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Abstract

In this paper, we consider the numerical approximation of a biharmonic
eigenvalue problem by introducing a new family of the mixed method. This
method is based on a formulation where the fourth-order eigenproblem is
recast as a system of four first-order equations. The optimal convergence
rates with 2k + 2 (k ≥ 0 is the degree of the polynomials) of eigenvalue ap-
proximation are theoretically derived and numerically verified. The optimal
or sub-optimal convergences of the other unknowns are theoretically proved.
The new numerical schemes based on the deduced problems can be of lower
complicacy, and the framework is fit for various fourth-order eigenvalue prob-
lems.
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1 Introduction
The biharmonic eigenvalue problem is one of the fundamental model problems

in mathematics, physics, and elastic mechanics, and has wide applications in, e.g.,
modeling the vibration of thin plates [38], fluid-structure [9], inverse scattering the-
ory [13] and electronic structure [37]. We consider the following the biharmonic
eigenvalue problem:

∆2u = λu, in Ω, (1.1a)
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u =
∂u

∂n = 0, on ∂Ω, (1.1b)

where Ω ⊂ Rd (d = 1, 2, 3) is a polyhedral domain.
Many existing methods are based on the primal formulation (1.1), which only

have the approximations to eigenvalue λ and the eigenfunction u as two unknowns.
Among these methods include the conforming finite element (FE) [6, 16, 24, 26, 35],
the C0IPG [11], the classical non-conforming element [18, 36, 41], computation
of guaranteed/asymptotic upper and lower bounds [15, 22, 30, 31, 40], spectral-
Galerkin method [2], and adaptive method and its convergence analysis [18, 27]. In
addition, [3] presents a high accuracy spectral method based on the min/max princi-
ple for biharmonic eigenvalue problems on a spherical domain. Recently, the discon-
tinuous Galerkin (DG) method [39], two-grid method [28, 43], multi-level/multigrid
method [42], and C0 virtual element method [32] become the powerful alternative
for numerically solving the biharmonic eigenvalue problems.

Since the design and the implementation of C1 traditional FEMs for the bihar-
monic eigenvalue problem is computationally quite intensive due to keeping C1-
continuity across the inter-element boundaries, several approaches like mixed DG
methods [39] and C0-interior penalty methods [11] have been proposed but they are
still computationally expensive. The lower order mixed finite element method is an
effective method to avoid the higher regularity and is easier for programming and
computing than the higher order element. A natural idea is to design more effec-
tive mixed element schemes for the eigenvalue problem based on the corresponding
boundary value problem. As far as mixed methods are concerned, the fourth-order
biharmonic equation can be recast in mixed form as the Hellan-Herrmann-Johnson
(HHJ) type of equations of first-order (referred to as a problem with four unknown
fields, cf [8]).

q = ∇u, z = ∇q, in Ω,
w = ∇ · z, ∇ ·w = λu, in Ω,
u = 0, q · n = 0, on ∂Ω,

(1.2)

Following our convention, (∇q)iℓ = ∂xℓ
(qi) for 1 ≤ i, ℓ ≤ d, where qi is the ith

component of q. Moreover, (∇ · z)i =
∑d

ℓ=1 ∂xℓ
ziℓ, where the ziℓ is the iℓ-entry of

z.
Several mixed element schemes for the biharmonic eigenvalue problems have been

proposed in [14, 33, 34]. They are based on introducing the variable z = ∆u and
obtaining a coupled system of Poisson problems. In [14, 23], the mixed finite element
methods are first proposed to solve the biharmonic eigenvalue problem. Following
the mixed method analysis of the source problem, error analysis of the mixed method
for the biharmonic eigenvalue problem are developed by using piecewise continuous
approximations for both variables in [14, 34]. [10] develops an isoparametric mixed
method and present the estimate for taking into account the combined effect of
boundary approximation and numerical integration on the approximation for general
fourth-order elliptic eigenvalue problems. [33] presents the lowest order mixed finite
element method of the biharmonic eigenvalue problem, but it is the piecewise linear
and continuous finite element method, not piecewise constant finite element. A
new postprocessing technique and the superconvergence of mixed finite element
approximations of the eigenpairs and the biharmonic operator is proposed in [4]. [39]
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gives the mixed DG method, propose a residual-based a posteriori error estimator
and prove the convergence with the optimal order in L2 and DG-norm.

In this paper, our method is based on a stationary variational principle (the
Reissner principle) which was introduced by Hellan, Herrmann, and Visser [25]. Its
alternative explanation is to transform the primal problems to order reduced formu-
lations. Our method constructs a system on low-regularity spaces by introducing
auxiliary variables, and then discretize the resulting system by the different finite
element methods. In engineering applications, the first derivatives ∇u (the strain)
and the second derivatives ∇∇u (the moments) of u are frequently more impor-
tant than u itself. In fact, in the Reissner-Mindlin plate problem, we are interested
in transverse displacement, rotation, bending moment, and shear stress. This en-
courages us to introduce the various-order derivatives of the primal variable as the
auxiliary variables, and then expand the problem to the low-order spaces. So the
four order eigenvalue problem (1.1) is modified by the first order system (1.2) by in-
troducing three auxiliary variables. Our method will approximate the eigenfunction
u, the second derivatives of u, namely z, with optimal order k+1 and the eigenvalue
with optimal order 2(k+1) (k ≥ 0). As far as we know, this paper is the first study
on the approximation of biharmonic eigenvalue problems by the piecewise constant
and obtaining the convergence with optimal order. Furthermore, from the numerical
examples, our methods can present lower or upper bounds of eigenvalues by using
different finite element spaces.

The remaining paper is organized as follows. In the next section, we introduce
the mixed method of the eigenproblem and essential notations used throughout the
paper. Section 3 provides the convergence analysis of eigenvalues, eigenfunctions,
and the other auxiliary functions based on the mixed first-order system with the
optimal convergence order. In Section 4, we present numerical results to verify the
theoretical results. Section 5 provides a discussion on the different choices of other
finite element spaces. Finally, some concluding remarks are given in Section 6.

2 Mixed Element Method of the HHJ system
In order to discuss error analysis, we first recall the Dirichlet boundary value

problem which is recast as first-order system of HHJ type and finds (uf , qf , zf ,wf ) ∈
V ×Q×Z ×W , for any given “source” f ∈ L2(Ω), such that

∇uf = qf in Ω (2.1a)
∇qf = zf in Ω (2.1b)

∇ · zf = wf in Ω (2.1c)
∇ ·wf = f in Ω (2.1d)

uf = qf · n = 0 on ∂Ω, (2.1e)

where V = L2(Ω), Q = (L2(Ω))d, W = H(div,Ω), Z = H(div,Ω). H(div,Ω)
denotes all d × d matrix-valued functions such that each row belongs to the space
H(div,Ω). Throughout, all functions are real-valued in this paper. We use the
standard notations for Sobolev spaces Hs(Ω) and their associated norms ∥ · ∥s and
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seminorms | · |s. The L2(Ω) inner-product is denoted by (·, ·), that is (v, w) :=∫
Ω
vwdΩ, ∀v, w ∈ L2(Ω). Thus ∥ · ∥0 :=

√
(·, ·).

To facilitate our analysis, we introduce the following solution operators of the
source problem with the source f :

U : L2(Ω) → V, which is defined simply by Uf = uf ,

Q : L2(Ω) → Q, which is defined simply by Qf = qf ,

Z : L2(Ω) → Z, which is defined simply by Zf = zf ,

W : L2(Ω) →W , which is defined simply by Wf = wf .

By the classical elliptic regularity results, if the domain Ω is smooth [1] or the
largest interior angle of ∂Ω is less than 126.28◦ [12], and f ∈ L2(Ω), then uf ∈ H4(Ω).
For a convex polygonal domain, the weak solutions of the boundary value problem
belong in general to H3+s(Ω) for some s ∈ (0, 1]. The value of s depends on depends
on the largest interior angle of ∂Ω. The regularity results in the source problem
(2.1) will lead to the regularity of the eigenfunction u of (1.1).

2.1 The source problem
The mixed method based on HHJ type provides an approximation (Uh,Qh,Wh,Zh)

to (U,Q,W,Z). To understand this approximation, we first describe the mixed
method of source problem based on HHJ type and introduce known results we shall
use later.

Now, let us demonstrate the mixed method based on the HHJ type. First we
generate a shape-regular decomposition for the computational domain Ω ⊂ Rd (d =
2, 3) into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3)
and the diameter of a cell K ∈ Th is denoted by hK . The mesh diameter h describes
the maximum diameter of all cells K ∈ Th. Based on the mesh Th, we construct the
following finite element spaces denoted by Vh ⊂ V , Qh ⊂ Q, Zh ⊂ Z andWh ⊂W .
The family of finite-dimensional spaces (Vh,Qh,Zh,Wh) is assumed to satisfy the
following assumption:

lim
h→0

inf
vh∈Vh

∥v − vh∥0 = 0, ∀v ∈ V, lim
h→0

inf
ph∈Qh

∥p− ph∥0 = 0, ∀p ∈ Q,

lim
h→0

inf
sh∈Zh

∥s− sh∥0 = 0, ∀s ∈ Z, lim
h→0

inf
mh∈Wh

∥m−mh∥0 = 0, ∀m ∈W .

The mixed method define an approximation (ufh, q
f
h , z

f
h,w

f
h) to (uf , qf , zf ,wf ) in

the following spaces, respectively

V k
h = {v ∈ V : v|K ∈ Pk(K) for all K ∈ Th}, (2.2a)
Qk

h = {p ∈ Q : p|K ∈ (Pk(K))d for all K ∈ Th}, (2.2b)
Zk

h = {s ∈ Z : each row of s belongs to W k
h }. (2.2c)

W k
h = {m ∈W : m|K ∈ RTk(K) for all K ∈ Th}, (2.2d)
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The space of polynomials of degree less than or equal to k (≥ 0) is denoted by Pk(K).
Furthermore, we let P−1(K) := {0}. The space RTk(K) = (Pk(K))d + Pk(K)x is
the Raviart-Thomas space of index k. The subscript h denotes the mesh size which
is defined as the maximum of the diameters of all mesh elements. It should be noted
that we omit the superscript k of (2.2) where there is no confusion.

The mixed method defines the approximation solution ufh, the approximation wf
h,

the approximation zfh and the approximationwf
h, as the functions in (Vh,Qh,Zh,Wh),

respectively, satisfying
(qfh ,ph) + (ufh,∇ · ph) = 0, (2.3a)
(zfh, sh) + (qfh ,∇ · sh) = 0, (2.3b)

−(wf
h,mh) + (∇ · zfh,mh) = 0, (2.3c)

(∇ ·wf
h, vh) = (f, vh), (2.3d)

for all (vh,ph, sh,mh) ∈ Vh×Qh×Zh×Wh. Note it is proved in [8] that the above
discrete system (2.3) is uniquely solvable. So given any f in L2(Ω), the unique
solution (ufh, q

f
h , z

f
h,w

f
h) of the above mixed discrete system (2.3) is used to define

the discrete versions of the operators U,Q,Z and W in (2.1), namely
Uh : L2(Ω) → Vh, which is defined simply by Uhf = ufh,

Qh : L2(Ω) → Qh, which is defined simply by Qhf = qfh ,

Zh : L2(Ω) → Zh, which is defined simply by Zhf = zfh,

Wh : L2(Ω) →Wh, which is defined simply by Whf = wf
h.

which are the solution operators of the source problem with the source f . The
following error estimate is presented in [8].
Theorem 2.1. Assume that (uf , qf , zf ,wf ) ∈ V ×Q×Z×W and (ufh, q

f
h , z

f
h,w

f
h) ∈

Vh ×Qh ×Zh ×Wh are the (2.1) and (2.3), respectively. Then
∥uf − ufh∥L2(Ω) ≤ C(∥uf − ΠV

h u
f∥L2(Ω) + h∥zf −ΠRTzf∥L2(Ω)),

∥qf − qfh∥L2(Ω) ≤ C∥qf −ΠQ
h q

f∥L2(Ω) + C∥zf −ΠRTzf∥L2(Ω),

∥zf − zfh∥L2(Ω) ≤ C∥zf −ΠRTzf∥L2(Ω) +
( ∑

K∈Th

Ch2jk∥wf − ΠRTwf∥2L2(Ω)

)1/2

,

∥wf −wf
h∥L2(Ω) ≤ C(∥wf −ΠRTwf∥L2(Ω) + C∥∇ · (zf −ΠRTzf )∥L2(Ω),

where all projections are defined in Section 3.

The convergence of the eigenvalue problem approximation method is based on
the convergence of Uh to U in the operator norm. To apply this idea to the HHJ
eigenvalue system, we need the following approximation result of the source problem,
which shows that the spectrum of Uh approximates that of U.
Theorem 2.2. Suppose there is an s ≥ 1 such that any solution (Uf,Qf,Zf,Wf)
of the problem (2.1) satisfies

∥Uf∥s + ∥Qf∥s + ∥Zf∥s + ∥Wf∥s ≤ C∥f∥0, (2.4)
for all f ∈ V . Then

∥U− Uh∥0 ≤ Chmin{s,k+1}. (2.5)
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Proof. The convergence of the source problem in Theorem 3.7 in [8] implies

∥Uf − Uhf∥0 ≤ Chmin{s,k+1}(∥Uf∥s + ∥Qf∥s + ∥Zf∥s + ∥Wf∥s)
≤ Chmin{s,k+1}∥f∥0.

which completes the proof.

Remark 2.1. In fact, we assume Hs+3 elliptic regularity for the source problem
(2.1) which requires more than convexity; see [12] for results on polygons. Hence,
we can assume (2.4) hold. Again, we would like to emphasize that the convexity
of the domain and Hs+3 elliptic regularity are just technical assumptions for the
purpose of our error analysis.

2.2 The eigenvalue problem
In order to present the mixed method, we introduce the weak form of HHJ eigen-

value system: find (λ, u, q, z,w) ∈ R× V ×Q×Z ×W that satisfy

(q,p) + (u,∇ · p) = 0, (2.6a)
(z, s) + (q,∇ · s) = 0, (2.6b)

−(w,m) + (∇ · z,m) = 0, (2.6c)
(∇ ·w, v) = λ(u, v), (2.6d)

for all (v,p, s,m) ∈ V ×Q×Z ×W .
The mixed finite element method for the weak form is as follows: find (λh, uh, qh, zh,wh) ∈

R× Vh ×Qh ×Zh ×Wh that satisfies

(qh,ph) + (uh,∇ · ph) = 0, (2.7a)
(zh, sh) + (qh,∇ · sh) = 0, (2.7b)

−(wh,mh) + (∇ · zh,mh) = 0, (2.7c)
(∇ ·wh, vh) = (λhuh, vh), (2.7d)

for all (vh,ph, sh,mh) ∈ Vh ×Qh ×Zh ×Wh.
For matrix-valued functions, we use the notation

(z, s) :=
∑
K∈Th

(z, s)K , where (z, s)K :=

∫
K

z(x):s(x)dx,

which is the Frobenius inner product.
For vector-valued and scalar-valued functions we take a similar definition.

Lemma 2.1. The eigenvalue λh of the discrete system is positive.

Proof. Taking vh = uh, ph = qh, sh = zh, mh = wh in (2.7), we have

λh(uh, uh) = (∇ ·wh, uh) = −(qh,wh) (2.8)
= −(∇ · zh, qh) = (zh, zh) > 0. (2.9)

So we obtain that λh > 0.
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Lemma 2.2. The HHJ eigenvalue system (2.6) and discrete system (2.7) are Her-
mitian and positive definite.

Proof. For any ψ and f in L2(Ω), we have

λ(ψ,Uf) = (∇ ·Wψ,Uu) (by v = Uf)
= −(Qf,Wψ) (by p = Wψ)
= −(Qf,∇ · Zψ) (by Wψ = ∇ · Zψ)
= (Zf,Zψ) (by s = Zf)
= λ(Uψ, f).

(Zu,Zu) shows that the HHJ eigenvalue system is Hermitian and positive definite.
Similarly, for the local solution operator Uh, we have

λh(ψ,Uhu) = (∇ ·Whψ,Uhu) (by vh = Uhu in (2.7d))
= −(Qhu,Whψ) (by ph = Whψ in (2.7a))
= −(Qhu,∇ · Zhψ) (by sh = Zhψ in (2.7c)
= (Zhu,Zhψ) (by sh = Zhu in (2.7b))
= λh(Uhψ, f).

(Zhu,Zhu) shows that the HHJ eigenvalue system is Hermitian and positive definite.

3 Error estimates
This section provides a priori error results for the mixed method applied to the

HHJ type (first-order equations) of biharmonic eigenvalue problems. We prove that
under favorable regularity conditions, the eigenvalues of the first-order system con-
verge at the rate O(h2k+2), the eigenfunctions, the first derivatives ∇u and the
second derivatives ∇∇u converge at the rate O(hk+1) when we use polynomials of
degree at most k ≥ 0 for all variables. We are now ready to state our results.

In general, the error analysis starts to form the error equations which are written
as follows: 

(q − qh,ph) + (u− uh,∇ · ph) = 0,
(z − zh, sh) + (q − qh,∇ · sh) = 0,

−(w −wh,mh) + (∇ · (z − zh),mh) = 0,
(∇ · (w −wh), vh)− (λu, vh) + (λhuh, vh) = 0,

for all (vh,ph, sh,mh) ∈ Vh ×Qh ×Zh ×Wh.
The projections play an important role in error analysis. So we also need to

define some projections. We let ΠRT : W ∩ Lp(Ω) → Wh (for p > 2) be the
Raviart-Thomas projection of index k defined on each K ∈ Th by

(ΠRTσ − σ,ψ)K = 0, ∀ψ ∈ (Pk−1(K))d, (3.1a)
⟨(ΠRTσ − σ) · n, µ⟩F = 0, ∀µ ∈ Pk(K), for all faces F of K, (3.1b)

for given any σ ∈W ∩ Lp(Ω). Here we used the notation ⟨µ, ν⟩F =
∫
F
µ(s)ν(s)ds.
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Moreover, we let ΠRT denote the matrix version of ΠRT as it acts on matrix-
valued functions where ΠRT acts on each row. Let ΠQ

h be the L2-projection onto
Qh. Finally, ΠV

h is the L2-projection onto Vh. Throughout this paper, we will assume
that w belongs to the domain of ΠRT and z belongs to the domain of ΠRT .

We will need a few properties of ΠRT . First, the commutative property is pre-
sented as follows:

∇ · (ΠRTσ) = ΠV
h∇ · σ. (3.2)

The following approximation properties hold: for given any σ ∈W ∩ Lp(Ω),

∥σ −ΠRTσ∥0,K ≤ hs+1
K ∥σ∥s+1,K . (3.3)

for 0 ≤ s ≤ k and K ∈ Th.
By using the orthogonality of the projection ΠRT ,ΠRT ,ΠQ

h and ΠV
h , the above

error equations can be modified by

(ΠQ
h q − qh,ph) + (ΠV

h u− uh,∇ · ph) = (ΠQ
h q − q,ph), (3.4a)

(ΠRTz − zh, sh) + (ΠQ
h q − qh,∇ · sh) = (ΠRTz − z, sh), (3.4b)

−(ΠRTw −wh,mh) + (∇ · (ΠRTz − zh),mh) = (ΠRTw −w,mh), (3.4c)
(∇ · (ΠRTw −wh), vh)− (λu, vh) + (λhuh, vh) = 0, (3.4d)

To evaluate the “distance” between eigenspaces, we recall some standard termi-
nology. For any V1 and V2 of V = L2(Ω), we define a suitable notion of “distance”
or “gap” between two spaces as follows:

d(x, V2) = inf
y∈V2

∥x− y∥L2(Ω), d(V1, V2) = sup
x∈V1

d(x, V2)

∥x∥L2(Ω)

.

In order to go on the error analysis, we introduce the resolve operators E(U) and
Eh(Uh) as follows:

E(U) =
1

2πi

∮
Γ

(z − U)−1dz,

Eh(Uh) =
1

2πi

∮
Γ

(z − Uh)
−1dz.

For simplicity, we use E and Eh to denote E(U) and Eh(Uh), respectively. We use
R(E) and R(Eh) to denote the ranges or eigenspaces of the operators E(U) and
Eh(Uh), respectively. We define Jhv = EhΠ

V
h v, ∀v ∈ R(E).

The following Theorem collects and summaries a few convergence consequences in-
cluding non-pollution of the spectrum, completeness of the spectrum, non-pollution,
and completeness of the eigenspaces. These consequences, for the mixed method of
biharmonic eigenvalue problem based on HHJ type, are simple extensions of the
analogous results for the elliptic eigenvalue problem. Their proving arguments are
standard and are already present in the literature (see [5]). Since they are applied
to our method context with few modifications, we shall not present the proofs.
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Theorem 3.1. We have the following statements hold:
1) (Non-pollution of the spectrum). Let Λ be an open set containing the spectrum

of problem (1.1). Then for for sufficiently small h, Λ contains the spectrum of
problem (2.7).

2) (Completeness of the spectrum) For any eigenvalue λ of problem (1.1), there
is an eigenvalue λh of problem (2.7) such that

lim
h→0

λh = λ.

3) (Non-pollution and completeness of the eigenspaces) For eigenspaces R(E) and
R(Eh) of problem (1.1) and problem (2.7) respectively, we have

lim
h→0

d(R(E),R(Eh)) = 0.

4) The operator Eh converges to E, i.e., limh→0 ∥Eh − E∥ = 0.

Remark 3.1. Some results of Theorem 3.1 can be more refined. We can provide
the convergence rate of this limit. As a matter of fact, ∥E − Eh∥ ≤ Chk+1 and
d(R(E),R(Eh)) ≤ Chk+1 hold.

We list the properties of the operators Uh and Eh (see Lemma 4.3 in [20] )

• Jh is bijections,

C1∥v∥0 ≤ ∥Jhv∥0 ≤ C2∥v∥0, ∀v ∈ R(E), (3.5)

• Eh is bijections,

C̃1∥v∥0 ≤ ∥Ehv∥0 ≤ C̃2∥v∥0, ∀v ∈ R(E). (3.6)

The two inequalities can be proved by using the same techniques as Lemma 4.3 in
[20]. So we omit it.

Define the similarity operators Ũ and Ũh by

Ũh = J−1
h UJh : R(E) → R(E),

Ũ = U|R(E) : R(E) → R(E).

Next, we present the result which plays an important role in the proof of the main
result (Theorem 3.2).

First, we need to consider the following dual problem:

∆2ũ = χ, in Ω, (3.7a)

ũ =
∂ũ

∂n = 0, on ∂Ω, (3.7b)

or

∇ũ = q̃ (3.8a)
∇q̃ = z̃ (3.8b)

∇ · z̃ = w̃ (3.8c)
∇ · w̃ = χ, (3.8d)
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Lemma 3.1. Assume that (uf , qf , zf ,wf ) and (ufh, q
f
h , z

f
h,w

f
h) are the solutions of

the source problem (2.1) and the corresponding discrete problem (2.3), respectively.
Then we have

(ΠV
h u

f − ufh, χ) =(zf −ΠRTzf , z̃ −ΠRT z̃)

+ (wf −ΠRTwf , q̃ −ΠQ
h q̃)

− (qf −ΠQ
h q

f , w̃f −ΠRT w̃f )

+ (f − ΠV
h f, ũ− ΠV

h ũ).

(3.9)

The proof of Lemma 3.1 is put in Appendix.

Theorem 3.2. Suppose (λh, uh) ∈ R × Vh is an eigenpair of discrete system with
∥uh∥0 = 1, and (λ, u) ∈ R × L2(Ω) is an eigenpair of HHJ eigenvalue system with
∥u∥0 = 1. Then we have the following a priori error estimates:

∥u− uh∥0 ≤ Chmin{s,k+1}∥u∥s,
|λ− λh| ≤ Ch2min{s,k+1}∥u∥s.

Proof. The arguments proving the convergence of the eigenfunctions are similar as
[5] and [19], and since they apply to the mixed method context of the first-order
system based on HHJ type with few modifications, we shall not repeat them. We
only present the convergence of the eigenvalues.

It follows from the Bauer-Fike theorem [7] that

|λ− λh| ≤ C∥Ũ− Ũh∥0.

Here ∥Ũ− Ũh∥0 means the operator norm.
So we must bound ∥Ũ − Ũh∥0. In order to estimate it, we consider (Ũ − Ũh)f ,

where f ∈ R(E).

C∥(Ũ− Ũh)f∥0 ≤ ∥Uh(Ũ− Ũh)f∥0 (by (3.5))
= ∥EhΠ

V
hUf − EhUhΠ

V
h f∥0 (by EhUh = UhEh)

= sup
νh∈R(Eh)

(EhΠ
V
hUf − EhUhΠ

V
h f, νh)

∥νh∥0

= sup
ν∈R(E)

(Eh(Π
V
hUf − UhΠ

V
h f), Ehν)

∥Ehνh∥0
(by Eh bijection)

=
1

C̃1

sup
ν∈R(E)

(ΠV
hUf − UhΠ

V
h f, Ehν)

∥νh∥0
(by Eh bijection).

We express (ΠV
hUf − UhΠ

V
h f, Ehν) by splitting it into four terms:

(ΠV
hUf − UhΠ

V
h f, Ehν) = (ΠV

h u
f − UhΠ

V
h f, Ehν)

= (ΠV
h u

f − ufh, Ehν) + (ufh − UhΠ
V
h f, Ehν)

= (ΠV
h u

f − ufh, Ehν − ν) + (ΠV
h u

f − ufh, ν)

+(ufh − UhΠ
V
h f, Ehν − ν) + (ufh − UhΠ

V
h f, ν).

10



We bound the four terms of the above equations. By using the approximation result
(Lemma 3.1 in [8]), for the first term, we have

|(ΠV
h u

f − ufh, Ehν − ν)| ≤ Ch2min{s,r+1}(∥u∥s + ∥z∥s)∥ν∥0. (3.10)

For the third term, by using ufh = Uhf , we have

|(ufh − UhfΠ
V
h u,Ehν − ν)| = |Uh(f − ΠV

h f), Ehν − ν)|
≤ C∥f − ΠV

h f∥0∥Ehν − ν∥0
≤ Ch2min{s,r+1}∥u∥s∥ν∥0.

By using the adjoint of Uh, for the fourth term, we have

|(ufh − UhΠ
V
h f, ν)| = |Uh(f − ΠV

h f), ν)| = |(f − ΠV
h f,Uhν)|

= |(f − ΠV f, uν − ΠV uν)| ≤ Ch2min{s,r+1}∥u∥s∥ν∥0.

The remainder is denoted to estimate the second term (ufh − UhΠ
V
h f, ν). By using

Lemma 3.1 with χ = ν, (ΠV
h u

f − ufh, ν) can be expressed by the four terms, i.e.,

(ΠV
h u

f − ufh, ν) = (zf −ΠRTzf , z̃ −ΠRT z̃) + (wf −ΠRTwf , q̃ −ΠRT q̃)

−(qf −ΠQ
h q

f , w̃f −ΠRT w̃f ) + (f −ΠRTf, ũ−ΠRT ũ).

So we bound these four terms, by the approximation properties, we have

|(ΠV
h u

f − ufh, ν)| ≤ Ch2min{s,r+1}(∥zf∥s∥z̃f∥s + ∥wf∥s∥q̃f∥s + ∥qf∥s∥w̃∥s + ∥uf∥s∥ũ∥s)
≤ Ch2min{s,k+1}(∥zf∥s + ∥wf∥s + ∥qf∥s + ∥uf∥s)∥ν∥0
≤ Ch2min{s,k+1}∥f∥0∥ν∥0.

Combining all the intermediate steps, we have

∥(Ũ− Ũh)f∥0 ≤ Ch2min{s,r+1}∥f∥0,

i.e.
∥Ũ− Ũh∥0 = sup

f∈R(E)

∥(Ũ− Ũh)f∥0
∥f∥0

≤ Ch2min{s,r+1}.

We end this section by stating the other main theorem of this section, i.e., error
estimates of the auxiliary intermediary variables q, z, andw. The collection presents
the a priori error estimate consequences of these variables’ convergence. In the proof,
we need the proposition which is listed as follows.

Proposition 3.1 ([17]). If wh ∈Wh and ∇ ·wh ∈ V k−1
h , then wh ∈Wh ∩Qh.

Theorem 3.3. Assume that (λj,h, uj,h, qh, zj,h,wj,h) ∈ R× Vh ×Qh × Zh ×Wh is
a solution of (2.7) which converges to eigenvalue (λj, uj, qj, zj,wj).
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Then we have the following estimates:

∥qj − qj,h∥L2(Ω) ≤ C||zj − zj,h||L2(Ω) + C||qj −ΠQ
h qj||L2(Ω),

∥zj − zj,h∥L2(Ω) ≤ C||zj −ΠRTzj||L2(Ω) + C|λj − λj,h|+ C||uj − uj,h||L2(Ω)

+ C
( ∑

K∈Th

h2lkk ||wj −ΠRTwj||2L2(Ω)

) 1
2

∥wj −wj,h∥L2(Ω) ≤ C||∇ · (ΠRTzj,h − zj,h)||L2(Ω)

+ ||wj −ΠRTwj,h||L2(Ω) + C|λj − λj,h|+ C||uj − uj,h||L2(K),

where lk = 0 if k = 0 and lk = 1 if k ≥ 1.

Proof. There exists a matrix-valued function J ∈H(div,Ω) such that

∇ · J = ΠQ
h qj − qj,h

with
||J ||H1(Ω) ≤ C||ΠQ

h qj − qj,h||L2(Ω).

||ΠQ
h qj − qj,h||

2
L2(Ω) = (ΠQ

h qj − qj,h,∇ · J) = (ΠQ
h qj − qj,h,∇ ·ΠRTJ) (by (3.1))

= −(zj − zj,h,ΠRTJ) ≤ ||zj − zj,h||L2(Ω)||ΠRTJ ||L2(Ω) (by (3.4b))
≤ ||zj − zj,h||L2(Ω)(||ΠRTJ − J ||L2(Ω) + ||J ||L2(Ω))

≤ ||zj − zj,h||L2(Ω)(Ch||J ||H1(Ω) + ||J ||L2(Ω)) (by (3.3))

≤ C||zj − zj,h||L2(Ω)||J ||H1(Ω).

Combining the above two inequalities implies that

||ΠQ
h qj − qj,h||L2(Ω) ≤ C||zj − zj,h||L2(Ω).

This proves the first result.
Taking sh = ΠRTzj − zj,h and mh = ΠQ

h p− ph in (3), we have

||ΠRTzj − zj,h||2L2(Ω) = (ΠRTzj − zj,ΠRTzj − zj,h)− (ΠQ
h qj −Πqj,h,∇ · (ΠRTzj − zj,h))

= (ΠRTzj − zj,ΠRTzj − zj,h)− (ΠRTwj −wj,Π
Q
h p− ph)

+(ΠRTwj −wj,h,Π
Q
h p− ph)

= (ΠRTzj − zj,ΠRTzj − zj,h)− (ΠRTw −w,ΠQ
h p− ph)

−(ΠV
h uj − uj.h,∇ · (ΠRT

h wj −wj,h)) + (ΠQ
h qj − qj,Π

RT
h wj −wj,h)

= (ΠRTzj − zj,ΠRTzj − zj,h)− (ΠRTwj −wj,Π
Q
h p− ph)

+(ΠQ
h qj − qj,Π

RT
h wj −wj,h))− (λuj − λhuj,h,Π

V
h u− uh)

by (3.4a) with ph = ΠRTzj − zj,h and (3.4d) with vh = ΠV
h uj − uj,h.

Lastly, we prove the last result. In order to prove it, we introduce the following
source problem with the source term f = λu: find (ũh, q̃h, z̃h, w̃h) ∈ R× Vh ×Qh ×
Zh ×Wh that satisfy

(q̃h,ph) + (ũh,∇ · ph) = 0, (3.11a)

12



(z̃h, sh) + (q̃h,∇ · sh) = 0, (3.11b)
−(w̃h,mh) + (∇ · z̃h,mh) = 0, (3.11c)

(∇ · w̃h, vh) = (λu, vh), (3.11d)
Subtracting (3.11d) from (2.6d), we have

(∇ · (wj − w̃j,h), vh)) = 0, ∀vh ∈ Vh.

By using the definition (3.1) of the projection ΠRT , we have
(∇ · (ΠRTwj − w̃j,h), vh)) = 0, ∀vh ∈ Vh.

It follows from the above equation and ∇ · (ΠRTwj − w̃j,h) ∈ Vh that
∇ · (ΠRTwj − w̃j,h) = 0.

We obtain
ΠRTwj − w̃j,h ∈Wh ∩Qh. (3.12)

by Proposition 3.1. Furthermore, by (3.12) of Theorem 3.5 in [8], we can similarly
obtain that
||ΠRTwj − w̃j,h||L2(K) ≤ C||∇ · (ΠRTzj − zj,h)||L2(K) + C||wj −ΠRTwj||L2(K).

(3.13)

Subtracting (3.11d) from (2.7d), we have
(∇ · (wj,h − w̃j,h), vh)) = (λj,huj,h − λjuj, vh), ∀vh ∈ Vh.

Taking vh = ∇ · (wj,h − w̃j,h) in the above equation, we have
||∇ · (wj,h − w̃j,h)||L2(Ω) ≤ C|λj − λj,h)|+ C||uj − uj,h||L2(Ω). (3.14)

In order to obtain the last estimate we use (3.12) and have
||ΠRTwj −wj,h||2L2(K) = (ΠRTwj −wj,h,Π

RTwj,h − w̃j,h) + (ΠRTw −wh, w̃j,h −wj,h)

= (∇ · (ΠRTzj − zj,h),ΠRTwj,h − w̃j,h) + (ΠRTw −wh, w̃j,h −wj,h)

by choosing mh = ΠRTw − w̃h. By Cauchy-Schwartz inequality, (3.13) and (3.14),
we have
||ΠRTwj −wj,h||2L2(K) ≤ C||∇ · (ΠRTzj − zj,h)||L2(K) + C||wj −ΠRTwj||L2(K)

+C|λj − λj,h|+ C||uj − uj,h||L2(K).

This proves the last result.

The following corollary easily follows from the above theorem.
Corollary 3.1. Assume that (q, z,w) and (qh, zh,wh) are the solutions of (2.6)
and (2.7). Then if k ≥ 1, we have

||qj − qj,h||L2(Ω) ≤ Chk+1||zj||Hk+1(Ω) ,

∥zj − zj,h∥L2(Ω) ≤ Chk+1||zj||Hk+1(Ω) ,

∥wj −wj,h∥L2(Ω) ≤ Chk||zj||Hk+1(Ω) ,

if k = 0, we have
||qj − qj,h||L2(Ω) ≤ Ch||zj||H1(Ω),

∥zj − zj,h∥L2(Ω) ≤ Ch||zj||H1(Ω).
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4 Numerical experiments
In this section, some numerical examples are presented to validate the result of

our theoretical analysis in the previous sections. First, we consider two smooth
model eigenproblems on a square and hexagon domain respectively. The spectral
approximations using the mixed method discretization are computed. Then, we
consider a corner singularity model eigenproblem on an L-shaped domain and we
investigate the performance of our method with uniform meshes. It should be noted
that the errors in the text refer to relative errors. All the computations have been
performed by using the finite element package FreeFem++ [21].

4.1 Biharmonic eigenvalue problem on unit square
We first consider biharmonic eigenvalue problem based on the first-order system

on unit square Ω = (0, 1) × (0, 1). First, we obtain an initial mesh by subdividing
the computing domain Ω into shape-regular triangles. Figure 1 shows this initial
mesh (h1 = 1/8). Other nested meshes are produced by regular refinements.

Figure 1: The initial mesh for Example 4.1

Since the exact eigenvalue is unknown, we use an accurate enough approximation
λ1 = 1294.9339795917, λ2 = 5386.6565607533

given by the extrapolation method (see, e.g. [29]) as the first two exact eigenvalues
to investigate the errors. Since the square domain is convex, the eigenfunctions are
enough smooth, i.e., u ∈ H3(Ω). So the convergence rates should be limited only
by the degrees (k = 0, 1) of the approximating polynomials. We solve first-order
system (2.7) in each of these meshes by using k = 0 and k = 1 finite element system,
respectively. The results obtained are collected below.

Figure 2 gives the corresponding numerical results for the first two eigenvalues.
We see that the approximate eigenvalues λh converge to the exact values at the
optimal rate of O(h2k+2). This is a verification of the theoretical consequence of
Theorem 3.2. Table 1 shows the approximate of the first two eigenvalues by solving
the first-order system. Otherwise, from Table 1, we can find the exact eigenvalue
approximated by the numerical eigenvalue below. This shows that what we get is
effective lower bounds.
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Figure 2: The errors of the first two eigenvalues with k = 0 (left) and k = 1 (right) on
unit square for the initial mesh in Figure 1.

Table 1: Biharmonic eigenvalue problem on unit square
k = 0 k = 1

h λ1,h λ2,h λ1,h λ2,h
1/8 1279.8315553 5367.8139340 1294.7671242 5383.9713287
1/16 1290.7265788 5381.3561084 1294.9220096 5386.5412478
1/32 1293.5326319 5383.5828748 1294.9328449 5386.6502777
1/64 1294.6089833 5386.0567480 1294.9339167 5386.6559598
1/128 1294.8564677 5386.5086483 1294.9339760 5386.6565237
1/256 1294.9132879 5386.6149540 1294.9339793 5386.6565588
1/512 1294.9290543 5386.6476059
Trend ↗ ↗ ↗ ↗

4.2 Biharmonic eigenvalue problem on hexagon
In the second example, we consider that the domain Ω is a regular hexagonal

region with a side length of 1 and the center is the origin of coordinates. The initial
mesh has been shown in Figure 3 (h1 = 1/4). We also use regular refinement to
obtain nested meshes to construct the corresponding finite element space.

Since the exact eigenvalue is unknown, we use an accurate enough approximation

λ1 = 163.597568158247, λ2 = 703.328903370623

given by the extrapolation method (see, e.g. [29]) as the first two exact eigenvalues
to investigate the errors. Since the square domain is convex, the eigenfunctions are
enough smooth, i.e., u ∈ H3(Ω). So the convergence rates should be limited only by
the degrees (k = 0, 1) of the approximating polynomials. We solve the first-order
system (2.7) in each of these meshes by using k = 0 and k = 1 finite element system,
respectively. The results obtained are collected below.

Figure 4 gives the corresponding numerical results for the first two eigenvalues.
From Figure 4, we see that the approximate eigenvalues λh converge to the exact
values at the optimal rate of O(h2k+2). Table 2 shows the eigenvalue approximations
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Figure 3: The initial mesh for Example 4.2

of the first 2 eigenvalues by solving the first-order system. From Table 2, we can
also find the numerical approximations are lower bounds of the exact eigenvalues.
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Figure 4: The errors of the first two eigenvalues with k = 0 (left) and k = 1 (right) on
regular hexagon for the initial mesh in Figure 3.

4.3 Biharmonic eigenvalue problem on L-shape domain
In the last example, we consider the HHJ eigenvalue system defined on the L-

shape domain Ω = [−1/2, 1/2]2/(0, 1/2) × (−1/2, 0). The re-entrant corner on Ω
causes the singularity of the eigenfunctions. Consequently, the convergence order
for the first and second eigenvalue approximation is not optimal. However, as a
numerical example, we also show the effectiveness of our method. Figure 5 shows
the initial mesh.

Since the exact eigenvalue is unknown, we use the accurate enough approximation

λ1 = 6700.09875796623, λ2 = 11054.4911180150
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Table 2: Biharmonic eigenvalue problem on regular hexagon
k = 0 k = 1

h λ1,h λ2,h λ1,h λ2,h

1/4 160.9458396 692.9333602 163.3798197 703.1951012
1/8 162.6812267 701.2997887 163.5776036 703.2744127
1/16 163.3016611 702.4711335 163.5959258 703.3238815
1/32 163.5226051 703.0807014 163.5974516 703.3284793
1/64 163.5776298 703.2620556 163.5975589 703.3288689
1/128 163.5926992 703.3143307 163.5975675 703.3289008
1/256 163.5963661 703.3253328
Trend ↗ ↗ ↗ ↗

Figure 5: The initial mesh for Example 4.3

given by the extrapolation method (see, e.g. [29]) as the first two exact eigenvalues
to investigate the errors. Here we also solve HHJ eigenvalue system (2.7) by using
k = 0 and k = 1 finite element system, respectively.

Figure 6 gives the corresponding numerical results for the first two eigenvalues.
From Figure 6, we can obtain the optimal error estimates that meets Theorem 3.2.
Table 3 shows the eigenvalue approximations of the first 2 eigenvalues by solving
the first-order system. From Table 3, we can find the numerical approximations are
indeed lower bounds of the exact eigenvalues.

Remark 4.1. From the above three numerical examples, we can indeed find that
the eigenvalues obtained by solving the HHJ eigenvalue system are effective lower
bounds. However, at present, we are unable to prove this conclusion.

5 Other effective finite element spaces
Section 3 and Section 4 show that our method approximations eigenvalue λ and

eigenfunction u and q with optimal order and w in a sub-optimal way. In this
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Figure 6: The errors of the first two eigenvalues with k = 0 (left) and k = 1 (right) on
L-shape domain for the initial mesh in Figure 5.

Table 3: Biharmonic eigenvalue problem on L-shape domain
k = 0 k = 1

h λ1,h λ2,h λ1,h λ2,h

1/8 5636.5006655 10334.1889032 6442.0857195 11044.1485401
1/16 6496.5069009 10982.6026156 6645.2214258 11052.3034939
1/32 6611.7862029 11035.4824786 6676.1086781 11053.8882698
1/64 6662.0614415 11049.3382099 6690.6691688 11054.3274377
1/128 6684.6224134 11053.0660625 6697.5268563 11054.4528623
1/256 6694.6542454 11054.1154644
Trend ↗ ↗ ↗ ↗

section, we present the other two groups of spaces in which computing eigenvalues
is also very effective, and the upper bound of eigenvalues can be obtained.

5.1 Abstract finite element spaces
These spaces are interesting because the source problem (2.1) is uniquely solvable.

The uniquely solvable consequence is easily proved, which is similar to Theorem
2.2 in [8]. So far we focused on the case when the same spaces are employed to
approximate the components of the second derivative and the third derivative, the
eigenfunction and its derivative are approximated by the same polynomials. Before
describing the new spaces we introduce the following concept which the new spaces
need to satisfy.

Definition 5.1. The FE space pair Qh × Zh is a stable pair for the vector-valued
Poisson problem if there exists a constant C such that for any q ∈ Qh there exists
z ∈ Zh such that

∇ · z = q,

with
∥z∥H(div,Ω) ≤ C∥q∥L2(Ω).
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Similarly, Vh ×Wh is a stable pair for Poisson’s problem if it is a row of a stable
pair for the vector-valued Poisson problem.

From the above definition and discussion, we observe that Qh nearly determines
the scale of the global system. Then we fix Qh as a set of k-degree polynomials. To
hold a stable discrete space pair, we only vary the space of Zh and enlarge it. So
Zh is changed to the polynomial space with degree k + 1, i.e.,

Case 1:

Vh = {v ∈ V : v|K ∈ Pk(K) for all K ∈ Th}, (5.1a)
Qh = {p ∈ Q : p|K ∈ (Pk(K))d for all K ∈ Th}, (5.1b)
Zh = {s ∈ Z : s ∈ (C0(Ω))d×d, s|K ∈ (Pk+1(K))d×d for all K ∈ Th}, (5.1c)
Wh = {m ∈W : m|K ∈ RTk(K) for all K ∈ Th}. (5.1d)

It is easy to verify that Qh×Zh and Vh×Wh are stable pairs. Indeed, Qh×Zh can
be used for solving vector-valued Poisson’s problem and is called the Brezzi-Marini-
Douglas spaces. Vh ×Wh can be used for solving scalar Poisson’s problem and is
called the Raviart-Thomas spaces.

Based on case 1, we can appropriately reduce the size of the global system. So
we can adjust the size of the two spaces Qh and Vh, that is, space Qh is adjusted to
a k-degree polynomial space, then space Vh is naturally a k − 1 degree polynomial
space. We obtain the spaces of Vh, Wh, and Zh as follows,

Case 2:

Vh = {v ∈ V : v|K ∈ Pk(K) for all K ∈ Th}, (5.2a)
Qh = {p ∈ Q : p|K ∈ (Pk+1(K))d for all K ∈ Th}, (5.2b)
Zh = {s ∈ Z : s ∈ (C0(Ω))d×d, s|K ∈ (Pk+2(K))d×d for all K ∈ Th}, (5.2c)
Wh = {m ∈W : m|K ∈ (Pk+1(K))d for all K ∈ Th}. (5.2d)

It is easy to verify that Qh ×Zh and Vh ×Wh are stable pairs. Indeed, Qh ×Zh

can be used for solving vector-valued Poisson’s problem and is called the Brezzi-
Marini-Douglas spaces. Vh ×Wh can be used for solving scalar Poisson’s problem
and is called the Brezzi-Marini-Douglas spaces.

We can now follow similar techniques in [8] to obtain results analogous to the
identity (3.9) in Lemma 3.1 in both these cases. On the other hand, rigorous proofs of
the result are developed for these cases involving the matrix-valued BDM projection
(d copies of BDM projection: one for each row) onto the space Zh, instead of
the projection, ΠRT . It follows then that we get the convergence rates for the
eigenvalue. In fact, (3.9) will hold for these new spaces and therefore we will get
the error estimates for eigenvalue as well. Finally, one can also prove optimal error
estimates for the other variables. The numerical results for different cases are shown
in the following figures and tables.
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5.2 Two specific FE spaces for the biharmonic eigenvalue
problem

We also consider biharmonic eigenvalue problem based on the first-order system
on unit square Ω = (0, 1) × (0, 1). First, we decompose the computing domain Ω
into shape-regular triangles. Figure 7 shows this initial meshes (h1 = 1/4). Other
nested meshes are produced by regular refinements.

Figure 7: The initial mesh for Example 5.2

We solve the first-order system (2.7) by using first FE group (5.1) and second
FE group (5.2) with k = 1, respectively. The corresponding numerical results are
shown in Figure 8 which also exhibits the optimal convergence rate. Table 4 shows
the eigenvalue approximations of the first 2 eigenvalues by solving the first-order
system. From Table 4, we can find the numerical eigenvalues approximate the exact
eigenvalues below. This shows that what we get is effective upper bounds.
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Figure 8: The errors of the first two eigenvalues by 1st FE group (5.1) (left) and 2nd FE
group (5.2) (right) on unit square with k = 1.

Remark 5.1. From the above numerical example, we can find that the eigenvalues
obtained by solving the HHJ eigenvalue system are effective upper bounds. However,
at present, we are unable to prove this conclusion.
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Table 4: Biharmonic eigenvalue problem on unit square
1st FE group (5.1) with k = 1 2nd FE group (5.2) with k = 1

h λ1,h λ2,h λ1,h λ2,h
1/4 1302.2386966 5480.0091932 1342.3203813 5785.8620433
1/8 1295.3541917 5393.5495941 1296.8731606 5409.4537648
1/16 1294.9642912 5387.1536319 1295.0478874 5387.9185701
1/32 1294.9359196 5386.6908683 1294.9409933 5386.7316576
1/64 1294.9341227 5386.6590695 1294.9344093 5386.6613214
1/128 1294.9339884 5386.6567126 1294.9340033 5386.6568345
Trend ↘ ↘ ↘ ↘

6 Conclusion
In this paper, a new type of mixed method is designed to solve the fourth-order

biharmonic eigenvalue problems based on the mixed first-order system. The higher-
order eigenvalue problem is transformed into a mixed first-order system containing
four first-order equations. We have proved the optimal error estimates. Three
numerical experiments validate the optimality and show that this the method is
efficient for many different domains. For good measure, we also find that this method
can effectively obtain the lower bounds of eigenvalues.
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Appendix. The proof of Lemma 3.1
In order to get the best possible estimates, we assume the following elliptic regu-

larity result:
∥uf∥4 ≤ C∥f∥0 (A.1)

Then we have error equations as follows

(qf − qfh ,ph) + (uf − ufh,∇ · ph) = 0, , (A.2a)
(zf − zfh, sh) + (qf − qfh ,∇ · sh) = 0, , (A.2b)
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−(wf −wf
h,mh) + (∇ · (zf − zfh),mh) = 0, (A.2c)

(∇ · (wf −wf
h), vh) = 0, (A.2d)

for all (vh,ph, sh,mh) ∈ Vh ×Qh ×Zh ×Wh.
Now we begin to prove Lemma 3.1.

Proof. Using the dual equations (A.2) of the source problem (2.1), we have

(ΠV
h u− uh, χ) = (ΠV

h u− uh,∇ · w̃) (by dual equation (3.8d))
= (ΠV

h u− uh,∇ ·ΠRT w̃) (by (3.1a) )

= −(qf − qfh ,Π
RT w̃) (by error equation (A.2a))

= −(qf − qfh ,Π
RT w̃ − w̃)− (qf − qfh , w̃ −ΠQ

h w̃)− (qf − qfh ,Π
Q
h w̃).

We express the last term (qf − qfh ,Π
Q
h w̃). By the dual equation (3.8c), we have

(qf − qfh ,Π
Q
h w̃) = (qf − qfh ,Π

Q
h∇ · z̃) (by dual equation (3.8c))

= −(qf − qfh ,∇ ·ΠRT z̃) (by the commutative property ΠQ
h )

= (zf − zfh,Π
RT z̃ − z̃) + (zf − zfh, z̃). (by error equation (A.2b))

Furthermore, using the integration by parts, we have

(zf − zfh, z̃) = (zf − zfh,∇q̃) = (∇ · (zf − zfh), q̃) (by q̃|∂Ω = 0)

= (∇ · (zf − zfh), q̃ −ΠQ
h q̃) + (∇ · (zf − zfh),Π

Q
h q̃)

= (wf , q̃ −ΠQ
h q̃) + (wf −wf

h,Π
Q
h q̃) (by error equation (A.2b) and (2.1c))

= (wf −ΠRTwf , q̃ −ΠQ
h q̃) + (wf −ΠRTwf ,ΠQ

h q̃) + (ΠRTwf −wf
h,Π

Q
h q̃).

Next, we express the second term and the third term

(wf −ΠQ
hw

f ,ΠRT q̃) = (wf −ΠRTwf ,ΠQ
h q̃

f − q̃) + (wf −ΠRTwf ,∇ũ)
= (wf −ΠRTwf ,ΠQ

h q̃ − q̃) + (∇ ·wf −∇ ·ΠRTwf , ũ)

= (wf −ΠRTwf ,ΠQ
h q̃ − q̃) + (f − ΠV

h∇ ·wf , ũ)

= (wf −ΠRTwf ,ΠQ
h q̃ − q̃) + (f − ΠV

h f, ũ− ΠV
h ũ).

The last term vanishes. In fact, it follows from wf
h − ΠRTwf ∈ Qh ∩Wh and

∇ · (ΠRTwf −wf
h) = 0 that

(ΠRTwf −wf
h,Π

Q
h q̃) = (ΠRTwf −wf

h, q̃
f ) = (ΠRTwf −wf

h,∇ũ)
= (∇ · (ΠRTwf −wf

h), ũ) = 0

by the integration by parts, ũ|∂Ω = 0 and (A.2d). Combining the all above steps
implies the desired result.
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