1, . . . , αλ; η, k, r|N ′, s′), which
involves the successive application of the (k − 1)-insertion operations.

Theorem 4.14. For s ≥ N ≥ 0, let σ be an overpartition in B a=(α1, . . . , αλ; η, k, r|N, s).
Assume that there are N ′ parts marked with k − 1 in the reverse Gordon marking of σ.
Then σ is also an overpartition in B a<(α1, . . . , αλ; η, k, r|N ′, s′) if and only if s′ > s.

Proof. We first show that if s′ > s, then σ is in B a<(α1, . . . , αλ; η, k, r|N ′, s′). Let r̃1(σ) >
· · · > r̃N ′(σ) be the (k − 1)-marked parts in RG(σ). We are required to prove that σ
satisfies the following conditions:

(A) If p′ is the smallest integer such that

(s′ − p′)η + a ≥ r̃p′+1(σ) + η,

then the largest overlined part ≡ a (mod η) in σ is less than (s′ − p′)η + a;

(B) If f≤η(σ) = r − 1, s′ = N ′ ≥ 1 and a 6= η, then r̃N ′(σ) ≤ η.

Condition (A). Assume that tη + a is the largest overlined part ≡ a (mod η) in σ. Let σ̂
be the overpartition obtained from σ by removing tη + a. By definition, there are N parts
marked with k − 1 in G(σ̂), denoted g̃1(σ̂) > · · · > g̃N(σ̂). Let p be the smallest integer
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such that g̃p+1(σ̂) < tη + a. Since σ ∈ B a=(α1, . . . , αλ; η, k, r|N, s), we have p = s − t.
Using Proposition 3.3, we find that there are also N parts marked with k − 1 in RG(σ̂),
denoted r̃1(σ̂) > · · · > r̃N(σ̂) and that r̃i(σ̂) ≤ g̃i(σ̂) for 1 ≤ i ≤ N . In particular,
r̃p+1(σ̂) ≤ g̃p+1(σ̂). But g̃p+1(σ̂) < tη + a, so we get r̃p+1(σ̂) < tη + a.

We now attempt to show that r̃p+1(σ) ≤ tη + a. Suppose to the contrary that r̃p+1(σ) >
tη + a. Since σ̂ is the overpartition obtained from σ by removing tη + a, we find that
r̃p+1(σ̂) = r̃p+1(σ), which implies r̃p+1(σ̂) > tη + a, contradicting the preceding assertion
that r̃p+1(σ̂) < tη + a. This proves r̃p+1(σ) ≤ tη + a.

Examining the construction of σ̂, we notice that N ′ equals either N or N + 1. Under
the condition that s′ > s, we get s′ ≥ s+ 1 ≥ N + 1 ≥ N ′. Let p′ be the smallest integer
such that

(s′ − p′)η + a ≥ r̃p′+1(σ) + η.

Since s′ − p > s− p = t and r̃p+1(σ) ≤ tη + a, we find that

(s′ − p)η + a ≥ (t+ 1)η + a = tη + a+ η ≥ r̃p+1(σ) + η.

Hence the choice of p′ implies that

p′ ≤ p ≤ N ≤ N ′.

This leads to
(s′ − p′)η + a > (s− p)η + a = tη + a.

This proves the condition (A) because tη + a is the largest overlined part ≡ a (mod η) of
σ.

Condition (B). As we know, r̃p+1(σ) ≤ tη + a, so that

tη + a ≥ r̃p+1(σ) ≥ r̃p+2(σ) + η ≥ · · · ≥ r̃N+1(σ) + (N − p)η.

Observing that s′ ≥ s + 1 ≥ N + 1 ≥ N ′, we find that N ′ = N + 1 ≥ 1 and s = N
when s′ = N ′. It follows that r̃N ′(σ) = r̃N+1(σ) ≤ tη + a − (N − p)η = a < η because
p+ t = s = N . Thus, we have proved the condition (B) is valid.

This completes the proof of the sufficiency. Conversely, assume that σ is in both
B a=(α1, . . . , αλ; η, k, r|N, s) and B a<(α1, . . . , αλ; η, k, r|N ′, s′), we intend to show that s′ > s.

Given that σ belongs to B a=(α1, . . . , αλ; η, k, r|N, s), we may assume that tη + a is
the largest overlined part ≡ a (mod η) in σ. Let σ̂ be the overpartition obtained from
σ by removing tη + a. Then there are N parts marked with k − 1 in G(σ̂), denote
g̃1(σ̂) > · · · > g̃N(σ̂). Let p be the smallest integer such that g̃p+1(σ̂) < tη + a. Since
σ ∈ B a=(α1, . . . , αλ; η, k, r|N, s), we have p = s − t. By the reasoning in the proof of
Lemma 4.13, we establish that

g̃p(σ̂) > (t+ 1)η + a. (4.25)
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On the other hand, since σ is also in B a<(α1, . . . , αλ; η, k, r|N ′, s′), there are N ′ parts
marked with k− 1 in RG(σ), denote r̃1(σ) > · · · > r̃N ′(σ). Assume that p′ is the smallest
integer such that

(s′ − p′)η + a ≥ r̃p′+1(σ) + η. (4.26)

The condition that σ ∈ B a<(α1, . . . , αλ; η, k, r|N ′, s′) ensures that the largest overlined part

≡ a (mod η) in σ is less than (s′ − p′)η + a. But the largest overlined part ≡ a (mod η)
in σ is supposed to be tη + a, so we get s′ − p′ > t = s− p.

Our final goal is to show that s′ > s. Suppose to the contrary that s′ ≤ s. This implies
that p′ < p since s′ − p′ > s − p. Let r̃1(σ̂) > · · · > r̃N(σ̂) be the (k − 1)-marked parts
in RG(σ̂). In view of Proposition 3.3, we find that r̃p(σ̂) ≥ g̃p(σ̂) − η. Comparison with
(4.25) yields

r̃p(σ̂) ≥ g̃p(σ̂)− η > tη + a,

so that
r̃p(σ) = r̃p(σ̂) > tη + a. (4.27)

Using the fact that p′ < p, we obtain that

r̃p′+1(σ) ≥ r̃p′+2(σ) + η ≥ · · · ≥ r̃p(σ) + (p− p′ − 1)η. (4.28)

Substituting (4.27) into (4.28), we arrive at

r̃p′+1(σ) > tη + a+ (p− p′ − 1)η = (s− p′)η + a− η ≥ (s′ − p′)η + a− η,

that is,
r̃p′+1(σ) + η > (s′ − p′)η + a,

which is in contradiction to (4.26). Thus, we have shown s′ > s. This completes the
proof.

4.4 Proof of Theorem 4.1

In this subsection, we will give a proof of Theorem 4.1 by successively applying the forward
move and the (k − 1)-insertion with a = η.

Proof of Theorem 4.1. Let µ be an overpartition in B0(α1, . . . , αλ; η, k, r) and let ζ be
a partition with distinct parts divisible by η. We wish to construct an overpartition
π = Φ(ζ, µ) in B1(α1, . . . , αλ; η, k, r) such that |π| = |ζ|+ |µ|. There are two cases:

Case 1: ζ = ∅. Set π = µ. Obviously, π ∈ B1(α1, . . . , αλ; η, k, r) and |π| = |ζ|+ |µ|.

Case 2: ζ 6= ∅. Assume that there are N parts marked with k − 1 in G(µ), and set
ζ = (ηζ1, . . . , ηζc, ηζc+1 . . . , ηζc+m), where ζ1 > · · · > ζc > N ≥ ζc+1 > · · · > ζc+m > 0. We
first merge ηζc+1, . . . , ηζc+m and µ by successively applying the forward move. Then, we
will merge ηζ1, . . . , ηζc and µ by applying the (k − 1)-insertion with a = η to generate c
overlined parts divisible by η.
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Step 1. Let g̃1(µ) > g̃2(µ) > · · · > g̃N(µ) be the (k − 1)-marked parts in G(µ). Note
that µ ∈ B0(α1, . . . , αλ; η, k, r), we see that {g̃i(µ)}k−1 are even for 1 ≤ i ≤ N . We first
merge ηζc+1, . . . , ηζc+m into µ by successively applying the forward move. Denote the
intermediate overpartitions by µ(0), µ(1), . . . , µ(m) with µ(0) = µ.

Since ζc+1 ≤ N , we find that µ is an overpartition in Be(α1, . . . , αλ; η, k, r|N, ζc+1). Set
b = 0 and repeat the following procedure until b = m:

(A) Merge ηζc+b+1 into µ(b). Apply the forward move φζc+b+1
to µ(b) to obtain µ(b+1),

that is,
µ(b+1) = φζc+b+1

(µ(b)).

Since
µ(b) ∈ Be(α1, . . . , αλ; η, k, r|N, ζc+b+1),

in view of Lemma 4.7, we deduce that

µ(b+1) ∈ Bd(α1, . . . , αλ; η, k, r|N, ζc+b+1),

and
|µ(b+1)| = |µ(b)|+ ηζc+b+1.

(B) Replace b by b+ 1. If b = m, then we are done. If b < m, then we have

µ(b) ∈ Be(α1, . . . , αλ; η, k, r|N, ζc+b+1),

since ζc+b+1 < ζc+b ≤ N . Go back to (A).

Eventually, the above procedure yields µ(m) ∈ Bd(α1, . . . , αλ; η, k, r|N, ζc+m) such that

|µ(m)| = |µ(0)|+ ηζc+1 + · · ·+ ηζc+m. (4.29)

Step 2. We continue to merge ηζc, . . . , ηζ1 into µ(m) by successively applying the (k − 1)-
insertion with a = η. Denote the intermediate overpartitions by µ(m), µ(m+1), . . . , µ(m+c)

and set π = µ(m+c). Assume that there are N(µ(i)) parts marked with k − 1 in RG(µ(i)),
where m ≤ i ≤ m+ c and N(µ(m)) = N .

Assume that p is the smallest integer such that 0 ≤ p ≤ N and (ζc − p)η ≥ r̃p+1(µ
(m))+

η. Such an integer p exists because ζc > N and (ζc −N)η > 0 ≥ −∞ = r̃N+1(µ
(m)) + η.

Since µ(m) ∈ Bd(α1, . . . , αλ; η, k, r|N, ζc+m), there are no overlined parts divisible by η in
µ(m). Hence the largest overlined part divisible by η in µ(m) is less than (ζc − p)η. It
follows that

µ(m) ∈ B η<(α1, . . . , αλ; η, k, r|N(µ(m)), ζc − 1).

Merging ηζc, . . . , ηζ1 into µ(m), the following procedure generates c overlined parts
divisible by η. We start with setting b = 0.
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(A) Merge ηζc−b into µ(m+b) to generate an overlined part divisible by η. More precisely,
applying the (k − 1)-insertion I ηζc−b−1 to µ(m+b), we obtain

µ(m+b+1) = I ηζc−b−1(µ
(m+b)).

Since
µ(m+b) ∈ B η<(α1, . . . , αλ; η, k, r|N(µ(m+b)), ζc−b − 1),

in view of Lemma 4.11, we find that

µ(m+b+1) ∈ B η=(α1, . . . , αλ; η, k, r|N(µ(m+b)), ζc−b − 1),

and
|µ(m+b+1)| = |µ(m+b)|+ ηζc−b.

(B) Replace b by b + 1. If b = c, then we are done. If b < c, since ζc−b > ζc−b+1, it
follows from Theorem 4.14 that

µ(m+b) ∈ B η<(α1, . . . , αλ; η, k, r|N(µ(m+b)), ζc−b − 1).

Go back to (A).

The above procedure generates an overpartition π = µ(m+c) ∈ B η=(α1, . . . , αλ; η, k, r
|N(µ(m+c−1)), ζ1 − 1) such that

|µ(m+c)| = |µ(m)|+ ηζc + · · ·+ ηζ1. (4.30)

From the construction of the (k − 1)-insertion with a = η, it can be seen that π is an
overpartition in B1(α1, . . . , αλ; η, k, r) with c overlined parts divisible by η. Furthermore,
combining (4.29) with (4.30), we find that |π| = |µ| + |ζ|. Therefore, Φ is a desired map
from Dη × B0(α1, . . . , αλ; η, k, r) to B1(α1, . . . , αλ; η, k, r).

To prove that Φ is a bijection, we shall define the inverse map Ψ of Φ from B1(α1, . . . ,
αλ; η, k, r) to Dη × B0(α1, . . . , αλ; η, k, r) by successively applying the (k − 1)-separation
with a = η and the backward move. Let π be an overpartition in B1(α1, . . . , αλ; η, k, r). We
shall construct a pair of overpartitions (ζ, µ), that is, Ψ(π) = (ζ, µ), such that |ζ|+ |µ| =
|π|, where ζ ∈ Dη and µ ∈ B0(α1, . . . , αλ; η, k, r).

There are two steps in the construction of (ζ, µ) from π. In the first step, we eliminate
all overlined parts of π divisible by η by successively applying the (k− 1)-separation with
a = η. In the second step, we successively apply the backward move to the resulting
overpartition in the first step so that all (k − 1)-bands of the obtained overpartition are
even.

Step 1. Assume that there are c ≥ 0 overlined parts divisible by η in π. We eliminate the c
overlined parts divisible by η from π by applying the (k−1)-separation with a = η. Denote
the intermediate pairs by (ζ(0), π(0)), . . . , (ζ(c), π(c)), with (ζ(0), π(0)) = (∅, π). There are
two cases:
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Case 1: c = 0. Then set ζ(c) = ∅ and π(c) = π.

Case 2: c ≥ 1. Assume that ηt0 > ηt1 > · · · > ηtc−1 are the overlined parts of π divisible
by η. Set b = 0 and carry out the following procedure.

(A) Let π̂(b) be the overpartition obtained from π(b) by removing the overlined part ηtb.
Assume that g̃1(π̂

(b)) > · · · > g̃N(π̂(b))(π̂
(b)) are the N(π̂(b)) parts marked with k−1 in

G(π̂(b)), and pb is the smallest integer such that g̃pb+1(π̂
(b)) < ηtb. Let s(b) = pb + tb.

By definition,
π(b) ∈ B η=(α1, . . . , αλ; η, k, r|N(π̂(b)), s(b) − 1).

Apply the (k − 1)-separation J η

s(b)−1 to π(b) to get π(b+1), that is,

π(b+1) = J η

s(b)−1(π
(b)).

By means of Lemma 4.13, we find that

π(b+1) ∈ B η<(α1, . . . , αλ; η, k, r|N(π̂(b)), s(b) − 1),

and ∣∣π(b+1)
∣∣ = |π(b)| − ηs(b).

Then insert ηs(b) into ζ(b) as a part to obtain ζ(b+1).

(B) Replace b by b+ 1. If b = c, then we are done. Otherwise, go back to (A).

Observe that for 0 ≤ b ≤ c, there are c − b overlined parts divisible by η in π(b).
Theorem 4.14 reveals that for 0 ≤ b < c− 1,

s(b) > s(b+1) > N(π̂(b+1)). (4.31)

Therefore, there are no overlined parts divisible by η in π(c) and ζ(c) = (ηs(0), . . . , ηs(c−1))
is a partition with distinct parts divisible by η. Moreover, we have

|π| = |π(c)|+ |ζ(c)|. (4.32)

Let us now move on to the second step.

Step 2. Applying the backward move successively to π(c), we are led to a pair of over-
partitions (ζ, µ) ∈ Dη × B0(α1, . . . , αλ; η, k, r) such that |π(c)| = |µ| + |ζ|. Let N be the
number of the (k − 1)-marked parts in G(π(c)) and let g̃1(π

(c)) > · · · > g̃N(π(c)) be the
(k − 1)-marked parts in G(π(c)). There are two cases:

Case 1: All the (k − 1)-bands {g̃i(π(c))}k−1 of π(c) are even. In view of Theorem 3.4,
we have π(c) ∈ B0(α1, . . . , αλ; η, k, r). Set µ = π(c) and ζ = ζ(c). Then (ζ, µ) ∈ Dη ×
B0(α1, . . . , αλ; η, k, r) and |π| = |µ|+ |ζ|.

Case 2: There exists i such that 1 ≤ i ≤ N and {g̃i(π(c))}k−1 is odd.

In this case, we set b = 0 and execute the following procedure. Denote the intermediate
pairs by (ζ(c), π(c)), (ζ(c+1), π(c+1)), and so on.

48



(A) Let g̃1(π
(c+b)) > · · · > g̃N(π(c+b)) be the (k−1)-marked parts in G(π(c+b)) and let 1 ≤

pc+b ≤ N be the smallest integer such that {g̃pc+b(π(c+b))}k−1 and {g̃pc+b+1(π
(c+b))}k−1

have opposite parities. By definition, we get

π(c+b) ∈ Bd(α1, . . . , αλ; η, k, r|N, pc+b).

Apply the backward move ψpc+b to π(c+b) to get π(c+b+1), that is,

π(c+b+1) = ψpc+b(π
(c+b)).

By Lemma 4.8, we obtain that

π(c+b+1) ∈ Be(α1, . . . , αλ; η, k, r|N, pc+b),

and
|π(c+b+1)| = |π(c+b)| − ηpc+b. (4.33)

Then insert ηpc+b into ζ(c+b) as a part to get a partition ζ(c+b+1).

(B) Replace b by b + 1. If all the (k − 1)-bands {g̃i(π(c+b))}k−1 of π(c+b) are even, then
we are done. Otherwise, go back to (A).

We claim that during the above procedure, we have

N ≥ pc+b+1 > pc+b. (4.34)

Given b ≥ 0, since π(c+b+1) ∈ Be(α1, . . . , αλ; η, k, r|N, pc+b), we know that pc+b is the least
integer such that {g̃i(π(c+b+1))}k−1 have the same parity for 1 ≤ i ≤ pc+b + 1. Whereas
π(c+b+1) is in Bd(α1, . . . , αλ; η, k, r|N, pc+b+1), so that pc+b+1 is the least integer such that
{g̃pc+b+1

(π(c+b+1))}k−1 and {g̃pc+b+1+1(π
(c+b+1))}k−1 have opposite parities. Hence we obtain

(4.34), and this proves the claim.

The relation (4.34) ensures that the above procedure terminates after at most N itera-
tions. Assume that it terminates with b = m, that is, all the (k−1)-bands {g̃i(π(c+m))}k−1
are even for 1 ≤ i ≤ N . Set

µ = π(c+m) and ζ = ζ(c+m) = (ηs0, . . . , ηsc−1, ηpc+m−1, . . . , ηpc).

Utilizing Theorem 3.4, we find that µ is an overpartition in B0(α1, . . . , αλ; η, k, r). Observe
that N = N(π̂(c−1)) when c ≥ 1. In light of (4.31) and (4.34), we conclude that ζ is a
partition with distinct parts divisible by η. Combining (4.32) and (4.33), we have |π| =
|µ|+ |ζ|. Therefore, Ψ is a map from B1(α1, . . . , αλ; η, k, r) to Dη ×B0(α1, . . . , αλ; η, k, r).

Combining Theorem 4.6 and Theorem 4.10, we obtain that Ψ(Φ(ζ, µ)) = (ζ, µ) for all
(ζ, µ) ∈ Dη × B0(α1, . . . , αλ; η, k, r) and Φ(Ψ(π)) = π for all π ∈ B1(α1, . . . , αλ; η, k, r).
Hence Φ is a bijection between Dη×B0(α1, . . . , αλ; η, k, r) and B1(α1, . . . , αλ; η, k, r). This
completes the proof.
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4.5 An example

We provide an example to illustrate the bijection Φ in Theorem 4.1. Let

ζ = (100, 80, 50, 40, 20)

be a partition in D10, and let µ be an overpartition in B0(3, 7; 10, 4, 3) with the reverse
Gordon marking

RG(µ) = (

{80}3︷ ︸︸ ︷
871, 802, 803, 671, 632,

{50}3︷ ︸︸ ︷
571, 502, 503, 431,

{30}3︷ ︸︸ ︷
372, 331, 303,

201, 202, 133︸ ︷︷ ︸
{13}3

, 71, 32).

The overpartition π = Φ(ζ, µ) is obtained by successively applying the forward move
and the 3-insertion with a = 10. Observe that there are four 3-marked parts in RG(µ),
that is, N = 4. We first merge 40 and 20 of ζ into µ by successively applying the forward
move and then merge 50, 80 and 100 of ζ into the resulting overpartition by successively
applying the 3-insertion with a = 10.

Step 1. Merge 40 and 20 of ζ into µ by successively applying the forward move.

Note that {80}3, {50}3, {30}3, {13}3 inRG(µ) are all even, so µ ∈ Be(3, 7; 10, 4, 3|4, 4).

• Set µ(0) = µ, and merge 40 into µ(0).

Apply the forward move φ4 to µ(0) to get µ(1), namely, add η = 10 to each of
the 3-marked parts 80, 50, 30 and 13 in RG(µ(0)) respectively and rearrange the
parts in non-increasing order to obtain µ(1) = (90, 87, 80, 671, 63, 60, 57, 50, 43, 40, 37,
33, 23, 20, 20, 7, 3). The reverse Gordon marking of µ(1) is given by

RG(µ(1)) = (

{80}3︷ ︸︸ ︷
901, 872, 803,

{60}3︷ ︸︸ ︷
671, 632, 603, 571,

{40}3︷ ︸︸ ︷
502, 431, 403,

372, 331, 231, 202, 203︸ ︷︷ ︸
{20}3

, 71, 32).

By Lemma 4.7, we deduce that µ(1) ∈ Bd(3, 7; 10, 4, 3|4, 4). Indeed, {80}3, {60}3,
{40}3, {20}3 in RG(µ(1)) are odd. This implies that µ(1) ∈ Be(3, 7; 10, 4, 3|4, 2).

• Merge 20 into µ(1).

Apply the forward move φ2 to µ(1) to obtain µ(2), namely, add η = 10 to each of the
3-marked parts 80 and 60 in RG(µ(1)). We get

RG(µ(2)) = (

{87}3︷ ︸︸ ︷
901, 902, 873,

{63}3︷ ︸︸ ︷
701, 672, 633, 571,

{40}3︷ ︸︸ ︷
502, 431, 403,

372, 331, 231, 202, 203︸ ︷︷ ︸
{20}3

, 71, 32).
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Again, it follows from Lemma 4.7 that µ(2) ∈ Bd(3, 7; 10, 4, 3|4, 2). In fact, {87}3
and {63}3 in RG(µ(2)) are even, but {40}3 in RG(µ(2)) is odd.

Step 2. Successively employ the 3-insertion with a = 10 to merge 50, 80 and 100 of ζ
into µ(2).

• We start with merging 50 into µ(2), and set s = 4.

There are four 3-marked parts in RG(µ(2)), which are r̃1(µ
(2)) = 87, r̃2(µ

(2)) = 63,
r̃3(µ

(2)) = 40 and r̃4(µ
(2)) = 20. In this occasion, p = 4 is the smallest integer such

that (4− p) · 10 + 10 = 10 ≥ r̃p+1(µ
(2))+10 = −∞ and there are no overlined parts

divisible by 10 in µ(2). Hence µ(2) ∈ B 10

< (3, 7; 10, 4, 3|4, 4).

Apply the 3-insertion I104 to µ(2) to get µ(3). More precisely, add η = 10 to each
of the 3-marked parts 87, 63, 40 and 20 in RG(µ(2)) and then insert 10 into the
resulting overpartition as an overlined part. The resulting reverse Gordon marking
reads

RG(µ(3)) = (971, 902, 903, 731, 702, 673, 571, 502, 503, 431,

372, 331, 303, 231, 202, 101, 72, 33).

Utilizing Lemma 4.11 gives µ(3) ∈ B 10

= (3, 7; 10, 4, 3|4, 4).

• Merge 80 into µ(3) and set s = 7.

There are five 3-marked parts in RG(µ(3)), to wit, r̃1(µ
(3)) = 90, r̃2(µ

(3)) = 67,
r̃3(µ

(3)) = 50, r̃4(µ
(3)) = 30 and r̃5(µ

(3)) = 3. Moreover, p = 2 is the smallest
integer such that (7− p) · 10 + 10 = 60 ≥ r̃p+1(µ

(3)) + 10 = 60. Given that µ(3) ∈
B 10

= (3, 7; 10, 4, 3|4, 4), Theorem 4.14 yields that µ(3) ∈ B 10

< (3, 7; 10, 4, 3|5, 7).

Apply the 3-insertion I107 to µ(3) to get µ(4), that is, add η = 10 to each of the
3-marked parts 90 and 67 in RG(µ(3)) and then insert 60 into the resulting overpar-
tition as an overlined part. We are led to

RG(µ(4)) = (1001, 972, 903, 771, 732, 703, 601, 572, 501, 503, 432,

371, 332, 303, 231, 202, 101, 72, 33).

As asserted by Lemma 4.11, we have µ(4) ∈ B 10

= (3, 7; 10, 4, 3|5, 7).

• Finally, merge 100 into µ(4), and set s = 9.

There are five 3-marked parts in RG(µ(4)), namely, r̃1(µ
(4)) = 90, r̃2(µ

(4)) = 70,
r̃3(µ

(4)) = 50, r̃4(µ
(4)) = 30 and r̃5(µ

(4)) = 3. Moreover, p = 0 is the smallest integer
such that (9− p) · 10 + 10 = 100 ≥ r̃1(µ

(4)) + 10 = 100. Knowing that µ(4) ∈
B 10

= (3, 7; 10, 4, 3|5, 7), Theorem 4.14 indicates that µ(4) ∈ B 10

< (3, 7; 10, 4, 3|5, 9).
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Apply the 3-insertion I109 to µ(4) to get µ(5). In other words, insert 100 into µ(4) as
an overlined part to generate

RG(µ(5)) = (1001, 1002, 973, 901, 771, 732, 703, 601, 572, 501, 503, 432,

371, 332, 303, 231, 202, 101, 72, 33).
(4.35)

Using Lemma 4.11 again, we conclude that µ(5) ∈ B 10

= (3, 7; 10, 4, 3|5, 9).

Set π = µ(5). Clearly, π is an overpartition in B1(3, 7; 10, 4, 3) such that |π| = |µ|+ |ζ|.

Conversely, let π be an overpartition in B1(3, 7; 10, 4, 3) whose reverse Gordon marking
is given by (4.35). The pair of overpartitions Ψ(π) = (ζ, µ) can be recovered by succes-
sively applying the 3-separation with a = 10 and the backward move. There are three
overlined parts in π divisible by 10, as identified by 100, 60 and 10.

Step 1. Eliminate 100, 60 and 10 from π by successively using the 3-separation with
a = 10.

• Eliminate 100 from π, and set t0 = 10.

Set π(0) = π and ζ(0) = ∅. Let π̂(0) be the overpartition obtained from π(0) by
removing 100, which has the Gordon marking

G(π̂(0)) = (1003, 972, 901, 773, 732, 701, 602, 571, 503, 502, 431, 372, 331

303, 232, 201, 103, 72, 31).
(4.36)

There are five 3-marked parts in G(π̂(0)), namely, g̃1(π̂
(0)) = 100, g̃2(π̂

(0)) = 77,
g̃3(π̂

(0)) = 50, g̃4(π̂
(0)) = 30 and g̃5(π̂

(0)) = 10. Moreover, p0 = 0 is the smallest
integer such that 10 · t0 = 100 > g̃p0+1(π̂

(0)) = 100. Set s0 = p0 + t0 = 10. Then

π(0) ∈ B 10

= (3, 7; 10, 4, 3|5, 9).

Set ζ(1) = (100). Apply the 3-separation J10
9 to π(0) to get π(1). In other words,

π(1) is obtained from π(0) by removing 100, which means that π(1) = π̂(0) and the
Gordon marking of π(1) is given by (4.36). Appealing to Lemma 4.13, we deduce

that π(1) ∈ B 10

< (3, 7; 10, 4, 3|5, 9).

• Eliminate 60 from π(1), and set t1 = 6.

Let π̂(1) be the overpartition obtained from π(1) by removing 60. We have

G(π̂(1)) = (1003, 972, 901, 773, 732, 701, 571, 503, 502, 431, 372, 331

303, 232, 201, 103, 72, 31).

There are five 3-marked parts in G(π̂(1)), which are g̃1(π̂
(1)) = 100, g̃2(π̂

(1)) = 77,
g̃3(π̂

(1)) = 50, g̃4(π̂
(1)) = 30 and g̃5(π̂

(1)) = 10. Now, p1 = 2 is the smallest integer

52



such that 10 · t1 = 60 > g̃p1+1(π̂
(1)) = 50. Set s1 = p1 + t1 = 8, and we get

π(1) ∈ B 10

= (3, 7; 10, 4, 3|5, 7). Clearly, s0 > s1, in agreement with Theorem 4.14.

Set ζ(2) = (100, 80). Apply the 3-separation J10
7 to π(1) to get π(2), namely, remove

60 from π(1) to get π̂(1), and then subtract η = 10 from each of the 3-marked parts
100 and 77 in G(π̂(1)) to get π(2). The Gordon marking of π(2) is given below:

G(π(2)) = (973, 902, 901, 733, 702, 671, 571, 503, 502, 431, 372, 331

303, 232, 201, 103, 72, 31).

We now have π(2) ∈ B 10

< (3, 7; 10, 4, 3|5, 7), as expected by Lemma 4.13.

• Finally, eliminate 10 from π(2), and set t2 = 1.

Let π̂(2) be the overpartition obtained from π(2) by removing 10, so that

G(π̂(2)) = (973, 902, 901, 733, 702, 671, 571, 503, 502, 431, 372, 331

303, 232, 201, 72, 31).

There are four 3-marked parts in G(π̂(2)), namely, g̃1(π̂
(2)) = 97, g̃2(π̂

(2)) = 73,
g̃3(π̂

(2)) = 50 and g̃4(π̂
(2)) = 30. Meanwhile, p2 = 4 is the smallest integer

such that 10 · t2 = 10 > g̃p2+1(π̂
(1)) = −∞. Set s2 = t2 + p2 = 5. Then

π(2) ∈ B 10

= (3, 7; 10, 4, 3|4, 4). In accordance with Theorem 4.14, we have s1 > s2.

Set ζ(3) = (100, 80, 50). Apply the 3-separation J10
4 to π(2) to get π(3). To wit,

remove 10 from π(2) to get π̂(2), then subtract η = 10 from each of the 3-marked
parts 97, 73, 50 and 30 in G(π̂(2)) to obtain π(3). We get

G(π(3)) = (

{90}3︷ ︸︸ ︷
903, 902, 871,

{70}3︷ ︸︸ ︷
703, 671, 632, 571, 502, 431,

{40}3︷ ︸︸ ︷
403, 372, 331,

233, 202, 201︸ ︷︷ ︸
{23}3

, 72, 31).

Using Lemma 4.13, we have π(3) ∈ B 10

= (3, 7; 10, 4, 3|4, 4).

There are no overlined parts divisible by 10 in π(3). The fact that ζ(3) = (100, 80, 50) is a
partition with distinct parts reflects the claim of Theorem 4.14.

Step 2. Successively apply the backward move to π(3) to derive a pair of overpartitions
(ζ, µ) in Dη × B0(3, 7; 10, 4, 3).

There are four 3-marked parts in G(π(3)), namely, g̃1(π
(3)) = 90, g̃2(π

(3)) = 70,
g̃3(π

(3)) = 40 and g̃4(π
(3)) = 23. Moreover, {90}3 and {70}3 are even and {40}3 and {23}3

are odd, whereas p3 = 2 is the smallest integer such that {g̃p3(π(3))}3 and {g̃p3+1(π
(3))}3

have opposite parities. Hence π(3) ∈ Bd(3, 7; 10, 4, 3|4, 2).
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• Set ζ(4) = (100, 80, 50, 20). Apply the backward move ψ2 to π(3) to produce π(4).
Strictly speaking, subtract η = 10 from each of the 3-marked parts 90 and 70 in
G(π(3)) to get π(4). The Gordon marking of π(4) is

G(π(4)) = (

{90}3︷ ︸︸ ︷
903, 872, 801, 671, 632,

{60}3︷ ︸︸ ︷
603, 571, 502, 431,

{40}3︷ ︸︸ ︷
403, 372, 331,

233, 202, 201︸ ︷︷ ︸
{23}3

, 72, 31).

In view of Lemma 4.8, we may say that π(4) ∈ Be(3, 7; 10, 4, 3|4, 2). To be more
specific, {90}3, {60}3 {40}3 and {23}3 are all odd. Hence p4 = 4 is the smallest
integer such that {g̃p4(π(4))}3 and {g̃p4+1(π

(4))}3 have opposite parities. It follows
that π(4) ∈ Bd(3, 7; 10, 4, 3|4, 4). Obviously, N ≥ p4 > p3.

• Set ζ(5) = (100, 80, 50, 40, 20). Apply the backward move ψ4 to π(4) to obtain π(5),
namely, subtract η = 10 from each of the 3-marked parts 90, 60, 40 and 23 in
G(π(4)). We get

G(π(5)) = (

{87}3︷ ︸︸ ︷
873, 802, 801, 671, 632, 571,

{50}3︷ ︸︸ ︷
503, 502, 431,

{37}3︷ ︸︸ ︷
373, 332, 301,

203, 202, 131︸ ︷︷ ︸
{20}3

, 72, 31).

By Lemma 4.8, we see that π(5) ∈ Be(3, 7; 10, 4, 3|4, 4). More precisely, {87}3, {50}3,
{37}3, {20}3 in G(π(5)) are even. Resorting to Theorem 3.4, we arrive at π(5) ∈
B0(3, 7; 10, 4, 3).

In conclusion, set ζ = ζ(5) and µ = π(5). Then (ζ, µ) ∈ D10 × B0(3, 7; 10, 4, 3) and
|π| = |µ|+ |ζ|.

5 Proof of Theorem 1.17

The goal of this section is to give a proof of Theorem 1.17, which can be restated in purely
combinatorial terms. Here we use the common notation δr,k = 1 if r = k, and δr,k = 0
otherwise.

Theorem 5.1. Let k, r and λ be integers such that k ≥ r ≥ λ ≥ 0 and k− 1 > λ. There
is a bijection Θ between B0(α1, . . . , αλ; η, k, r) and Dη × B1(α1, . . . , αλ; η, k − 1, r − δr,k),
namely, for an overpartition ν ∈ B0(α1, . . . , αλ; η, k, r), we have Θ(ν) = (ζ, ω) ∈ Dη ×
B1(α1, . . . , αλ; η, k − 1, r − δr,k) such that |ν| = |ζ|+ |ω| and `(ν) = `(ζ) + `(ω).
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Since there are no overlined parts divisible by η in ω and there are no (k− 1)-marked
parts in RG(ω), in order to obtain (ζ, ω), we need to remove all overlined parts divisible by
η and certain non-overlined parts divisible by η from ν to generate ω, and use the removed
parts to generate ζ. To this end, we shall define the (k − 1)-reduction operation and the
(k− 1)-augmentation operation, which are the main ingredients in the construction of Θ.

5.1 The (k − 1)-reduction and the (k − 1)-augmentation

The definitions of the (k − 1)-reduction and the (k − 1)-augmentation are based on two
subsets of B0(α1, . . . , αλ; η, k, r). To describe these two subsets, we need to introduce the
following notation. Define ol(ν) to be the largest overlined part divisible by η in ν with
the convention that ol(ν) = 0 if there are no overlined parts divisible by η in ν. Define
r̃1(ν) to be the largest (k−1)-marked part in RG(ν) with the convention that r̃1(ν) = −∞
if there are no (k − 1)-marked parts in RG(ν).

We now assume that k, r and λ are integers such that k ≥ r ≥ λ ≥ 0 and k − 1 > λ.

• For t ≥ 1, let B=

0 (α1, . . . , αλ; η, k, r|t) denote the set of overpartitions ν in B0(α1, . . . ,
αλ; η, k, r) such that either ol(ν) = tη and r̃1(ν) ≤ tη, or ol(ν) < tη and (t− 1)η <
r̃1(ν) ≤ tη.

• For t ≥ 1, let B<0 (α1, . . . , αλ; η, k, r|t) denote the set of overpartitions ν in B0(α1, . . . ,
αλ; η, k, r) such that ol(ν) < tη and r̃1(ν) ≤ (t− 1)η.

With the above two subsets in hand, we are ready to give the definition of the (k−1)-
reduction operation.

Definition 5.2 (The (k−1)-reduction). For t ≥ 1, let ν be an overpartition in B=

0 (α1, . . . ,
αλ; η, k, r|t). Define the (k − 1)-reduction Dt : ν → ω as follows: If ol(ν) = tη, then ω is
obtained from ν by removing the overlined part tη. Otherwise, ω is obtained from ν by
removing a non-overlined part tη.

The following proposition guarantees that the (k − 1)-reduction is well defined.

Proposition 5.3. For t ≥ 1, let ν be an overpartition in B0(α1, . . . , αλ; η, k, r) such that
ol(ν) < tη and (t− 1)η < r̃1(ν) ≤ tη. Then ν contains a non-overlined part tη.

Proof. Assume that r̃1(ν) is the r1-th part of ν = (ν1, ν2, . . . , ν`) in B0(α1, . . . , αλ; η, k, r),
that is, r̃1(ν) = νr1 . Since νr1 is a (k − 1)-marked part in RG(ν), there is a unique
(k − 1)-band of ν induced by νr1 . Assume that

νr1−k+2 ≥ νr1−k+3 ≥ · · · ≥ νr1
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are the parts in the (k − 1)-band induced by νr1 , where νr1−k+2 ≤ νr1 + η with strict
inequality if νr1 is overlined. Under the condition (t− 1)η < νr1 ≤ tη, we deduce that
νr1−k+2 ≤ (t+ 1)η, and so

(t+ 1)η ≥ νr1−k+2 ≥ νr1−k+3 ≥ · · · ≥ νr1 > (t− 1)η.

Moreover, we may assume that m is the smallest integer such that r1 − k + 2 ≤ m ≤ r1
and νm ≤ tη. This implies that νl ≤ tη for m ≤ l ≤ r1 and νl ≥ tη for r1− k+ 2 ≤ l < m.
We claim that νm = tη. Suppose to the contrary that νm < tη. In this case, we have
(t− 1)η < νr1 ≤ νm < tη, so we can write νr1 = (t− 1)η + αi, where 1 ≤ i ≤ λ. Then we
have

(t− 1)η + αi = νr1 ≤ · · · ≤ νm ≤ (t− 1)η + αλ, (5.1)

and νr1−k+2 < νr1 + η = tη + αi. The condition ol(ν) < tη implies that νl > tη for
r1 − k + 2 ≤ l < m. Hence we have

tη < νm−1 ≤ · · · ≤ νr1−k+2 < tη + αi. (5.2)

Combining (5.1) and (5.2), we deduce that k − 1 ≤ (λ − i + 1) + (i − 1) = λ, which
contradicts the assumption that k − 1 > λ. Hence νm = tη. This completes the proof.

The following theorem says that the (k− 1)-reduction operation is indeed a bijection.

Theorem 5.4. For t ≥ 1, the (k − 1)-reduction Dt is a bijection between B=

0 (α1, . . . , αλ;

η, k, r|t) and B<0 (α1, . . . , αλ; η, k, r|t). Moreover, for ν ∈ B=

0 (α1, . . . , αλ; η, k, r|t) and ω =
Dt(ν), we have |ω| = |ν| − tη and `(ω) = `(ν)− 1.

The proof of Theorem 5.4 consists of three parts. In Lemma 5.5, we show that the (k−
1)-reduction is a map from B=

0 (α1, . . . , αλ; η, k, r|t) to B<0 (α1, . . . , αλ; η, k, r|t). Lemma 5.7

exhibits the (k−1)-augmentation map from B<0 (α1, . . . , αλ; η, k, r|t) to B=

0 (α1, . . . , αλ; η, k,
r|t). Then we show that the (k− 1)-reduction and the (k− 1)-augmentation are inverses
of each other.

Lemma 5.5. For t ≥ 1, let ν be an overpartition in B=

0 (α1, . . . , αλ; η, k, r|t) and let ω =

Dt(ν). Then ω is overpartition in B<0 (α1, . . . , αλ; η, k, r|t). Furthermore, |ω| = |ν| − tη
and `(ω) = `(ν)− 1.

Proof. By definition, we wish to show that ω satisfies the following conditions:

(A) ω is an overpartition in B1(α1, . . . , αλ; η, k, r);

(B) ol(ω) < tη and r̃1(ω) ≤ (t− 1)η;

(C) All the (k− 1)-bands of ω induced by the (k− 1)-marked parts in RG(ω) are even.
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Condition (A). Given the precondition ν ∈ B=

0 (α1, . . . , αλ; η, k, r|t), it is immediate from
the construction of ω that it satisfies (1)-(4) in the definition of B1(α1, . . . , αλ; η, k, r).
That is to say, ω is an overpartition in B1(α1, . . . , αλ; η, k, r).

Condition (B). Since ol(ν) ≤ tη, r̃1(ν) ≤ tη and ω is obtained from ν by removing an
overlined part tη or a non-overlined part tη, we obtain that ol(ω) < tη and r̃1(ω) ≤ tη.

We further show that r̃1(ω) ≤ (t− 1)η. Suppose to the contrary that r̃1(ω) > (t− 1)η.
In this case, we have (t− 1)η < r̃1(ω) ≤ tη. Since r̃1(ω) is the largest (k − 1)-marked
part in RG(ω), there are exactly k − 2 parts of ω appearing before r̃1(ω) in the interval
I(r̃1(ω), r̃1(ω) + η). The assumption (t− 1)η < r̃1(ω) ≤ tη implies that tη < r̃1(ω) +
η ≤ (t+ 1)η. Hence the removed part of ν (that is, tη or tη) is also in the interval
I(r̃1(ω), r̃1(ω) + η). It follows that there are exactly k − 1 parts of ν appearing before
r̃1(ω) in the interval I(r̃1(ω), r̃1(ω) + η). This means that there exists a part of ν marked
with k in RG(ν), which is impossible because ν ∈ B=

0 (α1, . . . , αλ; η, k, r|t).

Condition (C). Given a (k−1)-marked part ωi in RG(ω), assume that {ωi−l}0≤l≤k−2 is the
(k−1)-band induced by the (k−1)-marked part ωi. We aim to show that {ωi−l}0≤l≤k−2 is

even in ω. Using the condition (B), we know that r̃1(ω) ≤ (t− 1)η, and so ωi ≤ (t− 1)η.
The assumption that {ωi−l}0≤l≤k−2 is a (k − 1)-band yields ωi−k+2 < tη, more precisely,

tη > ωi−k+2 ≥ ωi−k+3 ≥ · · · ≥ ωi. (5.3)

It follows that {ωi−l}0≤l≤k−2 is also a (k − 1)-band in ν. Since ν ∈ B0(α1, . . . , αλ; η, k, r),
we find that the (k − 1)-band {ωi−l}0≤l≤k−2 is even in ν, that is,

[ωi−k+2/η] + · · ·+ [ωi/η] ≡ r − 1 + V ν(ωi−k+2) (mod 2). (5.4)

Noting that ω is obtained from ν by removing an overlined part tη or a non-overlined
part tη, by (5.3), we get V ν(ωi−k+2) = V ω(ωi−k+2). Therefore, it is immediate from (5.4)
that {ωi−l}0≤l≤k−2 is also even in ω, and so the condition (C) is justified.

In conclusion, we have shown that ω is an overpartition in B<0 (α1, . . . , αλ; η, k, r|t).
Clearly, |ω| = |ν| − tη and `(ω) = `(ν)− 1. This completes the proof.

We now turn to the (k − 1)-augmentation operation, which will be shown to be the
inverse map of the (k − 1)-reduction operation.

Definition 5.6 (The (k − 1)-augmentation). For t ≥ 1, let ω be an overpartition in

B<0 (α1, . . . , αλ; η, k, r|t). We say that ω satisfies the condition U if there exist k − 2
consecutive parts ωi, . . . , ωi+k−3 of ω such that

(1) (t+ 1)η ≥ ωi ≥ · · · ≥ ωi+k−3 > (t− 1)η;

(2) ωi ≤ ωi+k−3 + η with strict inequality if ωi is overlined;

(3) [ωi/η] + · · ·+ [ωi+k−3/η] ≡ t+ r − 1 + V ω(ωi) (mod 2).
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The (k− 1)-augmentation Ct : ω → ν is defined as follows: If ω satisfies the condition U,
then ν is obtained by inserting tη into ω as a non-overlined part. Otherwise, we say that
ω satisfies the condition O and ν is obtained by inserting tη into ω as an overlined part.

The following lemma says that the (k−1)-augmentation is a map from B<0 (α1, . . . , αλ; η,
k, r|t) to B=

0 (α1, . . . , αλ; η, k, r|t).

Lemma 5.7. For t ≥ 1, let ω be an overpartition in B<0 (α1, . . . , αλ; η, k, r|t) and let
ν = Ct(ω). Then ν is an overpartition in B=

0 (α1, . . . , αλ; η, k, r|t) such that |ν| = |ω|+ tη
and `(ν) = `(ω) + 1.

Proof. To prove that ν is an overpartition in B=

0 (α1, . . . , αλ; η, k, r|t), we need to verify
that ν satisfies the following conditions:

(A) f≤η(ν) ≤ r − 1;

(B) For 1 ≤ i ≤ `(ν)− k+ 1, νi ≥ νi+k−1 + η with strict inequality if νi is non-overlined;

(C) ol(ν) = tη and r̃1(ν) ≤ tη, or ol(ν) < tη and (t− 1)η < r̃1(ν) ≤ tη;

(D) All (k − 1)-bands of ν are even.

Condition (A). It is clear that f≤η(ω) ≤ r−1 since ω ∈ B<0 (α1, . . . , αλ; η, k, r|t). To prove
that f≤η(ν) ≤ r − 1, we consider three cases:

Case 1. t ≥ 2. In this case, f≤η(ν) = f≤η(ω) ≤ r − 1.

Case 2. t = 1 and f≤η(ω) < r − 1. We have f≤η(ν) ≤ f≤η(ω) + 1 ≤ r − 1.

Case 3. t = 1 and f≤η(ω) = r − 1. We claim that ω satisfies the condition O. Assume
that

2η ≥ ωi ≥ · · · ≥ ωi+k−3 > 0 (5.5)

are the k − 2 consecutive parts of ω such that ωi ≤ ωi+k−3 + η with strict inequality
whenever ωi is overlined. Since r̃1(ω) ≤ (t− 1)η = 0, there are no (k − 1)-marked parts
in RG(ω), that is, there are no (k − 1)-bands of ω, which implies that f≤η(ω) ≤ k − 2.
Therefore, all parts of ω not exceeding η are after ωi−1. Hence, by (5.5), we obtain that

[ωi/η] + · · ·+ [ωi+k−3/η]

≡ f=η(ω) + (V ω(ωi)− f<η(ω))

≡ f≤η(ω) + V ω(ωi)

= r − 1 + V ω(ωi) (mod 2).

So the claim is confirmed, and hence ν is obtained by inserting η into ω as an overlined
part, from which we get f≤η(ν) = f≤η(ω) = r − 1.
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Condition (B). Suppose to the contrary that there exists 1 ≤ c ≤ `(ν)− k + 1 such that

νc ≤ νc+k−1 + η with strict inequality if νc is overlined. (5.6)

Assume that the m-th part of ν is the inserted part of the (k−1)-augmentation operation,

that is, νm = tη or tη. Since ω ∈ B<0 (α1, . . . , αλ; η, k, r|t), we have νc ≥ νm ≥ νc+k−1.
Comparing with (5.6), we get νc ≤ νm + η = (t+ 1)η and νc+k−1 ≥ νm− η = (t− 1)η with
strict inequality if νm is overlined. Thus, we arrive at

(t+ 1)η ≥ νc ≥ νc+1 ≥ · · · ≥ νc+k−1 ≥ (t− 1)η.

The condition r̃1(ω) ≤ (t− 1)η implies that there are no (k−1)-bands of ω in ((t− 1)η, (t+
1)η]. It follows that νc+k−1 = (t− 1)η or (t− 1)η, and so νc ≤ tη. But νc ≥ νm ≥ tη, we
obtain that

νc = νm = tη. (5.7)

Hence, ωc+i−1 = νc+i, where 1 ≤ i ≤ k − 1. More precisely,

tη ≥ ωc ≥ ωc+1 ≥ · · · ≥ ωc+k−2 ≥ (t− 1)η,

and
ωc+k−2 = νc+k−1 = (t− 1)η or (t− 1)η. (5.8)

Therefore, {ωc+l}0≤l≤k−2 is a (k − 1)-band of ω in [(t − 1)η, tη]. Using the condition

ω ∈ B<0 (α1, . . . , αλ; η, k, r|t), we find that

[ωc/η] + · · ·+ [ωc+k−2/η] ≡ r − 1 + V ω(ωc). (5.9)

It is clear from (5.7) that ν is obtained by inserting a non-overlined part tη into ω.
So ω satisfies the condition U, which means that there exist k − 2 consecutive parts in
((t− 1)η, (t+ 1)η], say

(t+ 1)η ≥ ωi ≥ · · · ≥ ωi+k−3 > (t− 1)η,

satisfying ωi ≤ ωi+k−3 + η with strict inequality if ωi is overlined, and

[ωi/η] + · · ·+ [ωi+k−3/η] ≡ t+ r − 1 + V ω(ωi) (mod 2). (5.10)

Now, (5.8) yields that ωi+k−3 > (t− 1)η ≥ ωc+k−2, which implies that i ≤ c. Set c = i+ t,
where t ≥ 0. Then we have

(t+ 1)η ≥ ωi ≥ · · · ≥ ωi+t−1 > tη, (5.11)

and
tη > ωc+k−t−2 ≥ · · · ≥ ωc+k−3 ≥ (t− 1)η. (5.12)

Combining (5.11) and (5.12), we obtain that

[ωi/η] + · · ·+ [ωi+t−1/η] ≡ [ωc+k−t−2/η] + · · ·+ [ωc+k−3/η] + V ω(ωi)− V ω(ωc) (mod 2),
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which can be rewritten as

[ωi/η] + · · ·+ [ωi+k−3/η] ≡ [ωc/η] + · · ·+ [ωc+k−3/η] +V ω(ωi)−V ω(ωc) (mod 2). (5.13)

Substituting (5.8) and (5.9) into (5.13) gives

[ωi/η] + · · ·+ [ωi+k−3/η]

= [ωc/η] + · · ·+ [ωc+k−3/η] + [ωc+k−2/η]− (t− 1) + V ω(ωi)− V ω(ωc)

≡ r − 1 + V ω(ωc)− (t− 1) + V ω(ωi)− V ω(ωc)

≡ t+ r + V ω(ωi) (mod 2),

which contradicts (5.10). Hence the condition (B) holds. Together with the condition
(A), we conclude that ν is an overpartition in B1(α1, . . . , αλ; η, k, r).

Condition (C). We consider the following two cases.

Case 1. ω satisfies the condition O in Definition 5.6. In this circumstance, ν is obtained
from ω by inserting tη as an overlined part. Obviously, ol(ν) = tη and r̃1(ν) ≤ tη.

Case 2. ω satisfies the condition U in Definition 5.6. If so, ν is obtained from ω by inserting
tη as a non-overlined part. Under the condition that ol(ω) < tη and r̃1(ω) ≤ (t− 1)η, we
deduce that ol(ν) = ol(ω) < tη and r̃1(ν) ≤ tη.

To prove that r̃1(ν) > (t− 1)η, it suffices to show that there is a (k − 1)-band in
((t− 1)η, (t+ 1)η]. With the assumption that ω satisfies the condition U, we know that
there exist k − 2 consecutive parts of ω, say

(t+ 1)η ≥ ωs ≥ · · · ≥ ωs+k−3 > (t− 1)η,

satisfying ωs ≤ ωs+k−3 + η with strict inequality if ωs is overlined, and

[ωs/η] + · · ·+ [ωs+k−3/η] ≡ t+ r − 1 + V ω(ωs) (mod 2). (5.14)

Since r̃1(ω) ≤ (t− 1)η, there are no (k − 1)-bands of ω in ((t− 1)η, (t + 1)η]. It follows
that ωs−1 > tη and ωs+k−2 < tη. Assume that c is the smallest integer such that νc ≤ tη.
Then we have s ≤ c ≤ s+k−2, νl = ωl for s ≤ l ≤ c−1, and νl+1 = ωl for c ≤ l ≤ s+k−3,
namely,

(t+ 1)η ≥ νs ≥ · · · ≥ νc−1 > tη ≥ νc+1 ≥ · · · ≥ νs+k−2 > (t− 1)η (5.15)

are the k − 1 parts of ν such that νs ≤ νs+k−2 + η with strict inequality if νs is overlined.
Hence {νs+l}0≤l≤k−2 is a (k − 1)-band of ν. So we arrive at r̃1(ν) > (t− 1)η, and this
proves that the condition (C) is valid.

Condition (D). There are two cases.

Case 1. ω satisfies the condition O in Definition 5.6. Then ν is obtained from ω by
inserting tη as an overlined part. From the condition (C), we know that r̃1(ν) ≤ tη in
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this event. Assume that {νi+l}0≤l≤k−2 is a (k − 1)-band of ν. We aim to show that
{νi+l}0≤l≤k−2 is even in ν. Since r̃1(ν) ≤ tη and there is a part in {νi+l}0≤l≤k−2 marked
with k − 1 in RG(ν), we get νi+k−2 ≤ tη. There are two subcases.

Subcase 1.1. νi+k−2 ≤ (t− 1)η. In this case, the assumption that {νi+l}0≤l≤k−2 is a (k−1)-
band implies that νi ≤ νi+k−2 with strict inequality if νi is overlined, and so νi < tη. Recall
that ν is obtained from ω by inserting tη as an overlined part, we find that {νi+l}0≤l≤k−2
is also a (k− 1)-band of ω and V ω(νi) = V ν(νi). Since ω ∈ B<0 (α1, . . . , αλ; η, k, r), we see
that {νi+l}0≤l≤k−2 is even in ω, and so {νi+l}0≤l≤k−2 is also even in ν.

Subcase 1.2. (t− 1)η < νi+k−2 ≤ tη. In this case, using the same reasoning as in the
Subcase 1.1, we obtain that νi ≤ (t+ 1)η, so that

(t+ 1)η ≥ νi ≥ νi+1 ≥ · · · ≥ νi+k−2 > (t− 1)η.

Utilizing the condition (B), we deduce that νi−1 > tη and νi+k−1 < tη. Hence the inserted
part tη in ν belongs to {νi+l}0≤l≤k−2, so we may write νm = tη, where i ≤ m ≤ i+ k − 2.
By the construction of ν, we see that ωl = νl for i ≤ l ≤ m − 1, and ωl = νl+1 for
m ≤ l ≤ i+ k − 3. This implies that

(t+ 1)η ≥ ωi ≥ · · · ≥ ωi+k−3 > (t− 1)η

are the k − 2 consecutive parts of ω such that ωi ≤ ωi+k−3 + η with strict inequality
provided ωi is overlined, and V ν(νi) = V ω(ωi) + 1. Under the assumption that ω satisfies
the condition O, we find that

[ωi/η] + · · ·+ [ωi+k−3/η] ≡ t+ r + V ω(ωi) (mod 2).

Therefore,

[νi/η] + · · ·+ [νm/η] + · · ·+ [νi+k−2/η]

= [ωi/η] + · · ·+ [ωi+k−3/η] + t

≡ t+ r + V ω(ωi) + t

≡ r − 1 + V ν(νi) (mod 2),

which means that {νi+l}0≤l≤k−2 is even in ν.

Case 2. ω satisfies the condition U in Definition 5.6. In this case, ν is obtained from ω
by inserting tη as a non-overlined part. For any (k − 1)-band {νi+l}0≤l≤k−2 of ν, we wish
to show that {νi+l}0≤l≤k−2 is even in ν. There are two cases.

Subcase 2.1. νi < tη. By construction of ν, we see that {νi+l}0≤l≤k−2 is also a (k−1)-band
of ω and V ω(νi) = V ν(νi). Using the same argument as in Subcase 1.1, it can be shown
that {νi+l}0≤l≤k−2 is even in ν.

Subcase 2.2. νi ≥ tη. Since {νi+l}0≤l≤k−2 is a (k− 1)-band of ν, we deduce that νi+k−2 ≥
νi − η ≥ (t− 1)η and there is a part νi+li (0 ≤ li ≤ k − 2) marked with k − 1 in RG(ν).
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Using the condition (C), we find that (t− 1)η < r̃1(ν) ≤ tη. It follows that r̃1(ν) = νi+li .
Hence {νi+l}0≤l≤k−2 is a (k−1)-band of ν including r̃1(ν). As in the proof of the condition
(C), we see that r̃1(ν) is also in the (k − 1)-band {νs+l}0≤l≤k−2 in (5.15). Therefore, it
follows from Proposition 3.6 that {νi+l}0≤l≤k−2 and {νs+l}0≤l≤k−2 have same parity. Hence
we only need to show that {νs+l}0≤l≤k−2 in (5.15) is even in ν.

Assume that c is the smallest integer such that νc = tη. As in the proof of the
condition (C), we find that νc belongs to the (k − 1)-band {νs+l}0≤l≤k−2 in (5.15) and
V ν(νs) = V ω(ωs). Thus,

[νs/η] + · · ·+ [νs+k−2/η] = t+ [ωs/η] + · · ·+ [ωs+k−3/η]. (5.16)

Substituting (5.14) into (5.16) and using V ν(νs) = V ω(ωs), we are led to

[νs/η] + · · ·+ [νs+k−2/η] ≡ r − 1 + V ν(νs) (mod 2),

which means that the (k − 1)-band {νs+l}0≤l≤k−2 in (5.15) is even, and so {νi+l}0≤l≤k−2
is even in ν.

In either case, we have shown that any (k−1)-band of ν is even, and thus the condition
(D) is verified.

By now, we have shown that ν is an overpartition in B=

0 (α1, . . . , αλ; η, k, r|t). Clearly,
|ν| = |ω|+ tη and `(ν) = `(ω) + 1. This completes the proof.

We are now in a position to give a proof of Theorem 5.4 with the aid of Lemma 5.5
and Lemma 5.7.

Proof of Theorem 5.4. Let ν ∈ B=

0 (α1, . . . , αλ; η, k, r|t). Invoking Lemma 5.5, we know

that Dt(ν) ∈ B<0 (α1, . . . , αλ; η, k, r|t). Setting ω = Dt(ν), by Lemma 5.7, we see that
Ct(ω) ∈ B=

0 (α1, . . . , αλ; η, k, r|t). It remains to show that ν = Ct(ω). We consider the
following two cases.

Case 1. ol(ν) < tη and (t− 1)η < r̃1(ν) ≤ tη. In this case, ω is obtained from ν by
removing a non-overlined part tη. To prove that ν = Ct(ω), it suffices to show that ω
satisfies the condition U in Definition 5.6.

Assume that r̃1(ν) is the r1-th part of ν = (ν1, ν2, . . . , ν`), that is, νr1 = r̃1(ν). Then
the (k − 1)-band induced by r̃1(ν) consists of

νr1−k+2 ≥ νr1−k+3 ≥ · · · ≥ νr1 ,

where νr1−k+2 ≤ νr1 +η with strict inequality if νr1 is overlined. Since ν is an overpartition
in B=

0 (α1, . . . , αλ; η, k, r|t), we deduce that {νr1−l}0≤l≤k−2 is even, namely,

[νr1−k+2/η] + [νr1−k+3/η] + · · ·+ [νr1/η] ≡ r − 1 + V ν(νr1−k+2) (mod 2). (5.17)

Under the assumption (t− 1)η < r̃1(ν) ≤ tη, we see that νr1 = r̃1(ν) > (t− 1)η and
νr1−k+2 ≤ νr1 + η ≤ (t+ 1)η, and thus

(t+ 1)η ≥ νr1−k+2 ≥ νr1−k+3 ≥ · · · ≥ νr1 > (t− 1)η.
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It is clear from Proposition 5.3 that ν contains a non-overlined part tη. Assume that m
is the smallest integer such that νm = tη. The precondition ν ∈ B=

0 (α1, . . . , αλ; η, k, r|t)
implies that νr1−k+1 > tη and νr1+1 < tη. Hence r1 − k + 2 ≤ m ≤ r1, ωl = νl for
r1 − k + 2 ≤ l ≤ m− 1, and ωl = νl+1 for m ≤ l ≤ r1 − 1. Consequently,

(t+ 1)η ≥ ωr1−k+2 ≥ · · · ≥ ωr1−1 > (t− 1)η

are the k − 2 consecutive parts of ω such that ωr1−k+2 ≤ ωr1−1 + η with strict inequality
provided ωr1−k+2 is overlined. By the construction of ω, we deduce that V ω(ωr1−k+2) =
V ν(νr1−k+2). Combining with (5.17), we get

[ωr1−k+2/η] + [ωr1−k+1/η] + · · ·+ [ωr1−1/η]

= [νr1−k+2/η] + [νr1−k+1/η] + · · ·+ [νr1/η]− t
≡ r − 1 + V ν(νr1−k+2)− t
≡ t+ r − 1 + V ω(ωr1−k+2) (mod 2).

This implies that ω satisfies the condition U in Definition 5.6, and so ν = Ct(ω). Hence
we conclude that Ct(Dt(ν)) = ν for ν ∈ B=

0 (α1, . . . , αλ; η, k, r|t).

Case 2. ol(ν) = tη and r̃1(ν) ≤ tη. In this regard, ω is obtained from ν by removing
tη. To prove that ν = Ct(ω), it is enough to show that ω satisfies the condition O in
Definition 5.6. Suppose to the contrary that ω satisfies the condition U in Definition 5.6,
that is, there exist k − 2 consecutive parts of ω, say

(t+ 1)η ≥ ωi ≥ ωi+1 ≥ · · · ≥ ωi+k−3 > (t− 1)η,

such that ωi ≤ ωi+k−3 + η with strict inequality if ωi is overlined, and

[ωi/η] + · · ·+ [ωi+k−3/η] ≡ t+ r − 1 + V ω(ωi) (mod 2). (5.18)

Assume that tη is the m-th part νm of ν. Since ω ∈ B<0 (α1, . . . , αλ; η, k, r|t), we see that
r̃1(ω) ≤ (t− 1)η, and so there are no (k − 1)-bands in ((t− 1)η, (t+ 1)η]. It follows that
ωi−1 > tη and ωi+k−2 < tη, which implies that i ≤ m ≤ i + k − 2, ωl = νl > tη for
i ≤ l < m, and ωl = νl+1 ≤ tη for m ≤ l ≤ i+ k − 3. Thus,

(t+ 1)η ≥ νi ≥ · · · ≥ νi+k−2 > (t− 1)η,

where νi ≤ νi+k−2+η with strict inequality if νi is overlined. In other words, {νi+l}0≤l≤k−2
is a (k − 1)-band of ν. Moreover, we get V ν(νi) = V ω(ωi) + 1. The precondition that ν
is an overpartition in B=

0 (α1, . . . , αλ; η, k, r|t) implies that {νi+l}0≤l≤k−2 is even, and so

[ωi/η] + · · ·+ [ωi+k−3/η]

= [νi/η] + · · ·+ [νi+k−2/η]− t
≡ r − 1 + V ν(νi)− t
≡ t+ r + V ω(ωi) (mod 2),
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which contradicts (5.18). Hence ω satisfies the condition O in Definition 5.6, and so
ν = Ct(ω). This proves that Ct(Dt(ν)) = ν for ν ∈ B=

0 (α1, . . . , αλ; η, k, r|t).

Conversely, let ω ∈ B<0 (α1, . . . , αλ; η, k, r|t). By Lemma 5.7, we find that Ct(ω) belongs
to B=

0 (α1, . . . , αλ; η, k, r|t). By the definitions of Ct and Dt, we deduce that Dt(Ct(ω)) =
ω. This completes the proof.

The following proposition provides a criterion to determine whether an overpartition
in B=

0 (α1, . . . , αλ; η, k, r|t) is also an overpartition in B<0 (α1, . . . , αλ; η, k, r|t′).

Proposition 5.8. For t ≥ 1, let ν be an overpartition in B=

0 (α1, . . . , αλ; η, k, r|t). Then

ν is an overpartition in B<0 (α1, . . . , αλ; η, k, r|t′) if and only if t < t′.

Proof. By definition, we see that ν is an overpartition in B=

0 (α1, . . . , αλ; η, k, r|t) if and
only if ν is an overpartition in B0(α1, . . . , αλ; η, k, r) such that

max{d|ol(ν)|/ηe, d|r̃1(ν)|/ηe} = t, (5.19)

where | · | signified the value of a part regardless of overline, and dxe denotes the smallest
integer greater than or equal to x.

On the other hand, ν is an overpartition in B<0 (α1, . . . , αλ; η, k, r|t′) if and only if ν is
an overpartition in B0(α1, . . . , αλ; η, k, r) such that

max{d|ol(ν)|/ηe, d|r̃1(ν)|/ηe} ≤ t′ − 1. (5.20)

Combining (5.19) and (5.20) completes the proof.

5.2 Proof of Theorem 5.1

In this subsection, we demonstrate that Theorem 5.1 can be justified by repeatedly using
the (k − 1)-reduction and the (k − 1)-augmentation operations.

Proof of Theorem 5.1. Let ν be an overpartition in B0(α1, . . . , αλ; η, k, r). We wish to
construct a pair of overpartitions Θ(ν) = (ζ, ω) in Dη × B1(α1, . . . , αλ; η, k − 1, r − δr,k)
such that |ν| = |ζ|+ |ω| and `(ν) = `(ζ) + `(ω). We consider the following two cases:

Case 1: There are no (k − 1)-marked parts in RG(ν) and there are no overlined
parts divisible by η in ν. Then set ζ = ∅ and ω = ν. By definition, we see that ω
is an overpartition in B1(α1, . . . , αλ; η, k − 1, r − δr,k). Moreover, |ν| = |ζ| + |ω| and
`(ν) = `(ζ) + `(ω).

Case 2: There exists a (k− 1)-marked part in RG(ν) or an overlined part divisible by
η in ν. Set b = 0, ν(0) = ν, ζ(0) = ∅, and execute the following procedure. Denote the
intermediate pairs by (ζ(0), ν(0)), (ζ(1), ν(1)), and so on.
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(A) Set
tb+1 = max{d|ol(ν(b))|/ηe, d|r̃1(ν(b))|/ηe}.

Since r̃1(ν
(b)) ≥ α1 or ol(ν(b)) ≥ η, we find that tb+1 ≥ 1 and

ν(b) ∈ B=

0 (α1, . . . , αλ; η, k, r|tb+1).

Applying the (k − 1)-reduction Dtb+1
to ν(b), we get

ν(b+1) = Dtb+1
(ν(b)).

In view of Lemma 5.5, we deduce that ν(b+1) ∈ B<0 (α1, . . . , αλ; η, k, r|tb+1),

|ν(b+1)| = |ν(b)| − ηtb+1, (5.21)

and
`(ν(b+1)) = `(ν(b))− 1. (5.22)

Then, insert ηtb+1 into ζ(b) as a part to get ζ(b+1).

(B) Replace b by b + 1. If there are no (k − 1)-marked parts in RG(ν(b)) and there are
no overlined parts divisible by η in ν(b), then we are done. Otherwise, go back to
(A).

Using Proposition 5.8, we obtain that

tb+1 > tb+2 ≥ 1, (5.23)

for b ≥ 0, which means that the above procedure terminates. Assume that it terminates
with b = c, that is, there are no (k − 1)-marked parts in RG(ν(c)) and there are no
overlined parts divisible by η in ν(c). Set

ω = ν(c) and ζ = ζ(c) = (ηt1, . . . , ηtc).

Since there are no (k − 1)-marked parts in RG(ν(c)) and there are no overlined parts
divisible by η in ν(c), we conclude that ω = ν(c) ∈ B1(α1, . . . , αλ; η, k− 1, r− δr,k). In light
of (5.23), we find that ζ ∈ Dη. Moreover, it is clear from (5.21) and (5.22) that |ν| =
|ω| + |ζ| and `(ν) = `(ω) + `(ζ). Hence Θ is the desired map from B0(α1, . . . , αλ; η, k, r)
to Dη × B1(α1, . . . , αλ; η, k − 1, r − δr,k).

To prove that Θ is a bijection, we define a map Λ from Dη × B1(α1, . . . , αλ; η, k −
1, r − δr,k) to B0(α1, . . . , αλ; η, k, r) and intend to show that it is the inverse map of Θ.
Given an overpartition ω in B1(α1, . . . , αλ; η, k − 1, r − δr,k) and a partition ζ in Dη, we
shall construct an overpartition ν ∈ B0(α1, . . . , αλ; η, k, r) such that |ν| = |ζ| + |ω| and
`(ν) = `(ζ) + `(ω). There are two cases.

Case 1: ζ = ∅. Then set ν = ω. Clearly, ν ∈ B0(α1, . . . , αλ; η, k, r) since there are no
(k − 1)-bands in ω. Moreover, |ν| = |ζ|+ |ω| and `(ν) = `(ζ) + `(ω).
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Case 2: ζ 6= ∅. Assume that ζ = (ηt1, ηt2, . . . , ηtc), where t1 > t2 > · · · > tc ≥
1. Starting with ω, apply the (k − 1)-augmentation repeatedly to get ν. Denote the
intermediate overpartitions by ω(0), . . . , ω(c) with ω(0) = ω and ω(c) = ν. Since there are
no (k − 1)-marked parts in RG(ω) and there are no overlined parts divisible by η in ω,

we have r̃1(ω) = −∞ and ol(ω) = 0, which yields ω(0) = ω ∈ B<0 (α1, . . . , αλ; η, k, r|tc).

Set b = 0, and execute the following procedure.

(A) Set
ω(b+1) = Ctc−b(ω

(b)).

Since
ω(b) ∈ B<0 (α1, . . . , αλ; η, k, r|tc−b),

in light of Lemma 5.7, we see that ω(b+1) ∈ B=

0 (α1, . . . , αλ; η, k, r|tc−b),

|ω(b+1)| = |ω(b)|+ ηtc−b, (5.24)

and
`(ω(b+1)) = `(ω(b)) + 1. (5.25)

(B) Replace b by b + 1. If b = c, then we are done. Otherwise, since tc−b > tc−b+1, it
follows from Proposition 5.8 that

ω(b) ∈ B<0 (α1, . . . , αλ; η, k, r|tc−b).

Go back to (A).

The above procedure generates an overpartition ν = ω(c) ∈ B=

0 (α1, . . . , αλ; η, k, r|t1), and
so ν is an overpartition in B0(α1, . . . , αλ; η, k, r). It is evident from (5.24) and (5.25) that

|ν| = |ω(c)| = |ω(0)|+ ηtc + · · ·+ ηt1 = |ω|+ |ζ|,

and
`(ν) = `(ω(c)) = `(ω(0)) + c = `(ω) + `(ζ).

Therefore, Λ is a map fromDη×B1(α1, . . . , αλ; η, k−1, r−δr,k) to B0(α1, . . . , αλ; η, k, r). By
Theorem 5.4, we obtain that Λ(Θ(ν)) = ν for ν ∈ B0(α1, . . . , αλ; η, k, r) and Θ(Λ(ζ, ω)) =
(ζ, ω) for (ζ, ω) ∈ Dη × B1(α1, . . . , αλ; η, k − 1, r − δr,k). Hence Θ is a bijection between
B0(α1, . . . , αλ; η, k, r) and Dη×B1(α1, . . . , αλ; η, k− 1, r− δr,k). This completes the proof.
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5.3 An example

We conclude this section with an example for the bijection Θ in Theorem 5.1. Let

ν = (50, 30, 23, 20, 20, 10, 7, 3)

be an overpartition in B0(3, 7; 10, 4, 3). We have

RG(ν) = (501, 301, 232, 201, 203, 102, 71, 33).

The pair of overpartitions Θ(ν) = (ζ, ω) is obtained by successively applying the (k− 1)-
reduction to ν. The detailed process is given below.

• Set ν(0) = ν and ζ(0) = ∅. Note that ol(ν(0)) = 50 and r̃1(ν
(0)) = 20. Let

t1 = max{d|ol(ν(0))|/10e, d|r̃1(ν(0))|/10e} = 5.

Now, ν(0) ∈ B=

0 (3, 7; 10, 4, 3|5). Apply the 3-reduction to ν(0) to get ν(1), namely,
ν(1) is obtained from ν(0) by removing 50. We get

RG(ν(1)) = (301, 232, 201, 203, 102, 71, 33).

Setting ζ(1) = (50) and using Lemma 5.5, we obtain that ν(1) ∈ B<0 (3, 7; 10, 4, 3|5).

• Since ol(ν(1)) = 30 and r̃1(ν
(1)) = 20, we have

t2 = max{d|ol(ν(1))|/10e, d|r̃1(ν(1))|/10e} = 3,

whence ν(1) ∈ B=

0 (3, 7; 10, 4, 3|3). Removing 30 from ν(1), we get ν(2) and

RG(ν(2)) = (231, 202, 203, 101, 72, 33).

Setting ζ(2) = (50, 30) and using Lemma 5.5, we obtain that ν(2) ∈ B<0 (3, 7; 10, 4, 3|3).

• Since ol(ν(2)) = 10 and r̃1(ν
(2)) = 20, we have

t3 = max{d|ol(ν(2))|/10e, d|r̃1(ν(2))|/10e} = 2,

whence ν(2) ∈ B=

0 (3, 7; 10, 4, 3|2). Removing a non-overlined part 20 from ν(2), we
get ν(3) and

RG(ν(3)) = (231, 202, 101, 72, 33).

Setting ζ(3) = (50, 30, 20) and using Lemma 5.5, we obtain that ν(3) ∈ B<0 (3, 7; 10, 4, 3|2).

• Since ol(ν(3)) = 10 and r̃1(ν
(3)) = 3, we have

t4 = max{d|ol(ν(3))|/10e, d|r̃1(ν(3))|/10e} = 1,

whence ν(3) ∈ B=

0 (3, 7; 10, 4, 3|1). Removing 10 from ν(3), we get ν(4) and

RG(ν(4)) = (231, 202, 71, 32).

Setting ζ(4) = (50, 30, 20, 10) and using Lemma 5.5, we obtain that ν(4) ∈ B<0 (3, 7; 10, 4,
3|1). Eventually, there are no 3-marked parts in RG(ν(4)) and there are no overlined
parts divisible by 10 in ν(4).
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We now get a pair of partitions (ζ, ω) with

ζ = ζ(4) = (50, 30, 20, 10) and ω = ν(4) = (23, 20, 7, 3) (5.26)

such that (ζ, ω) ∈ D10 × B1(3, 7; 10, 3, 3), |ν| = |ζ|+ |ω| and `(ν) = `(ω) + `(ζ).

Conversely, given (ζ, ω) ∈ D10 × B1(3, 7; 10, 3, 3) as in (5.26), we may recover the
overpartition ν by successively applying the 3-augmentation operation. More precisely,
the reverse process goes as follows.

• Insert 10 into ω(0) = ω to get ω(1).

Since there are no 3-marked parts in RG(ω(0)) and there are no overlined parts
divisible by 10 in ω(0), we have r̃1(ω

(0)) = −∞ and ol(ω(0)) = 0, which implies that

ω(0) ∈ B<0 (3, 7; 10, 4, 3|1). Notice that ω(0) satisfies the condition O in Definition
5.6. Then insert 10 into ω(0) as an overlined part to get

ω(1) = C1(ω
(0)) = (23, 20, 10, 7, 3).

Using Lemma 5.7, we obtain that ω(1) ∈ B=

0 (3, 7; 10, 4, 3|1).

• Insert 20 into ω(1) to get ω(2). By Proposition 5.8, we find that ω(1) ∈ B<0 (3, 7; 10, 4, 3|2).
Since ω(1) satisfies the condition U in Definition 5.6, inserting 20 into ω(1) as a non-
overlined part gives

ω(2) = C2(ω
(1)) = (23, 20, 20, 10, 7, 3).

In light of Lemma 5.7, we deduce that ω(2) ∈ B=

0 (3, 7; 10, 4, 3|2).

• Insert 30 into ω(2) to get ω(3). By Proposition 5.8, we find that ω(2) ∈ B<0 (3, 7; 10, 4, 3|3).
Notice that ω(2) satisfies the condition O in Definition 5.6. Then insert 30 into ω(2)

as an overlined part to get

ω(3) = C3(ω
(2)) = (30, 23, 20, 20, 10, 7, 3).

Using Lemma 5.7, we obtain that ω(3) ∈ B=

0 (3, 7; 10, 4, 3|3).

• Finally, insert 50 into ω(3) to get ω(4). By Proposition 5.8, we find that ω(3) ∈
B<0 (3, 7; 10, 4, 3|5). Notice that ω(3) satisfies the condition O in Definition 5.6. Then
insert 50 into ω(3) as an overlined part to get

ω(4) = C5(ω
(3)) = (50, 30, 23, 20, 20, 10, 7, 3).

Using Lemma 5.7, we obtain that ω(4) ∈ B=

0 (3, 7; 10, 4, 3|5).

Set ν = ω(4). Then ν is an overpartition in B0(3, 7; 10, 4, 3) such that |ν| = |ω| + |ζ|
and `(ν) = `(ω) + `(ζ).
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6 Proof of Theorem 1.21

In this section, we will give a proof of Theorem 1.21 by using Bailey pairs. It remains
to be a question to find a combinatorial proof of this fact. For historical perspectives
and recent advances on Bailey pairs, we refer to Agarwal, Andrews and Bressoud [1],
Andrews [7,8], Bressoud, Ismail and Stanton [11], Lovejoy [34], Paule [40], Warnaar [43],
to name of few. A pair of sequences (αn(a, q), βn(a, q)) is said to be a Bailey pair relative
to (a, q) if for n ≥ 0,

βn(a, q) =
n∑
r=0

αr(a, q)

(q; q)n−r(aq; q)n+r
.

The following formulation of Bailey’s lemma was given by Andrews [6, 7].

Theorem 6.1 (Bailey’s lemma). If (αn(a, q), βn(a, q)) is a Bailey pair relative to (a, q),
then (α′n(a, q), β′n(a, q)) is also a Bailey pair relative to (a, q), where

α′n(a, q) =
(ρ1; q)n(ρ2; q)n

(aq/ρ1; q)n(aq/ρ2; q)n

(
aq

ρ1ρ2

)n
αn(a, q),

β′n(a, q) =
n∑
j=0

(ρ1; q)j(ρ2; q)j(aq/ρ1ρ2; q)n−j
(aq/ρ1; q)n(aq/ρ2; q)n(q; q)n−j

(
aq

ρ1ρ2

)j
βj(a, q).

When ρ1, ρ2 →∞, Bailey’s lemma reduces to the following form, which has been used
by Andrews [6] to derive the Andrews-Gordon identity (1.2) when r = 1 or r = k.

Lemma 6.2. If (αn(a, q), βn(a, q)) is a Bailey pair relative to (a, q), then (α′n(a, q), β′n(a, q))
is also a Bailey pair relative to (a, q), where

α′n(a, q) = anqn
2

αn(a, q),

β′n(a, q) =
n∑
j=0

ajqj
2

(q; q)n−j
βj(a, q).

Agarwal, Andrews and Bressoud [1] developed the technique of the Bailey lattice to
establish the Andrews-Gordon identity (1.2) in general for 1 ≤ r ≤ k. Bressoud, Ismail
and Stanton [11] found an alternative proof of the Andrews-Gordon identity (1.2) in the
general case by successively using Bailey’s lemma and the following proposition.

Proposition 6.3. [11, Proposition 4.1] If (αn(1, q), βn(1, q)) is a Bailey pair relative to
(1, q), where

αn(1, q) =

{
1, if n = 0,

(−1)nqAn
2
(q(A−1)n + q−(A−1)n), if n ≥ 1,
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then (α′n(1, q), β′n(1, q)) is also a Bailey pair relative to (1, q), where

α′n(1, q) =

{
1, if n = 0,

(−1)nqAn
2
(qAn + q−An), if n ≥ 1,

and for n ≥ 0,

β′n(1, q) = qnβn(1, q).

To prove Theorem 1.21, we also need the following proposition in [24] and a limiting
case of an identity of Andrews [6].

Proposition 6.4. If (αn(1, q), βn(1, q)) is a Bailey pair relative to (1, q), where

αn(1, q) =

{
1, if n = 0,

(−1)nqAn
2
(q(A−1)n + q−(A−1)n), if n ≥ 1,

then (α′n(1, q), β′n(1, q)) is also a Bailey pair relative to (1, q), where

α′n(1, q) =

{
1, if n = 0,

(−1)nqAn
2
(q(A−1)n + q−An)(1 + qn)/2, if n ≥ 1,

and for n ≥ 0,

β′n(1, q) = βn(1, q)(1 + qn)/2.

Theorem 6.5 (Andrews). If (αn(1, q), βn(1, q)) is a Bailey pair relative to (1, q), then for
N ≥ 0,

∑
n≥0

(b1; q)n (c1; q)n · · · (bk; q)n (ck; q)n
(
q−N ; q

)
n

(aq/b1; q)n (aq/c1; q)n · · · (aq/bk; q)n (aq/ck; q)n (aqN+1; q)n

×
(

akqk+N

b1c1 · · · bkck

)n
q−(n2)(−1)nαn(1, q)

=
(aq; q)N (aq/bkck; q)N
(aq/bk; q)N (aq/ck; q)N

∑
nk≥nk−1≥···≥n1≥0

(bk; q)nk (ck; q)nk · · · (b1; q)n1
(c1; q)n1

(q; q)nk−nk−1
(q; q)nk−1−nk−2

· · · (q; q)n2−n1

×

(
q−N ; q

)
nk

(aq/bk−1ck−1; q)nk−nk−1
· · · (aq/b1c1; q)n2−n1

(bkckq−N/a; q)nk (aq/bk−1; q)nk (aq/ck−1; q)nk · · · (aq/b1; q)n2
(aq/c1; q)n2

× qn1+···+nkan1+···+nk−1 (bk−1ck−1)
−nk−1 · · · (b1c1)−n1 βn1(1, q). (6.1)

Below is a limiting case of Theorem 6.5.
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Proposition 6.6. If (αn(1, qη), βn(1, qη)) is a Bailey pair relative to (1, qη), then for
r > λ ≥ 0,
∞∑
n=0

2q(r−
λ+1
2

)ηn2+λ+1
2
ηn−(α1+···+αλ)n(−qα1 ; qη)n · · · (−qαλ ; qη)n

(1 + qηn)(−qη−α1 ; qη)n · · · (−qη−αλ ; qη)n
αn(1, qη)

=
(qη; qη)∞

(−qη−α1 ; qη)∞

∑
N1≥N2≥···≥Nr≥0

qη(N
2
λ+2+···+N

2
r )+η((N1+1

2 )+···+(Nλ+1+1

2 ))−(α1N1+···+αλNλ)

(qη; qη)N1−N2 · · · (qη; qη)Nr−1−Nr

×
(−1; qη)Nλ+1

(−qα1 ; qη)N1 · · · (−qαλ ; qη)Nλ
(−qη; qη)Nλ(−qη−α2 ; qη)N1 · · · (−qη−αλ ; qη)Nλ−1

βNr(1, q
η), (6.2)

where we assume that Nr+1 = 0.

Proof. Replacing q by qη and setting k = r, a = 1, cr−λ = −1 and cr−s+1 = −qαs for
1 ≤ s ≤ λ, as bi →∞ for 1 ≤ i ≤ r, cm →∞ for 1 ≤ m ≤ r − λ− 1 and N →∞, (6.1)
becomes
∞∑
n=0

2q(r−
λ+1
2

)ηn2+λ+1
2
ηn−(α1+···+αλ)n(−qα1 ; qη)n · · · (−qαλ ; qη)n

(1 + qηn)(−qη−α1 ; qη)n · · · (−qη−αλ ; qη)n
αn(1, qη)

=
(qη; qη)∞

(−qη−α1 ; qη)∞

∑
nr≥nr−1≥···≥n1≥0

qη(n
2
1+···+n2

r−λ−1)+η((
nr−λ+1

2 )+···+(nr+1
2 ))−(α1nr+···+αλnr−λ+1)

(qη; qη)nr−nr−1 · · · (qη; qη)n2−n1

×
(−1; qη)nr−λ(−qα1 ; qη)nr · · · (−qαλ ; qη)nr−λ+1

(−qη; qη)nr−λ+1
(−qη−α2 ; qη)nr · · · (−qη−αλ ; qη)nr−λ+2

βn1(1, q
η).

Writing nt = Nr+1−t for 1 ≤ t ≤ r, we are led to (6.2). This completes the proof.

The following Bailey pair is also required in the proof of Theorem 1.21.

Proposition 6.7. For k ≥ r ≥ 1 and n ≥ 0,

αn(1, q) =

{
1, if n = 0,

(−1)nq(k−r)n
2
(q(k−r−1)n + q−(k−r)n)(1 + qn)/2, if n ≥ 1,

βn(1, q) =
∑

n≥Nr+1≥···≥Nk−1≥0

(1 + qn)q(N
2
r+1+···+N2

k−1+Nr+1+···+Nk−1)

2(q; q)n−Nr+1 · · · (q; q)Nk−2−Nk−1
(q2; q2)Nk−1

.

(6.3)

is a Bailey pair relative to (1, q).

Proof. We begin with the following Bailey pair [42, E(5)],

α(0)
n (1, q) =

{
1, if n = 0,

(−1)n(q−n + qn), if n ≥ 1,

β(0)
n (1, q) =

(−1)n

qn(q2; q2)n
.

(6.4)
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Applying Proposition 6.3 to (6.4), we obtain that

α(1)
n (1, q) =

{
1, if n = 0,

2(−1)n, if n ≥ 1,

β(1)
n (1, q) =

(−1)n

(q2; q2)n
.

Using Lemma 6.2, we get

α(2)
n (1, q) =

{
1, if n = 0,

2(−1)nqn
2
, if n ≥ 1,

β(2)
n (1, q) =

n∑
j=0

(−1)jqj
2

(q; q)n−j(q2; q2)j
.

(6.5)

Employing the following q-Chu-Vandermonde formula with c = −q and a→∞,

n∑
j=0

(a; q)j(q
−n; q)j

(c; q)j(q; q)j

(
cqn

a

)j
=

(c/a; q)n
(c; q)n

,

we find that

β(2)
n (1, q) =

1

(q2; q2)n
.

Applying Proposition 6.3 and Lemma 6.2 k − r − 1 times to (6.5) yields the following
Bailey pair

α(2k−2r)
n (1, q) =

{
1, if n = 0,

(−1)nq(k−r)n
2
(q(k−r−1)n + q−(k−r−1)n), if n ≥ 1,

β(2k−2r)
n (1, q) =

∑
n≥Nr+1≥···≥Nk−1≥0

q(N
2
r+1+···+N2

k−1+Nr+1+···+Nk−1)

(q; q)n−Nr+1 · · · (q; q)Nk−2−Nk−1
(q2; q2)Nk−1

.

(6.6)

By Proposition 6.4 and (6.6), we obtain the following Bailey pair

αn(1, q) =

{
1, if n = 0,

(−1)nq(k−r)n
2
(q(k−r−1)n + q−(k−r)n)(1 + qn)/2, if n ≥ 1,

βn(1, q) =
∑

n≥Nr+1≥···≥Nk−1≥0

(1 + qn)q(N
2
r+1+···+N2

k−1+Nr+1+···+Nk−1)

2(q; q)n−Nr+1 · · · (q; q)Nk−2−Nk−1
(q2; q2)Nk−1

.

This completes the proof.
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We conclude this section with the proof of Theorem 1.21 resorting to Proposition 6.6
and Proposition 6.7.

Proof of Theorem 1.21. For k ≥ r > λ, plugging αn(1, q) in (6.3) with q replaced by
qη into the left-hand side of (6.2), and using the assumption that αi + αλ+1−i = η for
1 ≤ i ≤ λ, the left-hand side of (6.2) simplifies to

1 +
∞∑
n=1

(−qα1 ; qη)n · · · (−qαλ ; qη)n
(−qη−α1 ; qη)n · · · (−qη−αλ ; qη)n

× (−1)nq(k−
λ+1
2

)ηn2+λ
2
ηn−(α1+···+αλ)n(q(k−r−

1
2
)ηn + q−(k−r−

1
2
)ηn)

= 1 +
∞∑
n=1

(−1)nq(k−
λ+1
2

)ηn2

(q(k−r−
1
2
)ηn + q−(k−r−

1
2
)ηn)

= (q(r−
λ
2
)η, q(2k−r−1−

λ
2
)η, q(2k−λ−1)η; q(2k−λ−1)η)∞, (6.7)

where the last equality follows from Jacobi’s triple product identity [5, Theorem 2.8].

On the other hand, substituting the expression for βn(1, q) in (6.3) with q replaced by
qη into the right-hand side of (6.2), we get

(qη; qη)∞
(−qη−α1 ; qη)∞

∑
N1≥···≥Nk−1≥0

(1 + q−ηNr)(−qη; qη)Nλ+1−1q
η(N2

λ+2+···+N
2
k−1+Nr+···+Nk−1)

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q2η; q2η)Nk−1

× qη((
N1+1

2 )+···+(Nλ+1+1

2 ))−(α1N1+···+αλNλ)(−qα1 ; qη)N1 · · · (−qαλ ; qη)Nλ
(−qη; qη)Nλ(−qη−α2 ; qη)N1 · · · (−qη−αλ ; qη)Nλ−1

. (6.8)

Observing that

(−qr; qη)n = qrn+η(
n
2)(−qη−r−nη; qη)n,

and
1

(−qη−r; qη)n
=

(−qη−r+nη; qη)∞
(−qη−r; qη)∞

,

the summation in (6.8) equals

∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q2η; q2η)Nk−1

× (−qη+ηNλ ; qη)∞
∏λ

s=1(−qη−αs−ηNs ; qη)Ns
∏λ

s=2(−qη−αs+ηNs−1 ; qη)∞

(−qη; qη)∞
∏λ

s=2(−qη−αs ; qη)∞
. (6.9)
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Combining (6.7) and (6.9), we deduce that

(qη; qη)∞
(−qη−α1 ; qη)∞

∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q2η; q2η)Nk−1

× (−qη+ηNλ ; qη)∞
∏λ

s=1(−qη−αs−ηNs ; qη)Ns
∏λ

s=2(−qη−αs+ηNs−1 ; qη)∞

(−qη; qη)∞
∏λ

s=2(−qη−αs ; qη)∞

= (q(r−
λ
2
)η, q(2k−r−1−

λ
2
)η, q(2k−λ−1)η; q(2k−λ−1)η)∞.

Multiplying both sides by

(−qη−α1 , . . . ,−qη−αλ ,−qη; qη)∞
(qη; qη)∞

,

we obtain∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1(−qη+ηNλ ; qη)∞

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(q2η; q2η)Nk−1

×
λ∏
s=1

(−qη−αs−ηNs ; qη)Ns
λ∏
s=2

(−qη−αs+ηNs−1 ; qη)∞

=
(−qη−α1 , . . . ,−qη−αλ ,−qη; qη)∞(q(r−

λ
2
)η, q(2k−r−1−

λ
2
)η, q(2k−λ−1)η; q(2k−λ−1)η)∞

(qη; qη)∞
.

But αi + αλ+1−i = η for 1 ≤ i ≤ λ, so we reach (1.10) in Theorem 1.21. This completes
the proof.

7 Concluding remarks

To conclude, we make a few remarks on the connection between the main results of this
paper and the original conjecture of Bressoud, along with our subsequent work in this
direction. Then we mention some potential problems for future study.

It should be stressed that the overpartition analogues considered in this paper are not
merely a matter of extension and specialization. In fact, they play an essential role and
serve as an indispensable structure in tackling the conjecture of Bressoud formulated in
terms of ordinary partitions.

Based on the relationship between the overpartition analogue B1 and Bressoud’s func-
tion B0 (Theorem 1.16), we realize that the case j = 0 of Bressoud’s conjecture (that is,
A0 = B0) is a consequence of the relation A1 = B1 on overpartitions. Nevertheless, the
case j = 1 of Bressoud’s conjecture has been resolved by Kim [27] without resorting to
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overpartitions. One is immediately led to show that A1 = B1. This is the objective of our
subsequent paper [25]. It is worth mentioning that the relation A1 = B1 can be regarded
as an overpartition analogue of Bressoud’s conjecture for the case j = 1. In other words,
we may say that Bressoud’s conjecture consists of two parts, one of which is the case j = 1
settled by Kim, and the other (the case j = 0) is an overpartition analogue. Naturally, it
would be interesting to give a direct combinatorial proof of the case j = 0 of Bressoud’s
conjecture without relying on the overpartition setting. Also, it would be desirable to
give direct combinatorial proofs of the generating functions of B0 and B1.
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