Overpartitions and Bressoud’s Conjecture, I
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Abstract. In 1980, Bressoud conjectured a combinatorial identity A; = B; for j =0
or 1, where the function A; counts the number of partitions with certain congruence
conditions and the function B; counts the number of partitions with certain difference
conditions. Bressoud’s conjecture specializes to a wide variety of well-known theorems in
the theory of partitions. Special cases of his conjecture have been subsequently proved by
Bressoud, Andrews, Kim and Yee. Recently, Kim resolved Bressoud’s conjecture for the
case j = 1. In this paper, we introduce a new partition function Ej which can be viewed
as an overpartition analogue of the partition function B, introduced by Bressoud. By
means of Gordon markings, we build bijections to obtain a relationship between B; and
By and a relationship between By and B;. Based on these former relationships, we further
give overpartition analogues of many classical partition theorems including Euler’s parti-
tion theorem, the Rogers-Ramanujan-Gordon identities, the Bressoud-Rogers-Ramanujan
identities, the Andrews-Gollnitz-Gordon identities and the Bressoud-Gollnitz-Gordon i-
dentities.
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1 Introduction

Bressoud [10] proved and conjectured some partition identities involving the partition
function B;, which counts the number of partitions with certain difference conditions (see
Definition 1.6). The main objective of this paper is to introduce a new partition function
Fj which can be regarded as an overpartition analogue of the partition function B;. We
establish a relationship between By and B, and a relationship between B, and B;. Based
on these two relationships, we obtain overpartition analogues of many classical partition
theorems including Euler’s partition theorem, the Rogers-Ramanujan-Gordon identities,
the Bressoud-Rogers-Ramanujan identities, the Andrews-Gollnitz-Gordon identities and



the Bressoud-Gollnitz-Gordon identities. It should be noted that the relationship between
Bi and By plays a crucial role in the proof of Bressoud’s conjecture for 7 = 0 in the
subsequent paper [25].

Let us recall some common notation and terminologies on partitions from [5, Chapter
1]. A partition 7 of a positive integer n is a finite non-increasing sequence of positive
integers m = (my, 7o, ..., m) such that Zle m; = n. An overpartition of n is a partition
of n such that the first occurrence of a part can be overlined.

For example, there are five partitions of 4:
(4),(3,1),(2,2),(2,1,1),(1,1,1,1),
whereas there are fourteen overpartitions of 4:

(4),(4),(3,1),(3,1),(3,1),(3,1),(2,2),(2,2),
(2,1,1),(2,1,1),(2,1,1),(2,1,1),(1,1,1,1),(1,1,1, 1),

Y Y Y
We impose the following order on the parts of an overpartition:

l<l<2<2<---. (1.1)

Let m = (m,m2,...,m) be an ordinary partition (resp. an overpartition) with m; >
Ty > -+ > my > 1. The number of parts of 7 is called the length of 7, denoted ¢(7). The
weight of 7 is the sum of parts, denoted |r|.

In 1961, Gordon [22, p. 394] found an infinite family of combinatorial generalizations
of the Rogers-Ramanujan identities, which has been known as the Rogers-Ramanujan-
Gordon theorem.

Theorem 1.1 (Rogers-Ramanujan-Gordon). For k > r > 1, let By(—;1,k,r;n) denote
the number of partitions m1 = (71, ma,...,m) of n, where m; > g1 + 2 for 1 < i <
¢ —k+1, and at most r — 1 of the m; are equal to 1. For k >r > 1, let Ay(—;1,k,r;n)
denote the number of partitions of n into parts Z 0, £r (mod 2k+1). Then, fork >r > 1
and n > 0,

Ai(=; 1, k,rn) = By(—; 1,k,r;n).

An analytic proof of Theorem 1.1 was given by Andrews [3]. He discovered the fol-
lowing generating function version of Theorem 1.1, which has been called the Andrews-
Gordon identity: For k > r > 1,

Ni4-+NZ_ +Np++ Ny r o 2k—r+1 2k+1. 2k+1)

3 q _ (g4 T e gy
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From now on, we assume that |¢| < 1 and adopt the standard notation [5]:
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and

(al, a2, ..., A, Q)oo = (al; Q)oo(a2; Q)oo e (am; Q)oo-

In 1979, Bressoud [9] extended the Rogers-Ramanujan-Gordon theorem to even mod-
uli, which has been called the Bressoud-Rogers-Ramanujan theorem.

Theorem 1.2 (Bressoud-Rogers-Ramanujan). For k > r > 1, let By(—;1,k,r;n) denote
the number of partitions m = (mwy,ma,...,m) of n, where m; > Miyp—1 +2 for 1 < i <
{—k+1, at most r—1 of the w; are equal to 1, and for 1 <1 <l—k+2, if m; < miip_o+1,
then

T+ + Tk o=r—1 (mod2).
Fork>r >1, let Ao(—;1,k,r;n) denote the number of partitions of n into parts Z 0, £r
(mod 2k). Then, for k>r>1 andn >0,

Ao(—;1,k,mn) = Bo(—; 1, k,m;n).

Furthermore, Bressoud [10] obtained the following generating function version of The-
orem 1.2: For k >1r > 1,

NZ+4NZ_ | +Npt+Np_y

3 q _ (@60 ) (1.3)
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Motivated by the Rogers-Ramanujan-Gordon identities, Andrews [2] found an infinite
family of the combinatorial generalizations of the Gollnitz-Gordon identities, which has
been referred to as the Andrews-Gollnitz-Gordon theorem.

Theorem 1.3 (Andrews-Gollnitz-Gordon). For k >r > 1, let By(1;2,k,r;n) denote the
number of partitions m = (m,m2,...,m) of n such that no odd part is repeated, where
T > Tivk—1 + 2 with strict inequality if m; is even for 1 < i < ¢ —k+ 1, and at most
r — 1 of the m; are less than or equal to 2. For k > r > 1, let A1(1;2,k,r;n) denote the
number of partitions of n into parts Z 2 (mod 4) and # 0,+(2r — 1) (mod 4k). Then,
fork>r>1andn >0,

Ai(1;2,k,rin) = By(1;2,k,75n).

In 1980, Bressoud [10] extended the Andrews-Gollnitz-Gordon theorem to even moduli,
which has been called the Bressoud-Gollnitz-Gordon theorem.

Theorem 1.4 (Bressoud-Gollnitz-Gordon). For k > r > 1, let Bo(1;2, k,r;n) denote the
number of partitions m = (71, ma,...,7) of n such that no odd part is repeated, where
T > Titk—1 + 2 with strict inequality if m; is even for 1 <1 </l —k+1, at most r — 1 of
the m; are less than or equal to 2, and for 1 <1 <l —k+2, if m; < mipp_o + 2 with strict
inequality if m; is odd, then

Tit o+ g2 =17 — 1+ Vo(m)  (mod 2),
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where V. (t) denotes the number of odd parts not exceeding t in w. For k > r > 1, let
Ao(1;2,k,7m;n) denote the number of partitions of n into parts not congruent to 2k — 1
(mod 4k — 2) may be repeated, no part is congruent to 2 (mod 4), no part is multiple of
8k — 4, and no part is congruent to £(2r — 1) (mod 4k — 2). Then, for k > r > 1 and
n >0,

Ao(1;2,k,mn) = Bo(1;2,k,75n).

Bressoud [10] derived the following generating function versions of Theorem 1.3 and
Theorem 1.4: For j =0or 1 and (2k +7)/2 >r > 1,

1-2N7. 2(NE++4NE_;+Np+-+Ng_1)

3 (=¢' M ®)mg
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For j =0 or 1, it is evident that the generating function of A;(1;2, k,r;n) defined in
Theorem 1.3 and Theorem 1.4 equals the right-hand side of (1.4). Hence, the sum on
the left-hand side of (1.4) can be considered as the generating function of B;(1;2, k,r;n)
defined in Theorem 1.3 and Theorem 1.4. More precisely, when j = 1, the identity (1.4)
can be viewed as the generating function version of Theorem 1.3, and when j = 0, the
identity (1.4) can be seen as the generating function version of Theorem 1.4.

Bressoud obtained a far-reaching partition theorem utilizing an extension of Watson’s
g-analogue of Whipple’s theorem (see [10, Theorem 1]). Throughout this paper, we assume
that aq, as, ...,y and 7 are integers such that

O<ap<--<ay<mn, and a;=n—ay1; for 1<i<A\ (1.5)

When A is odd, observing that n = ani1)/2 + axsi—(41)2 = 20x41)/2, We see that n must
be even in such case.

Theorem 1.5 (Bressoud). For j =0 or 1 and 2k+j)/2>r >\ >0,
qn(N12+~~-+N,‘fﬁ,1+NT+~~~+Nk_1)

N1>...>ZNk1>0 (qﬁ; qn>N1*N2 U (q’?; qn>Nk72*Nk71 (q(2—j)n; q(2_j)n>Nk71

A A
< [T(=a" "™ ", [ (4" "5 4" (1.6)
s=1 s=2
(g = )o@, gV, ) kA
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This theorem reduces to many infinite families of identities. For example, setting
A=0, n=1and j=1or0, werecover (1.2) and (1.3) respectively. Setting A =1, n =2
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and a; = 1, we come to (1.4). To give a combinatorial interpretation of (1.6), Bressoud
introduced two partition functions.

Definition 1.6 (Bressoud). For j = 0 or 1 and k > r > X\ > 0, define the partition
function Bj(aq,...,ax;n, k,r;n) to be the number of partitions m = (mwy,ma,...,m) of n
satisfying the following conditions:

1) For1<i</{,m=0,0q,...,a, (mod 7n);

2) Only multiples of n may be repeated,

4

(1)
(2)
(3) For1<i</{—k+1, m > w1 +n with strict inequality if n | m;
(4) At most r — 1 of the m; are less than or equal to n;

(5)

5) For 1 <i</{l—k+2,if m < mx_o+ n with strict inequality if n 1 m;, then

[mi/n] + -+ [Tipr—2/n] =17 =1+ Va(m) (mod 2 — j),

where Vy(t) denotes the number of parts not exceeding t which are not divisible by n
in 7 and [ | denotes the greatest integer function.

Definition 1.7 (Bressoud). For j = 0 or 1 and (2k + j)/2 > r > X > 0, define the
partition function A;(aq,...,ax;n,k,r;n) to be the number of partitions of n into parts
congruent to 0,aq,...,ay (mod n) such that

(1) If X is even, then only multiples of n may be repeated and no part is congruent to
0, £n(r — A/2) (mod n(2k — X+ 7));

(2) If X is odd and j = 1, then only multiples of n/2 may be repeated, no part is congruent
ton (mod 2n), and no part is congruent to 0, £n(2r — X)/2 (mod n(2k — A+ 1));

(3) If X is odd and j = 0, then only multiples of n/2 which are not congruent to n(2k —
A)/2 (mod n(2k — X)) may be repeated, no part is congruent to n (mod 2n), no
part is congruent to 0 (mod 2n(2k — X)), and no part is congruent to £n(2r — X)/2
(mod n(2k — X)).

Bressoud [10] posed the following conjecture.
Conjecture 1.8 (Bressoud). For j =0 or 1, (2k+j)/2>r>X>0 andn > 0,

Aj<a17 B 700\;7%1577";”) = Bj(ah B aa)\;T’?kar;n)'

This conjecture specializes to many infinite families of combinatorial identities. For
example, setting A\ =0, n =1 and 5 = 1 or 0, we find that it reduces to Theorem 1.1 and
Theorem 1.2 respectively. For A =1, n =2, a; =1 and j = 1 or 0, we see that it boils
down to Theorem 1.3 and Theorem 1.4 respectively.

As remarked by Bressoud [10], it is not difficult to see that the generating function of
Aj(aq,...,ax;n, k,m;n) is equal to the right-hand side of (1.6).
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Theorem 1.9 (Bressoud). For j =0 or 1 and 2k+j)/2>r > >0,

> Aj(on,... axin k)"

n>0

1.7
(=g, =™ q")oo (@107 3), 12R T34 @), qnh—dad)) D

(474" s

Nevertheless, it does not seem easy to prove that the left-hand side of (1.6) is indeed
the generating function of Bj(oy,...,ax;n, k,7;n). In this regard, Bressoud [10] posed
the following conjecture.

Conjecture 1.10 (Bressoud). For j =0 orl and (2k+j)/2>r > X >0,

ZBj(ah cee, QT k;,r,n)q”

= Y ‘ 4

Nise S50 @AM (@5 4 N (42T R

N(NE+-4NZ_ +Nrt-+Ng_1)

A

> H i 77Ns 7", H(_qnfaﬁnqu;qn)oo'

s=2

Andrews [4] proved Conjecture 1.8 for n = A+ 1 and j = 1. Kim and Yee [28] showed
that the conjecture holds for 7 = 1 and A\ = 2. In fact, they proved that Conjecture 1.10 is
true for j = 1 and A = 2 with the aid of Gordon markings introduced by Kurgungéz [29,30].
Recently, Kim [27] resolved Conjecture 1.8 for the case j = 1. To this end, she established
the following theorem.

Theorem 1.11 (Bressoud-Kim). Fork>r > \X>0,

ZBl(aly cee ,a)\;n,k,r;n)q"

n>0

(1.8)
A
(_qal, ool _qa)\; qn) (qn( ) qr](2kfrf§+1)’ qn(2k—)\+1); qn(2k—)\+1))oo

(g7 q") oo

It is clear that Conjecture 1.8 for j = 1 is an immediate consequence of (1.7) and
(1.8).

The main objective of this paper is to give overpartition analogues of the partition
function B; and the partition function A; introduced by Bressoud and to establish over-
partition analogues of some classical partition theorems. The overpartition analogues of
classical partition theorems have caught much attention, see, for example, Chen, Sang
and Shi [12-14], Choi, Kim and Lovejoy [15], Corteel and Lovejoy [16], Corteel, Lovejoy
and Mallet [17], Corteel and Mallet [18], Dousse [19,20], Goyal [23], He, Ji, Wang and
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Zhao [24], He, Wang and Zhao [26], Kursung6z [31], Lovejoy [32,33,35-37], Lovejoy and
Mallet [38], Raghavendra and Padmavathamma [39], and Sang and Shi [41].

Lovejoy [32] established overpartition analogues of the Rogers-Ramanujan-Gordon the-
orem for the cases i = 1 and ¢ = k, and the general case was obtained by Chen, Sang
and Shi [13]. In Theorem 1.12 and for the rest of this paper, we adopt the following
convention: For positive integers ¢ and b, we define ¢ + b (resp. ¢ £ b) as a non-overlined

part (resp. an overlined part) of size t & b. The parts in an overpartition are ordered as
in (1.1).

Theorem 1.12 (Chen-Sang-Shi). For k > r > 1, let B1(—;1,k,r;n) denote the number
of overpartitions m = (7,7, ..., m) of n, where w; > T x_1 + 1 with strict inequality if
m; 18 non-overlined for 1 <i < {—k+1, and at most r — 1 of the m; are equal to 1. For
kE>r>1,let Al(—;1,k,m;n) denote the number of overpartitions of n such that non-
overlined parts #Z 0,4+r (mod 2k), and for k = r, let A\(—;1,k, k;n) denote the number
of overpartitions of n into parts not divisible by k. Then, for k >r >1 andn > 0,

Ai(=; 1, k,rn) = Bi(—; 1, k,m;n).

Chen, Sang and Shi [13] gave the following generating function version of Theorem
1.12: For k > r > 1,

Z qN12+"'+N£_1+Nr+-.-+Nk—1(1 + q—Nr)(_qul; Q)N -1
N> >Nj_ 120 (q; Q)N1—N2 e (q; q>Nk—2_Nk—1 (q; Q)Nk—1
(= Doo(d", 7, %% %) o

(4 9)

Corteel, Lovejoy and Mallet [17] established an overpartition analogue of the Bressoud-
Rogers-Ramanujan theorem for the case i = 1, and the general case was obtained by Chen,
Sang and Shi [14].

Theorem 1.13 (Chen-Sang-Shi). For k > r > 1, let Bo(—;1,k,r;n) denote the number
of overpartitions m = (7,7, ..., m) of n, where w; > mix_1 + 1 with strict inequality if

m; 18 non-overlined for 1 < i < ¢ —k+ 1, at most r — 1 of the m; are equal to 1, and for
1<i<l—k+2, if m; <mypk_o+ 1 with strict inequality if m; is overlined, then

Tid -+ Mg =7 —1+Vo(m) (mod 2).

For k > r > 1, let Ao(—;1,k,r;n) denote the number of overpartitions of n such that
non-overlined parts % 0, £r (mod 2k — 1). Then, for k >r>1 and n > 0,

ZO(_ﬂ 17 ka T, TL) = E0(_’ 17 ka T, n)

In Theorem 1.13 and for the rest of this article, V() (resp. V.(f)), as used by Corteel,
Lovejoy and Mallet [17], stands for the number of overlined parts not exceeding ¢ (resp.
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t) in . For example, for an overpartition = = (7,7,6,5,5,2), we have V(5) = 1 and
V.(5)=2.

The following generating function version of Theorem 1.13 was given by Sang and
Shi [41]: For k > r > 1,

S I Al | | ) O
Ni>->Nj_ 120 (q; Q)Nl—N2 T (q; q)Nk—Q_Nk—l (q2; qz)Nk—l
_ (6@ T T )
(¢ @)oo
_In this paper, we introduce two new partition functions Bj(ay,...,axn, k,r;n) and
Aj(aq,...,ax;n, k,r;n) and build connections between B;(a, ..., ax;n, k,r;n) and B;(a;

oo, korn).
Definition 1.14. Forj =0 or1 and k > r > X\ >0, define B;(ay,...,ax;n, k,r;n) to be
the number of overpartitions ™ = (my,7a, ..., m) of n subject to the following conditions:

1) For1<i</{,m=0,0q,...,0, (mod n);

2

Only multiples of n may be non-overlined,

(1)
(2)
(3) For 1 <i</{l—k+1, m > m_1 +n with strict inequality if 7; is non-overlined;
(4) At most r — 1 of the m; are less than or equal to n;

(5)

5) For1 <1< /{l—k+2, if m; < miip_o+n with strict inequality if m; is overlined, then

(/0] + -+ [Fish—a/n) =7 — 1+ Va(m)  (mod 2 — j).

Definition 1.15. For j = 0 or 1 and (2k — 7)/2 > r > X > 0, define the partition
function Aj(aq,...,ax;n, k,r;n) to be the number of overpartitions of n satisfying m; =
0,a1,...,ay (mod n) such that

(1) If X is even, then only multiplies of n may be non-overlined and there is no non-
overlined part congruent to 0, £n(r — A/2) (mod n(2k — A+ j —1));

(2) If X is odd and j = 1, then only multiples of n/2 may be non-overlined, no non-
overlined part is congruent to n(2k — X\)/2 (mod n(2k — X)), no non-overlined part
is congruent to n (mod 2n), no non-overlined part is congruent to 0 (mod 2n(2k —
A)), no non-overlined part is congruent to £n(2r — A)/2 (mod n(2k — X)), and
no overlined part is congruent to n/2 (mod n) and not congruent to n(2k — \)/2
(mod 7(2k — A));



(3) If X is odd and j = 0, then only multiples of n/2 may be non-overlined, no non-
overlined part is congruent to n (mod 2n), no non-overlined part is congruent to
0,£n(2r — X)/2 (mod n(2k — XA — 1)), and no overlined part is congruent to n/2
(mod 7).

Observe that for an overpartition 7 counted by B;(ay, ..., ax;n, k,7;n) (resp. A;(aq,
..,ax;m, k,m;n)) without overlined parts divisible by 7, if we change the overlined parts in
7 to non-overlined parts, then we get an ordinary partition counted by Bj(ay, ..., ax;n, k,
r;n) (resp. Ai_j(aq,...,ax;n,k—147,7;n)). Hence we say that B;(ay, ..., ax;n, k,r;n)
(resp. Aj(ay,...,ax;m, k,m;n)) can be considered as an overpartition analogue of B;(ay,
oo, kyrin) (tesp. Aj(aq, ... ann, k,mn)). In this case, V. (t) reduces to the nota-
tion V() introduced by Bressoud [10].

By means of Gordon markings, we build bijections to obtain the following relationships
between Bj(ay,...,ax;n, k,r;n) and Bj(aq,...,axn, k,r;n).

Theorem 1.16. For k>r > X>0 and k > A,
> Bi(on, . axin krin)q" = (=" ¢ D Bolan, . axsm, kyrin)g™
n>0 n>0
Theorem 1.17. Fork>r>A>0and k—1> A,
Zgﬂ(ala NN SN/ L k,r,n)q" = (_qna qn)oo ZBl(ala N SR/ L k - 177'; n)qn
n>0 n>0
Fork—1> )\,
ZEO(ala cee, QST k? k? n)qn = <_q777 qn)oo Z Bl<&17 cee, QT k — 17 k — 17 n)qn

n>0 n>0

We also derive the generating function of Aj(av, ..., ax;n, k,r;n).

Theorem 1.18. For j =0 or1 and 2k —j5)/2>r> X >0,

ZZ]'(CH, cee, QST k,r;n)qn

n>0
(1.9)
(—q™, ..., =™, —q"; q")oo (g~ 2), @73 1) A1), kA1)

(¢";¢M)oo

By Theorem 1.2 and Theorem 1.16 with A = 0 and n = 1, we find that for £ > r > 1,

" ;)

(o)

—a r o 2k—
ZEI(—71,k7T7n)qn — ( 4; q)oo(q ,q
n>0 ((L Q)oo



Combining with Theorem 1.18 with A = 0, » = 1 and j = 1, we can recover Theorem 1.12
for K > r > 1. By Theorem 1.4 and Theorem 1.16 with A = 1 and n = 2, we find that for
k>r>1,

—a%: ) o (—a: g2 2r—1 Ak—2r—1 4k—2. 4k—2
Z§1(172’k’rjn)qn — ( qa;q )OO( q;9q )oo(q » q ,q ,q )oo

(4% %)

n>0

Applying Theorem 1.18 with A = 1, n = 2 and j = 1, we obtain a new overpartition
analogue of the Andrews-Gollnitz-Gordon theorem.

Theorem 1.19. For k > r > 1, let Bi(1;2,k,r;n) denote the number of overpartitions
m = (m,ma,...,m) of n such that (1) only even parts may be non-overlined; (2) m; >
Tirk—1 + 2 with strict inequality if m; is non-overlined for 1 <i < ¢ —k + 1; (3) at most
r — 1 of the w; are less than or equal to 2.

For k >r > 1, let A;(1;2,k,r;n) denote the number of overpartitions of n such that
(1) no non-overlined part is congruent to 2k — 1 (mod 4k — 2); (2) no non-overlined part
is congruent to 2 (mod 4); (3) no non-overlined part is congruent to 0 (mod 8k —4); (4)
no non-overlined part is congruent to +(2r — 1) (mod 4k — 2); (5) no overlined part is
congruent to 1 (mod 2) and not congruent to 2k —1 (mod 4k — 2)). Then, fork >r > 1
andn > 0,

Al(la 27 k7r;n) - Bl<17 27kar;n>‘

The generating function version of Theorem 1.19 will be given in our subsequent
paper [25]. Tt should be mentioned that Lovejoy [33] obtained an overpartition analogue
of the Andrews-Gollnitz-Gordon theorem for » = k and He, Ji, Wang and Zhao [24] found
an overpartition analogue for the general case.

In view of Theorems 1.11, 1.17 and Theorem 1.18 for j = 0, we obtain the following
overpartition analogue of Bressoud’s Conjecture 1.8 for j = 0.

Theorem 1.20. Fork>r>AX>0,k—1> X andn > 0, we have
Ao, ... ax;n, k,mn) = Bolay, ..., axn, k,rin).
The generating function version of Theorem 1.20 can be derived with the aid of Bailey
pairs.
Theorem 1.21. Fork>r >\ >0,

qn(N12+~~~+N,§,1+NT+-~~+N;€_1)(1 + ) (=g N )

Z Naj1—1
N1>-->Np_1>0 (qn; qn)Nl_N2 e (qﬁ; qn)Nk—2_Nk—1 (q%; q2n)Nk—1
A A
X (=g g o H(_qnfarnNs; ¢, H(_qn*as‘i’nNs—l;qT))OO
s=1 s=2
(g = g, = "), RT3 CGEA D, kA (1.10)
B (47 4")oo ' ‘
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Combining Theorem 1.18 for j = 0, Theorem 1.20 and Theorem 1.21, we obtain the
following generating function of Bo(aq,...,ax;n, k,r;n), which can be regarded as the
overpartition analogue of Bressoud’s Conjecture 1.10 for j = 0.

Theorem 1.22. Fork>r>AX>0andk—1> A,

ZEO(QD ceey QST ka r; n>qn

n>0
_ Z qT)(N12+---+N;§_1+NT+'--+Nk—1)(1 4 q—nNr)(_qn_nN)\+l; qn)NH1—1
N1>-->Nyp_1>0 (qﬂ; qn)Nl—N2 e (qn; qn)Nk—2_Nk71 (q277; q2n)Nk71
A A
X (—q 77+77N>\ H g nN;. g, H(_qn—asﬂstl;qn)oo'
s=1 s=2

Theorem 1.20 and Theorem 1.21 specialize to overpartition analogues of a number
of classical partition theorems. Setting A =0, n =1, £ = 3 and r = 2, we obtain an
overpartition analogue of Euler’s partition theorem [21]. Recall that Euler’s partition
theorem states that for n > 1, the number of partitions of n into odd parts equals the
number of partitions of n into distinct parts.

Theorem 1.23. Let By(—;1,3,2;n) denote the number of overpartitions m = (71, o, .. .,
m¢) of m, where m; > 1o+ 1 with strict inequality if m; is non-overlined for 1 < i < {—2,
and for 1 < ¢ < 0 —1, if m; < mipq + 1 with strict inequality iof m; s overlined, then
T+ miy1 = 14+ Va(m) (mod 2). Let Ag(—;1,3,2;n) denote the number of overpartitions
of n such that no non-overlined part is congruent to = 0,£2 (mod 5). Then, forn >0,

Ao(—;1,3,2;m) = Bo(—;1,3,2;n).

The generating function version takes the form:

T TR 4 g ) (g M v (6 0)w(eh 6 6750
N, SN0 (4 Qv N (0% ¢, (4 @)oo

For an overpartition 7 = (7,7, ..., ) counted by Bo(—;1,3,2;n), if there are no
overlined parts in 7, then Vﬂ(m) =0 for 1 <¢ < ¢. This implies that m; 4+ 7, is odd if
m; < mir1+1. Hence we deduce that m; > 7,1 for 1 <¢ < ¢—1. Therefore, 7 is a partition
into distinct parts. For this reason, Theorem 1.23 can be perceived as an overpartition
analogue of Euler’s partition theorem.

Putting A = 0 and 7 = 1 in Theorem 1.20, we are led to the overpartition analogue
of the Bressoud-Rogers-Ramanujan theorem due to Chen, Sang and Shi [14]. In a similar
way, Theorem 1.21 yields the generating function version found by Sang and Shi [41].
Setting A = 1 and n = 2 in Theorem 1.20, we find an overpartition analogue of the
Bressoud-Gollnitz-Gordon theorem.

11



Theorem 1.24. For k > 2 and k > r > 1, let By(1;2,k,7;n) denote the number of
overpartitions m = (mwy,Ta, ..., ™) of n such that only even parts may be non-overlined,
T 2> Titp—1 + 2 with strict inequality if m; is non-overlined for 1 <i < {—k+1, at most
r — 1 of the w; are less than or equal to 2, and for 1 < i </l —k+2, if m; < W10+ 2
with strict inequality if 7; is overlined, then

[7:/2] 4 -+ + [Tigh2/2] =7 — 1+ V(1) (mod 2).

Fork >2andk >r > 1, let Ag(1;2,k,7;n) denote the number of overpartitions of n such
that no non-overlined part is congruent to 2 (mod 4), no non-overlined part is congruent
to 0,£(2r —1) (mod 4k —4), and no overlined part is congruent to 1 (mod 2). Then, for
k>2k>r>1andn >0,

Z0(]-’ 27 k: T TL) = E0(17 27 ka T TL)

He, Wang and Zhao [26] established an overpartition analogue of the Bressoud-Gollnitz-
Gordon theorem. Putting A = 1 and n = 2 in Theorem 1.21, we get the generating
function version of Theorem 1.24: For k > r > 1,

2(N12+"'+N;3,1+Nr+"’+Nk—1)(1 + q—2NT>

q
N1>"‘>ZNk1>0 (7% @) Ny -ns -+ (g% qz)Nk—2*Nk71<q4; q4)Nk—1

>< (_q172Nl;q2)Nl(_q272N2;q2)N2_1<_q2+2N1;q2)oo
_ (6P (—a* )o@ g g g )
(4% 4% oo

This paper is organized as follows. In Section 2, we present a proof of Theorem 1.18.
In Section 3, we introduce the notions of Gordon marking, reverse Gordon marking, and
(k — 1)-bands of an overpartition counted by Bi(ai,...,ax;n,k,7;n). Furthermore, we
give a criterion to determine whether an overpartition counted by B (ay, ..., ax;n, k,r;n)
is counted by By(au,...,ax;n, k,m;n) as well. In Section 4, we define the forward move
and the backward move based on the Gordon marking and the reverse Gordon marking
of an overpartition counted by Bi(aq,...,ax;n, k,7;n). These operations allow us to
provide a combinatorial proof of Theorem 1.16. Section 5 is devoted to a combinatorial
proof of Theorem 1.17. In Section 6, we give a proof of Theorem 1.21 with the aid of
Bailey pairs. In Section 7, we discuss possible directions for future work.

2 Proof of Theorem 1.18

As mentioned in the introduction, the function Zj(al, ...,ax;m, k,r;n) can be viewed
as the overpartition analogue of A;(ay,...,ax;n, k,r;n) introduced by Bressoud [10].
Similar to the case for A;(a,...,ax;n, k,r;n), it is not difficult to establish the generating
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function of Zj(ozl, —.,ann, kyryn) stated as in Theorem 1.18. For completeness, we
include a detailed derivation.

Proof of Theorem 1.18. Clearly, the right-hand side of (1.9) can be interpreted as the
generating function of A;(av, ..., ax;n, k,7;n) when X is even. It remains to show that the
right-hand side of (1.9) is also the generating function of A;(av, ..., ax;n,k,7;n) when A
is odd. When A is odd, it is clear from (1.5) that 7 = a(x41)/2 + rt1-(r+1)/2 = 20(a11)/2-
This implies that 7 must be even in this event.

When j = 1, by definition, we have for k >r > X > 0,
Zzl(ab <o Q5T kv r n)qn
n>0

e G T R O LT M C Y L)

o0

<qn(2r—)\)/2, qn(4k—2r—)\)/2’ qn(2k—>\)/2; qn(Qk—A))OO(QQn@k—)\); q2n(2k—>\))oo(q'r]; an)OO

: (972 q7%) o
(2.1)
Since n is even, we find that
(@6 (@ =00 _ (=0"*14")x (2.2)
(@ q") (07,0707 (474" '
and
(_qn(Qk—A)/27 g1k=N/2, qn(Qk—A))oo(q%(?k—)\); q2n(2k—A))oo - (qn(%—k); qn(%—k))w (2.3)

Substituting (2.2) and (2.3) into (2.1), and noting that a(x41)/2 = 1/2, we obtain that for
k>r>X\>0,

Zzl<al7 s, Q0T k,r,n)q”

n>0

(2.4)
A RPN _ _
(g = =g oo (@12 R RN PR
(g 4" oo
When j = 0, by definition, we have for £ > r > \ > 0,
ZZO(OZL <o QT k:7 r n)qn
n>0
= (_q‘“’ L, QRO o2 g g qn)oo (2'5)

<q77(27“—>\)/2’ qn(4k—2r—>\—2)/2’ qn(Qk—A—l); qn(2k—)\—1))oo(qn; q2n)oo

. (q"?;¢"?)
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Substituting (2.2) into (2.5), we obtain that for k > r > X > 0,

> Ao(on,. .. anin, kyrin)g"

n>0

2.6
(=g, =™, =" 0o (@12, g0 qrRA D), gnZhAD)y 20

N (475 4"
Combining (2.4) and (2.6), we conclude that (1.9) holds when A is odd. This completes
the proof. |

3 The (reverse) Gordon marking and (k — 1)-bands

The main objective of this section is to give a criterion to determine whether an over-
partition counted by Bi(ay,...,ax;n, k,r;n) is also counted by Bo(ay, ..., ax;n, k,7;n).
Let 7 = 0 or 1 and let A\, k& and r be integers such that £ > » > A > 0. Let
Bj(ay,...,ax;n, k,r) denote the set of overpartitions counted by B;(ay, ..., ax;n,k,7;n)
for n > 0. Let B;(ay,...,ax;n,k,r) denote the set of partitions counted by Bj(aq, ...,
ax;n, k,r;n) for n > 0. As mentioned in the introduction, we could use Bj(av, . .., ax;n, k,
r) to denote the set of overpartitions in B;(ay, ..., ax;n, k,r) without overlined parts di-
visible by n. For 7 € Bj(oq, oo ann k), we call moa Ej—overpartition for short.

The Gordon marking of an ordinary partition was introduced by Kursungoz in [29,
30]. Kim [27] introduced the Gordon marking of an ordinary partition in Bi(as, ..., ay;
n, k,r), which generalizes the Gordon marking of an ordinary partition. The Gordon
marking of an overpartition was defined by Chen, Sang and Shi [13]. Now we define the
Gordon marking of a Bi-overpartition. Bear in mind that the parts in an overpartition
are ordered as follows:

l<l<2<2<---.

For positive integers ¢ and b, we define ¢ + b (resp. t & b) as a non-overlined part of size
t £ b (resp. an overlined part of size ¢t £ b).

Definition 3.1 (Gordon marking). For k > r > X\ > 0, let 7 = (m,m2,...,m) be an
overpartition satisfying (1) and (2) in Definition 1.14. Assign a positive integer to each
part of w as follows: First, assign 1 to w,. Then, for each m;, assign s to mw;, where s is
the smallest positive integer that is not used to mark the parts m,, such that m > i and
Tm > T; — N with strict inequality if m; is overlined. Denote the Gordon marking of m by

G(m).

It can be seen that for each ;, the mark of 7; is the smallest positive integer that is not
used to mark the parts after m; in [m; —n, m;] (vesp. (m; —n,m;)) if m; is non-overlined (resp.
overlined). Assume that 7, is assigned with 1. Then the part 7, of 7 is in [m; — 1, 7]
(resp. (m; —n,m;)) means that m;, —n < m,, < m; (resp. m; —n < m, < ;). For notational
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convenience, we use I(m; —n,m;) to denote the interval [m; — n, m;] if 7; is non-overlined,
or the interval (m; —n,m;) if m; is overlined.

For example, let 7 be an overpartition in B;(1,5,9;10,5,4) given by

7 = (80, 80, 80, 70, 70, 69, 60, 60, 55, 51, 50, 49, 45, 41, 39, 35,

_ o (3.1)
29,20, 20,20,11,10,9,5,1).
The Gordon marking of 7 is given by
G(m) = (801,804,802, 701, 703, 692, 604, 601, 552, 513, 504, 491, 459, 413, 391, 352, (32)

E172_047 2037 2027ﬁ17 mﬁl? 937 527 11)7
where the subscript of each part represents the mark in the Gordon marking.

For k > r > X >0, let 7 = (m,m2,...,m) be an overpartition satisfying (1) and
(2) in Definition 1.14. If the condition (3) in Definition 1.14 is also fulfilled, that is, for
1 <i</l—k+1, 1y > w1+ n with strict inequality if m; is non-overlined, then
for each m;, the number of parts after 7; belonging to I(m; — n, ;) is at most k — 2, so
the marks in the Gordon marking of m do not exceed k — 1. For the overpartition 7 in
B1(1,5,9;10,5,4) defined in (3.1), by (3.2), we see that the largest mark in G(r) is 4.

If we assign a mark to each part starting with the largest part instead, then the
resulting marking will be called the reverse Gordon marking.

Definition 3.2 (Reverse Gordon marking). For k > r > X >0, let 7 = (w1, T2, ..., )
be an overpartition satisfying (1) and (2) in Definition 1.14. Assign a positive integer to
each part of ™ as follows: First assign 1 to my. Then, for each 7;, assign s to m;, where s
15 the smallest positive integer that is not used to mark the parts m,, such that m <1t and
Tm < 7 + 1 with strict inequality if ; is overlined. Denote the reverse Gordon marking

of m by RG(r).

Analogously, for each m;, the mark of m; is the smallest positive integer that is not
used to mark the parts before 7; belonging to [ (m;, m + n). Furthermore, for 7 in
Bi(aq,...,ax;n, k,r), the marks in the reverse Gordon marking of 7 do not exceed k — 1.

For the overpartition 7 in By (1, 5,9; 10, 5, 4) defined in (3.1), the reverse Gordon mark-
ing of 7 reads

E172_027 203a 2047ﬁ171_02a 93a 54a 11)7
from which we see that the largest mark in RG(r) is 4.

We proceed to give a criterion to determine whether a Bj-overpartition is also a By-

overpartition. Let m = (m,mo,..., ;) be an overpartition in Bi(ay,...,ax;n, k). If
there are no k — 1 consecutive parts m;, mj11,...,Ti1x_2 in 7™ such that
m; < Wiyk_o +n with strict inequality if 7; is overlined, (3.3)
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then by Definition 1.14, we see that 7 is also in By(ax, ..., ax;n, k,r). Assume that there
exist k — 1 consecutive parts m;, mii1,. .., Tirx—2 in 7 satisfying (3.3). By definition, 7 is
not in By(aq, ..., ax;n, k,r) if

[mi/m] ++++ + [Tisk—o/n] =7+ Va(m) (mod 2).

It follows that 7 is an overpartition in By(ay,...,ax;n, k,r) if and only if for any k — 1
consecutive parts m;, Tii1,..., Ttk in 7 satisfying (3.3), we have
[mi/n) + -+ [Tipr—o/nl =7 — 1+ Vi(m) (mod 2). (3.4)

The above k — 1 consecutive parts satisfying (3.3) will be called a (k — 1)-band of 7
in this sense that the difference between the largest element and the smallest element in
a (k — 1)-band is at most 7. For the (k — 1)-band {m;4;o<i<k—2, if {miti}o<i<k—2 satisfy
the congruence condition (3.4), then we say that the (k — 1)-band {m; 4 }o<i<k—2 is even.
Otherwise, we say that it is odd.

For example, let 7 be the overpartition in B;(1,5,9;10,5,4) defined in (3.1), where
k = 5. There are twelve 4-bands in 7. It can be checked that all of them are even.

——
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=
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——
~J
=
2l
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2l
=
D
o
nat
—~—
2l
=
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S &l

For the overpartitions 7 in By(ay,...,ax;n, k,7), we see that 7 is an overpartition in
Bo(ay, ..., ax;n, k,r) if and only if all (k— 1)-bands of 7 are even. For k > r > X\ >0, let
7 be an overpartition in By (ay, ..., ax;n, k, 7). For each (k — 1)-band {7 o<i<k_2 of T,
it is easy to see that the marks of m;,; are distinct in the Gordon marking and the reverse
Gordon marking of 7. Hence there exists one part in {m;;}o<i<x—2 marked with k£ — 1 in
the Gordon marking and the reverse Gordon marking of .

Next we show that we may restrict our attention to certain special (k — 1)-bands to
determine whether 7 is an overpartition in By(ay, ..., ax;n,k,7). Such special (k — 1)-
bands will be classified into two kinds depending on the positions of the (k — 1)-marked
parts of the Gordon marking or the reverse Gordon marking in the (k — 1)-bands.

The (k — 1)-bands of the first kind will be concerned with the case in which the (k — 1)-
marked part in the Gordon marking is the largest element in the band. Assume that
there are N parts marked with £ — 1 in G(), and denote these (k — 1)-marked parts by
Gg1(m) > ga(m) > -+ > gn(m). For each (k — 1)-marked part §,(7) in G(7), the number
of the (k — 1)-bands of m including g,(m) is at most k — 1. We claim that there is a
(k—1)-band of 7 such that g,(m) is the largest element of this (k — 1)-band. Assume that
gp(m) is the s-th part 7, of 7. By Definition 3.1, we deduce that there exist & — 2 parts
Tm such that m > s and 7, > 7, —n with strict inequality if 7, is overlined. This implies
that 7, Tei1, ..., Tspr—2 in 7 satisfy (3.3), that is, {7 to<i<k—2 is a (k — 1)-band of .
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Furthermore, the (k — 1)-marked part g,(m) is the largest element of this (k — 1)-band.
So the claim is proved. Such a (k — 1)-band is called the (k — 1)-band induced by g,(),

denoted {g,(m)}x—1. Obviously, {g1(7)}}x—1,{G2(7) }k—1,- .., {gn(7) }x—1 of 7 are disjoint.
For example, for the overpartition 7 given in (3.1), there are five 4-marked parts in

G(7), namely, g(7) = 80, go(m) = 60, g3(7) = 50, ga(mw) = 20 and gs(m) = 10. The

4-bands induced by §1(7), §2(7), §3(7), ga(7) and gs(m) are illustrated in G(m) below:

{§2}4 {69}4 {59}4

@172_047 2037 2027ﬁ17}_047 937 527 111)

{20}4 {10}4

We now consider the (k — 1)-bands of the second kind under the condition that the
(k — 1)-marked part in the reverse Gordon marking is the smallest part in the band.
Assume that there are M parts marked with & — 1 in RG(w), namely, 7 (m) > 7o(m) >
-+ > (7). By the same reasoning, we see that there is a (k—1)-band of 7 in which 7, (7)
is the smallest element. Such a (k — 1)-band is called the (k — 1)-band induced by 7,(),
denoted {7,(m) }r—1. Clearly, {71 (7)}x—1, {T2(7) }k—1,- .., {Tar(m) }x—1 of 7 are disjoint.

For example, for the overpartition 7 given in (3.1), there are five 4-marked parts in

RG(7), which are 7,(r) = 70, 7o(m) = 51, 73(7) = 41, 74(m) = 20 and 75(7) = 5. The
4-bands induced by 7 (m), 7o(7), 73(7), 74(7) and 75(mw) are displayed below:

{70}4 {51}4 {41}4

?_917%272037 20%7 ﬁlal_o% 937 5%7 11)

{;&?4 {%?4

It remains to show that the (k —1)-bands of 7 induced by the (k — 1)-marked parts in
G(m) or RG(7) are enough to determine whether 7 is an overpartition in By(av, . .., ax;n,
k,r). For this purpose, we need the following property relating G(7) and RG(m).

Proposition 3.3. For k >r > X\ >0, let © be an overpartition in Bi(au, ..., ax;n, k7).
Assume that there are N parts marked with k — 1 in the Gordon marking of m, say,
g1(m) > Go(m) > -++ > gn(m), and there are M parts marked with k — 1 in the reverse
Gordon marking of w, say, 71(m) > To(m) > -+ > Fp(m). Then N = M. Mowveover, for
each 1 < i < N, we have g;(7) € {ri(m)}x—1 and 7(7) € {Gi(7)}r—1, where {g;(7)}r-1
(resp. {7(m)}x—1) @s the (k — 1)-band of m induced by §;(m) (resp. 7i(m)).

Proof. For N = 0, there are no (k — 1)-marked parts in G(7), and so there are no (k —1)-
bands in 7. This implies that there are no (k — 1)-marked parts in RG(). It follows that
M = 0. Conversely, if M =0, then N = 0.
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We next consider the case M, N > 0. We first prove that M > N. For each fixed
(k — 1)-marked part g;(7) in G(m), where 1 < i < N, assume that g;(m) is the g;-th
part of m = (my,ma,...,m), that is, §;(7) = m,,. Since m,, is the largest element in the
(k — 1)-band induced by 7y, we find that the parts

are in the (k — 1)-band of m induced by 7,,. Moreover, the marks of these parts in RG(7)
are distinct. It follows that there exists ¢; such that 0 <t; < k — 2 and 7,4, is marked
with £ — 1 in RG(r). Since the (k— 1)-bands {g1(7) }x—1, {g2(7) }r—1, .-, {Gn(7) }x—1 of 7
are disjoint, the parts mg, 44,, Tgottss- - -, Tgy+ty are distinct, which are marked with & —1
in RG(w). This means that M > N. A similar argument yields N > M. We conclude
that M = N. Note that the above proof also indicates that 7;(m) = 7,4, which implies
that 7;(7) € {gi(m)}x—1 for 1 < i < N. Similarly, g;(m) € {F;(m)}x—1 for 1 < i < N, and
thus the proof is complete. |

For example, for the overpartition 7 given in (3.1), there are five 4-marked parts in
G(m), and in the meantime there are five 4-marked parts in RG(r).

We are now in a position to present the main result of this section.

Theorem 3.4. Fork>r > X>0,k—1> Xand N >0, let 7 = (m,7m9,...,m) be
an overpartition in Bi(ay, ..., ax;n, k,v) with N parts marked with k — 1 in G(7) (resp.
RG(7)), say g1(m) > go(m) > --- > gn(m) (resp. 71(m) > To(w) > --- > 7n(m)). Then w
is an overpartition in Bo(au, ..., ax;n,k,7) if and only if for all 1 < i < N, {G;(7)}r1
(resp. {ri(m)}r_1) are even. In particular, for X = k — 1, the assertion holds if there are
no overlined parts divisible by n in .

For example, the overpartition 7 given in (3.1) is also an overpartition in By (1, 5,9; 10, 5
4). To prove Theorem 3.4, we need the following lemma.

Y

Lemma 3.5. Fork>r>A>0andk—1> ), letm = (71,2, ..., ) be an overpartition
in Bi(aa,...,ax;n, k1), and let {meyi fo<i<k—2 and {Taii bo<i<k—2 be two (k—1)-bands of 7.
If me > 74 and w. < Tayp—o+ 20 with strict inequality if . is overlined, then {1 }o<i<k—2

and {may1o<i<k—2 are of the same parity. In particular, for X = k —1, the assertion holds
if there are no overlined parts divisible by n in .

The above lemma enables us to establish the following proposition, which, together
with Proposition 3.3, leads to Theorem 3.4.

Proposition 3.6. Fork>r>X>0andk—1> X, let g,(m) be a (k — 1)-marked part
in the Gordon marking of an overpartition 7 in By(aq, ..., ax;n, k,r). Then the (k —1)-
bands of m including g,(m) and the (k — 1)-band induced by g,(m) are of the same parity.
In particular, for A = k — 1, the assertion holds if there are no overlined parts divisible by
n .
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For example, for the overpartition 7= given in (3.1), the 4-bands induced by g (),
g2(m), g3(m), ga(m) and gs(m) are all even. Moreover, for any 1 < p <5, the (k — 1)-bands
including g,(7) and the (k — 1)-band induced by §,(m) are of the same parity.

It should be mentioned that for A = k& — 1, if there is an overlined part divisible
by n in 7, then a (k — 1)-band of 7 including the (k — 1)-marked part g,(m) may have
a different parity from that of the (k — 1)-band induced by g,(7). For example, let

= (21,20,15,11,9,5) be an overpartition in Bi(1,5,9;10,4,3), where A = 3, k = 4,
n =10 and r = 3. The Gordon marking of 7 is

G(m) = (213,204,151, 115,99, 51),

from which we see that there are two 3-marked parts g;(7) = 21 and g»(7) = 11, and

so we get the 3-band {11,9,5} induced by g»(7) = 11 along with a 3-band {20, 1 _5 11}
including §»(7) = 11. Apparently, the 3-band {11,9,5} is even, since

[11/10] +[9/10] + [5/10) =1 =7 — 1 + V(11) (mod 2),
and the 3-band {20, 15, 11} is odd, since
[20/10] + [15/10] + [11/10] = 4 =7+ V(20) (mod 2).

In the remainder of this section, we present the proofs of Lemma 3.5 and Proposition
3.6.

Proof of Lemma 3.5. To show that {741 }o<i<k—2 and {m.4; }o<i<k—2 are of the same parity,
we write

[Tasn—a/n] + -+ /0] = a+ Va(rg) (mod 2), (3.5)

where a = r — 1 or r. Trivially, {ma}o<i<k—2 is even when a = r — 1, and {744 fo<i<k—2
is odd when a = r.

We intend to prove that

[Wc-&-k:—?/n] +ot [7Tc/77] =a+ V?T (Wc) (mOd 2)7 (36)

where a is given as in (3.5). Since {744 to<i<k—2 and {7t bo<i<k—2 are (k — 1)-bands of
m, we have
Td 2 Tdq1 = * 2 Tdqk—2,

(3.7)
where 13 < g1 x_o + 1 with strict inequality if 74 is overlined, and

Te 2 Tet+1 Z e Z Tetk—2, (3 8)
where 7, < w12 + 1 with strict inequality if 7. is overlined. '

Under the condition m, > m,, we have ¢ < d. Assume that d = ¢+t where ¢t > 1. Given
that m = (7, o, ..., m) is an overpartition in By (aq, ..., ax;n, k,r), for 1 <i </l—k+1,

T > Tivk—1 + n with strict inequality if 7; is non-overlined. (3.9)
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It follows that there are at most 2k — 2 parts of 7 belonging to I(m. — 2n, 7). Therefore,
by mgik_o > . — 21, we deduce that 1 <t <k —1,andsofor 1 <t <[ <k —2,

Tet+l = Td+1—t- (310)

Combining (3.7) and (3.8), we find that m..y = mq < Tgir—2 + n with strict inequality
if w4 is overlined. Noting that (d +k —2) — (¢c+t —1) = k — 1, using (3.9), we obtain
that m.y; 1 > mgir_2 + n with strict inequality if 7., 1 is non-overlined. It follows
that m.y.t < meyr—1. The same argument yields mgix—1-+ < Tgrx—o-¢. To summarize,
the overlapping structure of {m.4;}o<i<k—2 and {741 }o<i<k—2 can be described as follows,
depending on two cases.

For 1 <t <k —1, we have

Tivk-2 = 0 S Mapk—1-t < Tdyk-2-t = < T4
| |
Tet+k—2 < - < Tett < Teqt—1 < < T
For t = k — 1, we have
Tath—2 < -0 S Tg < Tepp—o <00 S T
We are now ready to prove (3.6). By (3.10), we have
[Mern—2/n] + - 4 [Tere /0] + [Ferrr /0] + -+ + [ /7]
= [Task—a-t/n] + -+ [ma/n] + [Ferer/m] + - - + /1]
= [Tarr—2/n] + -+ [ma/7]
Herea/n] + -+ [me/n] = (Fark—2/n] + -+ + [Fare—1-¢/n]) ,
and by (3.5), we find that in order to show (3.6), it suffices to show that
[Tere-1/n] + -+ [me/n] = ([Fark—2/n] + -+ - + [Farr—1-¢/n])
=Va(r) = Vi(rg) (mod 2). (3.11)

We consider the following two cases.

Case 1: 7. is non-overlined. In this case, 7. is divisible by 7, so we may write 7, =
(b+ 2)n. In view of the condition that 7wz x_2 > m. — 2n = bn, together with (3.9), we
find that 744 5—1-¢ < T —1n = (b+ 1)n and 7141 > (b+ 1)n. Hence

b < Tgpp—2 < -+ < Tagpp—1-t < (b4 1),

and
(b+1)n < meppq <o <m. = (b+2)n.
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This implies that for k—1—t <[ < k—2, [mqyi/n] = b, and for 0 <1 < t—1, [m.i/n] = b+1
if w1 is overlined, or [m.y;/n] = b+ 2 if 7.4, is non-overlined. Consequently,
[Tere1/n] + -+ [me/n] = ([Farr—2/n] + - + [Tasn—1-¢/1])
=Va(r) = Vi(rg) (mod 2),

and so (3.11) is confirmed.

Case 2: 7. is overlined. Set ag = 0. Then we may write 7. = (b+ 1)n + a5, where
0 < s < A. Using the condition that 74,2 > 7. — 2n = (b — 1)n + a5 and the relation
(3.9), we deduce that m.oy 1 > Tgipo+n>bn+ as and mgyp_1-¢ < T —1n = bn + g, so
that

(b—=1n+ oy < Tgyp—2 <+ < Tapp—1— < b+ ag, (3.12)

and
i+ as <mep1 < <m.=(b+1)n+ as. (3.13)

Assume that there are f; parts mgy in (3.12) satisfying (b—1)n+ as < mg <
(b — 1)n + ay. For such a part 744, we have [m44,/n] = b — 1. Assume that there are
fo parts mqy in (3.12) satisfying bn < 74y < bn+ as. For such a part w4, we have

[Tav1/n] = b.

Assume that there are f3 parts 7.y in (3.13) satisfying bn + a5 < 7wy < (b+ 1)n. In
this case, we have [m.y;/n] = b. Assume that there are f, parts m.,; in (3.13) satisfying
Terr = (b+1)n, which gives [m.;/n] = b+ 1. Assume that there are f5 parts 7. in (3.13)
satisfying (b+ 1)n < ey < (b+ 1)1 + «, which implies [7..;/n] = b+ 1. To sum up, we
get

[Tere1/n) + -+ [me/n] = ([Ravk—2/n] + - + [Fark—1-¢/7])
=bfs+ b+ 1)fs+0+1)fs—(b—1)f1 —bfa,

and

Valm) = Vi(rg) = fs+ fs. (3.14)
We proceed to show that f; = f3 + fy and fo = f5. By means of (3.9), we obtain
fo+tk—t—1+ f3+ f1 <k—1, that is, fo + f3+ fy <t. Since f; + fo = t, we have

fi = fs+ fa (3.15)

To prove
fi < fa+ fa, (3.16)

we consider three cases:

(1) If t =k —1, then f3+ f4+ fs =t = k — 1. Using the condition that k —1 > A, we
have
fitfs<(A—s)+(s+1)=A+1<k—1
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This yields (3.16).

2)If1<t<k—1and my < (b+ 1)n, then (b+ 1)n > 7y = Tery > Terp_o > by + ay,
and so we may write 7y = bn + a, with g > s. It follows that 4,0 > (b— 1)1 + a,.
Since

bn+ o < Taqp—o—t <o < g = b+ ay,

we find that
E—t—1<g-—s. (3.17)

Given the condition that £k — 1 > A\, we obtain
fitfssA=g+(s+)=A+1)—g+s<k—-1-g+s (3.18)
Combining (3.17) and (3.18) gives f; + f5 < t. Since f3+ f4 + f5 = t, we arrive at (3.16).
B)Ifl1<t<k—1and gy > (b+ 1), then my p_o > mqg —n > bn, and so
b < Tapho < < Tapro1¢ < b+ as.

This implies that f; = 0, which leads to (3.16).

Returning to the special case there are no overlined parts divisible by 7 in 7, we have
f5 <'s, and so (3.16) is also valid for A = £ — 1. To sum up, (3.16) is justified for all
cases. Combining with (3.15), we conclude that f; = f3 + fi.

It is now clear that fo = f5 since f1 + fo = fs+ fa+ fs =t and f; = fs + f4. Thus,
[Tere—1/n] + -+ [me/n] = ([Tark—2/n] + -+ + [Farr—1-¢/n])
=bfs+(0+1)fa+0+1)fs —(b—1)fi —bf
=0bfs +(0+1)fat+ (0+1)fs = (b—1)(fs + f1) = bfs

=fs+2fa+ [
Substituting (3.14) into (3.19), we reach (3.11), and this completes the proof. ]

We conclude this section with a proof of Proposition 3.6 resorting to Lemma 3.5.

Proof of Proposition 3.6. Given a (k — 1)-marked part g,(m) in G(m), we like to show
that a (k — 1)-band of 7 including g,(7) has the same parity as that of the (k — 1)-
band of 7 induced by g, (7). Assume that g,(m) is the g,-th part of 7 = (7, mo,...,m) in
Bi(ay,...,an;n, k,7), that is, Ty, = Gp(), then {7y 11 }o<i<k—2 is the (k—1)-band induced
by gp(m) = m,,. Assume that {m.4;}o<i<k—2 is a (k — 1)-band of 7 including g,(7) = my,
and g, = c+t, where 1 <t < k — 2. Since 7 is an overpartition in Bilay,...,axn, k1),
we have m,, 1 > 7y, 12 + n with strict inequality if 7y 5 is non-overlined. By the
definition of (k — 1)-bands, we have 7, < 7, 4 r—o + 1 with strict inequality if 7y, 4r_o is
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overlined. Thus, 7, _y > 7, , and so m. > 7.4y = my,_1 > m,,. The assumption that
{7rgp+l}0§l§k:—2 and {7Tc+l}0§l§k:—2 are (k‘ — 1)—bands indicates

Tgpth—2 = Mg, — 1 = Teqt — 1 2 Teqh—2 — 1) = Te — 21,

with strict inequality if 7. is overlined. Thus, the conditions of Lemma 3.5 are satisfied,
thereby {g,(m)}x—1 and {7 4 }o<i<k—2 are of the same parity. This completes the proof. B

4 Proof of Theorem 1.16

The main objective of this section is to give a combinatorial proof of Theorem 1.16. The
relationship between B; and By stated in Theorem 1.16 plays a crucial role in the proof
of Bressoud’s conjecture for the case j = 0 in a subsequent paper [25].

Let D,, denote the set of partitions with distinct parts divisible by 7. Theorem 1.16 is
equivalent to the following combinatorial statement.

Theorem 4.1. Let A\, k and r be integers such that k > r > X >0 and k > X. There is
a bijection ® between D, x By(o, ..., n, k,r) and Bi(ay,...,axn, k,r), namely, for
a pair (¢, ) € D,y x Bylau, ..., ax;n, k,r), we have m = ®((, ) € By(au, ..., ax;n, k,7)
such that || = || + |-

The bijection @ is constructed via merging ¢ and g to produce an overpartition 7
in B(ay,...,ax;n, k). Recall that By(ay,...,ax;n, k,r) is the set of overpartitions in
Bolay,...,ax;n, k,r) without overlined parts divisible by 7. Assume there are N parts
marked with k—1in RG(p) and let ¢ = (nCi, ..., nCe; NCet1 - - - Netm) be a partition in D,
with (1 >+ > (>N > (.01 > > (om > 0. In fact, the bijection ® consists of two
steps. The first step is to merge the parts 7..1,17(12, -, NCcrm and p. The second step
is to merge the remaining parts n¢y,n¢s, ..., n¢. of ¢ and pu to generate certain ovelined
parts divisible by 7. As will be seen, the overpartition v obtained in the first step is in
Bi(a,...,ax;n, k,r). In the meantime, there are no overlined parts divisible by 7 in v.
Eventually, the resulting overpartition 7 of the second step is in By(ay, ..., ax;n, k, 7).

To describe the map ®, we introduce the forward move and the backward move which
are defined on the Gordon marking of a B;-overpartition and the reverse Gordon marking
of a Bi-overpartition. A precise description of the first merging operation will be given
later based on the restricted forward move and the restricted backward move and an
explanation of the second merging operation will be provided by means of the (k — 1)-
insertion operation and the (k — 1)-separation operation.

4.1 The forward move and the backward move

Definition 4.2 (The forward move). For k > XA and N > 1, let m be an overpartition
satisfying (1), (2) and (3) in Definition 1.14. Assume that there are N parts marked with
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k—1in RG(m), say 71(m) > To(m) > --- > Tn(m). For 1 < p < N, the forward move ¢,
is defined as follows: add n to each of T71(m), F2o(7),...,Tp(m) and rearrange the parts in
non-increasing order to obtain a new overpartition, denoted ¢,(m).

For example, let 7 be the overpartition given in (3.1). Below is the reverse Gordon
marking of 7:

{70}4 {51}4 {41}a

RG(m) = (801,802,803,701,704,692,601,603,552,514,501,493,452,414,391,352,

o (4.1)
291,202,203,204,111,102,93,54,1 ).

{20}4 {5}4

There are five 4-marked parts in RG(w). Applying the forward move ¢3 to 7 in (3.1), we
obtain

¢3(m) = (80,80, 80, 80, 70, 69, 61, 60, 60, 55, 51, 50, 49, 15, 39, 35,
29,20, 20, 20, T1,

The following proposition gives several properties of ¢, (7).

Proposition 4.3. Fork > X and N > 1, let ™ = (7, ..., 7) be an overpartition satisfying
(1), (2) and (3) in Definition 1.14. Assume that there are N parts marked with k —1 in
RG(7), say 71(m) > To(m) > -+ > Tn(mw). For 1 <p < N, let w = (wq,...,wp) = ¢p(m).
Then

(1) For1<i</{,w;=0,0q,...,a) (mod n);
(2) Only multiples of n may be non-overlined in w;

(3) There are at most k — 1 marks in G(w) and there are N parts marked with k —1 in
G(w), say gi(w) > ga(w) > -+ > gnv(w);

(4) Let {7;(m)}r—1 be the (k—1)-band of m induced by 7;(w). Then §;(w) = 7(7) +n for
1 <i<p, and gi(w) € {7i(7)}y—1 forp<i<N.

For example, let m be the overpartition in B;(1,5,9;10,5,4) given in (3.1), and let
w = ¢3(m). Then the Gordon marking of w is given by
{80}4 {61}4 {51}4
G(UJ) = ( 017§047 8037 8027 %17 @27 6_147 m?w 601a %;7 g_147 5O3a El? 4_5;7 E1a %27

917\_04 2037 2027 1117 1047 937 527 1/)

{20}4 {10}4

(4.2)

[\@)

It can be readily checked that w satisfies the properties (1)-(4) in Proposition 4.3.
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Proof of Proposition 4.3. To prove (1) and (2), it suffices to show that for 1 < i < p,
7i(m) +n cannot be repeated in w if the part 7;(7) is overlined. We now assume that 7;()
is overlined, so the new generated part 7;(m) + 7 is also overlined. There are two cases.

Case 1: Assume that 7;(7) 4+ 7 is not a part of 7. It is obvious that the generated
overlined part 7;(7) 4+ n appears only once in w.

Case 2: Assume that 7 contains an overlined part m, = 7;(7w) + 1. We claim that
m is marked with & — 1 in RG(w). Since 7 satisfies the condition (3) in Definition
1.14, the marks in RG(m) do not exceed k — 1. Assume that 7;(7) is the r;-th part of
7w = (m, o, ..., ), that is, m,., = 7;(m). Then {m,,_;}o<i<k—2 is the (k — 1)-band induced
by 7;(m). It follows that the marks of the parts m,, _yo,..., 7, are distinct in RG(7) and
7, is marked with k£ — 1. This implies that the marks of 7, _gi2,..., 7,1 in RG(w) are
distinct and less than & — 1. Suppose to the contrary that the mark of m; in RG(7) is
less than k& — 1. Consequently, there is a part 7, _,,, (1 < m < k —2) in the (k — 1)-
band {7, ;}o<i<k—2 such that the mark of m,,_,, is the same as the mark of m;. Since
Ty < Ty < Tp, +1 and m, = m,, +1, we obtain 7, _,, < m < mp,_mm,+1, and so the marks
of m; and 7, _,, are distinct. But this is impossible under the prior assumption. Therefore,
the mark of m; is K — 1 in RG(w), as claimed. In other words, we have 7;_1(7) = m;. This
enables us to employ the forward move to add 1 to 7;_1(m). In the end, the generated
overlined part 7;(m) 4+ 1 occurs only once in w.

We now turn to the properties (3) and (4). Assume that 7;(7) is the r;i-th part of
7 = (m,ms,...,m), that is, m.. = 7;(m). In fact, the forward move consists of two
steps. First, remove the (k — 1)-marked parts 7, , 7,,..., 7, from 7 and denote the
resulting overpartition by 7(!). Since the largest mark in RG(r) is k — 1 and the parts
removed from 7 are marked with & — 1 in RG(w), the marks of the remaining parts in
RG (7)) are the same as those in RG(7). This implies that the marks of the parts of
71 not less than 7, do not exceed k — 2. Therefore, there are N — p parts marked
with k& — 1 in RG(7W), denoted 7, (7)), ... #x_, (7)), for which 7;(7(V) = 7, (7) and
{Fi(m) oy = {Firp(m)}xy for 1 < i < N — p. In light of Proposition 3.3, we find that
there are also N — p parts marked with k — 1 in G(7), denoted g, (7)), ..., gn_p(7D),
for which g;(7(") € {7;(7V)}x_1. Meanwhile, the marks of the parts not less than 7, in
G(7™M) do not exceed k —2. So we deduce that §;(7™) € {7y, (7)}r1 for 1 <i < N —p.

The second step is to insert 7., +n, 7, +1,..., T, +n into 71 and to rearrange the
parts in non-increasing order to obtain w. We wish to show that for 1 < < p, 7, + 17
is marked with & — 1 in G(w). We claim that m,, > 7,,4;. For 1 < i < p, since 7, is
the (k — 1)-marked part in RG(w), we know that {m,,_;}o<i<k—2 is the (k — 1)-band of 7
induced by .., which ensures that m,, 4o < m,, + 1 with strict inequality if 7, _j4o is
overlined. Under the assumption that 7 satisfies the condition (3) in Definition 1.14, we
have 7, _p4+2 > .41 + 1 with strict inequality if 7,,_x4o is non-overlined. But 7, _j42 <
Ty, + 1 with strict inequality if 7,12 is overlined, so we conclude that w,, > m,, 41, as
claimed.

We continue to prove that 7,,+n is marked with k—1 in G(w). Based on the assumption
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that 7 satisfies the condition (3) in Definition 1.14, we obtain that 7, 11 > 7, +n with
strict inequality if m,,_j4+1 is non-overlined, which implies that for 1 <17 < p,

T, + 1, and T, 4o, ..., Tp,—1

are parts of w. Noting that m,, > 7.1 and 7,,_x+1 > 7, + 1 with strict inequality if
7, is non-overlined, it is clear that the mark of the part 7,, + 1 in G(w) is the smallest
positive integer that is not used to mark m,,_x42,...,m,_1. Recalling that the marks of
the parts of 7(!) not less than Ty, i G (M) do not exceed k — 2, the marks of the parts
Tri—kt2y Try—k43s -« -5 Tpr—1 0 G(w) are less than k£ — 1 for 1 < ¢ < p. Thus, the mark of
7, +nin G(w) is k— 1. Meanwhile, the marks of remaining parts in G(w) are the same as
in G(7™"). Therefore, we reach the conclusion that there are N parts marked with &k — 1

in G(w), and so the properties (3) and (4) are verified. This completes the proof. |

For example, for the overpartition 7 in Bi(1,5,9;10,5,4) with the reverse Gordon
marking given in (4.1), there are five 4-marked parts in RG(w). Then w = ¢3(m) can
be constructed via two steps: The first step is to remove 7(m) = 70, 72(7) = 51, and
73(m) = 41 from 7 to get 7, whose reverse Gordon marking reads

RG(W(D) = (%17 8027 803,%1,@2,@1, 6035%27 50174_9'&%27@17%27

\_9172_0272037 20%7 }_1171_027 937 5%7 ]-1)

{2"0}4 {%?4

It can be checked that the marks of parts in RG(7V)) are the same as those in RG(r).
On the other hand, below is the Gordon marking of 7"

G(ﬂ-(l)> = (mlu 8037 802,%1,@2,@3, 6017%27 50374_917527@17%27

E172_047 203; 2027ﬁ171_04a 93; 52, ]-1)

Evidently, the 4-marked parts 20, and 104 in G(7™") are in the 4-bands {29,20,20, 20}
and {11,10,9,5} of #(!) respectively. In the second step, we insert 7 (m) + 10 = 80,
Fo(m) + 10 = 61, and 73(7) + 10 = 51 into 7" to get w, whose Gordon marking is
displayed in (4.2). As anticipated, the marks of 74(7) + 10 = 80, (7)) + 10 = 61, and
73(m) + 10 = 51 in G(w) are 4. Meanwhile the marks of remaining parts in G(w) are the
same as in G(7). Therefore, w satisfies the properties (1)-(4) in Proposition 4.3.

In parallel to the forward move, we now turn to the definition of the backward move
relying on the Gordon marking of a Bj-overpartition.

Definition 4.4 (The backward move). For k > X and N > p > 1, let w be an overparti-
tion satisfying (1), (2) and (3) in Definition 1.14. Assume that there are N parts marked
with k—1 in G(w), denoted g (w) > §2(w) > -+ > gn(w), for which g,(w) >N+ aq. The
backward move 1, is defined as follows: subtract n from each of g1(w), Go(w), ..., gp(w)
and rearrange the parts in non-increasing order to obtain a new overpartition, denoted

Yp(w).
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For example, for the overpartition w = ¢3(7) with five 4-marked parts in G(w) as in
(4.2), the backward move 13 transforms w back to 7 in (4.1).

The backward move 1, possesses the following properties with respect to certain over-
partitions satisfying (1), (2) and (3) in Definition 1.14.

Proposition 4.5. For k > XA and N > p > 1, let w be an overpartition satisfying (1),
(2) and (3) in Definition 1.14. Assume that there are N parts marked with k — 1 in
G(w), denoted g1(w) > Go(w) > -+ > gn(w), for which g,(w) > N+ a1, and assume
that g,(w) is a part in any (k — 1)-band of w belonging to 1(g,(w) — 21, g,(w)). Let
m=(m1,...,m) = Yp(w). Then

(1) For1<i</{,m=0,0q,...,a, (mod n);
(2) Only multiples of n may be non-overlined in T;

(3) There are at most k — 1 marks in RG () and there are N parts marked with k — 1
in RG(m), say 71(m) > -+ > 7y(m);

(4) Let {gi(w)}x—1 be the (k — 1)-band of w induced by g;(w). Then 7;(7) = g;(w) — n
for 1 <i<wp, and 7;(m) € {gi(w) }x—1 forp <i < N.

Proof. To prove (1) and (2), it suffices to show that for 1 < ¢ < p, the part g;(w) — 7
occurs exactly once in 7 if §;(w) is overlined. We now assume that g;(w) is overlined, so
that the generated part g;(w) — 7 is also overlined. There are two cases:

Case 1: Assume that the part g;(w)—n does not appear in w. In this case, it is obvious
that the generated part g;(w) — n occurs exactly once in .

Case 2: Assume that w contains the overlined part wy, = §;(w) — 7, where 1 <1i < p.
Using the same argument as in the proof of Proposition 4.3, it can be shown that w;, is
marked with £ — 1 in G(w), where 1 <i <p.

We proceed to show that if w satisfies the condition that §,(w) is a part in any (k—1)-
band of w belonging to 1(§,(w) — 21, §,(w)), then w does not contain the overlined part
gp(w) —n. Suppose to the contrary that w contains the overlined part §,(w) — n. Since
gp(w) — n is marked with £ — 1 in G(w), we have

Gpr1(w) = gp(w) —m, (4.3)

where g,11(w) is also overlined. Assume that g,41(w) is the g,11-th part of w = (wy,ws, .. .,
we), that is, wy, ., = gp+1(w). Then {wy,  41}o<i<k—2 is the (k —1)-band induced by wy,,,,
which, together with (4.3), leads to

Wopt1+k—2 > Wopyr — 11 = gp(w) B 277

By (4.3), we have
Wopr1 = gp(“) —n< gp(”)?
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from which {wy, ,11}o<i<k—2 is a (K — 1)-band of w belonging to I(g,(w) — 27, §,(w)). But
gp(w) is not a part in {wy,, 11} o<i<k—2, Which contradicts the condition that g,(w) is a
part in any (kK — 1)-band of w belonging to I(g,(w) — 21, g,(w)). This means that w does
not contain the overlined part g,(w) —n. Using the fact that §;(w) — n is marked with
k —1 in G(w), we have §;41(w) = §i(w) —n where 1 < i < p. Applying the backward
move to w, we get the overpartition 7 in which the part §;(w) — n appears exactly once.
So we have verified the properties (1) and (2).

We now turn to the properties (3) and (4). Similarly, the backward move consists of
two steps. First, remove the (k — 1)-marked parts §;(w), ..., §,(w) from w and denote
the resulting overpartition by w®. Along the same lines of reasoning as in the proof
of Proposition 4.3, we deduce that the marks of the remaining parts in RG(w) are the
same as those in RG(w™). This implies that there are N — p parts marked with & — 1
in RG(w®), denoted 71(w®) > -+ > Fy_,(wD), for which 7;(w®) € {Girp(w)}r1-
We proceed to demonstrate that 7;(w®) < g,(w) — 21 with strict inequality if §,(w) is
non-overlined. Suppose to the contrary that 7 (w) > g,(w) — 2n with strict inequality
if §,(w) is overlined. Since 71 (wW) € {Fpr1(w)}x_1, we have 7 (w) < Gpi1(w). Note
that gp41(w) < gp(w) — n with strict inequality if g,41(w) is non-overlined. We obtain
that 7 (w) < §,(w) — n with strict inequality if 7;(w®) is non-overlined. Assume that
71 (w®) is the r-th part of w® = (WM WM ... wM), that is, wl = 7 (w®). Then
{Wﬁill}oglgk_g is the (k — 1)-band induced by w | which implies that wﬁilkw <w4q
with strict inequality if w,(&) is overlined. But, 7;(w®) < §,(w) — 1 with strict inequality
if 71(w™) is non-overlined, it follows that WS)—k +2 < gp(w). Therefore, we conclude
that {wg)_l}gglgk,g is a (k — 1)-band of w® belonging to I(j,(w) — 21, ,(w)). By the
construction of w™®, we see that {wﬁ)_l}oglgk,g is also a (k — 1)-band of w belonging

to I(gp(w) — 2n, gp(w)). However, g,(w) is not in {ws)_l}oglgk,g, which contradicts the
condition that §,(w) is a part in any (k — 1)-band of w belonging to I(g,(w) — 21, §,(w)).
Hence 71 (wM) < g,(w) — 2n with strict inequality if 7, (w™®)) is non-overlined.

The second step is to insert §; (w)—7, . . ., ,(w) —7n into w® and to rearrange the parts
in non-increasing order to obtain 7. It can be shown that the mark of g;(w) —n in RG(w)
is equal to k — 1 for 1 < ¢ < p. Furthermore, the remaining parts not less than g,(w) —n
in RG(w) are the same as in RG(w™). We need to show that the marks of remaining
parts less than §,(w) — 7 in RG(7) are the same as in RG(w)). We first verify that the
marks of the parts m; of m such that g,(w) — 2n < m; < g,(w) — n with strict inequality if
Gp(w) is overlined in RG(7) are the same as those in RG(w™). Since 7 (w®) < g,(w)—2n
with strict inequality if §,(w) is non-overlined, the marks of the parts m; of 7 such that
gp(w) —2n < m; < §p(w) —n with strict inequality if g,(w) is overlined are less than k — 1
in RG(wW). But the mark of g,(w) —n is k — 1, we infer that the marks of the parts 7;
of m such that g,(w) — 2n < m < §,(w) — n with strict inequality if g,(w) is overlined in
RG(r) are the same as those in RG(w™). Thus, the marks of the parts 7; of 7 such that
i < gp(w) — 2n with strict inequality if g,(w) is non-overlined in RG(w) are the same as
in RG(w®). Therefore, the marks of remaining parts less than §,(w) — 7 in RG(7) are
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the same as in RG(w"). Tt follows that there are N parts marked with k — 1 in RG(7),
and so the properties (3) and (4) are verified. This completes the proof. ]

We now furnish an example to illustrate Proposition 4.5. Let w be the overpartition in
Bi(1,5,9;10,5,4) with the Gordon marking given by (4.2). There are five 4-marked parts
in G(w), namely, g;(w) = 80, go(w) = 61, gz(w) = 51, ga(w) = 20 and gs(w) = 10. Tt can be
checked that there are no 4-bands of w belonging to I(gs(w)—27, gs(w)). The overpartition
7 = 13(w) can be constructed as follows: First, remove §(w) = 80, go(w) = 61, and
G3(w) = 51 from w to get w. We have

G(w(l)) = (mb 8037 802,%1,@2,@3, 6017%27 503aE174_527E1a%27

291, 204, 203, 204, 111, 104, 93, 52, 14).

{20}4 {10}4

It can be checked that the marks of parts in G(w")) are the same as those in G(w). The
reverse Gordon marking of w is given by

RG(W(I)) = (mla 8027 80377_017@27m17 6037%27 501aE37£27@1a%27

2917 20272037 2047 1117 1027 937 547 1 )7

from which we see that the 4-marked parts 20 and 5 in RG(w(") are also in {20}, and {10},
of w, respectively. Then 7 can be obtained by inserting g, (w)—10 = 70, ja(w)—10 = 51,
and g3(w) — 10 = 41 into w®). Below is the reverse Gordon marking of

RG(r) = (801, 809, 803, 701, 704, 694, 601, 603, 552, 514, 501, 493, 459, 414, 391, 354,

291,205,203, 204, 111, 10, 93, 54, 11).

Notice that g;(w) — 10 = 70, ga(w) — 10 = 51, and g3(w) — 10 = 41 are marked with 4 in
RG(m). The marks of the remaining parts in RG(7) are the same as those in RG(w™).

We remark that the condition in Proposition 4.5 that §,(w) is a part in any (k—1)-band
of w belonging to I(§,(w) —2n, g,(w)) is necessary. For example, let w be an overpartition
in Bi(1,5,9;10,5,4) having the Gordon marking

G(w) = (804, 804, 803, 802, 701,692, 614, 603, 601, 552, 514, 503, 491, 459, 404, 403, 391, 359,

291,204, 203,204, 111,104, 95, 59, 1 1)
There are six 4-marked parts in G(w), namely, §;(w) = 80, §2(w) = 61, g3(w) = 51,

ga(w) = 40, gs(w) = 20 and g¢(w) = 10. Furthermore, w has three 4-bands {49 45, 40,40},
{45,40,40,39} and {40,40,39,35} in the interval (31,51).

The overpartition m = 3(w) can be obtained by subtracting n = 10 from each of
g1(w) = 80, ga(w) = 61, and g3(w) = 51, and so we get

RG(7) = (801, 804,803, 701, 704, 694, 601, 603, 559, 514, 501, 493, 459, 414, 40, 405, 393, 352,

291,204,203, 204, 111, 104, 93, 54, 11).
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Because of the occurrence of the 5-marked part 40 in RG(), the property (3) in Propo-
sition 4.5 is violated.

4.2 The restricted moves

To describe the first step of the bijection ® in Theorem 4.1, we will restrict the (k — 1)-
forward move and the (k — 1)-backward move to two subsets of By (av, ..., ax;n, k, 7). We
assume that A\, k and r are integers such that £k > r > A > 0 and k£ > \. Recall that
Bj(au,...,ax;n,k,r) denotes the set of overpartitions in Bj(ay, ..., ax;n, k,r) without
overlined parts divisible by 1. We will be concerned with the following two subsets of
Bi(ag, ... ax;n, k).

e For N > p > 1, let B.(ay,...,ax;n, k,r|N,p) denote the set of overpartitions ~y
in By(ay,...,ax;n,k,r) such that there are N parts marked with £ — 1 in RG(7),
denoted 71 (y) > Ta(y) > -+ - > 7n(7), and for all 1 < i < p, the parity of {7;(7)}xr_1
is the same as that of {7, 1(7)}r-1-

e For N > p > 1, let By(a,...,ax;n, k,r|N,p) denote the set of overpartitions =
in Bi(ay,...,ax;n, k,r) such that there are N parts marked with & — 1 in RG(7),
denoted 71(y) > 72(y) > -+ > Tn(7), and for all 1 <i < p, the parity of {7;()}r-1
is opposite from the parity of {7,+1(7)}r—1-

Notice that there are no (k — 1)-bands {7ny1(7)}x—1 in 7. In this case, we define the
parity of the empty band to be even, and so Be(aq,...,ax;n, k,7|N,N) is a subset of
Bo(aq, ... ax;n, k).

The following theorem shows that the forward move ¢, gives rise to a bijection between
Be(ai,...,ax;n, k,r|N,p) and By(aq,...,ax;n, k,r|N,p).
Theorem 4.6. For N > p > 1, the forward move ¢, is a bijection between Be(ov, . .., ax;n,

k,r|N,p) and Bg(au,...,ax;n, k,7|N,p). Moreover, for v € Be(a,...,ax;n, k,r|N,p),
let ¥ = (), we have |9 = || + pn.

For example, let v be the overpartition in Bi(1,5,9;10,5,4), whose reverse Gordon
marking reads

{70}4 {55}4 {41}4
RG(,}/) = (8_117 éOQv 8O3a ﬁl? 7017 @Qa ,6;117 6037 EQ, %47 5017 @% E37 HZv

1, 3527\_917 21272037 20%7 \1_117 1027§37g4>-

{;&’4 {%;4

gl
©

There are five 4-marked parts in RG(7y). Moreover, it can be checked that the 4-bands
induced by 71(y) = 70, 72(y) = 55, 73(7) = 41, 74(y) = 20 are all even. Therefore, v is an
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overpartition in B.(1,5,9;10, 5, 4|5, 3). Let ¥ = ¢3(). Then the reverse Gordon marking
of ¥ is given by
{80}4 {60}4 {45}4

o Y

RG(,&) = (8117 802a 8037 8047ﬁ1a6_927%37ﬁla 604,@2,3_11, 50374_927£Z7

1, 3527 \_917 2127 2037 20%7 }_117 1027 §37 g4)
{;Or}4 {%?4
There are five 4-marked parts in RG(1}) and the 4-bands induced by 71 () = 80, 75(¢) = 60

and 73()) = 45 are odd, whereas the 4-band induced by 74(J) = 20 is even. This indicates
that ¢ is an overpartition in By(1,5,9;10,5,4|5,3). Clearly, we have |¢| = || + 30.

g
Nej

To prove Theorem 4.6, we establish two lemmas. From now on, we shall use f<,(7)
to denote the number of parts less than or equal to 7 in an overpartition ~.

Lemma 4.7. For N > p > 1, let v be an overpartition in Be(ay,...,ax;n, k,r|N,p)
and let 9 = ¢,(y). Then 9 is an overpartition in By(ay,...,cx;n,k,7|N,p). Moreover,

|0] = || + pn.

Proof. Clearly, v is an overpartition in By (a1, ..., ax;n, k,r) with N parts marked with
k —1in RG(7). In view of Proposition 4.3, we find that ¥ = ¢,(v) satisfies (1), (2)
and (3) in Definition 1.14. Furthermore, there are N parts marked with £ — 1 in RG(?).
Thus, to prove that ¥ belongs to By(au, ..., ax;n, k,7|N,p), it suffices to verify that the
following conditions hold:

(A) fen(@) <7 —1;

(B) For 1 < i <p, {7(9)}x—1 and {7,+1(?) }x—1 have opposite parities.

Condition (A). It is readily seen that f<,(?) equals either f<,(v) or f<,(y) —1. Under
the condition f<,(y) <r —1, we get f<,(¥) <r—1.

Condition (B). By the property (3) in Proposition 4.3, there are N parts marked with
k—11in G(9), denoted §1(9) > go(9) > - -+ > gn (). It follows from Proposition 3.3 that
there are also N parts marked with £ — 1 in RG(¥), denoted 71(¢) > 7o(9) > -+ > 7y (V)
such that g;(¥) € {7(¥)}r—1 for 1 < ¢ < N. This implies that {7;(9)}r—1 is a (k — 1)-
band including g;(¢). Utilizing Proposition 3.6, we obtain that for each 1 < i < N,
{7(9) }x—1 and {g;(?) }r_1 have the same parity. Therefore, to prove that {7;(9)}r_1 and
{7p+1(9) }x—1 have opposite parities for 1 < i < p, we are obliged to show that {g;(¢) }x—_1
and {gp+1(?Y) }r—1 have opposite parities for 1 <i < p.

For 1 << N, let
Fin(y) = = Tiga(y) > 7i(7)
be the parts in the (k — 1)-band of v induced by 7;(7), and let

Gi(9) > Gi2(0) > -+ > Gip—1(V)
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be the parts in the (k — 1)-band of 9 induced by g;(¢). Write

[Fia() /] + -+ [Fip—2 (V) /1] + [F(9) /0] = ai(7) + V4 (731(7)) - (mod 2),

and

(9:(0)/n] + 1gs2(0) /1] + -+ + [Gige—1 (9) /0] = ai(9) + Vg(gs(9))  (mod 2),

where a;(v) (resp. a;(9)) either equals r — 1 or 7 for 1 < ¢ < N and ayy1(7y) (resp.
an+1(0¥)) = r — 1 with the convention that the empty band is even.

Since vy belongs to B.(aq, ..., ax;n, k,r|N,p), where 1 < p < N, we have for 1 <i < p,
a;(7) = ap+1(7)- (4.4)

We proceed to show that {g;(¢) }x—1 and {gp+1(?9) }r—1 have opposite parities for 1 <1i < p,
or equivalently, for 1 < < p,

ai(9) # ayia(9). (4.5)

The proof of Proposition 4.3 justifies the following relation for 1 < i < p,

Fi(y)+n > Taly) = 0 > Tipa(y)
I I I (4.6)
() = Gi200) = -0 = Giga(V).
We claim that for 1 <17 < p,
Vol(3:(9)) = Vo (Fi1(7))- (4.7)

Recall that V. (t) (resp. V(f)) stands for the number of overlined parts not exceeding ¢
(resp. t) in .

Owing to the relation (4.6), we deduce that for 1 <i < p,

_ _ 1, if 7;(v) #Z 0 mod 7,
‘MmM%mewz{ i) 7 Omod (48
0, otherwise,
and
_ _ 1, if g;(¥) # 0 mod 7,
w@wwvwmwz{ o) 7 0 mod (4.9)
0, otherwise.

By definition, g;(¢) = 7;(y) + n, and so g;(9) is divisible by 7 if and only if 7;() is
divisible by 7. Therefore, combining (4.8) and (4.9) gives (4.7), and hence the claim is
proved.
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Invoking the relation (4.6), we find that for 1 <i < p,

[9:(D) /] + [9:2(9) /0] + -+ + [Gi 1 () /7]
= [(Fi(v) +m)/m] + [Fia(v)/m] + -+ + [Fin—2(7) /7]
= [V /] + [P (0) /m] + - -+ + [Fip—2(7) /0] + 1
= ai(7) + Vo (Fir(7)) + 1 (mod 2).

It follows from (4.7) that a;(¥) = a;(7) + 1 (mod 2) for 1 < i < p. In view of (4.4), we
obtain that for 1 <1 < p,

a;(V) = aps1(y) +1  (mod 2). (4.10)

We next show that
ap+1(7) = apa (V). (4.11)

From Proposition 3.6, we know that the parity of {7,+1(9)}r—1 is the same as that of
{Gp+1(9)}r—1. On the other hand, the construction of the forward move ¢, indicates
that the parity of {7,4+1(7)}x—1 is the same as that of {F,;1(J)}x_1, and so the parity of
{7p+1(7) }x—1 agrees with that of {g,+1(9)}x—1. Thereby, we get (4.11). Combining (4.10)
and (4.11) gives (4.5). It follows that {g;(V) }x—1 and {g,+1(¥)}x—1 have opposite parities
for 1 < i < p, and so {7;(V) }x—1 and {Fp4+1(9)}r_1 have opposite parities for 1 < i < p.
Hence the condition (B) is satisfied.

We have shown that ¢ € By(aq,...,ax;n, k,r|N,p). It is routine to verify that [J| =
|7| + pn, and thus the proof is complete. |

Lemma 4.8. For N > p > 1, let ¥ be an overpartition in By(aq, ..., ax;n, k,r|N,p) and
let v = ¢,(9). Then v is an overpartition in Be(ou, ..., ax;n, k,r|N,p). Furthermore,
Iyl =19 -

Proof. In order to show that ~ is an overpartition in Be(aq, ..., ax;n, k, 7| N, p), we need
to prove that ~ satisfies (1), (2) and (3) in Definition 1.14 and there are N parts marked
with & — 1 in RG(7), denoted 7i(y) > 7a(y) > --- > 7n(7). Moreover, the following
conditions are also required:

(A) fey(r) <r =1,
(B) the parity of {r;(7)}r—1 is the same as that of {F,+1(7)}r—1 for 1 <i <p.
Now we consider (1), (2) and (3) in Definition 1.14. Assume that g; () > go(¢) > -+ >

gn (¥) are the (k—1)-marked parts in the Gordon marking of ¢ € By(ayq, ..., ax;n, k,r|N, p).
By Proposition 4.5, it is necessary to prove that

(C) 5(0) =1+ ai;
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(D) §,(¥¥) is a part in any (k — 1)-band of ¥ belonging to 1(g,(?) — 2n, §,(?)).

Condition (C). Given that ¥ € By(ay, ..., ax;n, k,r|N,p), combining Proposition 3.3 and
Proposition 3.6, we realize that {g;(?)},—1 and {gp+1(9)}r—1 have opposite parities for
1 <1 <p. Suppose to the contrary that g,(¢) < n+ a1, which means that g,(¢) <n. In
this case, we have p = N. Observing that gy (?) is marked with £ — 1 in G(9), so we get
f<y(¥) =k — 1, that is, » = k. Assume that

gn(0) 2 gnp(?) = -+ = gnp-1(9)

are the parts in the (k — 1)-band of ¢ induced by gn(¥). Under the condition that
{gn(9) }k—1 and {gn11(?)}r_1 have opposite parities and the convention that the empty
band is even, we deduce that {gn(9)}x_1 is odd, that is,

95 () /0] + [an2(0) /n] + - + [Gvas-1(9) /] = 7+ Vo(gn(9))  (mod 2).  (4.12)

On the other hand, since gy (¥) < n, we obtain that

[gn (D) /1] + [gn2(9) /0] + - - - + [Gne—1(9) /7]
= f<n(9) = fen(¥) =k =1 = f (V),

where f-, (1) denotes the number of parts of ¥ less than 7. Recall that V(g (9)) counts
the number of overlined parts of ¢ not exceeding gn(¥). Again, under the assumption
gn(9) < n, we have Vy(gn () = f<, (). Since r = k, (4.13) can be written as

g5 (@) /] + [gn2(0) /1] + -+ + [gng—1(0) /0] = 7 = 1 = Vy(gn(9)),

which contradicts (4.12). Hence g,(¥) > n+ ;.

Condition (D). Suppose that there is a (k — 1)-band belonging to 1(g,(9) — 2n, g,(?))
which does not contain §,(¢) as a part, and let

(4.13)

19m Z 19m+1 Z e Z ﬁm—&—k—Q

be the parts in this (k — 1)-band, that is, ¥,, < ¥, 2 +n with strict inequality if ¥, is
overlined, ¥,, < §,(9) and V452 > §,(¥) — 21 with strict inequality if g, (1)) is overlined.
In view of Lemma 3.5, we deduce that {g,(9)}r—1 and {41} o<i<k—2 are of the same
parity.

Now, since {U,n 41 }o<i<k—2 is a (k—1)-band of 9, there is a part, say U4+ (0 < t < k—2),
marked with £ — 1 in G(¢). But 9,, < g,(9), so we get U4+ = Gp+1(?). This implies that
{Um+1}to<i<k—2 is a (k — 1)-band of ¥ including §,+1(¥). By Proposition 3.6, we deduce
that {gp41(9)}e—1 and {Vp4i}o<i<k—2 are of the same parity. It follows that the parity
of {Gp+1(V) }x—1 is the same as that of {g,(V)}r—1, which contradicts the condition that
Vv € By(ay,...,ax;n, k,r|N,p), that is, the parity of {g,+1(V)}x—1 is opposite from the
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parity of {g,(9)}x—1. Therefore, §,(¥) is a part in any (k — 1)-band of ¥ belonging to
I(gp(0) = 21, gp(V))).

Up to now, we have shown that ¢ satisfies the conditions (C) and (D). In view of

Proposition 4.5, we see that 7 satisfies (1), (2) and (3) in Definition 1.14 and there are N
parts marked with & — 1 in RG(~y). We still have to show that 7 satisfies the conditions
(A) and (B).
Condition (A). By the condition (C), we have g,(J) > n+ a;. We now consider two
cases: (1) If g,(J) > 27, then f<,(v) = f<,(¥) <r —1. (2) f n+ g < Gp(¥) < 27, then
f<n(7) = f<y(¥) + 1. In this case, we claim that f<,(¢) < r —1. Suppose to the contrary
that f<, () =r — 1. Assume that

gp(79> > %,2(79) > 2 gp,kfl(ﬁ)

are the parts in the (k — 1)-band of ¥ induced by §,(). Then

[9p(9) /1] + [Gp2(0) /1] + -+ + [Gp k-1 () /7]
= Vy(9p(0)) = fen(9) + f5(0)
= f<y(9) + vﬂ(f’p(ﬁ)) (mod 2),

which implies that {g,(?)}x_1 is even since f<, () = r—1. Giventhat ¥ € By(a,...,ax;7,
k,r|N,p), we see that the parity of {g,(?)}x—1 is opposite from the parity of {g,+1(9) }r—-1.
It follows that {g,41(?)}r—1 is odd, and so {gp+1(¥) }x—1 is nonempty. On the other hand,
since Gp1(0) < gp(9) —n < n, it is ensured by Lemma 3.5 that the parity of {g,(?)}r—1
is the same as that of {g,+1(¢) }x—1, which leads to a contradiction. Hence f<,(J) <r—1
when 7+ a1 < g,(9) <27, and so f<,(y) <r—1.

Condition (B). Utilizing the property (4) in Proposition 4.5, we find that for 1 < i < p,
7i(7) = §i(9) — n. The reasoning in the proof of Lemma 4.7 can be adapted to deduce
that the parity of {7;(7)}x—1 is the same as that of {7,+1(7)}x—1 for 1 <i <p.

Thus we conclude that v is an overpartition in Be(ay, . .., ax;n, k, 7| N, p). It is manifest
from the construction of ¢, that |y| = |[J| — pn. This completes the proof. |

Proof of Theorem 4.6. Let v € B.(aq,...,ax;n,k,r|N,p). Utilizing Lemma 4.7, we find
that ¢, () belongs to By(av, . .., ax;n, k, 7| N, p). In view of the property (4) in Proposition
4.3, we deduce that ¥, (¢,(7)) = 7.

Analogously, let ¥ € By(ay,...,ax;n, k,7|N,p). Invoking Lemma 4.8, we get 1,(1) €
B.(ai,...,ax;n, k,r|N,p). By virtue of the property (4) in Proposition 4.5, we obtain
that ¢,(¢,(9)) = 9.

Thus, we arrive at the assertion that the forward move ¢, is a bijection between
B.(ay,...,ax;n, k,r|N,p) and By(aq,...,ax;n, k,7|N,p). This completes the proof. 1
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4.3 The (k — 1)-insertion and the (k — 1)-separation

As mentioned before, a merging operation is needed in the construction of the bijection ®
between D, x By(ay, ..., axn, k,r) and By(aq, ..., ax;n,k, 7). The main objective of this
subsection is to present a description of this merging operation in terms of the (k — 1)-
insertion operation and the (k—1)-separation operation. To be more specific, the merging
operation is meant to take the parts divisible by 7 and the parts of the overpartition in
Bi(ai,...,ax;n,k,r) to generate certain overlined parts divisible by 7. As a result, we
get an overpartition 7 in By(ay,...,ax;n,k, 7). To this end, we shall prepare two subsets
of Bi(aq,...,ax;n, k,r). Assume that a = n or ; for some 1 < i < ).

e For s > N >0, let BZ(OQ, ..,ax;n, k,r|N, s) denote the set of overpartitions 7 in
Bi(ay, ..., ax;n, k,r) satisfying

(1) There are N parts marked with £ — 1 in RG(7), denoted 71(7) > 7o(7) >+ -+ >

N (T);
(2) Assume that p is the smallest integer satisfying 7,41(7) + n < (s —p)n+a
with the convention that 7y 1(7) = —oo. Then the largest overlined part = a

(mod 7)) in 7 is less than (s — p)n + q;
3) If fe,(1)=r—1,s=N>1anda , then 75 (7) < n;
<n n n
(4) If s= N =0 and a # n, then f<,(7) <r—1.

e For s > N >0, let BX(o,..., a1, k,7|N,s) denote the set of overpartitions o in
Bi(ay,...,ax;n, k,r) subject to the following conditions:

(1) There exists an overlined part = a (mod 7) in o, and assume that the largest
overlined part = a (mod 7) in o is tn + a;

(2) Let 6 be the overpartition obtained by removing ¢ + a from . Then there
are N parts marked with k — 1 in G(¢), denoted §1(6) > Go(d) > -+ > gn(0);

3) Assume that p is the smallest integer such that 1(0) < tn+a + a with the
g gp+ n
convention that §N+1(6'> = —00. Then s = p+t.

_ For example, let N =5, s = 6 and a = 10 and let 7 be the overpartition in
B1(1,5,9;10,5,4) with the reverse Gordon marking

RG(T) = (gla 8027 803a%17 7047@%6_117 6037E2a%47 501,@2,Eg,ﬂ4,

(4.14)
395,355, 291, 204,203, 20,4, 113, 105, 03, 54, 11).

There are five 4-marked parts 71 (1) = 70, 7o(7) = 55, 73(7) = 41, 74(7) = 20 and 75(7) = 5
in RG(7). Then p = 3 is the smallest integer such that 30 = Tp+1( J+n<(s—pm+a=
40. Meanwhile, the largest overlined part divisible by 10 in 7 is 20, which is less than
(s — p)n+ a = 40. So T is an overpartition in Eio(l, 5,9;10,5,4|5,6).
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Next example is concerned with determining whether an overpartition in By (ay, . . ., ax;
n, k,r) belongs to BX (o, ..., ax;n, k,7|N,s). Let N =5, s =6, a = 10 and let

(4.15)

be an overpartition in Bi(1,5,9;10,5,4). The largest overlined part divisible by 10 of o
is 40, and so t = 3. Removing 40 from o, we get & with the Gordon marking

G(a—) = (%Qa 8047 8037 801a%27@17%4a6_137 6027Eb5_147 50374_9%%27

o (4.16)
3917 3527 2917 20472037 2027 1117 1047 937 527 11)

There are five 4-marked parts §,(6) = 80, §2(6) = 65, g3(6) = 51, gs(6) = 20 and

gs(6) = 10 in G(6) and p = 3 is the smallest integer such that 20 = g,.1(6) < 40. Indeed,

p +t = s holds. Thus, we conclude that ¢ is an overpartition in Bio(l, 5,9;10,5,4/5,6).

We next give the definition of the (k—1)-insertion operation, which serves as a bijection
between B_(ay,...,ax;n, k,7|N,s) and BZ(ay, ..., ax;n, k,7|N, s).
Definition 4.9 (The (k — 1)-insertion). For s > N > 0, let 7 be an overpartition in
Bi(al, oo, k| N, s) with N parts marked with k — 1 in RG(7), denoted 71(7) >
- > 7n(7). Assume that p is the smallest integer such that0 < p < N and (s —p)n +a >
Tp41(7) +n. The (k—1)-insertion I¢: T — o is defined as follows: first apply the forward

move ¢, to T to get 7' = ¢,(T), then insert (s — p)n + a into 7' as an overlined part of o.

It should be understood that when p = 0, the forward move ¢, is considered as the
identity map, that is, ¢,(7) = 7. In this paper, we adopt the (k — 1)-insertion with a = 7.
The case a = a; will be used in our second paper [25].

For example, take the overpartition 7 in Bi0(1,5,9; 10, 5,4/5,6) whose reverse Gor-
don marking is given in (4.14). In this case, p = 3 is the smallest integer such that
(s—p)n+a=40 > 30 = 7p11(7) + 1, where s = 6 and a = 10. Applying the forward
move ¢3 to 7, we get

5,80, 80,80, 75,69,65,61, 60,59, 51, 50,49, 45,

~

/
T =

,35,29,20,20, 20,11, 10,9, 5, 1),

gl
Ne)

whose Gordon marking agrees with the one in (4.16). Inserting (s — p)n + a = 40 into
7', we obtain ¢ = I%(7) as in (4.15), which belongs to 31:0(1,5,9; 10, 5,4/5,6). Clearly,
lo| = |7| + 70.

Theorem 4.10. Fors > N > 0, the (k—1)-insertion I is a bijection between B-(ay, . . .,
oaxin, k7N, s) and B2 (o, ..., an:m, k,7|N, s). Moreover, fort € Ei(al, oo, k| N,
s), let 0 = I2(7), we have |o| = |T| + sn + a.
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The proof of the above theorem consists of three parts. Lemma 4.11 shows that the (k—
1)-insertion is a map from Bi(al, o axn, kTN, s) to Bi(Oﬂ, —oaxn, k,r|N,s). Lem-
ma 4.13 provides a map (that is, the (k—1)-separation) from Bi(on,...,cn;m, k7N, s) to

B_(ou,...,ax;n,k,7|N,s). Then we will finish the proof of Theorem 4.10 by confirming
that the (k — 1)-insertion and the (k — 1)-separation are inverses of each other.

Lemma 4.11. For s > N > 0, let 7 be an overpartition in Bi(al, o ann kTN s)
and let o = I%(t). Then o is an overpartition in B (o, .., ax;n, k,r|N,s). Moreover,
lo| = || + sn+a.

Proof. To prove that o belongs to BZ (av, . .., ax; 1, k, 7| N, s), we must verify the following
conditions:

(A) There exists an overlined part = a (mod n) in o, and assume that the largest
overlined part = a (mod 7) in o is tn + a;

(B) Let & be the overpartition obtained by removing ¢n + a from ¢. Then there are N
parts marked with £ — 1 in G(6), denoted §1(6) > G2(6) > -+ > gn(0);

(C) Let p be the smallest integer such that §,+1(6) < tn+ a. Then we have p +1¢ = s;
(D) fenlo) <7 =15
(E) The marks in G(o) do not exceed k — 1.

Condition (A). Let 71(7) > -+ > 7n(7) be the (k — 1)-marked parts in RG(7). Assume
that p is the smallest integer such that 0 < p < N and

(s =p)n+a>7p(r) +n. (4.17)

By the choice of p, we find that for p > 1 and 1 < < p,

(s—i+1)n+a<ri(r)+mn. (4.18)

Since T € Ei(al, o, ann, kTN, s), the largest overlined part = a (mod 7) in 7 is less
than (s — p)n + a. By the construction of I¢, together with (4.18), we deduce that the
largest overlined part = a (mod ) in ¢ is (s — p)n + a, that is, t = s — p.

Condition (B). Since ¢ is the overpartition obtained by removing tn + a from o, by the
construction of I¢, we find that & = ¢, (7). In view of Proposition 4.3, we know that there
are N parts marked with & — 1 in G(¢), denoted §1(6) > §2(6) > -+ > gn(0).

Condition (C). From the proof for the condition (A), we observe that the largest overlined
part = a (mod n) in ¢ is (s — p)n + a, that is, t = s — p. We attempt to show that p is
the smallest integer such that g,.1(6) < tn + a. By Proposition 4.3, we get

Gi(o) =Ti(t)+nfor 1 <i<p, and 7(7) < Gi(6) < 7a(7) for p <i <N,
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where 7;1(7) > -+ > 7 4_o(7) > 7(7) are the parts in the (k — 1)-band of 7 induced by
7i(7). It follows that for 1 <7 < p,

gi(o)=ri(r)+n>(s—i+1)n+a, (4.19)

and

9p+1(0) < Tpr1,1(7) < Fpa (1) + 10,
with strict inequality if 7,1 1(7) is overlined. Consequently, in view of (4.17), we deduce
that g,41(6) < tn+a. But, by (4.19), we find that §;(6) > tn+a for 1 <i < p, from
which it follows that p is the smallest integer such that tn+a > §,+1(5).

Condition (D). By the construction of &, we know that f<,(6) < r — 1. To show that
f<y(o) <1 —1, we consider the following two cases:

Case 1: If (s — p)n+a > n, then f<,(0) = f<,(6) <r—1.

Case 2: If (s — p)n+ a < n, then p = s and a # . Moreover, because of the choice of
p, we further have s = p = N. We now encounter two subcases.

Subcase 2.1: If f<,(7) <7 —1, then f<,(0) = f<,(6) +1 < f,(1)+1 <r—1

Subcase 2.2: If f<,(7) =r—1, then NV > 1. Based on the fact that s =p =N > 1 and
the condition (3) in the definition of BZ(ay, ..., ax;n, k,7|N, s), we see that 7n(7) < 7.
In the case p = N, we may employ the forward move to add n to 7x(7) in 7 to get
f<n(6) = f<n(T) — 1. Hence f<,(0) = f<4(6) + 1 = feu(7) =r— 1.

Condition (E). Recall that the marks in G(6) do not exceed k — 1 and o is obtained by
inserting (s — p)n + a into 6. To show that the marks in G(o) do not exceed k—1, it is e-
nough to prove that there are no (k—1)-bandsof 6 in ((s —p— 1)n+a,(s —p+ 1)n+ a).
Suppose to the contrary that there exists a (k — 1)-band {6m+4i}o<i<k—2 of ¢ in
(G —p—Dn+a(—p+Dy+a), namely,

(s—=p+1n+a>6,>0m11> > 0miko>(—p—1)n+a.

From the construction of the (k—1)-insertion, we find that {7, }o<i<k—2 is also a (k—1)-
band of 7. Hence there is a (k — 1)-marked part 6,,44 (0 <t <k —2) in RG(7).

Case 1: 6, < 7p(7). In this case, 7p41(7) > Gyt > (s —p — 1)+ a, which contra-
dicts (4.17).

Case 2: G,, > 7,(T). Setting ¢ = p in (4.18) gives (s —p+ 1)n + a < 7,(7) +n, whence
om < (s —p+1)n+a < 7,(7)+n. Consequently, 7,(7) is a part of 7 in (6,, — 7, 6:,), that
is, G — 1 < Tp(T) < Gy Since {Gpm4ifo<i<k—2 is a (k — 1)-band of &, there are exactly
k —2 parts of ¢ after 6, belonging to I(6,, —n, 6,,). Recalling that 7,(7) does not appear
in ¢, we infer that there are exactly k — 1 parts of 7 after 6, belonging to 1(6,, — 1, 6y,).
This implies that there is one part belonging to I(6,,, — 7, 6,,) marked with &k in RG(7),
which is again a contradiction since the marks in RG(7) are supposed not to exceed k — 1.
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Therefore, there are no (k—1)-bands of 6in ((s —p — 1)n + a, (s — p+ 1)n + a). That
is to say, the marks in G(o) do not exceed k — 1 after inserting (s — p)n + a into &, and
so the condition (E) is verified.

Thus, we have shown that o is an overpartition in Bi(ay,...,ax;n, k,r). Clearly,
|o| = |7| + sn + a. This completes the proof. ]

We now define the (k — 1)-separation, which plays the role of the inverse map of the
(k — 1)-insertion.
Definition 4.12 (The (k — 1)-separation). For s > N > 0, let o be an overpartition in
Bl(ay,...,ax;n, k,r|N,s) with the largest overlined part = a (mod n) being tn + a. The
(k—1)-separation J*: o — T is defined as follows: First remove tn + a from o to produce
o, and then apply the backward move Vs to ¢ to obtain T.

The following lemma states that the (k — 1)-separation has the specified image set.

Lemma 4.13. For s > N > 0, let o be an overpartition in B (ay, ..., ax;n,k,7|N, s),

and let T = J*(o). Then T is an overpartition in Ei(al, oo, k,r|N,s). Moreover,

7] = lof —sn —a.

Proof. To prove that 7 belongs to Ei(al, o n kTN, s), we need to check the fol-
lowing conditions:

(A) There are N parts marked with k—1in RG(7), denoted 71 (7) > 7o(T) > -+ > Tn(T);

(B) Assume that p is the smallest integer such that 7,.1(7) +7 < (s —p)n + a. Then
the largest overlined part = a (mod 7) in 7 is less than (s — p)n + a;

(C) feu(r) <7 =1,
(D) If s=N =0and a#mn, then fc, (1) <r—1;

(E) If f<,)(1) =r—1,s=N >1and a # n, then 75 (1) <.

Condition (A). Assume that the largest overlined part = a (mod 7) in o is tn + a. Let
& be the overpartition obtained by removing ¢n + a from ¢. By definition, there are
N parts marked with £ — 1 in G(6), denoted §1(6) > G2(6) > -+ > gn(F). Assume
that p is the smallest integer such that tn +a > g,4+1(6). Since o is an overpartition in
BZ(ay,...,ax;n,k,r|N,s), we have p+t = 5. To show that the condition (A) holds, in
view of Proposition 4.5, it suffices to verify the following statements:

(A1) gp(6) =7+ an;

(A2) g,(0) is a part in any (k — 1)-band of & belonging to 1(§,(6) — 21, G,(5)).
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Condition (A1l). Since tn+ a does not appear in ¢, the minimality of p implies that
tn+a < g,(6). Under the condition that the marks in G(o) do not exceed k — 1, it is
obvious that there are no (k — 1)-bands of 6 in ((t —1)n+a, (t +1)n+a). Let

g/p(&) > gp,2(5) R gp,k—2(6>
be the parts in the (k — 1)-band of ¢ induced by §,(¢). Then
Ip—2(0) = Gp(6) = > (t = 1)y +a.

Consequently, g,(6) > (t + 1)1 + a since there are no (k — 1)-bands of ¢ in ((t — 1)1 + a,
(t + 1)n + a). Using the fact that the largest overlined part = a (mod 7) in ¢ is less than
tn + a, we are led to the strict inequality

gp(0) > (t+1)n+a, (4.20)

which yields (A1).

Condition (A2). Suppose to the contrary that there is a (k — 1)-band of 6 belonging to
I(gy(6) — 21, §,(6)) that does not contain §,(¢) as a part, and let

~

Om 2 ++* 2 Omtk—2

be the parts in this (k — 1)-band. We assume that 6,1, (0 <1 <k —2) is a part in this
(k — 1)-band marked with £ — 1 in G(¢). Evidently, 6,14 < 6., < §,(6). We claim that
Om+1 > Jpt1(0). According to (4.20), we get

(t—1n+a<gy(o) —2n<omir—2 <+ < 0n. (4.21)

As mentioned before, there are no (k — 1)-bands of & in ((t — 1)n+a,(t + 1)n + a), and
so it follows from (4.21) that &, > (t+ 1)n + a. In fact, we attain the strict inequality
m > (t+ 1)n+ a owing to the fact that the largest overlined part = a (mod 7)) in &
is less than tn + a. The assumption that {6, }o<i<k—2 is a (k — 1)-band ensures that
Omik—2 > 0m — 1. Noting that 6, > (t + 1) + a, we obtain that &,,,,_» > tn + a. But
Gp1(6) < tn+ a, we arrive at

a-m—i-l > &m—i—k—Q > t’l] +a> gp—i—l (&)7

as claimed. Thus, we conclude that §,+1(6) < Gy < Gp(6). However, 6,,,4; is marked
with £ —1 in G(¢), which leads to a contradiction since there are no (k — 1)-marked parts
in G(¢) between §,(5) and gp11(0). This confirms the condition (A2).

With the conditions (A1) and (A2) in hand, Proposition 4.5 guarantees that there are
N parts marked with £ — 1 in RG(7). In addition, it gives that

7i(1) =gi(6) —nfor 1 <i<p, and §ix_1(0) <73(7) < gi(0) for p<i < N. (4.22)
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Thus, we have proved that 7 satisfies the condition (A).

Condition (B). We aim to show that p is also the smallest integer such that 7, (7) +n <
(s — p)n + a, where p is defined to be the smallest integer such that g,.1(d) < tn+ a.
Applying (4.22) with ¢ = p + 1 yields that 7,41(7) < §p+1(6) < tn+ a. Let

Ppr1,1(T) > -+ 2> Tpy1p—2(T) > Tppa(7)
be the parts in the (k — 1)-band of 7 induced by 7,41(7). Then
Fpi11(7) < Fpya(7) + 0 < (t+1)n+a.

Since {7p41(7)}x—1 is also a (k — 1)-band of ¢ and there are no (k — 1)-bands of ¢ in
(t—=1)n+a,(t+1)n+ a), we deduce that

Tpr(T) <(t—1n+a=(s—p—1)n+a. (4.23)
Combining (4.20) and (4.22), we find that
"(7) =Gp(6) = >tn+a=(s—pn+a
Hence for 1 <1 < p,
(1) > Fia(r)+n > > (1) + (p—i)n > (s —i)n + a. (4.24)

By inspection of (4.23) and (4.24), we conclude that p is the smallest integer such that
Tp1(7) + 1 < (s —p)n + a. On the other hand, by the definition of J¢, we obtain that

the largest overlined part = a (mod 7) in 7 is less than (s — p)n + a, and so the condition
(B) is justified.

Condition (C). To show that f<,(7) <r — 1, we consider three cases:
Case cl: p = 0. In this case, 7 = 7, so f<,(7) < f<,(6) <r—1.
Case ¢2: p > 1 and §,(6) —n > n. In this case, f<,(7) = f<,(0) < f<,(0) <r —1.

Case ¢3: p > 1 and §,(6) —n < n. In this case, f<,(7) = f<,(6) + 1. It follows
from (4.20) that n > §,(6) —n > tn+a, and so f<,(6) = f<,(0) — 1. Hence f<,(7) =
fan(@) +1=feplo) <r—1

Condition (D). If s = N =0 and a # 7, then 7 is obtained by removing @ from o. This
implies that f<,(7) = f<,(0) =1 <r—1.

Condition (E). There are two cases.
Case el: If g,(6) —n <mn, then p= N and 7y (7) = gn(6) —n < n.

Case e2: If g,(6) —n > n, then f<,(6) = f<,(7). The condition f<,(7) =r—1 implies
that f<,(6) = r — 1. We claim that p < N in this case. Suppose to the contrary that
p= N. If so, we have t = s —p = N —p = 0. This implies that ¢ is obtained by removing
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@ from o, and thus f<,(6) = f<,(0) —1 < r —1, which contradicts f<,(6) =r— 1. Hence
we have p < N. In light of (4.23), we obtain that

Pn(m) STna(m) —n < <Tpu(m) = (N=p-1n<(s=N)p+ta=a<

Therefore, we have proved that the condition (E) is fulfilled.

So far we have accomplished the task of showing that 7 is an overpartition in Ei (o, ...,
ax;n, k,r|N,s). Evidently, |7| = |o| — sp — a. This completes the proof. |

We are now ready to give a proof of Theorem 4.10 based on Lemma 4.11 and Lemma
4.13.

Proof of Theorem 4.10. Let T € Bl(ay,...,axn, k,r|N,s). Utilizing Lemma 4.11, we
find that I%(7) belongs to B (ay,...,ax:n, k,7|N,s). Appealing to the condition (C)
in the proof of Lemma 4.11 and the property (4) in Proposition 4.3, we deduce that
JoUg(T) =T

Conversely, let 7 € Ei(al, co,ann, kTN, s). Invoking Lemma 4.13, we know that
J&(vy) € BZ(al, —.,ax;n, k, | N, s). By virtue of the condition (B) in the proof of Lemma
4.13 and the property (4) in Proposition 4.5, we obtain that I¢(J2(v)) = 7.

Therefore, the map I? is a bijection between EZ(al, ax:n, k,r|N,s)and B2 (o, . . .,

ay;n, k,r|N,s). This completes the proof. |

The following theorem gives a criterion to determine whether an overpartition in
Bl(on,...,cx;m, k,7|N,s) is also an overpartition in Bi(al, coann, k| NS, which
involves the successive application of the (k — 1)-insertion operations.

Theorem 4.14. For s > N >0, let o be an overpartition in B-(ay, ..., ax;n, k,r|N,s).
Assume that there are N’ parts marked with k — 1 in the reverse Gordon marking of o.
Then o is also an overpartition in Bi(al, oo k| NS if and only if ' > s.

Proof. We first show that if s’ > s, then o is in Ei(al, oo, k| NS Let 71(0) >

- > 7n/(0) be the (K — 1)-marked parts in RG(0). We are required to prove that o
satisfies the following conditions:

(A) If p/ is the smallest integer such that
(s =p)n+a=ry(o) +,
then the largest overlined part = a (mod 7) in o is less than (s’ — p/)n + a;

(B) If f<,(0) =r—1,5 =N'">1and a#n, then 7y (c) <.

Condition (A). Assume that tn + a is the largest overlined part = a (mod 1) in 0. Let &
be the overpartition obtained from o by removing ¢n + a. By definition, there are N parts
marked with £ — 1 in G(d), denoted §;(6) > --- > gn(6). Let p be the smallest integer
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such that g,1(6) < tn+a. Since o € Ei(al,...,a,\;n,k,HN, s), we have p = s — t.
Using Proposition 3.3, we find that there are also N parts marked with £ — 1 in RG(5),
denoted 71(6) > .-+ > 7n(6) and that 7(6) < g;(6) for 1 < ¢ < N. In particular,
p+1(6) < Gpi1(0). But gpi1(6) <+ a, so we get 7,11(5) < tn + a.

We now attempt to show that 7,11 (0) < 1+ a. Suppose to the contrary that 7,41 () >
tn+ a. Since ¢ is the overpartition obtained from ¢ by removing ¢n + a, we find that
Fp+1(0) = 7pr1(0), which implies 7,41(6) > tn + a, contradicting the preceding assertion
that 7,+1(0) < tn+ a. This proves 7,41(0) < tn+a.

Examining the construction of &, we notice that N’ equals either N or N + 1. Under
the condition that s’ > s, we get s/ > s+ 1> N+ 1> N'. Let p’ be the smallest integer
such that

(s =p)n+a=7Fyii(o) +1.
Since s’ —p > s—p =t and 7pr1(0) < tn+ a, we find that

(s =pn+az=(+ln+a=itn+atn=ipalo)+mn.
Hence the choice of p’ implies that
pP<p<N<N.

This leads to

(s —p)n+a>(s—pn+a=tn+a.

This proves the condition (A) because 1 + a is the largest overlined part = a (mod 7) of
o.

Condition (B). As we know, 7,41(0) < tn+ a, so that
tn+a 2 7p(0) 2 Tpra(0) 12 - 2 T (0) + (N = p)n.

Observing that & > s+1 > N+ 1 > N’, we find that N = N+1>1and s = N
when ' = N’. It follows that 7y/(0) = Fyy1(0) < th+a— (N — p)n = @ < n because
p+t=s= N. Thus, we have proved the condition (B) is valid.

~ This completes the proof of the sufficiency. Conversely, assume that o is in both
Bl(ou,...,cn;m, k,r|N,s)and Bi(al, oo, k| N’ 8"), we intend to show that s’ > s.

Given that o belongs to B (ay,...,ax;n,k,7|N,s), we may assume that i +a is
the largest overlined part = a (mod 7) in o. Let & be the overpartition obtained from
o by removing tn+a. Then there are N parts marked with £ — 1 in G(6), denote
G1(6) > -+ > gn(F). Let p be the smallest integer such that g,.1(6) < ¢ty + a. Since
o € Bl(oy,...,oz;m, k,7|N,s), we have p = s — t. By the reasoning in the proof of
Lemma 4.13, we establish that

gp(0) > (t+1)n+a. (4.25)
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On the other hand, since o is also in BZ(oy,...,ax;n, k,7|N',s'), there are N’ parts
marked with £ —1 in RG(0), denote 7 () > --- > /(o). Assume that p’ is the smallest
integer such that

(s —p')n+a>7y(o)+n. (4.26)
The condition that o € B&(ay, ..., ax;n, k,r|N',s') ensures that the largest overlined part
= a (mod n) in o is less than (s’ — p/)n + a. But the largest overlined part = a (mod 7)
in o is supposed to be tn + a, so we get s’ —p' >t =5 —p.

Our final goal is to show that s’ > s. Suppose to the contrary that s’ < s. This implies
that p’ < p since s’ —p’ > s —p. Let 7(6) > -+ > 7y(6) be the (k — 1)-marked parts
in RG(6). In view of Proposition 3.3, we find that 7,(6) > §,(6) — . Comparison with
(4.25) yields

7p(0) > Gp(6) —n > tn +a,
so that
(o) = 7p(6) > In + a. (4.27)

Using the fact that p’ < p, we obtain that
Ty 1(0) 2 Tyya(0) +0 > - 2> 7(0) + (p—p = 1)n. (4.28)
Substituting (4.27) into (4.28), we arrive at
fpwi(o) >tn+a+(p—p —n=(—pn+a-n=(s—pn+a—n,
that is,
Fpy1(0) +0 > (8" = p)n+a,

which is in contradiction to (4.26). Thus, we have shown s" > s. This completes the
proof. |

4.4 Proof of Theorem 4.1

In this subsection, we will give a proof of Theorem 4.1 by successively applying the forward
move and the (k — 1)-insertion with a = 7.

Proof of Theorem /.1. Let p be an overpartition in By(aq,...,ax;n,k,7) and let ¢ be
a partition with distinct parts divisible by 7. We wish to construct an overpartition
7 =®(C,p) in Bi(ay,...,ax;n, k,r) such that |r| = || + |p|. There are two cases:

Case 1: ¢ = 0. Set m = p. Obviously, 7 € By(ay,...,axn, k,r) and || = [C] + |p].

Case 2: ¢ # (). Assume that there are N parts marked with & — 1 in G(u), and set

g: (77(17‘--#7@777@:“ "-777Cc+m)7 where gl > > Cc >N Z Cc—i—l > > Cc-l—m > 0. We
first merge nCcy1, ..., NCcem and p by successively applying the forward move. Then, we
will merge n¢y, ..., n¢. and p by applying the (k — 1)-insertion with a = 1 to generate ¢
overlined parts divisible by 7.
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Step 1. Let g1(u) > Go(p) > --- > gn(u) be the (K — 1)-marked parts in G(u). Note
that u € Bo(aq,...,ax;n, k,r), we see that {g;(¢)}r—1 are even for 1 < ¢ < N. We first
merge 1Cei1, - - -, Nerm into p by successively applying the forward move. Denote the
intermediate overpartitions by p(@, 1M, ... u™ with ©© = pu.

Since (.11 < N, we find that p is an overpartition in Be(ayq, ..., ax;n, k, 7| N, (er1). Set
b = 0 and repeat the following procedure until b = m:

(A) Merge nCeyps1 into u®. Apply the forward move Ocorpir tO 1® to obtain p*+),
that is,

P = gy (1)
Since
:U’(b) € Be<051, <y QNG T, k; T|N7 Cc—i—b-‘rl)?

in view of Lemma 4.7, we deduce that

N(b+1) € Bylaa,...,axin, k, 7N, (erpr1),

and

(b+1)|

| = |#(b)| + NCetbt1-

(B) Replace b by b+ 1. If b = m, then we are done. If b < m, then we have

lu(b) € Be(ah <oy QST ka T|N7 Cc-l—b—‘rl))

since Ceypr1 < Cerp < N. Go back to (A).

Eventually, the above procedure yields p(™ € By(ay, ..., ax;n, k,7|N, (epm) such that
1] = 15O+ nCegr + <+ + Mot (4.29)

Step 2. We continue to merge 1¢,, . ..,n¢; into u™ by successively applying the (k — 1)-
insertion with @ = 7. Denote the intermediate overpartitions by p(™, pu(m+1 plm+e)
and set 7 = p(™*). Assume that there are N(u*)) parts marked with & — 1 in RG(u®),
where m <i < m+cand N(u™) = N.

Assume that p is the smallest integer such that 0 < p < N and (¢, — p)n > Fppr (™) +
n. Such an integer p exists because (. > N and ({. — N)n > 0 > —o0 = Fy1 (™) + 1.
Since p™ € By(ay,...,ax;n, k,7|N,(eym), there are no overlined parts divisible by 7 in
p(™. Hence the largest overlined part divisible by 1 in pu(™ is less than ((, —p)n. It
follows that

M(m) € BZ(OQ, sy QT k7r|N(M(m)))CC - 1)

Merging 7nCe, . ..,n¢ into p™, the following procedure generates ¢ overlined parts

divisible by n. We start with setting b = 0.
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erge 7)(.—p Into to generate an overlined part divisible by 7. More precisely,
A) M n into ("t lined divisible by n. M isel
applying the (k — 1)-insertion I/  , to ™) we obtain

(m+b+1) — I<77

c—p—1 (ILL(erb))

1

Since B
ﬂ(m+b) € BZ(&lv <o, Q0T ka T‘N(M(m+b))7 Ccfb - 1)7

in view of Lemma 4.11, we find that
:u(m+b+1) € EZ(OQ, S, QT k? T|N(lu’(m+b))’ gc—b - 1))

and
|l = 0] opC .

(B) Replace b by b+ 1. If b = ¢, then we are done. If b < ¢, since (._p > (o py1, it
follows from Theorem 4.14 that

/L(erb) c BZ<0417 <o Q0T ka T‘N(ﬂ(m%))» Ccfb - 1)

Go back to (A).

The above procedure generates an overpartition 7 = p(™*9 ¢ BZ(ozl,...,oz,\;n,k:,T
|N (e~ ¢ — 1) such that

WO = ||+ G+ -+ 0 (4.30)

From the construction of the (k — 1)-insertion with a = 7, it can be seen that 7 is an
overpartition in By(ay,...,ax;n,k,r) with ¢ overlined parts divisible by 7. Furthermore,
combining (4.29) with (4.30), we find that || = |u| + |(]. Therefore, ® is a desired map
from D, x By(ou, ..., ax;n, k,7) to Bilay,...,axn, k7).

To prove that ® is a bijection, we shall define the inverse map ¥ of ® from Bj(ay, ...,
ax;n, k,r) to D, x Bo(ou, ..., n, k,r) by successively applying the (k — 1)-separation
with @ = 1 and the backward move. Let 7 be an overpartition in By (a1, ..., ax;n, k, 7). We
shall construct a pair of overpartitions (¢, 1), that is, ¥(7) = (¢, ), such that || + |u| =
|7|, where ¢ € D,, and p € By(au, ..., axn, k, 7).

There are two steps in the construction of ({, ) from 7. In the first step, we eliminate
all overlined parts of = divisible by 1 by successively applying the (k — 1)-separation with
a = n. In the second step, we successively apply the backward move to the resulting
overpartition in the first step so that all (k — 1)-bands of the obtained overpartition are
even.

Step 1. Assume that there are ¢ > 0 overlined parts divisible by 1 in 7. We eliminate the ¢
overlined parts divisible by 7 from 7 by applying the (k—1)-separation with a = n. Denote
the intermediate pairs by (¢, 7). . (¢, 7)) with (¢, 7)) = (@, 7). There are
two cases:
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Case 1: ¢=0. Then set (¥ =@ and 7(® = 7.
Case 2: ¢ > 1. Assume that ntq > nt; > -+ > nt._; are the overlined parts of 7 divisible
by 1. Set b = 0 and carry out the following procedure.

(A) Let #® be the overpartition obtained from 7® by removing the overlined part 7t,.
Assume that g (7®)) > -+ > Gy (7)) are the N (7)) parts marked with k—1 in
G(7#®), and p, is the smallest integer such that gy, 1 (7)) < nt,. Let s = p, + 1.
By definition,

m® e B (ay,...,ax;n, k,r|N#E®), s® — 1),

Apply the (k — 1)-separation JJ,  to 7® to get 7"tV that is,
b+1 J;Zb) 1(7T(b)).
By means of Lemma 4.13, we find that
7+ ¢ BZ(al, L ann k| N@E®), s® — 1),

and
‘W(b+1){ = |7®| - ns®.

Then insert 175® into () as a part to obtain (®+D.

(B) Replace b by b+ 1. If b = ¢, then we are done. Otherwise, go back to (A).

Observe that for 0 < b < ¢, there are ¢ — b overlined parts divisible by n in x®,
Theorem 4.14 reveals that for 0 < b < c—1,

s > st 5 N (70+D) (4.31)

Therefore, there are no overlined parts divisible by 1 in 79 and (¢ = (s®, ... nsleD)
is a partition with distinct parts divisible by n. Moreover, we have

7l = 7] +¢]. (4.32)

Let us now move on to the second step.

Step 2. Applying the backward move successively to 7(9, we are led to a pair of over-
partitions (¢, ) € D, x By(au,...,ax;n, k,7) such that |7 = |u| + [¢|. Let N be the
number of the (k — 1)-marked parts in G(7(9) and let g (7)) > --- > gn(7(©) be the
(k — 1)-marked parts in G(7(9). There are two cases:

Case 1: All the (k — 1)-bands {g;(7®)}4_1 of 7 C) are even. In view of Theorem 3.4,
we have 79 € By(ay,...,ax;n, k7). Set p = 79 and ¢ = (. Then ((,n) € D, x
BO(ala <y Q5T k’,’f‘) and |7T| = |M| + |C|

Case 2: There exists i such that 1 <i < N and {§(7?)}x_1 is odd.
In this case, we set b = 0 and execute the following procedure. Denote the intermediate

pairs by (¢(@,7(9)), (¢(+V 7+ and so on.
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(A) Let §i(n) > ... > gy (e be the (k—1)-marked parts in G(7(“*?) and let 1 <
Pety < N be the smallest integer such that {g,_, (m(e+P)},_; and {Gpe, 1 (et}
have opposite parities. By definition, we get

77(0+b) € Bd(ah ceey QST k? T’N, pc+b)‘
Apply the backward move v, ., to 7™ to get w(¢**+) that is,

a0 = g, (@),

By Lemma 4.8, we obtain that
7T(C+b+1) € Be(&lv <oy GG, ka T‘N7pc+b)>

and

HD| = 7| — s (4.33)

Then insert np.,, into (%) as a part to get a partition ¢+,

[

(B) Replace b by b+ 1. If all the (k — 1)-bands {g;(7(*?)},_; of 7(“*? are even, then
we are done. Otherwise, go back to (A).

We claim that during the above procedure, we have

N 2 petbi1 > Detb- (4.34)

Given b > 0, since 71 € B, (ay, ..., ax;n, k, 7| N, peys), we know that p,,p is the least
integer such that {g(7¢**+1)},_; have the same parity for 1 < i < p.,, + 1. Whereas
7+ s in By(au, ..., ax; 1, k, 7| N, Detpr1), 50 that peyyyq is the least integer such that
{peryer (TN 1 and {Gp.,,,, 11 (7))} 1 have opposite parities. Hence we obtain
(4.34), and this proves the claim.

The relation (4.34) ensures that the above procedure terminates after at most NV itera-
tions. Assume that it terminates with b = m, that is, all the (k—1)-bands {g;(7(¢*™)},_,
are even for 1 < ¢ < N. Set

= aletm)  and (= C(c-i—m) — (77307 ey NS 1y MPetm—1, - - - ,npc).

Utilizing Theorem 3.4, we find that p is an overpartition in By(ay, . .., ax;n, k, 7). Observe
that N = N(#(¢V) when ¢ > 1. In light of (4.31) and (4.34), we conclude that  is a
partition with distinct parts divisible by 1. Combining (4.32) and (4.33), we have |7| =
|| +|¢|. Therefore, W is a map from By(au, ..., ax;n, k,7) to D, x Bo(ay, ..., ax;n, k, 7).

Combining Theorem 4.6 and Theorem 4.10, we obtain that W(®((, 1)) = (¢, p) for all
(¢, 1) € Dy x Bo(au,...,an;m, k,r) and @(¥(7r)) = 7 for all m € Bi(a,...,axn,k,7).
Hence @ is a bijection between D, x By(cv, ..., ax;n, k,7) and Bi(ay, ..., ax;n, k,r). This

completes the proof. |
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4.5 An example

We provide an example to illustrate the bijection ® in Theorem 4.1. Let
¢ = (100,80, 50, 40, 20)

be a partition in Djg, and let u be an overpartition in By(3,7;10,4,3) with the reverse
Gordon marking

{80}s {50}3 {30}3
—_ _ 7N N /N ~
RG(p) = (871, 809,803,671,632, 571, 509, 503,431, 372, 331, 303,
201,205, 133,71, 32).
%/_/
{13}3

The overpartition m = ®((, ) is obtained by successively applying the forward move
and the 3-insertion with a = 10. Observe that there are four 3-marked parts in RG(u),
that is, N = 4. We first merge 40 and 20 of ¢ into u by successively applying the forward
move and then merge 50, 80 and 100 of { into the resulting overpartition by successively
applying the 3-insertion with a = 10.

Step 1. Merge 40 and 20 of ¢ into p by successively applying the forward move.
Note that {80}3, {50}3, {30}3, {13}3in RG(u) are all even, so u € B,(3,7; 10,4, 3|4,4).

e Set (¥ =y, and merge 40 into ;(?.

Apply the forward move ¢4 to u® to get pM, namely, add n = 10 to each of
the 3-marked parts 80,50,30 and 13 in RG(u(?)) respectively and rearrange the
parts in non-increasing order to obtain p") = (90, 87, 80,671, 63, 60,57, 50,43, 40, 37,
33,23,20,20,7,3). The reverse Gordon marking of p(!) is given by

{80}s {60}s {40}s
RG(M(1)> = (6017 wm 80;) 6_717 @27 60;) lego% Ela 40;7
ﬁ27ﬁ17%17 2027 2037717§2)-
—_———
{20}3

By Lemma 4.7, we deduce that ") € By(3,7;10,4,3|4,4). Indeed, {80}s, {60}s,
{40} 3, {20}5 in RG(p™) are odd. This implies that u") € B.(3,7;10,4, 3|4, 2).

e Merge 20 into p(V.

Apply the forward move ¢, to u") to obtain £, namely, add n = 10 to each of the
3-marked parts 80 and 60 in RG(uM). We get

{87}s {63} {40}
RG(M@)) = (5017 9027 W;, %017 ﬁ27 @;7 ﬁ17%027 Ela 4037
ﬁ27§1aﬁ17 2027 203771732)'
—_——

{20}3
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Again, it follows from Lemma 4.7 that pu® € By(3,7;10,4,3(4,2). In fact, {87};
and {63}3 in RG(u?) are even, but {40}5 in RG(u?) is odd.

Step 2. Successively employ the 3-insertion with a = 10 to merge 50, 80 and 100 of (
into p(®.

e We start with merging 50 into x(¥, and set s = 4.

There are four 3-marked parts in RG(p?), which are 7;(u?) = 87, 7y(u®) = 63,
F3(u®) = 40 and 74 (u®) = 20. In this occasion, p = 4 is the smallest integer such
that (4 —p) - 10 + 10 = 10 > 7,1 (u¥) + 10 = —oc0 and there are no overlined parts
divisible by 10 in . Hence u® € B.'(3,7;10,4, 3|4, 4).

Apply the 3-insertion I}° to p® to get u®. More precisely, add 7 = 10 to each
of the 3-marked parts 87, 63, 40 and 20 in RG(x?) and then insert 10 into the
resulting overpartition as an overlined part. The resulting reverse Gordon marking
reads

RG(u®)) = (971,904,903, 73, 705, 673, 571, 504, 503, 431,
ﬁQ,ﬁl, 303,%1, 202,m1,72,§3>.

Utilizing Lemma 4.11 gives 1® € B (3,7; 10,4, 3|4, 4).

e Merge 80 into 4 and set s = 7.

There are five 3-marked parts in RG(u®), to wit, 7 (u®) = 90, 7o(u®) = 67,
F3(u®) = 50, 74(u®) = 30 and 75(u®) = 3. Moreover, p = 2 is the smallest
integer such that (7 —p) - 10+ 10 = 60 > 7,1 (2®) + 10 = 60. Given that u® €
B2"(3,7:10,4,3|4,4), Theorem 4.14 yields that u® € B.(3,7;10,4,3|5,7).

Apply the 3-insertion I2° to u®® to get pu™®, that is, add n = 10 to each of the
3-marked parts 90 and 67 in RG(x®) and then insert 60 into the resulting overpar-
tition as an overlined part. We are led to

RG(M(4)) - (10017W27 90377_717ﬁ27 703,@1,?27 5017 50374_327
ﬁhﬁZy 3037%17 20271_01a727§3)'

As asserted by Lemma 4.11, we have u® € Ei0(3, 7:10,4,3(5,7).

(4

e Finally, merge 100 into x®, and set s = 9.

There are five 3-marked parts in RG(u®), namely, 7 (u®) = 90, 7o(u®) = 70,
(™) = 50, 74 (@) = 30 and 75(p?) = 3. Moreover, p = 0 is the smallest integer
such that (9 —p)-10+10 = 100 > 7 (x®) + 10 = 100. Knowing that u¥) €
B2"(3,7:10,4,3|5,7), Theorem 4.14 indicates that u@ € B (3,7;10,4,3|5,9).
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Apply the 3-insertion 13° to u™® to get u®. In other words, insert 100 into u® as
an overlined part to generate

RG(M(S)) = (mla 10027W37 golaﬁlaﬁ% 703,@1,?2, 5017 50374_327

T (4.35)
37173327303723172027101772733>'

Using Lemma 4.11 again, we conclude that u® € Eio(?), 7,10,4,3|5,9).

Set m = u®). Clearly, 7 is an overpartition in B;(3,7; 10, 4, 3) such that |7| = |u| 4 |C].

Conversely, let 7 be an overpartition in By (3, 7; 10, 4, 3) whose reverse Gordon marking
is given by (4.35). The pair of overpartitions W(mw) = ({, ) can be recovered by succes-
sively applying the 3-separation with a = 10 and the backward move. There are three
overlined parts in 7 divisible by 10, as identified by 100, 60 and 10.

Step 1. Eliminate 100, 60 and 10 from 7 by successively using the 3-separation with
a = 10.

e Eliminate 100 from 7, and set ¢, = 10.

Set 7 = 7 and ¢ = 0. Let #© be the overpartition obtained from 7(® by
removing 100, which has the Gordon marking

G<ﬁ.(0)> = (10037W279017ﬁ37ﬁ277017m27ﬁ1750375027E17ﬁ27§1 ( )
_ o _ 4.36
303, 235, 201, 103, 72, 31).

There are five 3-marked parts in G(7#(), namely, §,(7?) = 100, §(7©) = 77,
G3(7@) = 50, g4(7@) = 30 and §5(7?)) = 10. Moreover, py = 0 is the smallest
integer such that 10 - £y = 100 > §p11(7?) = 100. Set so = py + to = 10. Then
70 e B1(3,7,10,4,3/5,9).

Set ¢ = (100). Apply the 3-separation Ji° to 7(® to get 7(Y). In other words,
71 is obtained from 7(® by removing 100, which means that 70" = #(®) and the
Gordon marking of 7! is given by (4.36). Appealing to Lemma 4.13, we deduce
that 71 € BL’(3,7;10,4,3]5,9).

e Eliminate 60 from 7!, and set t; = 6.

Let #() be the overpartition obtained from 7! by removing 60. We have

G(ﬁ-(l)) = (10037W27 9017ﬁ377_327 70175_717 5037 5027@17ﬁ27§1
303a§2) 2017]-_0?”72731)'

There are five 3-marked parts in G(#()), which are §,(7(V) = 100, g.(7V) = 77,
G3(7W) = 50, G4(7M) = 30 and §s(7V) = 10. Now, p; = 2 is the smallest integer
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such that 10-¢; = 60 > §p1+1(7?(1)) = 50. Set sy = p; +t; = 8, and we get
70 e B1'(3,7,10,4,3|5,7). Clearly, s > s, in agreement with Theorem 4.14.

Set ¢ = (100, 80). Apply the 3-separation J° to 7(Y) to get 7(¥, namely, remove

60 from 7 to get #(M, and then subtract 7 = 10 from each of the 3-marked parts

100 and 77 in G(#(M) to get 7(®. The Gordon marking of 7(?) is given below:
G(n®) = (975,905,901, 733, 702, 671, 571, 503, 502, 431, 372, 334

3037%27 20171_037727§1)-

We now have 72 ¢ Eio(?), 7,10,4,3]5,7), as expected by Lemma 4.13.

Finally, eliminate 10 from 7, and set t, = 1.

Let #® be the overpartition obtained from 73 by removing 10, so that

G(ﬁ@)) = (W?n 9027 9017ﬁ37 702)ﬁ17ﬁ17 5037 5027 Bla ﬁ%ﬁl
3037 ﬁQ? 2017727 gl)
There are four 3-marked parts in G(7#®), namely, §;(7®) = 97, §(7?) = 73,
33(7@) = 50 and g4(#®) = 30. Meanwhile, p, = 4 is the smallest integer
such that 10-t, = 10 > §p2+1(7?(1)) = —00. Set s9 = ty + po = 5. Then
7 e BiO(B, 7,10, 4, 3]4,4). In accordance with Theorem 4.14, we have s; > ss.
Set ¢ = (100,80,50). Apply the 3-separation J!° to 7@ to get 73, To wit,
remove 10 from 7(? to get #(®, then subtract n = 10 from each of the 3-marked
parts 97, 73, 50 and 30 in G(7®) to obtain 7(3. We get
{90}s {70}s {40}
G (7)) = (903,904,871, 705,671, 634, 571, 505, 431, 405, 375, 331,
2_337 2027 201772731)‘
—_———

{23}3

Using Lemma 4.13, we have 73 € B2(3,7; 10, 4, 3|4, 4).

There are no overlined parts divisible by 10 in 7(3). The fact that ¢®® = (100, 80, 50) is a
partition with distinct parts reflects the claim of Theorem 4.14.

Step 2. Successively apply the backward move to 73 to derive a pair of overpartitions
(¢, p) in Dy, x By(3,7;10,4,3).

There are four 3-marked parts in G(7®), namely, §(7®) = 90, G.(z®) = 70,

G3(m®)) = 40 and g4(7®) = 23. Moreover, {90}3 and {70}5 are even and {40}3 and {23} 3
are odd, whereas p3 = 2 is the smallest integer such that {g,,(7®)}s and {gp,1(7®)}3
have opposite parities. Hence 7 € By(3,7;10,4, 3|4, 2).
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e Set ¢ = (100, 80,50,20). Apply the backward move v, to 7 to produce 7.
Strictly speaking, subtract n = 10 from each of the 3-marked parts 90 and 70 in
G(m®) to get 7™. The Gordon marking of 7 is

{90}s {60}s {40}5
/_b - r : N T : —
G (™) = (905,874,804, 671,632, 605, 571, 504, 431, 403, 374, 331,
233,202,201, 72,31).
—_——

{23}3

In view of Lemma 4.8, we may say that 7Y € B,(3,7;10,4,34,2). To be more
specific, {90}3, {60}3 {40}3 and {23}3 are all odd. Hence p; = 4 is the smallest
integer such that {g,, (7™)}s and {g,,+1(7¥)}3 have opposite parities. It follows
that 7 € B,4(3,7; 10,4, 3|4,4). Obviously, N > p, > ps.

e Set ¢ = (100, 80, 50, 40, 20). Apply the backward move 14 to 7™ to obtain 7,
namely, subtract n = 10 from each of the 3-marked parts 90, 60, 40 and 23 in
G(r®). We get

{87}3 {?2}3 {37}s

A

—_ __ __ - pia— Y e
G(m®) = (875,804,804, 671,632,571, 503, 502, 431, 373, 333, 301,

203,202,131, 72, 31).

—————

{20}s

By Lemma 4.8, we see that 7(>) € B,(3,7;10, 4, 3|4,4). More precisely, {87}, {5013,
{37}3, {20}5 in G(7®)) are even. Resorting to Theorem 3.4, we arrive at 70 €
Bo(3,7:10,4,3).

In conclusion, set ¢ = ¢(©® and p = 7). Then ((,pu) € Dig x Bo(3,7;10,4,3) and
7| = u| +[¢]-

5 Proof of Theorem 1.17

The goal of this section is to give a proof of Theorem 1.17, which can be restated in purely
combinatorial terms. Here we use the common notation 9, = 1if r = k, and 4, = 0
otherwise.

Theorem 5.1. Let k, r gnd A be integers such that k >r > X>0and k—1 > \. There
is a bijection © between By(ay, .. anin, k, r) and D, x Bi(ay,...,axyn, k= 1,1 = 6,4),

namely, for an overpartition v € By(a,...,ax;n,k,r), we have O(v) = (¢,w) € D, X
Bi(an,...,ax;nk—1,r —6,.1) such that |v| = |C| + |w| and {(v) = £(C) + {(w).
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Since there are no overlined parts divisible by 7 in w and there are no (k — 1)-marked
parts in RG(w), in order to obtain (¢, w), we need to remove all overlined parts divisible by
n and certain non-overlined parts divisible by n from v to generate w, and use the removed
parts to generate (. To this end, we shall define the (k — 1)-reduction operation and the
(k — 1)-augmentation operation, which are the main ingredients in the construction of ©.

5.1 The (k — 1)-reduction and the (k — 1)-augmentation

The definitions of the (k — 1)-reduction and the (k — 1)-augmentation are based on two
subsets of By(ax, ..., ax;n, k, 7). To describe these two subsets, we need to introduce the
following notation. Define ol(v) to be the largest overlined part divisible by 7 in v with
the convention that ol(v) = 0 if there are no overlined parts divisible by 1 in v. Define
71(v) to be the largest (k—1)-marked part in RG(v) with the convention that 7 (v) = —o0
if there are no (k — 1)-marked parts in RG(v).

We now assume that &k, r and A are integers such that k >r>A>0and £ —1 > A\

e Fort>1,let By (v, ..., a1, k,7|t) denote the set of overpartitions v in By(ay, . . .,
ax; 1, k,7) such that either ol(v) = tn and 7, (v) < tn, or ol(v) < tn and (t — 1) <
7 (v) <tn.

e Fort > 1, let B;(al, ..., ax;n, k,r|t) denote the set of overpartitions v in By(as, . . .,

ax;n, k,r) such that ol(v) < tn and 7 (v) < (t — 1)n.

With the above two subsets in hand, we are ready to give the definition of the (k—1)-
reduction operation.

Definition 5.2 (The (k—1)-reduction). Fort > 1, let v be an overpartition in By (o, . . .,
ax;n, k,r|t). Define the (k — 1)-reduction Dy: v — w as follows: If ol(v) = tn, then w is
obtained from v by removing the overlined part tn. Otherwise, w is obtained from v by
removing a non-overlined part tn.

The following proposition guarantees that the (k — 1)-reduction is well defined.

Proposition 5.3. Fort > 1, let v be an overpartition in Bo(au, ..., ax;n, k,7) such that
ol(v) < tn and (t — 1)n < 71(v) < tn. Then v contains a non-overlined part tn.

Proof. Assume that 7, (v) is the ri-th part of v = (11, vy, ...,14) in Bo(ou, ..., ax;n, k,7),
that is, 7 (v) = v,,. Since v,, is a (k — 1)-marked part in RG(v), there is a unique

(k — 1)-band of v induced by v,,. Assume that

VT17]€+2 2 VT1*]€+3 2 tre 2 Vr‘l
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are the parts in the (kK — 1)-band induced by v,,, where v, 1o < v, + 1 with strict
inequality if v, is overlined. Under the condition (t —1)n < v,, < tn, we deduce that
Uri—k+2 < (t+ 1)1, and so

(t+ 100 > Vry oz > Vs > > vy > (E— 1),

Moreover, we may assume that m is the smallest integer such that r; —k+2 < m < r;
and v, < tn. This implies that v, <tnpform <[ <r;andy > tnforr —k+2<1<m.
We claim that v, = tn. Suppose to the contrary that v, < tn. In this case, we have
(t—1)n < vy <y <tn, so we can write v,, = (t — 1)n + «;, where 1 < i < A. Then we
have _

t—1In+a=v, < <v, <({t—-1)n+a, (5.1)
and v, _pi2 < v, + 1 = tn+ ;. The condition ol(v) < tn implies that v, > #n for
r1 —k + 2 <! < m. Hence we have

ﬁ < VUpo1 <0 < Vp —k+2 < 1N+ q;. (52)

Combining (5.1) and (5.2), we deduce that k — 1 < (A—i+ 1)+ (: — 1) = A, which
contradicts the assumption that £ — 1 > A. Hence v, = tn. This completes the proof. 1
The following theorem says that the (k — 1)-reduction operation is indeed a bijection.

Theorem 5.4. Fort > 1, the (k — 1)-reduction D, is a bijection between By (a,. .., ay;
n, k,r|t) and E;(al, o, k,r|t). Moreover, for v € By (o, ..., ax;n, k,r|t) and w =
Dy(v), we have |w| = |v| —tn and {(w) = {(v) — 1.

The proof of Theorem 5.4 consists of three parts. In Lemma 5.5, we show that the (k—
1)-reduction is a map from B, (a, ..., ax;n, k, r|t) to E[f(al, ooy o, kyr|t). Lemma 5.7
exhibits the (k—1)-augmentation map from Eo< (au1,...,ax;n, k,rlt)to By (ay,...,axn,k,
r|t). Then we show that the (k — 1)-reduction and the (k — 1)-augmentation are inverses
of each other.

Lemma 5.5. Fort > 1, let v be an overpartition in By (ax, ..., ax;n, k,r|t) and let w =
D,(v). Then w is overpartition in By (cu,...,axin, k,7|t). Furthermore, |w| = |v| — tn
and l(w) = L(v) — 1.

Proof. By definition, we wish to show that w satisfies the following conditions:

(A) w is an overpartition in By (ay, ..., ax;n, k,7);
(B) ol(w) < tn and 71 (w) < (t — 1)n;

(C) All the (k — 1)-bands of w induced by the (k — 1)-marked parts in RG(w) are even.
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Condition (A). Given the precondition v € By (o, ..., ax;n, k,r|t), it is immediate from
the construction of w that it satisfies (1)-(4) in the definition of By(aq,...,ax;n,k, 7).

That is to say, w is an overpartition in By (aq,...,ax;n, k, 7).

Condition (B). Since ol(v) < tn, 71(v) < tn and w is obtained from v by removing an
overlined part 7 or a non-overlined part ¢n, we obtain that ol(w) < tn and 74 (w) < tn.

We further show that 74 (w) < (¢ — 1)n. Suppose to the contrary that 7 (w) > (t — 1)n.
In this case, we have (t —1)n < 7(w) < tn. Since 71(w) is the largest (k — 1)-marked
part in RG(w), there are exactly k — 2 parts of w appearing before 7;(w) in the interval
I(71(w),71(w) +n). The assumption (t — 1)n < 71(w) < tn implies that tn < 7 (w) +
n < (t+1)n. Hence the removed part of v (that is, ¢tn or tn) is also in the interval
I(71(w), 71 (w) +n). It follows that there are exactly & — 1 parts of v appearing before
71(w) in the interval I(7(w), 7 (w) 4+ n). This means that there exists a part of v marked
with k in RG(v), which is impossible because v € B, (o, . .., ax;n, k, 7|t).

Condition (C). Given a (k—1)-marked part w; in RG(w), assume that {w;_; }o<i<k—2 is the
(k—1)-band induced by the (k —1)-marked part w;. We aim to show that {w;_; }o<i<k—2 is
even in w. Using the condition (B), we know that 7 (w) < (¢t — 1), and so w; < (t — 1)n.
The assumption that {w;_;}o<i<x—2 is a (k — 1)-band yields w;_j.2 < ¢n, more precisely,

1N > Wisgro > Wigys > -+ > W (5.3)

It follows that {w;_;}o<i<k_o is also a (k — 1)-band in v. Since v € By(ay, ..., ax;n, k, 1),
we find that the (k — 1)-band {w;_; }o<i<k—2 is even in v, that is,

[wiks2/n] 4+ wi/n] =1 = 14+ V(Wioga)  (mod 2). (5:4)

Noting that w is obtained from v by removing an overlined part tn or a non-overlined
part tn, by (5.3), we get V,(w;_r12) = Vo (wi—ki2). Therefore, it is immediate from (5.4)
that {w;_; }o<i<k—2 is also even in w, and so the condition (C) is justified.

In conclusion, we have shown that w is an overpartition in E;(al, oo, kr|t).
Clearly, |w| = |v| — tn and ¢(w) = ¢(v) — 1. This completes the proof. ]

We now turn to the (k — 1)-augmentation operation, which will be shown to be the
inverse map of the (k — 1)-reduction operation.
Definition 5.6 (The (k — 1)-augmentation). For t > 1, let w be an overpartition in
E;(al,...,a,\;n,kz,ﬂzﬁ). We say that w satisfies the condition U if there exist k — 2

consecutive parts wj, ..., wijrk—3 of w such that

(1) C+n=w = = w3 > (E— 1)
(2) wi < wjiyk_3+n with strict inequality if w; is overlined;

(3) [wi/m] + -+ [wirk—s/n] =t +7r—1+V,(w;) (mod 2).
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The (k — 1)-augmentation Cy: w — v is defined as follows: If w satisfies the condition U,
then v is obtained by inserting tn into w as a non-overlined part. Otherwise, we say that
w satisfies the condition O and v is obtained by inserting tn into w as an overlined part.

The following lemma says that the (k—1)-augmentation is a map from BO< (o, ... ax;m,
k,rlt) to By (au,...,ax;n, k,rlt).

Lemma 5.7. Fort > 1, let w be an overpartition in B, (ozl,...,oz,\;n,k,r\t) and let
v = Ci(w). Then v is an overpartition in By (o, ..., a1, k ,7|t) such that |v| = |w| + tn
and l(v) = l(w) +

Proof. To prove that v is an overpartition in Boz(ozl, —oann, kor|t), we need to verify
that v satisfies the following conditions:

(A) fa(v) <7 =1,

(B) For 1 <i</{(v)—k+1, v; > vi1—1 +n with strict inequality if 7; is non-overlined;
(C) ol(v) =t and 7 (v) <, or ol(v) < Ty and (t — 1) < 7 (v) < tn;

(D) All (k — 1)-bands of v are even.

Condition (A). It is clear that f<,(w) <r—1sincew € By (au,...,cn;m, k,r|t). To prove
that f<,(v) <r — 1, we consider three cases:

Case 1. t > 2. In this case, f<,(v) = f<,(w) <r—1.
Case 2. t =1 and f<,(w) <r—1. We have f<,(v) < f<)(w)+1<r—1.

Case 3. t =1 and f<,(w) = r — 1. We claim that w satisfies the condition O. Assume
that
2> w; > 2 Wwigk—3 >0 (55)

are the k — 2 consecutive parts of w such that w; < w;yr_3 + 1 with strict inequality
whenever w; is overlined. Since 71(w) < (t — 1)n = 0, there are no (k — 1)-marked parts
in RG(w), that is, there are no (k — 1)-bands of w, which implies that f<,(w) < k — 2.
Therefore, all parts of w not exceeding 1 are after w;_;. Hence, by (5.5), we obtain that

wi/n] + - + [witk-s/n]
= (W) + (Vao(ws) = fan(w))
= fep(w) + Vo(wi)
=r—1+V,(w) (mod2).
So the claim is confirmed, and hence v is obtained by inserting 77 into w as an overlined

part, from which we get f<,(v) = f<,(w) =7 —1.

o8



Condition (B). Suppose to the contrary that there exists 1 < ¢ < ¢(v) — k + 1 such that
Ve < Vegr—1 + 1 with strict inequality if v, is overlined. (5.6)

Assume that the m-th part of v is the inserted part of the (k—1)-augmentation operation,
that is, v, = tn or tn. Since w € E;(al, oo, kyrlt), we have ve > Uy > Vergo1-
Comparing with (5.6), we get v, < vy, +n = (t+1)p and verp—1 > vy —1n = (t — 1)1 with
strict inequality if v, is overlined. Thus, we arrive at

E+1N> Ve > Vep1 > > Vergpr > (E— D).

The condition 7 (w) < (t — 1)n implies that there are no (k—1)-bands of w in ((¢t — 1)n, (t+
1)n]. Tt follows that v x—1 = (t — 1)n or (t — 1)n, and so v, < tn. But v. > v, > tn, we
obtain that

Ve = Up = ). (5.7)

Hence, weii—1 = Veyy, where 1 <1 < k — 1. More precisely,
> We > Wepr =+ 2 Werp—2 > (E— 1),
and
Werk—2 = Veyk—1 = (t — 1)nor (t — 1)n. (5.8)
Therefore, {weis}to<i<k—2 is a (kK — 1)-band of w in [(t — 1)n,tn]. Using the condition
wE E;(al, oo axn, k,r|t), we find that
[we/n] 4+ + [Wern—2/m] =7 =1+ Vw(WC)' (5.9)

It is clear from (5.7) that v is obtained by inserting a non-overlined part t7n into w.
So w satisfies the condition U, which means that there exist & — 2 consecutive parts in

((t = 1)n, (¢ + L)n], say

(t+1n>w > >wips > (t— 1),
satisfying w; < w;_3 + n with strict inequality if w; is overlined, and

[wi/n] + -+ [wirr—s/n] =t +r—1+Vy(w;) (mod 2). (5.10)

Now, (5.8) yields that w;yx—3 > (t — 1)n > weig—2, which implies that i < ¢. Set ¢ =i+,
where t > 0. Then we have

(t—i—l)nsz > e Zwi+t_1 >%, (511)

and
) > Weyh—t—2 > =+ 2> Weph—g = (L — 1)1, (5.12)

Combining (5.11) and (5.12), we obtain that
wi/nl + -+ [Wiri /0] = Wern—i—2/n] + -+ + [Wern—3/1] + Vi(wi) = Vi(we)  (mod 2),
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which can be rewritten as

[wi/m) + -+ [wisk—s/1] = we/n] + -+ [wern—s /0] + Ve (wi) = Vi(we)  (mod 2). (5.13)
Substituting (5.8) and (5.9) into (5.13) gives

[wi/m] + - -+ + [wisk—3/n]
= [we/n] + -+ [wern—a/n] + [Wern—2/n] = (t = 1) + Vio(wi) = Vio(we)
=r =14 Vi(we) = (t = 1) + Vo (wi) = Valw)
=t+7r+Vy(w) (mod2),
which contradicts (5.10). Hence the condition (B) holds. Together with the condition
(A), we conclude that v is an overpartition in Bi(aq,...,ax;n, k, 7).
Condition (C). We consider the following two cases.

Case 1. w satisfies the condition O in Definition 5.6. In this circumstance, v is obtained
from w by inserting 7 as an overlined part. Obviously, ol(v) = tn and 7 (v) < tn.

Case 2. w satisfies the condition U in Definition 5.6. If so, v is obtained from w by inserting
tn as a non-overlined part. Under the condition that ol(w) < tn and 71 (w) < (t — 1), we
deduce that ol(v) = ol(w) < tn and 71 (v) < tn.

To prove that 71(v) > (¢t — 1)n, it suffices to show that there is a (k — 1)-band in
((t —1)n, (t + 1)n]. With the assumption that w satisfies the condition U, we know that
there exist k — 2 consecutive parts of w, say

(75—1—1)772% > Zws+k73 > (t_l)na
satisfying w, < w3+ n with strict inequality if wy is overlined, and

[wa/m] + -+ + [werns/n] =t +7— 1+ V,(ws) (mod 2). (5.14)

Since 71(w) < (t — 1)n, there are no (k — 1)-bands of w in ((¢t — 1)n, (¢t 4+ 1)n]. It follows
that wy_ 1 > tn and w,yp_» < tn. Assume that c¢ is the smallest integer such that v, < 7.
Then we have s < ¢ < s+k—2,yy=w fors <l <c—1,and vy =w;forc <1 < s+k—3,
namely,

t+1M>vs > 2 Ve >N Vep1 > 2 V0> (E—1)n (5.15)

are the k — 1 parts of v such that v, < v, o+ n with strict inequality if v, is overlined.

Hence {vsii}o<i<k—2 is a (k — 1)-band of v. So we arrive at 7(v) > (t — 1)1, and this
proves that the condition (C) is valid.

Condition (D). There are two cases.

Case 1. w satisfies the condition O in Definition 5.6. Then v is obtained from w by
inserting ¢n as an overlined part. From the condition (C), we know that 7;(v) < tn in
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this event. Assume that {v;;}o<i<k—2 is a (kK — 1)-band of v. We aim to show that
{Visi}o<i<k—2 is even in v. Since 71(v) < tn and there is a part in {v;4;}o<i<x_o marked
with £ — 1 in RG(v), we get vy o < tn. There are two subcases.

Subcase 1.1. V452 < (t — 1)n. In this case, the assumption that {v;; }o<i<k—2 is a (k—1)-
band implies that v; < v;,1,_» with strict inequality if v; is overlined, and so v; < t1. Recall
that v is obtained from w by inserting 7 as an overlined part, we find that {v; 4 }o<i<k—2
is also a (k — 1)-band of w and V,(v;) = V,(v;). Since w € E;(oq, a1, k1), we see
that {v;41}o<i<k—2 1s even in w, and so {v;4; fo<i<k—2 is also even in v.

Subcase 1.2. (t —1)n < viyx_o < tn. In this case, using the same reasoning as in the
Subcase 1.1, we obtain that v; < (t + 1)1, so that

(t+1)n>v > v > 2> Vo > (t— 1)n.

Utilizing the condition (B), we deduce that v;_; > tn and v;,;,_1 < tn. Hence the inserted
part 1 in v belongs to {vi; fo<i<k—2, SO we may write v, = tn), where i <m < i+ k — 2.
By the construction of v, we see that w; = v, for i < [ < m — 1, and w; = vy, for
m <[ <1+ k — 3. This implies that

E+n2w > 2win-s>(E—1)n

are the k — 2 consecutive parts of w such that w; < w;ir_3 + 1 with strict inequality

provided w; is overlined, and V,(v;) = V,(w;) + 1. Under the assumption that w satisfies
the condition O, we find that

[wi/n] + 4 Wirk—3/n] =t + 7+ Vy(w;) (mod 2).
Therefore,

wi/n] + -+ m/n] + -+ + Vir—2/7]
= [wi/n] + -+ + [Witn—s/n] + ¢
=t+r+ V(w) +t
=r—1+V,(s) (mod?2),
which means that {v;4;}o<i<k—2 is even in v.

Case 2. w satisfies the condition U in Definition 5.6. In this case, v is obtained from w
by inserting 7 as a non-overlined part. For any (k — 1)-band {v;4;}o<i<k—2 of v, we wish
to show that {v;;}o<i<k—2 is even in v. There are two cases.

Subcase 2.1. v; < tr). By construction of v, we see that {Vit1}o<i<k—2 is also a (k—1)-band
of wand V,(v;) = V,(v;). Using the same argument as in Subcase 1.1, it can be shown
that {v;41}o<i<k—2 is even in v.

Subcase 2.2. v; > tn. Since {v;4 }o<i<k—2 is a (k — 1)-band of v, we deduce that v; 5o >
v; —n > (t — 1)n and there is a part v;1, (0 < I; < k — 2) marked with £ — 1 in RG(v).
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Using the condition (C), we find that (t — 1)n < 7 (v) < tn. It follows that 7 (v) = v;4,.
Hence {v; 41 }o<i<k—2 is a (k—1)-band of v including 71 (). As in the proof of the condition
(C), we see that 7 (v) is also in the (k — 1)-band {vsy;}o<i<k—2 in (5.15). Therefore, it
follows from Proposition 3.6 that {4 fo<i<k—2 and {vsi; fo<i<k—2 have same parity. Hence
we only need to show that {vsy;}o<i<k—2 in (5.15) is even in v.

Assume that ¢ is the smallest integer such that v, = tn. As in the proof of the
condition (C), we find that v. belongs to the (kK — 1)-band {vy}o<i<k—2 in (5.15) and
Vo, (vs) = Vi(ws). Thus,

Ws/n) + -+ & Weph—a/n] = t+ [ws/n] + - + [Wstr—s/n]. (5.16)
Substituting (5.14) into (5.16) and using V,(v,) = V,,(w
ws/nl + -+ + Wssnz/n] =7 — 1+ V(1) (mod 2),

which means that the (k — 1)-band {vsi;}o<i<k—2 in (5.15) is even, and so {v;4}o<i<k—2
is even in v.

s), we are led to

In either case, we have shown that any (k—1)-band of v is even, and thus the condition
(D) is verified.

By now, we have shown that v is an overpartition in B, (au, ..., ax;n, k,7|t). Clearly,
|v| = |w| + tn and ¢(v) = £(w) + 1. This completes the proof. ]
We are now in a position to give a proof of Theorem 5.4 with the aid of Lemma 5.5

and Lemma 5.7.

Proof of Theorem 5.4. Let v € B, (ay,...,ax;n, k,r|t). Invoking Lemma 5.5, we know
that Dy(v) € By (ay,...,ax:n, k,r|t). Setting w = D,(v), by Lemma 5.7, we see that
Cy(w) € By (an,...,ax;n, k,r|t). It remains to show that v = Cy(w). We consider the
following two cases.

Case 1. ol(v) < tn and (t —1)n < 7 (v) < tn. In this case, w is obtained from v by
removing a non-overlined part ¢7. To prove that v = Cy(w), it suffices to show that w
satisfies the condition U in Definition 5.6.

Assume that 7 (v) is the ri-th part of v = (v, 1s,..., 1), that is, v, = 71(v). Then
the (k — 1)-band induced by 71(v) consists of

V?“1—k‘+2 Z VT‘1—]€+3 Z Tt Z Vrly

where v, 12 < v,, +n with strict inequality if v, is overlined. Since v is an overpartition
in B, (ay,...,ax;n, k,r|t), we deduce that {v,, _ 1 Yo<i<k—2 is even, namely,

[Vm—k+2/77] + [Vr1—k+3/n] +oet [V'I‘l/n] =r—1 +VV(VT1—1€+2) (IﬂOd 2)‘ (517)

Under the assumption (t — 1)n < 71(v) < tn, we see that v, = 71 (v) > (t — 1)n and
Upi—k+2 < Up, +1 < (t+ 1)1, and thus

(t+ 100 > Vryrz > Vs > > vy > (E— 1),
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It is clear from Proposition 5.3 that v contains a non-overlined part ¢7. Assume that m
is the smallest integer such that v, = tn. The precondition v € B, (ay,...,ax;n, k,r|t)
implies that v, 1 > tn and v, 41 < tn. Hence 1y — k+2 < m < ry, w; = vy for
ri—k+2<l<m-—1,and w; = v for m <[ <r; —1. Consequently,

(t + 1)0 > Wry—k+2 =2 Wp—1 > (t - 1)77

are the £ — 2 consecutive parts of w such that w,, 2 < w,,—1 + n with strict inequality
provided w;, g4 is overlined. By the construction of w, we deduce that V,(w,, _gi2) =
V0 (Vpy—k+2). Combining with (5.17), we get

[wWry—k+2/0] + [Wry—s1 /0] + -+ + [wr -1 /7]
= [Vri—ki2/nl + Vo ba /0] -+ [ /o] =
=r—1+ VV(I/M_;H_Q) —t
=t+7r—1+4+ V(W gs2) (mod 2).
This implies that w satisfies the condition U in Definition 5.6, and so v = Ci(w). Hence
we conclude that Cy(Dy(v)) = v for v € By (au, ..., ax;n, k,7|t).

Case 2. ol(v) = tn and 71(v) < tn. In this regard, w is obtained from v by removing
tn. To prove that v = Ci(w), it is enough to show that w satisfies the condition O in
Definition 5.6. Suppose to the contrary that w satisfies the condition U in Definition 5.6,
that is, there exist k — 2 consecutive parts of w, say

(t+1)n>w >wipr > > wipg—3 > (t—1)n,
such that w; < w; 3 + 1 with strict inequality if w; is overlined, and
wi/n) + -+ [wirks/m =t +7 =1+ Vy(w;) (mod 2). (5.18)

Assume that t7 is the m-th part v, of v. Since w € B;(al, —axnn, k,r|t), we see that
71 (w) < (t — 1)n, and so there are no (k — 1)-bands in ((¢ — 1)n, (¢ + 1)n]. It follows that
wi_1 > tn and w; x_o < tn, which implies that ¢t < m < i+ k —2, w;, = vy > tn for
1 <l<m,and w, =y <tnform <[ <i+k—3. Thus,

t+1)n>vi > > v 0> (= 1)y,

where v; < v o +n with strict inequality if v; is overlined. In other words, {v;4 fo<i<k—2
is a (k — 1)-band of v. Moreover, we get V,(;) = V,(w;) + 1. The precondition that v
is an overpartition in B, (a1, ..., ax;n, k,r|t) implies that {v;4;}o<i<k—2 is even, and so

[wi/n] + - + [Witk—3/7]
= [vi/n] + -+ + [Vigr—2/n] —
=r—14+V, () —t
=t+r+Vy(w) (mod?2),
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which contradicts (5.18). Hence w satisfies the condition O in Definition 5.6, and so
v = Ci(w). This proves that Cy(Dy(v)) = v for v € By (1, ..., ax;n, k,7|t).

_Conversely, let w € B;(al, —.yax;n, k,r|t). By Lemma 5.7, we find that Cy(w) belongs
to By (a1, ...,ax;n, k,r|t). By the definitions of C; and D;, we deduce that D;(Ci(w)) =

w. This completes the proof. |
The following proposition provides a criterion to determine whether an overpartition

in By (a1,...,axn, k,7|t) is also an overpartition in BO<(041, oo, k).

Proposition 5.8. Fort > 1, let v be an overpartition in By (ay,...,ox;n, k,r|t). Then

v is an overpartition in B;(al, oann kot if and only if t < t.

Proof. By definition, we see that v is an overpartition in B, (v, ..., ax;n, k,7|t) if and

only if v is an overpartition in By(ay, ..., ax;n, k,r) such that

max{[[ol(v)|/n], [l (¥)|/n]} =1, (5.19)

where | - | signified the value of a part regardless of overline, and [z] denotes the smallest
integer greater than or equal to x.

On the other hand, v is an overpartition in E;(al, oo, k|t if and only if v is

an overpartition in By(ay, ..., ax;n, k,r) such that
max{[lol(v)|/n], [IF1(v)|/n]} < ' = 1. (5.20)
Combining (5.19) and (5.20) completes the proof. ]

5.2 Proof of Theorem 5.1

In this subsection, we demonstrate that Theorem 5.1 can be justified by repeatedly using
the (k — 1)-reduction and the (k — 1)-augmentation operations.

Proof of Theorem 5.1. Let v be an overpartition in By(as, ..., ax;n, k,7). We wish to
construct a pair of overpartitions O(v) = ((,w) in D, X Bi(aq,...,an;n,k — 1,7 — 6,1)
such that |v| = || + |w| and ¢(v) = ¢(C) + ¢(w). We consider the following two cases:

Case 1: There are no (k — 1)-marked parts in RG(v) and there are no overlined
parts divisible by 7 in v. Then set ( = () and w = v. By definition, we see that w
is an overpartition in By(ay,...,ax;n,k — 1,7 — 6,). Moreover, |v| = || + |w| and
l(v) =L(C) + l(w).

Case 2: There exists a (k — 1)-marked part in RG(v) or an overlined part divisible by
ninv. Set b =0, 9 = v, (© = (), and execute the following procedure. Denote the
intermediate pairs by (¢(©, (@), (¢ »™M) and so on.
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(A) Set
ty1 = max{[|ol(v®)| /0], 1721 (V)| /] }.
Since 7 (v®) > a7 or ol(v?)) > 7, we find that t,,; > 1 and

v € By (au, ..., cnm, k,rltyer).

Applying the (k — 1)-reduction D,, , to v we get

POt — Dy,., (v®).

In view of Lemma 5.5, we deduce that v®*t1) ¢ E;(ozl, ce s kyrlte),

O] = 0]~ gty (521
and

(Y = ¢(v®) — 1. (5.22)

Then, insert nt,,; into () as a part to get (Y.

(B) Replace b by b+ 1. If there are no (k — 1)-marked parts in RG(v®)) and there are
no overlined parts divisible by 7 in ¥® | then we are done. Otherwise, go back to

(A).
Using Proposition 5.8, we obtain that

tht1 > Tpio > 1, (523)

for b > 0, which means that the above procedure terminates. Assume that it terminates
with b = ¢, that is, there are no (k — 1)-marked parts in RG(v'?) and there are no
overlined parts divisible by 1 in (9. Set

w=v9 and ¢=¢9=nty,...,nt.).

Since there are no (k — 1)-marked parts in RG(v(¢)) and there are no overlined parts
divisible by 1 in {9, we conclude that w = v\© € Bi(aq,...,ax;n, k— 1,7 — dr k). In light
of (5.23), we find that ¢ € D,. Moreover, it is clear from (5.21) and (5.22) that |v| =
lw| + |¢] and £(v) = £(w) + £(¢). Hence O is the desired map from By(av, ..., ax;n,k,7)
to Dy, x Bi(ou, ..., n,k— 1,17 —d,4).

To prove that © is a bijection, we define a map A from D, x Bi(a,..., 51,k —
1,7 — 6,%) to Bo(au,...,ax;n, k,7) and intend to show that it is the inverse map of ©.
Given an overpartition w in Bi(oy,...,ax;n, k — 1,7 — 6,;) and a partition ¢ in D,,, we
shall construct an overpartition v € By(ay, ..., ax;n, k,7) such that |v| = [¢| + |w| and
l(v) = L(C) + ¢(w). There are two cases.

Case 1: ¢ = . Then set v = w. Clearly, v € By(ay,...,ax;n, k,r) since there are no
(k — 1)-bands in w. Moreover, |v| = || + |w| and £(v) = £(() + {(w).
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Case 2: ¢ # (. Assume that ( = (nt1,nts, ..., nt.), where t; > to > -+ > t. >
1. Starting with w, apply the (k — 1)-augmentation repeatedly to get v. Denote the

intermediate overpartitions by w(©@, ... w(® with w©® = w and w(® = v. Since there are
no (k — 1)-marked parts in RG(w) and there are no overlined parts divisible by 7 in w,
we have 71 (w) = —oo and ol(w) = 0, which yields w(® = w € B;(al, oo, kyrlte).

Set b = 0, and execute the following procedure.

(A) Set
w(b—H) — Ct (w(b)).
Since g
w(b) € BO (ala sy Q3T k? T‘tcfb)a

in light of Lemma 5.7, we see that w®*Y € By (au, ..., ax;n, k,7|te_s),

|w(b+1)| = |w(b)| + Nte_yp, (5.24)

and
(Y = (W) + 1. (5.25)

(B) Replace b by b+ 1. If b = ¢, then we are done. Otherwise, since t._, > t. pi1, it
follows from Proposition 5.8 that

b) -~ =<

w( € BO (ala cee 7a)\;777k77.‘t67b)'

Go back to (A).

The above procedure generates an overpartition v = w € By (aq,...,axn, k,r|t), and
so v is an overpartition in By(avq, ..., ax;n, k, 7). It is evident from (5.24) and (5.25) that

lv| = |w(c)] = |w(0)\ +nte+ -+ nty = |w| + ],

and
() = 0(w9) = (WD) + ¢ = L(w) + £(0).
Therefore, A is a map from D, x By (ay, ..., ax;n, k—1,7—8,4) to Bo(ay, ..., ax;n, k, 7). By
Theorem 5.4, we obtain that A(O(v)) = v for v € Bylay,...,ax;n, k,r) and O(A((,w)) =
(C,w) for ((,w) € D, x By(as,...,ax;n, k — 1,7 — ;). Hence © is a bijection between
Bo(au, ..., ax;n, k1) and D, x By(au, ..., ax;n, k—1,7—8,x). This completes the proof.
|
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5.3 An example

We conclude this section with an example for the bijection © in Theorem 5.1. Let
v = (50, 30, 23, 20, 20,10, 7, 3)
be an overpartition in By(3,7; 10,4, 3). We have
RG(v) = (504,301,235, 201, 203, 104, 71, 33).
The pair of overpartitions ©(r) = ({,w) is obtained by successively applying the (k — 1)-
reduction to v. The detailed process is given below.
e Set v =y and ¢ = . Note that ol(v(?) = 50 and 7, (@) = 20. Let
b = mac{[|ol () /101, 1|72 (+9)]/10]} = 5.

Now, v € B, (3,7;10,4,3|5). Apply the 3-reduction to (¥ to get v(!), namely,
v ig obtained from v(©) by removing 50. We get

RG(vW) = (304,235, 20, 203, 104, 71, 33).

Setting ¢V = (50) and using Lemma 5.5, we obtain that v € BO<(3, 7,10,4, 3]5).

e Since ol(v™) =30 and 7, (vV) = 20, we have
t» = max{[|ol(v")|/10], [|71 (V)| /101} = 3,
whence vM) € B, (3,7;10,4,3|3). Removing 30 from vV, we get v and
RG(1?) = (234,204, 205, 10, 72, 33).

Setting (@ = (50, 30) and using Lemma 5.5, we obtain that v € By (3, 7; 10,4, 3|3).

e Since ol(v®) =10 and 7, (v?) = 20, we have

t; = max{[|ol(v®®)|/10], [|7 ()] /101} = 2,

whence v? € B, (3,7;10,4,3/2). Removing a non-overlined part 20 from v, we
get v and
RG(V(?))) = (ﬁl, 202,@1,72,33).
Setting ¢® = (50, 30, 20) and using Lemma 5.5, we obtain that v® € By (3, 7; 10,4, 3|2).
e Since ol(v®) =10 and 7, (v®) = 3, we have
ty = max{[|ol(+¥)|/10], [|71 ()] /101} = 1,
whence v©®) € B, (3,7;10,4,3|1). Removing 10 from v®, we get v and
RG(U(4)) = (2_31, 202,71,?2).

Setting ¢ = (50, 30, 20, 10) and using Lemma 5.5, we obtain that v4) € EO<(3, 7:10,4,
3|1). Eventually, there are no 3-marked parts in RG(v™) and there are no overlined
parts divisible by 10 in 4.
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We now get a pair of partitions ((,w) with

¢=¢"=(50,30,20,10) and w =¥ =(23,20,7,3) (5.26)

such that (¢,w) € Do x B1(3,7;10,3,3), |v| = [¢| + |w| and £(v) = £(w) + £(C).

Conversely, given ((,w) € Dip x Bi(3,7;10,3,3) as in (5.26), we may recover the
overpartition v by successively applying the 3-augmentation operation. More precisely,
the reverse process goes as follows.

e Insert 10 into w® = w to get w®.
Since there are no 3-marked parts in RG(w®) and there are no overlined parts
divisible by 10 in w®, we have 7 (w(®) = —co and ol(w®) = 0, which implies that
w® e 35(3, 7;10,4,3|1). Notice that w(® satisfies the condition O in Definition
5.6. Then insert 10 into w® as an overlined part to get

D= 01 (w®) = (23,20,10,7,3).
Using Lemma 5.7, we obtain that w® € B (3,7;10,4, 3|1).

e Insert 20 into w to get w®. By Proposition 5.8, we find that w") € B, ( , 7, 10,4, 3|2).
Since w satisfies the condition U in Definition 5.6, inserting 20 into w(l) as a non-
overlined part gives

= Cy(w™) = (23,20, 20,10,7,3).
In light of Lemma 5.7, we deduce that w® € B, (3,7;10,4, 3|2).

e Insert 30 into w® to get w®. By Proposition 5.8, we find that w® € E0< (3,7;10,4,3|3).
Notice that w® satisfies the condition O in Definition 5.6. Then insert 30 into w®
as an overlined part to get

= C5(w@) = (30, 23, 20, 20,

—_
\II
Wl

~

Using Lemma 5.7, we obtain that w® € B, (3,7;10,4,3|3).

e Finally, insert 50 into w® to get w®. By Proposition 5.8, we find that w® €
BO<(3, 7:10,4, 3|5). Notice that w® satisfies the condition O in Definition 5.6. Then
insert 50 into w® as an overlined part to get

Y = C5(w®) = (50, 30,23, 20,20,10,7,3).

Using Lemma 5.7, we obtain that w® € B (3,7;10,4, 3|5).

Set v = w®. Then v is an overpartition in By(3,7;10,4,3) such that |v| = |w| + [(]
and £(v) = ((w) + £(C)-
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6 Proof of Theorem 1.21

In this section, we will give a proof of Theorem 1.21 by using Bailey pairs. It remains
to be a question to find a combinatorial proof of this fact. For historical perspectives
and recent advances on Bailey pairs, we refer to Agarwal, Andrews and Bressoud [1],
Andrews [7,8], Bressoud, Ismail and Stanton [11], Lovejoy [34], Paule [40], Warnaar [43],
to name of few. A pair of sequences (a,(a, q), Bn(a,q)) is said to be a Bailey pair relative
o (a,q) if forn >0,

- (a, q)
— (¢ On—r(aG; Q)ntr

Bn(av Q) =

T

The following formulation of Bailey’s lemma was given by Andrews [6,7].

Theorem 6.1 (Bailey’s lemma). If (a,(a,q), Bn(a,q)) is a Bailey pair relative to (a,q),
then (o (a,q), B (a,q)) is also a Bailey pair relative to (a,q), where

, (P @)nlp2; On aq ”a .
(@ 4) = (aq/p1; Q)n(aq/p2; Q)n (pIPZ) @:0),

n

, _ N (P50 a)(aa/prpr oy ((ag N,
Pula.q) = ; (aq/p1; @)n(aq/ pa; )n (@ @)n—j (mpz) Pila. ).

When py, po — 00, Bailey’s lemma reduces to the following form, which has been used
by Andrews [6] to derive the Andrews-Gordon identity (1.2) when r =1 or r = k.

Lemma 6.2. If («,(a,q), Bn(a,q)) is a Bailey pair relative to (a, q), then (o (a, q), B (a, q))
is also a Bailey pair relative to (a,q), where

2

Oé;z(aﬂ q) = a’nqn Oén(a, Q)a
B;L(C% Q) = ) Bj (CL7 Q)
= (6 Dn—

Agarwal, Andrews and Bressoud [1] developed the technique of the Bailey lattice to
establish the Andrews-Gordon identity (1.2) in general for 1 < r < k. Bressoud, Ismail
and Stanton [11] found an alternative proof of the Andrews-Gordon identity (1.2) in the
general case by successively using Bailey’s lemma and the following proposition.

Proposition 6.3. [11, Proposition 4.1] If («,(1,q), 5.(1,q)) is a Bailey pair relative to

(1,q), where
1, ifn =0,
ay(l,q) =
o { (—1)ng ™ (qA=Dm 4 g A=Dm) - ifn > 1,
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then (a),(1,q), B, (1,q)) is also a Bailey pair relative to (1,q), where

/ ]-7 an = 0,
Oén(l,q) - n  An?( An —An :
(=D)"¢™ (@™ +q "), ifn=1,

and forn >0,

B.(1,q) = ¢"Ba(1,q).

To prove Theorem 1.21, we also need the following proposition in [24] and a limiting
case of an identity of Andrews [6].

Proposition 6.4. If (a,(1,q), 5.(1,q)) is a Bailey pair relative to (1,q), where

(1.9) 1, ifn =0,
apll,q) =
(—1)gA™ (qUADnm 4 g=(A=Dmy - ifp > 1,

then (o, (1,q), 8. (1,q)) is also a Bailey pair relative to (1,q), where

/ 1, ifn=0,
an(laQ) = n, An?( _(A-1)n —An n i
(—1)"¢" (q +q M1 +q")/2, ifn>1,

and for n > 0,
Bu(1,q) = Bu(L, @)1+ ¢")/2.

Theorem 6.5 (Andrews). If (a,(1,q), Bn(1,q)) is a Bailey pair relative to (1,q), then for
N >0,

3 ( (b1;q),, (c1:0),, -+~ (bis @), (3 @), (aN50),

= (aq/bi;q),, (aq/c1;q), -+~ (aq/b; q),, (aq/cx; q),, (agV "5 q),,

aqu‘-‘rN n (n)
L) G =),
(bb) o B)(~1)an(1,q)

_ (ag; @) (aq/brcr; q) (0k; )y, (k3 @)y, -+~ (0150),,, (€150),,,
(aq/bi; )y @4/ ks Dy, o s (G Dngnis (G Diiymis (G Dy

" (™ Q)nk (aq/bk-161-1:9)p, —p,_, " (aq/b1015G),,, )
(bkerg™/a;q),, (aq/bk-1;q),, (aq/ck-1;q),, - (aq/bi;q),, (aq/c1;q),,

X gt M (g )T (bren) ™ B (1, 9)- (6.1)

Below is a limiting case of Theorem 6.5.
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Proposition 6.6. If (a,(1,¢"),5,(1,q9")) is a Bailey pair relative to (1,q"), then for
r>\>0,

i 2q(r7%)nn2+%nn7(al+'"+ak)n(_qal ; qn)n e (_qak; qﬂ)n
(L4 g™ (=" ¢ (g7 q")n

n=0
_ (4" ¢") o Z
(=a73¢") o Ni>Np>- >N, >0

an(1,q")

qn(N§+2+m+NT2)H’((N12+1)+”'+<NAJ51+1))*(a1N1+~--+aANA)

(@";q") Ny —Ny -+ (@ 4") N,y — N,

(=134 Nyt (=0™5 4Ny - (=45 4",y B (1,") (6.2)
(=@ aM) N (=g 02Ny (=g )N,

where we assume that N,;1 = 0.

Proof. Replacing g by ¢" and setting k =r, a =1, ¢,_y = —1 and ¢,_41; = —q for
1<s<MNasbh —sooforl <i<r ¢, —s>ooforl<m<r—A—1and N — oo, (6.1)
becomes

%)U"Q‘F%ﬂn—(al"r"*aﬂ”(_qal; qn)n oo (_qa/\; qn)n

— (14 qm)(—q=21;q")p -+ - (—q"=; q),,

an(1,q")

I CT O™ > g1+l ) n(( ) (1)) —(eanetaany_ag)
(—¢"% 4" (%54 nenp s = (@750 oy

np2Np—12--2n120

(=154 n, (=05 @, - (=0™5 0y a1 B (L)
(=a" a0 it (02q) 0, (G 0,y
Writing n; = N,y for 1 <t <, we are led to (6.2). This completes the proof. |
The following Bailey pair is also required in the proof of Theorem 1.21.
Proposition 6.7. For k>r>1 andn > 0,

(1.0) 1, if n =20,
apll,q) = .
(_1)nq(k—r)n2 (q(/c—r—l)n i q—(k—r)n)<1 4 qn)/27 an > 1’

(6.3)
1+qn q(N3+1+---+N,3_1+Nr+1+---+Nk71)
571(17(]) = Z 2 ( ) . 2. 2 ’
7> Nyp1>>Nj_1>0 (q7 Q)TL—NT+1 T (Qv q>Nk—2_Nk—1(q 4 )Nk—l
is a Bailey pair relative to (1,q).
Proof. We begin with the following Bailey pair [42, E(5)],
1, ifn=20,
o (1,4) = { (1) (g™ +¢"), ifn>1
q q ) — ) (6_4)

(="

B8O, q) = ———5—.
(1.9) a"(¢% ¢*)n
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Applying Proposition 6.3 to (6.4), we obtain that

) 1, if n =20,
ay’(1,9) =
2(—=1)", ifn>1,

(=1)"
BI(1,q) =
9 (4% ¢*)n
Using Lemma 6.2, we get
1, if n =0,
O‘g)(l? Q) = 2
2(=1)"¢™, ifn>1,
L, (6.5)
~  (=1)¢
BP(Lq) = :
= (@ Dn—5(0% 6*);
Employing the following ¢g-Chu-Vandermonde formula with ¢ = —¢ and a — oo,

n

3 (a59)(a"; 0); (@)j _ (¢/a;q)n

‘= (©a)lea; \a CTI
we find that .
D(1,q) = 55—

Applying Proposition 6.3 and Lemma 6.2 £k — r — 1 times to (6.5) yields the following
Bailey pair

(2k72r)(1 ) L, ifn=0,
an ) q = .
(_1)nq(k—r)n2 (q(k—r—l)n 4 q—(k—r—l)n>7 if n > 1,

(N2 j++NE2_ +Npp1+-+Np_1)

CE D :

n>Nyj1>>Np_1>0 (q; Q)n—NT.H te (C]; Q)Nk—Q_Nk—l (qZ; qZ)NIc—l ’

By Proposition 6.4 and (6.6), we obtain the following Bailey pair
(1.0) 1, if n=0,
anll,q) =
q (_1)nq(k—7')n2 (q(k—r—l)n T q—(k—r)n)(l i q")/2, if n > 1’

(1 + qn)q(NT2+1+---+N,f,1+Nr+1+---+Nk71)

ﬁn(va) = Z

n>Nyy1>>Nj_1>0 2(q; Q)n_Nr+1 (g q)Nk72_Nk—l (¢ qz)qu '

This completes the proof. 1

72



We conclude this section with the proof of Theorem 1.21 resorting to Proposition 6.6
and Proposition 6.7.

Proof of Theorem 1.21. For k > r > A, plugging a,(1,q) in (6.3) with ¢ replaced by
q" into the left-hand side of (6.2), and using the assumption that «; + a1 = n for
1 < i <\, the left-hand side of (6.2) simplifies to

. (_qak; qn)n
1+ Z (=g )

q”] at - q77

y (_1) q(k /\+1)77n2+277" (O‘1+"'+O‘A)n(q(k_r_%)nn—i—q_(k_r_%)nn)

— 1+ Z(_l)" =g (g(kmr=gmn g (kr—g)mm)

_ (q(r—%)n7 (](216—7"—1—%)777 q(Qk—)\—l)n; q(2k:—/\—1)77)00’ (67)

where the last equality follows from Jacobi’s triple product identity [5, Theorem 2.8].

On the other hand, substituting the expression for ,(1, ¢) in (6.3) with ¢ replaced by
¢" into the right-hand side of (6.2), we get

(q" 4" oo (1 + ¢ ") (—q; qﬂ)NAH_1qn(N§+2+~-~+N,§_1+NT+~~+N,€_1)

% Ny > >Ng_ 130 (@% 9" Ny —N, -+ (475 qn)Nk72*Nlc71 (¢°™; q2n>Nk71

qn((N12+1)+...+(NA+21+1)),(leJr...JraANA)(_qoq;qn)Nl . (—qa*; q")NA

X 6.8
(=" @) Ny (—q"7025 ¢ Ny - (=G ¢ Ny, ©.8)
Observing that
(=q"56")n = g7 (=g 7).,
and
1 (=TT ) o
(=" 4")n (=q"";4")oo
the summation in (6.8) equals
Z qn(Nf+~--+N,3,1+Nr+~~~+Nk—1)(1 + qanr>(_qnan>\+1; qn)NM_l—l
N1Z"'2Nk—120 (qn7 qn)Nl_NQ Tt (qn7 qn)Nk—Q_Nk:—l (q2n? qzn)Nk:—l
y (_q"H"]N)\; 7Moo szl(_qn—as—nNs; q")n. HQZQ(_qn—asﬁLnstl; 7Moo (6.9

(=47 q")oo [ To_s(—07: )0
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Combining (6.7) and (6.9), we deduce that

(qn§ q77>oo Z
(=" Mo 5 SR 150
(_qn-ﬁ-an; 7Moo Hi‘zl(_qn—as—nNs; 7", HiZQ(_qn—ozs+77Ns_1; 7Moo

(=" q") oo T 1o (— @75 q")os

(2k—r—1—%)77

@I NEH A NE Nt N ) (1 gmnNe ) (g q")Ny -1

(qﬁ; qn)leNz to (qn; qn)Nk72*Nkfl (q%; q2n)Nk71

X

7 q(2k—)\—1)n; q(2k—)\—1)17)00

27, q
Multiplying both sides by

(_qn—Oél’ EIR) _q’f]—OéA’ _qﬂ’ qn)oo
(q"5 4" oo

Y

we obtain

2

Ni2-->Nj_120

qn(N12+...+N,§_1+Nr+---+Nk71)(1 + q—nNr)(_qn—nNHl; qn)NHﬁl(_anrnNA; 7Moo

(@ q)Ny—, - (@75 @) Ny =N, (75 P N,

A A
< [TT(=a= =" g, [ (=™ 0"
s=1 5=2
A 1A e e
(T =g =)o (g, BRI E I g AT g PR A
(4" 4")oo
But a; + ayy1-; = n for 1 < i < A, so we reach (1.10) in Theorem 1.21. This completes
the proof. 1

7 Concluding remarks

To conclude, we make a few remarks on the connection between the main results of this
paper and the original conjecture of Bressoud, along with our subsequent work in this
direction. Then we mention some potential problems for future study.

It should be stressed that the overpartition analogues considered in this paper are not
merely a matter of extension and specialization. In fact, they play an essential role and
serve as an indispensable structure in tackling the conjecture of Bressoud formulated in
terms of ordinary partitions.

Based on the relationship between the overpartition analogue B; and Bressoud’s func-
tion By (Theorem 1.16), we realize that the case j = 0 of Bressoud’s conjecture (that is,
Ay = By) is a consequence of the relation A, = B, on overpartitions. Nevertheless, the
case j = 1 of Bressoud’s conjecture has been resolved by Kim [27] without resorting to
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overpartitions. One is immediately led to show that A; = B;. This is the objective of our
subsequent paper [25]. It is worth mentioning that the relation A; = B can be regarded
as an overpartition analogue of Bressoud’s conjecture for the case j = 1. In other words,
we may say that Bressoud’s conjecture consists of two parts, one of which is the case j = 1
settled by Kim, and the other (the case j = 0) is an overpartition analogue. Naturally, it
would be interesting to give a direct combinatorial proof of the case j = 0 of Bressoud’s
conjecture without relying on the overpartition setting. Also, it would be desirable to
give direct combinatorial proofs of the generating functions of By and B;.
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